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A B S T R A C T

Transport coefficients relate the off-equilibrium flow of locally conserved quanti-
ties, such as charge, energy, and momentum, to gradients of intensive thermody-
namic variables in the linear regime. Despite their mathematical formalization
dating back to the middle of the last century, when Green and Kubo devel-
oped linear response theory, some conceptual subtleties were only recently
understood through the formulation of the gauge-invariance and convective-
invariance principles. In a nutshell, these invariance principles suggest that
transport coefficients are mostly independent of the microscopic definition of
the densities and currents. In this thesis, we analyze the consequences of gauge
and convective invariances on the charge and heat-transport properties of ionic
conductors.

The combination of gauge invariance with Thouless’ theorem on charge
quantization reconciles Faraday’s picture of ionic charge transport—whereby
each atom carries a well-defined integer charge—with a rigorous quantum-
mechanical definition of atomic oxidation states. The latter are topological
invariants depending on the paths traced by the coordinates of nuclei in the
atomic configuration space. When some general topological conditions are
relaxed, we show that oxidation states lose their meaning, and charge can
be adiabatically transported across macroscopic distances without a net ionic
displacement. This allows for a classification of the different regimes of ionic
transport in terms of the topological properties of the electronic structure of
the conducting material.

Invariance principles also allow one to compute thermal conductivity in mul-
ticomponent materials such as ionic conductors through equilibrium molecular
dynamics simulations. In particular, heat management is of paramount im-
portance in solid-state electrolytes, solid materials relevant for the production
of next-generation batteries, where ionic conduction is mediated by diffusing
vacancies and defects. The aforementioned conceptual difficulties in the theory
of thermal transport are the root cause of a lack of systematic exploration
of such properties in solid-state electrolytes. We showcase the ability of the
invariance principles to overcome these issues together with state-of-the-art
data analysis techniques in the paradigmatic example of the Li-ion conductor
Li3ClO. We provide a simple rationale to explain the temperature and vacancy-
concentration dependence of its thermal conductivity, which can be interpreted
as the result of the interplay of a crystalline component and a contribution
from the effective disorder generated by ionic diffusion.
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I N T R O D U C T I O N

I
onic conductors are materials with highly mobile ions that, moving

around, transport charge while the material stays electronically insu-
lating. Electrolytes had a fundamental role of the foremost importance

since the dawn of the atomistic theory, at a time when continuum theories of
mechanics and thermodynamics were deemed to be final. Even decades before
atoms were accepted to exist, Michael Faraday’s experiments of the 1830s made
a connection between the charge flowing from one end of an electrode to the
other and the amount of substance in the electrolytic cell. The proportionality
constant between the transported charge and mass is indeed an integer mul-
tiple of the electronic charge, as Faraday himself somewhat pointed out by
computing a table of ions filled with numbers strikingly resembling the atomic
weights of many different chemical species. Faraday was actually measuring
charge-to-mass ratios that, once properly scaled by the atomic masses, can
be thought of as ante litteram oxidation states. Faraday’s measurements lead
him to hypothesize, despite being an ardent experimental physicist with little
taste for theoretical speculations, that atoms in solution—in case they exist—are
likely to be endowed with a definite charge they displace along their motion.

Significantly, the experiments that first suggested the concept of oxidation
states involved measuring the charge in transit between two electrodes: at
the foundation of this phenomenon is the theorem of charge quantization
that David J. Thouless formulated 150 years after Faraday’s work. Like experi-
ments in electrolysis, Thouless’ theorem involves the motion of charges across
macroscopic distances, rather than a static view, a snapshot, of the microscopic
system of particles. Charge quantization is rooted in topology, and in topology
is rooted a formal, quantum-mechanical definition of oxidation states that
fulfills all the properties that chemical intuition and tradition have attributed
to oxidation states ever since their widespread usage as a bookkeeping device,
first and foremost, their being integer-valued. As oxidation states are ultimately
associated with dynamics, their specific value has, in turn, an impact on ionic
charge transport in electronically insulating materials. In fact, under suitable
topological conditions, one can remarkably make use of atomic oxidation states
to understand a material’s ability to conduct electricity, even in a rigorous
quantum-mechanical picture where integer charges cannot be identified. This
forces charges to be bound to the erratic motion of ions in a fluid and thus
be transported only alongside mass. The situation is hardly as clear when
the aforementioned topological conditions are relaxed: here, surprising effects
such as the loss of correlation between charge and mass transport manifest
themselves. Ionic transport is encoded in the value of ionic conductivity, σ, the
transport coefficient relating the flux of electrical (ionic) charges to an applied
electrostatic field.

Transport coefficients are quintessential examples of off-equilibrium proper-
ties in the linear regime. They relate the flow of locally conserved quantities,
such as charge, energy, and momentum, to gradients of intensive thermody-
namic variables. They ultimately describe entropy production and the approach
to equilibrium of macroscopic systems weakly driven outside of it. The math-
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2 introduction

ematical description of this phenomenon was formulated in the 1950s by
Melville Green and Ryogo Kubo. The Green-Kubo theory provides a rigorous
and elegant way to compute transport coefficients in terms of equilibrium time
correlation functions of the currents they are related to. This feature makes
the computation of transport coefficients accessible to equilibrium molecular
dynamics simulations, and it is thus applicable to all states of matter.

Besides the flux of ionic current, another dissipative phenomenon happening
in ionic conductors is of paramount importance for technological applications:
thermal transport. The microscopic mechanisms of heat transport, in fact, gov-
ern heat management in any realistic device, such as next-generation batteries
based on solid-state electrolytes. Despite its indisputable relevance, thermal
transport in solid-state ionic conductors is rarely investigated. A reason behind
this fact might be that thermal conductivity has proven to be one of the most difficult
transport coefficients to calculate, quoting Evans and Morriss’ Statistical mechanics
of nonequilibrium liquids. Methods based on lattice dynamics, where normal
modes are the heat carriers, and thermal conduction is governed by the scatter-
ing processes responsible for the normal modes’ decay, are only helpful when
the system can be described in terms of well-defined equilibrium positions
around which the atoms vibrate, and at low temperature, where the harmonic
approximation applies or anharmonic effects are small enough to be treated in
a perturbative fashion. In solid-state electrolytes, ionic diffusion is mediated by
vacancies and defects. This conflicts with the existence of equilibrium positions
required by a lattice-dynamical approach. Regardless of the great successes of
anharmonic lattice dynamics in the last few years, which preeminently include
the unification and extension of the theory of heat transport in periodic solids
with the harmonic theory of thermal transport in glasses, these methods are
of little use in the case of ionic conductors. One needs to resort to molecular
dynamics simulations, which do not require equilibrium positions and come
with the further benefit of automatically accounting for full anharmonicity,
possibly an issue at the relatively high operating temperatures of the devices
that could be based on solid-state electrolytes.

The leitmotiv threading the results presented in this Thesis is the application
to ionic conductors of some recently introduced invariance principles in the
theory of transport coefficients; such principles, namely the gauge and convective
invariance principles, formalize the notion that the microscopic definition of
the local densities and currents of the conserved quantities being transported
is unimportant. Gauge invariance, combined with the topological definition of
atomic oxidation states, leads to a clear understanding of Faraday’s first law
of electrolysis in light of quantum mechanics. Convective invariance allows
for the computation of thermal conductivity in multicomponent systems such
as electrolytes. The content of this Thesis, whose aim is to investigate some
peculiar charge and heat transport properties of ionic conductors using methods
from topology and the Green-Kubo theory of transport coefficients, is divided
into four Parts.

Part I of this Thesis is devoted to reviewing the Green-Kubo theory of linear
response and the data analysis techniques helpful to compute transport coeffi-
cients from molecular dynamics simulation accurately. In Ch. 1, Green-Kubo
theory is presented from a modern perspective, where the role of recently
discovered invariance principles and their consequences on the computation
of transport coefficients is stressed. Ch. 2 deals with data analysis; in partic-
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ular, cepstral analysis is thoroughly reviewed and extended to cases where its
standard formulation can be ineffective.

Part II involves charge transport. Ch. 3 reviews adiabatic charge transport
and is devoted to elucidating the relationship between Thouless’ theorem and
charge transport in the context of adiabatic dynamics. Particular emphasis is
put on the intimate connection between the Thouless wavefunction and the
continuity equation, and thus to transport theory. Ch. 4 contains the core of the
original work presented in this Thesis on charge transport: after an excursus
on the topological properties of paths traced by atoms in the space of all their
coordinates, the rigorous theory of oxidation states is introduced and connected
to the ionic conductivity of electrolytes. The topological assumptions needed
for such analysis are then relaxed, and the consequences on ionic transport are
examined in detail.

Part III is about heat transport in solid-state electrolytes. Ch. 5 reviews the
theory of heat transport in solids. Starting from anharmonic lattice dynamics,
the quasi-harmonic Green-Kubo theory of thermal transport for ordered and
amorphous materials is introduced and linked to the Boltzmann transport
equation approach in crystals and the Allen-Feldman theory of thermal con-
duction in harmonic glasses. The case where diffusing species exist—inducing
the failure of the lattice-dynamical picture—is also addressed, together with
the Green-Kubo theory of heat transport from molecular dynamics simula-
tions, both with a semi-empirical approach and ab initio. Ch. 6 concerns heat
transport in the solid-state electrolyte material Li3ClO. The behavior of thermal
conductivity as a function of temperature and the concentration of vacancies is
comprehensively investigated and rationalized with a simple model based on
the coexistence of ordered and disordered sub-domains.

Part IV contains appendices to some topics presented in the rest of the Thesis.





Part I

T H E O RY A N D N U M E R I C A L S I M U L AT I O N S O F
T R A N S P O RT P R O C E S S E S

Whatever lucky stars I may have
had the good fortune to walk
under, surely one of the most
important was the one which led
Ryogo Kubo and I to meet. [...]
We were both intrigued by the
possibilities we saw in the
correlation-function methods we
had pioneered, that the calculation
of response functions from the
fluctuations in the equilibrium
state avoided all the complications
of Boltzmann’s equation and the
formal difficulties of irreversibility.

Philip Warren Anderson,
Scientific and Personal

Reminiscences of Ryogo Kubo, The
Physical Society of Japan, 1995





1
T H E O RY O F T R A N S P O RT P R O C E S S E S

1.1 extensivity and additivity

E
xtensive variables appear often in condensed matter physics. They

are physical quantities associated with a composite system with the
property of scaling with the number of subsystems the larger system

can be divided into; common examples are the energy and the entropy [1].
An extensive property can also be additive1. For a system with volume Ω,
an extensive quantity—or generalized charge, Q—is additive with respect to
two subsystems, with volumes Ω1 and Ω2, if the charge relative to the whole
system equals the sum of the charges relative to the two subsystems:

Q[Ω] = Q[Ω1] +Q[Ω2]. (1.1)

If additivity can be applied once again to the two subsystems, and so on for
smaller and smaller volumes, one ends with being able to assign a value of
Q—its density, q(r)—to a volume d3r, which can be thought of as infinitesimal
with respect to the macroscopic size of the entire system. The function q(r)
so defined is the generalized density associated with the extensive quantity Q,
which is thus expressed by the volume integral

Q[Ω] =
∫

Ω
q(r)d3r . (1.2)

In thermodynamics, the principle of maximum entropy asserts that, at thermal
equilibrium, the partial derivatives of the entropy function, S , with respect to
extensive, conserved variables are intensive variables uniform across the whole
system:

∂S
∂Q = α = const. (1.3)

If local inhomogeneities occur, α is not constant anymore, i.e. ∇α ̸= 0, and Q
flows from regions with higher α to regions with lower α. The rate of change
of the globally conserved charge, Q̇, is

Q̇[Ω] =
∫

Ω
q̇(r)d3r (1.4)

which, according to Stokes’ theorem, can be recast to the form

Q̇[Ω](t) =
∫

Ω
q̇(r, t)d3r

= −
∫

∂Ω
ȷQ(r, t) · σ̂ d2σ ,

(1.5)

1 There are peculiar examples of additive quantities which are not extensive [1]. Therefore the implica-
tion “additivity =⇒ extensivity” does not hold in general: for the purposes of the present work,
these situations are irrelevant and, as such, they will not be considered.
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8 introduction

where ȷQ(r, t) is the conserved current associated with Q. Integration by parts of
Eq. (1.5) yields the continuity equation, which relates the time-derivative of the
density to the divergence of the respective current:

q̇(r, t) +∇ · ȷQ(r, t) = 0. (1.6)

When Q is locally conserved, there are neither sources nor sinks: the continuity
equation formalizes such a notion.

1.2 hydrodynamic variables

Fourier-transforming in space the continuity equation yields

˙̃q(k, t) = −ik · ȷ̃Q(k, t), (1.7)

where the tilde above a quantity indicates its Fourier transform. Since the
wavelength of the Fourier mode with wave-vector k is proportional to 1/|k|,
it follows that the longer the wavelength, the slower the time evolution of
the conserved density. In an atomistic framework, where the properties of the
system arise from the statistical behavior of a vast number of rapidly moving
elementary constituents, a long enough wavelength ensures the dynamics of
conserved densities to be adiabatically decoupled from the motion of the atoms,
which happen on short timescales. Hydrodynamic variables are defined as the
long wavelength modes of conserved densities [2–4].

The adiabatic decoupling of the hydrodynamics variables with respect to
the atomic motion means that, off-equilibrium, the wavelengths and timescales
of the disturbances are so large that a local notion of equilibrium can still be
established, i.e., local, intensive thermodynamic properties such as temperature,
pressure, and chemical potentials can be defined in a small enough—yet
macroscopic if compared to interatomic distances—neighborhood of any point
r. Such a construct is called Local Thermal Equilibrium (LTE). Under this
hypothesis, intensive variables become functions of space, e.g. the temperature
would be T(r).

Let us suppose the system to have a number M of conserved charges {Ql}M
l=1,

such as the number of particles, energy, momentum, etc., such that LTE is
established. Without loss of generality, let us set to zero the equilibrium values
of such quantities, so that the associated conserved densities {al}M

l=1 and
currents {ȷl}M

l=1 represent deviations from equilibrium. If the latter are small
enough, one can suppose the time derivative of any density to be a linear
combination of all the other densities. In space and time Fourier domains, this
reads:

iωq̃l(k, ω) = ∑
j

Λ̃l j(k, ω)q̃j(k, ω), (1.8)

where Λ̃l j(k, ω) are suitably defined coefficients. By combining the last equa-
tion with Eq. (1.7), one finds the constitutive equations:

−ik · ȷ̃ l(k, ω) = ∑
j

Λ̃l j(k, ω)q̃j(k, ω). (1.9)
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This implies that, for the longitudinal component of any conserved current, the
following equation holds:

ȷ̃ l(k, ω) = i
k
k2 ∑

j
Λ̃l j(k, ω)q̃j(k, ω). (1.10)

In isotropic media, the Λ̃ functions are spherically symmetric in k, and their
k = 0 value is zero; otherwise, the long-range modes of the currents would be
coupled to the density fluctuations, which conflicts with the hypothesis of LTE.
One can thus assume that the long-wavelength, small-frequency form of such
quantities is

Λ̃l j(k, ω) ∼ k2λl j. (1.11)

Therefore, the normalized volume-integral of the stationary microscopic current,
i.e., the k = 0, ω = 0 component of the Fourier-space current reads

Jl =
1
Ω

∫
Ω

ȷl(r)d3r

= lim
k→0

ȷ̃ l(k, ω = 0),
(1.12)

and it is related to the density gradients, Dl = Ω−1 ∫ ∇ql d3r:

Jl = lim
k→0

i
k
k2 ∑

j
k2λl j q̃j(k, ω = 0)

= lim
k→0

∑
j

λl j ik q̃j(k, ω = 0)

=∑
j

λl j lim
k→0

1
Ω

∫
Ω
∇qj(r, ω = 0)e−ik·r d3r

=∑
j

λl jDj.

(1.13)

The macroscopic quantity J associated with a current density ȷ(r), i.e., its
normalized volume-integral, is called a conserved flux. Integrating by parts the
continuity equation (1.6), an equivalent definition of J is found:

J(t) =
1
Ω

∫
q̇(r, t)r d3r . (1.14)

The intensive thermodynamic variables, ζl , conjugate to the extensive variables
Ql are defined as the derivatives of the thermodynamic potential—in the
microcanonical case, the entropy S({Ql})—with respect to its arguments:

ζl =
∂S
∂Ql

, (1.15)

while the susceptibilities are:

χl j =
1
Ω

∂Ql
∂ζ j

. (1.16)

Under LTE, local values of the intensive variables ζl can be defined, and the
integrals of their gradients are called thermodynamic forces:

Fl =
1
Ω

∫
Ω
∇ζl(r)d3r . (1.17)
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From Eq. (1.17), a relationship between the density gradients and the thermody-
namic forces is found, the two quantities being coupled via the susceptibilities
as

Dl = ∑
j

χl jFj. (1.18)

Plugging Eq. (1.18) into Eq. (1.13) yields

Jl = ∑
j

Λl jFj, (1.19)

where Λl j = ∑k λlkχkj. This equation states a linear relationship between
conserved fluxes, Jl , and the thermodynamic forces, Fl . The phenomenological
Onsager’s coefficients, Λl j, fulfill a reciprocity relation, Λl j = Λjl [5, 6].

1.3 linear response theory

Linear response theory allows for a systematic evaluation of Onsager’s coeffi-
cients, Λl j. Let us consider a classical system of N particles described by the
Hamiltonian

Ĥ0(Γ) =
N

∑
ℓ=1

P2
ℓ

2mℓ
+ V̂(R1, R2, . . . , RN), (1.20)

where mℓ, Rℓ and Pℓ are the mass, position and momentum of the ℓth atom in
the system, and V̂ is the interatomic potential energy. Phase-space variables
are denoted by the short-hand notation Γ = {R1, R2, . . . , RN , P1, P2, . . . , PN},
and here phase-space functions are indicated by a wide caret ( ̂ ) symbol on
top. The expectation value, Q = ⟨Q̂(Γ)⟩0, of an observable, Q̂, at equilibrium
is given by the canonical average

Q =
∫

ρ̂0(Γ)Q̂(Γ)d6NΓ , (1.21)

ρ̂0 = exp
{
−Φ̂0 − βĤ0

}
, (1.22)

where Φ̂0 is β = 1/(kBT) times the Helmoltz free energy, kB is Boltzmann’s
constant, and T is the system’s temperature. At thermal equilibrium, the system
is characterized by the same energy density, e(r), at every point in space, and
the particle densities, n1(r), . . . , ns(r) of the Ns, possibly electrically charged,
chemical species in the system are also constant throughout space.

Consider now a thermal perturbation that drives the system slightly away
from equilibrium by establishing nonuniform energy and particle density dis-
tributions. In addition to the thermal perturbation, a small electrostatic external
potential φ(r) acts on the system as a mechanical perturbation. LTE is assumed
to hold, i.e., the nonuniformity is on spatial scales large enough that meaningful
intensive (local) variables can be defined, such as local inverse temperature
β(r). A reasonable guess for the form of the probability distribution function
of this system, where each of the Ns different chemical species is characterized
by its local chemical potential, µk(r, t), is [7]

ρ̂loc = exp

{
−Φ̂ −

∫
d3r β(r)

[
e(r)− ∑

k
(µk(r) + qk φ(r)) nk(r)

]}
,

(1.23)
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where Φ̂ is a generalized free energy, also known as Massieu-Planck functional,
accounting for normalization, and qk is the electric charge of the kth species.
This form of the probability distribution formalizes LTE, since it keeps the
same functional form of the equilibrium distribution, while both intensive and
extensive quantities (weakly) depend on the point in space. Small perturbations
from equilibrium allow one to express the deviations from uniformity of local
quantities to linear order in terms of (constant) gradients:

β(r) = β + δβ(r) ≃ β − 1
kBT2 δT(r) ≃ β − 1

kBT2 ∇T · r, (1.24)

µk(r) = µk + δµk(r) ≃ µk +∇µk · r, (1.25)

φ(r) ≃ ∇φ · r. (1.26)

With a slight abuse of notation, the equilibrium values of β(r) and µk(r) are
indicated with β and µk, respectively, while the equilibrium electric potential is
set to zero.

The local density operator can also be expanded to linear order in the
gradients; expanding part of the exponent yields

ρ̂loc ≃ exp

{
−Φ̂ −

∫
d3r

(
β − 1

kBT2 ∇T · r
)[

e(r) +

−∑
k
(µk +∇µk · r + qk(φ +∇φ · r))

]}
.

(1.27)

Then, defining the electrochemical potential of the species k as

µ′
k = µk + qk φ (1.28)

leads to a cleaner expression for the approximated ρ̂loc:

ρ̂loc ≃ exp

{
−Φ̂ −

∫
d3r

(
β − 1

kBT2 ∇T · r
)[

e(r) +

−∑
k

(
µ′

k +∇µ′
k · r
)

nk(r)

]}

= exp

{
−Φ̂ − β

(
Ĥ0 − ∑

k
µ′

knk

)
+

1
kBT2

[∫
d3r e(r)r · ∇T+

−∑
k

µ′
k

∫
d3r nk(r)r · ∇T

]
+ β ∑

k

∫
d3r nk(r)r · ∇µ′

k

}
(1.29)

Up to the first order in the gradients, it becomes

ρ̂loc ≃ e−Φ̂0−β(Ĥ0−∑k µ′
knk)

[
1 +

1
kBT2

(∫
d3r δe(r)r · ∇T +

−∑
k

µ′
k

∫
d3r δnk(r)r · ∇T

)
+ β ∑

k

∫
d3r δnk(r)r · ∇µ′

k

]
,

(1.30)
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where the phase-space densities have been replaced with their deviation from
the equilibrium value, e.g.

δe(r) = e(r)− ⟨e(r)⟩0 , (1.31)

and the average value is taken with respect to the equilibrium density operator

ρ̂0 = exp

{
−Φ̂0 − β

(
Ĥ0 − ∑

k
µ′

knk

)}
. (1.32)

The appearance of the deviations from equilibrium is due to the linear expan-
sion of Φ̂. Without loss of generality, one could have defined the phase-space
variables to have a null equilibrium value and the expansion of Φ̂ up to the
first order would have been only Φ̂0.

1.3.1 Time-evolved density operator

Let us take Eq. (1.30) as the initial condition for the time evolution of the
density operator. This means

ρ̂(t = 0) = ρ̂loc. (1.33)

The time-evolution is given by the Hamiltonian, Ĥ0, since there are no external
fields; thus

ρ̂(t) = ei L t ρ̂(0) = ei L t ρ̂loc, (1.34)

where the Liouvillean, L , is

i L (−) =
{
Ĥ0,−

}
, (1.35)

and {−,−} are the Poisson brackets. Applying the time-evolution operator to
ρ̂loc yields

ρ̂(t) ≃ ρ̂0

[
1 +

1
kBT2

(∫
d3r ei L tδe(r)r · ∇T +

−∑
k

µ′
k

∫
d3r ei L tδnk(r)r · ∇T

)
+ β ∑

k

∫
d3r ei L tδnk(r)r · ∇µ′

k

]
.

(1.36)

The dynamical variables evolve in time with e−i L t, i.e., when applied to
dynamical quantities the time-evolution operator in the above equation evolves
them backward in time, from 0 to −t. For each dynamical variable one can
identically write:

δe(r,−t) =
∫ −t

∞
dt′ δ̇e(r, t′), (1.37)

where the boundary condition

lim
t→∞

δe(r, t) = 0 (1.38)

means that, after the full relaxation of the system to equilibrium, the devia-
tions of the dynamical variables from their equilibrium values are zero. Since
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the equilibrium value is time-independent, one also gets δ̇e(r, t) = ė(r, t). In
conclusion, the density operator becomes

ρ̂(t) ≃ ρ̂0

[
1 +

1
kBT2

(∫ −t

∞
dt′

∫
d3r ė(r, t′)r · ∇T +

−∑
k

µ′
k

∫ −t

∞
dt′

∫
d3r ṅk(r, t′)r · ∇T

)
+

+β ∑
k

∫ −t

∞
dt′

∫
d3r ṅk(r, t′)r · ∇µ′

k

]
.

(1.39)

By recalling the definition of macroscopic flux, Eq. (1.14), and specializing it to
the total energy and the particle numbers, one obtains

JE(t) =
1
Ω

∫
ė(r, t)r d3r , (1.40)

Jk(t) =
1
Ω

∫
ṅk(r, t)r d3r , (1.41)

so that Eq. (1.39) reads

ρ̂(t) ≃ ρ̂0

[
1 +

Ω
kBT2

(∫ −t

∞
dt′ JE(t

′) · ∇T +

−∑
k

µ′
k

∫ −t

∞
dt′ Jk(t

′) · ∇T

)
+

Ω
kBT ∑

k

∫ −t

∞
dt′ Jk(t

′) · ∇µ′
k

]
.

(1.42)

Inverting the integration path factors out an overall minus sign in front of the
first-order term:

ρ̂(t) ≃ ρ̂0

[
1 − Ω

kBT2

(∫ ∞

−t
dt′ JE(t

′) · ∇T +

−∑
k

µ′
k

∫ ∞

−t
dt′ Jk(t

′) · ∇T

)
− Ω

kBT ∑
k

∫ ∞

−t
dt′ Jk(t

′) · ∇µ′
k

]
.

(1.43)

1.3.2 Average values of observables

Eq. (1.43) can be used to compute the expectation values of fluxes. Right after
the relaxation process begins, one finds

⟨JE⟩ρ̂(0+) = ⟨JE⟩0 −
Ω

kBT2

[∫ ∞

0
dt ⟨JE ⊗ JE(t)⟩0

−∑
k

µ′
k

∫ ∞

0
dt ⟨JE ⊗ Jk(t)⟩0

]
· ∇T − Ω

kBT ∑
k

∫ ∞

0
dt ⟨JE ⊗ Jk(t)⟩0 · ∇µ′

k

(1.44)

for the energy flux, and

⟨Jm⟩ρ̂(0+) = ⟨Jm⟩0 −
Ω

kBT2

[∫ ∞

0
dt ⟨Jm ⊗ JE(t)⟩0

−∑
k

µ′
k

∫ ∞

0
dt ⟨Jm ⊗ Jk(t)⟩0

]
· ∇T − Ω

kBT ∑
k

∫ ∞

0
dt ⟨Jm ⊗ Jk(t)⟩0 · ∇µ′

k

(1.45)
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for the mth mass flux. The “⊗” symbol denotes the outer product of two
Cartesian vectors, meaning that, for v = (vx, vy, vz) and w = (wx, wy, wz),
their outer product is defined as (v ⊗w)αβ = vαwβ, with α, β = x, y, z. In
isotropic materials, the flux is aligned to the gradient of the intensive variable
and the outer product of the fluxes is proportional to the identity. Under
isotropy, and by noticing that

∇
(

µ′
k

T

)
=

∇µ′
k

T
− ∇T

T2 µ′
k, (1.46)

∇
(

1
T

)
= −∇T

T2 , (1.47)

one can write Eqs. (1.44) and (1.45) as

⟨JE⟩ =
Ω

3kB

∫ ∞

0
⟨JE(t) · JE⟩0 dt∇

(
1
T

)
+

− Ω
3kB

∑
k

∫ ∞

0
⟨Jk(t) · JE⟩0 dt∇

(
µ′

k
T

) (1.48)

⟨Jm⟩ =
Ω

3kB

∫ ∞

0
⟨JE(t) · Jm⟩0 dt∇

(
1
T

)
+

− Ω
3kB

∑
k

∫ ∞

0
⟨Jk(t) · Jm⟩0 dt∇

(
µ′

k
T

)
.

(1.49)

These equations provide a mean to compute Onsager’s coefficients Λij appear-
ing in Eq. (1.19):

⟨JE⟩ = ΛEE∇
(

1
T

)
− ∑

k
ΛkE∇

(
µ′

k
T

)
, (1.50)

⟨Jm⟩ = ΛEk∇
(

1
T

)
− ∑

k
Λkm∇

(
µ′

k
T

)
, (1.51)

The expressions for ΛEE and ΛEk are examples of Green-Kubo (GK) formulæ,
which bridge the phenomenological equations of hydrodynamics with linear
response theory [8–11].

1.4 invariance principles of transport theory

GK theory provides a rigorous way to compute transport coefficients by evaluat-
ing equilibrium time-correlation functions of suitably defined fluxes. Therefore,
it makes it possible to access transport properties by means of Equilibrium
Molecular Dynamics (EMD) simulations. In spite of this achievement, some
conceptual misconceptions in the theory of linear response prevented its use in
the field of computer simulations of transport in condensed matter systems,
thus limiting its scope. The most prominent of these misunderstandings is that
the intrinsic indeterminacy of any local representation of an extensive quantity,
such as the atomic decomposition of total energy or charge, would hinder the
uniqueness of the transport coefficient computed from them. This indetermi-
nacy affects classical and quantum systems alike, but it stands most evidently
in the latter, so much that, until recently, it was deemed impossible to combine
the GK theory of thermal transport with electronic structure methods [12].
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These difficulties have been overcome in the past years by the introduction
of the so-called gauge invariance of transport coefficients, whose main message
is that the value of transport coefficients is largely independent of the detailed
form of the local representation of the associated conserved densities and
fluxes and, as such, there are many different expression of those quantities
which are effectively equivalent [4, 13–16]. In fact, the quantity to be measured
in an experiment is the transport coefficient itself, not the associated density
or current, so there is no a priori reason why conserved densities must have
a unique representation. In general, gauge invariance implies that the value
of a transport coefficient is insensitive to a change in the flux from which it
is calculated which adds to it a vector process whose Power Spectral Den-
sity (PSD) vanishes at zero frequency. Such a process is called non-diffusive.
Another difficulty in applying GK theory in EMD arises in thermal transport in
multicomponent materials, where different chemical species coexist and the
associated mass fluxes interact among each other and with the energy flux,
thus complicating the definition of thermal conductivity, which is the ratio of
the energy flux and the temperature gradient when all the other mass fluxes
vanish. In this case, a further invariance principle, dubbed convective invariance,
can be invoked, which states that the thermal conductivity is unchanged by
adding to the energy flux any linear combination of the mass fluxes in the
system [16].

While the transport coefficients enjoy the aforementioned invariances, the
time series of the fluxes from which they are calculated do depend on their
local representation, as so do their statistical properties. Hence, methods can
be devised to exploit local representations which optimize the practical com-
putation of transport coefficients. The statistical tools to compute transport
coefficients from EMD simulations will be illustrated in Ch. 2.

Before reviewing gauge and convective invariances of transport coefficients,
let us consider a different expression for the GK formula that will be expedient
in the following Section. The GK integral in the expression of Onsager’s coeffi-
cients, such as those appearing in Eq. (1.50), can be recast to what is known as
an Helfand-Einstein (HE) formula:

∫ ∞

0
⟨J(t) · J(0)⟩0 dt = lim

τ→∞

1
2τ

〈∣∣∣∣∫ τ

0
J(t)dt

∣∣∣∣2
〉

0

. (1.52)

The equivalence is due to the identity∫ τ

0

∫ τ

0
f (t − t′)dt dt′ = 2τ

∫ τ

0

(
1 − t

τ

)
f (t), (1.53)

which is true for any even function, f (t) = f (−t). Given a macroscopic flux,
J(t), this identity can be applied to f (t − t′) = ⟨J(t) · J(t′)⟩0 to obtain Eq. (1.52).
The HE formula was first proposed by Einstein in his celebrated paper on
Brownian motion [17], and later generalized to other transport coefficients by
Helfand [18]. It expresses transport coefficients in terms of the ratio of the
mean-square generalized dipole, D(τ) =

∫ τ
0 J(t)dt, displaced by the flux in a

time τ, and time itself [16].
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1.4.1 Gauge invariance

Microscopically, any two conserved densities whose volume integrals differ by
a term scaling as the volume boundary yield the same value of the associated
extensive quantity and, as such, they can effectively be considered equivalent
in the thermodynamic limit. Two equivalent densities, q(r, t) and q′(r, t), may
differ by the divergence of a bounded vector field, b(r, t):

q′(r, t) = q(r, t)−∇ · b(r, t). (1.54)

Thus, they can be thought of as two different gauges of the same scalar field.
Since their (equal) volume integral is by definition a conserved quantity, each
of the two densities satisfies a continuity equation (Eq. (1.6)) involving a
conserved current density. The two currents—and, consequently, the respective
fluxes—will transform under the gauge transformation as

ȷ′(r, t) = ȷ(r, t) + ḃ(r, t),

J′(t) = J(t) + Ḃ(t),
(1.55)

where B = Ω−1 ∫ b(r, t)d3r. In order to prove that the two gauges lead to
the same value of the transport coefficient, let us consider a generic transport
process whose macroscopic flux is represented by a stationary stochastic pro-
cess, J(t). According to the HE formulation, the transport coefficient λ can be
expressed as

λ = c lim
τ→∞

⟨|D(τ)|2⟩
2τ

, (1.56)

where the factor c is a constant that depends on the transport process being
considered. Changing gauge results in an additional bounded term B(τ) in
the generalized dipole. The resulting transport coefficient, λ′, is immediately
found to be equal to λ:

λ′ = c lim
τ→∞

⟨|D(τ) + B(τ)|2⟩
2τ

= c lim
τ→∞

O(τ)︷ ︸︸ ︷
⟨|D(τ)|2⟩+

O(τ1/2)︷ ︸︸ ︷
2 ⟨D(τ) · B(τ)⟩+

O(1)︷ ︸︸ ︷
⟨|B(τ)|2⟩

2τ

= c lim
τ→∞

⟨|D(τ)|2⟩
2τ

≡ λ.

