
Adv. Calc. Var. 2022; aop

Research Article

Filippo Riva*, Giovanni Scilla and Francesco Solombrino

The notions of inertial balanced viscosity
and inertial virtual viscosity solution for
rate-independent systems
https://doi.org/10.1515/acv-2021-0073
Received September 3, 2021; revised November 30, 2021; accepted February 4, 2022

Abstract: The notion of inertial balanced viscosity (IBV) solution to rate-independent evolutionary processes
is introduced. Such solutions are characterized by an energy balancewhere a suitable, rate-dependent, dissi-
pation cost is optimized at jump times. The cost is reminiscent of the limit effect of small inertial terms. There-
fore, this notion proves to be a suitable one to describe the asymptotic behavior of evolutions of mechanical
systems with rate-independent dissipation in the limit of vanishing inertia and viscosity. It is indeed proved,
in finite dimension, that these evolutions converge to IBV solutions. If the viscosity operator is neglected, or
has a nontrivial kernel, the weaker notion of inertial virtual viscosity (IVV) solutions is introduced, and the
analogous convergence result holds. Again in a finite-dimensional context, it is also shown that IBV and IVV
solutions can be obtained via a natural extension of the minimizing movements algorithm, where the limit
effect of inertial terms is taken into account.
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1 Introduction
Rate-independent evolutions frequently occur in physics and mechanics when the problem under consid-
eration presents such small rate-dependent effects, as inertia or viscosity, that can be neglected. Several
applications can be (formally) modelled by the doubly nonlinear differential inclusion{∂R(u̇(t)) + DxE(t, u(t)) ∋ 0 in X∗, for a.e. t ∈ [0, T],

u(0) = u0, (1.1)

where R is a rate-independent dissipation potential, while E is a time-dependent potential energy. In this
paper, we limit ourselves to the case of a finite-dimensional normed space X, although we plan to extend
the whole analysis to the infinite-dimensional context, where several difficulties concerning weak topologies
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and nonsmoothness of E naturally arise (we refer to the monograph [22] for more details, also compare [19]
with [20]).

If the driving energy E is nonconvex, continuous solutions to (1.1) are not expected to exist, and thus in
the past decades huge efforts have been spent to develop weak notions of solution capable of describing the
behavior of the system at jumps. A first attempt can be found in the notion of energetic solution [23, 24] based
on a global stability condition together with an energy balance which must hold for every t ∈ [0, T]:

E(t, u(t)) ≤ E(t, x) + R(x − u(t)) for every x ∈ X, (GS)

E(t, u(t)) + VR(u; 0, t) = E(0, u0) + t∫
0

∂tE(r, u(r))dr. (EB)

Condition (GS) actually turns out to be still too restrictive in the nonconvex case, where a local minimality
condition would be preferable. Starting from this consideration, in [18–20] the notion of balanced viscosity
solution has been introduced and analyzed; see also the recent paper [25]. The idea of Mielke, Rossi and
Savaré [18–20] relies on the fact that physical solutions to (1.1) should arise as the vanishing-viscosity limit
of a richer and more natural viscous problem{ε𝕍u̇ε(t) + ∂R(u̇ε(t)) + DxE(t, uε(t)) ∋ 0 in X∗, for a.e. t ∈ [0, T],

uε(0) = uε0, (1.2)

as the parameter ε → 0. Here, 𝕍 denotes a symmetric positive-definite linear operator modelling viscosity.
Actually, in [19, 20] more general viscous potentials are considered. The resulting evolution, called balanced
viscosity (BV) solution, turns out to satisfy a local stability condition together with an augmented energy
balance: −DxE(t, u(t)) ∈ ∂R(0) for a.e. t ∈ [0, T], (LS)

E(t, u(t)) + V𝕍R(u; 0, t) = E(0, u0) + t∫
0

∂tE(r, u(r))dr for all t ∈ [0, T]. (EB𝕍)

While in (EB) the classical total variation (actually, R-variation, see Definition 2.3) controls both the contin-
uous part uco of the evolution and the jump part, as it holds (see also (2.13))

VR(u; 0, t) = VR(uco; 0, t) + ∑
r∈Ju∩[0,t]

(R(u(r) − u−(r)) + R(u+(r) − u(r))),
in (EB𝕍) the jump part of the “viscous” variation involves a more complicated cost function (a Finsler dis-
tance) which takes into account the original presence of viscosity:

V𝕍R(u; 0, t) = VR(uco; 0, t) + ∑
r∈Ju∩[0,t]

(c𝕍r (u−(r), u(r)) + c𝕍r (u(r), u+(r))).
At time t ∈ [0, T], the viscous cost function is obtained as

c𝕍t (u1, u2) := inf { 1∫
0

p𝕍(v̇(r), −DxE(t, v(r)))dr | v ∈ W1,∞(0, 1; X), v(0) = u1, v(1) = u2}, (1.3)

where p𝕍, called vanishing-viscosity contact potential, is a suitable density arising from both the viscous and
the rate-independent dissipation (see also Definition 3.1).

In [19, 20], it is also shown that BV solutions can be obtained as the limit of time discrete approximations,
solutions to the recursive discrete-in-time variational incremental scheme with time step τ:

ukτ,ε ∈ argmin
x∈X
{ ε2τ ‖x − uk−1τ,ε ‖2𝕍 + R(x − uk−1τ,ε ) + E(tk , x)}, k = 1, . . . , T

τ
, (1.4)

when sending simultaneously ε and τ to 0 with also τ/ε → 0.
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Although the notion of BV solution turned out to be extremely powerful in applications (see, for instance,
[2, 6, 12, 21]), it still lacks inertial terms, which are however essential in the description of real world phe-
nomena, as stated by the second principle of dynamics.

In this paper,we thuspresent anovel notionof solutionwhich takes into account this feature.Our starting
point is augmenting (1.2) with an inertial term{ε2𝕄üε(t) + ε𝕍u̇ε(t) + ∂R(u̇ε(t)) + DxE(t, uε(t)) ∋ 0 in X∗, for a.e. t ∈ [0, T],

uε(0) = uε0, u̇ε(0) = uε1, (1.5)

and then sending ε → 0, namely performing a vanishing-inertia and viscosity argument. The symmetric
positive-definite linear operator𝕄 appearing in (1.5) represents masses. Its presence allows to consider also
the case of null viscosity, i.e.𝕍 = 0, or more generally of a positive-semidefinite linear operator. We point out
that such a limit procedure is also known as slow-loading limit, since (1.5) comes from a dynamic problem
with slow data after a reparametrization of time. We refer the interested reader to [10], or to [22, Chapter 5]
for a more detailed explanation.

This approach has already been adopted for concrete models (in infinite dimension) in [7, 8, 14, 15, 17,
26, 29], all in the case of convex, or even quadratic, energies E. An abstract analysis has been performed in
[10], in finite dimension and always under convexity assumptions. Hence, the results contained in this paper
on the one hand represent an extension to nonconvex energies of the ones presented in [10] (see Remark 2.2),
and on the other hand put the basis for an abstract investigation in infinite dimension, where nonconvex
problems are common in applications (we refer again to [2, 6, 12, 21, 22]).

In our nonconvex setting, the limiting evolution of (1.5) provides the novel notion of inertial balanced
viscosity (IBV) solution (we refer to the discussion in Section 3 for the subtler notion of inertial virtual vis-
cosity (IVV) solution, arising when the viscosity operator𝕍 is not positive-definite) for the rate-independent
system (1.1), namely a function satisfying the same local stability condition (LS) as BV solutions, together
with an energy balance in which the cost at jump points is sensitive of the presence of inertia:−DxE(t, u(t)) ∈ ∂R(0) for a.e. t ∈ [0, T], (LS)

E(t, u+(t)) + VR(uco; s, t) + ∑
r∈Jeu∩[s,t]

c𝕄,𝕍r (u−(r), u+(r)) = E(s, u−(s)) + t∫
s

∂tE(r, u(r))dr, (EB𝕄,𝕍)

for every 0 ≤ s ≤ t ≤ T, where now the cost turns out to be

c𝕄,𝕍t (u1, u2) := inf { N∫
−N

p𝕍(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr | N ∈ ℕ, v ∈ V𝕄,Nu1 ,u2},
where

V𝕄,Nu1 ,u2 := {v ∈ W2,∞(−N, N; X) | v(−N) = u1, v(N) = u2, 𝕄v̇(±N) = 0, ess sup
r∈[−N,N]
‖𝕄v̈(r)‖∗ ≤ C}.

Notice that, differently than in the vanishing-viscosity case, the dissipation cost we consider is no longer
invariant under a time-reparametrization, due to the presence of the second-order term 𝕄v̈(r) inside the
integral. This prevents an easy generalization of the notion of parametrized BV solution, again introduced
in [19, 20], to the inertial setting: such a notion is indeed build starting from a suitable viscous-reparam-
etrization of the time variable. Furthermore, the rate-dependent nature of the cost forces one to consider
minimization problems on an asymptotically infinite time horizon and take the infimum over them. We also
refer to [1, 31] for a similar analysis with no rate-independent dissipation, namely consideringR = 0, where
an analogous notion of solution was developed. As it happened in [31], we prefer to consider a notion of
solution which does not depend on the chosen representative of u in its Lebesgue class, which is done by
considering left and right limits only in the energy balance.
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Theproposednotionof solution is indeeda suitable one to extend the results of [19, 20] to a contextwhere
the limiting effect of inertial terms is taken into consideration.We show this in ourmain result, Theorem3.10,
which fulfills a twofold goal. First, we show convergence of the solutions uε of (1.5) to an inertial balanced
viscosity solution of (1.1), under a quite general set of assumptions on the energy E, which includes the one
considered in [10]. Secondly, we also prove that IBV solutions can be obtained via a natural extension of the
minimizing movements algorithm (1.4), namely

ukτ,ε ∈ argmin
x∈X
{ ε2
2τ2
‖x − 2uk−1τ,ε + uk−2τ,ε ‖2𝕄 + ε

2τ ‖x − uk−1τ,ε ‖2𝕍 + R(x − uk−1τ,ε ) + E(tk , x)}, (1.6)

by sending both τ and ε to 0. Differently from (1.4), for technical reasons we need to strengthen the rate of
convergence requiring τ/ε2 to be bounded. Furthermore, we have to require E to be Λ-convex (assumption
(E5) in Section2). Sucha condition,which amounts to require that the sumofEwith a suitably large quadratic
perturbation is convex, is quite typical in the analysis of such approximation schemes (see [4]) and complies
with many relevant applications. It actually allows one to have precise estimates on some rest terms in the
energy balance, which arise from the iterative minimization schemes.

Plan of this paper. In Section 2, we fix themain notation and list themain assumptions of this paper.We also
recall some basic properties of functions of bounded R-variation (Section 2.2). In Section 3, we introduce
the notions of inertial balanced viscosity and inertial virtual viscosity solution. We also define the contact
potentials (Section 3.1) and the regularized contact potentials (Section 3.2), while in Section 3.3 we intro-
duce the inertial cost function which will characterize the description of the jumps. Section 4 contains the
first characterization of the IBV and IVV solutions as the slow-loading limit as ε → 0 of dynamical solutions
to (1.5). Finally, in Section5,wederive these solutions as the limit of the time-discrete incremental variational
scheme (1.6) as τ and ε go simultaneously to 0.

2 Notation and setting
Let (X, ‖ ⋅ ‖) be a finite-dimensional normed vector space. We denote by (X∗, ‖ ⋅ ‖∗) the topological dual of X
and by ⟨w, v⟩ the duality product between w ∈ X∗ and v ∈ X. For R > 0, we denote by BR the open ball in X
of radius R centered at the origin, and by BR its closure.

Given any symmetric positive-semidefinite linear operatorℚ : X → X∗, we introduce the induced (Hilber-
tian) seminorm |x|ℚ := ⟨ℚx, x⟩ 12 ,
and we denote with a capital letter Q ≥ 0 a nonnegative constant satisfying

0 ≤ |x|2ℚ ≤ Q‖x‖2 for every x ∈ X.
We point out that such a constant Q exists, since in finite dimension any linear operator is necessarily con-
tinuous. The least Q that may be chosen here is the operator norm ofℚ, denoted by ‖ℚ‖op.

Ifℚ is positive-definite, the induced seminorm is actually a norm, denoted by ‖ ⋅ ‖ℚ, and, up to possibly
enlarging the constant Q, there holds

1
Q
‖x‖2 ≤ ‖x‖2ℚ ≤ Q‖x‖2 for every x ∈ X.

Furthermore, the inverse operatorℚ−1 : X∗ → X induces in X∗ the norm‖w‖ℚ−1 := ⟨w,ℚ−1w⟩,
which is dual to ‖ ⋅ ‖ℚ and thus satisfies|⟨w, v⟩| ≤ ‖v‖ℚ‖w‖ℚ−1 for every w ∈ X∗ and v ∈ X.



