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Abstract
We propose a simple, statistically principled, and theoretically justified method
to improve supervised learning when the training set is not representative, a
situation known as covariate shift. We build upon a well-established method-
ology in causal inference and show that the effects of covariate shift can be
reduced or eliminated by conditioning on propensity scores. In practice, this is
achieved by fitting learners within strata constructed by partitioning the data
based on the estimated propensity scores, leading to approximately balanced
covariates and much-improved target prediction. We refer to the overall method
as Stratified Learning, or StratLearn. We demonstrate the effectiveness of this
general-purpose method on two contemporary research questions in cosmology,
outperforming state-of-the-art importance weighting methods. We obtain the
best-reported AUC (0.958) on the updated “Supernovae photometric classifica-
tion challenge,” and we improve upon existing conditional density estimation
of galaxy redshift from Sloan Digital Sky Survey (SDSS) data.
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1 INTRODUCTION

In supervised learning, a model is fit to a dataset consisting
of covariates and outcomes and used to predict the out-
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come variables in a second dataset where only the covari-
ates are observed. Domain shift refers to the situation
where the initial data used to fit the model are systemat-
ically different from the second data set, whose outcome
variables are predicted with the model. In this case, which
occurs commonly in many situations, the learning model
is unlikely to generalize well, leading to unreliable pre-
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dictions. This work proposes a new, general method to
address this problem. Following standard nomenclature,
we refer to the partially observed outcome variables as
labels, to the labeled data used to fit the learning model as
the training or source data, and to the unlabeled data as
the target data.

Domain adaptation methods aim to obtain accurate
target predictions under domain shift [38], arising in
applications such as in medical imaging, where mechan-
ical configurations may vary between medical centers
[22]; natural language processing, where annotated train-
ing data are often highly specialized and thus different
from the target data [21]; robotics and computer vision,
where simulated and observed data are often combined
to improve classification performance on the unlabeled
target data [12]; in cyber security; epidemiology; astron-
omy; among others. A variety of methods designed to
tackle domain shift have been proposed. Following Ref.
[27], these methods can be organized into three categories:
covariate-based methods [e.g., 37]; inference-based meth-
ods [e.g., 31]; and sample-based approaches, with a focus
on importance weighting [e.g., 11, 51, 55], mainly in the
covariate shift framework, which is our focus (Section S1
of the Supplement includes additional background and
literature review.)

1.1 Covariate shift

In this paper, we present a new method to address covari-
ate shift, a common case of domain shift, characterized
by the fact that the conditional distribution of the labels
given the predictive covariates is the same for source and
target data, but the distribution of source and target covari-
ates differ [36]. In the world of machine learning, with
its high-dimensional covariate spaces, the problem is both
widespread and often difficult to diagnose [27, 36].

Covariate shift usually occurs when the training sam-
ple is not selected at random, but is biased in terms
of certain covariates. For instance, brighter astronomical
objects are more likely to be better observed and there-
fore selected in the training set [29, 43]. Selection bias
has been widely studied in the statistical literature [14,
30], for example, when estimating treatment effects via
observational studies, where the treatment assignment is
often not random but is biased with regards to certain
covariates. The transfer of causal inference techniques to
domain adaptation has received more attention in recent
years—both fields share the goal of obtaining accurate esti-
mators under distribution shift [35]. We build on this work
in the present paper, via the transfer of the propensity score
framework from causal inference to the covariate shift
setting.

1.2 Propensity scores

The introduction of propensity scores [47] was
groundbreaking in causal inference for obtaining unbiased
treatment effect estimates from confounded, observational
data. Previous study [47] defines the propensity score as
the probability of treatment assignment given the observed
covariates. They show that, under certain assumptions,
conditional on the propensity scores, the treatment and
control group have balanced covariates, which allows
unbiased treatment effect estimation. Four main methods
are used to condition on the propensity scores: inverse
probability of treatment weighting (IPTW); using the
propensity score for covariate adjustment; matching; and
stratification on the propensity scores [47, 48]. Extensive
work has been done on best practice and generalization
of propensity scores in causal inference, too much to list
here, and we refer to [18] for an overview. Propensity
scores have also found wide application to related areas,
such as classification with imbalanced classes [46], or
fairness-aware machine learning [7], among others. In the
covariate shift framework, estimated propensity scores
are used only implicitly for importance weighting [e.g.,
23, 56] analogously to IPTW, and for matching to obtain
validation data [8]. There has been no effort, however, to
transfer the general methodology.

In the causal inference literature, there is an ongoing
debate on the relative merits of using weighted estimators
versus stratification or matching [e.g., 4, 34, 49]. While,
under correct specification of the propensity score model,
weighting leads to consistent estimation of treatment
effects, this may not hold for stratification due to potential
residual confounding within strata [34]. However, the bias
introduced by stratified estimators is traded with reduced
variance compared with weighted estimators [34]. In addi-
tion, estimates of the propensity score are less variable
than estimates of their reciprocal, or of a density ratio (to
form weights). A small change in an estimated propen-
sity score that is near zero can lead to a large difference in
the computed inverse-propensity weight, causing massive
variance in the estimates based on the weights [4, 34].

1.3 Contribution

We propose stratified learning (StratLearn), a simple
and statistically principled framework to improve learn-
ing under covariate shift, based on propensity score
stratification. On the theory side, we show that condi-
tioning on estimated propensity scores eliminates the
effects of covariate shift. In practice, we partition (strat-
ify) the (source and target) data into subgroups based
on the estimated propensity scores, improving covariate
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AUTENRIETH et al. 3

balance within strata. We show that supervised learn-
ing models can then be optimized within source strata
without further adjustment for covariate shift, lead-
ing to reduced bias in the predictions for each stratum.
StratLearn is general-purpose, meaning it is in principle
applicable to any supervised regression or classification
task under any model. We provide theoretical evidence
for the effectiveness of StratLearn and demonstrate it in
a range of low- and high-dimensional applications. We
show that the principled transfer of the propensity score
methodology from causal inference to the covariate shift
framework allows the statistical learning community
to employ hard-won practical advice from causal infer-
ence, for example, balance diagnostics and propensity
score model assessment/selection. [e.g., 2, 17, 41, 48].
We stratify to condition on propensity scores instead of
using importance weighting to avoid the massive variance
sometimes associated with the latter. StratLearn (strati-
fication) does not use individually estimated propensity
score values except to form strata, leading to a more
robust method [49], as demonstrated in our numerical
studies.