(1.57)

1.4.2 Convective invariance

In multicomponent systems, apart from the energy, the relevant conserved
quantities are the particle numbers of each of the atomic species. Since the
total-mass flux—i.e., the total momentum—is a constant of motion, for a
system with K species there will be K independent conserved fluxes, namely,
the K − 1 independent mass fluxes and the energy flux. While this holds in
general, there are cases where physical constraints of the particular system
under consideration reduce the number of independent fluxes, such as the
case of solids, where atoms do not diffuse, or even molecular fluids such
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as liquid water, where the mass fluxes of oxygen and hydrogen depend on
one another due to the molecular bonds. When different species can diffuse
independently, like in molten salts or solutions, the mass fluxes of the different
atomic species are not constants of motion, and their time integral is in general
unbounded. This has an important consequence in the computation of the
thermal conductivity, since the latter relates the energy flux to the temperature
gradient it is induced by in absence of convection, i.e. when the nonequilibrium
expectation value of all the mass fluxes is zero. The simplest case is a two-
component system: the two independent fluxes are the energy flux, JE, and any
of the two mass fluxes, JM. The phenomenological equations involving these
fluxes are

⟨JE⟩ =
ΛEE
kB

∇
(

1
T

)
+

ΛEM
kB

∇
(

∆µ

T

)
(1.58)

⟨JM⟩ = ΛME
kB

∇
(

1
T

)
+

ΛMM
kB

∇
(

∆µ

T

)
, (1.59)

where ∆µ is the difference between the chemical potentials of the two species.
The mass flux is, e.g., the one associated with the first species, i.e. JM = J1,
the second being defined by the conservation of linear momentum in the
barycentric reference frame: J2 = −J1. When the nonequilibrium expectation
value of the mass flux is set to zero, one gets

∇
(

∆µ

T

)
= − ΛME

ΛMM
∇
(

1
T

)
. (1.60)

This can be used to obtain a closed form for the phenomenological equation
involving the energy flux:

⟨JE⟩ = − 1
kBT2

[
ΛEE − Λ2

ME
ΛMM

]
∇T

= −κ∇T,

(1.61)

where the second line defines the thermal conductivity of a two-component
system, and Onsager’s reciprocal relations have been employed to say that
ΛEM = ΛME. The second term in the expression of κ, which is nonzero only
when there are more than one species in the system, represents the contribution
of mass diffusion to the heat flow [19].

The convective-invariance principle states that adding any linear combination
of the mass fluxes to the energy flux, which in the two-component case is simply

J′E = JE + cJM, (1.62)

with constant c, does not change κ, even if each Onsager’s coefficient in
Eq. (1.61) does change. In the general case, when there is a number K > 2 of dif-
ferent atomic species, the thermal conductivity becomes the Schur complement
of Onsager’s matrix [4]:

κ =
1

kBT2

[
ΛEE −

K−1

∑
l,m=1

ΛEMl (Λ
−1)lmΛEMm

]
, (1.63)
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where (Λ)lm = ΛMl Mm is Onsager’s matrix of mass fluxes. Convective invari-
ance in this case states that the energy flux

J′E = JE +
K−1

∑
l=1

clJMl
(1.64)

yields a thermal conductivity κ′ = κ.
The are two main consequences ascribed to convective invariance:

i) from a conceptual standpoint, in ab initio calculations of thermal con-
ductivity, convective invariance justifies the fact that the value of κ must
not depend on whether the atomic cores contribute to the definition of
atomic energies, as in the case of all-electron calculations, or not, as when
pseudopotentials are used. In the latter case, the energy of isolated atoms
depends on the specific form of the pseudopotential adopted, while the
thermal conductivity should not. Indeed this is not the case, as a shift of
the zero of the energy of each species, δEl , results in a redefinition of the
energy fluxes of the form required by convective invariance to leave κ

unchanged, i.e. J′E = JE + ∑K−1
l=1

δEl
Ml

JMl
;

ii) from a more practical point of view, convective invariance can be lever-
aged to improve the statistical properties of the PSD of the time-series
of the energy flux even in cases where, in principle, multicomponent
techniques are not required [20].



2
D ATA A N A LY S I S

I
n EMD simulations one samples the relevant fluxes to compute the

time-integrals of their equilibrium time correlation functions since
the former are proportional to Onsager’s coefficients entering the

definitions of transport coefficients. The transport coefficients estimated from
the time series sampled along the system’s trajectory are very sensitive to how
the data are analyzed. To circumvent this problem, sophisticated methods were
introduced to give accurate estimates from relatively short EMD simulations.

2.1 green-kubo and helfand-einstein formulæ and their limi-
tations

As seen in Sec. 1.4, the GK formula is mathematically equivalent to the HE

formula. Despite being formally the same, the two expressions have different
statistical behaviors. In order to understand why, let us schematically write the
two formulations as

λ = lim
τ→∞

λGK(τ) = c lim
τ→∞

∫ τ

0
⟨J(t) · J(0)⟩0 dt

= lim
τ→∞

λHE(τ) = c lim
τ→∞

∫ τ

0
⟨J(t) · J(0)⟩0

(
1 − t

τ
dt
)

=
c
2

S(0),

(2.1)

where c is a constant that depends on the particular transport process, and
S(ω) is the PSD of the stationary stochastic process representing the conserved
flux, J, i.e.

S(ω) =
∫ ∞

−∞
⟨J(t) · J(0)⟩0 eiωt dt . (2.2)

The three quantities, λGK, λHE, and S can be put on the same footing by writing
the first two as [16]

λGK(τ) =
c
2

∫ ∞

−∞
⟨J(t) · J(0)⟩0 Θτ

GK(t)dt , (2.3)

and

λHE(τ) =
c
2

∫ ∞

−∞
⟨J(t) · J(0)⟩0 Θτ

HE(t)dt , (2.4)

where Θτ
GK(t) and Θτ

HE(t) are functions that act like filters on the flux autocor-
relation function given by

Θτ
GK(t) =

1, for |t| ≤ τ

0, otherwise
, (2.5)

Θτ
HE(t) =

1 − t
τ , for |t| ≤ τ

0, otherwise
. (2.6)

19
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Figure 2.1: Comparison of the GK and HE filters. While both functions tend to a Dirac
delta in the τ → ∞ limit, the HE function converges faster.

Using Plancherel’s theorem [21], one gets

λX(τ) =
c

4π

∫ ∞

−∞
S(ω)Θ̃τ

X(ω)dω , (2.7)

where X stands for GK or HE, and Θ̃τ
X(ω) is the Fourier transform of Θτ

X(t), i.e.

Θ̃τ
GK(ω) = 2τ sinc(ωτ)

Θ̃τ
HE(ω) = τ sinc2(ωτ/2).

(2.8)

The sinc function is the cardinal sine, defined as sinc(x) = sin(x)/x. Both filters
converge to a Dirac delta in the τ → ∞ limit but, for any finite τ, the HE is
narrower than the GK [16], as it can be visually understood from Fig. 2.1. In fact,
in practical implementations, it can be shown that the HE method provides an
estimate of the transport coefficient whose variance is asymptotically one-third
of the variance given with the GK formula [16].

Despite the seemingly promising features of the HE estimator, its use is
severely limited from both practical and theoretical points of view. On the
one hand, long EMD simulations are required to collect enough data points to
have sufficient statistics. Even in that case, to estimate the error bars on the
computed transport coefficient one needs to resort to standard block-averaging
techniques, where the choice of the correct number of blocks is somewhat
arbitrary and can lead to incompatible results [15, 22]. On the other hand, let us
consider the specific case of thermal conductivity in multi-component systems,
the simplest case involving two species: here, κ results from the difference
(see Eq. (1.61)) of the energy-energy Onsager coefficient and the ratio of the
squared mass-energy and mass-mass ones. In the HE approach, each of these
coefficients is computed via a formula analogous to Eq. (2.4), i.e., by computing,
up to a finite cutoff, the time-integral of a decaying function. While the true
autocorrelation function is indeed a decaying function, its samples from a
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numerical simulation are corrupted by numerical noise, whose effects are more
evident at large times, where the actual quantity is close to zero. Performing
either the GK or the HE integrals would eventually lead to the integration
of noise. The integrated noise is a one-dimensional random walk, that will
eventually lead to a zero-valued mass-mass coefficient, that in turn leads to a
divergent thermal conductivity [15].

These problems are lifted considering the theory of transport coefficients
in frequency space. A frequency-domain representation of the stochastic pro-
cesses underlying transport phenomena can be obtained thanks to the Wiener-
Khinchin theorem, which states that the Fourier transform of the autocorrela-
tion function, ⟨ Ĵ(t) Ĵ(0)⟩, of a wide-sense stationary random process, Ĵ(t), is
the PSD of that process, Sτ(ω) [23, 24]:

Sτ(ω) =
1
τ

〈∣∣∣∣∫ τ

0
Ĵ(t)eiωt dt

∣∣∣∣2
〉

= 2 Re
∫ τ

0

〈
Ĵ(t) Ĵ(0)

〉
eiωt dt +O(τ−1)

(2.9)

Here, wide carets ( ̂ ) indicate random processes. More generally, when there
are many interacting fluxes, one can define the cross-spectrum, Slm, of fluxes Ĵl ,
Ĵm as

Slm(ω) =
∫ ∞

−∞

〈
Ĵl(t) Ĵm(0)

〉
eiωt dt , (2.10)

so that Onsager’s coefficients can be expressed as

Λlm =
Ω

2kB
Slm(ω = 0). (2.11)

This formula, together with the invariance principles discussed in Sec. 1.4, can
be exploited to obtain accurate estimates of transport coefficients leveraging
the so-called cepstral method for the analysis of time series.

2.2 cepstral analysis

Cepstral analysis was developed in the 1960s in the context of speech recog-
nition with the purpose of extracting useful information from noisy audio
signals [25]. Its power resides in the ability to turn multiplicative noise, on
which linear filters cannot be applied, into additive noise, which instead can be
removed with a suitable low-pass filter.

In the case of the estimation of transport coefficients, cepstral analysis can
be applied to the frequency-domain representation of the stochastic process,
Ĵ(t), that underlies the time evolution of the flux. In fact, let us take the simple
case of a single flux. In an EMD simulation, what one is measuring is the time
series of the flux, Jn, n = 1, . . . , N − 1; the calligraphic font denotes discrete
realizations of stochastic processes. The time series is sampled with time period
ϵ, which is a multiple of the simulation time-step so that the length of the
simulation is T = Nϵ. From Jn one can estimate the PSD of the stochastic
process via the periodogram, Sk:

Sk =
ϵ

N

∣∣∣J̃k

∣∣∣2, (2.12)
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where J̃k is the discrete Fourier transform of the flux time series, i.e.

J̃k =
N−1

∑
n=0

e2πi kn
N Jn. (2.13)

The sample frequency, ωk, is

ωk =

2π k
Nϵ , for k ≤ N/2,

−ωk−N/2, for k > N/2.
(2.14)

The periodogram is an asymptotically unbiased estimator of the true PSD, i.e.,
for large enough N, ⟨Sk⟩ = S(ωk); as such, the periodogram will be referred
to as sample spectrum as well. An estimator of the PSD serves us as a way to
compute Onsager’s coefficients—and, therefore, transport coefficients—from
the frequency-domain formula of Eq. (2.11). To be able to produce a meaningful
estimate, one needs to know the statistical properties of the estimator.

2.2.1 Statistical properties of the periodogram

The statistical properties of the periodogram descend from those of the un-
derlying time series. In condensed matter systems, the space autocorrelation
functions of conserved currents are usually short-ranged [4]. This implies that,
in the thermodynamic limit, the macroscopic fluxes Ĵ(t) = Ω−1 ∫

Ω ȷ̂(r, t)d3r
are sums of almost independent identically distributed (iid) random variables.
By the central limit theorem, their probability distribution is Gaussian. The
stochastic process associated with the equilibrium dynamics of conserved fluxes
is therefore a Gaussian process, and any discrete realization of such process
is a multi-variate Gaussian random variable: Jn ∼ N (0, σ2

J). From this fact,

and from Eq. (2.12), it follows that J̃k ∼ N (0, N
ϵ S(ωk)) for k = 0 or k = N/2;

while, for k ̸∈ {0, N/2}, Re J̃k and Im J̃k are independent random variables,
both distributed as N (0, N

2ϵ S(ωk)).
Therefore, in the large-N limit (i.e., long simulation time limit) the peri-

odogram can be written as

Sk = S(ωk)ξk, (2.15)

where ξk ∼ 1
2 χ2

2, for different k are iid chi-square random variables with two
degrees of freedom divided by two. Thus, ⟨ξk⟩ = 1, and Var(ξk) = 1.

In EMD simulations of isotropic materials, one usually samples three inde-
pendent realizations, Jx

n, Jy
n, Jz

n, of each stochastic process associated with the
fluxes of interest, i.e., the three Cartesian directions. In such a case, the Onsager
coefficient would be given by, e.g.

L =
Ω
kB

∫ ∞

0

1
3
⟨Jx(t)Jx(0) + Jy(t)Jy(0) + Jz(t)Jz(0)⟩0 dt

=
Ω

2kB

1
3
[Sx(ω = 0) + Sy(ω = 0) + Sz(ω = 0)]

(2.16)

Isotropy implies that the three PSDs in Eq. (2.16) are the same, thus making the
corresponding periodograms three independent estimates of the same quantity.
It is convenient to define an average periodogram as the mean of the three
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periodograms associated with the Cartesian directions. In general, one might
have a number of realizations of the flux different from three. With ℓ such a
number, the average of ℓ periodograms is given by

ℓSk =
1
ℓ

ℓ

∑
α=1

Si
k

= S(ωk)
1
ℓ

ℓ

∑
α=1

ξα
k ≡ S(ωk)

ℓξk,

(2.17)

where the random variable ℓξk ∼ 1
2ℓχ2

2ℓ is distributed as a chi-square variate
with 2ℓ degrees of freedom, divided by 2ℓ.

2.2.2 Cepstrum and related quantities

As said at the beginning of the Section, the idea behind the cepstral method
for estimating transport coefficients is that it allows turning multiplicative
noise, difficult to separate from the true signal, into additive noise, which is
more treatable [26]. A way to solve this problem is to apply a logarithm to the
periodogram, which defines the log-periodogram as

Lk
.
= log(Sk) = log(S(ωk)) + log

(
ℓξk

)
= L(ωk) + log(ℓξk).

(2.18)

The probability distribution of log(ℓξk) does not have a closed form, but its
moments can be computed exactly (see Appendix A), the mean and variance
being

⟨log(ℓξk)⟩ = ψ(ℓ)− log(ℓ), (2.19)

Var(log(ℓξk)) = ψ′(ℓ), (2.20)

where ψ is the digamma function, i.e. the logarithmic derivative of the Eu-
ler gamma function [27]. The goal now is to reduce the noise from the log-
periodogram by discarding its high-frequency components, which are related
to the noise.1 The natural way to do so is by defining the cepstrum, Cn, of the
process as the inverse discrete Fourier transform of the log-periodogram:

Cn
.
=

1
N

N−1

∑
k=0

Lke−2πi kn
N

=
1
N

N−1

∑
k=0

Λke−2πi kn
N +

1
N

N−1

∑
k=0

log(ℓξk)e
−2πi kn

N

= Cn + ℓΞn,

(2.21)

where the last line defines the true cepstrum, Cn, and the random part of the
sample cepstrum, ℓΞn. The mean and variance of the latter are (see Appendix A)

⟨ℓΞn⟩ = δn0[ψ(ℓ)− log(ℓ)], (2.22)

Var(ℓΞn) =
ψ′(ℓ)

N
. (2.23)

1 In the cepstral jargon, the Fourier variables dual to k are called quefrencies, a word derived by
reversing the order of the first two syllables of the word “frequencies”, in a way similar to how the
term “cepstrum” is obtained from “spectrum”.
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Let us indicate by P⋆ the smallest integer number such that Cn ≈ 0 for
P⋆ ≤ n ≤ N − P⋆. An efficient way to estimate the zero-frequency value of
the log-spectrum is limiting the Fourier transform of the sample cepstrum,
Eq. (2.21), to P⋆ coefficients:

L⋆
0

.
= C0 − ψ(ℓ) + log(ℓ) + 2

P⋆−1

∑
n=1

Cn = C0 + 2
P⋆−1

∑
n=1

Cn + ℓM⋆, (2.24)

ℓM⋆ .
= ℓΞ0 − ψ(ℓ) + log(ℓ) + 2

P⋆−1

∑
n=1

ℓΞn. (2.25)

The random part of L⋆
0 , is such that, up to O(1/N), its mean and variance are

(see Appendix A)

⟨ℓM⋆⟩ = 0, (2.26)

Var(ℓM⋆) =
4P⋆ − 2

N
ψ′(ℓ). (2.27)

Through Eqs. (2.24), (2.26), and (2.27) one can estimate the logarithm of the
Onsager coefficient, and the resulting estimator is (approximately) a Gaussian
random variable whose variance depends only on P⋆, that is a measure of
the smoothness of the PSD of the flux stochastic process the time series is a
particular realization of. An Onsager coefficient, Λ, together with its error, ∆Λ,
is thus estimated via

Λ =
Ω

2kB
exp(L⋆

0 ) (2.28)

∆Λ =
Ω

2kB
exp(L⋆

0 )

√
4P⋆ − 2

N
ψ′(ℓ) (2.29)

2.2.3 Thermal conductivity: multicomponent cepstral analysis

Among the many transport coefficients, thermal conductivity in multicompo-
nent systems requires particular care, as its convoluted expression in terms of
different Onsagers’ coefficients, Eq. (1.63), is prone to numerical errors. Let us
recall the form of the M × M Onsager matrix in frequency domain, Λ(ω), for a
system with M different chemical species:

Λ(ω) =


ΛEE(ω) ΛE2(ω) · · · ΛEM(ω)

Λ2E(ω) Λ22(ω) · · · Λ2M(ω)
...

...
. . .

...

ΛME(ω) ΛM2(ω) · · · ΛMM(ω)

 , (2.30)

where

Λij(ω) =
1

2kB
Sij(ω) =

1
2kB

∫ ∞

−∞
⟨Ji(t)Jj(0)⟩0 eiωt dt (2.31)

and Sij(ω) is a cross-spectrum. The (M − 1)× (M − 1) matrix obtained by
removing the first line and the first column from Λ is called the convective
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block of Λ, and κ is proportional to the zero-frequency value of its Schur’s
complement, Λ̄E(ω):

κ =
1

T2 Λ̄E(ω = 0) =
1

T2
1

(Λ−1(ω))EE

∣∣∣∣
ω=0

. (2.32)

Therefore, κ can be computed if a good estimator of Λ̄E(ω) is available.
The content of Sec. 2.2.1 can be now generalized to obtain the statistical

properties of the cross-spectrum matrix. The latter is (proportional to) the
Fourier transform of the matrix of the correlation functions between the random
vectors of the multivariate Gaussian sample given by the time series of the
fluxes, JE,J2, . . . ,JM. Thus, if there are ℓ samples for each kind of flux, the
cross-periodogram matrix which estimates the matrix of the cross spectra is a
complex Wishart random variable, Sk ∼ CWM(S(ωk), ℓ). The cross spectrum
matrix, S(ωk), is called the scale matrix of the Wishart distribution, while ℓ is its
number of degrees of freedom, and M is its rank [15, 28]. A nice property of
the Wishart distribution is that the Schur complement of each of the diagonal
blocks of a Wishart variable is also a Wishart variable [15, 29]. In other words,
if S ∼ CWM(S, ℓ) is a complex Wishart matrix of rank M, and S̄ is the Schur
complement of rank L of an (M − L)-dimensional diagonal block, one has that

S̄ ∼ CWL(S̄, ℓ− M + L). (2.33)

This allows us to know the distribution of the estimator of Λ̄E(ω) = 1
2kB

S̄E(ω):
in fact, the latter is the rank-1 Schur complement of the convective block, and
it is thus estimated by a rank-1 complex Wishart random variable with scale
matrix Λ̄E and ℓ− M + 1 degrees of freedom. A rank-1 matrix is just a scalar,
and the complex Wishart distribution reduces to a chi-square distribution. In
conclusion, for each discrete frequency, ωk, the following expressions hold:

S̄E
k = S̄E(ωk)ξk, (2.34)

ξk ∼
1
ν

χ2
ν, ν = 2(ℓ− M + 1). (2.35)

Remarkably, this formula has the same form of Eq. (2.17), the only difference
being the number of degrees of freedom of the chi-square distribution. In
particular, this means that cepstral analysis, reviewed in Sec. 2.2.2, can be used
to compute κ for multicomponent as well single-component systems. The only
adjustment one needs to make is to replace ℓ with ν/2 wherever it appears. In
particular, the mean and variance of the random part of the estimator of the
zero-frequency value of the log-spectrum, i.e., Eqs. (2.26) and (2.27), change to

⟨M⋆⟩ = 0, (2.36)

Var(M⋆) =
4P⋆ − 2

N
ψ′(ν/2). (2.37)

Notice that the reference to ℓ, that was indicated as a superscript in front of
the symbol “M”, is suppressed here and in the following, in order to simplify
the notation. The thermal conductivity and its error become

κ =
Ω

2kBT2 exp(L⋆
0 ), (2.38)

∆κ =
Ω

2kB
exp(L⋆

0 )

√
4P⋆ − 2

N
ψ′(ν/2). (2.39)
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2.3 cepstral analysis in practice

The efficacy of the cepstral method in estimating transport coefficients depends
on how well one is able to find P⋆, the number of cepstral coefficients to retain:
it must be large enough to keep the bias due to the truncation low, yet small
enough to maintain the magnitude of the statistical error below an acceptable
threshold. In Ref. 26, the original paper where the method is discussed, it
is proposed to use the Akaike Information Criterion (AIC) [30] to choose P⋆.
Given a model depending on P parameters, θ = {θ1, θ2, . . . , θP}, the AIC is a
sample statistic defined as

AIC(P) = −2 max
θ

logL(θ, P) + 2P. (2.40)

where L is the likelihood of the parameters. The value of P⋆ is the one that
minimizes the AIC:

P⋆ = arg min
P

AIC(P). (2.41)

In practice, the AIC tries to balance the accuracy of the model, given by the first
term in Eq. (2.40), with a term that penalizes models that are too complex—
i.e., models with too many parameters. This simple method works well in
those cases where the periodogram to analyze is sufficiently flat in the low-
frequency region [4, 15, 20, 26, 31–35]. This is typical of, e.g., the thermal and
electrical conductivities of liquid systems at high enough temperature [26, 33].
In other cases, such as thermal conductivity of solids [26, 36], and viscosity in
liquids [37], this is no longer true and the AIC alone is not capable of choosing
P⋆ in a consistent way. Before addressing this issue, let us introduce some
concepts and techniques that will be useful in the following.

2.3.1 Analytic cepstrum

It is instructive to consider the analytic expression of the cepstrum and to see
what it is possible to say about it. The cepstrum, C(q), is the inverse Fourier
transform of the logarithm of the PSD, i.e.

C(q) =
∫ ∞

−∞
log(S(ω)) eiωq dω

2π
. (2.42)

The Fourier-conjugate variable to ω is the quefrency q, which has the units of
time. The computation of the integral in Eq. (2.42) requires some care since the
logarithm of an integrable function diverges at ±∞. Let us impose a cutoff on
the integral as

C(q) =
1

2π

∫ ω⋆

−ω⋆
log(S(ω)) eiωq dω . (2.43)

Integrating by parts, Eq. (2.43) becomes

C(q) =
1

2πiq

[
log(S(ω)) eiωq

]ω⋆

−ω⋆
− 1

2πiq

∫ ω⋆

−ω⋆

S′(ω)

S(ω)
eiωq dω . (2.44)
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The integrand in Eq. (2.44) is now regular over the real numbers: the integral
can be conveniently written as∫ ω⋆

−ω⋆

S′(ω)

S(ω)
eiωq dω =

∫ ∞

−∞

S′(ω)

S(ω)
eiωq dω +

− 2i
∫ ∞

ω⋆

S′(ω)

S(ω)
sin(ωq)dω .

(2.45)

Being the PSD an even function of ω, the boundary contribution—i.e., the first
term in Eq. (2.44)—can be simplified as

1
2πiq

[
log(S(ω)) eiωq

]ω⋆

−ω⋆
=

1
2πiq

log(S(ω⋆)) 2i sin(ω⋆q)

=
ω⋆

π
sinc(ω⋆q) log(S(ω⋆)).

(2.46)

Finally, the analytic cepstrum reads

C(q) =
ω⋆

π
sinc(ω⋆q) log(S(ω⋆))− 1

2πiq

∫ ∞

−∞

S′(ω)

S(ω)
eiωq dω +

+
1

πq

∫ ∞

ω⋆

S′(ω)

S(ω)
sin(ωq)dω

(2.47)

The case where the PSD is a simple Lorentzian function can be dealt with
analytically. It is the paradigmatic case where the current autocorrelation
function, γ(t), is a cosine modulated by a decaying exponential:

γ(t) = R0 cos(ω0t)e−|t|/τ , (2.48)

S(ω) =
R0τ

1 + (ω − ω0)2τ2 +
R0τ

1 + (ω + ω0)2τ2 . (2.49)

The cepstrum is computed according to Eq. (2.47). The integral over the real
line evaluates to

− 1
iq

∫ ∞

−∞

S′(ω)

S(ω)
eiωq dω

2π
=

2 cos(ω0q)e−q/τ − e−
q
τ

√
1+τ2ω2

0

q
. (2.50)

The tail contribution can be recast into a rather complex form involving sine-
and cosine-integral functions. An asymptotic expansion of the integrand allows
one to write

2
q

∫ ∞

ω⋆

S′(ω)

S(ω)
sin(ωq)

dω

2π

ω⋆→∞∼− 2
π

∫ ∞

ω⋆
sinc(ωq)dω

=
2 Si(qω⋆)− π

πq
,

(2.51)

where Si(z) is the sine-integral function:

Si(z) =
∫ z

0
sinc(t)dt . (2.52)

Let us now take into account that, in practice, one deals with discretized
versions of the integrals written throughout this Section. In particular, q is
sampled as q = nϵ, with n ∈ Z+, and a meaningful choice for the cutoff is the
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Nyquist (angular) frequency of the time series, i.e., ω⋆ = π/ϵ. Thus, Eq. (2.51)
becomes

2
q

∫ ∞

ω⋆

S′(ω)

S(ω)
sin(ωτ)

dω

2π
∼ 1

ϵ

2 Si(πn)− π

πn
, (2.53)

that is a function that decays to zero as n−2, for large n. The boundary term is

ω⋆

π
sinc(ω⋆τ) log(S(ω⋆)) =

1
ϵ

sinc(πn) log(S(π/ϵ))

=
1
ϵ

δn0 log(S(π/ϵ));
(2.54)

this means that only the n = 0 cepstral coefficient is affected by the logarithmic
divergence in the limit of small ϵ (i.e., the limit of large Nyquist frequency).
The complete expression of C(q = nϵ) in the case of a Lorentzian spectrum is

C(q = nϵ) =
1
ϵ

[
2 cos(ω0nϵ)e−nϵ/τ − e−

nϵ
τ

√
1+τ2ω2

0

n
+

+
2 Si(πn)− π

πn
+ δn0 log(S(π/ϵ))

]
.

(2.55)

The usual definition of cepstral coefficient, Cn, is given in Eq. (2.21), and it is

Cn =
1
N

N−1

∑
k=0

log(S(ωk)) e2πikn/N . (2.56)

This is the discrete Fourier transform of the logarithm of the spectrum. In
discretizing the continuous Fourier transform, a factor 1/ϵ that would come
from the differential of the frequency is missing, in fact:∫

f (ω)
dω

2π
≃ ∑

k
f (ωk)

∆ω

2π

= ∑
k

f (ωk)
2ω⋆

2πN

=
1

Nϵ ∑
k

f (ωk),

(2.57)

so that

Cn = ϵ C(q = nϵ). (2.58)

One finally obtains

Cn =
2 cos(ω0nϵ)e−nϵ/τ − e−

nϵ
τ

√
1+τ2ω2

0

n
+

+
2 Si(πn)− π

πn
+ δn0 log(S(π/ϵ)).

(2.59)

For any finite value of ϵ, the n = 0 cepstral coefficient is not well defined, since
the numerators are finite and the denominator is zero. Thus, one can forget
about the boundary term and simply write, for n > 0:

Cn =
2 cos(ω0nϵ)e−nϵ/τ − e−

nϵ
τ

√
1+τ2ω2

0

n
+

2 Si(πn)− π

πn
. (2.60)
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Figure 2.2: Comparison between the theoretical expression of the cepstrum of a
Lorentzian PSD, Eq. (2.60), and the numerical cepstrum obtained from a 20000
steps long time series generated with parameters ω0 = 10π THz, τ = 1 ps.

This formula is compared to a numerical simulation in Fig. 2.2. Numerical
data are obtained by generating correlated multivariate Gaussian variables
with covariance matrices of the form:

Σnm = R0 cos(ω0ϵ(n − m)) exp(−ϵ|n − m|/τ), (2.61)

corresponding to stochastic processes with Lorentzian PSD.

2.3.2 Resampling and resampling-invariance

Resampling reduces the Nyquist frequency of the periodogram—i.e., its max-
imum frequency due to the finite sampling of the time series—to a lower
frequency, f ⋆. The procedure consists of the application of a low-pass filter,
e.g., a moving average, to the flux time series, followed by a down-sampling of
the filtered time series with time period ϵ⋆ = 1

2 f ⋆ , in order to avoid aliasing.
Resampling with small f ⋆ (e.g., of the order of 1 THz) turns out to be useful to
have a better estimate of thermal conductivity with the AIC in cases where the
PSD features a sharp peak at low frequency [26]. This is likely due to the short-
ening in the length of the periodogram, where all the features at frequencies
larger than f ⋆ are excluded from the cepstral filter. Let us see how the choice
of f ⋆ affects quantities such as the periodogram, the cepstrum, and the value
of the transport coefficient as a function of the number of retained cepstral
coefficients, P. In particular, it will be clear that, for different f ⋆—and, conse-
quently, ϵ⋆—the transport coefficient as a function of cesptral cutoff, λ(P · ϵ⋆),
stays the same, despite the fact that both the periodogram and the cepstrum
are modified.

In the continuous limit, resampling is basically a convolution with a window
function. If J(t) is the continuous limit of the flux time series, the resampled
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flux, J(t), is the convolution of the original flux with a window function,
∆(t, w), where w characterizes the width of the window:

J(t) = J(t) ∗ ∆(t, w) =
∫ ∞

−∞
J(t′)∆(t − t′, w)dt . (2.62)

The PSD of J(t) is, by the Plancherel’s identity [21]:

S(ω) = S(ω)
∣∣∆̃(ω)

∣∣2, (2.63)

where ∆̃(ω) is the Fourier transform of ∆. The cepstrum thus reads

C(q) = F−1[logS](q), (2.64)

where F is the Fourier-transform operator. By plugging the expression of S
into Eq. (2.64), one obtains

C(q) = C(q) + F−1[log |∆̃| 2
](q). (2.65)

From Eqs. (2.65) and (2.58), it can be seen that the cepstral coefficients Cn
and Cm can be directly compared for q = nϵ = mϵ⋆, i.e. when m = nϵ/ϵ⋆.
The cepstral estimator of the logarithm of the transport coefficient, L⋆

0 , in the
continuous limit reads

L⋆
0 = C0 + 2

P⋆−1

∑
n=1

Cn

≈ ϵ⋆C(0) + 2ϵ⋆
P⋆−1

∑
n=1

C(q = nϵ⋆)

≈ 2
∫ p⋆

0
C(q)dq ,

(2.66)

where p⋆ = Pϵ⋆ and the factor ϵ⋆ is used as the integration step to pass from
the sum to the integral. After plugging Eq. (2.64) into Eq. (2.66), the latter
becomes

L⋆
0 ≈ 2

∫ p⋆

0
C(q)dq

= 2
∫ p⋆

0

(
C(q) + F−1[log |∆̃| 2

](q)
)

dq

= L⋆
0 + 2

∫ p⋆

0
F−1[log |∆̃| 2

](q)dq .