F. Riva et al., Inertial balanced viscosity and inertial virtual viscosity solutions | 5

Webriefly recall somebasic definitions in convex analysis (see, for instance, [27]). Givenaproper, convex,
lower semicontinuous function f : X → (−∞, +∞], its (convex) subdifferential ∂f : X 󴁂󴀱 X∗ at a point v ∈ X
is defined by

∂f(v) = {w ∈ X∗ | f(z) ≥ f(v) + ⟨w, z − v⟩ for every z ∈ X}.
Notice that if f(v) = +∞, then from the very definition it turns out that ∂f(v) = 0.

The Fenchel conjugate of f is the convex, lower semicontinuous function

f∗ : X∗ → (−∞, +∞], defined by f∗(w) := sup
v∈X
{⟨w, v⟩ − f(v)},

and for every w ∈ X∗ and v ∈ X it satisfies

f∗(w) + f(v) ≥ ⟨w, v⟩, with equality if and only if w ∈ ∂f(v). (2.1)

Given a subset A ⊂ X, we denote with χA : X → [0, +∞] its characteristic function, defined by
χA(x) := {0 if x ∈ A,+∞ if x ∉ A.

2.1 Main assumptions

Below, we list the main assumptions we will use throughout the paper.
In the dynamic problem (1.5), the inertial term is described by a

symmetric positive-definite linear operator𝕄 : X → X∗, (2.2)

which represents amass distribution.
The possible presence of viscosity is also considered by introducing the

symmetric positive-semidefinite linear operator𝕍 : X → X∗. (2.3)

In particular, in our analysiswe also include the case𝕍 ≡ 0 (forwhich |x|𝕍 ≡ 0), corresponding to the absence
of viscous friction forces.

Both the rate-independent problem (1.1) and the dynamic problem (1.5) are damped by a rate-indepen-
dent dissipation potential R : X → [0, +∞), which models for instance dry friction. We make the following
assumption:
(R1) The function R is coercive, convex and positively homogeneous of degree one.
Assumption (R1) implies subadditivity, namely

R(v1 + v2) ≤ R(v1) + R(v2) for every v1, v2 ∈ X,
and the existence of two positive constants α∗ ≥ α∗ > 0 for which

α∗‖v‖ ≤ R(v) ≤ α∗‖v‖ for every v ∈ X. (2.4)

This means that R fails to be a norm only for the lack of symmetry.
Furthermore, sinceR is one-homogeneous, for every v ∈ X its subdifferential ∂R(v) can be characterized

by
∂R(v) = {w ∈ ∂R(0) | ⟨w, v⟩ = R(v)} ⊆ ∂R(0) =: K∗. (2.5)

By (2.4), we notice that there holds
K∗ ⊆ Bα∗ . (2.6)

It is also well known (see, e.g., [27]) that K∗ coincides with the proper domain of the Fenchel conjugate R∗
of R; indeed, it actually holds R∗ = χK∗ .
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Wefinally consider the driving potential energyE : [0, T] × X → [0, +∞), whichwe assume to possess the
following properties:
(E1) E( ⋅ , u) is absolutely continuous in [0, T] for every u ∈ X.
(E2) E(t, ⋅ ) is differentiable for every t ∈ [0, T], and the differential DxE is continuous from [0, T] × X to X∗.
(E3) For a.e. t ∈ [0, T] and for every u ∈ X, it holds|∂tE(t, u)| ≤ a(E(t, u))b(t),

where a : [0, +∞) → [0, +∞) is nondecreasing and continuous, while b ∈ L1(0, T) is nonnegative.
(E4) For every R > 0, there exists a nonnegative function cR ∈ L1(0, T) such that for a.e. t ∈ [0, T] and for

every u1, u2 ∈ BR it holds |∂tE(t, u2) − ∂tE(t, u1)| ≤ cR(t)‖u2 − u1‖.
We point out that the prototypical example of potential energy

E(t, u) = U(u) − ⟨ℓ(t), u⟩, (2.7)

with U ∈ C1(X) superlinear and ℓ ∈ W1,1(0, T; X∗), fulfils all previous assumptions.
As mentioned in [10], under these hypotheses one can prove that E is a continuous map, and that

t 󳨃→ E(t, u(t)) is absolutely continuous (resp. of bounded variation) if u is absolutely continuous (resp. of
bounded variation).

Remark 2.1. Thanks to (E4), it is easy to see that DxE( ⋅ , u) is absolutely continuous in [0, T] for every u ∈ X:‖DxE(t, u) − DxE(s, u)‖∗ = ⟨DxE(t, u) − DxE(s, u), v⟩= lim
h→0

E(t, u + hv) − E(t, u) − E(s, u + hv) + E(s, u)
h≤ lim inf

h→0

1
h

t∫
s

|∂tE(r, u + hv) − ∂tE(r, u)|dr
≤ t∫

s

cR(r)dr,
where v ∈ X is a suitable unit vector at which the dual norm is attained, and R can be chosen for instance
equal to ‖u‖ + 1. This last property will be used in Proposition 4.5 in order to apply a chain-rule formula for
functions of bounded variation (see [5]).

Remark 2.2. All applications that are presented in [10, Section7], basically regardingmasses connectedwith
springs, are described by adding together elastic quadratic energies of the form

E(t, u) = k2 (u − ℓ(t))2,
with k > 0 and ℓ ∈ W1,1(0, T;ℝ). This specific form simply is the second order expansion of the real elastic
potential energy of the springs

E(t, u) = k(1 − cos(u − ℓ(t))),
which is of course nonconvex. It is however straightforward to check that it satisfies (E1)–(E4) (and actually
also (E3’) and (E5) below), and thus it can be included within the framework of this paper.

In Section 5, where we deal with the discrete approximation of IBV and IVV solutions, in addition to the
previous assumptions, we need to require the following assumptions:
(E3’) The energy E fulfils (E3) with the particular choice a(y) = y + a1 for some a1 ≥ 0.
(E5) E(t, ⋅ ) is Λ-convex for every t ∈ [0, T]; i.e., there exists Λ > 0 such that for every t ∈ [0, T], u1, u2 ∈ X

and every θ ∈ (0, 1) it holds
E(t, (1 − θ)u1 + θu2) ≤ (1 − θ)E(t, u1) + θE(t, u2) + Λ2 θ(1 − θ)‖u1 − u2‖2𝕀

for some symmetric positive-definite linear operator 𝕀 : X → X∗.
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We notice that by (E3’) and Gronwall’s lemma, we can infer

E(t, u) + a1 ≤ (E(s, u) + a1)e∫ts b(r)dr for every 0 ≤ s ≤ t ≤ T,
whence |∂tE(t, u)| ≤ (E(s, u) + a1)b(t)e∫ts b(r)dr for every 0 ≤ s ≤ t ≤ T. (2.8)

It is also easy to check that (E5) implies⟨DxE(t, u1), u2 − u1⟩ ≤ E(t, u2) − E(t, u1) + Λ2 ‖u1 − u2‖2𝕀 for every t ∈ [0, T], u1, u2 ∈ X. (2.9)

Indeed, by using the mean value theorem, for some ζ ∈ [0, 1] we have
θ[E(t, u2) − E(t, u1) + Λ2 (1 − θ)‖u1 − u2‖2𝕀] ≥ E(t, (1 − θ)u1 + θu2) − E(t, u1)= θ⟨DxE(t, u1 + ζθ(u1 − u2)), u2 − u1⟩,

whence (2.9) follows up to simplifying θ in both sides and then letting θ → 0.
We finally point out that an energy E as in (2.7) always complies with (E3’), while it fulfils (E5) if in

addition U is Λ-convex.

2.2 Functions of boundedR-variation

We recall here a suitable generalization of functions of bounded variation useful to deal with functions
satisfying (R1).

Definition 2.3. Let a function f : [a, b] → X be given. Then we define the pointwise R-variation of f in [s, t],
with a ≤ s < t ≤ b, by

VR(f; s, t) := sup { n∑
k=1

R(f(tk) − f(tk−1)) | s = t0 < t1 < ⋅ ⋅ ⋅ < tn−1 < tn = t}.
We also set VR(f; t, t) := 0 for every t ∈ [a, b].

We say that f is a function of bounded R-variation in [a, b], and we write f ∈ BVR([a, b]; X), if its
R-variation in [a, b] is finite; i.e., VR(f; a, b) < +∞.
Notice that, by virtue of (2.4), we have f ∈ BVR([a, b]; X) if and only if f ∈ BV([a, b]; X) in the classical sense.
In particular, f ∈ BVR([a, b]; X) is regulated, i.e., it admits left and right limits at every t ∈ [a, b]:

f+(t) := lim
tj↘t

f(tj) and f−(t) := lim
tj↗t

f(tj),
with the convention f−(a) := f(a) and f+(b) := f(b). Moreover, its pointwise jump set Jf is at most countable.

It is well known (see, e.g., [3]) that f can be uniquely decomposed as follows:

f = fL + fCa + fJ , (2.10)

with fL being an absolutely continuous function, fCa a continuous Cantor-type function, and fJ a jump func-
tion. If we denote by f 󸀠 the distributional derivative of f ∈ BVR([a, b]; X), and recall that f 󸀠 is a Radon vector
measurewith finite total variation |f 󸀠|, it follows that f 󸀠 can be decomposed into the sumof the threemutually
singular measures

f 󸀠 = f 󸀠L + f 󸀠Ca + f 󸀠J , f 󸀠L = ̇fL1, f 󸀠co := f 󸀠L + f 󸀠Ca. (2.11)

In (2.11), f 󸀠L is the absolutely continuous part with respect to the Lebesgue measure L1, whose Lebesgue
density ̇f is the usual pointwise (L1-a.e. defined) derivative, f 󸀠J is the jump part concentrated on the essential
jump set of f , i.e.

Jef := {t ∈ [a, b] | f+(t) ̸= f−(t)} ⊆ Jf ,
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and f 󸀠Ca is the Cantor part such that f 󸀠Ca({t}) = 0 for every t ∈ [0, T]. The measure f 󸀠co is the diffuse part of the
measure, and does not charge Jf . The functions fL, fCa and fJ in (2.10) are exactly the distributional primitives
of the measures f 󸀠L, f

󸀠
Ca and f 󸀠J in (2.11). We will use the notation fco to denote the continuous part of f , that

is, fco = fL + fCa.
We also remark that, for a ≤ s ≤ t ≤ b, the function VR(f; s, t) is monotone in both entries, and hence

it makes sense to consider the limits VR(f; s−, t+). The following formula (see, for instance, [19, Section 2])
relates VR(f; s−, t+) with the distributional derivative of f , up to the jump part which is depending on the
pointwise behavior of f . Setting λ = L1 + |f 󸀠Ca|, it namely holds

VR(f; s−, t+) = t∫
s

R( df 󸀠codλ (r))dλ(r) + ∑r∈Jf∩[s,t]
(R(f+(r) − f(r)) + R(f(r) − f−(r))), (2.12)

where df 󸀠co
dλ is the Radon-Nikodym derivative. Observe that, by the positive one-homogeneity of R, actually

any measure ν such that f 󸀠co ≪ ν can replace λ in the integral term on the right-hand side.
It follows from (2.12) that the continuous part of the R-variation of f agrees with the R-variation of fco

and satisfies

VR(fco; s, t) = t∫
s

R( df 󸀠codλ (r))dλ(r). (2.13)

We finally notice that, by dropping the pointwise value of f at jump points (by the subadditivity of R), and
only considering the essential jumps, we are led to the so-called essential R-variation

R(f 󸀠)([s, t]) := VR(fco; s, t) + ∑
r∈Jef ∩[s,t]

R(f+(r) − f−(r)) ≤ VR(f; s−, t+). (2.14)

The term R(f 󸀠) actually defines a Radon measure (see [11]), which generalizes the concept of total varia-
tion |f 󸀠| (corresponding to the particular choice R( ⋅ ) = ‖ ⋅ ‖).
3 Inertial balanced viscosity and inertial virtual viscosity solutions
In this section, we rigorously introduce the notions of inertial balanced viscosity and inertial virtual viscosity
solution. We also state our main result, see Theorem 3.10, postponing its proof to the forthcoming sections.