This article is organized as follows. In Section 2, we
formally introduce the target risk minimization task and
summarize the related literature on covariate shift, par-
ticularly on importance weighting methods, concluding
with an overview of propensity scores in causal infer-
ence. We develop our new methodology in Section 3. In
Section 4, we evaluate our method on numerical examples.
In Section 4.2, we apply StratLearn to an astronomical
problem that has attracted broad interest in recent years,
namely, Type Ia supernovae (SNIa) classification [6, 25].
Improving upon [43], StratLearn obtains the best-reported
AUC1 (0.958) on the updated “Supernovae photomet-
ric classification challenge” (SPCC) [24]. In Section 4.3,
we improve upon non-parametric full-conditional den-
sity estimation of galaxy photometric redshift (so-called
photo-z estimation) [20], a key quantity in cosmology.
We conclude by summarizing and discussing our work in
Section 5.

Supplemental Materials (numbers appearing with a
prepended ‘S’) provide further information: a biblio-
graphic note, Section S1, gives additional background;
Section S2 provides further details on our proposed
methodology; Section S3 delves into related methods,
while data and software used in this paper are given
in Section S4. Section S5 illustrates StratLearn on sim-
ulated data from a well-known univariate toy regres-
sion example [51], which might serve as a helpful

1 The AUC is the area under the Receiver Operator Characteristic (ROC)
curve, obtained by plotting classifier efficiency against the false positive
rate for different classification thresholds (between [0, 1]).

demonstration of the StratLearn framework, particularly
for readers less familiar with the topic. The numeri-
cal results in Section 4 are further expanded upon in
Sections S6 (additional numerical evidence using data
from the UCI repository [13]), S7 (SNIa classification),
S8 (a variation of the SPCC data [25]), and S9 (photo-z
regression).

StratLearn is computationally efficient, easy to imple-
ment, and readily adaptable to various applications. Our
investigations show that StratLearn is competitive with
state-of-the-art importance weighting methods in lower
dimensions and greatly beneficial for higher-dimensional
applications.

2 PRELIMINARIES

2.1 Notation

Adapting a model trained on unrepresentative source data
to accurately predict the labels of the target data requires
information about how the distributions of the source
and target data differ. Let  ⊂ R

F , F > 0, be the covari-
ate space that is observed for all data, and let  be
the label space, observed only for the source data. The
labels typically consist of K > 1 classes or, in multivari-
ate regression with K dependent variables, a subset of
R

K . Different domains are defined as different joint dis-
tributions p(x, y) over the same joint covariate-label space
 ×  [27]. Let DS =

{(
x(i)S , y

(i)
S

)}ns

i=1
denote the source

data, a sample of size ns from the joint distribution pS,
and let DT =

{
x(i)T

}nt

i=1
denote the target data, an unla-

belled sample of size nt from the distribution pT . To avoid
the trivial case, we assume that pS(x, y) ≠ pT(x, y), which
means the joint distribution of the covariates x and the
outcome labels y differs for the source and target data.
For ease of notation, we implicitly condition on an indi-
cator variable S, with pS(x, y) ≔ p(x, y|s = 1) represent-
ing source data (analogously pT(x, y) ≔ p(x, y|s = 0) for
target data).

Covariate shift refers to the case where the conditional
distribution of the labels given the covariates is the same
for all data, but the marginal distribution of the covariates
differs between the source and target data. In this notation,
covariate shift corresponds to pS(y|x) = pT(y|x) but pS(x) ≠
pT(x). Thus, if an object in the source data has the same
set of covariates as an object in the target data, then the
conditional distribution of the outcomes of both objects is
the same (i.e., pS(y|x) = pT(y|x)). However, the distribution
of covariates for objects in the source data is systematically
different to the distribution of covariates for objects in the
target data (i.e., pS(x) ≠ pT(x)).
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4 AUTENRIETH et al.

2.2 Target risk minimization

In a supervised learning task, let f ∶  → R
K be the

training function, and 𝓁 ∶ R
K ×  → [0,∞) be the loss

function comparing the output of f with the true label,
yT in  . (This describes a general multivariate regression
case; in a probabilistic classification task with K classes, we
usually have f ∶  → [0, 1]K). The risk function associated
with our supervised learning task is (f ) ≔ E[𝓁(f (x), y)].
We cannot generally compute (f ), since the exact joint
distribution p(x, y) is unknown. However, an approxima-
tion of the risk can be obtained by computing the empirical
risk by averaging the loss on the training sample, where we
have access to both the covariates xS and the labels yS.

In the covariate shift setting, the objective is to min-
imize the target risk T(f ) ≔ EpT (x,y)[𝓁(f (x), y)], via the
labeled source data DS and unlabeled target data DT ,

assuming that pS(x, y) ≠ pT(x, y), with pS(y|x) = pT(y|x)
but pS(x) ≠ pT(x). More precisely, our task is to train a
model function f that minimizesT(f ), being able to com-
pute only the source loss 𝓁(f (xS), yS), but not the target loss
𝓁(f (xT), yT), since yT is unavailable in practice. Section 2.3
reviews importance weighting methods to minimize the
target risk under covariate shift.