(2.67)

The difference of L⋆
0 and L⋆

0 can be estimated as

L⋆
0(p⋆)−L⋆

0 (p⋆) = 2
∫ p⋆

0
F−1[log |∆̃| 2

](q)dq

=
∫ ∞

−∞
(Θ(p⋆ − q) + Θ(p⋆ + q))F−1[log |∆̃| 2

](q)dq

=
1

2π

∫ ∞

−∞
Θ̃(ω) log |∆̃(ω)| 2 dω

(2.68)

where Θ is the Heaviside step-function, Θ̃ = 2 sin(ωp⋆)/ω, and Plancherel’s
identity is used to go from the second to the third line of the above Equation.
Since the above integral can be shown to evaluate to zero, the equality of
L⋆

0(p⋆) and L⋆
0 (p⋆) follows, and so does the invariance of λ(p⋆) with respect

to the resampling frequency.
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Figure 2.3: Comparison of the MMSE and AIC estimators in reproducing the exact value
of transport coefficients. The left panel has parameters R0 = 4, f0 = 0, τ = 0.1
and ℓ = 3. The middle panel has parameters R0 = 4, f0 = 5, τ = 3 and ℓ = 3.
The right panel has parameters R0 = 4, f0 = 0, τ = 8 and ℓ = 10.

2.3.3 Minimum mean square error estimation of transport coefficients

Being able to generate time series with PSDs of known form, and whose cep-
strum is known analytically, is useful to understand how the truncation of the
sum in the expression of L⋆

0 in Eq. (2.24) to P⋆ cepstral coefficients introduces
a bias that propagates to the estimated value of the transport coefficient. For-
mally, the bias of an estimator is the difference between the expectation value
of the estimator and its true value. The bias of L⋆

0 is

bias(L⋆
0 ) = ⟨L⋆

0 ⟩ − log S(0)

=

〈
C0 − ψ(ν/2) + log(ν/2) + 2

P⋆−1

∑
n=1

Cn

〉
+

−
C0 + 2

N
2 −1

∑
n=1

Cn + C N
2


= −2

N
2 −1

∑
n=P⋆

Cn − C N
2

,

(2.69)

and it has the property of going to zero as P⋆ increases. Eq. (2.69) contains the
true values of the cepstral coefficients, Cn, rather than the available cepstral
samples, Cn. Of course, the true cepstral coefficients are unknown since only
finite samples of the stochastic processes underlying the relevant fluxes are
available. Nonetheless, since only cepstral coefficients with P⋆ < n < N − P⋆

appear and, under this condition, Cn ≈ 0, only a rough estimate of the behavior
of Cn as a function of n is needed to estimate the bias.

For now, let us assume that the true cepstrum is well approximated by
computing the inverse discrete Fourier transform of any (reasonably) smoothed
version of the log-periodogram, L(ω)—this statement will be verified later.
Any low-pass filter would do, in principle; to avoid any contribution to the
noise arising from discontinuities in the smoothed log-periodogram sample,
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Figure 2.4: Cepstral analysis of graphene at T = 500 K. (a) Colormaps of the relative
deviation of the thermal conductivity obtained via cepstral analysis with
respect to the reference HE value for different resampling frequencies. The
x-axis indicates the length of the time series of the energy flux. For the MMSE
results, the y-axis indicates the width of the window of the SG filter used
to smoothen the sample log-PSD. The AIC results are reported in the insets
above. (b) Value of κ as a function of the cepstral cutoff p = P · ϵ with its
standard deviation given by the shaded areas. Note that, despite possible
visual similarities, this is not the plot of a HE integral as a function of the
integration time, but rather the plot of Eq. (2.38) as a function of the number of
retained cepstral coefficients multiplied by ϵ. Gray, green, magenta, and cyan
curves are associated with simulations of 0.1, 0.4, 1, and 10 ns, respectively.
Same-color circles are the AIC results obtained with simulations of the same
length and f ⋆ = 1 THz. Stars are the MMSE results with f ⋆ = 250 THz and
wSG = 0.05 THz. The blue, horizontal, dashed line is the HE result obtained
from standard block averaging from 100 ns of trajectories (ten independent
simulations of 10 ns each).

the smoothing of logSk is performed via the Savitzki-Golay (SG) filter [38],
which consists in a least-squares polynomial fit of the signal in a window of
given width around each sample point. Since this filter outputs a differentiable
function, it is preferred with respect to a simple moving average, which could
produce a larger number of spurious contributions to the cepstrum. The idea
to partially solve the bias underestimation of the AIC is to minimize the Mean
Square Error (MSE), which is the sum of the bias squared and the variance, in
order to exploit the so-called bias-variance tradeoff, aiming thus at balancing
bias and variance not to weight too much either of the two. The representative
cepstral coefficients, Cn, obtained from the inverse discrete Fourier transform
of the filtered log-periodogram, are used to compute the MSE as a function of
the number of retained cepstral coefficients, P:

MSE(P) =

2

N
2 −1

∑
n=P

Cn + C N
2

2

+

+
4P − 2

N
ψ′( ν

2 ).

(2.70)
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Figure 2.5: Low-frequency portion of the PSD of graphene at 500 K. The MMSE method
(green curve) provides a converged estimate of κ with a simulation of 400 THz,
while the AIC (red curve) is unable to capture the sharp peak at zero frequency.
The raw PSD is represented by the gray circles joined by lines, that are a guide
for the eye. The dashed, blue line is the reference value of the thermal
conductivity computed as a HE integral over 10 ns-long EMD simulations.

The estimate of the transport coefficient and its statistical uncertainty are given
by Eq. (2.38), with P⋆ given by

P⋆ = arg min
P

MSE(P). (2.71)

This method to estimate transport coefficients, called Minimum Mean Square
Error (MMSE) method, is tested for time series whose PSD is Lorentzian like in
Eq. (2.48). In Fig. 2.3 the transport coefficients, λ, associated with such time
series are shown as a function of the cepstral cutoff p for different values of
the parameters of the Lorentzian function in Eq. (2.48). The exact value of λ,
given by the zero-frequency value of the exact PSD, is compared to the AIC

and MMSE estimates; for the latter, both the theoretical (i.e., the one obtained
minimizing the exact bias) and the numerical (which depends on the choice
of the SG window) estimates are provided. For sharply peaked PSDs, the MMSE

estimate outperforms the AIC method, as it is clear from the right panel of
Fig. 2.3; instead, when the main peak in the PSD is at ω = 0 but its width, 1/τ,
is large enough, both methods yield results compatible with the exact value of
λ. When the peak is away from the origin, such as in the case of the middle
panel of Fig. 2.3, both methods work well.

The MMSE method has been tested for realistic materials in Ref. 39. The
method is particularly effective in 2D materials, where the reduced dimen-
sionality allows phonons to be in the hydrodynamic regime [40], and thermal
conductivity assumes large values. In particular, in graphene, the simulation
time required to have converged results is reduced by a factor of more than 20
with respect to HE integration. Fig. 2.4 and Fig. 2.5 compare the MMSE and AIC

methods for graphene at T = 500 K, where the MMSE method provides a con-
verged value of κ with simulations 25 times shorter than HE integration, while
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the AIC fails to do so. With equal simulation lengths, the AIC method yields
results that are converged only at higher temperatures, while at temperatures
as low as 200 K the AIC value of κ is ≈ 60% of the reference value2, the MMSE

being still able to capture the correct κ [39].

2 At 200 K the value of the thermal conductivity obtained from classical EMD might be inaccurate since
quantum effects increase with decreasing temperature. Nonetheless, the point here is the ability of
the estimator to recover the reference value of κ, regardless of the intrinsic accuracy of the underlying
theory.
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Die ganzen Zahlen hat der liebe
Gott gemacht, alles andere ist
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God made the integers, all else is the
work of men.
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3
A D I A B AT I C C H A R G E T R A N S P O RT

I
n this Chapter I will review some concepts in the theory of adiabatic

charge transport. After an excursus on how the adiabatic approxi-
mation can be obtained through different routes, each putting things

under slightly different perspectives, I show how the Thouless’ approximation
and the continuity equation for the charge density are intertwined, making ex-
plicit the bond between the Thouless’ wavefunction and transport theory. Then,
the computation of the adiabatic electric flux in condensed matter systems is
addressed and, finally, the computation of ionic conductivity is discussed.

3.1 the adiabatic equation

Let us consider a quantum system whose Hamiltonian, Ĥ, depends on time
through a parameter, λ, which possibly represents vector quantities such as
the positions of nuclei. The caret ( ˆ ) represents quantum operators. The
Schrödinger equation reads

d
dt

|Φ⟩ = 1
ih̄
Ĥλ |Φ⟩ . (3.1)

For each value of λ, there exists a complete set of eigenstates of the Hamiltonian:

Ĥλ |Ψn(λ)⟩ = En(λ) |Ψn(λ)⟩ (3.2)

A full solution to the Schrödinger equation is of course impossible to find
for a Hamiltonian with a general λ-dependence. Nonetheless, approximated
solutions can be obtained in different ways. In particular, let us focus on the
Thouless’ approximation to the wavefunction [41], which will be obtained in
three different ways by adding ad hoc requirements to standard approximation
techniques. Later, it will be shown how Thouless’ approximation emerges natu-
rally as the lowest-order approximation able to describe adiabatic transport.

3.1.1 First-order approximation with the variation of constants

Thouless’ wavefunction can be obtained from perturbation theory in the adi-
abatic basis. The system’s state, |Φ⟩, can be expanded in the λ-dependent
instantaneous basis as

|Φ(t)⟩ = ∑
n

an(t) |Ψn(λ(t))⟩ . (3.3)

The Schrödinger equation, Eq. (3.1), can be written in the adiabatic basis as

ih̄ ∑
m

[
ȧm(t) |Ψm(t)⟩+ am(t)

∣∣Ψ̇m(t)
〉]

= ∑
m

am(t)Ĥλ(t) |Ψm(t)⟩

= ∑
m

am(t)Em(t) |Ψm(t)⟩ ,
(3.4)

37



38 introduction

where |Ψm(t)⟩ is a shorthand notation for |Ψm(λ(t))⟩ that, whenever the
context makes it clear, will be indicated simply by |Ψm⟩. The explicit time-
dependence of an and En will be also omitted. Acting on left with ⟨Ψn(λ(t))|,
one obtains

ih̄ ȧn(t) + ∑
m

am(t)ih̄
〈
Ψn(t)

∣∣Ψ̇m(t)
〉
= an(t)En(t). (3.5)

We are left with a differential equation for the coefficients:

ȧn =
1
ih̄

anEn − 1
ih̄ ∑

m
amih̄λ̇ ⟨Ψn|∂λΨm⟩

=
1
ih̄

an(En − ih̄λ̇ ⟨Ψn|∂λΨn⟩)−
1
ih̄ ∑

m( ̸=n)
amih̄λ̇ ⟨Ψn|∂λΨm⟩ .

(3.6)

If the Hamiltonian is not periodic in time, one can choose the parallel transport
gauge [42] and remove the ⟨Ψn|∂λΨn⟩ contribution. Thus, Eq. (3.6) becomes

ȧn =
1
ih̄

anEn − 1
ih̄ ∑

m( ̸=n)
amih̄λ̇ ⟨Ψn|∂λΨm⟩ . (3.7)

The anEn contribution disappears after having defined an(t) = cn(t)eiαn(t), with
the exponent αn = − 1

h̄
∫ t

0 En(t′)dt′. What is left is

e−iαn

(
ȧn − 1

ih̄
anEn

)
=

d
dt

(
an(t)e−iαn

)
, (3.8)

so that Eq. (3.7) is reduced to

ċn(t) = − 1
ih̄ ∑

m( ̸=n)
ei(αm−αn)cmih̄λ̇ ⟨Ψn|Ψm⟩ . (3.9)

An approximate solution can be obtained through time-dependent perturbation
theory in terms of the adiabatic potential ih̄λ̇ ⟨Ψn|∂λΨm⟩. At order zero, one
simply has

ċ(0)n (t) = 0, (3.10)

which means that c(0)n is constant. If one chooses the initial state to be close to
an instantaneous eigenstate of Ĥ, say |Ψk⟩, the zeroth order term reads

c(0)n (t) = δnk. (3.11)

The first order equation is obtained by replacing cm with c(0)m in Eq. (3.9):

ċ(1)n (t) = − 1
ih̄
(1 − δnk)e

i(αk−αn)ih̄λ̇ ⟨Ψn|∂λΨk⟩ . (3.12)

Once integrated, this yields

c(1)n (t)− c(1)n (0) = − 1
ih̄
(1 − δnk)×∫ t

0
ei[αk(t′)−αn(t′)]ih̄λ̇(t′) ⟨Ψn(t′)|∂λΨk(t

′)⟩dt′ .
(3.13)
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The above integral cannot be solved analytically. Up to higher order terms
(h.o.t.) in λ̇, it can be evaluated as

c(1)n (t)− c(1)n (0) = ih̄λ̇(t)(1 − δnk)

( ⟨Ψn(t)|∂λΨk(t)⟩
En(t)− Ek(t)

ei[αk(t)−αn(t)]+

− ⟨Ψn(0)|∂λΨk(0)⟩
En(0)− Ek(0)

ei[αk(0)−αn(0)]
)
+ h.o.t.

(3.14)

The value of c(1)n (t) is easily recognized to be

c(1)n (t) = ih̄λ̇(t)(1 − δnk)
⟨Ψn(t)|∂λΨk(t)⟩
En(t)− Em(t)

ei[αk(t)−αn(t)]. (3.15)

Up to this order, the solution to the Schrödinger equation is thus

|Φ(t)⟩ = ∑
n

eiαn(t)
(

c(0)n (t) + c(1)n (t)
)
|Ψn(t)⟩

= eiαk(t)

|Ψk(t)⟩+ ih̄λ̇(t) ∑
n( ̸=k)

⟨Ψn(t)|∂λΨk(t)⟩
En(t)− Ek(t)

|Ψn(t)⟩

 .

(3.16)

This is the Thouless’ adiabatic state obtained in 1983 [41].

3.1.2 First-order approximation in the rate of change of the parameters

The same wavefunction can be obtained as the lowest-order approximation in
the derivative of the adiabatic parameters. Let us consider the strictly adiabatic
approximation, where the only contribution to the time-evolved state is given
by a phase factor. This is equivalent to saying that the rate of change of λ, i.e.
λ̇, is so small that a system prepared in the nth eigenstate at t = 0 always
remains in that same eigenstate. If such assumption is relaxed, at t > 0 the nth
eigenstate will acquire a contribution of the form

|Ψn(t)⟩ 7→ |Ψn(t)⟩+ f (λ̇) |δΨn(t)⟩ (3.17)

The function f must go to zero linearly in λ̇, to restore the strictly adiabatic
approximation. For simplicity, let us redefine |δΨn(t)⟩ to include a linear term
in λ̇.

Now let us take Eq. (3.4) and rewrite it to make its dependence on λ̇ explicit:

ih̄ ∑
m

(
ȧm(t) |Ψm(λ(t))⟩+ am(t)λ̇ |∂λΨm(λ(t))⟩

)
=

∑
m

am(t)Ĥλ(t) |Ψm(λ(t))⟩ .
(3.18)

Using the substitution in Eq. (3.17) one obtains

ih̄ ∑
m

[
ȧm(t)

(
|Ψm(λ)⟩+ |δΨm(λ̇)⟩

)
+ am(t)λ̇ · |∂λΨm(λ)⟩

]
=

∑
m

am(t)Ĥλ(t)
(
|Ψm(λ)⟩+ |δΨm(λ̇)⟩

) (3.19)
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and, acting from the left with ⟨Ψn|, one gets:

ih̄ȧn(t) + ih̄ ∑
m

(
ȧm(t) ⟨Ψn|δΨm⟩+ am(t)λ̇ · ⟨Ψn|∂λΨm⟩

)
=

En(t)an(t) + En ∑
m

am ⟨Ψn|δΨm⟩ .
(3.20)

Since the contribution of order λ̇ is completely included in |δΨm⟩, the coef-
ficients an must be strictly adiabatic in order to keep the equation at O

(
λ̇
)
,

i.e.

an(t) = an(0)eiαn(t). (3.21)

Thus, the term ih̄ȧn in the left-hand side (LHS) cancels out with Enan in the
right-hand side (RHS), yielding

∑
m

(
Em(t)am(t) ⟨Ψn|δΨm⟩+ am(t)ih̄λ̇ ⟨Ψn|∂λΨm⟩

)
=

En ∑
m

am ⟨Ψn|δΨm⟩ ,
(3.22)

that can be solved to obtain

⟨Ψn|δΨm⟩ = ih̄λ̇
⟨Ψn|∂λΨm⟩

En(t)− Em(t)
, (3.23)

|δΨn⟩ = ih̄λ̇ ∑
m( ̸=n)

⟨m|∂λΨn⟩
Em(t)− En(t)

|Ψm⟩ . (3.24)

Again, the state a time t takes the form

|Φ(t)⟩ = ∑
n

eiαn(t)

|Ψn(t)⟩+ ih̄λ̇ ∑
m( ̸=n)

⟨Ψm(t)|∂λΨn(t)⟩
Em(t)− En(t)

|Ψm(t)⟩

 ,

(3.25)

which is the same as Eq. (3.16). It is important to notice that, while this
derivation makes it somewhat obscure, the initial condition for this solution is

|Φ(0)⟩ = ∑
n

eiαn(0)
[
|Ψn(0)⟩+

+ih̄λ̇(0) ∑
m( ̸=n)

⟨Ψm(0)|∂λΨn(0)⟩
Em(0)− En(0)

|Ψm(0)⟩

 ,
(3.26)

which is consistent with Eq. (3.14); i.e., the initial state is not an instantaneous
eigenstate of the Hamiltonian, but it already includes a first-order adiabatic
contribution.

3.1.3 First-order approximation of the evolution operator

Yet another derivation involves the time-evolution operator, Û (t), that formally
solves the Schrödinger equation, i.e. the time-ordered exponential [43]

Û (t) = T e−
i
h̄

∫ t
0 Ĥ(t′)dt′ , (3.27)
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T being the time-ordering operator. This can be factored into two terms: the
first is the purely adiabatic part [44],

Û0(t) = ∑
n

eiαn(t) |Ψn(t)⟩⟨Ψn(0)| , (3.28)

which brings an instantaneous eigenstate at time t = 0, |Ψn(0)⟩, to the eigen-
state labeled by the same quantum number1 at a later time, t > 0, multiplied
by the phase accumulated during the time-evolution, i.e., eiαn(t) |Ψn(t)⟩; the
second term, V̂(t), accounts for all the nonadiabatic contributions. The full
time-evolution operator reads

Û (t) = Û0(t)V̂(t). (3.29)

The nonadiabatic part can also be expressed as a time-ordered exponential [44]
in terms of some operator Â such that

V̂(t) = T e−
i
h̄

∫ t
0 Â(t′)dt′ . (3.30)

Thus, ˙̂V(t) = − i
h̄ Â(t)V̂(t). From Eq. (3.29), one can write V̂(t) = Û †

0 (t)Û (t),
its derivative being

˙̂V(t) = ˙̂U †
0 (t)Û (t) + Û †

0 (t)
˙̂U (t). (3.31)

By inserting the identity as Û †
0 Û0, and using the fact that ˙̂U = −iĤÛ/h̄, one

obtains

˙̂V = ˙̂U †
0 Û0Û †

0 Û − i
h̄
Û †

0 ĤÛ0Û †
0 Û

= − i
h̄

(
ih̄ ˙̂U †

0 Û0 + Û †
0 ĤÛ0

)
V̂ .

(3.32)

The operator Â turns out to be the Hamiltonian transformed2 in the adiabatic
frame of reference via the time-dependent unitary transformation Ŝ(t) = Û †

0 (t).
Let us rename Â as

Ĥad ≡ Â = Û †
0 ĤÛ0 + ih̄ ˙̂U †

0 Û0. (3.34)

With this definition, the full time-evolution operator reads

Û (t) = Û0(t)T e−
i
h̄

∫ t
0 Ĥad(t′)dt′ . (3.35)

It is then natural to consider a series expansion of the time-ordered exponential
at the first order in the adiabatic exponential

Û (t) ≃ Û0(t)
(

1 − i
h̄

∫ t

0
Ĥad(t

′)dt′
)

= Û0(t)
[

1 − i
h̄

∫ t

0

(
Û †

0 (t
′)Ĥ(t′)Û0(t′) + ih̄ ˙̂U †

0 (t
′)Û0(t′)

)
dt′
]

.

(3.36)

1 This is valid under the assumption that the levels do not cross during the dynamics.
2 To leave the Schrödinger equation invariant under a generic time-dependent transformation, Ŝ(t), of

the state vectors, the Hamiltonian, Ĥ(t), needs to transform as

Ĥ′(t) = Ŝ(t)Ĥ(t)Ŝ−1(t)− ih̄Ŝ(t) ˙̂S−1(t). (3.33)
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The first term in the integral is

Ĥ0 = Û †
0 ĤÛ0

= ∑
n,m

⟨Ψn(t)|Ĥ(t)|Ψm(t)⟩ |Ψn(0)⟩⟨Ψm(0)|

= ∑
n

En(t) |Ψn(0)⟩⟨Ψn(0)| ,

(3.37)

while the second term is

ih̄ ˙̂U †
0 Û0 = −Ĥ0(t) + ih̄λ̇ ∑

n,m
ei(αm−αn) ⟨∂λΨn(t)|Ψm(t)⟩ |Ψn(0)⟩⟨Ψm(0)| .

(3.38)

The first term cancels out the −Ĥ0 contribution in the second one; thus,
Eq. (3.36) becomes

Û (t) ≃ Û0(t)
[

1 + |Ψn(0)⟩⟨Ψm(0)| ×

∑
n,m

∫ t

0
ei(αm(t′)−αn(t′)) ⟨Ψn(t′)|Ψ̇m(t′)⟩dt′

]

= ∑
n

eiαn

[
|Ψn(t)⟩⟨Ψn(0)|+

+ ∑
m( ̸=n)

∫ t

0
ei(αm(t′)−αn(t′)) ⟨Ψn(t′)|Ψ̇m(t′)⟩dt′ |Ψn(t)⟩⟨Ψm(0)|

 .

(3.39)

This result is correct up to the first order in Ĥad. Performing the integral in the
same approximated way as in Eq. (3.14), one obtains

Û (t) ≃ ∑
n

eiαn

[
|Ψn(t)⟩⟨Ψn(0)|+

+ih̄λ̇ ∑
m( ̸=n)

(
ei(αm(t)−αn(t)) ⟨Ψn(t)|∂λΨm(t)⟩

En(t)− Em(t)
+

−ei(αm(0)−αn(0)) ⟨Ψn(0)|∂λΨm(0)⟩
En(0)− Em(0)

)
|Ψn(t)⟩⟨Ψm(0)|

]
,

(3.40)

which is consistent with the result of the preceding Sections. Here, the explicit
presence of the first-order contribution to the initial condition clearly expresses
the fact that the approximated time evolution of a pure eigenstate of Ĥ(0)
cannot lead to the Thouless’ state.

The three different methods outlined in Secs. 3.1.1, 3.1.2, and 3.1.3 introduce
the adiabatic approximation with different levels of artificiality. In the following
Section, the same approximation will be derived in a more natural way, where
the relationship between the Thouless’ wavefunction and the theory of adiabatic
transport are evident.
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3.2 thouless’ approximation from the continuity equation

In Quantum Mechanics (QM), the continuity equation is usually introduced
in terms of the conservation of probability, and it is usually derived from the
Schrödinger equation of a quantum wavefunction, Ψ, in an external potential,
V , multiplied by Ψ∗. For a single particle, one can write:

ih̄Ψ∗ ∂Ψ
∂t

= − h̄2

2m
Ψ∗∇2Ψ(r, t) + V(r, t)Ψ∗Ψ(r, t). (3.41)

After rearranging the terms in the above equation, one arrives at

∂

∂t
(Ψ∗Ψ) = − h̄

2mi
∇ · (Ψ∗∇Ψ − Ψ∇Ψ∗), (3.42)

which has the form of a continuity equation for the current density

ȷ(r, t) =
h̄

2mi
[Ψ∗(r, t)∇Ψ(r, t)− Ψ(r, t)∇Ψ∗(r, t)]. (3.43)

It is instructive to derive the continuity equation in operatorial form and to
show how it is related to Heisenberg’s time-evolution and to transport theory.
Since the continuity equation relates local densities and currents, it is expedient
to express operators on the basis of position eigenstates, i.e. those states, |r⟩,
such that

r̂
∣∣r′〉 = r′

∣∣r′〉 ,
〈
r′
∣∣r′′〉 = δ(r′ − r′′). (3.44)

The matrix elements of the position and momentum operators between a
position eigenstate and an arbitrary quantum state, |Ψ⟩, are

⟨r|r̂|Ψ(t)⟩ = r ⟨r|Ψ(t)⟩ = rΨ(r, t), (3.45)

⟨r|p̂|Ψ(t)⟩ = −ih̄∇ ⟨r|Ψ(t)⟩ = −ih̄∇Ψ(r, t), (3.46)

where ∇ is the gradient with respect to the eigenvalue r. A local particle
density operator, n̂r can be defined in terms of its matrix elements over generic
quantum states:

⟨Φ(t)|n̂r|Ψ(t)⟩ = Φ∗(r, t)Ψ(r, t) (3.47)

which, by inserting twice the resolution of the identity, 1 =
∫

d3r |r⟩⟨r|, becomes

⟨Φ(t)|n̂r|Ψ(t)⟩ =
∫

d3r′
∫

d3r′′
〈
Φ(t)

∣∣r′〉 〈r′∣∣n̂r
∣∣r′′〉 〈r′′∣∣Ψ(t)

〉
. (3.48)

It is clear that the local density operator n̂r satisfies〈
r′
∣∣n̂r
∣∣r′′〉 = δ(r − r′)δ(r − r′′). (3.49)

A working definition is thus n̂r = δ(r− r̂). Let us now try to find a local current
operator, ȷ̂r: in analogy with Classical Mechanics (CM), let us define it as the
(symmetrized) quantum version of the classical current ȷ = nv, i.e. the density
times the velocity. The current operator therefore reads

ȷ̂r =
1
2
(n̂rv̂ + v̂n̂r), (3.50)
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where the velocity operator is defined in order to satisfy the Ehrenfest the-
orem [43], and give ⟨v̂⟩ = d⟨r̂⟩

dt , and it is thus dependent on the form of the
Hamiltonian. The divergence, ∇·, acts on ȷ̂r by differentiating n̂r with respect
to the parameter r:

∇ · ȷ̂r =
1
2
(∇n̂r · v̂ + v̂ · ∇n̂r). (3.51)

In the simple case of a free particle (the generalization to arbitrary external and
vector potentials is straightforward [45]), where

Ĥ =
p̂2

2m
, v̂ =

p̂
m

, (3.52)

it immediately follows that

∇ · ȷ̂r =
i

2mh̄
[n̂rp̂2 − p̂ · (n̂rp̂) + p̂ · (n̂rp̂)− p̂2n̂r]

= − 1
ih̄
[
n̂r, Ĥ

]
.

(3.53)

Notice that, in the Heisenberg representation, 1/(ih̄)
[
n̂r, Ĥ

]
is exactly the

time-derivative of the local density operator. Thus, n̂r and ȷ̂r are related by a
continuity equation, and the expression for ∇ · ȷ̂r results from Heisenberg’s
equations of motion [43], i.e.

dn̂(H)
r

dt
=

1
ih̄
[
n̂(H)

r , Ĥ(H)
]

= −∇ · ȷ̂ (H)
r ,

(3.54)

where Â(H) denotes an operator in the Heisenberg picture. For N-electron
systems, the local density can be generalized to

n̂r =
N

∑
i=1

δ(r − r̂i), (3.55)

so that the local current reads

ȷ̂r =
1
2

N

∑
i=1

[δ(r − r̂i)v̂ + v̂δ(r − r̂i)] , (3.56)

and v̂ = ∑i v̂i is now the many-body velocity operator. In the spirit of the
relationship between the local density operator, the continuity equation, and
Heisenberg’s equations of motion (Eq. (3.54)), let us try to find the simplest
quantum state able to fulfill a continuity equation for the adiabatic local density.

If ρ̂ is the local density operator for a generic quantum system, the Heisen-
berg’s equation of motion for ρ̂ in the Heisenberg picture is

dρ̂(H)

dt
=

1
ih̄
[
ρ̂(H), Ĥ(H)

]
+

(
∂ρ̂

∂t

)(H)

(3.57)

In the case where ρ̂ has no explicit time-dependence, Eq. (3.57) can be written
in terms of the time-evolution operator as

d
dt

(
Û †(t)ρ̂ Û (t)

)
=

1
ih̄
Û †(t)

[
ρ̂, Ĥ

]
Û (t). (3.58)
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In the purely adiabatic approximation, Û (t) = Û0(t), there are no contributions
to the ground-state expectation value of the RHS of Eq. (3.58). The operator

Û †(t)
[
ρ̂, Ĥ

]
Û (t) ≃ Û †

0 (t)
[
ρ̂, Ĥ

]
Û0(t)

= ∑
n,m

ei(αn(t)−αm(t))×

(En(t)− Em(t)) ⟨Ψm(t)|ρ̂|Ψn(t)⟩ |Ψm(0)⟩⟨Ψn(0)|
(3.59)

can be nonzero only off-diagonal; therefore, its ground-state expectation value
is zero. Let us look for the simplest approximation for the evolution operator,
ÛTh, able to fulfill a Heisenberg-like equation (and, after Eq. (3.54), a continuity
equation) of the form

d
dt

(
Û †

0 (t)ρ̂ Û0(t)
)
=

1
ih̄
Û †

Th(t)
[
ρ̂, Ĥ

]
ÛTh(t). (3.60)

Accordingly, the state |ΨTh⟩ = ÛTh |Ψ0⟩, where |Ψ0⟩ is the ground state, will
be the lowest order approximation of a state over which the expectation value
of the current associated to ρ̂ is nonzero.

Let us begin by computing the LHS of Eq. (3.60):

d
dt

(
Û †

0 (t)ρ̂ Û0(t)
)
= ˙̂U †

0 ρ̂ Û0 + Û †
0 ρ̂ ˙̂U0. (3.61)

With ρ̂0 = Û †
0 ρ̂ Û0, one has

d
dt

(
Û †

0 (t)ρ̂ Û0(t)
)
= ˙̂U †

0 Û0ρ̂0 + ρ̂0 Û †
0

˙̂U0. (3.62)

The expression for ρ̂0 is

ρ̂0 = ∑
n,m

⟨Ψn|ρ̂|Ψm⟩ |Ψn(0)⟩ ⟨Ψm(0)|

= ∑
n,m

ρnm |Ψn(0)⟩ ⟨Ψm(0)| .
(3.63)

According to Eq. (3.28), the derivative of Û0 reads
˙̂U0 = ∑

n
eiαn

(
iα̇n |Ψn⟩ ⟨Ψn(0)|+

∣∣Ψ̇n
〉
⟨Ψn(0)|

)
= ∑

n
eiαn

(
1
ih̄

En |Ψn⟩ ⟨Ψn(0)|+
∣∣Ψ̇n

〉
⟨Ψn(0)|

) (3.64)

so that

Û †
0

˙̂U0 = ∑
n,m

ei(αn−αm)
[

1
ih̄

Enδnm |Ψm(0)⟩ ⟨Ψn(0)|+

+
〈
Ψm
∣∣Ψ̇n

〉
|Ψm(0)⟩ ⟨Ψn(0)|

]
=

1
ih̄ ∑

n
En(t) |Ψn(0)⟩ ⟨Ψn(0)|+

+ ∑
n,m

ei(αn−αm)
〈
Ψm
∣∣Ψ̇n

〉
|Ψm(0)⟩ ⟨Ψn(0)|

=
1
ih̄
Û †

0 ĤÛ0 +
1
ih̄ ∑

n,m
ei(αn−αm)ih̄

〈
Ψm
∣∣Ψ̇n

〉
|Ψm(0)⟩ ⟨Ψn(0)|

=
1
ih̄
Ĥ0 +

1
ih̄
Q̂,

(3.65)
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where Q̂ remains defined in the last line. It is easy to show that Q̂ is Hermitian.
The LHS of Eq. (3.60) becomes

d
dt

(
Û †

0 (t)ρ̂ Û0(t)
)
= − 1

ih̄
(
Ĥ0 + Q̂

)
ρ̂0 +

1
ih̄

ρ̂0
(
Ĥ0 + Q̂

)
=

1
ih̄
[
ρ̂0, Ĥ0

]
+

1
ih̄
[
ρ̂0, Q̂

]
.