As in the vanishing-viscosity approach of [19], the starting point consists in an alternative formulation of
the dynamic problem (1.5) based on the so–called De Giorgi’s energy-dissipation principle (see the pioneer-
ing work [9] and other applications in [16, 28]). Roughly speaking, the idea is to keep together all dissipative
terms appearing in the dynamic model, namely viscosity and rate-independent dissipation; we are thus led
to consider the functional

Rε(v) := R(v) + ε2 |v|2𝕍. (3.1)

It is then easy to check (see, e.g., [19, p. 47]) that the subdifferential of Rε is explicitly given by

∂Rε(v) = ∂R(v) + ε𝕍v,
so the dynamic problem (1.5) can be rewritten as

∂Rε(u̇ε(t)) ∋ −ε2𝕄üε(t) − DxE(t, uε(t)) =: wε(t) for a.e. t ∈ [0, T]. (3.2)

By using (2.1), and exploiting the classical chain-rule formula for E, one obtains that the dynamic prob-
lem (3.2) is actually equivalent to the augmented energy balance

ε2

2 ‖u̇ε(t)‖2𝕄 + E(t, uε(t)) + t∫
s

Rε(u̇ε(r)) + R∗ε (wε(r))dr
= ε22 ‖u̇ε(s)‖2𝕄 + E(s, uε(s)) + t∫

s

∂tE(r, uε(r))dr for every 0 ≤ s ≤ t ≤ T. (3.3)
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We point out that in our case of additive viscosity (3.1), the Fenchel conjugate R∗ε can be explicitly
computed by means of the inf-sup convolution formula (see, e.g., [27, Section 12]) and turns out to be

R∗ε (w) = {{{{{{{
1
2ε inf

z∈K∗

w−z∈(ker𝕍)⊥
⟨w − z,𝕍󸀠(w − z)⟩ if w ∈ K∗ + (ker𝕍)⊥,+∞ otherwise,

(3.4)

where (ker𝕍)⊥ = {w ∈ X∗ | ⟨w, v⟩ = 0 for every v ∈ ker𝕍}
is theannihilator of ker𝕍 and𝕍󸀠 : (ker𝕍)⊥ → X is the inverse of the operator𝕍 restricted to (the identification
of) (ker𝕍)⊥ (in X).

In particular, in the two extreme situations𝕍 = 0 and being𝕍 positive-definite, we get respectively
R∗ε (w) = R∗(w) = χK∗ (w), R∗ε (w) = 1

2ε dist
2
𝕍−1 (w, K∗),

where
dist𝕍−1 (w, K∗) := inf

z∈K∗
‖w − z‖𝕍−1 ,

denotes the distance from K∗, measured with respect to the norm ‖ ⋅ ‖𝕍−1 .
3.1 Contact potentials

The energy balance (3.3) naturally leads to the introduction of a so-called (viscous) contact potential associ-
ated to𝕍. In the spirit of [19] and taking into account (3.4), we thus give the following definition.
Definition 3.1. The (viscous) contact potential related to the viscosity operator𝕍 is the map

p𝕍 : X × X∗ → [0, +∞]
defined by

p𝕍(v, w) := infε>0
(Rε(v) + R∗ε (w)) = {{{{{

R(v) + |v|𝕍 inf
z∈K∗

w−z∈(ker𝕍)⊥
|w − z|𝕍󸀠 if w ∈ K∗ + (ker𝕍)⊥,+∞ otherwise.

In the two extreme situations𝕍 = 0 and𝕍 being positive-definite, we get respectively
p0(v, w) = R(v) + χK∗ (w), p𝕍(v, w) = R(v) + ‖v‖𝕍 dist𝕍−1 (w, K∗). (3.5)

Therefore, in the positive-definite case we retrieve the vanishing-viscosity contact potential defined in [19].
By the explicit formula, we easily infer the following properties for the contact potential p𝕍:

(i) p𝕍( ⋅ , w) is positively one-homogeneous and convex for every w ∈ X∗.
(ii) p𝕍(v, ⋅ ) is convex for every v ∈ X.
(iii) p𝕍(v, w) ≥ max{R(v), ⟨w, v⟩} for every v ∈ X and w ∈ X∗.
(iv) p𝕍(0, w) = χK∗+(ker𝕍)⊥ (w) and p𝕍(v, 0) = R(v).
Furthermore, we also observe the following property:
(v) p𝕍( ⋅ , w) is symmetric for every w ∈ X∗ if and only if R is symmetric.

At this stage, awarning ismandatory:wepoint out that our potential p𝕍 in general can take the value+∞,
due to the semidefiniteness of the viscosity operator 𝕍. This feature does not appear in [19], where indeed
a full viscosity is always present and the contact potential is continuous and finite. This difference will create
serious issues in the forthcoming analysis, leading to the original notion of inertial virtual viscosity; we are
thus led to couple p𝕍 with a “regularized” contact potential p, as follows.
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Definition 3.2. We say that a continuous map p : X × X∗ → [0, +∞) is a regularized contact potential with
respect to p𝕍, and we write p ∈ RCP𝕍, if the following conditions hold:
(i) p( ⋅ , w) is positively one-homogeneous for every w ∈ X∗.
(ii) p(v, ⋅ ) is convex for every v ∈ X.
(iii) max{R(v), ⟨w, v⟩} ≤ p(v, w) ≤ p𝕍(v, w) for every v ∈ X and w ∈ X∗.
(iv) There exists a positive constant L > 0 such that|p(v, w1) − p(v, w2)| ≤ L‖v‖‖w1 − w2‖∗ for every v ∈ X and w1, w2 ∈ X∗.
Remark 3.3. In the case that𝕍 is positive-definite, the contact potential p𝕍 itself belongs to RCP𝕍. This easily
follows by the explicit form (3.5). Observe that in this case p𝕍 takes only finite values.

Notice that in the above definition we are not requiring the convexity of p with respect to the variable v.
Instead, the convexity in the second variable, i.e. property (ii), will be crucial in Proposition 3.11.

Wealsopoint out that themainproperty of regularized contact potentials,missing in general for p𝕍, is the
weighted Lipschitzianity (iv) with respect to the second variable: this will be heavily used in Proposition 4.6.

We finally observe that by (iii) and (iv), any p ∈ RCP𝕍 satisfies
p(v, w) ≤ |p(v, w) − p(v, 0)| + p(v, 0) ≤ L‖v‖‖w‖∗ + p𝕍(v, 0) = L‖v‖‖w‖∗ + R(v) ≤ (α∗ + L‖w‖∗)‖v‖, (3.6)

where we exploited (2.4). In particular, it holds

p(0, w) = 0 for every w ∈ X∗.
3.2 Parametrized families of regularized contact potentials

With the following result, we show that a whole family of regularized contact potentials can be constructed
by means of a suitable version of the Yosida transform.

For every λ ≥ 1 and every symmetric positive-definite linear operator𝕌 : X → X∗, we define the function
pλ,𝕌𝕍 : X × X∗ → [0, +∞) by

pλ,𝕌𝕍 (v, w) := inf
η∈X∗
{p𝕍(v, η) + λ‖v‖𝕌‖w − η‖𝕌−1}, v ∈ X, w ∈ X∗. (3.7)

Proposition 3.4. Let λ ≥ 1 and let𝕌 be a symmetric positive-definite linear operator. Then pλ,𝕌𝕍 ∈ RCP𝕍. Fur-
thermore, for every v ̸= 0, one has

p𝕍(v, w) = sup
λ≥1

pλ,𝕌𝕍 (v, w) = lim
λ→+∞

pλ,𝕌𝕍 (v, w). (3.8)

If in addition R is symmetric, then for every w ∈ X∗ the function pλ,𝕌𝕍 ( ⋅ , w) is symmetric as well.
Proof. We first notice that pλ,𝕌𝕍 has nonnegative finite values since p𝕍 is not identically +∞ and it is nonneg-
ative. Moreover, (3.8) is a standard property of the Yosida transform (notice that λ‖v‖𝕌 > 0 if v ̸= 0). Also, ifR
is symmetric, the symmetry of pλ,𝕌𝕍 ( ⋅ , w) is a straightforward byproduct of (3.7) since in this case p𝕍( ⋅ , w)
is symmetric.

Now, we have to confirm properties (i)–(iv) of Definition 3.2. Property (i) follows by the one-homogeneity
of p𝕍( ⋅ , η) and of the norm.

Property (ii) follows since the Yosida transform of a convex function is convex, and p𝕍(v, ⋅ ) is convex.
The right inequality in (iii) is obtained by choosing η = w in the definition of pλ,𝕌𝕍 , while the left one

follows from the fact that p𝕍(v, ⋅ ) ≥ R(v) combined with the simple inequality⟨w, v⟩ = ⟨η, v⟩ + ⟨w − η, v⟩ ≤ p𝕍(v, η) + λ‖v‖𝕌‖w − η‖𝕌−1 .

Property (iv) is again a straightforward consequence of the Yosida transform: one can choose

L = λ√‖𝕌‖op‖𝕌−1‖op.
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We are only left to prove that pλ,𝕌𝕍 is continuous.We first observe that, thanks to (iv), it is enough to prove
that pλ,𝕌𝕍 ( ⋅ , w) is continuous for every fixed w ∈ X∗. The continuity in v = 0 follows easily by (3.6); if v ̸= 0,
we need to do more work. We make the following claims.

Claim 1. There exists a positive constant C1 > 0 such that
p𝕍(v1, w) ≤ p𝕍(v2, w) + C1(1 + ‖w‖∗)‖v1 − v2‖ for every v1, v2 ∈ X and w ∈ X∗. (3.9)

Claim 2. If v ̸= 0, then there exists a positive constant C2 > 0 such that
pλ,𝕌𝕍 (v, w) = inf

η∈X∗

‖η‖∗≤C2ρ(‖v‖,‖w‖∗)

{p𝕍(v, η) + λ‖v‖𝕌‖w − η‖𝕌−1},
where ρ(‖v‖, ‖w‖∗) := 1 + ‖w‖∗ + 1/‖v‖.
Claim 3. There exists a positive constant C3 > 0 such that|pλ,𝕌𝕍 (v1, w) − pλ,𝕌𝕍 (v2, w)| ≤ C3max{ρ(‖v1‖, ‖w‖∗), ρ(‖v2‖, ‖w‖∗)}‖v1 − v2‖
for every v1, v2 ∈ X \ {0} and w ∈ X∗.
From Claim 3, we easily deduce the continuity of pλ,𝕌𝕍 ( ⋅ , w) in v ̸= 0, and thus we only need to prove its
validity.

We start with Claim 1, and we observe that it is enough to prove it for w ∈ K∗ + (ker𝕍)⊥. By exploiting
the subadditivity of R together with (2.4) and (2.6), we easily obtain

p𝕍(v1, w) = R(v1) + |v1|𝕍 inf
z∈K∗

w−z∈(ker𝕍)⊥
|w − z|𝕍󸀠≤ R(v2) + α∗‖v1 − v2‖ + (|v2|𝕍 + √V‖v1 − v2‖) inf

z∈K∗

w−z∈(ker𝕍)⊥
|w − z|𝕍󸀠≤ R(v2) + |v2|𝕍 inf

z∈K∗

w−z∈(ker𝕍)⊥
|w − z|𝕍󸀠 + (α∗ + √VV󸀠‖w‖∗ + √VV󸀠α∗)‖v1 − v2‖= p𝕍(v2, w) + (α∗ + √VV󸀠‖w‖∗ + √VV󸀠α∗)‖v1 − v2‖,

and Claim 1 is proved.
To prove Claim 2, it is enough to show that an infimizing sequence {ηj}j∈ℕ for pλ,𝕌𝕍 (v, w) is uniformly

bounded by ρ(‖v‖, ‖w‖∗), up to a multiplicative constant. Being an infimizing sequence, ηj satisfies

1 + pλ,𝕌𝕍 (v, w) ≥ p𝕍(v, ηj) + λ‖v‖𝕌‖w − ηj‖𝕌−1 ≥ ‖v‖𝕌‖w − ηj‖𝕌−1 .

Thus, by using (3.6), we infer ‖ηj‖∗ ≤ ‖w‖∗ + C‖w − ηj‖𝕌−1≤ ‖w‖∗ + C1 + pλ,𝕌𝕍 (v, w)‖v‖≤ ‖w‖∗ + C1 + (α∗ + L‖w‖∗)‖v‖‖v‖≤ Cρ(‖v‖, ‖w‖∗).
We now need to prove Claim 3. To this end, we take η ∈ X∗ such that ‖η‖∗ ≤ C2ρ(‖v2‖, ‖w‖∗) and, exploiting
Claim 1, we estimate

pλ,𝕌𝕍 (v1, w) ≤ p𝕍(v1, η) + λ‖v1‖𝕌‖w − η‖𝕌−1≤ p𝕍(v2, η) + C1(1 + ‖w‖∗)‖v1 − v2‖ + λ‖v2‖𝕌‖w − η‖𝕌−1 + λ‖w − η‖𝕌−1‖v1 − v2‖𝕌≤ p𝕍(v2, η) + λ‖v2‖𝕌‖w − η‖𝕌−1 + C(1 + ‖w‖∗ + ‖η‖∗)‖v1 − v2‖≤ p𝕍(v2, η) + λ‖v2‖𝕌‖w − η‖𝕌−1 + Cρ(‖v2‖, ‖w‖∗)‖v1 − v2‖.
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By using Claim 2, from the above inequality we deduce

pλ,𝕌𝕍 (v1, w) ≤ pλ,𝕌𝕍 (v2, w) + Cρ(‖v2‖, ‖w‖∗)‖v1 − v2‖.
By interchanging the roles of v1 and v2, we thus complete the proof of Claim 3, and we conclude the proof of
the proposition.