2.3 Related literature—Importance
weighting

In an influential work, the author of Ref. [51] proposes
a weighted maximum likelihood estimation (MWLE) and
shows that this MWLE converges in probability to the min-
imizer of the target risk under covariate shift. Following
Ref. [51], assuming that the support of pT(x) is contained
in pS(x), the expected loss (risk) w.r.t. pT(x, y) equals that
w.r.t. pS(x, y) with weights w(x) ≔ pT(x)∕pS(x) for the loss
incurred by each x:

EpT (x,y)[𝓁 (f (x), y)] = EpS(x,y)[w(x)𝓁 (f (x), y)]. (1)

In short, the target risk can be minimized by weight-
ing the source domain loss by a ratio of the densities
of target and source domain covariates. The importance
weights w(x) are paramount in the covariate shift liter-
ature and several approaches optimize the estimation of
the weights. One approach estimates the densities pT(x)
and pS(x) separately [51], for example, through kernel
density estimators [54]. Others estimate the density ratio
directly, for example, via Kernel-Mean-Matching [16],
Kullback–Leibler importance estimation (KLIEP) [55],
and variations of unconstrained least-squares importance
fitting (uLSIF) [23]. Given w(x), the authors of Ref. [53]
propose importance-weighted cross validation (IWCV)

and show that in theory this can deliver an almost unbi-
ased estimate of the target risk. Previous study [56] links
covariate shift with selection bias and shows that the target
risk can be minimized by importance sampling of source
domain data, employing the inverse probability of source
set assignment for importance weights. This allows any
probabilistic classifier to be used to obtain the weights, for
example, logistic regression [5].

Although importance weighting in theory enables
minimization of the target risk, there are challenges. Based
on a measure of domain dissimilarity (e.g., Rényi diver-
gence), the authors of Ref. [11] show that weighting leads
to high generalization upper error bounds, making predic-
tions unreliable, especially with large importance weights.
In addition, the authors of Ref. [42] point out that while
weighting can reduce bias, it can also greatly increase
variance. Unfortunately, with increasing covariate space
dimension, the variance of the importance-weighted
empirical risk estimates may increase sharply [19, 52]. This
can be partly tackled by dimensionality reduction meth-
ods [52]; see Ref. [27] for a detailed discussion. We address
these variance concerns via propensity scores.

2.4 Related literature—Propensity
scores in causal inference

Before conducting the transfer of propensity scores to
the covariate shift framework in Section 3, we provide an
overview of the propensity score methodology in its orig-
inal causal inference framework [47]. Propensity scores
are a pivotal methodology to account for selection bias in
observational studies to perform treatment effect estima-
tion. In observational studies, the treatment assignment
can typically be observed, but treatment is not randomly
allocated. Confounding covariates, associated with both
the treatment assignment and the outcome variable,
can systematically bias average treatment effect esti-
mates. Propensity score methods aim to generate balance
between the covariates of the treatment and the control
groups, eliminating or mitigating bias in treatment effect
estimates.

More precisely, given a set of observed covariates X
and a binary indicator Z for treatment assignment (treat-
ment vs. control), the authors of Ref. [47] introduce the
propensity score as

e(X) ≔ P(Z = 1|X) (2)

and define treatment allocation Z as strongly ignorable, if

(i) (Y1,Y0) ⟂⟂ Z|X and (ii) 0 < e(X) < 1. (3)
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AUTENRIETH et al. 5

Condition (i) means that treatment assignment Z is con-
ditionally independent of the potential outcome (Y1, Y0),
given the observed covariates. The potential outcomes
are the possible outcomes for an object, depending on
its treatment status, and at most one is observed (e.g.,
for a treated object the observed outcome is Y = Y1). In
practice, condition (i) means that no confounders (covari-
ates that are associated with the treatment and outcome)
are unmeasured. The authors of Ref. [47] show that
if (3) holds, the propensity score is a balancing score.
That is, given the propensity score, the distribution of
the covariates in treatment and control are the same,
that is, p(X|e(X),Z = 1) = p(X|e(x),Z = 0). Thus, condi-
tional on the propensity score, unbiased average treatment
effect estimates can be obtained, i.e., E[Y1|e(x),Z = 1] −
E[Y0|e(x),Z = 0] = E[Y1 − Y0|e(x)]. In practice, condition-
ing on the estimated (rather than true) propensity score
can achieve better empirical balance as this corrects for
statistical fluctuations in the sample as well [15, 47].

Below, we show how the balancing property of propen-
sity scores can be employed to transfer the propensity score
methodology to the covariate shift framework, for target
risk minimization in supervised learning tasks.

3 A NEW METHOD:
STRATLEARN

In this section, we introduce our novel StratLearn method-
ology for principled learning under covariate shift via the
transfer of the propensity score framework from causal
inference to the covariate shift setting. In Section 3.1,
we provide theoretical justification that conditioning on
propensity scores eliminates covariate shift, and we devise
how propensity scores can be employed in practice to
mitigate the effects of covariate shift via propensity score
stratification. The flowchart in Figure 1 outlines the
StratLearn framework, with technical details described
in Section 3.2. In Section 3.3, we describe covariate bal-
ance diagnostics which can readily be transferred from
the causal inference framework to assess the propensity
score model, and we introduce outcome balance diag-
nostics, employing additional structure in the covariate
shift setting.

3.1 StratLearn—Methodology

In the covariate shift framework, we define the propensity
score to be the probability that object i is in the source data,
given its observed covariates, that is,

e(xi) ≔ P(si = 1|xi), with 0 < e(xi) < 1. (4)

Proposition 1 (Learning conditional on the
propensity score). If pS(x, y) and pT(x, y) satisfy
the covariate shift definition and 0 < e(x) < 1,
then it holds that

pT(x, y|e(x)) = pS(x, y|e(x)). (5)

That is, conditional on e(x), the joint source and target distri-
butions are the same, eliminating covariate shift. It follows,
for any loss function 𝓁 = 𝓁(f (x), y),

EpT (x,y|e(x))[𝓁(f (x), y)] = EpS(x,y|e(x))[𝓁(f (x), y)]. (6)

Proposition 1 is verified in Section S2. Note that its con-
dition, 0 < e(x) < 1, is no stronger than the conditions
required for (1). The support of pT(x) being contained
in pS(x) implies 0 < e(x), and e(x) = 1 implies pT(x) = 0,
in which case the importance weight w(x) = 0, which is
equivalent to discarding the sample.

With Proposition 1, we extend the basic causal infer-
ence theory to use propensity scores in the covariate shift
framework. Conditioning on estimated propensity scores
enables statistically principled minimization of the target
risk based on source data. According to Proposition 1, if
we were to condition on any single value of the propen-
sity score, the distribution of x and y in the source and
target domains would be identical and we could minimize
their target risk using the source data alone. Because sam-
ple sizes with identical propensity scores are too small in
practice for model fitting, we employ an approximation.