(3.66)

Let us now consider the RHS of Eq. (3.60), i.e.

1
ih̄
Û †

Th(t)
[
ρ̂, Ĥ

]
ÛTh(t).

One can assume that ÛTh has the form

ÛTh = Û0 + Û1, (3.67)

To keep results up to O
(
Û1
)
, anything of higher order shall be neglected. ÛTh

is required to be unitary up to O
(
Û1
)
:

Û †
ThÛTh =

(
Û †

0 + Û †
1

) (
Û0 + Û1

)
= Û †

0 Û0 + Û †
1 Û0 + Û †

0 Û1 +O(Û2
1 )

= 1 + Û †
1 Û0 + Û †

0 Û1 +O(Û2
1 ).

(3.68)

Then, Û †
1 Û0 = −Û †

0 Û1. Let us define the anti-Hermitian operator Ξ̂ = Û †
0 Û1.

The RHS of Eq. (3.60) thus reads

1
ih̄
Û †

Th(t)
[
ρ̂, Ĥ

]
ÛTh(t) =

1
ih̄

(
Û †

0 + Û †
1

) [
ρ̂, Ĥ

] (
Û0 + Û1

)
≃ 1

ih̄
[
ρ̂0, Ĥ0

]
+

1
ih̄
Û †

1
[
ρ̂, Ĥ

]
Û0 +

1
ih̄
Û †

0
[
ρ̂, Ĥ

]
Û1

=
1
ih̄
[
ρ̂0, Ĥ0

]
+

1
ih̄

Ξ̂†[ρ̂0, Ĥ0
]
+

1
ih̄
[
ρ̂0, Ĥ0

]
Ξ̂

=
1
ih̄
[
ρ̂0, Ĥ0

]
− 1

ih̄
Ξ̂
[
ρ̂0, Ĥ0

]
+

1
ih̄
[
ρ̂0, Ĥ0

]
Ξ̂

=
1
ih̄
[
ρ̂0, Ĥ0

]
+

1
ih̄
[[

ρ̂0, Ĥ0
]
, Ξ̂
]

(3.69)

Equating Eqs. (3.66) and (3.69) yields an equation for the unknown operator Ξ̂:[
ρ̂0, Q̂

]
=
[[

ρ̂0, Ĥ0
]
, Ξ̂
]
. (3.70)

Let us find the value of Ξ̂ that solves this equation by plugging in the known
expressions for ρ̂0, Q̂ and Ĥ0. With αnm = αn − αm, the LHS of Eq. (3.70) is[

ρ̂0, Q̂
]
= ∑

n,m
∑
l,k

ρnmeiαmn ih̄eiαkl ⟨Ψl |Ψ̇k⟩
[
|Ψn(0)⟩⟨Ψm(0)| , |Ψl(0)⟩⟨Ψk(0)|

]
= ih̄ ∑

n,m,l
eiαln

(
ρnm ⟨Ψm|Ψ̇l⟩ − ρml ⟨Ψn|∂λΨm⟩

)
|Ψn(0)⟩⟨Ψl(0)|

(3.71)
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where, in going from the first to the second line, dummy labels have been
swapped to factor out |Ψn(0)⟩⟨Ψl(0)|. The RHS of Eq. (3.70) is

[[
ρ̂0, Ĥ0

]
, Ξ̂
]
.

The first commutator is computed as[
ρ̂0, Ĥ0

]
= ∑

n,m,l
ρnmeiαmn El [|Ψn(0)⟩⟨Ψm(0)| , |Ψl(0)⟩⟨Ψl(0)|]

= ∑
n,m,l

ρnmeiαmn El (δml |Ψn(0)⟩⟨Ψl(0)| − δnl |Ψl(0)⟩⟨Ψm(0)|)

= ∑
n,m

ρnmeiαmn (Em − En) |Ψn(0)⟩⟨Ψm(0)|

= ∑
n,m

ρnmeiαmn ∆mn |Ψn(0)⟩⟨Ψm(0)| ,

(3.72)

where the last line defines ∆mn = Em − En. Thus, the RHS of Eq. (3.70) becomes[[
ρ̂0, Ĥ0

]
, Ξ̂
]
= ∑

n,m
ρnmeiαmn ∆mn

[
|Ψn(0)⟩⟨Ψm(0)| , Ξ̂

]
. (3.73)

The matrix elements of Ξ̂ in the adiabatic basis at initial time, {|Ψn(0)⟩}, are
denoted by ⟨Ψn(0)|Ξ̂|Ψm(0)⟩ = Ξ0

nm. Factoring out |Ψn(0)⟩⟨Ψl(0)|, one obtains[[
ρ̂0, Ĥ0

]
, Ξ̂
]
= ∑

n,m,l

(
ρnmeiαmn ∆mnΞ0

ml − ρmle
iαlm ∆lmΞ0

nm

)
|Ψn(0)⟩⟨Ψl(0)|

(3.74)

Both Eqs. (3.71) and (3.74) have been cast in the form

Â = ∑
n,l

Anl |Ψn(0)⟩⟨Ψl(0)| . (3.75)

The two sides of the equation can be equal only if the matrix elements are the
same on each side, i.e. if, for all n, l:

ih̄ ∑
m

eiαln
(
ρnm ⟨Ψm|Ψ̇l⟩ − ρml ⟨Ψn|Ψ̇m⟩

)
=

= ∑
m

(
ρnmeiαmn ∆mnΞ0

ml − ρmle
iαlm ∆lmΞ0

nm

)
.

(3.76)

In particular, when n = l:

ih̄ ∑
m

(
ρnm ⟨Ψm|Ψ̇n⟩ − ρmn ⟨Ψn|Ψ̇m⟩

)
=

= ∑
m

(
ρnmeiαmn ∆mnΞ0

mn − ρmneiαnm ∆nmΞ0
nm

)
.

(3.77)

Since this must be true for any Hermitian operator ρ̂, one can write

ih̄ ⟨Ψm|Ψ̇n⟩ = eiαmn ∆mnΞ0
mn, (3.78)

that is

⟨Ψm(0)|Ξ̂|Ψn(0)⟩ = ih̄ei(αn−αm) ⟨Ψm|Ψ̇n⟩
Em − En

. (3.79)
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Now, let us go back to ÛTh = Û0 + Û1, with Û1 = Û0Ξ̂. One obtains that Û1
fulfills

⟨Ψm|Û1|Ψn(0)⟩ = eiαm ⟨Ψm(0)|Û †
0 Û1|Ψn(0)⟩

= eiαm ⟨Ψm(0)|Ξ̂|Ψn(0)⟩

= ih̄λ̇eiαn
⟨Ψm|∂λΨn⟩

Em − En
.

(3.80)

Finally, this means that Û1 takes the form

Û1 = ih̄λ̇ ∑
n,m

eiαn
⟨Ψm|∂λΨn⟩

Em − En
|Ψm⟩⟨Ψn(0)| , (3.81)

so that

ÛTh(t) = ∑
n

eiαn

[
|Ψn(t)⟩⟨Ψn(0)|+

ih̄λ̇ ∑
m( ̸=n)

⟨Ψm|∂λΨn⟩
Em − En

|Ψm(t)⟩⟨Ψn(0)|

 .
(3.82)

If one takes a single particle prepared in the ground state at the initial time,
|Ψn(0)⟩, one obtains that the state evolved according to ÛTh is

|ΨTh⟩ = ÛTh(t) |Ψ0(0)⟩ (3.83)

= eiα0

|Ψ0⟩+ ih̄λ̇ ∑
m( ̸=0)

⟨Ψm|∂λΨ0⟩
Em − E0

|Ψm⟩

 , (3.84)

which is exactly the Thouless’ result already obtained in Eq. (3.16).
This proves the intimate relationship between the Thouless’ solution and

transport theory: the simplest adiabatic wavefunction able to sustain a current is
given by Eq. (3.16); otherwise, it is not possible to satisfy a continuity equation,
which is required to formalize transport phenomena.

3.3 adiabatic flux in condensed matter

So far, the system has been implicitly considered to be in Open Boundary
Conditions (OBCs). As it is customary in condensed matter physics, unbounded
bulk systems are treated in Periodic Boundary Conditions (PBCs), where a cubic
supercell of volume L3 containing N electrons is periodically repeated with
period L along each Cartesian direction. The thermodynamic limit, N → ∞,
L → ∞, with N/L3 = ⟨n⟩, is understood. The many-body wavefunction fulfills
Born-von Kármán PBCs. The macroscopic flux, JQ(t), is the volume integral
of the local current. For an electronically insulating system, it is the sum of
nuclear and electronic contributions. In an ab initio framework, where nuclei
are classical particles, while the quantum nature of electrons is taken into
account, the nuclear contribution is simply a sum of ionic core charges times
their velocities, i.e.

J(nucl)
Q (t) =

1
L3

N

∑
ℓ=1

ZℓṘℓ(t), (3.85)
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where Rℓ and Zℓ are the position and the atomic number of the ℓth nucleus,
respectively. The electronic contribution is the supercell volume average of
Eq. (3.56) evaluated over the Thouless’ wavefunction:

J(el)
Q (t) = −ih̄λ̇

e
L3 ∑

n>0

( ⟨Ψm|∂λΨ0⟩
E0 − En

⟨Ψ0|v̂|Ψn⟩ − cc
)

, (3.86)

where cc stands for complex conjugate. It is interesting to notice how the
sum over the excited states can be eliminated from Eq. (3.86) introducing the
family of Hamiltonians, firstly introduced by Kohn [46], depending on a vector
parameter, κ [47]:

Ĥκλ =
1

2m

Nel

∑
i=1

|p̂i + h̄κ|2 + V̂λ. (3.87)

The vector parameter κ plays the role of a constant vector potential A = h̄cκ/e,
i.e. a pure gauge transformation [47]. The many-body velocity operator, v̂, can
be thus expressed as

v̂ =
1
h̄

∂κĤκλ

∣∣∣∣
κ=0

, (3.88)

so that Eq. (3.86) reads

J(el)
Q (t) = −iλ̇

e
L3 ∑

n>0

( ⟨Ψn|∂λΨ0⟩
E0 − En

⟨Ψ0|∂κĤκλ|Ψn⟩ − cc
)

. (3.89)

From static perturbation theory, one can see that

|∂κΨ0⟩ = ∑
n>0

|Ψn⟩
⟨Ψn|∂κĤκλ|Ψ0⟩

E0 − En
, (3.90)

and, by virtue of this, the sum over states disappears to leave an expression in
terms of a many-body Berry phase in the (κ, λ) variables [42, 47]:

J(el)
Q (t) =

ie
L3 (⟨∂κΨ0|∂λΨ0⟩ − ⟨∂λΨ0|∂κΨ0⟩) . (3.91)

The total adiabatic electric flux is thus

JQ(t) = J(nucl)
Q (t) + J(el)

Q (t)

=
1
L3

N

∑
ℓ=1

ZℓṘℓ(t) +
ie
L3 (⟨∂κΨ0|∂λΨ0⟩ − ⟨∂λΨ0|∂κΨ0⟩) .

(3.92)

3.3.1 Theory of polarization

The electric flux in dielectric materials is deeply connected with the macro-
scopic polarization, since the adiabatic electric flux is the time-derivative of the
polarization, i.e.

JQ =
dP
dt

. (3.93)

As a matter of fact, it is the other way around: a polarization difference is
defined as the time-integrated electric flux which, at variance with polarization,
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is a measurable quantity. Let us briefly review some concepts in the theory of
polarization and see how they fit in with what has been said up to now about
the adiabatic electric flux.

The issue with polarization in periodic systems is that PBCs do not allow a
trivial definition of the position operator since the latter, with its multiplicative
action, maps vectors belonging to the Hilbert space to quantities outside of it.
The controversy was solved in 1998 by Resta [48]; in that paper, a formula for
(the x component of) the many-body position operator, X̂, of the Nel electrons
in an extended system of linear size L under PBCs was provided:〈

X̂
〉
=

L
2π

Im log ⟨Ψ0|ei 2π
L X̂ |Ψ0⟩ , (3.94)

where |Ψ0⟩ is the (possibly many-body) insulating ground state of the electrons.
The electronic polarization along direction x is related to

〈
X̂
〉

by

P
(el)
x = lim

L→∞

e
2π

Im log ⟨Ψ0|ei 2π
L X̂ |Ψ0⟩ . (3.95)

The above statement is proved by realizing that the time-derivative of P(el)
x

equates to the adiabatic electronic flux. To see that, let us compute the time-
derivative of the expectation value of the position operator, i.e.

d
dt
〈

X̂
〉
=

L
2π

Im

( 〈
Ψ̇0
∣∣ei 2π

L X̂∣∣Ψ0
〉

⟨Ψ0|ei 2π
L X̂ |Ψ0⟩

+

〈
Ψ0
∣∣ei 2π

L X̂∣∣Ψ̇0
〉

⟨Ψ0|ei 2π
L X̂ |Ψ0⟩

)
. (3.96)

A first order approximation of ei(2π/L)X̂ |Ψ0⟩ can be obtained considering the
1D Kohn Hamiltonians (cf Eq. (3.87)):

Ĥ(κ) =
1

2m

Nel

∑
j=1

( p̂i + h̄κ)2 + V̂ , (3.97)

where V̂ is the many-body potential. The ground state of Ĥ(0) is |Ψ0⟩, while
the state eiκX̂ |Ψ0⟩ fulfills the equation

Ĥ(κ) eiκX̂ |Ψ0⟩ = E0 eiκX̂ |Ψ0⟩ . (3.98)

An eigenstate of Ĥ(κ) must satisfy PBCs; therefore, eiκX̂ |Ψ0⟩ is an eigenstate
only when κ is an integer multiple of 2π/L and, in particular, ei(2π/L)X̂ |Ψ0⟩ is
the ground state of Ĥ(κ = 2π/L). Static perturbation theory at order 1/L tells
us that

ei(2π/L)X̂ |Ψ0⟩ ≃ eiγL

|Ψ0⟩ −
2πh̄
mL ∑

n( ̸=0)

⟨Ψn|P̂x|Ψ0⟩
E0 − En

|Ψn⟩

 , (3.99)

where P̂x = ∑Nel
j=1 p̂j is the momentum operator, and γL is an arbitrary phase

angle3. Plugging Eq. (3.99) into Eq. (3.96) yields

e
L

d
dt
〈

X̂
〉
≃ e ih̄

mL ∑
j( ̸=0)

⟨Ψj|P̂x|Ψ0⟩
E0 − Ej

⟨Ψ̇0|Ψj⟩+ cc (3.100)

3 This is by no means unimportant, as the expectation value of the position operator is
〈

X̂
〉
≃ LγL/(2π).

The fact that γL is a phase is why the polarization in extended systems is a lattice rather than a vector.
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By comparing the above Equation with Eq. (3.86), and since in this case, the
velocity operator is the momentum operator divided by the electronic mass,
one can see the consistency with the Thouless’ wavefunction [41] and the many-
body generalization thereof [49]. In three spatial dimensions, the adiabatic
electric flux can be thus elegantly written as

JQ(t) =
e

2πL2
d
dt

lim
L→∞

Im log z(t), (3.101)

where the quantity z(t) is the Resta-Sorella marker, a complex vector that
discriminates whether the system is insulating or metallic [50]. Each Cartesian
component of z, denoted by the greek label α, reads

zα(t) = ⟨Ψ0(t)|exp

i
2π

L

 N

∑
ℓ=1

ZℓRℓ,α(t)− 2
Nel

∑
j=1

r̂j,α

|Ψ0(t)⟩ . (3.102)

The Resta-Sorella marker considers both electronic and nuclear contributions, as
one can see from the sums over both nuclei and electrons in the above Equation.
The sheet of the Im log function, which features a branch-cut singularity in the
complex plane, is chosen so that JQ is continuous in time.

A triplet of phase angles,

γ(t) = lim
L→∞

Im log z(t), (3.103)

is thus defined, and its electronic component is known as the single-point Berry
phase [48]. In terms of γ(t), the electric flux has the compact form [51]

JQ(t) =
e

2πL2 γ̇(t). (3.104)

The dipole displaced along a trajectory of the system, i.e.,

∆µ(t) = L3
∫ t

0
JQ(t

′)dt′ , (3.105)

is thus given by

∆µ(t) = eL
∆γ(t)

2π
, (3.106)

with ∆γ(t) = γ(t)− γ(0). Eq. (3.106) says that, as a consequence of the adi-
abatic evolution of the system, the displaced dipole is proportional to the
vector of accumulated phase angles—one component per Cartesian direction.
Pictorially, ∆γα(t) represents the angle spanned by zα in the complex plane,
and ∆γα(t)/(2π) is the number (in general noninteger) of rotations that zα

makes around the origin. Suppose the adiabatic ground state returns to it-
self after a time τ. In that case, |Ψ0(τ)⟩ = |Ψ0(0)⟩, the system’s evolution is
cyclic, and the accumulated angle is an integer multiple of 2π; therefore, the
transported charge is an integer multiple of the elementary charge. The two
scenarios—the case of a generic trajectory, and the one where the trajectory is
cyclic—are visualized in Figure 3.1: on the one hand (a), a general dynamics
of the system traces open paths in the complex plane; on the other (b), the
same initial and final adiabatic ground states imply that also z returns to itself.
The latter situation defines the number of windings around the origin of the
complex plane as a topological invariant, since deforming the path traced by
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zα(τ)

zα(0) Re zα

Im zαa

zα(τ) ≡ zα(0)

Re zα

Im zαb

Figure 3.1: Sketch of the path drawn by zα in the complex plane during the dynamics. (a)
For a general nuclear trajectory, the path is open. (b) If the initial and final
configurations of the nuclei are the same, then also z returns to itself: the path
in the complex plane is closed.

z does not change its winding number, provided that the path itself does not
cross the origin. This condition, i.e., |zα(t)| ̸= 0, for all α and each t, amounts
to saying that the system stays insulating during the entire dynamics [50, 51].
In fact, according to the theory of the insulating state, z is related to whether
the system is insulating or metallic, its modulus tending to 1 from below in
insulators, and to 0 from above in metals, up to the leading order in 1/L [52].

3.3.2 Adiabatic flux in AIMD

In Ab Initio Molecular Dynamics (AIMD), where the adiabatic limit is enforced
by the Born-Oppenheimer approximation, the nuclei are classical particles
subject to Newton’s equations, and the forces are computed via the Hellmann-
Feynman theorem [53, 54] from a time-independent Schrödinger equation.
It is customary to compute the adiabatic electric flux exploiting codes that
implement polarization theory or Density Functional Perturbation Theory
(DFPT) [55]. In this framework, the polarization depends parametrically on time
through the nuclear positions; one can thus apply the chain rule to Eq. (3.93)
to obtain

JQ(t) =
e

L3

N

∑
ℓ=1

Z⋆
ℓ (t) · Ṙ(t). (3.107)

The quantity Z⋆
ℓ , whose components eZ⋆

ℓ,αβ = L3∂Pα/∂Rℓ,β represent the ef-
fective charge moved in the Cartesian direction α in response to an infinites-
imal displacement of the ℓth nucleus in direction β, is called Born Effective
Charge (BEC) tensor. It takes into account both the nuclear contribution, triv-
ially given by the motion of the point charge associated with the core, and the
change in electronic polarization due to the nuclear displacement.

From a practical standpoint, BECs are computed at a suitable sampling rate
along the system’s dynamics as a post-processing stage, once the dynamical
trajectory is already obtained. From the time series of the BECs and the velocities
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of the nuclei, one can compute the adiabatic electric flux according to Eq. (3.107).
In the thermodynamic limit, Eqs. (3.107) and (3.104) must be equivalent. Still,
only the former is manifestly additive, i.e. it can be written as a sum over
contributions due to single nuclei. Additivity can be recovered by noticing that,
while γ is not additive, its derivative is, as a consequence of linear response:
the total flux is the sum of the fluxes due to each nucleus, one at a time [51].
One can thus define quantities

γ̇ℓ(t) =
2π

L
Z⋆
ℓ (t) · Ṙℓ(t), (3.108)

γℓ(t) =
∫ t

0
γ̇ℓ(t

′)dt′ (3.109)

such that γℓ(τ)− γℓ(0) = ∑N
ℓ=1 γℓ(τ), so that the triplet of total accumulated

phase angles is decomposed into the sum of the angles accumulated by each
nucleus.

3.4 ionic conductivity

The central quantity in ionic transport is the ionic conductivity, σ, the GK

transport coefficient which relates the expectation value of the nonequilibrium
electric flux due to a gradient of electric potential in an electronic insulator. The
GK formula of σ for an isotropic system in a cubic box of side L is

σ =
L3

3kBT

∫ ∞

0

〈
JQ(t) · JQ(0)

〉
dt , (3.110)

where the expectation value in Eq. (3.110) is over an equilibrium ensemble.
This expression can be recast to a HE formula (cf Eq. (1.52)):

σ =
1

3L3kBT
lim
t→∞

⟨|∆µ(t)|2⟩
2t

, (3.111)

in terms of the integrated dipole accumulated along the time-evolution of JQ(t).
Ionic conductivity can be computed from EMD simulations by sampling the
electric flux or the polarization along the system’s trajectory and then using
the respective equation involving the chosen quantity. The ionic conductivity
can also be expressed in terms of phase angles according to Eq. (3.106):

σ =
e2

6πL2kBT
lim
t→∞

⟨|∆γ(t)|2⟩
2t

. (3.112)

Among other things, in the next Chapter it will be shown how some topological
properties of insulating systems allow to easily compute Eq. (3.112) starting
from integer constant charges associated with the atoms in the system, rather
than explicitly integrating computing the variance of the accumulated dipole
obtained through BECs.





4
T O P O L O G Y A N D I O N I C T R A N S P O RT

E
ver since topology entered the field of condensed matter physics, it

has proven to be a powerful tool in the classification of exotic states
of matter. Much progress has been made in the past decades in un-

derstanding how topological invariants can be computed from the electronic
structure of crystalline materials, and it was recently made clear how topo-
logical effects are not an exception, but rather something that can be found
in most known materials [56]. Static topological effects have been thoroughly
investigated [57–62]; at the same time, dynamical effects were studied ever
since the seminal works of Thouless and Niu [41, 49], with the introduction
of the concept of Thouless’ pumps. Despite extensive works in the theory of
topological quantum numbers related to the adiabatic evolution of a quantum
state (see, e.g., Refs. 63 and 64), the link between topology and the charge
transport properties of ionic conductors has been only recently established [31,
51, 65, 66].

The appearance of integer numbers in charge transport has a long history,
as it dates back to Faraday’s experiments in the 1830s. Verbatim from Ref. 51,
Faraday’s first law of electrolysis can be rephrased in modern language in this
fashion: when a macroscopic number N of nuclei of a given chemical species passes
from one electrode to the other, the transported electrical charge is an integer multiple
of N times e. The important point here is that, in an electrolytic cell containing
a nonmetallic compound, only an integer number of elementary charges can
be adiabatically transported over a macroscopic distance and, as such, be mea-
sured, and not a fractional charge. It is thus experimentally possible to measure
an integer charge pertaining to each member of the chemical species at hand. It
is important to notice that the measurement is intrinsically dynamical, in that
it requires the motion of nuclei across a macroscopic distance, given by the size
of the electrolytic cell. The integer charge measured by Faraday is an example
of Oxidation State (OS). In chemistry, OSs are integer numbers widely used to
describe redox reactions, electrolysis, and many electrochemical processes. In
spite of their fundamental nature, they have long eluded a rigorous quantum-
mechanical interpretation. In fact, they are usually determined according to an
agreed set of rules [67, 68], their simplest—and official—definition being, for
an atom, the charge of this atom after ionic approximation of its heteronuclear bonds
(verbatim from the IUPAC Gold Book [69]). Yet, being measurable quantities, at
least in the electrolytic cell setup, they are expected to have a rigorous quantum-
mechanical definition which must reflect the fact that ionic conductors carry
integer charges over macroscopic distances.

In this Chapter, I shall discuss how OSs can indeed be defined quantum-
mechanically thanks to topological arguments (Sec. 4.2), and how this is related
to the theory of charge transport in ionic conductors (Sec. 4.3). Before doing so,
it is necessary to introduce some jargon and to make some considerations on
the topology of the paths generated by the adiabatic dynamics of the nuclei
in an electrolyte solution. The content of this Chapter is mostly an adaptation
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of Ref. 31 and Ref. 66, works I coauthored together with my Ph.D. advisors
Stefano Baroni and Federico Grasselli.

4.1 topology of the atomic configuration space

4.1.1 Paths and topology

The space of all the coordinates of the nuclei—namely, the Atomic Configura-
tion Space (ACS)—is topologically equivalent to a 3N-dimensional torus, since
we adopt PBCs in all the three Cartesian coordinates of each of the N nuclei,
independently. We are interested in those paths whose endpoints are a periodic
image of one another since it is for these that the adiabatic ground state returns
to itself and the theorems on the quantization of charge can be invoked. We
focus on adiabatic paths, i.e. paths in the ACS that never cross a metallic region, in
order to keep the evolution adiabatic. In this light, it is expedient to define the
adiabatic space as the ACS deprived of the regions where the system is metallic.
Different types of charge transport in insulators arise, depending on whether
the classification of paths of the adiabatic space coincides with that of the
total ACS, and, if they differ, how they do so. We outline the characteristics of
these paths with reference to the situations sketched in Fig. 4.1. If each path
whose endpoints are replicas of one another can be uniquely specified, up to
deformations which do not imply cuts or “exiting the space”, by the tuple of
3N integers, n = (n1x, n1y, . . . , nNz), representing the number of cells spanned
by each atom in each Cartesian direction, then Strong Adiabaticity (SA) holds
in the adiabatic space [31, 65]. This means that a trivial loop in the ACS (i.e.
a path whose endpoints belong to the same cell and coincide, and is thus
characterized by n = 0) is also a trivial loop in the adiabatic space, and can be
shrunk to a point without crossing any metallic region. The easiest situation is
whenever there are no metallic regions for any configuration of the nuclei: this
is the case sketched in a two-dimensional ACS in Fig. 4.1a. Notice that, in higher
dimensions, the complete insulation of the ACS is not necessary for SA to hold:
for instance, removing a metallic point (or even a ball) from a 3-dimensional
torus preserves SA of the resulting adiabatic space.

a b c

Figure 4.1: Different types of ACSs, according to the metallic regions they feature. The
central cell is framed in light blue, while the dotted lines represent the sides
of one of its periodic replicas. Metallic regions are depicted in dark red. The
black lines are paths in the ACS. (a) An ACS where SA holds everywhere. (b)
Metallic walls surround an adiabatic domain, where SA holds locally. (c) Here,
SA is broken, in that there exist trivial loops that encircle metallic regions.

In other cases, there might be metallic regions in the ACS that partition the
full adiabatic space into disconnected adiabatic domains [31], playing the role
of “walls” that the system would need to cross if it were to pass from one
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adiabatic domain to the other. The classifications of paths on the ACS and
on the adiabatic space no longer coincide, since paths with some n are not
allowed in the entire adiabatic space, as they would imply crossing a metallic
region. Nevertheless, if all the adiabatic trivial loops can still be shrunk to a
point without closing the gap, the same considerations made above for the case
where SA holds everywhere are still valid within a given adiabatic domain [31].
This situation is sketched in Fig. 4.1b. Here, SA holds in each adiabatic domain,
but not on the whole ACS, due to the presence of metallic walls.

The situation is instead totally different whenever there exist adiabatic trivial
loops in the ACS which, despite entirely belonging to the adiabatic space, cannot
be shrunk to a point without crossing a metallic region [31, 65]. Here, adiabatic
paths that are connected are not necessarily equivalent to one another, which
implies that two paths characterized by the same tuple n may be topologically
different. This is shown in Fig. 4.1c. Here, SA does not hold anymore.

Whether SA holds or not has profound consequences on the definition of OS

and on the transport properties of insulating systems. In the following Section,
we shall see that only when SA is not dropped the quantum theory of charge
transport can be reconciled with Faraday’s description, where each atom can
be endowed with a well-defined integer charge, and this fact manifests itself in
the ionic transport properties of the system [31, 65].

Figure 4.2: A punctured 2-torus retracts to a figure eight. (a) The punctured 2-torus is
represented as a square whose opposite sides are identified (as in PBCs) with
a hole in it. (b) Since we are interested in the topology of the manifold, the
hole can be continuously expanded. (c) The blue sides are glued together.
(d) Finally, the red sides are glued together. The resulting manifold, whose
fundamental group is no longer Abelian, can be retracted to a “figure eight”,
⃝·⃝. Its fundamental group, Z ∗ Z differs from that of the 2-torus, Z × Z.
Nevertheless, its abelianization, i.e. the first homology class, is Z × Z, and
the “elementary loops” ⃝ and ⃝ coincide with those of the torus. In this
way, charge transport properties are not altered by a single puncture of the
2-torus.
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Figure 4.3: Sketch of a 2-dimensional ACS isomorphic to a punctured torus. A single
hole is sufficient to change the topological properties of the manifold, as it
changes, e.g., its fundamental group (see Fig. 4.2). Nonetheless, the black path
can be continuously deformed (the deformation map is represented by the
gray, dotted, arrows) to the red one without closing the gap: it is evident that
the charge transported along the latter is zero since the charges transported
along each side of the square cancel out with those transported along the
opposite side, which is just the same path traversed in reverse.

4.1.2 Homotopy and homology in charge transport

Two given paths are considered topologically equivalent, or homotopic, if they
can be deformed into one another neither cutting nor exiting the manifold they
belong to [70]. Closed paths starting and ending at the same (base) point—i.e.
loops—can be classified accordingly, and the set of the equivalence classes of
loops under homotopy, together with the operation of concatenation, is called
the fundamental group of the manifold, which incorporates information on the
presence of important features (like “holes” or “handles”) of the manifold [70].
The fundamental group can be commutative (Abelian) or not. For instance,
the fundamental group of the 3N-dimensional torus is Abelian, since it is
isomorphic to Z3N . Nonetheless, when we “puncture” it (as it happens when
we remove metallic regions from the ACS), the fundamental group of the
new manifold (that we named adiabatic space in Sec. 4.1.1) may change [70],
which is exactly what happens when SA is broken [31]. This new fundamental
group may be no longer Abelian. In spite of this, the total transported charge
is expressed as a line integral that can be split into the commutative sum of
integrals, each computed over a piece of the original path. Therefore, it is
not strictly necessary that two loops are homotopic to transport the same
integer charge. It is sufficient that they are homologous, i.e. that they share
the same, possibly repeated, “elementary loops”, with no further restriction
on the sequence in which these are taken. More rigorously, to understand
if two paths transport the same charge, one must inspect whether they are
represented by the same element of the so-called first homology group, which
is the “abelianization” of the fundamental group [70]. An example of the
difference between homotopy and homology is shown in Figs. 4.2 and 4.3; a
single metallic region in a 2-dimensional ACS in PBCs is enough to change its
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topology from a simple torus to a “figure-eight” (see Fig. 4.2): the fundamental
group changes from the Cartesian product Z × Z, which is Abelian, to the
free product Z ∗ Z, which is not Abelian1. Nonetheless, the first homology
group remains the same, and the transported charge along a path that encircles
the metallic region is zero, as it can be deformed to a squared path whose
opposing faces transport charges which manifestly cancel out with one another,
as shown in Fig. 4.3. The black loop and any trivial loop that shrinks to the
gray point are homologous, despite they are not homotopic, as they cannot be
continuously deformed into one another without crossing the metallic region.
Notice that two points need to be removed from a 2-torus to change the first
homology group, and make it nontrivial from the transport point of view, as
reported below (Sec. 4.4.2.1) for the linear H+

3 cation discussed in Ref. 31.