Wenotice that in the case that𝕍 is positive-definite, the contact potential p𝕍 coincideswith its Yosida approx-
imation if we choose𝕌 = 𝕍:

pλ,𝕍𝕍 (v, w) = p𝕍(v, w) for every λ ≥ 1, v ∈ X and w ∈ X∗.
Indeed, by means of the explicit formula (3.5), it holds

p𝕍(v, w) ≥ pλ,𝕍𝕍 (v, w)≥ p1,𝕍𝕍 (v, w)= inf
η∈X∗
{p𝕍(v, η) + ‖v‖𝕍‖w − η‖𝕍−1}= inf

η∈X∗
{R(v) + ‖v‖𝕍(dist𝕍−1 (η, K∗) + ‖w − η‖𝕍−1 )}= R(v) + ‖v‖𝕍 inf

η∈X∗
{dist𝕍−1 (η, K∗) + ‖w − η‖𝕍−1}≥ R(v) + ‖v‖𝕍 dist𝕍−1 (w, K∗)= p𝕍(v, w),

where the last inequality is a simple byproduct of the triangle inequality. This fact corroborates Remark 3.3.
In the opposite situation 𝕍 = 0, it is not difficult to see that the Yosida transform takes a more explicit

form:
pλ,𝕌0 (v, w) = R(v) + λ‖v‖𝕌 dist𝕌−1 (w, K∗). (3.10)

Compare this last formula with (3.5), the case of𝕍 being positive-definite.
3.3 The inertial energy-dissipation cost

Once the notion of contact potential has been developed, we are in a position to rigorously introduce the cost
functionwhichwill govern the jump transient of IBV and IVV solutions. The crucial difference with respect to
the vanishing-viscosity cost of BV solutions [19] is its rate-dependent nature, caused by the term𝕄v̈ inside
the integral which is reminiscent of the original inertial effects.

Definition 3.5. For every t ∈ [0, T] and u1, u2 ∈ X, we define the inertial energy-dissipation cost related to
p ∈ RCP𝕍 ∪{p𝕍} by

c𝕄,pt (u1, u2) := inf { N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr | N ∈ ℕ, v ∈ V𝕄,Nu1 ,u2}, (3.11)

where

V𝕄,Nu1 ,u2 := {v ∈ W2,∞(−N, N; X) | v(−N) = u1, v(N) = u2, 𝕄v̇(±N) = 0, ess sup
r∈[−N,N]
‖𝕄v̈(r)‖∗ ≤ C}

denotes the class of the admissible curves and C is the constant of Proposition 4.2 and Corollary 5.4 (depend-
ing only on the data of the problem).

We also define the inertial cost directly related to the viscosity operator𝕍 by taking the supremumamong
the costs over all regularized contact potentials:

c𝕄,𝕍t (u1, u2) := sup
p∈RCP𝕍

c𝕄,pt (u1, u2).
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Remark 3.6. We point out that in the case that𝕍 is positive-definite, Remark 3.3 yields

c𝕄,𝕍t (u1, u2) = c𝕄,p𝕍t (u1, u2). (3.12)

This is consistent with the vanishing-viscosity analysis performed in [19], in which the cost is (formally)
equivalent to (3.12) by taking𝕄 ≡ 0 (see (1.3)).
A relevant feature of the inertial cost is that the value c𝕄,pt (u1, u2) provides an upper bound for the energy
gap E(t, u1) − E(t, u2) for every p ∈ RCP𝕍, as shown with the following proposition.
Proposition 3.7. For every t ∈ [0, T] and u1, u2 ∈ X, we have

E(t, u1) − E(t, u2) ≤ inf
p∈RCP𝕍

c𝕄,pt (u1, u2).
Proof. Fix p ∈ RCP𝕍 and let N ∈ ℕ and v ∈ V𝕄,Nu1 ,u2 . From the fundamental theorem of calculus and prop-
erty (iii) of regularized contact potentials, we deduce

E(t, u1) − E(t, u2) = E(t, v(−N)) − E(t, v(N)) + 12 ‖v̇(−N)‖2𝕄 − 12 ‖v̇(N)‖2𝕄= N∫
−N

⟨−𝕄v̈(r) − DxE(t, v(r)), v̇(r)⟩dr
≤ N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr,
and the assertion follows by the arbitrariness of v, N and p.

With the notion of inertial energy-dissipation cost at hand, we can give the definition of inertial virtual vis-
cosity and inertial balanced viscosity solutions.

Definition 3.8. We say that a function u ∈ BVR([0, T]; X) is an inertial virtual viscosity (IVV) solution to the
rate-independent system (1.1), related to𝕄 and𝕍, if it complies both with the local stability condition− DxE(t, u(t)) ∈ K∗ for every t ∈ [0, T] \ Ju , (3.13)

and the energy balance

E(t, u+(t)) + VR(uco; s, t) + ∑
r∈Jeu∩[s,t]

c𝕄,𝕍r (u−(r), u+(r)) = E(s, u−(s)) + t∫
s

∂tE(r, u(r))dr (3.14)

for every 0 ≤ s ≤ t ≤ T.
If𝕍 is positive-definite, in which case (3.14) is satisfied with c𝕄,p𝕍 in place of c𝕄,𝕍 (see (3.12)), we say

that u is an inertial balanced viscosity (IBV) solution.

Remark 3.9. By Proposition 3.7, we deduce that for any IVV solution there holds

c𝕄,𝕍t (u−(t), u+(t)) = sup
p∈RCP𝕍

c𝕄,pt (u−(t), u+(t)) = inf
p∈RCP𝕍

c𝕄,pt (u−(t), u+(t)) for every t ∈ [0, T],
and thus in (3.14) we can actually replace c𝕄,𝕍 with c𝕄,p for an arbitrary p ∈ RCP𝕍.

It is however not clear whether we can replace it with the cost related to the contact potential p𝕍 itself
(i.e. c𝕄,p𝕍 ) in the case of a generic semidefinite operator𝕍, despite Proposition 3.4 shows that p𝕍 can always
be approximated (except for v = 0) by suitable regularized contact potentials.
The term “virtual” in the definition of IVV solutions is motivated by the presence of the Yosida-type poten-
tials (3.7) inside the set of regularized contact potentials RCP𝕍. They are indeed constructed by means of
a symmetric positive-definite linear operator𝕌, which plays the role of a virtual viscosity, since a priori it is
not present in the problem under study (see in particular (3.10)). The term “balanced” for IBV solutions is
instead inherited from [19].

The main result of this paper can now be stated as follows.
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Theorem 3.10. Let𝕄 and 𝕍 satisfy (2.2) and (2.3) and assume (E1)–(E4) and (R1). Let uε0 → u0, εuε1 → 0.
Then the following two assertions hold true:
(i) For every sequence εj → 0, there exists a subsequence (not relabelled) alongwhich the sequence of dynamic

solutions uεj to (1.5) pointwise converges to an inertial virtual viscosity solution of the rate-independent
system (1.1).

(ii) Assume in addition (E3’) and (E5). Then, for every sequence (τj , εj) → (0, 0) satisfying
sup
j∈ℕ

τj
ε2j
< +∞,

there exists a subsequence (not relabelled) along which the sequence of piecewise affine interpolants ûτj ,εj ,
defined in (5.14) and coming from the minimizing movements scheme (5.1), pointwise converges to an
inertial virtual viscosity solution of the rate-independent system (1.1).

In both cases, the limit function is an inertial balanced viscosity solution if𝕍 is positive-definite.
The proof of part (i) is carried out in Section 4, while part (ii) is proved in Section 5. The rest of this section is
devoted to the main properties of the inertial cost.

Proposition 3.11. Fix t ∈ [0, T], u1, u2 ∈ X and p ∈ RCP𝕍. Then the inertial energy-dissipation cost related to p
can be computed as follows:

c𝕄,pt (u1, u2) = lim
N→+∞

min
v∈V𝕄,N

u1,u2

N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr. (3.15)

Proof. For a fixed N ∈ ℕ, let {vj}j∈ℕ ⊆ V𝕄,Nu1 ,u2 be an infimizing sequence for

inf
v∈V𝕄,N

u1,u2

N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr. (3.16)

By the definition of V𝕄,Nu1 ,u2 , especially from the bound on the second derivative, we deduce that, up to
a not relabelled subsequence, it holds

vj ⇀ v weakly inW2,2(−N, N; X), for some v ∈ V𝕄,Nu1 ,u2 .

For the sake of clarity, we introduce the following notation:

wj := −𝕄v̈j − DxE(t, vj), w := −𝕄v̈ − DxE(t, v),
and we notice that

wj ⇀ w weakly in L2(−N, N; X∗).
By Definition 3.2 (ii) and (iv), we observe that the map w 󳨃→ ∫N−N p(v̇(r), w(r))dr is convex and strongly con-
tinuous in L2(−N, N; X∗), and thus weakly lower semicontinuous. Hence, we get

N∫
−N

p(v̇(r), w(r))dr ≤ lim inf
j→+∞

N∫
−N

p(v̇(r), wj(r))dr
≤ lim inf

j→+∞

N∫
−N

p(v̇j(r), wj(r))dr + lim sup
j→+∞

N∫
−N

|p(v̇j(r), wj(r)) − p(v̇(r), wj(r))|dr.
Since {vj}j∈ℕ is an infimizing sequence, we conclude that the minimum in (3.16) is attained if we prove that
the last term in the above estimate vanishes. To this end, we first notice that for almost every r ∈ [−N, N] the
sequence (v̇j(r), wj(r)) is contained in a compact subset K of X × X∗; then let ω be a modulus of continuity
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of p in K. We thus obtain

lim sup
j→+∞

N∫
−N

|p(v̇j(r), wj(r)) − p(v̇(r), wj(r))|dr ≤ lim sup
j→+∞

N∫
−N

ω(‖v̇j(r) − v̇(r)‖)dr,
which vanishes since v̇j ⇀ v̇ weakly inW1,2(−N, N; X), and thus strongly in C0([−N, N]; X).

To obtain formula (3.15), we simply notice that the map

N 󳨃→ min
v∈V𝕄,N

u1,u2

N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr
is nonincreasing. Indeed, ifN ≤ M, anyminimizer vN in [−N, N] canbe trivially extended constant to [−M,M],
and thus obtaining a competitor in V𝕄,Mu1 ,u2 (we recall that p(0, w) = 0 for every w ∈ X∗). Hence, (3.15) follows
by the very definition of the inertial energy-dissipation cost (3.11).

With the following proposition, we prove that the cost function c𝕄,pt is a (possibly asymmetric) distance. We
point out that in the vanishing-viscosity setting of [19], this distance is induced by a Finsler metric F(u, u̇);
in our case, the presence of inertia destroys this additional structure.

Proposition 3.12. For every t ∈ [0, T], u1, u2, u3 ∈ X and p ∈ RCP𝕍, the following assertions hold:
c𝕄,pt (u1, u2) = 0 if and only if u1 = u2, (3.17)

c𝕄,pt (u1, u2) ≤ c𝕄,pt (u1, u3) + c𝕄,pt (u3, u2). (3.18)

If in addition p( ⋅ , w) is symmetric for every w ∈ X∗ (see, for instance, Proposition 3.4), then the cost is symmet-
ric, i.e.:

c𝕄,pt (u1, u2) = c𝕄,pt (u2, u1). (3.19)

Proof. We start by proving (3.17). If u1 = u2, then the constant function is an admissible competitor. Thus,
c𝕄,pt (u1, u2) = 0 since p(0, w) = 0. On the other hand, if u1 ̸= u2, then for every N ∈ ℕ and v ∈ V𝕄,Nu1 ,u2 , by
exploiting Definition 3.2 (iii), Jensen’s inequality and the one-homogeneity of R, we have

N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr ≥ N∫
−N

R(v̇(r))dr ≥ R( N∫
−N

v̇(r)dr) = R(u2 − u1).
Hence, we get

c𝕄,pt (u1, u2) ≥ R(u2 − u1) > 0,
and (3.17) is proved.