StratLearn takes advantage of Proposition 1 via propen-
sity score stratification; source data DS and target data
DT are divided into k non-overlapping subgroups (strata)
based on quantiles of the estimated propensity scores.
More precisely, letting q

𝑗
be the 𝑗th k-quantile of

{e(xi) ∶ xi ∈ (xS ∪ xT)}, for 𝑗 ∈ 1, … , k, we divide DS and
DT into

D(k)
Sj =

{
(x, y) ∈ DS ∶ qk−𝑗 < e(x) ≤ qk−𝑗+1

}
and

D(k)
Tj =

{
x ∈ DT ∶ qk−𝑗 < e(x) ≤ qk−𝑗+1

}
, (7)

where q0 = 0 and qk = 1. By Proposition 1, within strata,

pT
𝑗

(y, x) ≈ pS
𝑗

(y, x), for 𝑗 ∈ 1, … , k, (8)

where S
𝑗

indicates conditioning on assignment to the 𝑗th
source stratum (analogously for target T

𝑗
). It follows that

for 𝑗 ∈ 1, … , k,

EpT
𝑗

(x,y)[𝓁(f (x), y)] ≈ EpS
𝑗

(x,y)[𝓁(f (x), y)]. (9)

Thus, we can minimize the target risk within strata by
minimizing the source risk within strata. In this way, we
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6 AUTENRIETH et al.

F I G U R E 1 StratLearn flow
chart (*Covariate balance and outcome
balance is assessed as described in
Section 3.3, with a numerical example
given in Section 4.2.).

reduce the covariate shift problem to non-overlapping sub-
groups where the source and target domain are approxi-
mately the same, which in principle allows us to fit any
supervised learner to DS

𝑗

to predict the target objects in
DT

𝑗

. Figure 1 presents a flow chart illustrating the steps of
our proposed StratLearn methodology.

3.2 StratLearn—Technical details

In general, any probabilistic classifier could be used to esti-
mate propensity scores (e.g., [41]). Logistic regression is
commonly used in causal inference, and we adopt it for the
applications in this paper. In practice, the covariate shift
assumption, pS(y|x) = pT(y|x), requires there be no unob-
served confounding covariates. To meet this requirement,
we include all potential confounders as main effects. An
estimate of the propensity scores in (4) is then obtained

by probabilistic classification of source assignment, given
source data xS and target data xT .

Using the estimated propensity scores, the source and
target data are grouped into strata, following (7). We use
k = 5 strata based on empirical evidence provided by Ref.
[9], showing that sub-grouping into five strata is enough to
remove at least 90% of the bias for many continuous dis-
tributions [47]. Given the stratified data, we fit a model f

𝑗

to source data DS
𝑗

and predict the respective target sam-
ples in DT

𝑗

, for 𝑗 ∈ 1, … , k. Model hyperparameters for
f
𝑗

can be selected through empirical risk minimization on
source data DS

𝑗

, for instance through cross validation on
DS

𝑗

. The model functions f
𝑗

are trained independently and
can be computed in parallel to reduce computational time.
If the source distribution does not cover the target distri-
bution well enough, some of the strata may contain too
little source data to reliably train the model. In this case,
we add source data from one or more adjacent strata to
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AUTENRIETH et al. 7

avoid highly variable predictions. There is a bias-variance
trade-off here in that this reduction in variance requires
a relaxation of the approximation in (8), which inevitably
increases bias somewhat. Although a general and precise
criterion for combining the strata is elusive (more complex
models require more data and data sets of the same size
may be more or less informative for the same model), we
illustrate the combination of source strata in Section 4.2
(and Section S6), where one or more source strata have
insufficient data.

3.3 StratLearn—Balance diagnostics

A key advantage of propensity scores derived in causal
inference is their covariate balancing score property [47],
that is, pS(x|e(x)) = pT(x|e(x)). In causal inference, this
property is used to verify the propensity score model
and/or the choice of covariates, x, for example, by check-
ing that x has the same within-strata distribution in the
treatment and control groups. Employing the balancing
property in the derivation of Proposition 1 allows us to take
advantage of such diagnostic tools in our framework. We
refer to the large literature on this [e.g., 1, 2, 17, 48] and
provide an example of such a balance check in Section 4.2
(and in Sections S8 and S9).

In Remark 1, we detail how additional structure in the
covariate shift setting can be exploited to justify a corollary
model diagnostic.

Remark 1. In the propensity score framework
of causal inference [47], we have potential out-
comes Y0 and Y1. In the covariate shift frame-
work, the potential outcomes are identical (Y0 ≡

Y1). That is, there is no “treatment effect”
from being assigned to the source or target set,
though only the source data are observed (Y1 ≡

Y ). Now, given the propensity score e(x), with
0 < e(x) < 1, and the covariate shift condition
p(y|x, s = 1) = p(y|x, s = 0), source data assign-
ment is ‘strongly ignorable’ (using the terminol-
ogy of Ref . [47]). It follows through Theorem 4
in Ref . [47] that, conditional on the propensity
score, source and target outcome are the same in
expectation.

In cases where labels are observed for (part of) the
target group, we can use Remark 1 as a model diagnostic.
Although in practice the labels are mostly unobserved in
the target group, they are available in our real-world sci-
entific/experimental settings described in Sections 4.2 and
4.3. In Section 4.2 (as well as Sections S8, S6, and S9), we
use Remark 1 to demonstrate a reduction of within-strata
covariate shift (i.e., by conditioning on the propensity
score).