4.2 topological foundation of the oxidation states

We are now in a position to characterize how integer numbers can be associated
with nuclei in the system according to topology.

4.2.1 Pendry-Hodges Gedankenexperiment

Under the condition of SA in the whole ACS, let us now characterize some
integer charges that can be associated with the nuclei in the system. We follow
a Gedankenexperiment, proposed for the first time by Pendry and Hodges [71].
We displace a single nucleus, say the ℓth, from its initial position to the same
position in an adjacent replica cell. To perform this task, the other ions are
allowed to move out of the way provided their final positions coincide with the
initial ones and the electronic gap never closes along the path [51, 65]. Thouless’
theorem [41] (and the many-body generalization thereof [49]) ensures that
the total charge displaced along this trajectory is an integer multiple of the
elementary charge: as it is also expressed by Eq. (3.106) at page 51 and the
subsequent discussion in the case of a cyclic path, this integer number is the
winding number of zα around the origin of the complex plane (with α the
Cartesian direction around which the nucleus has moved). Let qℓ,α be this
number, which we call the topological charge of the ℓth atom along direction α.
We remark that, for any static configuration taken from such artificial evolution,
these topological charges cannot be defined. A necessary ingredient for their
characterization is the dynamic displacement of the selected atom.

An operation of this kind was used by Jiang et al. [72] in the case of crystalline
solids, where the system is periodic and lattice translations bear physical
meaning (see also Sec. 4.4.1). More generally, the values of the topological
charges are independent of the macroscopic size of the system closed under
PBCs. This validates the procedure also for disordered systems [65]. Moreover,
in an electrolytic cell, it is possible to map the physical system to a spatially
periodic one, as the electrodes are connected to one another by a wire [51].

1 Z × Z or, equivalently, Z2, is the group of ordered pairs with the commutative operation of sum. It
is Abelian, since (n, m) + (p, q) ≡ (p + n, q + m) = (p, q) + (n, m). Instead, the free product Z ∗ Z is
for instance represented by the group of two letters (and their inverse), with the noncommutative
operation of juxtaposition, where order matters, as in natural language, where being “OK” differs
from being “KO”!
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4.2.2 Oxidation states under strong adiabaticity

In order to establish an equivalence between topological charges and OSs, three
features ascribed to the latter must occur in {qℓ,α}:

i. the topological charges have to be path-independent;

ii. their value must coincide for equivalent atoms;

iii. they must be isotropic, i.e. independent of the specific Cartesian direction
the atom is moved in.

The first condition is easily proved under SA: consider two different paths
having the same endpoints; by the very definition of SA, two such paths can
be deformed into one another without ever leaving the insulating state, i.e.
without any component of z passing through the origin of the complex plane.
The second condition can be proved by invoking the additivity of integrals [51,
65]: take any two nuclei, labeled ℓ′ and ℓ′′, of the same species S, i.e. with the
same atomic number, Z; the phases, separately accumulated by each of them
in a cyclic path that brings them to their replica in the adjacent position along
Cartesian direction α, yield topological charges qℓ′ ,α and qℓ′′ ,α. Since SA holds,
the initial positions of the two nuclei can be exchanged without crossing a
metallic state. Let the nucleus ℓ′

i. exchange position with ℓ′′;

ii. be transported to its periodic replica;

iii. exchange positions again with the replica of ℓ′′ belonging to the same
cell where ℓ′ is found after step ii.

In this path, the nucleus ℓ′ transports a net charge equal to qℓ′′ ,α, since the first
particle exchange—step i—cancels out with the second—step iii. At the same
time, this path shares the same endpoints with the paths where only ℓ′ is moved
to its periodic replica, where a charge equal to qℓ′ ,α is transported. Therefore,
qℓ′ ,α = qℓ′′ ,α and the topological charge only depends upon the nuclear species,
i.e. qℓ′ ,α = qS(ℓ′),α. The third condition, isotropy, is proved by first noticing
that, under SA, the dipole displaced along a supercell vector is parallel to the
displacement vector [72]; then, the result simply follows from additivity by
equating the dipoles displaced by L along any two Cartesian directions in
sequence, say x = (1, 0, 0) and y = (0, 1, 0), to the dipole displaced along the
sum of the two directions, i.e. (1, 1, 0). We conclude that qℓ,α = qℓ and qℓ′ = qℓ′′ .
In this way, we proved that the set of topological charges {qℓ} meet all the
requirements for what chemistry would call OSs of the chemical species in the
ionic conductor.

A demonstration of the quantization of the charge carried by nuclei in an
emblematic liquid electrolyte is shown in Ref. 65 and rediscussed here. A
system of molten KCl is modeled through a 64-atom—32 per species—cubic
simulation cell with a side L = 14.07 Å. Nuclei are described as classical
particles, while the quantum nature of electrons is included in a mean-field
sense through Density Functional Theory (DFT) in the Perdew-Burke-Ernzerhof
(PBE) flavor [73].

A configuration is drawn from an AIMD simulation equilibrated at 1200 K and
used as a reference. From this configuration, the topological OSs are measured
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Figure 4.4: Pendry-Hodges Gedankenexperiment under SA. In the simulation cell, there is
a stoichiometric melt of 32 K and 32 Cl atoms. K and Cl nuclei are the pink
and cyan spheres, respectively. The larger spheres are the nuclei in evidence.
(a-c) Periodic Minimum Energy Paths (MEPs) of a K nucleus (in red) in the
z direction (a); of a cation along z (in red) and of an anion along y and z
(in blue) (b); of two cations along z with an interchange between the two. In
panel (d), the charge transported along each direction in the three paths is
shown in units of the elementary charge. The path coordinate goes from 0 at
the initial configuration to 1 at the final one.

via an implementation of the Pendry-Hodges Gedankenexperiment. Different
nuclei are randomly chosen and displaced from their initial position to a
nearby periodic cell along MEPs, i.e. with the other atoms moving out of the
way to minimize the total energy of the system via the nudged elastic bands
method [74]. The displaced charge is obtained by integrating the electric flux
as given by Eq. (3.107), with the BECs being computed at each step of the
trajectory via DFPT [55]. Three versions of this experiment are carried out, as
illustrated in Fig. 4.4 by the MEPs in the simulation cell (left panels) and a
plot of the respective transported charges (right panels): the displacement of a
single K nucleus to one of its periodic images (Fig. 4.4a,d); the displacement of
a K nucleus to its replica in direction z, and a Cl nucleus to its replica in the
cell in direction z + y at the same time (Fig. 4.4b,d); the displacements of two
different K nuclei in direction z at the same time with inversion of their final
positions—i.e. the former ends in the periodic replica of the initial position of
the latter, and vice versa (Fig. 4.4c,d). The experiments confirm what was said
above: as one would expect from chemistry, K nuclei displace a charge equal
to +e, while Cl nuclei −e, in whatever direction they are moved. This means
that qK = +1, and qCl = −1. The charge transported along the directions other
than the one where motion happened are exactly zero. Furthermore, charge
displacement is additive: when a pair of K and Cl atoms is moved in the same
direction, there is no net charge transport. The case where the two nuclei are
moved and their positions interchanged is also revealing: while each of the two
paths alone is not periodic, their concatenation is, since it is the displacement
of a nucleus to its periodic replica two cells apart, rather than one. Each of the



62 introduction

two displacements would carry two elementary charges over a length of two
sides of the cell, resulting in a charge of 4e for the cyclic path, i.e. 2e for half
the path, when positions are interchanged.

4.3 topological charges and gauge invariance of ionic trans-
port

The topological nature of OSs has deep consequences on ionic transport when
combined with the gauge invariance of transport coefficients [51, 65]. The
quantity of interest is the ionic conductivity, σ, whose expression, given by
Eq. (3.112), is reported here for convenience:

σ =
e2

6πL2kBT
lim
t→∞

⟨|∆γ(t)|2⟩
2t

.

Combining Eq. (3.109) and (3.112), the latter becomes

σ =
e2

6πL2kBT
lim
t→∞

⟨|∑N
ℓ=1 γℓ(t)|

2⟩
2t

(4.1)

According to the gauge invariance of transport coefficients reviewed in
Sec. 1.4, any two expressions of the electric dipole differing by a bounded
vector yield the same value of ionic conductivity. Let us now prove that, under
SA, the displaced dipole defined from the OSs of the atoms in the system, i.e.

∆µ′(t) =
N

∑
ℓ=1

e qℓ
∫ t

0
Ṙℓ(t

′)dt′ ,

=
eL
2π

N

∑
ℓ=1

γ ′
ℓ(t),

(4.2)

where γ ′
ℓ(t) is defined by the second line, yields the same value of σ as the

fully quantum-mechanical definition based on Equation (4.1), which employs
time-dependent BEC tensors. In formulæ:

lim
t→∞

⟨|∆µ(t)|2⟩
2t

= lim
t→∞

⟨|∆µ′(t)|2⟩
2t

, (4.3)

which is to say σ = σ′ [65, 66].
The proof goes as follows: let us consider Eq. (4.1); after a long enough time

t, which is implicit in the t → ∞ limit, the angles ∆γ(t) accumulated between
the initial and final configurations, respectively {Rℓ(0)} and {Rℓ(t)}, will be
much larger than 2π. By the same token, the nuclei are expected to be in
different periodic cells with respect to the one they started in. Given the final
configuration, one could always imagine artificially moving each of the nuclei
from {Rℓ(t)} to the periodic replica of {Rℓ(0)} in the same cell they are placed
at time t. Let us indicate with δγ the additional phase accumulated during
this last portion of trajectory; since it results from displacing all the nuclei
within the same cell, it is assured that δγα has an upper bound. The trajectory
defined in this way is periodic in PBCs, and therefore the transported charge
is an integer multiple of e. From the definition of γℓ of Eq. (3.109), it follows
that each nucleus transports exactly qℓ elementary charges. It is precisely the
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Figure 4.5: Mean Square Displaced Dipole (MSDD) of stoichiometric KCl computed with
different definitions of the electric flux. Both the exact electric flux and the
topological flux yield the same ionic conductivity, as given by Eq. (4.3).

same as if the phases accumulated by each nucleus had been computed as the
quantities γ ′

ℓ(t) appearing in Eq. (4.2), i.e.2

γ ′
ℓ(t) =

2π

L
qℓRℓ(t), (4.4)

their sum being denoted by ∆γ ′(t); i.e. it is equivalent to computing the ionic
conductivity using ∆µ′(t).

The ionic conductivity computed with ∆γ ′(t) = ∆γ(t) + δγ reads

σ′ =
e

3L2kBT
lim
t→∞

1
2t

[〈∣∣∣∣∆γ(t)2π

∣∣∣∣2
〉
+

〈∣∣∣∣δγ(t)2π

∣∣∣∣2
〉
+

+2
〈

∆γ(t) · δγ(t)
4π2

〉]
. (4.5)

For long times, each ∆γα is much larger than δγα, which is a bounded quantity:
we conclude that the second and third terms in Eq. (4.5) do not contribute. This
long-time limit may also be probed in general by inspecting whether |∆γ| ≫ 2π.
This proves the theorem of Eq. (4.3). This is also demonstrated numerically
for a KCl stoichiometric melt, as shown in Fig. 4.5. The MSDD computed both
via Eq. (3.106) and Eq. (4.2) as a function of time have compatible slopes for
long enough time, indicating the ionic conductivity computed from them is
the same [65, 66].

In this Section, we have illustrated how, under SA, each nucleus carries an
integer charge over macroscopic distances which can uniquely be identified
with the atomic OS of its species. The OS of a given chemical species is the same
for every nucleus of that species; moreover, OSs are additive and independent
of atomic positions. The consequence of these facts is that the ionic conductivity

2 The position vector here is actually the integral of the velocity, Rℓ(t) =
∫ t

0 Vℓ(τ)dτ, in order to avoid
the wrapping of atomic coordinates due to PBCs.
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of the material can be computed from the dipole displacement given by the
sum over nuclei of the atomic OSs times their velocities. Charge transport is
purely convective; the only mechanism by which charge can be transported is
mass diffusion. This transport regime is referred to as trivial.

4.3.1 Polarization and Wannier Functions

In the case of independent (e.g., Kohn-Sham) electrons, the insulating singlet
ground state of a system of N nuclei and Nel electrons can be written as a
Slater determinant of Nel/2 doubly occupied Bloch orbitals. Equivalently, the
same wavefunction can be written on a basis of Wannier Functions (WFs) by
means of a unitary transformation, whose positions are referred to as Wannier

Centers (WCs), {R(W)
j } [75]. The electronic charge density is thus partitioned

into localized contributions. While this partitioning is gauge-dependent, i.e.
both WFs and WCs are nonunique, the sum of the WCs in the central cell is gauge-
independent, and it happens to be proportional to the total polarization [42].
The total electric current [31, 51],

JQ(t) =
e

L3

 N

∑
ℓ=1

ZℓṘℓ − 2
Nel/2

∑
j=1

Ṙ(W)
j

 , (4.6)

assumes a classical-like expression. The Pendry-Hodges Gedankenexperiment
assumes therefore an intuitively clear meaning: a nucleus, when displaced along
a direction of the torus, drags some of the Kohn-Sham WFs, thus transporting
an even number of electrons. The resulting OS is the bare charge of the nucleus
minus twice the number of transported WFs [31, 51].

4.4 breaking of strong adiabaticity

In nature, chemically relevant situations occur where different atoms of the
same species feature different OSs depending, e.g., on the local chemical envi-
ronment.

There are circumstances where a meaningful topological definition of OSs

is still possible. This is the case exemplified by Fig. 4.1b on page 56: strongly
adiabatic domains are completely separated by metallic regions. OSs can be
uniquely assigned to nuclei within the same domain, and the properties of
OSs discussed above remain valid. For instance, in Ref. 72 (and reviewed in
Sec. 4.4.1) the authors found that two OSs for the same atomic species (bismuth)
coexist in BaBiO3, where Bi atoms in the octahedral sites feature OSs equal to
+3 or +5, depending on their distance to the O atoms placed at the vertices of
the octahedra. Nonetheless, we remark that the exchange of the two Bi atoms
cannot be possible without crossing a metallic region. The same mechanism is
present in ferrous-ferric aqueous solutions, where the charge transfer turning
Fe(II) into Fe(III) and vice versa can only be accomplished via a nonadiabatic
charge transfer. Another remarkable case where the SA of an insulating system
is globally dropped, but the OSs of its nuclei can still be defined, is represented
by the insulating subsystem of metal-insulator interfaces [76], where the system
is metallic along some Cartesian directions and nonmetallic along others.

A completely different situation occurs when the breakdown of SA is ac-
companied by the presence of metallic regions that can be encircled by closed
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adiabatic paths, as pictured in Fig. 4.1c. In this case, which will be extensively
discussed in Secs. 4.4.2.1 and 4.4.2.2, charge transport can no longer be topo-
logically classified in terms of the number of cells spanned by each nucleus
along each direction, encoded in n, and the very concept of OS loses much of
its topological meaning. In fact, there can be trivial loops in the ACS (i.e. with
n = 0) that cannot be shrunk to a point without ever crossing a metallic region.
This amounts to saying that z (or some Cartesian component thereof) rotates
once around the origin of the complex plane, where the system is metallic, even
if the configuration does not move to a different periodic replica in the ACS.
Thouless’ theorem can still be leveraged to conclude that the dipole displaced
along such a path is quantized but, at variance with the strongly adiabatic case,
it is possibly nonzero, whereas the atomic net displacements vanish because
n = 0.

The repercussion of this paradigmatic situation on macroscopic electrical
conduction is that charge transport is no more completely correlated to mass
transport. This transport regime is somehow intermediate between insulating
and metallic behaviors: while the system is always insulating and the charge
motion is uniquely dictated by the adiabatic motion of the ions, in this situation
a net charge transfer is possible even without the need for a net mass diffusion;
we call this regime nontrivial transport [31].

4.4.1 Systems with multiple well-defined oxidation states

In Ref. 72, Jiang et al. introduced a method to compute the OS of atoms in
crystals leveraging arguments from the modern theory of polarization. In
particular, they noticed how the change in polarization, ∆P, along particular
paths in the ACS, namely, displacements of an atomic sublattice by a lattice
vector, R, can only be given by

∆P =
e
Ω

3

∑
i=1

niRi, (4.7)

where Ω is the volume of the unit cell of the crystal, ni are whole numbers, and
Ri are the lattice vectors defining the unit cell. Atomic OSs are then correctly
identified after having made some important considerations regarding paths in
the ACS, that were later generalized in Ref. 31. In particular, Jiang et al. noticed
that the change in polarization is independent of the details of a path in the
ACS as long as the system stays insulating at every point in the path. Actually,
one needs to require SA for that to hold, but this was somehow implicitly taken
into account in Ref. 72, even though the rigorous formalization of Sec. 4.1 was
still to appear. An important consideration on that matter was already present
in Ref. 72: namely, that electron transfer cannot happen in a loop under SA

because, verbatim, such electron transfer would mean that at some point on the
path there would be delocalized electrons in insulating media. This is not possible
without crossing the band gap and causing a metallic state on the loop. The method
to actually compute the OSs is then the following: if the displacement is a
particular lattice vector, R, of a unit cell defined by two other vectors, R2 and
R3, one can build a supercell for the same crystal by lengthening the unit
cell m times along the direction of R2, while keeping the same dimensions
along the other directions. This supercell contains the original sublattices plus
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their periodic replicas at kR′
2/m, with k = 2, . . . , m, and R′

2 = mR2 [72]. The
supercell volume is accordingly scaled to Ω′ = mΩ. If all the sublattices (the
original plus its images) are moved by R, the situation is the same as before,
when the crystal was described by its unit cell. On the other hand, if only one
of the sublattices is displaced by R, the polarization changes by

∆P′ =
e

Ω′
(
n′R+ n′

2R
′
2 + n′

3R3
)

(4.8)

which, by symmetry, must be equal to ∆P/m, since all the sublattice replicas
are equivalent to one another [72]. Thus

∆P′ =
e

mΩ
(
n′R+ n′

2R
′
2 + n′

3R3
)

(4.9)

=
1
m

[ e
Ω

(nR+ n2R2 + n3R3)
]

. (4.10)

The linear independence of the lattice vector implies n′ = n, n′
2 = n2/m,

n′
3 = n3. Moreover, since the integer n2 must be divisible by m for any choice of

the integer m, it follows that n2 = 0. Repeating the same argument in direction
R3 yields n3 = 0. The OS associated to the displaced sublattice is then found
as [72]

q =
Ω
e

∆P ·R
|R|2

. (4.11)

Among other interesting crystalline materials, this methodology was applied
to compute the OSs of Bi in BaBiO3 [72]. This perovskite features a collective
oxygen octahedral breathing mode that causes the minimal supercell to be
a double perovskite with two octahedral sites of different sizes, one large
and one small. This leads to a charge disproponation 2Bi4+ → Bi3+ + Bi5+,
the larger Bi3+ ion sitting in the large octahedral site, the smaller Bi5+ in
the small one. The OSs predicted by Eq. (4.11) correctly capture this expected
result [72]. This situation can be intuitively understood by looking at Fig. 4.1b
on page 56: Bi nuclei can access only periodic replicas of sites equivalent to the
one they are located in within the same adiabatic domain. Thus, there cannot
be particle exchange between Bi nuclei in different sublattices without closing
the electronic gap. In other words, one cannot devise a path in ACS that leads a
Bi nucleus originally sitting on a large octahedral site to a small octahedral site
without passing through a degenerate state: this can be understood by thinking
about the continuous transformation of the coordinates of the oxygen atoms
that changes the large octahedron into the small one, and vice versa. The two
octahedra will be equal at some point during the continuous transformation,
and in that case, the electronic state is clearly degenerate, since the unit cell
with two octahedral sites could be replaced by a unit cell with only one of
those sites. This implies the gap closure and the consequent breaking of SA.

4.4.2 Systems where the concept of oxidation state is ill-defined

Let us now address a different situation, i.e. the one depicted in Fig. 4.1c on
page 56. It is the case where metallic regions of the ACS can be encircled by
adiabatic paths, thus leading to adiabatic charge pumping and charge transfer
without net mass transport while staying electronically insulating. The concept
will first be illustrated via two very simple toy models in PBCs, and later for
more realistic systems.
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Figure 4.6: Linear H+
3 in periodic boundary conditions. (a) I: Equilibrium configuration:

the black circles and the continuous line indicate atoms in the primitive
supercell; gray circles and the dashed line indicate their periodic images. II
and III are the two intermediate steps of the closed path described in the text.
(b) The closed path in the 2D projection of the ACS relative to the atoms that
participate in the loop; the yellowish areas indicate regions where the ground
state is degenerate. (c) Dipole displaced along the closed path. Notice that the
total displaced dipole is finite and an integer multiple of eL. (d) The closed
path in the 3D projection of the ACS where also the x coordinate of atom A is
shown. The metallic region encircled by the path extends for all values of xA
and the loop cannot be shrunk to a point without crossing it: the loop is thus
nontrivial. 3D projections onto subspaces where xA is substituted with any
other atomic coordinate have a similar appearance.

4.4.2.1 Two toy models

A very simple system displaying a nontrivial Thouless’ pump mechanism is
the (linear) tri-hydrogen cation, H+

3 : three protons are aligned and the ground
state of the two electrons is a singlet, therefore nondegenerate, resulting in a
theoretical equilibrium interatomic distance ∆ = 0.826 Å. We treat the molecule
using PBCs with period L = 10.6 Å ≫ ∆ along the three Cartesian directions,
thus amounting to enclose the molecule in a cubic supercell of side L. We now
consider a closed path in the ACS, consisting of the following three steps (see
Fig. 4.6):

i. The B and C protons are first rigidly translated towards the end of the
supercell until the distance between C and the periodic image of A
(located a x = L) is ∆ (red arrows, ending at configuration II);

ii. The B proton, now located at x = L − 2∆, is moved back to its original
position (green arrows, ending at configuration III);

iii. Finally, the C proton is moved back from x = L−∆ to its original position
(blue arrows, ending at configuration I).

This path is periodic (i.e. it is isomorphic to a trivial path on the torus), the last
configuration being equal to the first. The ionization potential of H2 (≈ 15.4 eV
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according to NIST data [77]) is larger than that of H (≈ 13.6 eV [77]); therefore,
along the path, the pair of protons that is displaced or left behind stays neutral,
and the electronic gap is always larger than that of H2. The ground state
for this system when the protons are farther away than the dihydrogen ion
bond distance is of the Heitler-London form [78], with resonating states where
unpaired electrons are on top of the protons. This (obviously degenerate) state
cannot be captured by a mean-field method such as DFT. This is not important
for the sake of the phenomenology of the toy model under consideration, since
in the region of the ACS where the Heitler-London ground state is correct the
singlet state is also degenerate, as it will be discussed below. The ground state
remains an insulating singlet throughout the entire trajectory, as explicitly
checked by computing the total energy of the system for both the singlet and
the triplet spin states, the former being always smaller than the latter.

If SA holds, the charge transported along the path must vanish trivially; oth-
erwise, a Thouless’ pump mechanism may allow a nontrivial charge transport.
In order to check if the latter case occurs, we have computed the total dipole
displaced along each segment of the path, ∆µ, according to the modern theory
of the polarization in the Wannier representation [42] (cf Sec. 4.3.1),

∆µIF = e
∫ F

I

 N

∑
ℓ=1

ZℓdRℓ − 2
Nel/2

∑
j=1

dR(W)
j

 , (4.12)

where Zℓ is the positive core charge of atom ℓ (Zℓ = 1, in the present case),

R(W)
j is the position of the WC associated to the jth occupied electronic band of

the system, Nel is the number of electrons (Nel = 2, in the present case), and
the factor 2 in front of the second sum accounts for the double occupancy of
each molecular orbital. Our results, displayed in Fig. 4.6(c), indicate that a net
charge, Q = −2e is displaced along the path, thus revealing the existence of
nonadiabatic domains in the ACS that the path loops around. Indeed, when the
distance between any pair of protons is much larger than the molecular bond
length, the ground state consists of two neutral atoms and one proton, and it
is degenerate because it does not matter which atoms are neutral and which
one is ionized. The regions where this condition occurs are highlighted with
yellowish triangles in Fig. 4.6(b), revealing that it is in fact encircled by the
closed path. When the full 9-dimensional ACS is considered, the plane depicted
in Fig. 4.6(b) is the locus where all the coordinates vanish but xB and xC, and
the triangles are the bidimensional sections over this plane of hyperprisms that
pierce the entire ACS, so that the loop cannot be shrunk to a point without
closing the gap even when embedded in the full 9-dimensional space (i.e. the
loop is nontrivial in the adiabatic subspace), as illustrated in Fig. 4.6(d).

Notice that, while the total dipole is ill-defined (both because it is intrin-
sically so when computed in PBCs [79], and because the system is charged),
dipole differences are perfectly well-defined also in this case. Our previous
considerations on the relative magnitude of the ionization potentials of atomic
and molecular hydrogen imply that WCs move (almost) rigidly with the proton
pair being displaced. This implies that, when displaced individually, protons
carry a unit charge, and one would be tempted to attribute an OS qH = 1 to
each of them. However, when they move in pairs, they carry a zero charge,
a manifest breakdown of charge additivity, due to the breakdown of strong
adiabaticity. The overall effect of the different charges transported by H atoms
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Figure 4.7: A planar configuration of the K3Cl system undergoing a loop in ACS. (a) Initial
and final configurations. K and Cl atoms are indicated by pink and blue circles,
respectively. The colored curved arrows indicate the 1D trajectories of the
two K atoms participating in the loop. The color encodes the fictitious time
parametrizing the loop (red → blue). (b) The closed path in the 2D projection
of the ACS relative to the atoms that participate in the loop; the yellowish areas
indicate regions where the ground state is degenerate. (c) Dipole displaced
along the closed path. (d) The closed path in the 3D projection of the ACS
where also the x coordinate of atom A is shown. The green dots indicate the
positions of the WCs of the electrons in the system.

according to whether they are displaced individually or in pairs is that the
total charge transported along the closed path of Fig. 4.6 does not vanish, while
the net mass does.

The existence of adiabatic transport anomalies entails the occurrence of two
partially conflicting requirements: a high degree of ionicity and the presence
of loosely bound localized electron states that can wander through the system
without ever closing the gap. Nonstoichiometric molten salts seem therefore
ideal candidates to display nontrivial transport [80, 81]. In order to prepare
for the study of such systems in Sec. 4.4.2.2, we examine here the simplest
molecular system possibly displaying their essential electronic features: the
neutral K3Cl complex. In Fig. 4.7 we show a planar configuration of this system
along with a closed path in ACS displaying charge transport without any net
mass displacement. As in the previous case, the ground state of the system
is a singlet throughout the whole trajectory. The dipole displaced by moving
each of the atoms to their periodic images in the neighboring cell along the
x direction is, in units of eL, equal to +1 for A and C, equal to −1 for B and
D. Conversely, moving any of the atoms to its periodic image in a direction
perpendicular to the x axis would break the bond of that atom with the rest of
the system, resulting in a degenerate ground state. Moreover, since we verified
that it is possible to swap atoms B and C without closing the gap, there is no
way to uniquely associate an integer charge to each atom, whose OS would thus
be topologically ill-defined. Based on our previous arguments, we conclude
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therefore that SA is violated here again. In fact, we identified a region in the
ACS where the gap closes, as indicated by the shaded area in Fig. 4.7(b), and
we considered an adiabatic closed path in the ACS which is trivial on the torus,
but loops around that region. The x component of the electric dipole displaced
along this loop is plotted in Fig. 4.7(c). While the total charge displaced along
the y and z directions vanishes, we observe an integer charge equal to −2e
pumped along the x direction. Here again, we see that an integer charge is
adiabatically transported without any net atomic displacements. This Thouless’
charge-pump mechanism can be entirely ascribed to the loosely bound Highest-
Occupied Molecular Orbital (HOMO). In fact, we checked that the contribution
of the lower-lying molecular orbitals to the dipole displaced along the loop
vanishes. By the same token, if one computes the charges associated with
individual atomic displacements as above, but only considers the contributions
to the displaced dipole from lower-lying molecular orbitals, one obtains +1 for
all the K atoms and −1 for Cl.

4.4.2.2 Extended systems

We now move to a more realistic system and consider a model for a Kx(KCl)1−x
dilute liquid metal/metal-halide solution. The equilibrium properties of nonsto-
ichiometric molten salts are characterized by the existence of localized electron
pairs, often referred to as bipolarons [80–82]. The formation of bipolarons is
made possible by the balance between the increase in the quantum kinetic and
electrostatic electron-electron repulsion energies resulting from the localization
of the solvated electron pair and the attractive electron-cation energy gained by
accommodating the pair into a cationic hollow, often described as a liquid-state
analog of an F center in a crystal; charge transport can then be assimilated to
the fast diffusion of the solvated electrons followed by their temporary stabi-
lization in cationic hollows, driven by thermal fluctuations [80–82]. The very
existence of such an adiabatic hopping-like mechanism breaks the compelling
topological constraints that SA sets on ionic conduction [65] and would not be
possible without breaking the latter.

We model the melt with 33 K atoms and 31 Cl atoms, corresponding to a
concentration x ≈ 0.06. This model can be qualitatively described as made of 31
Cl− anions and 33 K+ cations, with the addition of two neutralizing solvated
electrons whose dynamics is only weakly correlated with the ionic motion
[80–82].

We simulate this system within DFT using Car-Parrinello AIMD [83]. Our
simulations are performed using a cubic supercell with side L = 14.07 Å, cor-
responding to a density ρ = 1.42 g/cm3 at a temperature of T = (1341 ± 93)K
(the incertitude on the value of the temperature is a finite-size effect, whereas
the statistical incertitude on the average is two orders of magnitude smaller).
The dynamics of the system is restricted to the singlet energy surface, as we
explicitly verified that the triplet one consistently lies ≈ 0.40 eV above. This
being the case, the system is closed-shell. Nonetheless, the presence of unpaired
solvated electrons would not affect our conclusions on nontrivial transport, as
long as each spin channel stays gapped and dynamically decoupled from the
other, and the system’s electronic insulating character and adiabatic evolution
are preserved [50, 82]. In Fig. 4.8 we display the time series of the energy gap
between the HOMO and the Lowest-Unoccupied Molecular Orbital (LUMO), as
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Figure 4.8: Time series of the HOMO/LUMO (blue) and HOMO−1/LUMO (orange) energy
gaps. The horizontal red line indicates the thermal energy, kBT. The horizontal
green line is the average HOMO/LUMO gap for the stoichiometric K32Cl32
system.

well as between the molecular orbital just below the HOMO (HOMO−1) and
the LUMO. The HOMO−1 corresponds to the highest molecular orbital local-
ized on Cl− anions, whereas the HOMO is occupied by the solvated lone pair
(see below). The numerical values of these energies are affected by DFT errors
that lead to an underestimation of the electronic gaps. Notwithstanding, the
system stays electronically insulating along the whole AIMD trajectory, thus
confirming the adequacy of an adiabatic treatment of transport in these sys-
tems for small enough concentrations. The average HOMO−1/LUMO gap would
coincide with the average stoichiometric HOMO/LUMO gap for extremely low
concentrations (x → 0). In this limit, the energy level of the lone pair (i.e.
the HOMO of the non-stoichiometric system) corresponds to a donor impurity
level in the HOMO/LUMO gap of the stoichiometric system, slightly below the
bottom of the empty-state band. As the concentration increases, the impurity
level broadens to a band, which eventually merges into the empty-state band
of the stoichiometric system, thus turning the electrolyte into a metal. If the
states near the Fermi energy stay localized by disorder, this transition would
be delayed until the Fermi energy crosses the mobility edge. In either case,
we believe that our conclusions hold in the electrolyte regime. The value of
the concentration appropriate to our model system, x ≈ 0.06, is below the
critical value xc ≈ 0.1, at which an insulator-to-metal transition is expected
to occur, resulting from experimental [84] and numerical [85, 86] evidence.
Similar behavior has been recently evinced using photo-emission spectroscopy
for alkali-metal solutions in liquid ammonia [87].