To show the validity of (3.18), we fix N1, N2 ∈ ℕ and v1 ∈ V𝕄,N1
u1 ,u3 , v2 ∈ V𝕄,N2

u3 ,u2 . It is then easy to see that
the concatenation

v3(s) := {v1(s + N2) if s ∈ [−N1 − N2, N1 − N2],
v2(s − N1) if s ∈ (N1 − N2, N1 + N2],

belongs to V𝕄,N1+N2
u1 ,u2 , and that there holds

N1+N2∫
−N1−N2

p(v̇3(s), −𝕄v̈3(s) − DxE(t, v3(s)))ds
= N1∫
−N1

p(v̇1(r), −𝕄v̈1(r) − DxE(t, v1(r)))dr + N2∫
−N2

p(v̇2(r), −𝕄v̈2(r) − DxE(t, v2(r)))dr.
This yields (3.18).
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To prove (3.19), we fix N ∈ ℕ and v ∈ V𝕄,Nu2 ,u1 , and we observe that the backward function v̌(r) := v(−r)
belongs to V𝕄,Nu1 ,u2 . Then, by exploiting the symmetry of p( ⋅ , w), we get

c𝕄,pt (u1, u2) ≤ N∫
−N

p( ̇v̌(r), −𝕄 ̈v̌(r) − DxE(t, v̌(r)))dr
= N∫
−N

p(−v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr
= N∫
−N

p(v̇(r), −𝕄v̈(r) − DxE(t, v(r)))dr.
This implies

c𝕄,pt (u1, u2) ≤ c𝕄,pt (u2, u1),
and, by interchanging the roles of u1 and u2, we conclude.

4 Continuous slow-loading limit
The aim of this section is to show that inertial balanced (and virtual) viscosity solutions can be obtained
as slow-loading limit (i.e. as ε → 0) of dynamical solutions uε to (1.5). Namely, we prove Theorem 3.10 (i).
Hence, here we are assuming (E1)–(E4) and (R1).

4.1 Known results

First, we briefly recall the known results proved in [10]. In particular, for the existence of solutions to (1.5),
we refer to [10, Theorem 3.8], where the problem is considered under more general assumptions.

Theorem 4.1. For every pair of initial data (uε0, uε1) ∈ X × X, there exists at least one solution uε ∈W2,∞(0, T; X)
to the differential inclusion (1.5). Moreover, the following energy identity holds:

ε2

2 ‖u̇ε(t)‖2𝕄 + E(t, uε(t)) + t∫
s

R(u̇ε(r))dr + ε t∫
s

|u̇ε(r)|2𝕍 dr
= ε22 ‖u̇ε(s)‖2𝕄 + E(s, uε(s)) + t∫

s

∂tE(r, uε(r))dr (4.1)

for every 0 ≤ s ≤ t ≤ T.
Proposition 4.2. Let uε be a solution to problem (1.5), and assume uε0, εu

ε
1 to be uniformly bounded. Then there

exists a positive constant C > 0 such that for every ε > 0 the following a priori bounds hold:
max
t∈[0,T]
‖uε(t)‖ ≤ C, (4.2)

max
t∈[0,T]

ε‖u̇ε(t)‖𝕄 ≤ C, (4.3)

ess sup
t∈[0,T]

ε2‖𝕄üε(t)‖∗ ≤ C, (4.4)

T∫
0

R(u̇ε(r))dr ≤ C. (4.5)
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Proof. See [10, Corollary 3.4] for (4.2), (4.3) and (4.5). The uniform bound (4.4) follows by exploiting the
differential inclusion solved by uε together with (2.6).

With the a priori bounds of Proposition 4.2 at hand, an argument based on Helly’s selection theorem pro-
vides the existence of a convergent subsequence of dynamic solutions uε. This is the content of the following
proposition, whose proof is given in [10, Theorem 6.1] and is thus omitted here.

Proposition 4.3. Let uε0 and εuε1 be uniformly bounded. Then for every sequence εj → 0, there exist a subse-
quence (not relabelled) and a function u ∈ BVR([0; T]; X) such that the following assertions hold:
(i) uεj (t) → u(t) for every t ∈ [0, T].
(ii) VR(u; s, t) ≤ lim inf j→+∞ ∫ts R(u̇εj (r))dr for every 0 ≤ s ≤ t ≤ T.
(iii) εj‖u̇εj (t)‖𝕄 → 0 for every t ∈ (0, T] \ Ju, where Ju is the jump set of u.
In addition, arguing as for [10, Propositions 6.2-6.3], it can be proven that the limit evolution u above com-
plies with the local stability condition (3.13) and a suitable energy inequality. We highlight that a function
fulfilling such properties is usually called an a.e. local solution to the rate-independent system (1.1) (see, for
instance, [22, Chapter 3]).

Proposition 4.4. Let uε0 and εu
ε
1 be uniformly bounded, and let u be as in Proposition 4.3. Then the inequality

t∫
s

R(v) + ⟨DxE(r, u(r)), v⟩dr ≥ 0
holds for every v ∈ X and for every 0 ≤ s ≤ t ≤ T. In particular, the left and right limits of u are locally stable;
i.e., they fulfill the inequalities

R(v) + ⟨DxE(t, u−(t)), v⟩ ≥ 0 for every v ∈ X and for every t ∈ (0, T],
R(v) + ⟨DxE(t, u+(t)), v⟩ ≥ 0 for every v ∈ X and for every t ∈ [0, T], (4.6)

or equivalently −DxE(t, u−(t)) ∈ K∗ for every t ∈ (0, T],−DxE(t, u+(t)) ∈ K∗ for every t ∈ [0, T].
Moreover, the energy inequality

E(t, u+(t)) + VR(u; s−, t+) ≤ E(s, u−(s)) + t∫
s

∂tE(r, u(r))dr (4.7)

holds for every 0 < s ≤ t ≤ T. If in addition εuε1 → 0, then (4.7) holds true also for s = 0.
It is worth mentioning that, under the additional assumption of (uniform) convexity on the energy E, Gidoni
and Riva [10] were able to deduce that the limit function u is continuous and that (4.7) is actually an energy
equality. They thus obtained in the limit an energetic solution of the rate-independent problem.

4.2 Characterization of the energy loss at jumps

In the nonconvex setting, continuity of the limit function is no more reasonable, and hence the gap of the
energy in (4.7) has to be characterized. This first proposition shows that, as expected, the peculiar behavior
of the limit function u is restricted to its (essential) jump set.

Proposition 4.5. Let uε0 → u0, εuε1 → 0 and u be as in Proposition 4.3. Then there exists a positive Radon
measure μ such that for every 0 ≤ s ≤ t ≤ T there holds

E(t, u+(t)) + VR(uco; s, t) + ∑
r∈Jeu∩[s,t]

μ({r}) = E(s, u−(s)) + t∫
s

∂tE(r, u(r))dr.
In particular, E(t, u−(t)) − E(t, u+(t)) = μ({t}) ≥ 0 for every t ∈ Jeu.



18 | F. Riva et al., Inertial balanced viscosity and inertial virtual viscosity solutions

Proof. By reasoning as in [31, Theorem 5.4], it is easy to see that the map

t 󳨃→ E(t, u+(t)) − t∫
0

∂tE(r, u(r))dr
is nonincreasing; it essentially follows from the energy balance (4.1) by dropping the dissipated energy (i.e.
the terms with R( ⋅ ) and | ⋅ |𝕍) and controlling the kinetic energy in the limit ε → 0 by means of Proposi-
tion 4.3 (iii). This implies the existence of a positive Radon measure μ for which

E(t, u+(t)) + μ([s, t]) = E(s, u−(s)) + t∫
s

∂tE(r, u(r))dr for every 0 ≤ s ≤ t ≤ T. (4.8)

This in particular yields that the distributional derivative of t 󳨃→ E(t, u(t)), denoted by E( ⋅ , u( ⋅ ))󸀠, fulfils the
relation

E( ⋅ , u( ⋅ ))󸀠 = −μ + ∂tE( ⋅ , u( ⋅ ))L1. (4.9)

On the other hand, by the chain-rule formula inBV (see, for instance, [5, Theorem4.1] and recall Remark2.1),
it holds

E( ⋅ , u( ⋅ ))󸀠 = ∂tE( ⋅ , u( ⋅ ))L1 + ⟨DxE( ⋅ , u( ⋅ )), u̇( ⋅ )⟩L1 + ⟨DxE( ⋅ , u( ⋅ )), du󸀠Cadλ ( ⋅ )⟩λ+ [E( ⋅ , u+( ⋅ )) − E( ⋅ , u−( ⋅ ))]H0⌞Jeu , (4.10)

where λ = L1 + |u󸀠Ca| and we recall u󸀠 = u󸀠co + u󸀠J = u̇L1 + u󸀠Ca + u󸀠J (see (2.11)).
By combining (4.9) and (4.10), we obtain

μ = −⟨DxE( ⋅ , u( ⋅ )), u̇( ⋅ ) dL1

dλ ( ⋅ ) + du󸀠Ca
dλ ( ⋅ )⟩λ − [E( ⋅ , u+( ⋅ )) − E( ⋅ , u−( ⋅ ))]H0⌞Jeu= −⟨DxE( ⋅ , u( ⋅ )), du󸀠codλ ( ⋅ )⟩λ − [E( ⋅ , u+( ⋅ )) − E( ⋅ , u−( ⋅ ))]H0⌞Jeu .

The latter equality yields

dμco
dλ (t) = −⟨DxE(t, u(t)), du󸀠codλ (t)⟩ for λ-a.e. t ∈ [0, T], (4.11)

where we define
μco := μ + [E( ⋅ , u+( ⋅ )) − E( ⋅ , u−( ⋅ ))]H0⌞Jeu .

By choosing v = du󸀠co
dλ (t) in the local stability condition (4.6), and using (4.11), we deduce that

R( du󸀠codλ (t)) ≥ −⟨DxE(t, u(t)), du󸀠codλ (t)⟩ = dμco
dλ (t) for λ-a.e. t ∈ [0, T].

By integrating the above inequality in [s, t] ⊆ [0, T], and recalling (2.13), we finally get
VR(uco; s, t) = t∫

s

R( du󸀠codλ (r))dλ(r) ≥ t∫
s

dμco
dλ (r)dλ(r) = μ([s, t] \ Jeu). (4.12)

To obtain the reverse inequality, we combine (4.8) and (4.7), and use (2.12) and (2.14), to get

μ([s, t]) = E(s, u−(s)) − E(t, u+(t)) + t∫
s

∂tE(r, u(r))dr ≥ VR(u; s−, t+) ≥ R(u󸀠)([s, t]).
Since both μ and R(u󸀠) are Radon measures, the above inequality implies

μ(B) ≥ R(u󸀠)(B) for every Borel set B ⊆ [0, T].
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In particular, we deduce

μ([s, t] \ Jeu) ≥ R(u󸀠)([s, t] \ Jeu) = t∫
s

R( du󸀠codλ (r))dλ(r) = VR(uco; s, t). (4.13)

By joining (4.12) with (4.13), we finally obtain

μ([s, t]) = μ([s, t] \ Jeu) + μ(Jeu ∩ [s, t]) = VR(uco; s, t) + ∑
r∈Jeu∩[s,t]

μ({r}),
and we conclude.

Thanks to Proposition 3.7, we already know that the inertial cost c𝕄,pt (u−(t), u+(t)) is an upper bound for
μ({t}) for every p ∈ RCP𝕍. We now prove that it is a lower bound as well, thus concluding the proof of Theo-
rem 3.10 (i).