We further demonstrate the possibility of similarly
using predicted labels instead of actual labels as a model
diagnostic. While the actual target labels yT are usually
not available in real-world data applications, the distribu-
tion of the model predicted outcome labels (̃y = f (x)) can
be evaluated for source f (xS) and target f (xT). With f being
a measurable function of the covariates x, and by employ-
ing the balancing property of propensity scores, it holds
pS(f (x)|e(x)) = pT(f (x)|e(x)). Consequently, a discrepancy
between the distributions of predicted source outcome
f (xS) and predicted target outcome f (xT) is an indication
of residual (covariate) shift in the source and target dis-
tribution.2 An advantage of assessing the balance in the
predicted outcome f (x) (in addition to covariate balance) is
that f (x) is designed to approximate the outcome y. Thus,
a discrepancy of f (xS) and f (xT) indicates an imbalance in
strongly predictive covariates, a straightforward sign for
remaining (likely), concerning confounding. We demon-
strate the application of balance diagnostics via predicted
labels in Section 4.2.

4 NUMERICAL
DEMONSTRATIONS

This section provides numerical evaluation of StratLearn
with a comparison with state-of-the-art importance
weighting methods on two topical scientific questions in
cosmology. We first introduce the comparison methods
in Section 4.1. In Section 4.2, we demonstrate the benefit
of StratLearn on a classification task with a large number
of covariates. We further illustrate how balance diag-
nostics can be employed in practice to detect potentially
remaining confounding. In Section 4.3, we demonstrate
how the StratLearn framework can improve conditional
density estimation under covariate shift, investigating the
effect of increasing (noisy) covariate dimensions on the
performance of StratLearn and comparison methods.

4.1 Comparison methods

We compare StratLearn to a range of well-established
importance weighting methods.

• KLIEP – Kullback–Leibler importance estimation pro-
cedure [55].

2 In practice, one has to ensure that f is not overfitted on the available
training (source) data sample, a standard check in supervised learning,
which can readily be assessed via standard validation tools, such as
cross-validation or bootstrapping of source data.
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8 AUTENRIETH et al.

• uLSIF – Unconstrained least-squares importance fitting
[23].3

• NN – Several versions of the nearest-neighbor impor-
tance weight estimator [28, 29, 33], varying the number
of neighbors.

• IPS – Importance weight estimation through probabilis-
tic classification of source set assignment [23].

In Section 4.3, we incorporate the estimated weights
as in the corresponding benchmark publication. Follow-
ing Ref. [20], the estimated weights are used for loss
weighting as in (Section 2.1). In Section 4.2, importance
weighting has not previously been applied. We implement
IWCV, importance sampling, and a combination of both,
to demonstrate the advantage of StratLearn with respect to
either; see Section S3.

4.2 Classification—SNIa identification

4.2.1 Objective

Type Ia supernovae (SNIa) are invaluable for the study of
the accelerated expansion history of the universe [e.g., 40,
45]. SNIa are exploding stars that can be seen at cosmo-
logical distances (billions of light years away), occurring in
a particular physical scenario which causes their intrinsic
luminosity to correlate with observable properties of their
light curve (apparent brightness at Earth as a function
of time). This “standardizable candle” property of SNIa
makes it possible to measure their distance, which in turn
depends on parameters describing the physical contents of
the universe.

To take advantage of this, reliable identification of SNIa
based on photometric light curve (LC) data is a major chal-
lenge in modern observational cosmology. Photometric LC
data are easily collectable, consisting of measurements of
an astronomical object’s apparent brightness (i.e., flux),
filtered through different passbands (wavelength ranges),
at a sequence of time points (as illustrated in Figure 2).
Only a small subset of the objects are labeled via expensive
and time-consuming spectroscopical observations, which
enable SNIa identification thanks to its characteristic spec-
tral lines. The labeled source data, DS, are therefore not
representative of the photometric target data, DT , as the
selection of spectroscopic source samples is biased towards
brighter and bluer objects. The automatic classification
of unlabeled objects, based on biased spectroscopically
confirmed source data, is the subject of much research,
including public classification challenges [25, 26].

3 KLIEP and uLSIF were implemented with the original author’s public
domain MATLAB code (link).

Leading SNIa classification approaches are based on
data augmentation; they sample synthetic objects from
Gaussian process (GP) fits of the LCs to overcome covari-
ate shift [6, 43]. The method of Ref. [43] can be viewed
as a prototype of StratLearn, as it augments the source
data separately in strata based on the estimated propensity
scores. However, to optimize data augmentation within
strata, [43] requires a subsample of labeled target data that
are unavailable in practice. While effective in this partic-
ular case, GP data augmentation is not an option in most
covariate shift tasks. We show that StratLearn makes aug-
mentation unnecessary. We use target prediction AUC to
compare performance to published results.

4.2.2 Data and preprocessing

We use data from the updated “Supernova photometric
classification challenge” (SPCC) [24], containing a total
of 21,318 simulated SNIa and of other types (Ib, Ic, and
II). For each supernova (SN), LCs are given in four color
bands, {g, r, i, z}. The data include a source set DS of 1102
spectroscopically confirmed SNe with known types and
20,216 SNe with unknown types (target set DT). Notably,
51% of the source objects are SNIa, while only 23% of the
target date are SNIa, a consequence of the strong covariate
shift in the data.

We follow the approach in Ref. [43], which was applied
to an earlier release of the SPCC data [25, discussed in
Section S8], to extract a set of covariates from the LC
data that can be used for classification. First, a GP with a
squared exponential kernel is used to model the LCs. Then,
a diffusion map [10] (as used in Ref. [44]) is applied, result-
ing in a vector of 100 similarity measures between the LCs
that we use as predictor variables. Combining these with
redshift (a measure of cosmological distance, defined in
Section 4.3) and a measure of overall brightness, we obtain
102 predictive covariates.

4.2.3 Results

To evaluate the impact of covariate shift on classifica-
tion, we first consider a “biased fit” by training a random
forest classifier (as in Ref. [43]) on the source covariates
ignoring covariate shift, resulting in an AUC of 0.902 on
the target data (black ROC curve in Figure 3). Next, we
obtain a “gold standard” benchmark by randomly select-
ing 1102 objects from target data as a representative source
set. The same classification procedure with the unbiased
“gold standard” training data (unavailable in practice)
yields an AUC of 0.972 on the remaining 19,114 target
objects.
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AUTENRIETH et al. 9

F I G U R E 2 Example of photometric LC data, including 1𝜎 error bars, for a typical SNIa (specifically, SN2475 from the updated [24]
simulated SPCC data).