In Fig. 4.9 we display the overlay of several consecutive snapshots from a
short segment of our AIMD trajectory. One sees that, by the time the lone pair
has covered a distance comparable to the size of the supercell, all the atoms
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Figure 4.9: Overlay of several consecutive snapshots from a 435 fs-long sample of AIMD
trajectory of our K33Cl31 model. K+ ions are depicted in pink, Cl− ions in
blue, while the WC associated with the lone bipolaronic pair is displayed in
green.

have traveled only a small fraction of this length. This suggests that charge
transport in these systems may be strongly affected by the dynamics of the
localized lone pairs, whose very existence we have seen to be closely related to
the topological properties of the electronic ground state. Its motion, while being
uniquely determined by the atomic adiabatic dynamics, is largely uncorrelated
from it. It can thus give rise to a nontrivial transport regime such that electric
currents are mainly carried by solvated electrons, not corresponding to any
atomic displacements, which is essentially made possible by the breaking of SA.
To show this, we computed the dipole displaced along two properly designed
loops in the K33Cl31 ACS, beginning and ending at the same configuration,
where one K atom is moved from its initial position to one of its adjacent
periodic images along the x axis, as depicted in Fig. 4.10. The two loops have
identical winding numbers: nK = (1, 0, 0) for the moving K, and n = (0, 0, 0)
for all the other atoms. Nonetheless, the dipoles displaced along them differ,
as reported in panel (c), corresponding to two different topological charges
(q = ±1) for the same K atom. Such a state of affairs is clear evidence that the
two loops cannot be deformed into one another without hitting a non-adiabatic
region, thus making it impossible to assign a well-defined OS to each atom
using the procedure of Refs. 72 and 65, in striking contrast with chemical
common sense. Even though in a physical trajectory no such loops in the ACS

are expected to occur, nor will a lone pair stay bound to the same ion for much
longer than a fraction of the atomic diffusion time, this thought experiment
clarifies the links between SA breaking and the establishment of a regime
where loops in ACS can be described by nontrivial Thouless’ pumps and open
trajectories may carry a charge current not corresponding to any ionic currents.
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Figure 4.10: Pendry-Hodges Gedankenexperiment when SA does not hold. In the simulation
cell, there is a nonstoichiometric melt of 33 K nuclei, depicted as pink spheres,
and 31 Cl nuclei, in cyan. The green sphere represents the WC associated
with the excess lone pair. The larger spheres are the particles in evidence.
(a-b) Periodic MEPs of the same K nucleus (in red) in the x direction, starting
and ending in the same points in two nearby cells: while for one path the
K nucleus drags the WC along its motion (a), in the other it does not (b). In
panel (c), the charge transported along each direction for the two paths is
shown in units of the elementary charge. The path coordinate goes from 0 at
the initial configuration to 1 at the final one.

The transport anomalies displayed in Fig. 4.10 are expected to show conspic-
uously in the behavior of the ionic BECs, in terms of which the instantaneous
charge current can be expressed [65]. The upper panel of Fig. 4.11 displays
the time series of the distances from the lone pair of the five atoms originally
closest to it. The lower panel displays the corresponding average diagonal
elements of the effective-charge tensors. One sees that, when all the atoms are
stably far from the lone pair (t ≳ 500 fs), the values of the effective charges are
close to what chemical intuition would suggest (Z⋆

K,αα ≈ +1 and Z⋆
Cl,αα ≈ −1).

When some of them approach the lone pair, instead, weird things may occur.
For one thing, the effective charge of the K atom closest to the lone pair may
go negative, meaning that the latter is provisionally dragged by the K ion
along its movement. For a second, the effective charge of a Cl atom, while
never quite positive, may nearly vanish when it gets close enough to the lone
pair; this is likely due to the screening effect of the pair’s highly polarizable
wavefunction. For a third, effective charges change abruptly when passing
from an anomalous to a normal regime: the K effective charge may become
relatively large and positive just after having gone negative, and a few Cl
charges may correspondingly become relatively large, while staying negative,
so as to preserve local charge neutrality. The duration of this transition, a few
dozen femtoseconds, is the time it takes for the lone pair to abruptly change its
local environment, as witnessed by the steep change of the distances from it of
the atoms considered in Fig. 4.11.
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Figure 4.11: Upper panel: time series of the distances from the electron lone pair in
K33Cl31 of the five nearest atoms. The horizontal lines are guides for the eye:
dotted, distance equal to zero; dashed, maximum distance allowed in PBCs,
i.e.

√
3L/2. Lower panel: average diagonal elements of the BEC tensor of the

five atoms described above; the horizontal dotted line marks the zero value.

In order to evaluate the impact of nontrivial transport on the ionic con-
ductivity of this system, σ is computed using the HE relation (Eq. (3.111)).
Alternatively, ∆µ(t) has been computed from Eq. (4.12) and from:

∆µ′
IF = e

∫ F

I

(
∑
ℓ

qℓ dRℓ − 2dR(W)
lp

)
(4.13)

where wlp is the position of the lone-pair WC, qℓ = +1 for K atoms, −1 for Cl
atoms, and the factor qlp = −2 reflects the occupancy of the loosely bound
HOMO. The definition of ∆µ′

IF differs from that of ∆µIF, Eq. (4.12), in that in
Eq. (4.13) a fixed OS is associated with all the atoms of the same species in
the spirit of Ref. 65—and as it would be in a stoichiometric mixture—while
the lone pair occupying the localized and loosely bound HOMO is treated as
an independent charge carrier. The results, illustrated in Fig. 4.12, yield the
values 16.2 ± 0.8 S/cm and 15.9 ± 0.8 S/cm for the conductivities computed
from definitions Eq. (4.12) and Eq. (4.13), respectively [31]. All the numerical
values of the transport coefficients reported here have been evaluated using
cepstral analysis (cf Sec. 2.2.2). The two values coincide within statistical errors,
giving substance to the topological analysis of nontrivial transport in this
system. Maybe fortuitously, these values compare well with the experimental
data at such concentration of K atoms [88, 89]. The conductivity is much larger
than the value obtained from the ionic contribution in Eq. (4.13) (3.6± 0.3 S/cm,
the green line in Fig. 4.12): this indicates that the conductivity is almost entirely
determined by the diffusion of the solvated lone pair, and is in fact much
larger than it typically is in stoichiometric molten salts (i.e. 3.2 ± 0.2 S/cm [65]).
Furthermore, we observe that the total conductivity coincides with the sum
of the ionic and lone-pair contributions, implying that the cross-correlation
resulting from the product of the first and second terms on the right-hand
side of Eq. (4.13) is negligible, as confirmed by the vanishing slope of the red
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Figure 4.12: MSDDs of nonstoichiometric K-KCl melt computed with different definitions
of the electric flux. The topological flux plus the lone pair contribution
are equivalent to the exact definition of the electric flux. The topological
flux alone yields a value of σ much lower than the correct one. The cross-
correlation term is compatible with zero: the ionic and lone-pair contribu-
tions are uncorrelated to one another.

curve in Fig. 4.12. The diffusivity Ds of each species s = K, Cl, lp is computed
according to the HE formula:

Ds = lim
t→∞

〈
|∆Rs(t)|2

〉
6t

. (4.14)

The mobilities, µs = qseDs/(kBT), are then estimated to be 1.23 ± 0.02, 1.14 ±
0.07, and 102 ± 5 (10−3 cm2 V−1 s−1) for K, Cl, and the lone solvated pair,
respectively. The lone-pair mobility is two orders of magnitudes larger than
the ionic ones, in agreement with experimental evidence [90] and with the
observed predominance of the lone-pair contribution to the total conductivity.
Since the value of the lone-pair mobility is estimated from a single lone-pair,
its value might be only fortuitously similar to what is found in experiments.

4.4.2.3 The effect of Exact Exchange

It is well known that standard DFT is affected by spurious self-interaction errors
due to the interaction of each electron with the total one-body electron density,
including its own density [91]. The double-counting is partially removed by
the approximate Exchange and Correlation (XC) functional, but errors are still
large, especially for local and semi-local XC functionals [91, 92]. The issue is
especially present in one-electron systems [92]. Nonstoichiometric molten salts
with excess metal atoms feature solvated electrons, as seen above; the excess
electrons are effectively few-electron systems and, as such, are particularly
affected by spurious self-interactions. This is somewhat analog to polarons in
solids, where excess electrons in semiconductors and insulators couple to the
phonons in the lattice and form localized bound states [93–95]. An instructive
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Figure 4.13: Comparison of the ionic conductivity of a nonstoichiometric NaCl melt com-
puted with PBE and PBE0 functional. The MSDDs computed with Eq. (4.12)
and Eq. (4.13) are in agreement in both cases, but the values of σ differ
between PBE (left) and PBE0 (right). Since the OSs contribution is the same in
both cases, the difference is due to the lone-pair contribution, which is much
smaller for the PBE0 functional due to the higher degree of localization of
the solvated electron. The cross-correlation of the two fluxes is compatible
with zero for both functionals, confirming the lack of correlation between
ionic (i.e. mass) and electronic (i.e. lone-pair) transport.

simple model for polarons is the Landau-Pekar (LP) model [96, 97] that, in a
nutshell, considers the interaction of an excess electron spanning many crystal
unit cells with the lattice in the effective-mass approximation. The total energy
of the LP model is [98]

ELP =
h̄2

2m∗

∫
|∇ψ|2d3r +

1
8π

∫
E · D d3r, (4.15)

where ψ(r) is the wavefunction of the excess electron, E(r) is the macroscopic
total electric field, and D(r) is the electric displacement field. The total energy
is thus the sum of the band energy of the excess electron and the electrostatic
energy of the dielectric medium. The latter can be written in terms of the
electron wavefunction as

1
8π

∫
E · D d3r =

e2

2

(
1
ϵ0 − 1

ϵ∞

) ∫∫ |ψ(r)|2|ψ(r′)|2
|r − r′| d3r d3r′ , (4.16)

since the electric displacement is related to the free charge-carrier density (in
this case, just the excess electron) by ∇ · D = 4πe|ψ(r)|2, and to the macro-
scopic electric field by D = ϵ0E. The symbols ϵ0 and ϵ∞ are the static (electronic
and ionic) and high-frequency (electronic only) dielectric constants, respectively.
The high-frequency dielectric constant contribution is subtracted in Eq. (4.16)
because the electronic screening energy is already explicitly accounted for in
the first term of Eq. (4.15) [98]. The total energy of Eq. (4.15) is thus a func-
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tional of the electronic wavefunction, ELP[ψ], whose minimization yields the
eigenvalue problem [98]

− h̄2

2m∗∇
2ψ(r)− e2

(
1
ϵ0 − 1

ϵ∞

) ∫ |ψ(r′)|2
|r − r′| ψ(r)d3r′ = εψ(r)

ĤLPψ(r) ≡ εψ(r),

(4.17)

where the last line defines the LP Hamiltonian, ĤLP, and the normalization con-
dition on ψ(r) is understood. Eq. (4.15) becomes, in terms of the LP eigenvalue,
ε,

ELP = ε +
e2

2

(
1
ϵ0 − 1

ϵ∞

) ∫∫ |ψ(r)|2|ψ(r′)|2
|r − r′| d3r d3r′ . (4.18)

Polaron localization is readily understood by considering the exponential ansatz
ψ(r) = (πr3

p)
−1/2e−|r|/rp , for the wavefunction, where rp is a measure of the

polaron size. The energy becomes [98]

ELP(rp) =
h̄2

2m∗r2
p
− 5

16

[
1
ϵ0 − 1

ϵ∞

]
e2

rp
, (4.19)

whose minimum is

rmin
p =

16
5

h̄2

m∗e2

[
1
ϵ0 − 1

ϵ∞

]−1
. (4.20)

The polaron self-trapping around rp is thus determined by the interplay be-
tween the delocalizing effect of the kinetic term and the localizing effect of
electrostatic interaction. Now, if one were to include a DFT-like self-interaction
term to the LP Hamiltonian, making it something of the form

Ĥ′
LP = − h̄2

2m∗∇
2 − e2

[
1
ϵ0 − 1

ϵ∞

] ∫ |ψ(r′)|2
|r − r′| d3r′ + e2

∫ |ψ(r′)|2
|r − r′| d3r′︸ ︷︷ ︸

DFT-like self-interaction

= − h̄2

2m∗∇
2 − e2

[
1
ϵ0 − 1

ϵ∞ − 1
]

︸ ︷︷ ︸
∈[−1,0)

∫ |ψ(r′)|2
|r − r′| d3r′ ,

(4.21)

the net effect would be to exclude the possibility of self-trapping since both
the kinetic and electrostatic terms are now positive: no polaron could ever be
localized [98]. Something similar happens in standard DFT, and that makes
it difficult for excess electrons to localize in a dielectric material [98]. Hybrid
functionals, where a fraction of the Hartree-Fock exchange functional is added
at the expense of a fraction of the XC functional, partially circumvent this issue
by reducing the self-interaction error and thus making it simpler for excess
electrons to localize. The effect of this change of functional is tested in the
case of nonstoichiometric molten NaCl analog to the K-KCl melt described
above. Two simulations of Na33Cl31 are prepared at the same temperature3

T ≈ 1250 K using either the PBE functional of the hybrid PBE0 functional,

3 The actual values of the temperature are (1260 ± 130)K and (1280 ± 160)K for PBE and PBE0, respec-
tively.



78 introduction

the latter being the former with 25% of Hartree-Fock exchange [99]. Ionic
conductivity calculations are performed according to GK theory, with an explicit
account of the topological and electronic lone-pair flux contributions. Since
the hybrid functional is expected to localize the excess electron pair more than
PBE, the ionic conductivity should be lower in the PBE0 calculation than in
the PBE one. In particular, the lone-pair contribution should drop, while the
purely ionic contribution should remain approximately the same. Nonetheless,
due to the arguments made above about the topology of paths in the ACS,
charge transport should still be practically uncorrelated from mass transport,
in that the electronic lone pair should contribute to σ independently of the
topological flux. Fig. 4.13 shows the comparison between ionic conductivities
computed with the two functionals. The PBE0 total conductivity is less than
half the PBE value, the reason being the higher degree of localization in the

former case. In fact, the OSs contribution, J′Q − 2eṘ(W)
lp , is almost the same

in both cases, meaning that most of the difference is due to a much lower
lone-pair contribution in the case where the hybrid functional is adopted. The
cross-correlation term between the OSs flux and the flux due to the lone pair is
compatible with zero, once again suggesting the lack of correlation between
mass transport and purely electronic transport, even in the case of PBE0 where,
locally, the dynamics of the solvated electron pair is more correlated to the
ionic motion than in the PBE case.

4.5 charge transfer reactions

Electron Transfer (ET) reactions are a class of chemical reactions that involve an
exchange of charge between compounds, i.e., from a reactant state to a product
state. The first successful attempts to provide a theory of electrochemical
reactions are due to Marcus [100] and Hush [101]. In their seminal works,
they were able to address the matter of outer-sphere electron transfer—i.e.,
where the reacting species remain separated during the whole process—with a
particular focus on the role of the solvent reorganization, rather than a detailed
account of electronic interactions which, at the time, could not be included in a
quantitative treatment due to the complex nature of the calculations involved.
We summarize below the main elements of this theory.

A typical Marcus-Hush scenario involves two reacting partners in proximity.
There usually is a free energy barrier separating reactants and products. In
fact, the initial and final states bear different charges, and reactant and product
states are solvated. Therefore, the environment is reorganized for the electron to
overcome the barrier and for the ET to happen. The situation can be understood
as a two-state system [102]: a reactant and a product state. A simple way to
incorporate the effect of the solvent is through a linearly responding heat bath.
The Hamiltonian which represents this system is the spin-boson Hamiltonian,
i.e.

Ĥ = −1
2

h̄∆ς̂x −
1
2

h̄ϵς̂z +
1
2

µE(t)ς̂z + ĤR, (4.22)

where {ς̂α} are the Pauli matrices; ∆ and ϵ are the hopping rate and on-site bias,
respectively; µE(t) describes the collective bath mode coupled to the electronic
system and can be thought of as fluctuating dynamical polarization energy
due to the local environment [102], and its properties are entirely contained in
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its correlation function; ĤR is the Gaussian reservoir associated to the solvent.
When the bath is purely adiabatic, which is the condition we are interested
in, the bath correlation function reduces to a constant, 2kBTΛ, where Λ can be
understood as the reorganization energy of the solvent. The contribution of the
bath to the Hamiltonian in Eq. (4.22) plays no role, and what remains reduces
to (in matrix form) [103]:

Ĥ =
h̄
2

(
µE
h̄ − ϵ −∆

−∆ ϵ − µE
h̄

)
. (4.23)

The eigenstates of Ĥ—i.e., the electronic adiabatic states—are easily found to
have eigenvalues

E±(E) = ± h̄
2

√
∆2 + (ϵ − µE/h̄)2. (4.24)

Averaging over the bath fluctuations, one obtains the adiabatic Potential Energy
Surface (PES), F±, as a function of the mean polarization energy µE [102]:

F±(E) =
µ2E2

4Λ
± h̄

2

√
∆2 + (ϵ − µE/h̄)2. (4.25)

When there is no on-site bias, i.e., reactant and product are solvated with the
same energy, ϵ = 0. The adiabatic surfaces are qualitatively different according
to the parameter p = Λ/(h̄∆), where the electronic coupling h̄∆ can be thought
of as the unit of energy. Doing so also for the polarization energy, i.e. defining
ϕ = µE/(h̄∆), Eq. (4.25) becomes

F±(ϕ) =
h̄∆
2

(
ϕ2

2p
±
√

1 + ϕ2
)

. (4.26)

The reactant and product states are located at ∓ϕ0, respectively, where ϕ0 =√
p2 − 1. The electronic coupling is so large in the adiabatic limit that p is of

order 1 or lower. When p < 1, there are no environmental fluctuations; both
surfaces feature a single minimum. Therefore, no electron is transferred. For
p ≳ 1, there are two minima in the ground adiabatic surface, separated by
a barrier whose height depends on p. The electronic coupling is still large,
but sufficient environmental fluctuations allow an electronic transfer. At the
opposite limit, p ≫ 1, there is the nonadiabatic transfer when the fluctuations
are so large with respect to the electronic coupling that the gap between F−
and F+ is tiny, and the electron has a significant probability of jumping to the
higher energy surface, invalidating the Born-Oppenheimer approximation.

The two regimes p ≳ 1 and p ≫ 1 outlined above where ET can happen can
be understood from our perspective as pictured in Fig. 4.14. In the two panels,
on the left, there is a sketch of the ACS with the central cell circled in light blue
and a periodic replica on its right, like those in Fig. 4.1. On the right are the
PESs—the black ones are the Marcus parabolas representing diabatic states, the
green one is the adiabatic ground state, and the blue one is the adiabatic excited
state. The red horizontal line represents the average energy of the system, the
shaded area being the entity of thermal fluctuations, i.e., of the order 2kBT.

In panel (a), the ACS features metallic walls that cannot be bypassed. OSs are
well-defined only within a given adiabatic domain and, for a given nuclear
species, they can be different for different adiabatic domains. Charge can be
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Figure 4.14: Parallel between our topological theory and Marcus-Hush ET theory. (a) ACS
with strongly adiabatic domains separated by metallic regions (left) and PESs
with p ≫ 1, signaling nonadiabatic charge transfer (right). (b) ACS where
SA is broken (left) and PESs with p ≳ 1, where adiabatic charge transfer is
possible (right).

transferred only by crossing a metallic region, i.e., by breaking adiabaticity. Any
electron transfer is nonadiabatic: since the electronic coupling between reactant
and product states is too low with respect to the reorganization energy, p ≫ 1,
and the adiabatic energy surfaces practically coincide with the diabatic ones.
This phenomenon is observed in physical systems where atoms of the same
species feature different OSs, such as the paradigmatic case of the ferrous-ferric
exchange in water,

Fe2+(aq) + Fe3+(aq) ⇌ Fe3+(aq) + Fe2+(aq). (4.27)

For the exchange to happen, the system must pass through a point where the
electronic levels are degenerate, and adiabaticity is lost. Panel (b) displays an
ACS where SA is broken and there are metallic regions that adiabatic loops can
encircle. Therefore, there exist adiabatic paths, sharing the same endpoints,
that cannot be deformed into one another without ever crossing a metallic
region, as well as trivial loops in the ACS which can pump an integer charge to
another cell without any net displacement of the nuclei. As shown in Sec. 4.4,
this implies that a topological, unique definition for the atomic OSs is not
admitted, and the adiabatic motion of an erratic, localized electronic charge
can be observed. In the Marcus picture, this is precisely what happens in the
intermediate adiabatic regime, p ≳ 1. Electron transfer can occur due to nuclear
fluctuations within the Born-Oppenheimer approximation since the adiabatic
surfaces are sufficiently separated. This is observed, e.g., in nonstoichiometric
molten salts, where charge is mainly transported by localized electronic charge
(polarons or lone pairs) diffusing through the system [31] through an activated
Marcus process mediated by the nuclear thermal motion.



Part III

H E AT T R A N S P O RT I N S O L I D - S TAT E E L E C T R O LY T E S

In any theoretical treatment of
transport problems, it is important
to realize at what point the
irreversibility has been
incorporated. If it has not been
incorporated, the treatment is
wrong. A description of the
situation which preserves the
reversibility in time is bound to
give the answer zero or infinity for
any conductivity. If we do not see
clearly where the irreversibility is
introduced, we do not clearly
understand what we are doing

Rudolph Peierls,
Transport phenomena, 1974, p. 5





5
T H E R M A L T R A N S P O RT I N S O L I D S

N
uclei of atoms in solids are characterized by having well-defined equi-

librium positions around which they oscillate. At temperatures below
melting, atomic displacements from equilibrium are much smaller

than interatomic distances; thus, vibrational properties can be represented on
the basis of normal modes in the harmonic approximation, using the phonons
quasiparticle picture, while anharmonicity is treated as a perturbation. Anhar-
monicity is responsible for temperature-dependent frequency shifts and for
their broadening, implying finite phonon lifetimes, and ultimately determining
the value of the thermal conductivity of a material [104–106]. This picture
breaks down in systems that, despite retaining a solid structure, feature partial
ionic diffusion. Examples are Solid-State Electrolytes (SSEs), where structural
defects that drive the chemical composition of the material away from stoi-
chiometry lead to nonnegligible ionic conduction, and superionic materials,
where a phase transition allows a sublattice to melt and behave like a fluid,
while others keep their solid-like nature. For these systems, anharmonic lattice
dynamics is not valid, and one needs to resort to other methods to compute
thermal conductivity, such as EMD.

In this Chapter, I will first review anharmonic lattice dynamics and the Quasi-
Harmonic Green-Kubo (QHGK) method to compute the thermal conductivity
of solids. Then, I will review the GK theory for thermal transport in the context
of EMD, both based on atomistic coarse-grained models and DFT.

5.1 anharmonic lattice dynamics

The potential energy of a system of N interacting particles is a function of
their positions, {Rℓ}, and it can therefore be expanded in a Taylor series in the
displacements, {uℓ}, of the coordinates with respect to a given configuration
{R◦

ℓ}, i.e. uℓ = Rℓ − R◦
ℓ . Such expansion reads

V(R1, . . . , RN) = V(R◦
1 , . . . , R◦

N) + ∑
ℓ′

∂V
∂uℓ′

· uℓ′+

+
1
2 ∑
ℓ′ ,ℓ′′

uℓ′ ·
∂2V

∂uℓ′∂uℓ′′
· uℓ′′ + . . . ,

(5.1)

where the expansion coefficients are called Interatomic Force Constants (IFCs).
If the reference positions are chosen to be equilibrium positions, i.e., the
configuration where the potential energy is minimal, the first-order term in
Eq. (5.1) is zero and the second-order term is positive. As long as the system
stays solid, and atoms can only oscillate around their equilibrium positions,
the displacements are finite and one can approximate V with some terms of

83
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the expansion in Eq. (5.1). In the harmonic approximation one keeps only the
quadratic term in the expansion, characterized by the second-order IFC:

ϕ′′
ℓℓ′αα′ =

1
2 ∑
ℓ,ℓ′ ,α,α′

∂2V
∂uℓα∂uℓ′α′

uℓαuℓ′α′ , (5.2)

which is a positive-definite matrix. The dynamics of the harmonic system can
then be described in terms of normal modes, the phonons. The eigenmodes
are obtained from the diagonalization of the dynamical matrix, i.e. the second-

order IFC rescaled by the atomic masses, Dℓℓ′αα′ = ϕ′′
ℓℓ′αα′/

√
MℓM′

ℓ, whose
eigenvalue equation reads [105]

∑
ℓ′ ,α′

Dℓℓ′αα′ηℓ′α′µ = ηℓαµω2
µ, (5.3)

where ωµ/(2π) is the frequency of the normal mode ηµ. The normal modes
coordinates and momenta can then be defined as

ξµ = ∑
ℓ,α

√
Mℓuℓαηℓαµ, πµ = ∑

ℓ,α

√
Mℓu̇ℓαηℓαµ. (5.4)

The harmonic Hamiltonian of the nuclei (including the trivial kinetic term)
becomes, with respect to these coordinates,

H(2) =
1
2 ∑

µ

[
π2

µ + ω2
µξ2

µ

]
, (5.5)

which can be further simplified by introducing the (classical) amplitudes

(αµ, α∗µ) =
√

ωµ

2
ξµ ± i√

2ωµ
πµ, (5.6)

in terms of which the harmonic Hamiltonian is

H(2) = ∑
µ

ωµα∗µαµ. (5.7)

The normal modes of a harmonic system are noninteracting and, as such, once
they are populated they continue to exist forever. Therefore, in a harmonic
system, the value of thermal conductivity is infinite, as there is no thermal
dissipation. In order to measure a finite thermal conductivity, anharmonic
contributions need to be included. The simplest anharmonic approximation
consists of keeping also the third-order term in Eq. (5.1), characterized by the
third-order IFC, given by

ϕ′′′
ℓℓ′ℓ′′αα′α′′ =

1
6 ∑
ℓ,ℓ′ ,ℓ′′ ,α,α′ ,α′′

∂2V
∂uℓα∂uℓ′α′

uℓ′′α′′uℓαuℓ′α′uℓ′′α′′ . (5.8)

The Hamiltonian up to third order becomes [107]

H(3) = ∑
µ

ωµα∗µαµ+

+ ∑
µ,ν,λ

Φµνλ
1√

8ωµωνωλ
(αµ + α∗µ)(αν + α∗ν)(αλ + α∗λ),

(5.9)
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where Φµνλ = ∂3V
∂ξµ∂ξν∂ξλ

is the third derivative of the potential energy with re-
spect to the normal-mode coordinates. The quantal version of these expressions
can be easily obtained by mapping the classical amplitudes to the normal-mode
annihilation and creation operators [104]: α 7→

√
h̄â and α∗ 7→

√
h̄â†. Since the

next sections will be mainly devoted to classical calculations, in the following
the notation and the results will refer to classical quantities.

5.2 quasi-harmonic green-kubo theory

In order to access thermal transport properties, one needs an expression for the
energy flux. For a solid in the harmonic approximation, the α Cartesian compo-
nent of the energy flux can be obtained after some rather tedious calculations
as [104]

Jα
E =

i
2 ∑

µ,ν
vα

µνωµ(α
∗
ν + αν)(α

∗
µ − αµ), (5.10)

where vα
µν is the α component of the generalized velocity matrix, i.e.

vα
µν =

1
2√ωµων

∑
ℓ,β,ℓ′ ,β′

(uℓα − uℓ′α)Dℓℓ′ββ′ηµℓβηνℓ′β′ . (5.11)

The (classical) thermal conductivity tensor is given by the GK formula, Eq. (1.50),
i.e.

καβ =
1

ΩkBT

∫ ∞

0
⟨Jα

E(t)Jβ
E(0)⟩dt , (5.12)

where, in principle, the expectation value is taken over the canonical ensemble
of systems defined by the Hamiltonian in Eq. (5.9). When the expression of
the energy flux, Eq. (5.10) is plugged into Eq. (5.12), there appear four-point
correlation functions in the amplitudes, i.e. terms of the form

⟨x1x2x3x4⟩ , with x1,2 = αµ(t), α∗µ(t), and x3,4 = αµ, α∗µ. (5.13)

Such quantities cannot be computed exactly but in particularly simple cases, so
an approximation scheme is required. The QHGK method deals with correlation
functions of this form by introducing two distinct approximations [104, 105,
108]:

1. four-point correlation functions are factorized according to Wick (in the
quantal case) or Isserlis (in the classical case) theorems into sums of
products of two-point correlation functions. Thus

h̄2 ⟨α∗µ(t)αν(t)α∗λασ⟩ ≈ nµnλδµνδλσ+

+ h̄2 ⟨α∗µ(t)αµ(0)⟩ ⟨αν(t)α∗ν(0)⟩ δµσδνλ,
(5.14)

where nµ = kBT/(h̄ωµ) is the classical occupation of the µth normal
mode.1 In the many-body community, this is referred to as dressed-bubble
approximation, and it amounts to neglecting vertex corrections to the
correlation functions, i.e., phonon decay channels are treated in a mean-
field sense, each channel being considered independently as if it were
interacting with a heat bath.

1 The h̄ factors are there to provide the correct quantum limit, where α 7→
√

h̄â and
nµ 7→ (eh̄ωµ/(kB T) − 1)−1, the latter being the Bose-Einstein occupation function.
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2. The heat bath interacts with the normal modes in a Markovian way, with-
out any memory effect. This results in a two-point correlation function of
the form [108]

h̄ ⟨αµ(t)α∗µ(t)⟩ ≈ nµe−iωµt−γµ |t|, (5.15)

where the line-width γµ is the decay rate of the µth normal mode.

With these approximations, the thermal conductivity tensor takes the form
reminiscent of Boltzmann’s kinetic theory [104, 105, 108],

καβ =
kB

Ω ∑
µν

vµναvµνβτµν, (5.16)

where

vµνα =
1

2√ωµων
∑

ℓℓ′ββ′
(R◦

ℓα − R◦
ℓ′α)Dℓℓ′ββ′ηµℓβηνℓ′β′ (5.17)

is the generalized velocity tensor, and

τµν =
γµ + γν

(γµ + γν)2 + (ωµ − ων)2 (5.18)

is the generalized normal-mode lifetime. Eq. (5.16) applies to crystalline solids
as well as amorphous ones. In the former case, it reduces to the result of
the Boltzmann Transport Equation (BTE) for crystals in the Relaxation Time
Approximation (RTA), with the bonus of explicitly accounting for inter-band
effects [104, 105, 108]; in the latter case, the QHGK theory provides an anhar-
monic generalization of the Allen-Feldman (AF) theory of harmonic glasses [109,
110]. Interestingly, an equivalent expression can be obtained starting from the
so-called Wigner Transport Equation rather than the BTE [106]. Let us briefly
review both the BTE and AF approaches.