Proposition 4.6. Let uε0 → u0, εuε1 → 0 and u be as in Proposition 4.3. Then for every t ∈ [0, T], it holds
E(t, u−(t)) − E(t, u+(t)) ≥ sup

p∈RCP𝕍
c𝕄,pt (u−(t), u+(t)). (4.14)

Proof. Let uεj be the subsequence obtained in Proposition 4.3. We restrict to the case t ∈ Jeu, since for any
t ∈ [0, T] \ Jeu inequality (4.14) holds as a trivial equality in view of (3.17). If t = 0, we convene that the func-
tion uεj is extended to a left neighborhood of 0 with an affine function of constant slope uεj1 . Reasoning as
in [31, Proposition 5.8], by a diagonal argument, we can find sequences t−j ↗ t and t+j ↘ t and a (further)
subsequence, still denoted by εj, such that

uεj (t−j ) → u−(t), uεj (t+j ) → u+(t), (4.15)

εj u̇εj (t−j ) → 0, εj u̇εj (t+j ) → 0, (4.16)

as j → +∞.
By exploiting (3.3) and from the definition of the contact potential p𝕍, we thus infer

E(t, u−(t)) − E(t, u+(t))
= lim

j→+∞
[E(t−j , uεj (t−j )) − E(t+j , uεj (t+j )) + ε2j2 ‖u̇εj (t−j )‖2𝕄 − ε2j2 ‖u̇εj (t+j )‖2𝕄 + t+j∫

t−j

∂tE(r, uεj (r))dr]
= lim

j→+∞

t+j∫
t−j

Rεj (u̇εj (r)) + R∗εj (wεj (r))dr
≥ lim sup

j→+∞

t+j∫
t−j

p𝕍(u̇εj (r), wεj (r))dr.
We now take any p ∈ RCP𝕍, and from (iii) in Definition 3.2 we can continue the previous inequality,

getting

E(t, u−(t)) − E(t, u+(t)) ≥ lim sup
j→+∞

t+j∫
t−j

p(u̇εj (r), wεj (r))dr
= lim sup

j→+∞

t+j∫
t−j

p(u̇εj (r), −ε2j𝕄üεj (r) − DxE(r, uεj (r)))dr. (4.17)
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Then, by using the Lipschitzianity of p in the second variable (property (iv) in Definition 3.2), we notice
that

t+j∫
t−j

󵄨󵄨󵄨󵄨p(u̇εj (r), −ε2j𝕄üεj (r) − DxE(r, uεj (r))) − p(u̇εj (r), −ε2j𝕄üεj (r) − DxE(t, uεj (r)))󵄨󵄨󵄨󵄨dr
≤ L t+j∫

t−j

‖u̇εj (r)‖‖DxE(t, uεj (r)) − DxE(r, uεj (r))‖∗ dr.
If we denote by ω a modulus of continuity for DxE on [0, T] × BC, where C is the constant of Proposition 4.2,
we can bound the last term in the above inequality by

Lω(max{|t+j − t|, |t − t−j |}) t+j∫
t−j

‖u̇εj (r)‖dr,
which vanishes as j → +∞, thanks to the uniform bound (4.5).

This means that we can freeze the time t in DxE of (4.17), getting

E(t, u−(t)) − E(t, u+(t)) ≥ lim sup
j→+∞

t+j∫
t−j

p(u̇εj (r), −ε2j𝕄üεj (r) − DxE(t, uεj (r)))dr. (4.18)

Following [31, Proposition 5.8], we now set

vj(τ) := uεj (εjτ + t−j ) for every τ ∈ [0, σj], (4.19)

where we denoted by σj the ratio
t+j − t−j
εj

.

Then, through the change of variables r = εjτ + t−j , and recalling the one-homogeneity of p with respect to
the first variable, we obtain

t+j∫
t−j

p(u̇εj (r), −ε2j𝕄üεj (r) − DxE(t, uεj (r)))dr = σj∫
0

p(v̇j(τ), −𝕄v̈j(τ) − DxE(t, vj(τ)))dτ.
We also notice that (4.15)–(4.16) can be re-read for vj as{‖vj(0) − u−(t)‖ → 0, ‖vj(σj) − u+(t)‖ → 0,‖v̇j(0)‖ → 0, ‖v̇j(σj)‖ → 0,

(4.20)

as j → +∞.
We now introduce the functions

g(x) = 3x2 − 2x3, h(x) = −x2(1 − x), x ∈ [0, 1],
and the competitor

ṽj(τ) =
{{{{{{{{{{{{{{{{{{{
u−(t), τ ≤ −1,
u−(t) + g(τ + 1)(vj(0) − u−(t)) + h(τ + 1)v̇j(0), τ ∈ [−1, 0],
vj(τ), τ ∈ [0, σj],
vj(σj) + g(1 + σj − τ)(u+(t) − vj(σj)) − h(1 + σj − τ)v̇j(σj), τ ∈ [σj , σj + 1],
u+(t), τ ≥ σj + 1.
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For the sake of clarity, we denote by αj(τ) and βj(τ) the expressions of ṽj in [−1, 0] and [σj , σj + 1], respec-
tively, and we notice that, by (4.20), αj and βj are uniformly bounded and there holds

lim
j→+∞
( max
τ∈[−1,0]
(‖α̇j(τ)‖ + ‖α̈j(τ)‖) + max

τ∈[σj ,σj+1]
(‖β̇j(τ)‖ + ‖β̈j(τ)‖)) = 0. (4.21)

Fix now an arbitrary Nj ∈ ℕ with 2Nj − 1 > σj + 1. Recalling that p(0, w) = 0, we observe that
2Nj−1∫
−1

p( ̇ṽj(τ), −𝕄 ̈ṽj(τ) − DxE(t, ṽj(τ)))dτ
= σj∫

0

p(v̇j(τ), −𝕄v̈j(τ) − DxE(t, vj(τ)))dτ + 0∫
−1

p(α̇j(τ), −𝕄α̈j(τ) − DxE(t, αj(τ)))dτ
+ σj+1∫

σj

p(β̇j(τ), −𝕄β̈j(τ) − DxE(t, βj(τ)))dτ.
By means of (3.6) and (4.21), it is easy to see that both terms in the last line above vanish as j → +∞. This
allows us to continue (4.18), getting

E(t, u−(t)) − E(t, u+(t)) ≥ lim sup
j→+∞

2Nj−1∫
−1

p( ̇ṽj(τ), −𝕄 ̈ṽj(τ) − DxE(t, ṽj(τ)))dτ. (4.22)

With the time translation v̂j(s) = ṽj(s + Nj − 1), we finally construct a function belonging to V𝕄,Nj
u−(t),u+(t)

(indeed, notice that the bound on the second derivative follows from (4.4), (4.19) and (4.21)). From (4.22),
we thus get

E(t, u−(t)) − E(t, u+(t)) ≥ lim sup
j→+∞

2Nj−1∫
−1

p( ̇ṽj(τ), −𝕄 ̈ṽj(τ) − DxE(t, ṽj(τ)))dτ
= lim sup

j→+∞

Nj∫
−Nj

p( ̇v̂j(s), −𝕄 ̈v̂j(s) − DxE(t, v̂j(s)))ds≥ c𝕄,pt (u−(t), u+(t)),
and by the arbitrariness of p ∈ RCP𝕍, we conclude.
5 Incremental minimization scheme
This last section is devoted to the proof of Theorem 3.10 (ii): namely, we show that IBV and IVV solutions
can also be obtained as limits of time-discrete solutions when ε and the time step τ vanish simultaneously
(with a certain rate). For this, in addition to the assumptions of the previous section, we need to require (E3’)
and (E5).

Let T > 0 and let τ ∈ (0, 1) be a fixed time step such that T
τ ∈ ℕ. We consider the corresponding induced

partition Πτ := {tk}k of the time-interval [0, T], defined by tk := kτ where k = 0, 1, . . . , Tτ . For future use, we
also define t−1 := −τ and we setKτ := {1, . . . , Tτ } andK0

τ := Kτ ∪ {0}.
We construct a recursive sequence {ukτ,ε}k∈Kτ by solving the following iterated minimum problem à la

minimizing movements:
ukτ,ε ∈ argmin

x∈X
Fτ,ε(tk , x, uk−1τ,ε , uk−2τ,ε ), k ∈ Kτ , (5.1a)

with initial conditions
u0τ,ε := uε0, u−1τ,ε := uε0 − τuε1, (5.1b)
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where

Fτ,ε(tk , x, uk−1τ,ε , uk−2τ,ε ) := ε2

2τ2
‖x − 2uk−1τ,ε + uk−2τ,ε ‖2𝕄 + ε

2τ |x − uk−1τ,ε |2𝕍+ R(x − uk−1τ,ε ) + E(tk , x) + Λ𝕍4 ‖x − uk−1τ,ε ‖2𝕀
and

Λ𝕍 := {0 if𝕍 is positive-definite,
Λ otherwise,

(5.2)

with Λ and 𝕀 from (E5).
The addition in the functional Fτ,ε of the last fictitious viscous term, which by the definition (5.2) of Λ𝕍

is present only if 𝕍 is not positive-definite, is needed to deal with the Λ-convexity assumption (E5). If 𝕍
is positive-definite and the ratio ε

τ is large enough (see (5.5)), the second term will be enough to keep the
Λ-convexity under control.

We observe that the existence of aminimum in (5.1a) follows easily from the directmethod. Furthermore,
if ε2

τ2 is large enough (this is the case under the assumption (5.27) needed to conclude the whole argument),
the minimum is unique by strict convexity of the functional.

By defining

vkτ,ε := ukτ,ε − uk−1τ,ε
τ

,

we notice that the Euler–Lagrange equation solved by ukτ,ε reads as

ε2𝕄 vkτ,ε − vk−1τ,ε
τ
+ ε𝕍vkτ,ε + ∂R(vkτ,ε) + DxE(tk , ukτ,ε) + Λ𝕍2 τ𝕀vkτ,ε ∋ 0. (5.3)

We also observe that by (5.1b), one has v0τ,ε = uε1. Thus, in the limit as τ → 0 with ε fixed, we formally (but
this could actually be made rigorous, see for instance [28]) recover the dynamic problem (1.5).

In order to enlighten the notation, from now on we will drop the dependence on τ, ε in ukτ,ε and vkτ,ε, and
we will simply write uk and vk.

As in the continuous counterpart developed in Section 4, the first step in the analysis consists in finding
uniformapriori estimates,whichusually follows by combining an energy inequality togetherwithGrönwall’s
lemma. In the discrete setting, we employ the following version of the discrete Grönwall’s inequality, whose
proof can be found for instance in [13, Appendix A].

We want to stress that here and henceforth we adopt the convention that an empty sum is equal to 0.

Lemma 5.1 (Grönwall). Let {γn}n∈ℕ and {f n}n∈ℕ be two nonnegative sequences and let c ≥ 0. If
γn ≤ c + n−1∑

k=1
f kγk for every n ∈ ℕ,

then one has

γn ≤ c exp( n−1∑
k=1

f k) for every n ∈ ℕ.
Proposition 5.2. For every m, n ∈ K0

τ with m ≤ n, the following discrete energy inequality holds true:
ε2

2 ‖vn‖2𝕄 + E(tn , un) + n∑
k=m+1

τR(vk) + n∑
k=m+1

τ(ε|vk|2𝕍 − Λ − Λ𝕍2 τ‖vk‖2𝕀)
≤ ε22 ‖vm‖2𝕄 + E(tm , um) + n∑

k=m+1

tk∫
tk−1

∂tE(r, uk−1)dr. (5.4)

Furthermore, if uε0 and εu
ε
1 are uniformly bounded and

τ
ε
≤ 2
ΛVI if𝕍 is positive-definite, (5.5)
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then there exists C > 0, independent of ε and τ, such that
ε2

2 ‖vn‖2𝕄 + E(tn , un) + n∑
k=1

τR(vk) ≤ C (5.6)

for every n ∈ K0
τ .

Proof. Testing (5.3) by τvk, from (2.5), (2.9) and from the fact that‖x‖2𝕄
2 − ‖y‖2𝕄2 = ‖x − y‖2𝕄2 − ⟨𝕄(y − x), y⟩ ≥ −⟨𝕄(y − x), y⟩,

we deduce

τR(vk) = −⟨ε2𝕄 vk − vk−1
τ
+ ε𝕍vk + DxE(tk , uk) + Λ𝕍2 𝕀τvk , τvk⟩= −ετ|vk|2𝕍 − ε2⟨𝕄(vk − vk−1), vk⟩ + ⟨DxE(tk , uk), uk−1 − uk⟩ − Λ𝕍2 ‖uk − uk−1‖2𝕀≤ −ετ|vk|2𝕍 + ε22 ‖vk−1‖2𝕄 − ε22 ‖vk‖2𝕄 − E(tk , uk) + E(tk , uk−1) + Λ − Λ𝕍2 τ2‖vk‖2𝕀 .

Subtracting E(tk−1, uk−1) from both sides, rearranging the terms and summing upon k = m, . . . , n, we
obtain (5.4).

We now come to the proof of (5.6). We first notice that, defining

γn := ε22 ‖vn‖2𝕄 + E(tn , un) + n∑
k=1

τR(vk) + a1 if n ∈ Kτ ,

γ0 := ε22 ‖uε1‖2𝕄 + E(0, uε0) + a1,
where a1 is the constant appearing in (E3’), from (5.5) it holds

γn ≤ γ0 + n∑
k=1

tk∫
tk−1

∂tE(r, uk−1)dr for every n ∈ Kτ . (5.7)

We indeed observe that the term ε|vk|2𝕍 − Λ−Λ𝕍
2 τ‖vk‖2𝕀 in (5.4) is nonnegative: if 𝕍 is not positive-definite, it

reduces to ετ|vk|2𝕍; otherwise, we exploit (5.5):
ε‖vk‖2𝕍 − Λ2 τ‖vk‖2𝕀 ≥ ( εV − Λ2 Iτ)‖vk‖2 ≥ 0.