Given the biased source data, StratLearn is imple-
mented as described in Section 3, including all 102 covari-
ates in the logistic propensity score estimation model.
After stratification, a random forest classifier is trained and
optimized on source strata DS1 and DS2 separately to pre-
dict samples in target strata DT1 and DT2 . We use repeated
10-fold cross validation with a large hyperparameter grid
to minimize the empirical risk of (9) within each strata,
employing log loss4 as our loss function; details appear
in Section S7. Source strata DS

𝑗

for 𝑗 ∈ {3, 4, 5} have a
small sample size (13,7,4), respectively. Thus, source strata
DS

𝑗

for 𝑗 ∈ {3, 4, 5} are merged with DS2 to train the ran-
dom forest to predict DT

𝑗

for 𝑗 ∈ {3, 4, 5}. With StratLearn,
we obtain an AUC of 0.958 on the target data (blue ROC
curve in Figure 3), very near the optimal “gold standard”
benchmark.

4 The log-loss (also referred to as cross-entropy loss) compares the output
of a classification f (x) ∈ [0, 1] with the true output y for an observation
(x, y) via 𝓁logloss(f (x), y) ≔ −(y log(f (x)) + (1 − y) log(1 − f (x))).

Figure 3 compares StratLearn to importance sampling
methods designed to adjust for covariate shift. For impor-
tance sampling, the bootstrapped samples in the random
forest fit were resampled with probabilities proportional
to the estimated importance weights (see Section S3). NN
and IPS led to the best importance weighted classifier
(AUC= 0.923, 0.921)—an improvement over the biased
fit, but substantially lower than StratLearn. AUC standard
errors (see Figure 3) are small relative to the large per-
formance improvement of StratLearn. KLIEP failed to fit
importance weights and is thus not included in the results.
We also implemented IWCV using the same hyperparame-
ter grid as for StratLearn, and a combination of IWCV and
importance sampling, which both led to lower AUC than
the ones reported in Figure 3 (see Section S7).

Previous state-of-the-art methods report an AUC of
0.855 [32] using boosted decision trees, 0.939 [39] using a
framework of an autoencoder and a convolutional neural
network, and 0.94 [43] using LC augmentation and target
data leakage, all lower than StratLearn.
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10 AUTENRIETH et al.

F I G U R E 3 Comparison of ROC curves for SNIa
classification using the updated SPCC data. Here, Biased and uLSIF
are identical. Bootstrap AUC standard errors (from 400 bootstrap
samples) are given in parentheses.

4.2.4 Balance assessment on updated SPCC
data

To illustrate the balancing property of propensity scores
(see Section 3.3) and its effect on predictive target per-
formance, we assess the covariate balance in the updated
SPCC data within strata conditional on the estimated
propensity scores, by means of two commonly used
balance measures: absolute standardized mean differ-
ences (SMD) and the Kolmogorov–Smirnov test statistics
(KS-stats) [1, 3].

Figure 4 provides a detailed covariate balance compar-
ison, by plotting the “raw” SMD against the StratLearn
SMD in stratum 1 (black) for each covariate. We remove
two outliers (redshift and brightness) with very large “raw”
SMD (1.1 and 1.7), because including them in the Figure
makes it more difficult to illustrate the balance of the
bulk of the covariates; both are well balanced in stratum
1 using StratLearn (SMD equals 0.12 and 0.17). Points
below the diagonal line are better balanced in the stra-
tum than those in the “raw” non-stratified data. This is
the case for the vast majority (71%) of black points in
Figure 4, illustrating the balance improvement achieved
with StratLearn.

Figure 4 also plots (red) the SMD achieved by STAC-
CATO [43], which uses two covariates (redshift and bright-
ness, as opposed to the 102 used by StratLearn) in the
logistic regression to estimate propensity scores. While
STACCATO improves the balance of the majority (69%)
of the covariates, most (66%) black (StratLearn) SMD

F I G U R E 4 Absolute standardized mean differences between
source and target data of stratum 1 plotted against “raw” data
absolute standardized mean differences for StratLearn and
STACCATO.

have smaller vertical values, indicating better balance than
STACCATO (red).

On average across the 102 covariates, StratLearn
improves covariate balance compared to the “raw”
non-stratified data measured by SMD by ∼70% in stratum
1 and ∼10% in stratum 2 (KS-stats: ∼70% in stratum 1 and
∼30% in stratum 2).5 It further improves upon STACCATO
by ∼36% in stratum 1 and ∼46% in stratum 2 using SMD
(KS-stats: ∼24% in stratum 1 and ∼36% in stratum 2). The
remaining strata contain too few source data to assess
covariate balance. Details are provided in Table S5.

The improved covariate balance (reduced covariate
shift) directly translates into improved predictive perfor-
mance. STACCATO (including data augmentation and tar-
get data leakage) yields a target AUC of 0.94, whereas
with StratLearn, we obtain a target AUC of 0.958 (without
data augmentation and no target data leakage)—a sub-
stantial improvement resulting from the improved covari-
ate balance by accounting for potentially confounding
covariates. In general, we note that balance is particu-
larly important for covariates that are strongly predictive
for the outcome. Domain-specific expertise might be nec-
essary to identify such covariates in the individual cases
in practice. In Section S6, we demonstrate how covariate
balance can be improved by adjusting the propensity
score model.

5 Percentages are calculated by taking the ratio of the average SMD
(average KS-stats) of all 102 covariates.
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AUTENRIETH et al. 11

T A B L E 1 Strata composition on the updated SPCC data (Section 4.2), applying STACCATO (left) and StratLearn (right).

STACCATO StratLearn

Stratum Set
Number
of SNe

Number
of SNIa

Prop.
of SNIa

Number
of SNe

Number
of SNIa

Prop.
of SNIa

1 Source 924 414 0.45 958 518 0.54

Target 3340 1125 0.34 3306 1790 0.54

2 Source 153 125 0.82 120 28 0.23

Target 4111 973 0.24 4144 927 0.22

3 to 5 Source 25 19 0.76 24 12 0.5

Target 12,765 2431 0.19 12,766 1812 0.14

Note: The number of SNe, as well as the number and proportion of SNIa are presented in source and target stratum 1 and 2. For conciseness, we present the
combined strata 3 to 5, containing too little source data for meaningful comparison of the SNIa proportions.