5.3 boltzmann transport equation

In crystals, atomic equilibrium positions are characterized by a discrete lattice
coordinate, aℓ, and an integer label, bℓ, enumerating the different coordinates of
the basis sites within a unit cell, dbℓ . The equilibrium position of the ℓth atom
thus reads R◦

ℓ = aℓ + dbℓ . For the same reason, normal modes can be labeled
by a wavevector q in the reciprocal lattice Brillouin Zone (BZ) and a band index
s, so that the normal-mode label is split to µ = (qµ, sµ). The dynamical matrix
can thus be expressed as

1√
MℓM′

ℓ

ϕ′′
ℓℓ′αα′ = ∑

q
eiq·(R◦

ℓ−R◦
ℓ′ )Dbb′αα′ (q), (5.19)

and it fulfills the eigenvalue equation

∑
b′ ,α′

Dbb′αα′ (q)ηqsb′α′ = ω2
qsηqsbα, (5.20)



introduction 87

where the eigenvectors are now given by ηqµsµbℓα = eiqµ ·R◦
ℓ ηµℓα. In this represen-

tation, the velocity matrix, Eq. (5.17), and the generalized lifetimes, Eq. (5.18),
become block-diagonal in the wavevector subspace [104]:

vqsq′s′α =
iδqq√

ωqsωq′s′
∑

ℓℓ′σσ′
ηqsbℓσ

∂Dbℓb′ℓ′ σσ′ (q)

∂qα
ηqsb′

ℓ′ σ
′ ≡ vqss′αδqq′ , (5.21)

τqsq′s′ =
γqs + γqs′

(γqs + γqs′ )2 + (ωqs − ωqs′ )2 δqq′τqss′ . (5.22)

where τqs = 1/(2γqs) is the lifetime of the normal mode labeled by (q, s). The
thermal conductivity tensor acquires the form

καβ =
kB

Ω ∑
q,s,s′

vqss′αvqss′βτqss′ . (5.23)

In the case where the phononic bands are well separated, i.e., when, for any
wavevector q, it holds that

∣∣ωqs − ωqs′
∣∣≫ γqs + γqs′ for s ̸= s′, the generalized

lifetimes become diagonal in the band index, with τqss′ = δss′/(2γqs), and κ

finally reads

καβ =
kB

Ω ∑
q,s

vqsαvqsβτqs, (5.24)

where vqsα is the group velocity of the sth phonon branch:

vqsα =
1

2ωqs
∑

ℓℓ′σσ′
ηqsbℓσ

∂Dbℓb′ℓ′ σσ′ (q)

∂qα
ηqsb′

ℓ′ σ
′ =

∂ωqs

∂qα
. (5.25)

This expression for the thermal conductivity does not include inter-band
scattering events. Eq. (5.24) can be obtained in the BTE approach, where one
considers the expression for the nonequilibrium phonon population, nqsα, in
response to a thermal gradient along the Cartesian direction α, ∇αT = ∂T/∂rα,
i.e. [105]

nqsα ≃ nqs + λqs∇αnqs = nqs + λqs
∂nqs

∂T
∇αT, (5.26)

where λqs is the phonon mean free path. The energy flux can be written as the
sum over phonons of the energy carried by each phonon branch times their
group velocity, i.e., using Eq. (5.26),

Jkin
E α =

1
Ω ∑

q,s
∑
α′

h̄ωqsvqsα′ (nqsα′ − nqs)

≃ − 1
Ω ∑

α′
∑
q,s

h̄ωqsλqs
∂nqs

∂T
∇αT.

(5.27)

Since the phenomenological Fourier’s law (cf Ch. 1) reads Jkin
E,α = −∑β καβ∇βT,

one can identify the thermal conductivity with

καβ =
1
Ω ∑

q,s
h̄ωqs

∂nqs

∂T
vqsαλqs

=
kB

Ω ∑
q,s

vqsαλqs.
(5.28)
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The phonon mean free path can be computed by introducing the BTE,

vqs · ∇T
∂nqs

∂T
=

∂nqs

∂t

∣∣∣∣
scatt.

, (5.29)

that governs the nonequilibrium statistical mechanics of the population num-
bers. The right-hand side is the scattering term, whose linearized form contains
all the scattering rates relating 3-phonon scattering events [105]. The inverse
of the matrix of scattering rates is in turn used to compute the phonon mean
free paths. The problem of computing κ is reduced to the calculation and
inversion of the scattering rates matrix. The full BTE solution can be computa-
tionally demanding since matrix inversion is an intensive task. A simplifying
approximation that usually works well at high enough temperature is the
RTA, where only the diagonal part of the scattering-rate matrix is retained:
the population of each nonequilibrium mode is assumed to be interacting
with a bath of modes at thermal equilibrium. The RTA mean free paths are
given by λqsα = vqsα/(2γqs) = vqsατqs, where γqs is usually computed from
perturbation theory with Fermi’s golden rule [43, 105, 108]. Eq. (5.28) becomes
therefore the same as Eq. (5.24):

καβ =
kB

Ω ∑
q,s

vqsαλqs

=
kB

Ω ∑
q,s

vqsαvqsβτqs

(5.30)

This proves that the QHGK method generalizes the RTA-BTE method for crystals
including the effect of inter-band scattering.

Noticing that Eq. (5.23) contains also all the terms in Eq. (5.30), in crystals one
can easily go one step beyond the QHGK theory by substituting the intra-band
part of κ with the full-BTE solution. Recently, the QHGK theory has also been
extended to account for all the scattering terms for general solids, without the
requirement of lattice periodicity [108].

5.4 allen-feldman model

The AF model describes the heat dissipation due to disorder alone in amorphous
systems of harmonically interacting particles [109, 110]. The starting point for
the derivation of the AF expression for the thermal conductivity is again the
GK formula for καβ, Eq. (5.12). The only difference with the QHGK derivation
is in the expression for the two-point correlation function of the phononic
amplitudes, that in the AF model does not contain anharmonic terms:

h̄ ⟨αµ(t)α∗µ(t)⟩ ≈ nµe−iωµt. (5.31)

The same algebraic steps that lead to Eq. (5.16) in this case yields

καβ =
πkB

Ω ∑
µν

vµναvµνβδ(ωµ − ων), (5.32)

which is the result of the (classical) AF theory [109, 110]. This expression can
be obtained a posteriori from the QHGK value, Eq. (5.16), by taking the harmonic
limit, γµ → 0, and using the nascent delta function

δ(x) = lim
ϵ→0

1
π

ϵ2

ϵ2 + x2 . (5.33)
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This proves that the QHGK approach generalizes the AF model to the anhar-
monic regime.

5.5 slack model

Since it will be useful in the next Chapter, I will briefly review here a model for
thermal conductivity in crystals popularized in the 1970s [111, 112] called Slack
Model (SM). For a crystal with n atoms per unit cell, whose average atomic
mass is M, the (quantum) thermal conductivity in Wm−1K−1 is estimated as

κ =
2.43 · 10−6

1 − 0.514/γ + 0.228/γ2
MΘ3

Dδ

γ2Tn2/3 , (5.34)

where ΘD is the Debye temperature in K, γ = ∑µ
Ω
ωµ

∂ωµ

∂Ω is the Grüneisen

parameter, δ is the cubic root of the average atomic volume in Å, and M is
expressed in atomic mass units. The Debye temperature is computed directly
from the Debye model, by evaluating the average sound velocity obtained from
the angular average of the sound velocities, which are in turn calculated by
solving the wave equation for each propagation direction. Eq. (5.34) is valid
for face-centered-cubic crystals with one atom per unit cell and approximated
in all the other cases. It is known to overestimate the value of thermal con-
ductivity [113], and its popularity in the past decades is mainly due to the
unavailability at the time of more accurate computer simulations based, e.g.,
on the BTE.

5.6 thermal conductivity from molecular dynamics simula-
tions

In EMD one can compute the thermal conductivity by evaluating the GK for-
mula, as explained in Ch. 1 and Ch. 2. The explicit expression of the energy
flux depends on the Hamiltonian of the system. In the context of atomistic
simulations, the interatomic potential energy is often described in terms of
Force Fields (FFs), i.e. analytical functions of the relative distance among the
constituents of the system able to yield the forces acting on the atoms. Empiri-
cal FFs are characterized by the functional form of the inter-atomic potential
energy and the set of parameters tuned to reproduce physical properties. The
parameters can be obtained by fitting the functional form of the FF to exper-
imental data or to accurate quantum chemistry calculations. In recent years,
also machine-learning-based FFs have appeared, able to reproduce with high-
accuracy ab initio results with affordable computational time [114–116]. The
Hamiltonian in both these cases takes the general form

H({P}, {R}) =
N

∑
ℓ=1

P2
ℓ

2Mℓ
+ V({R}), (5.35)

where {R} and {P} are the positions and momenta of the atoms in the system,
respectively. In light of the gauge invariance principle (cf Sec. 1.4), any atomic
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decomposition of the energy density, e(r, t), is good to compute the energy flux.
A valid choice is

e(r, t) =
N

∑
ℓ=1

ϵℓ(t)δ(r − Rℓ(t)), (5.36)

where each atomic energy, ϵℓ, is localized on the respective atom. The atomic
energies are phase-space variables and depend on time through the positions
and the momenta of the atoms. The energy flux reads

JE(t) =
1
Ω

∫
rė(r, t)d3r

=
1
Ω

∫
r

N

∑
ℓ=1

[
∂e(r, t)

∂Rℓ
· Ṙℓ +

∂e(r, t)
∂Pℓ

· fℓ

]
d3r,

(5.37)

where fℓ is the force acting on the ℓth atom. The atomic energies are quantities
of the form

ϵℓ =
P2
ℓ

2Mℓ
+ Vℓ, (5.38)

the first term being the atomic kinetic energy, and the second being the portion
of the potential energy assigned to the ℓth atom so that V = ∑ℓ Vℓ. The
gradients appearing in Eq. (5.37) are evaluated as

∂e(r, t)
∂Rℓ

=
N

∑
ℓ′=1

[
∂Vℓ′

∂Rℓ
δ(r − Ṙℓ′ )− δℓℓ′ϵℓ′∇δ(r − Rℓ′ )

]
(5.39)

∂e(r, t)
∂Pℓ

= Ṙℓδ(r − Rℓ), (5.40)

so that the energy flux becomes

JE(t) =
1
Ω

∫
r

N

∑
ℓ,ℓ′=1

[
∂Vℓ′

∂Rℓ
· Ṙℓδ(r − Rℓ′ )−

∂Vℓ′

∂Rℓ
· Ṙℓδ(r − Rℓ)+

− ϵℓṘℓ∇δ(r − Rℓ′ )

]
d3r .

(5.41)

Integrating by parts the last summand and using the properties of the Dirac
delta, one finds:

JE(t) =
1
Ω

N

∑
ℓ=1

[
ϵℓṘℓ −

N

∑
ℓ′=1

∂Vℓ′

∂Rℓ
· Ṙℓ (Rℓ − Rℓ′ )

]
. (5.42)

This formula is well-defined in PBCs since it only depends on distances between
atoms computed according to the minimum-image convention. For this reason,
the formula is suitable for EMD simulations of bulk systems. The first term in
Eq. (5.42) is often called kinetic or convective energy flux, while the second is the
virial energy flux.
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5.6.1 Ab initio heat transport

The gauge invariance of transport coefficients also allows one to derive the adi-
abatic energy flux in the framework of DFT [13]. Such flux, dubbed Marcolongo-
Umari-Baroni (MUB) energy flux from the name of the authors of Ref. 13, is
obtained from the standard definition of the DFT total energy expressed in terms
of the Kohn-Sham (KS) eigenvalues, εv, eigenfunctions, ϕv(r), and electronic
density, n(r) = ∑v |ϕv(r)|2—the sum being over valence states—i.e.

EDFT =
1
2 ∑

ℓ

MℓV
2
ℓ + ∑

ℓ

wZ
ℓ ({R}) + ∑

v
εv+

− e2

2

∫ n(r)n(r′)
|r − r′| d3r d3r′ +

∫
(ϵXC[n](r)− µXC(r))n(r)d3r ,

(5.43)

where e is the elementary charge; Rℓ and Vℓ are the position and velocity of
the ℓth nucleus, respectively; wZ

ℓ is the ionic electrostatic energy; ϵXC is the
local XC energy density, defined by the relation

EXC[n] =
∫

ϵXC[n](r)n(r)d3r , (5.44)

where EXC is the total XC energy; µXC is the XC potential

µXC(r) =
δEXC

δn(r)
= ϵXC(r) +

∫
δϵXC(r′)

δn(r)
n(r′)d3r′ (5.45)

The DFT energy density, required for the definition of the energy flux, can be
defined by the property [13]

EDFT =
∫

eDFT(r)d3r, (5.46)

eDFT(r) = eKS(r) + e0(r) + eH(r) + eXC(r). (5.47)

The quantities in the second line above are defined in terms of the instantaneous
KS Hamiltonian, ĤKS, and its eigenvalues and eigenfunctions:

eKS(r) = Re ∑
v

ϕ∗
v(r)ĤKSϕv(r), (5.48)

e0(r) = ∑
ℓ

δ(r − Rℓ)

[
P2
ℓ

2Mℓ
+ wZ

ℓ

]
, (5.49)

eH(r) = −1
2

n(r)vH(r), (5.50)

eXC(r) = (ϵXC(r)− µXC(r))n(r). (5.51)

The MUB energy flux is obtained by integrating the first moment of the time-
derivative of the energy density, and the final expression takes the form

JMUB
E = JKS + J0 + Jn + JH + JXC, (5.52)

the terms being

JKS = ∑
v

(
⟨ϕv|r̂ĤKS|ϕ̇v⟩+ εv ⟨ϕ̇v|r̂|ϕv⟩

)
, (5.53)
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J0 = ∑
ℓ,L

∑
v

⟨(r̂ − Rℓ − L)|Ṙℓ · ∇ℓL v̂0|ϕv⟩ , (5.54)

Jn = ∑
ℓ

[ Ṙℓe0
ℓ + ∑

ℓ′ ̸=ℓ
∑
L
(Rℓ − Rℓ′ − L)(Ṙℓ′ · ∇ℓ′LwZ

ℓ′ )+

− ∑
L ̸=0

L(Ṙℓ · ∇ℓ′LwZ
ℓ ) ] ,

(5.55)

JH =
1

4πe2

∫
v̇H(r)∇vH(r)d3r, (5.56)

JXC =

0, LDA,

−
∫

n(r)ṅ(r)∂ϵGGA(r)d3r, GGA.
(5.57)

The symbol L indicates a lattice vector; ∇ℓL is a shorthand notation for the
gradient with respect to the position of the ℓth nucleus in the replica cell
characterized by the lattice vector L; LDA and GGA stand for Local Density
Approximation and Generalized Gradient Approximation of the XC functional,
respectively; in the GGA case, the derivative with respect to the density gradi-
ents of the XC local energy per particle is indicated by ∂ϵGGA [13, 117]. All the
formulæ reported above are valid within PBCs. This machinery is implemented
in Quantum ESPRESSO as the QEHeat package [117].

Once the energy flux is available, be it through Eq. (5.42) for atomistic coarse-
grained models, or Eq. (5.52) in the case of first-principle simulations, it can be
analyzed according to the techniques described in Ch. 2 to obtain an estimate
of the thermal conductivity.
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A
proper account of heat dissipation is key in the design and actual
production of batteries: in fact, an excessively low thermal conduc-
tivity may lead to overheating, especially during fast charging cycles,

which may itself prompt catastrophic incidents, such as melting or explosion.
In light of this, thermal runaway can be rightly considered the key scientific
problem in battery safety research (verbatim from Ref. 118). In addition, thermal
dissipation governs energy saving and scavenging: a compromise must be
established between minimizing heat losses while at the same time maximizing
electric flow during the charging cycle.

In spite of this, a relatively small number of experimental studies on heat
dissipation in fast ionic conductors have been reported in the past years, if
compared to the extensive literature on electric transport. There exist experi-
mental measurements performed on superionic materials such as α-LiIO3 and
Li2B4O7 [119, 120]; sulfates Li2SO4 and Ag2SO4 [121]; the quasi-1D material
LiCuVO4 [122]; lithium aluminum germanium phosphate glass–ceramics com-
pounds of the form Li1+xAlxGe2−x(PO4)3 [123]; yttrium-stabilized lithium
zirconate phosphates, of the form Li1+x+yYxZr2−x(PO4)3 [124]. Of these, only
the last two classes of materials can be directly used as SSEs. From the the-
oretical standpoint, even fewer works are to be found. Even though some
models that account for the contribution of the diffusing ions to thermal trans-
port were introduced in the past decades [125, 126], a thorough study of heat
dissipation in SSEs is still missing. The few numerical calculations that can
be found in the literature, moreover, are based on lattice-dynamics methods
that, by construction, assume that, at all times, atoms are bound to be close to
fixed equilibrium positions: in other words, such methods do not include the
effect of diffusing ions, which are present in SSEs and are responsible for the
nonzero ionic conductivity of such materials. This limitation, stemming from
a phonon(/normal-mode)-based approach to heat transport, can be naturally
and easily bypassed through the GK theory of linear response which, as seen in
Ch. 1 and Ch. 5, holds for solids with anharmonic interactions of any strength,
as well as for diffusing systems, such as liquids and superionic solids.

The content of this Chapter is based on Ref. 36, a work I coauthored with my
Ph.D. advisors Stefano Baroni and Federico Grasselli about heat transport in the
SSE candidate Li3ClO. Sec. 6.1 contains an adaptation of the published article
with slight modifications in the text and in the presentation of the figures, in
order for it to fit in with the rest of the thesis.

6.1 temperature and vacancy-concentration dependence of

heat transport in li3 clo

To the best of our knowledge, there exists only one calculation of the thermal
conductivity, κ, of Li3ClO, reporting κ = 22.49 W m−1 K−1 at ambient temper-
ature, i.e., more than one order of magnitude larger than the standard value
found in ceramic SSEs [123, 124]. Nonetheless, this seemingly promising result

93
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is obtained via a rather crude approximation to the BTE, namely the SM, known
since its development to have a satisfactory agreement with the experiments
(i.e., within ±20%) only for exceedingly simple materials, such as the rare-gas
solids, while it is, in general, poorer for other systems [112]. Furthermore,
the SM totally neglects the effects of defects or vacancies and, just like any
BTE-based model, it cannot handle the spurious contributions to heat transport
induced by the diffusion of Li ions.

We first address the structural and mechanical properties of Li3ClO, along
with their temperature dependence, by means of state-of-the-art ab initio cal-
culations based on DFT. Leveraging these results, we then explore the thermal
transport of Li3ClO by calculating its thermal conductivity within

i. the SM;

ii. the BTE;

iii. the GK theory and classical EMD simulations using both classical FFs and
machine-learnt interatomic potentials trained on DFT data.

Our results show that the presence of LiCl divacancies in nonstoichiometric
systems, though increasing the Li-ion diffusivity, strongly reduces the thermal
conductivity—and thus heat dissipation within the electrolyte—with respect to
stoichiometric conditions. We find that the dependence of κ on temperature
is also reduced, thus making it potentially easier to engineer devices that can
safely and efficiently operate in a wide range of temperatures.

The lithium-rich antiperovskite SSE Li3ClO has emerged in the last decade as
a promising candidate for all-solid-state lithium-metal batteries: it is superionic
at room temperature with a large ionic conductivity; it is environmentally
friendly and made of light and cheap elements; it is not flammable and has
demonstrated a good cyclability [127]. Furthermore, its wide electronic band
gap leads to a very low electronic conductivity and a large electrochemical
stability window [128]. Finally, it is also chemically stable against Li-metal
formation, which would negatively affect the battery performance via dendritic
short circuits.

Before addressing thermal transport (Sec. 6.1.5), we investigate the struc-
tural (Sec. 6.1.1), electronic (Sec. 6.1.2), vibrational (Sec. 6.1.3), and mechanical
(Sec. 6.1.4) properties of Li3ClO, along with their temperature dependence, and
we extensively compare our ab initio results with the existing literature. These
results are not only preliminary to the calculation of transport coefficients, but
they also make it possible to draw some general conclusions on the deployment
of Li3ClO for mass production of SSE-based batteries: ductility, stiffness, the
magnitude of the mismatch in the lattice constants or in the thermal expansion
coefficients between the SSE and the electrodes govern the extent and amplitude
of local stresses, particularly at the SSE-electrode junction, and affect the overall
performance of Li3ClO in a real device by either hindering or inducing cracks,
mechanical instabilities, or spurious electric fields.

6.1.1 Structural properties

The crystal structure of Li3ClO has the Pm3m perovskite space group. The
dependence of the lattice parameter on temperature is obtained in the Quasi-
Harmonic Approximation (QHA) [129], using the vibrational frequencies com-
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Figure 6.1: QHA structural parameters. Lattice parameter (blue, left y-label) and linear
thermal expansion coefficient (red, right y-label) as a function of temperature.

puted as explained in Sec. 6.1.3 and the Murnaghan equation of state [130].
The resulting zero-temperature value, explicitly accounting for zero-point vi-
brational effects, is 3.91 Å, while the full temperature dependence is reported
in Fig. 6.1. The lattice parameter and thermal expansion coefficient computed
at Room Temperature (RT), with RT = 300 K, are 3.93 Å and 2.77 · 10−5 K−1,
respectively, in good agreement with the values previously obtained in other
works: Zhang et al. [131], Emly et al. [132], and Wu et al. [133] reported an
optimized lattice parameter without the zero-point of 3.85 Å, 3.90 Å, and 3.91 Å,
respectively; Braga et al. [127] provided both experimental and theoretical data
in accordance with one another, namely 3.91 Å [127, 134]. For the linear thermal
expansion coefficient, Zhang et al. [131] reported a value of 2.11 × 10−5 K−1

using molecular dynamics simulations in the isothermal-isobaric (NpT) en-
semble, while Wu et al. [133] reported α = 3.12 × 10−5 K−1 within the QHA,
in good agreement with our calculation. Braga et al. [127] found the larger
value 4.65 × 10−5 K−1 from the slope of the lattice parameter as a function of
temperature.

6.1.2 Electronic band structure

The electronic band structure of Li3ClO (Fig. 6.2) exhibits a direct band gap of
6.46 eV at the M in the BZ at the HSE06 level of theory, in good agreement with
the values obtained by Wu et al. [133] (6.46 eV) and by Emly et at. [132], thus
making Li3ClO a wide band-gap insulator and preluding good electrochemical
stability.

6.1.3 Vibrational properties

The phonon dispersion along high-symmetry lines in the are plotted in Fig. 6.3
together with the corresponding Vibrational Density Of States (VDOS). Notice
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Figure 6.2: Electronic band dispersion of Li3ClO plotted along high-symmetry lines in
the BZ. Grey-shaded areas represent lines that lay on the BZ border.

the presence of a large Longitudinal Optical-Transverse Optical (LO-TO) split-
ting in the infrared-active mode at the center of the BZ (Γ point), due to the
non-analytic behavior of the dynamical matrices induced by the long-range
(Coulomb) tails of the inter-atomic interactions. It has been pointed out that
a proper account of these tails is essential not only for a correct qualitative
description of the vibrational spectrum in the optic region but also for an
accurate evaluation of the thermal conductivity, which is more sensitive to the
low-frequency portion of the spectrum [135]. The effect of a proper account of
the LO-TO splitting on the value of the lattice thermal conductivity of Li3ClO is
examined in Sec. 6.1.6.

The stability at zero temperature of this material has been debated, with
different authors claiming the system to be either unstable [136] or stable [133]:
methods are employed, the authors find soft modes (imaginary frequencies) at
the M and R points in the BZ using a 6 × 6 × 6 supercell. Since the instability
is larger when a smaller (3 × 3 × 3) supercell is used, the occurrence of lattice
instabilities may be an artifact due to lack of convergence even when a supercell
as large as 6 × 6 × 6 unit cells is used in finite-difference calculations. Using
perturbation theory at the zone-center of a supercell,1 the authors of Ref. 133

do not find any dynamical instabilities. Our calculations, performed within
DFPT, confirm the dynamical stability of this system.

6.1.4 Temperature dependence of the mechanical properties

Mechanical properties can have a deep influence on the fabrication of any device
and, in particular, of alkali-ion solid-state batteries. An important aspect is that
there must be good contact between the electrolyte and the electrodes during
the activity of a device. A good SSE candidate must be able to sustain large

1 This by construction does not include Nonanalytic Contributions (NAC).
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Figure 6.3: Phonon dispersion of Li3ClO plotted along high-symmetry lines in the BZ
and respective density of states. Grey-shaded areas represent lines that lay on
the BZ border. The LO-TO splitting at Γ is evident.

strains [137] to prevent the interfaces with cathode and anode to deteriorate in
response to the deformation thereof. In this light, excessive stiffness is a feature
to be avoided. Another element to consider is the problem of Li deposition at the
interface with the cathode, and the subsequent dendrite formation [138], which
affects especially liquids. A solid material may partially overcome this obstacle
by fine-tuning elastic properties such as the shear modulus and Poisson’s
ratio [139], even if it has been reported that dendrite growth can still occur for
other reasons [140].

The three elastic moduli, namely the bulk modulus B, the Young modulus
E, and the shear modulus G, measure how a material responds to volumet-
ric, tensile, and shear stress, respectively; Poisson’s ratio, ν, measures the
strain response in a direction perpendicular to an applied strain; Pugh’s ra-
tio, B/G, is related to how materials are ductile as opposed to brittle. The
Chung-Buessem [141] elastic anisotropy index, AG, and the universal elastic
anisotropy [142], AU , provide a measure to quantify the extent of anisotropy
in the elastic response of a crystal and are obtained from the Voigt and Reuss
estimates of B and G [142]. The Grüneisen parameter γ is the variation of pres-
sure with thermal energy density at constant volume [143]. All these quantities
are computed as a function of temperature within the QHA. The isothermal
and adiabatic elastic constants (Cij) as a function of temperature are computed
within the QSA.

The temperature dependence of these quantities is shown in Fig. 6.4. Their
values at RT and at T = 0 are reported in Table 6.1, together with results already
available in the literature [131, 137]. While our results at T = 0 are comparable
with the ones found in other works, at the working temperature the quantities
have lower values, in accordance with the fact that the material becomes softer
when the temperature is increased. In particular, the temperature dependence



98 introduction

100 300 500
T (K)

50

75

M
od

ul
i(

G
Pa

)

B

E

G

100 300 500
T (K)

0.19

0.20

Po
is

so
n

ra
ti

o

100 300 500
T (K)

1.25

1.30

Pu
gh

’s
ra

ti
o

100 300 500
T (K)

0

1

G
rü
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Figure 6.4: Temperature dependence of the macroscopic mechanical properties of Li3ClO.
The elastic constants are computed at the Quasi-Static Approximation (QSA)
level; solid lines are isothermal elastic constants, while dashed lines are
isoentropic. All the other quantities are computed according to the QHA.

of B and G entails that Pugh’s ratio is also decreased, hinting at a greater
brittleness [144] of Li3ClO than previously predicted [133, 137]. Furthermore,
the computed value of AG is higher than what is found in the literature,
suggesting that Li3ClO is slightly more anisotropic than previously thought;
this is confirmed by the value of AU , which allows a broader comparison with
other materials.

Table 6.1: Macroscopic mechanical properties of Li3ClO at RT. For comparison, we report
data from other calculations done at zero temperature.

This work (RT) This work (T = 0) Ref. 137 Ref. 133

B (GPa) 46.01 48.87 55.70 51.36

E (GPa) 84.86 88.65 99.70 91.93

G (GPa) 35.58 37.01 41.50 38.25

ν 0.19 0.20 0.20 0.20

B/G 1.29 1.32 1.35 1.35

AG 0.024 0.020 — 0.01

AU 0.24 0.20 — —

γ 1.30 1.86 — —

C11 (GPa) 82.32 87.47 102.90 93.68

C12 (GPa) 27.85 29.57 32.10 30.20

C44 (GPa) 42.55 43.62 46.10 43.33
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6.1.5 Thermal conductivity

Thermal conduction plays a key role in the quest for promising SSE for battery
production. A high value of thermal conductivity is a favorable quality for a
SSE candidate to have, since efficient heat dissipation allows the manufacture
of safer batteries that do not overheat. A quite high value κ = 22.49 Wm−1K−1

was previously reported [133]. This result was obtained from SM [112], which
is based on a rather crude approximation of the BTE [145–147]. At the same
level of theory, we obtain 16.55 W m−1 K−1 that is 26% lower and it is likely to
be closer to a realistic value. Yet, the coarseness of the approximation makes
it impossible to draw conclusions: as already mentioned, the SM is known,
since its formulation dating back to the 1960s, to be fairly accurate (to within
20%) only for simple systems such as rare-gas crystals, while it grossly fails
for more complex materials. The main issue is to be addressed to the cubic
dependence of κ on the Debye temperature ΘD of the crystal, which itself
depends dramatically on the parameters used to estimate it. For instance, if the
lattice parameter is reduced by less than 2%, i.e., from the value we compute
(3.91 Å) to a value found in the literature [131] (3.85 Å), ΘD increases by 4%
(from 630 K to 653 K) and κ by 12% (from 16.6 W m−1 K−1 to 18.5 W m−1 K−1).
This and further approximations in the model—it is for instance insensible to
the crystal structure of the material—makes it impossible to produce reliable
estimates for κ within the SM. For a more realistic calculation, the BTE must be
treated in a detailed fashion relying on the explicit calculation (and inversion) of
the phononic scattering-rate matrix to obtain the out-of-equilibrium occupation
numbers of the phonons.

As reviewed in Sec. 5.3, the RTA approximates the thermal conductivity
of a crystalline solid neglecting both the off-diagonal part of the scattering
matrix and inter-band contributions. The accuracy of the RTA for the FF model
of Li3ClO is tested against the QHGK, the full-BTE, and their combination (i-
QHGK) [108]; the relative difference between the RTA and the other two methods
is shown in the left panel of Fig. 6.5: at low temperature (i.e. T ⪅ 200 K)
off-diagonal scattering is important, and the RTA underestimates the full-BTE

result by up to 20%. At higher temperatures (i.e. T ⪆ 300 K) intra-band effects
emerge and induce a relative deviation of the QHGK result with respect to RTA

proportional to T. This means that, at RT or above, the RTA alone fails to properly
capture the behavior of thermal conductivity. For the sake of comparing ab initio
results, computed via genuine third-order perturbation theory as implemented
in the D3Q code [148] distributed with Quantum ESPRESSO, with the FF and the
SM ones, the RTA thermal conductivity as a function of temperature is shown
in the right panel of Fig. 6.5. Since ab initio and FF are in good agreement, this
suggests that the chosen classical FF is suitable for investigating the thermal
transport properties of Li3ClO.

As recently pointed out [149, 150], higher-order scattering events can dras-
tically reduce the value of the lattice thermal conductivity; therefore, we test
the effect of the inclusion of 4-phonon scattering into the computation of κ.
As shown in Fig. 6.6, 4-phonon scattering is found to have a major role in
determining the value of the lattice thermal conductivity, being able to reduce κ

of at least 15% at RT, the reduction being larger for larger temperatures. Details
on the calculation can be found in Sec. 6.1.6.
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Figure 6.5: (left) Relative difference between the RTA and three different approaches:
the full solution to the linearized BTE (full-BTE); the QHGK method; the
QHGK result with the full-BTE for the intra-band terms (i-QHGK; cf Sec. 5.3
and Ref. 108, from which the data to generate this plot are taken). (right)
Lattice thermal conductivity of Li3ClO computed with different methods. RTA
calculations include only 3-phonon scattering events.

These facts—the RTA being not enough at high temperature, and higher-order
anharmonic effects being nonnegligible—call for a method able to include
both higher-order scattering and inter-band effects: EMD simulations together
with GK linear response theory (cf Ch. 1) naturally include all the orders of
interactions and the full scattering matrix and are therefore a fitting candidate
for this role.2

The choice of EMD comes with an additional benefit that is of fundamental
importance for Li3ClO: since fast-ion conduction in SSE materials is due to
diffusing defects, lattice-dynamical methods are inadequate, as they require
the atoms to have fixed equilibrium positions. EMD simulations are not subject
to this prerequisite and, therefore, they allow us to access thermal transport in
the diffusive regime where fast ion diffusion is mediated by vacancy hopping.

According to the comprehensive studies of Mouta et al [151] and Lu et al [152],
LiCl Schottky pairs—divacancies generated by the removal of neutral groups
of atoms that are deposited at the surface of the material—are more likely to
appear and give rise to high Li-ion mobility than both other Schottky (Li2O or
Li3ClO vacancies) and Frenkel (Li vacancies and interstitials) defects. Thus, the
nonstoichiometric systems we study are of the form Li3−xCl1−xO, with x the
concentration of vacancies that varies between 0 (perfect crystal) and 0.1.

The classical FF described in Sec. 6.1.6 is used to carry out the EMD simula-
tions and sample the energy flux, which in turn is employed to compute κ. To
validate this, classical FFs calculations are compared to estimates of κ extracted
from a Car-Parrinello AIMD simulation, on which the MUB energy flux is com-
puted according to Ref. 13 as implemented in Ref. 117; and a model obtained
via machine-learning techniques. The ab initio GK thermal conductivity requires
a computationally demanding MUB energy flux (cf Sec. 5.6.1; it requires roughly

2 In EMD phonon occupations obey the equipartition law, while in a lattice-dynamical approach
quantum effects can be easily accounted for. This leads to an underestimation of thermal conductivity
in EMD with respect to anharmonic lattice dynamics at the same level of the theory. This is unimportant
in the temperature of interest here. Further details can be found in Sec. 6.1.6.
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Figure 6.6: Effect of the inclusion of 4-phonon scattering. (left) The 4-phonon scattering
rates—shown here are at RT—are non-negligible with respect to the three-
phonon contribution. (right) The lattice thermal conductivity is consequently
reduced.

twice the computational time of the AIMD simulation the trajectory is sampled
from): therefore, a single calculation at RT is carried out for the sake of checking
the accuracy of the FF. We obtain κMUB = 6.5 ± 1.0 W m−1 K−1 at T = 306 K on
a 4 × 4 × 4 supercell of crystalline Li3ClO, in close agreement with results from
classical FFs (see below).