Thanks to (2.8), we now have
tk∫

tk−1

∂tE(r, uk−1)dr ≤ (E(tk−1, uk−1) + a1) tk∫
tk−1

b(r)e∫rtk−1 b(s)ds dr ≤ (e∫tktk−1 b(r)dr − 1)γk−1,
and thus from (5.7) we infer

γn ≤ γ0e∫τ0 b(r)dr + n−1∑
k=1
(e∫tk+1tk b(r)dr − 1)γk for every n ∈ Kτ .

Hence, by means of Lemma 5.1, we get

γn ≤ γ0e∫τ0 b(r)dr exp( n−1∑
k=1
(e∫tk+1tk b(r)dr − 1)) for every n ∈ Kτ . (5.8)

By defining B := ∫T0 b(r)dr and recalling the elementary inequality

ex − 1 ≤ eB − 1
B

x for every x ∈ [0, B],
from (5.8) we finally obtain

γn ≤ γ0eeB−1 for every n ∈ Kτ .

Since γ0 is uniformly bounded by assumption, we conclude.
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Corollary 5.3. Assume that uε0 and εuε1 are uniformly bounded and assume (5.5). Then the following uniform
bounds hold for every n ∈ Kτ: ‖un‖ ≤ C, (5.9)

ε‖vn‖𝕄 ≤ C, (5.10)

ε2
󵄩󵄩󵄩󵄩󵄩󵄩𝕄 vn − vn−1

τ
󵄩󵄩󵄩󵄩󵄩󵄩∗ ≤ C, (5.11)

n∑
k=1

τR(vk) ≤ C. (5.12)

Proof. The bounds (5.10) and (5.12) can be easily inferred from (5.6). We then prove (5.9). Let n ∈ Kτ be
fixed. Then, with (5.12), (2.4) and the triangle inequality, we have‖un‖ ≤ ‖uε0‖ + n∑

k=1
‖uk − uk−1‖ = ‖uε0‖ + n∑

k=1
τ‖vk‖ ≤ C.

Lastly, (5.11) can be obtained from the Euler-Lagrange equation (5.3) taking into account (2.6), (E2)
and (5.10).

5.1 The main interpolants

Once the discrete bounds are obtained, in order to retrieve the continuous framework we need to introduce
suitable interpolants of the discrete-in-time sequence {uk}k∈K0

τ
. First, we denote by uτ,ε (resp., uτ,ε) the left-

continuous (resp., right-continuous) piecewise constant interpolant of {uk}k∈K0
τ
, defined by

uτ,ε(t) := uk for t ∈ (tk−1, tk], uτ,ε(t) := uk−1 for t ∈ [tk−1, tk), k ∈ K0
τ , (5.13)

respectively. We denote by ûτ,ε the piecewise affine interpolant of {uk}k∈K0
τ
, defined by

ûτ,ε(t) := uk − uk−1τ
(t − tk−1) + uk−1 = vk(t − tk−1) + uk−1 for t ∈ (tk−1, tk], k ∈ K0

τ . (5.14)

Since in the definition of the inertial cost (3.11) a second derivative is present, we also need to keep track
of its discrete counterpart vk−vk−1

τ . This is done by finally introducing the function ũτ,ε such that ũτ,ε(0) = u0ε
and whose first derivative is the piecewise affine interpolant of {vk}k∈K0

τ
, namely{{{{{{{{{{{{{

ũτ,ε(t) := u0ε + t∫
0

̇̃uτ,ε(r)dr for t ∈ [0, T],
̇̃uτ,ε(t) := vk − vk−1τ

(t − tk−1) + vk−1 for t ∈ (tk−1, tk], k ∈ Kτ .

(5.15)

Notice indeed that ũτ,ε is inW2,∞(0, T; X) witḧ̃uτ,ε(t) = vk − vk−1τ
for t ∈ (tk−1, tk), k ∈ Kτ .

Thus, thanks to (5.11), the function ũτ,ε is the correct “discrete” counterpart of the continuous dynamic
solution uε to (1.5).

For any t ∈ (−τ, T], we also denote by tτ the least point of the partition Πτ which is greater or equal to t;
i.e., it is defined by

tτ := min{r ∈ Πτ : r ≥ t}. (5.16)

Note that tτ ↘ t as τ → 0 (for t ∈ [0, T]).
We finally define a piecewise constant interpolant of the values E( ⋅ , u), setting for every u ∈ X,

Eτ(t, u) := E(tk , u) if t ∈ (tk−1, tk], k ∈ K0
τ .
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From assumptions (E1) and (E2), we deduce that, in the limit as τ → 0,

Eτ(t, u) → E(t, u) and DxEτ(t, u) → DxE(t, u), (5.17)

uniformly with respect to (t, u) ∈ [0, T] × BR.
In terms of interpolants, the energy inequality (5.4) can be rewritten as

ε2

2 ‖ ̇̂uτ,ε(t)‖2𝕄 + Eτ(t, uτ,ε(t)) + tτ∫
sτ

R( ̇̂uτ,ε(r))dr + tτ∫
sτ

(ε| ̇̂uτ,ε(r)|2𝕍 − Λ − Λ𝕍2 τ‖ ̇̂uτ,ε(r)‖2𝕀)dr
≤ ε22 ‖ ̇̂uτ,ε(s)‖2𝕄 + Eτ(s, uτ,ε(s)) + tτ∫

sτ

∂tE(r, uτ,ε(r))dr
for every s, t ∈ (−τ, T] \ Πτ with s ≤ t. Furthermore, Proposition 5.2 and the subsequent Corollary 5.3 can be
re-read as follows.

Corollary 5.4. Assume that uε0 and εuε1 are uniformly bounded and assume (5.5). Then there exists C > 0,
independent of τ and ε, such that

ε2

2 ‖ ̇̂uτ,ε(t)‖2𝕄 + Eτ(t, uτ,ε(t)) + tτ∫
0

R( ̇̂uτ,ε(r))dr ≤ C
for every t ∈ (−τ, T] \ Πτ.

Moreover, up to enlarging the constant C appearing in Proposition 4.2, there holds

max
t∈[0,T]
‖uτ,ε(t)‖ ≤ C,

max
t∈[0,T]\Πτ

ε‖ ̇̂uτ,ε(t)‖𝕄 ≤ C,
max

t∈[0,T]\Πτ
ε2‖𝕄 ̈̃uτ,ε(t)‖∗ ≤ C,
T∫
0

R( ̇̂uτ,ε(r))dr ≤ C. (5.18)

The next proposition shows that themismatch between themany interpolants defined above can be bounded
by suitable ratios of the parameters τ and ε.

Proposition 5.5. Assume that uε0 and εu
ε
1 are uniformly bounded and assume (5.5). Then we have

max
t∈[0,T]
{‖uτ,ε(t) − uτ,ε(t)‖ + ‖uτ,ε(t) − ûτ,ε(t)‖ + ‖ũτ,ε(t) − ûτ,ε(t)‖} ≤ C τε . (5.19)

Moreover, it holds
max

t∈[0,T]\Πτ
‖ ̇̃uτ,ε(t) − ̇̂uτ,ε(t)‖ ≤ C τ

ε2
. (5.20)

Proof. We first notice that, by virtue of (5.10) and since εuε1 is uniformly bounded, one has

max
k∈K0

τ

‖uk − uk−1‖ ≤ C τ
ε
. (5.21)

Thus, let t ∈ (tk−1, tk] for some k ∈ K0
τ . Then there holds‖uτ,ε(t) − uτ,ε(t)‖ ≤ ‖uk − uk−1‖,‖uτ,ε(t) − ûτ,ε(t)‖ = ‖uk − uk−1‖ τ − (t − tk−1)τ

≤ ‖uk − uk−1‖.
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In order to deal with the last term in (5.19), we observe thaṫ̃uτ,ε(t) − ̇̂uτ,ε(t) = vk − vk−1τ
(t − tk−1 − τ) for t ∈ (tk−1, tk), k ∈ Kτ , (5.22)

and thus

ũτ,ε(t) − ûτ,ε(t) = t∫
0

( ̇̃uτ,ε(r) − ̇̂uτ,ε(r))dr
= vk − vk−1

τ

t∫
tk−1

(r − tk−1 − τ)dr + k−1∑
i=1

vi − vi−1
τ

ti∫
ti−1

(r − ti−1 − τ)dr
= vk − vk−12τ (t − tk−1)(t − tk−1 − 2τ) − τ k−1∑

i=1

vi − vi−1
2= vk − vk−12τ (t − tk−1)(t − tk−1 − 2τ) + τuε12 − τvk−12= vk2 ( t − tk−1τ )(t − tk−1 − 2τ) − vk−12 (t − tk−1 − τ)2τ
+ τuε12 .

Since t − tk−1 ∈ (0, τ), we now get

2‖ũτ,ε(t) − ûτ,ε(t)‖ ≤ τε ‖εuε1‖ + τ‖vk‖ + τ‖vk−1‖ = τε ‖εuε1‖ + ‖uk − uk−1‖ + ‖uk−1 − uk−2‖,
and assertion (5.19) follows from (5.21).

From (5.22), the bound (5.20) easily follows by means of (5.11).

We are now in a position to prove the analogues of Propositions 4.3–4.5 for the sequence of piecewise affine
interpolants ûτ,ε.

Proposition 5.6. Let uε0 and εu
ε
1 be uniformly bounded and assume that (5.5) holds. Then, for every sequence(τj , εj) → (0, 0), there exists a subsequence (not relabelled) and a function u ∈ BVR([0, T]; X) such that the

following assertions hold:
(i) ûτj ,εj (t) → u(t) for every t ∈ [0, T].
(ii) For every 0 ≤ s ≤ t ≤ T,

VR(u; s, t) ≤ lim inf
j→+∞

t∫
s

R( ̇̂uτj ,εj (r))dr.
(iii) εj‖ ̇̂uτj ,εj (t)‖𝕄 → 0 for a.e. t ∈ [0, T].
If in addition τj

εj → 0, then also the following assertions hold:
(ii’) For every 0 ≤ s ≤ t ≤ T,

VR(u; s, t) ≤ lim inf
j→+∞

tτj∫
sτj

R( ̇̂uτj ,εj (r))dr.
(iii’) εj‖ ̇̂uτj ,εj (t)‖𝕄 → 0 for every t ∈ (0, T] \ (Ju ∪ N), where N = ⋃j∈ℕ Πτj .

Proof. We can argue as in [10, Theorem 6.1]. In view of the a priori bounds of Corollary 5.4 and (2.4), the
sequence {ûτj ,εj }j∈ℕ is uniformly equibounded with uniformly equibounded variation. Then, by virtue of
Helly’s selection theorem, there exist a subsequence and a function u ∈ BV([0, T]; X) complying with (i).
Furthermore, with [10, Proposition 4.11 and Lemma 4.12], we get u ∈ BVR([0, T]; X) and assertion (ii).

By virtue of Corollary 5.4 and (2.4), we also have

lim
j→+∞

εj
T∫
0

‖ ̇̂uτj ,εj (r)‖dr = 0,
whence (iii) follows, up to possibly passing to a further subsequence.



F. Riva et al., Inertial balanced viscosity and inertial virtual viscosity solutions | 27

To obtain (ii’), it is enough to observe that

t∫
s

R( ̇̂uτj ,εj (r))dr = tτj∫
sτj

R( ̇̂uτj ,εj (r))dr + sτj∫
s

R( ̇̂uτj ,εj (r))dr − tτj∫
t

R( ̇̂uτj ,εj (r))dr,
and to notice that the last two terms vanish as j → +∞, since

sτj∫
s

R( ̇̂uτj ,εj (r))dr ≤ C sτj∫
s

‖ ̇̂uτj ,εj (r)‖𝕄 dr ≤ C sτj − sεj
≤ C τj

εj
,

and the same holds for the other one.
The proof of (iii’) follows exactly as in [10, Theorem 6.1], by using (5.26) and recalling that thanks to

(5.19) we also have uτj ,εj (t) → u(t) for every t ∈ [0, T].
Proposition 5.7. Let uε0 and εuε1 be uniformly bounded, and let u be the limit function obtained in Proposi-
tion 5.6 from a subsequence satisfying

lim
j→+∞

εj = lim
j→+∞

τj
εj
= 0.