T A B L E 2 Outcome balance diagnostics via predicted labels on the updated SPCC data (Section 4.2), applying STACCATO (left) and
StratLearn (right).

STACCATO (predicted) StratLearn (predicted)

Stratum Set
Number
of SNIa

Prop.
of SNIa p value

Number
of SNIa

Prop.
of SNIa p value

1 Source 414 0.45 8.4e-11 518 0.54 0.284

Target 1106 0.33 1853 0.56

2 Source 125 0.82 2.8e-13 28 0.23 0.749

Target 2166 0.53 1040 0.25

Note: The number and proportion of predicted SNIa are presented in source and target stratum 1 and 2. p values are computed via Fisher’s exact test of
independence between predicted SNIa target and source proportions within strata.

Table 1 presents the composition of the five StratLearn
strata. Recall that according to Remark 1, conditional on
the propensity score the marginal distributions of source
and target outcome are the same in expectation. Table 1
shows that the proportion of SNIa in the source and target
data (which in this case can be computed from knowledge
of the true target labels in the simulation) align well for
StratLearn in the first two strata, indicating the expected
reduction in covariate shift. The source sample sizes in
strata 3–5 are quite small, rendering meaningful compar-
ison of the SNIa proportions impossible. In strata 1 and
2, however, StratLearn achieves much better balance than
either STACCATO or the raw (unstratified) data (51% SNIa
in source, 23% SNIa in target).

In Table 2, we demonstrate how predicted outcomes
can be employed for balance diagnostics by assessing
the predicted proportions of SNIa within strata obtained
by STACCATO and by StratLearn. We compute the
predicted outcomes by classifying objects to be SNIa
if the (random forest) predicted SNIa probabilities are
above 0.5. While STACCATO leads to a strong discrep-
ancy between predicted SNIa proportions in the first

two strata (indicating remaining confounding), StratLearn
leads to well-matched predicted SNIa proportions. We fur-
ther quantify the discrepancy by performing a two-sided
Fisher’s exact test of independence, with the null hypoth-
esis that there is no association of source/target set assign-
ment and predicted SNIa proportion. Comparing differ-
ent propensity score models, a higher p-value is an indi-
cator for better balance in the predicted outcomes and
should thus be desirable. StratLearn leads to much higher
p-values than STACCATO (failing to reject the null hypoth-
esis for reasonable significance levels), which implies
much weaker relation between source/target assignment
and predicted outcomes.

In this particular example, with StratLearn, we fail to
reject the null hypothesis for most significance levels. This
may not always be the case (e.g., Section S8). We recall
that the strategy of conditioning on propensity scores via
stratification leads to subgroups with similar (not identi-
cal) propensity scores and thus to similar (not identical)
joint distributions within strata (this is the approximation
in (8)). This in turn might lead to differences in the dis-
tributions of the covariates and the (predicted) outcomes,
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12 AUTENRIETH et al.

even if we could condition on the true propensity scores.
We thus employ the p-values of (predicted) outcomes as
an additional tool to asses, and primarily to compare,
propensity score models to detect and reduce confound-
ing of highly predictive and thus most relevant covari-
ates.

4.3 Conditional density
estimates—Photo-z Regression

4.3.1 Objective

The wavelength of light from extragalactic objects is
stretched because of the expansion of the universe—a phe-
nomenon called ‘redshift’. This fractional shift towards the
red end of the spectrum is denoted by z. A precise measure-
ment of redshift allows cosmologists to estimate distances
to astronomical sources, and its accurate quantification is
essential for cosmological inference (e.g., redshift is a key
component of the Big Bang theory). Because of instrumen-
tal limitations, redshift can be precisely measured only
for a small fraction of the ∼107 galaxies observed to date
(set to grow to ∼109 within a decade). These source data
are subject to covariate shift relative to the set of galax-
ies with unknown redshift (target). The authors of Ref.
[20] employed importance weighting to adjust for covari-
ate shift in x, a set of observed photometric magnitudes
(a logarithmic measure of passband-filtered brightness),
when estimating z. They obtain a non-parametric esti-
mate of the full conditional density, f (z|x), to quantify
predictive uncertainty of redshift estimates. Proper quan-
tification of predictive uncertainties is crucial to avoid
systematic errors in the scientific downstream analysis
[20, 50]. Using the same setup and conditional density
estimation models (hist-NN, ker-NN, Series, and Comb,
detailed in Ref. [20]),6 we show that StratLearn leads
to better overall predictive performance than importance
weighting.

Assuming that source and target data follow the same
distribution, under the L2−loss, conditional density esti-
mators typically aim to minimize the generalized risk (gen-
eralized in that the underlying loss can be negative):

̂R(̂f ) = 1
nS

nS∑
k=1
∫

̂f 2
(

z|x(k)S

)
dz − 2 1

nS

nS∑
k=1

̂f
(

z(k)S |x(k)S

)
, (10)

The authors of Ref. [20] propose to adjust for covariate shift
by adapting (10), via optimizing weighted versions of the

6 For the computation of the conditional density estimators we used code
by [20] (link).

conditional density estimators [20, sections 5.1–5.3] with
respect to an importance weighted generalized risk:

̂RS(̂f ) =
1

nT

nT∑
k=1
∫

̂f 2
(

z|x(k)T

)
dz − 2 1

nS

nS∑
k=1

̂f
(

z(k)S |x(k)S

)
ŵ
(

x(k)S

)
,

(11)
where the weights, ŵ(xS) = pT(x)∕pS(x), are estimated
using the methods described in Section 4.1. As their best
performing model for f (z|x), the authors of Ref. [20]
propose an average of importance weighted ker-NN and
Series,

̂f 𝛼(z|x) =
p∑

k=1
𝛼k̂fk(z|x),with constraints

(i)∶ 𝛼i ≥ 0, and (ii)∶
p∑

k=1
𝛼k = 1, (12)

referred to as “Comb” (i.e., combination), where p = 2 and
𝛼i is optimized to minimize (11).