As for the machine learning model, a Deep Potential-Smooth Edition Neural
Network (NN) [114, 153] is trained on a 3 × 3 × 3 supercell of Li3ClO with a
LiCl pair removed. Details on the NN potential, in general, can be found in Ap-
pendix. B, while details on the specific model for Li3ClO and its validation can
be found in Sec. 6.1.6. NN-based EMD simulations are carried out for x = 0 and
x = 0.1 across the whole temperature range of interest. Thermal conductivity
for the NN model is computed using the methodology developed in Ref. 33. In
Fig. 6.7 we show a comparison between the GK thermal conductivity obtained
with classical FF and the NN-potentials for these two systems. Results from NN

simulations are in close agreement with the ab initio ones available at room
temperature and, remarkably, with those obtained from classical FFs, over a
broad temperature range, thus further validating the accuracy of the latter for
the purposes of the present work.

Having thoroughly verified that the classical FFs closely mimic ab initio-
quality results, we use it to perform a systematic analysis of the thermal
transport properties of Li3ClO in a broad range of temperatures and vacancy
concentrations. EMD simulations are carried out on 10 × 10 × 10 supercells.
The desired vacancy concentration is obtained by randomly removing the
corresponding number of LiCl pairs from the supercell by means of the Atomsk

code [154]. For each temperature, we employed the temperature-dependent ab
initio lattice parameter computed in Sec. 6.1.1 in the QHA (independently of
vacancy concentration). In the equilibration phase, the canonical ensemble is
sampled via the Bussi-Donadio-Parrinello thermostat [155] for 200 ps. At this
point, the thermostat is removed and a microcanonical (NVE) production run
of 5 ns is carried out to collect the desired data.
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Figure 6.7: GK thermal conductivity of Li3ClO. Results are obtained from EMD simula-
tions with the classical FFs and with the NN model for the perfect crystalline
system (x = 0) and the highest concentration (x = 0.1) of vacancies we
investigate. The 1/T fit of the high-temperature behavior of the FFs data at
x = 0 is shown in orange. The yellow star is the ab initio GK result at RT. Error
bars represent standard deviations.

The dependence of the thermal conductivity on T and x is shown in Fig. 6.8.
The numerical data measured in the EMD simulations are then fitted to a
simple function, Eq. (6.2), as described below. The functional form of such
dependence should account for the RTA asymptotic 1/T behavior (Eucken’s
law) [156], holding for crystals (x = 0) at large temperatures, but should
also be able to take into account the breakdown of crystalline order when
vacancies are present (x ̸= 0). The presence of vacancies, while providing
access to Li-ion conduction channels, on shorter time scales establishes an
effective local disorder, that would result in a contribution to the thermal
conductivity describable at different levels of accuracy [104, 106, 110, 157]. The
simplest significant approach is to consider the AF model (cf Sec 5.4) of thermal
conduction in harmonic glasses, where the thermal conductivity, Eq. (5.32), for
high temperature takes the form

κAF ∼ kB
Ω2 ∑

µ
Dµ +O

(
1

T2

)
, (6.1)

i.e., the leading order is constant in temperature. The quantities Dµ are
temperature-independent modal diffusivities. Notice that EMD with classical
nuclei sample, by definition, classical distributions: the occupation of a mode
of energy h̄ω is thus the first order expansion of Bose-Einstein (BE) distribution,
nµ(T) ≈ kBT/h̄ωµ, and the heat capacity per mode reduces to the Dulong-Petit
result, Cµ ≈ kB. These things considered, we take a fitting function for κ(T, x)
of the form

κfit =
CEuck

T
+ CAF, (6.2)
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Figure 6.8: GK thermal conductivity as a function of temperature for different values of
the concentration of vacancies, x. The solid lines are fits performed according
to Eq. (6.2). The insets show the fitting parameters, CEuck and CAF, in units of
W m−1 and W m−1 K−1, respectively, as a function of x. The fitting parameters
are also reported in Table 6.2. Error bars represent standard deviations.

where CEuck(x) and CAF(x) are vacancy-dependent fitting parameters, incor-
porating both the Eucken and the AF asymptotics. Their values are reported in
Table 6.2 and shown in the inset of Fig. 6.8. CAF has a small value in the x = 0
case: this is due to the fact that the perfect crystal has almost completely the
Eucken behavior, the only AF-like contribution being due to inter-band effects.
As it can be seen from the left panel of Fig. 6.5, the inter-band contribution
is linear in T with respect to RTA, which is compatible to adding a (small)
constant term to the Eucken law3. For higher x, the AF contribution grows
sensibly. It is also comforting to notice that CEuck(x) vanishes as x increases,
while CAF(x) saturates. To have a clear picture of the relative importance of
these contributions, we explicitly report, in Fig. 6.9, the decomposition of κ

vs T into the Eucken and AF terms at the different vacancy concentrations
inspected in the EMD simulations. This picture suggests that, at least in this
class of SSE, ionic diffusion may contribute very little to κ, which is instead
dominated by the lattice component at low temperatures, and by disorder at
high temperatures. This was recently investigated experimentally in Ref. 158

for Ag+ fast-ion conductors.
Our GK calculations show that the thermal conductivity strongly depends

on the presence of defects: in the considered temperature range, even a few-%
concentration of defects is able to almost halve the κ with respect to its value
for the perfect crystal. This behavior is particularly evident at low temperatures,
due to the suppression of the Eucken law when x increases. Nonetheless, when
compared to other candidates for battery-oriented SSE, Li3ClO is characterized

3 In fact, if the relative difference between the QHGK and RTA results is linear, one has
κQHGK = κRTA(1 + AT), for some constant A > 0. Since κRTA ≃ B/T at high temperature, with
B > 0, the net behavior is κQHGK = B/T + AB, which is of the same form of Eq. (6.2).
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Figure 6.9: Eucken and AF contributions to the fit of Eq. (6.2) on the GK thermal conduc-
tivity data.

by a relatively high thermal conductivity and meets the requirements for safe
heat dissipation and management.

6.1.6 Technical and computational details

This Section contains convergence tests and technical details supporting the
results presented in Sec. 6.1

6.1.6.1 Convergence of the third-order IFC with the supercell

Figure 6.10: Convergence of the third-order IFC with respect to the number of supercell
size. (left) Triangle plots for different supercell sizes. (right) Relative difference
in the third-order IFC norms with respect to the reference one with a 8 × 8 × 8
supercell. The green-shaded area indicates values below 1%.

The Interatomic Force Constant (IFC) matrices are computed via finite dif-
ferences on a supercell. The second order IFC is calculated inexpensively on a
6 × 6 × 6 supercell. The choice of the supercell for the third-order IFC changes
substantially the computational cost of the calculations and requires more
care. The third-order IFC is computed as a function of the supercell size. This
relationship is studied via the so-called “triangle plot”. The triangle plot for
the third-order IFC computed with 2, 4, 6, and 8 unit cells in each dimension is
shown in Fig. 6.10. In the horizontal axis there is the perimeter of the triangle
whose vertices are positions of the three atoms involved in each block in the
third-order IFC matrix, a block being the 3 × 3 × 3 tensor ∂3U

∂ri∂ry∂rk
. In the vertical
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axis, there are the matrix norms of each block. A supercell of size 6 × 6 × 6 is
sufficient to have a third-order IFC converged to ≈ 1%.

6.1.6.2 Convergence of the IFC with the number of nearest neighbor shells

Figure 6.11: Convergence with respect to the number of n.n. shells. (left) Triangle plots
for different values of the number of n.n. shells; (right) relative difference (in
Frobenius norm sense) in the lattice thermal conductivity from third-order
IFCs computed with different n.n. shells. The green-shaded area indicates
values below 1%.

The dependence on the number of included nearest neighbor (n.n.) shells
of the third-order IFC is studied both via the triangle plot and by directly
computing the thermal conductivity tensor, κ, on a coarse 12 × 12 × 12 q-
points mesh. The triangle plot for the third-order IFC computed with 6 × 6 × 6
supercell is shown in the left panel of Fig. 6.11, while on the right panel there is
the relative change in κ for a given number of n.n. shells, denoted by κnns, with
respect to κ0, i.e. the thermal conductivity tensor obtained with the highest
number of n.n. shells available. Frobenius matrix norms are employed to take
into account the off-diagonal elements. A number of n.n. shells equal to 9 is
sufficient to converge the thermal conductivity tensor well below 1%.

6.1.6.3 Convergence of the thermal conductivity with the number of q-points

The convergence of κ with the number of Nq of q-points is tested by computing
the thermal conductivity tensor for different reciprocal space meshes for differ-
ent temperatures. The results are then analyzed in terms of the relative change
in κ for a given Nq, denoted by κNq , with respect to κ0, i.e. the thermal conduc-
tivity tensor obtained with the highest Nq available. Convergence is deemed
satisfactory when the change is consistently lower than 1%. From Fig. 6.12, one
can see that a mesh of 20 × 20 × 20 q-points is sufficient to provide converged
results.

6.1.6.4 4-phonon contributions

4-phonon calculations are carried out via the Fourphonon code [159], an exten-
sion to ShengBTE. Since 4-phonon calculations are quite expensive, scattering
rates and thermal conductivity for three- and 4-phonon processes are per-
formed on a coarse mesh of 10 × 10 × 10 q-points with IFCs coming from a
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Figure 6.12: Convergence with respect to the number of q-points.

4 × 4 × 4 supercell, and with fourth-order IFCs that includes contributions from
the first n.n. shell only. The scale parameter for Gaussian broadening is reduced
to 0.1 from the default value of 1.0.

6.1.6.5 Effect of the inclusion of NAC on thermal conductivity

The effect of the inclusion (or lack thereof) of NAC to the dynamical matrix
is addressed in the left panel of Fig. 6.13. The exclusion of NAC produces a
variation of up to 5% to the value of κ in the temperature range of interest.

6.1.6.6 Equipartition vs. BE statistics

In the quantum regime, phonons obey the BE statistics, while in the classical
regime they obey the equipartition law. Since the difference between the two
occupations is always negative at finite T, at the same level of the theory,
the thermal conductivity computed with equipartition will be lower than
the one computed with BE distribution. The importance of this difference
Li3ClO is checked by modifying ShengBTE to allow occupations according to
the equipartition law. The results are shown in the right panel of Fig. 6.13. As
expected, being the classical occupation the high-temperature expansion of the
BE distribution, the difference is lower at higher temperatures. This contribution
alone, around 5% in most of the temperature range, is not enough to explain
the difference between the BTE-based and EMD-based values of κ.

6.1.6.7 Vacancy-dependent GK thermal conductivity

GK thermal conductivity from FF based EMD simulations are fitted for each
value of the vacancy concentration x. The fitting function is Eq. (6.2). The
values of the fitting parameters CEuck and CAF, obtained via standard linear
regression of log(κ) versus log(1/T), are shown in Table 6.2.
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Figure 6.13: (left) Relative difference in thermal conductivity including versus excluding
NAC. (right) Comparison between lattice thermal conductivity computed
with BE occupations and with the equipartition law. In the inset, their relative
difference is plotted as a function of temperature.

Table 6.2: Values of the fitting parameters CEuck (in W m−1) and CAF (in W m−1 K−1) in
Eq. (6.2).

x = 0 x = 0.005 x = 0.02 x = 0.05 x = 0.1

CEuck 2300 ± 120 1560 ± 110 1010 ± 120 590 ± 70 320 ± 90

CAF 0.2 ± 0.3 1.5 ± 0.3 2.1 ± 0.3 2.1 ± 0.2 1.9 ± 0.3

6.1.6.8 Validation of the NN model

A Deep Potential-Smooth Edition NN model [114, 153] (cf App. B) is trained on
a set of AIMD simulations at different temperatures, enriched with additional
configurations chosen by the dpgen software [115]. The system used for the
training of the NN is a 3 × 3 × 3 supercell of Li3ClO with a LiCl pair removed.
The root mean squared errors of the trained model are 0.11 ± 0.01 meV/atom
and 15 ± 3 meV/Å for the energy and the forces, respectively. The uncertainty
on the root-mean-square errors is their standard deviation over four different
models differing by the choice of the initial random seed.

The locality test [160] is performed to assess the influence of long-range
interactions on the NN model, not explicitly considered here. For a given atom,
the atoms within a chosen radius (in PBCs) from it are kept fixed. A random
perturbation is applied to the positions of all the other atoms placed outside the
sphere. The forces acting on the atom at the center of the sphere are collected
for several different random perturbations, computed both with the NN model
and ab initio. The average deviation between the NN and ab initio forces, defined
as σf =

√
⟨|fAI − fNN |2⟩, quantifies the dependence of the atom’s properties

on its neighbors; hence the name of locality test. This procedure is carried out
for different values of the cutoff and for each atomic species in the system.
The results obtained with a 4 × 4 × 4 supercell are shown in Fig. 6.14. Force
deviations are at most compatible with the errors on the training set and
exhibit a mildly decreasing dependence on the cutoff of the sphere. The error is
computed as the standard error on the average of 10 equivalent configurations.
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Figure 6.14: (left) Average force deviations for the locality test. The error bars represent
the standard deviation of the force deviation sample. (right) Phonon density
of states for different supercell sizes compared with the ab initio result.

This is consistent with the assumption that the local environment is dominant
in determining the properties of an atom and validates the model we employ.
Phonon density of states is computed and compared to the ab initio results for
different supercells. The results are satisfactory and are shown in Fig. 6.14.



C O N C L U S I O N S

I
n this thesis, I have discussed some topics relative to charge and heat

transport in ionic conductors. The role of topology in reconciling
Faraday’s first law of electrolysis—i.e., that charges associated with

ions in motion are whole numbers—to a quantum-mechanical description of
electronically insulating fluids has been addressed. It has been shown how,
according to the topology of paths in the space of all the coordinates of a
system of atoms under periodic boundary conditions, called the atomic config-
uration space, one can discriminate among different kinds of ionic conductors.
When strong adiabaticity holds, ionic transport is trivial: atoms of the same
species have the same oxidation state, which is the integer charge adiabatically
displaced by an atom along a macroscopic distance. Ionic conductivity has the
same formal expression as the one of a classical fluid of point charges. If strong
adiabaticity only holds on subdomains of the atomic configuration space, the
subdomains being separated by regions where adiabaticity breaks, atoms of the
same species can display different oxidation states, depending on the particular
subdomain. This case is exemplified by ionic solids where like atoms are found
in different chemical environments, and passing from one environment to the
other requires passing from a degenerate configuration. Finally, strong adia-
baticity is completely violated when the atomic configuration space features
regions where the electronic gap is closed that can be encircled by adiabatic
paths. By Thouless’ theorem, this implies the possibility of pumping integer
charges without a net mass displacement. Ionic transport is in the nontrivial
regime, and charge transport is uncorrelated from mass transport.

Another fundamental transport property of ionic conductors, heat conduc-
tivity, has been investigated in the case of the solid-state electrolyte Li3ClO.
The thermal conductivity of Li3ClO has been computed through anharmonic
lattice dynamics and equilibrium molecular dynamics simulations performed
with semi-empirical and machine-learned force fields. It has been shown how
the presence of vacancies, the mediators of ionic diffusion in solid-state elec-
trolytes, sensibly affects the value of thermal conductivity. The net effect of
the existence of diffusing vacancies is to introduce a glass-like contribution to
the thermal conductivity, which increases with the vacancy concentration: the
higher the concentration of vacancies, the larger the effect, up to a point where
the glass-like contribution saturates to some value. At the same time, the crystal-
like contribution to thermal conductivity decreases with the concentration of
vacancies as the system becomes less and less ordered.
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Part IV

A P P E N D I X

There are only two perfectly
useless things in this world.
One is an appendix, and the other
is Poincaré.

Georges Clemenceau

referring to his political rival
Raymond Poincaré, as quoted in

Paris 1919: Six months that changed
the world, by Margaret MacMillan.





AD E TA I L S O N C E P S T R A L A N A LY S I S

I
n this Appendix I will present detailed calculations needed to arrive

at the exact expressions for the expectation value and variance of the
cepstral estimator.

Let us consider the cepstral expansion of S(ω):

Cn =
1
N

N−1

∑
k=0

log(S(ωk)) e2πikn/N , (A.1)

with Cn the cepstral coefficients. The zero-frequency value of log(S(ω)) is
obtained inverting the discrete Fourier transform in Eq. (A.1) as

log(S(0)) = C0 + 2

N
2 −1

∑
n=1

Cn + C N
2

. (A.2)

Since we only have an estimate of the true PSD, we can only access an estimate
of the cepstral coefficients, given by

Cn =
1
N

N−1

∑
k=0

log(Sk) e2πikn/N ,

=
1
N

N−1

∑
k=0

log(S( fk)) e2πikn/N +
1
N

N−1

∑
k=0

log(ξk) e2πikn/N

≡ Cn + µn

(A.3)

Since the periodogram is even in k, there are only N/2 independent terms in
the sums in Eq. (A.3), and the latter can be written as

Cn =
1
N

log(S(0)) + log(ξ0) + 2

N
2 −1

∑
k=1

log(S( fk)) cos(2πkn/N)+

+2

N
2 −1

∑
k=1

log(ξk) cos(2πkn/N) + (−1)n log(S(ωN/2))+

+(−1)n log(ξN/2)] ,
(A.4)

the stochastic part being

µn =
1
N

log(ξ0) + 2

N
2 −1

∑
k=1

log(ξk) cos(2πkn/N) + (−1)n log(ξN/2)


(A.5)

The probability distribution of Cn does not have a closed expression, but its
moments are readily computed from the Cumulant Generating Function (CGF)
of µn:

Kµn (s) = log ⟨esµn ⟩ , (A.6)
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where s is an auxiliary variable. By plugging Eq. (A.5) into Eq. (A.6) one obtains

Kµn (s) = log

〈
exp

 s
N

 log(ξ0)+

+2

N
2 −1

∑
k=1

log(ξk) cos(2πkn/N) + (−1)n log(ξN/2)

〉 (A.7)

Since, for different k, the random variables ξk are independent from one another,
one gets

Kµn (s) = log ⟨exp (s log(ξ0)/N)⟩+

+

N
2 −1

∑
k=1

log ⟨exp [2s log(ξk) cos(2πkn/N)/N]⟩+

+ log ⟨exp ((−1)ns log(ξN/2)/N)⟩

= log
〈

ξs/N
0

〉
+

N
2 −1

∑
k=1

log
〈

ξ
2s cos(2πkn/N)/N
k

〉
+ log

〈
ξ
(−1)ns/N
N/2

〉
(A.8)

If we define

τk(s) =


s/N, if k = 0

2s cos(2πkn/N)/N, if k ̸∈ {0, N/2},

(−1)ns/N, if k = N/2

(A.9)

Eq. (A.8) becomes

Kµn (s) = log
〈

ξ
τ0(s)
0

〉
+

N
2 −1

∑
k=1

log
〈

ξ
τk(s)
k

〉
+ log

〈
ξ

τN/2(s)
N/2

〉
(A.10)

=
N/2

∑
k=0

log
〈

ξ
τk(s)
k

〉
(A.11)

whose value is [161]

Kµn (s) =
N/2

∑
k=0

log

[(
2
ν

)τk(s) Γ( ν
2 + τk(s))

Γ( ν
2 )

]
. (A.12)

The mean and variance of µn are computed as

⟨µn⟩ =
∂Kµn

∂s

∣∣∣∣
s=0

, (A.13)

Var µn =
∂2Kµn

∂s2

∣∣∣∣∣
s=0

. (A.14)

which yield the result

⟨µn⟩ = δn0λν = δn0 (ψ(ν/2)− log(ν/2)) (A.15)

Var µn =
ψ′( ν

2 )

N
, (A.16)
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where ψ(x) is the digamma function, i.e. the logarithmic derivative of the Euler
Gamma function [27].

Analogous calculations lead to the statistical properties of L⋆
0 , i.e.

L⋆
0 = C0 − λν + 2

P⋆−1

∑
n=1

Cn

= C0 + 2
P⋆−1

∑
n=1

Cn + µ0 − λν + 2
P⋆−1

∑
n=1

µn

= C0 + 2
P⋆−1

∑
n=1

Cn +M⋆
0 ,

(A.17)

where M⋆
0 is the stochastic part of L⋆

0 . Its CGF is

KM⋆
0
(s) = log

〈
esM⋆

0

〉
= log

〈
es(µ0−λν)+2s ∑P⋆−1

n=1 µn
〉

= −sλν + log
〈

esµ0+2s ∑P⋆−1
n=1 µn

〉 (A.18)

By plugging in the expressions of µ0 and µn one obtains

KM⋆
0
(s) = −sλν + log

〈
exp

 s
N

log ξ0 + 2

N
2 −1

∑
k=1

log ξk + log ξ N
2

+

2s
N

P⋆−1

∑
n=1

log ξ0 + 2

N
2 −1

∑
k=1

log ξk cos 2πkn
N + (−1)n log ξ N

2


〉

,

(A.19)

which can be written as

KM⋆
0
(s) = −sλν + log

〈
exp

{
log ξ0

2P⋆ − 1
N

s+

+

N
2 −1

∑
k=1

log ξk

(
1 + 2

P⋆−1

∑
n=1

cos
(

2πkn
N

)) 2s
N

− log ξN/2
(−1)P⋆

N
s


〉

.

(A.20)

This time it is expedient to define

τk(s) =


2P⋆−1

N s, if k = 0(
1 + 2 ∑P⋆−1

n=1 cos(2πkn/N)
)

2s
N , if k ̸∈ {0, N/2},

(−1)P⋆−1

N s, if k = N/2,

(A.21)

in terms of which Eq. (A.20) takes the same form as Eq. (A.10), so that the
former reads

KM⋆
0
(s) = −sλν +

N/2

∑
k=0

log

[(
2
ν

)τk(s) Γ( ν
2 + τk(s))

Γ( ν
2 )

]
. (A.22)
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The average value of M⋆
0 is computed as

⟨M⋆
0 ⟩ =

∂KM⋆
0

∂s

∣∣∣∣
s=0

= −λν + λν

[
2P⋆ − 1

N
+

+
2
N

N
2 −1

∑
k=1

(
1 + 2

P⋆−1

∑
n=1

cos(2πkn/N)

)
+

(−1)P⋆−1

N


=

λν

N

2P⋆ − 3 + 4

N
2 −1

∑
k=1

P⋆−1

∑
n=1

cos(2πkn/N) + (−1)P⋆−1


=

λν

N

[
2P⋆ − 3 + 3 + (−1)P⋆ − 2P⋆ + (−1)P⋆−1

]
= 0.

(A.23)

Its variance is

VarM⋆
0 =

∂2KM⋆
0

∂s2

∣∣∣∣∣
s=0

= ψ′(ν/2)

[(
2P⋆ − 1

N

)2
+

+

N
2 −1

∑
k=1

4
N2

(
1 + 2

P⋆−1

∑
n=1

cos(2πkn/N)

)2

+
1

N2


= ψ′(ν/2)

[
4(P⋆)2 − 4P⋆ + 2

N2 +

+

N
2 −1

∑
k=1

4
N2

(
1 + 2

P⋆−1

∑
n=1

cos(2πkn/N)

)2


(A.24)

The sum over k is evaluated as follows:

S =

N
2 −1

∑
k=1

4
N2

(
1 + 2

P⋆−1

∑
n=1

cos(2πkn/N)

)2

=
4

N2

N
2 −1

∑
k=1

(
1 + 4

P⋆−1

∑
n=1

cos(2πkn/N)+

4
P⋆−1

∑
n,m=1

cos(2πkn/N) cos(2πkm/N)

)

=
4

N2

N
2
− 1 + 4

P⋆−1

∑
n=1

N
2 −1

∑
k=1

cos(2πkn/N)+

2
P⋆−1

∑
n,m=1

N
2 −1

∑
k=1

[
cos
(

2πk(n−m)
N

)
+ cos

(
2πk(n+m)

N

)] .

(A.25)
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Figure A.1: Variance of M⋆
0 as a function of the number of retained cepstral coefficients,

P, divided by N. The central limit theorem formula is valid only for small
values of P/N.

The first sum over k and n in the last line of Eq. (A.25) evaluates to

S1 =
P⋆−1

∑
n=1

N
2 −1

∑
k=1

cos(2πkn/N)

=
1
2

P⋆−1

∑
n=1

[cot(πn/N) sin(πn)− cos(πn)− 1]

=
1
4

[
3 + (−1)P⋆ − 2P⋆

]
.

(A.26)

The sum over k, n and m in Eq. (A.25) evaluates to

S2 =
P⋆−1

∑
n,m=1

N
2 −1

∑
k=1

[
cos
(

2πk(n−m)
N

)
+ cos

(
2πk(n+m)

N

)]
=

1
2

P⋆−1

∑
n,m=1

[
−2 − cos(π(n − m)) + cot

(
π(n−m)

N

)
sin(π(n − m))+

− cos(π(n + m)) + cot
(

π(n+m)
N

)
sin(π(n + m))

]
=

1
2

[
−3 − (−1)P⋆

+ 4P⋆ − 2(P⋆)2
]
+

+
1
2

P⋆−1

∑
n,m=1

[
cot π(n−m)

N sin[π(n − m)] + cot π(n+m)
N sin[π(n + m)]

]
=

1
2

[
−3 − (−1)P⋆

+ 4P⋆ − 2(P⋆)2 + NP⋆ − N
]

(A.27)
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Thus, S reads

S =
4

N2

[
N
2
− 1 + 4S1 + 2S2

]
=

4P⋆ − 2
N

+
8P⋆ − 8(P⋆)2 − 4

N2

(A.28)

Finally, Eq. (A.24) becomes

VarM⋆
0 = ψ′(ν/2)

[
4(P⋆)2 − 4P⋆ + 2

N2 +
4P⋆ − 2

N
+

8P⋆ − 8(P⋆)2 − 4
N2

]
= ψ′(ν/2)

[
4P⋆ − 2

N
+

4P⋆ − 4(P⋆)2 − 2
N2

]
(A.29)

This result differs from the one obtained in Ref. 26 using a generalized central
limit theorem [162], which is correct up to O(1/N). The comparison of the
two formulas and the numerical result is shown in Fig. A.1. In practical cases,
the approximated version is sufficient, since the value of P⋆ is virtually never
larger than ≈ 10% of the length of the time series.



BN E U R A L - N E T W O R K P O T E N T I A L S

I
n the last decade, a combination of standard electronic-structure

methods, based on DFT, and new machine-learning techniques have
allowed the construction of inter-atomic potentials possessing quan-

tum mechanical accuracy at a cost that is only marginally higher than that of
classical force fields [116, 160, 163–165]. In particular, NN potentials based on
the Deep Potential (DP) framework [153] use a local decomposition of the total
potential energy of a system of interacting atoms and divide it into atomic
contributions, thus making the method aptly to the computation of the energy
flux.

b.1 deep neural networks

The task of a NN is to approximate some function F⋆ [166]. The name “network”
recalls its construction as a composite and possibly complicated nonlinear
function. A simple one can consider a NN with three layers, represented by the
three functions F(1), F(2), and F(3), connected under composition:

F(x) = F(3)(F(2)(F(1)(x))). (B.1)

The number of layers is the depth of the network. The final layer is called the
output layer. During NN training, the function F(x) is driven to match F⋆(x):
the training data is made of (possibly noisy) examples of the target function F⋆

evaluated at different training points. Each point x is accompanied by a label
y ≈ F⋆(x) that specifies the value the NN model should reproduce, i.e. what
the output layer should yield [166]. The behavior of the other—hidden—layers
is not specified by the training data. Each hidden layer is usually specified
by an array of values, whose dimensionality defines the width of the model.
Each element of the array is called a neuron, since the whole concept of NNs

is loosely inspired by how brains work; in most NNs, their functional form
is a linear transformation defined by learned parameters followed by a fixed
nonlinear function, called activation function:

F(1)
j = σ

(
b(1)j + W(1)

i,j Ii

)
, (B.2)

where bj are called biases, Wij are the weights of the neurons, and σ is the
activation function. A general NN with L hidden layers takes the form:

y(I; W) = F(L)
(

F(L−1)
(
· · · F(1) (I)

))
(B.3)

= σ
(

b(L) + W(L) · σ
(

b(L−1)+

+W(L−1) · σ
(
· · · σ(b(1) + W(1) · I)

)))
,

(B.4)

where the symbol W includes both the weights W(l) and the biases b(l).
The model is usually optimized through the minimization of a loss function,

L, in the space of parameters, W, using minimization algorithms such as the

119



120 appendix

stochastic gradient descent [166] or Adam [167]. In many applications, L takes
the following form [166]:

L(W) =
1
B

B

∑
b=1

|y(Ib; W)− F⋆(Ib)|2, (B.5)

where F⋆ is the target function and b is summed over a batch of B training data
set.

b.2 construction of neural-network potentials

b.2.1 Descriptor

A NN potential requires a descriptor able to encode atomic environments.
Consider a system of N atoms, whose configurations are represented by the set
of atomic positions, {R1, R2, . . . , RN} ∈ R3N . The Nℓ neighbors of the ℓth atom
are those atoms whose positions are within a chosen cutoff radius, Rcut, from
Rℓ. The local environment matrices K̃ℓ ∈ RNn×4 are defined in order to encode
the local environment:

K̃ℓ =


σ(R1ℓ)

R1ℓ

σ(R1ℓ)x1ℓ
R2

1ℓ

σ(R1ℓ)y1ℓ
R2

1ℓ

σ(R1ℓ)z1ℓ
R2

1ℓ
σ(R2ℓ)

R2ℓ

σ(R2ℓ)x2ℓ
R2

2ℓ

σ(R2ℓ)y2ℓ
R2

2ℓ

σ(R2ℓ)z2ℓ
R2

2ℓ
...

...
...

...

 , (B.6)

where σ(Rqℓ) is a smoothing function:

σ(Rqℓ) =


1, Rqℓ < Rsmth

−6Θ5 + 15Θ4 − 10Θ3 + 1, Rsmth < Rqℓ < Rcut

0, Rc < Rqℓ

(B.7)

Θ =
Rqℓ−Rsmth
Rcut−Rsmth

, and Rsmth is the smoothing cutoff radius that switches the
interaction smoothly to zero. The model encodes local environments within
the cutoff radius, under the assumption that all the important interactions
die off within such length scales. The descriptor should preserve the natural
symmetries of the physical system: rotation, translational invariance, and
permutational invariance (e.g., a “relabeling” of atoms of the same species). To
achieve so, the local-environment matrices are made symmetry-preserving by
a suitably defined transformation that yields quantities D̃ℓ [165].

b.2.2 Target quantities

The symmetry-preserving descriptors, D̃ℓ, are fed to the NN model, which
returns local atomic energies ϵs(ℓ)(D̃ℓ) depending on the species s(ℓ) of the ℓth
atom, and on its local environment [114]. The (extensive) total potential energy
of the system is the sum of atomic contributions:

E = ∑
ℓ

ϵs(ℓ)(D̃ℓ). (B.8)
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The NN model is trained to return the local energy corresponding to any
symmetry-preserving local environment. The training is achieved minimizing a
loss function, L, with respect to the parameters of the model, i.e., the coefficients
of the neurons in the layers:

L = pE∆E2 +
pF
3N ∑

ℓ

∆ f 2
ℓ , (B.9)

where ∆E2 and ∆ f 2
ℓ are the mean squared deviations of the total potential

energy and of the force acting of the ℓth atom, respectively, between the
reference calculation and the predictions of the NN model. The weights given
to the energy and force portions of the loss function, pE and pF, can be tuned
to optimize the efficiency of the training process, and account for the difference
in physical dimensions between energy and force. Forces are computed from
the local energies as

fℓ = − ∂E
∂Rℓ

= − ∂

∂Rℓ
∑
ℓ′

ϵs(ℓ′)(D̃)ℓ′ )

= −∑
ℓ′

∂ϵs(ℓ′)

∂D̃ℓ′

∂D̃)ℓ′

∂Rℓ
,

(B.10)

and the virial as

Ξαβ = ∑
ℓ

Rℓα fℓβ = − ∑
ℓ ̸=ℓ′

Rℓℓ′α
∂ϵs(ℓ)

∂Rℓℓ′β
, (B.11)

where Rℓℓ′β = Rℓβ − Rℓ′β.
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