With StratLearn, we optimize the unweighted condi-
tional density estimators (hist-NN, ker-NN, Series) by min-
imizing (10) in each source stratum separately (accounting
for covariate shift following Proposition 1). We also pro-
pose a StratLearn version of Comb by optimizing (12) on
each source stratum separately (via the generalized risk
in (11) with w(x) ≡ 1), including ker-NN and Series (each
optimized via StratLearn beforehand). StratLearn and the
other methods are compared with a ‘Biased’ (unweighted)
method that simply optimizes (10). We abbreviate the com-
bination of each method (StratLearn, Biased, and each of
the weighting methods in Section 4.1) with the models for
f (z|x) (hist-NN, ker-NN, Series and Comb) as MethodModel.

4.3.2 Data

We use the same data as Ref. [20], consisting of 467,710
galaxies from Ref. [50], each with spectroscopic redshift
z (measured with negligible error), and five photometric
covariates x. As in Ref. [20], we use the r-band magnitude
and the four colors (differences of magnitude values in
adjacent photometric bands) as our covariates. We denote
this spectroscopic source sample by DS. To simulate real-
istic covariate shift, we follow Ref. [20]: starting from
DS, we use rejection sampling to simulate a photometric,
unrepresentative target sample DT , with the prescription
p(s = 0|x) = fB(13,4)

(
x(r)

)
∕maxx(r) fB(13,4)

(
x(r)

)
, where x(r) is

the r-band magnitude and fB(13,4) is a beta density with
parameters (13,4). Additionally, we investigated adding
k ∈ {10, 50} i.i.d. standard normal covariates as poten-
tial predictors to the five photometric covariates. This
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AUTENRIETH et al. 13

F I G U R E 5 Target risk (̂RT) of the four photo-z estimation models under each method (different colors), using different sets of
predictors. Bars give the mean ± 2 bootstrap standard errors (from 400 bootstrap samples).

simulates the realistic case where additional potentially
confounding covariates are present. For comparability, we
follow Ref. [20] and use |Dtrain

S | = 2800 galaxies randomly
sampled from DS as training data, plus a validation set of
|Dval

S | = 1200 galaxies. We assess the performance of each
MethodModel pair using a random subset of DT , that is,
|Dtest

T | = 6000.

4.3.3 Results

For evaluation of̂f under each MethodModel pair, we use the
(in our simulation) known target redshifts, zT , to compute
the target risk, ̂RT(̂f ), via a non-weighted version of (11)
with x(k)S and y(k)S replaced by x(k)T and y(k)T , given by

̂RT(̂f ) =
1

nT

nT∑
k=1
∫

̂f 2
(

z|x(k)T

)
dz − 2 1

nT

nT∑
k=1

̂f
(

z(k)T |x(k)T

)
.

(13)
Figure 5 compares the resulting target risk ̂RT across mod-
els and covariate sets, showing that StratLearnComb gives
the best performance in all three covariate setups.

For small covariate space dimension (Figure 5, left
panel), StratLearnComb improves upon StratLearnker−NN
and StratLearnSeries, optimizing the source risk in each
stratum separately and combining their predictions. In
the presence of potential additional confounding covari-
ates (Figure 5, middle and right panels), the perfor-
mance of the Series estimator degrades strongly under
most methods. In these cases, StratLearnComb exploits the
higher performance of StratLearnker−NN. In contrast, for
the non-adjusted (Biased) and importance-weighted meth-
ods (e.g. IPS), the combination of approaches (Comb)
does not necessarily lead to improved performance (e.g.,

IPSComb exhibits a higher target risk than IPSker -NN on
its own (Figure 5, right panel)), indicating that the
optimization in (12) fails due to remaining covariate
shift in the data. More precisely, the weighted empir-
ical source risk minimization ((11), as a form of (1))
does not lead to target risk minimization in these sit-
uations. In general, the improvement of StratLearn rel-
ative to weighting methods increases with the dimen-
sionality of the covariate space, leading to a more robust
regime.

5 DISCUSSION

We provide a simple, though statistically principled and
theoretically justified method for learning under covari-
ate shift conditions. We show that StratLearn outperforms
a range of state-of-the-art importance weighting methods
on two contemporary research questions in cosmology
(and on toy covariate shift examples, Sections S5 and S6),
especially in the presence of a high-dimensional covari-
ate space. The assumption of covariate shift is rather
strong, requiring that there are no unmeasured confound-
ing covariates—something that cannot be guaranteed in
general. In Section S6, however, we demonstrate a cer-
tain robustness of our method against violation of this
assumption. Further work is necessary to assess the per-
formance of StratLearn more fully when this assumption
is only approximately fulfilled. We emphasize that the
covariate shift framework is best justified in the pres-
ence of a large number of covariates mitigating the risk
of unmeasured confounders—in which case it is critical
to adopt a method that, like StratLearn, can robustly han-
dle many covariates. Our framework is entirely general
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and versatile, as illustrated with examples of regression,
conditional density estimation and classification. Notably,
our numerical demonstrations illustrate the advantage of
using only a subset of the source data when formulat-
ing predictions for individual objects in the target, where
the subset is chosen for its similarity to the target data
in question (through stratification). This is a markedly
different strategy to the widespread practice of including
all possible available observations when fitting learning
models.

The novelty of our approach is grounded in the trans-
fer of the well-established causal inference propensity
score framework [47] to the domain adaptation/covari-
ate shift setting, by demonstrating that a method estab-
lished to obtain unbiased treatment effect estimates can
be adapted to optimize the target risk of a supervised
learner under covariate shift. In future work, this exten-
sion offers the opportunity to transfer hard-won prac-
tical advice from causal inference (e.g., balance diag-
nostics, estimation of propensity scores, and choice of
included covariates [2, 41, 48]) to the covariate shift
framework. We will also explore the possibility of tak-
ing advantage of Proposition 1 through a matching
approach [18], which could prove more sensitive to
the underlying propensity score distribution. We believe
StratLearn may become a powerful alternative to impor-
tance weighting, with a myriad of possible extensions and
applications.
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