Then the inequality
t∫
s

R(v) + ⟨DxE(r, u(r)), v⟩dr ≥ 0 (5.23)

holds for every v ∈ X and for every 0 ≤ s ≤ t ≤ T. In particular, the left and right limits of u are locally stable;
i.e., they fulfill the inclusions −DxE(t, u−(t)) ∈ K∗ for every t ∈ (0, T],−DxE(t, u+(t)) ∈ K∗ for every t ∈ [0, T].
Moreover, if in addition εuε1 → 0, there exists a positive Radonmeasure μ such that for every 0 ≤ s ≤ t ≤ T there
holds

E(t, u+(t)) + VR(uco; s, t) + ∑
r∈Jeu∩[s,t]

μ({r}) = E(s, u−(s)) + t∫
s

∂tE(r, u(r))dr.
In particular,

E(t, u−(t)) − E(t, u+(t)) = μ({t}) ≥ 0 for every t ∈ Jeu .
Proof. We only prove (5.23), the remaining assertions being as in [10, Propositions 6.2 and 6.3] and in
Proposition 4.5, exploiting Proposition 5.6 (ii’) and (iii’). From (5.3) and (2.5), for every v ∈ X and k ∈ Kτj
we have

0 ≤ R(v) + ⟨ε2j𝕄 vk − vk−1
τj
+ εj𝕍vk + DxE(tk , uk) + Λ𝕍2 τj𝕀vk , v⟩.

By multiplying both sides by τj and summing over k, for every m, n ∈ K0
τj with m ≤ n we now obtain

0 ≤ ε2j ⟨𝕄(vn − vm), v⟩ + n∑
k=m+1

τj(R(v) + ⟨DxE(tk , uk), v⟩ + εj⟨𝕍vk , v⟩ + Λ𝕍2 τj⟨𝕀vk , v⟩),
namely for every 0 ≤ s ≤ t ≤ T it holds

0 ≤ ε2j ⟨𝕄( ̇̃uτj ,εj (tτj ) − ̇̃uτj ,εj (sτj )), v⟩ + tτj∫
sτj

R(v) + ⟨DxEτj (r, uτj ,εj (r)), v⟩dr
+ εj tτj∫

sτj

⟨𝕍 ̇̂uτj ,εj (r), v⟩dr + Λ𝕍2 τj

tτj∫
sτj

⟨𝕀 ̇̂uτj ,εj (r), v⟩dr.
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Passing to the limit as j → +∞, by Corollary 5.3 (ii) we have that
lim
j→+∞

ε2j |⟨𝕄 ̇̃uτj ,εj (tτj ), v⟩| = lim
j→+∞

ε2j |⟨𝕄 ̇̃uτj ,εj (sτj ), v⟩| = 0.
From Corollary 5.4, (2.4) and the Cauchy–Schwarz inequality, we also have󵄨󵄨󵄨󵄨󵄨󵄨󵄨εj tτj∫

sτj

⟨𝕍 ̇̂uτj ,εj (r), v⟩dr󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ C‖v‖εj T∫
0

‖ ̇̂uτj ,εj (r)‖dr → 0,

and a similar argument shows that the last term in the inequality above vanishes as well as j → +∞.
We conclude observing that (5.17) and (5.19) allow us to use the dominated convergence theorem, get-

ting

lim
j→+∞

tτj∫
sτj

R(v) + ⟨DxEτj (r, uτj ,εj (r)), v⟩dr = t∫
s

R(v) + ⟨DxE(r, u(r)), v⟩dr.
5.2 The convergence result

As already done in the time-continuous setting in (3.3), we now rephrase the energy inequality (5.4) in terms
of De Giorgi’s principle. For simplicity, we set

wk := −ε2𝕄 vk − vk−1
τ
− DxE(tk , uk) − Λ𝕍2 τ𝕀vk , k ∈ Kτ .

Recalling the definitions of the interpolants uτ,ε (see (5.13)) and ũτ,ε (see (5.15)), for t ∈ [0, T] \ Πτ we define

wτ,ε(t) := −ε2𝕄 ̈̃uτ,ε(t) − DxEτ(t, uτ,ε(t)) − Λ𝕍2 τ𝕀 ̇̂uτ,ε(t),
w̃τ,ε(t) := −ε2𝕄 ̈̃uτ,ε(t) − DxE(t, ũτ,ε(t)).

Then, by virtue of Corollary 5.4 and Proposition 5.5, if τ
ε is bounded, we deduce

max
t∈[0,T]\Πτ

(‖wτ,ε(t)‖∗ + ‖w̃τ,ε(t)‖∗) ≤ C. (5.24)

Furthermore, thanks to the continuity of DxE, if τ
ε → 0, we also have

lim
(ε,τ)→(0,0)

max
t∈[0,T]\Πτ

‖wτ,ε(t) − w̃τ,ε(t)‖∗ = 0. (5.25)

From (5.3) and recalling that using (2.1) it holds

Rε(vk) + R∗ε (wk) = ⟨wk , vk⟩,
inequality (5.4) can be rewritten, arguing in a similar way, as

ε2

2 ‖vn‖2𝕄 + E(tn , un) + n∑
k=m+1

τ(Rε(vk) + R∗ε (wk))
≤ ε22 ‖vm‖2𝕄 + E(tm , um) + n∑

k=m+1

tk∫
tk−1

∂tE(r, uk−1)dr + Λ − Λ𝕍2 τ2
n∑

k=m+1
τ‖vk‖2𝕀 ,

and thus, in terms of interpolants, as

ε2

2 ‖ ̇̂uτ,ε(t)‖2𝕄 + Eτ(t, uτ,ε(t)) + tτ∫
sτ

Rε( ̇̂uτ,ε(r)) + R∗ε (wτ,ε(r))dr
≤ ε22 ‖ ̇̂uτ,ε(s)‖2𝕄 + Eτ(s, uτ,ε(s)) + tτ∫

sτ

∂tE(r, uτ,ε(r))dr + Λ − Λ𝕍2 τ2
tτ∫
sτ

‖ ̇̂uτ,ε(r)‖2𝕀 dr (5.26)

for every s, t ∈ (−τ, T] \ Πτ with s ≤ t.
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To conclude the proof of Theorem 3.10 (ii), we only have to confirm the validity of an analogue of Propo-
sition 4.6 for the function u obtained with Proposition 5.6. For this, we will need to reinforce the assumption
τ
ε → 0 by requiring, in addition, that τ

ε2 is uniformly bounded (see (5.27) below), in order to exploit (5.20).

Proposition 5.8. Let uε0 → u0, εuε1 → 0 and let u be the limit function obtained in Proposition 5.6 from a sub-
sequence satisfying

lim
j→+∞

εj = 0 and sup
j∈ℕ

τj
ε2j
< +∞. (5.27)

Then for every t ∈ [0, T], it holds
E(t, u−(t)) − E(t, u+(t)) ≥ sup

p∈RCP𝕍
c𝕄,pt (u−(t), u+(t)). (5.28)

Proof. As already remarked in the proof of Proposition 4.6, it will suffice to prove (5.28) in the case t ∈ Jeu.
By arguing as in [30, Proposition 5.9], taking into account Proposition 5.6, by a diagonal argument we may
assume that there are two sequences t−j ↗ t and t+j ↘ t such that

lim
j→+∞
‖ûτj ,εj (t−j ) − u−(t)‖ + ‖ûτj ,εj (t+j ) − u+(t)‖ = 0

and
lim
j→+∞

εj ̇̂uτj ,εj (t−j ) = lim
j→+∞

εj ̇̂uτj ,εj (t+j ) = 0. (5.29)

By exploiting (5.27), Proposition 5.5 yields as a byproduct{{{{{ lim
j→+∞
‖uτj ,εj (t−j ) − u−(t)‖ + ‖uτj ,εj (t+j ) − u+(t)‖ = 0,

lim
j→+∞
‖ũτj ,εj (t−j ) − u−(t)‖ + ‖ũτj ,εj (t+j ) − u+(t)‖ = 0 (5.30)

and
lim
j→+∞

εj ̇̃uτj ,εj (t−j ) = lim
j→+∞

εj ̇̃uτj ,εj (t+j ) = 0. (5.31)

The continuity of E together with (5.17) and (5.30) now implies that

lim
j→+∞

Eτj (t−j , uτj ,εj (t−j )) − Eτj (t+j , uτj ,εj (t+j )) = E(t, u−(t)) − E(t, u+(t)). (5.32)

For a lighter exposition, with a little abuse of notation we denote by t−j and t+j the least points of the
partition Πτj which are greater than or equal to t−j and t+j , respectively (see (5.16)). By exploiting (5.26),
(5.29), (5.32), and from the definition of the contact potential p𝕍, we thus infer

E(t, u−(t)) − E(t, u+(t)) = lim
j→+∞
[ ε2j2 ‖ ̇̂uτj ,εj (t−j )‖2𝕄 + Eτj (t−j , uτj ,εj (t−j )) + t+j∫

t−j

∂tE(r, uτj ,εj (r))dr
+ Λ − Λ𝕍2 τ2

t+j∫
t−j

‖ ̇̂uτj ,εj (r)‖2𝕀 dr − ε2j2 ‖ ̇̂uτj ,εj (t+j )‖2𝕄 − Eτj (t+j , uτj ,εj (t+j ))]
≥ lim sup

j→+∞

t+j∫
t−j

Rεj ( ̇̂uτj ,εj (r)) + R∗εj (wτj ,εj (r))dr
≥ lim sup

j→+∞

t+j∫
t−j

p𝕍( ̇̂uτj ,εj (r), wτj ,εj (r))dr.
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Taking into account (3.9), we can continue the above inequality, getting

E(t, u−(t)) − E(t, u+(t))
≥ lim sup

j→+∞
[ t+j∫
t−j

p𝕍( ̇̃uτj ,εj (r), wτj ,εj (r))dr − C t+j∫
t−j

(1 + ‖wτj ,εj (r))‖∗)‖ ̇̃uτj ,εj (r) − ̇̂uτj ,εj (r)‖dr].
Thanks to (5.20), (5.24) and the assumption (5.27), we easily obtain

t+j∫
t−j

(1 + ‖wτj ,εj (r))‖∗)‖ ̇̃uτj ,εj (r) − ̇̂uτj ,εj (r)‖dr ≤ C τj
ε2j
(t+j − t−j ) ≤ C(t+j − t−j ) → 0. (5.33)

Thus, also taking any p ∈ RCP𝕍, we get
E(t, u−(t)) − E(t, u+(t)) ≥ lim sup

j→+∞

t+j∫
t−j

p𝕍( ̇̃uτj ,εj (r), wτj ,εj (r))dr ≥ lim sup
j→+∞

t+j∫
t−j

p( ̇̃uτj ,εj (r), wτj ,εj (r))dr.
By exploiting property (iv) of Definition 3.2 and using (5.18) and (5.25), we deduce

t+j∫
t−j

󵄨󵄨󵄨󵄨p( ̇̃uτj ,εj (r), wτj ,εj (r)) − p( ̇̃uτj ,εj (r), w̃τj ,εj (r))󵄨󵄨󵄨󵄨dr
≤ L max

r∈[0,T]\Πτ
‖wτj ,εj (r) − w̃τj ,εj (r)‖∗ t+j∫

t−j

‖ ̇̃uτj ,εj (r)‖dr
≤ L max

r∈[0,T]\Πτ
‖wτj ,εj (r) − w̃τj ,εj (r)‖∗( t+j∫

t−j

‖ ̇̃uτj ,εj (r) − ̇̂uτj ,εj (r)‖dr + T∫
0

‖ ̇̂uτj ,εj (r)‖dr) → 0.

We indeed notice that the first term within the brackets is bounded (it actually vanishes) by arguing as
in (5.33).

Therefore, we finally obtain

E(t, u−(t)) − E(t, u+(t)) ≥ lim sup
j→+∞

t+j∫
t−j

p( ̇̃uτj ,εj (r), w̃τj ,εj (r))dr
= lim sup

j→+∞

t+j∫
t−j

p( ̇̃uτj ,εj (r), −ε2j𝕄 ̈̃uτj ,εj (r) − DxE(r, ũτj ,εj (r)))dr.
The rest of the proof follows closely the argument of Proposition 4.6 from (4.17) on, with ũτj ,εj in place of uεj ,
by exploiting (5.30) and (5.31). Thus, we omit the details.

5.3 An enhanced version of the scheme

We conclude by proposing a slightly modified discrete algorithmwhich allows us to get rid of the assumption
that

τ
ε2

is bounded,
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needed for Proposition 5.8. To describe it, we consider an additional parameter δ ∈ [0, 1), in (5.1a) we
replace ε by √ε2 + δ, and we carefully adjust the initial velocity; namely we consider the following incre-
mental variational scheme:{{{{{{{

ukτ,ε,δ ∈ argmin
x∈X

Fτ,√ε2+δ(tk , x, uk−1τ,ε,δ , u
k−2
τ,ε,δ), k ∈ Kτ ,

u0τ,ε,δ := uε0, u−1τ,ε,δ := uε0 − τ ε√ε2 + δ uε1. (5.34)

For δ = 0, we easily recover the original scheme (5.1).
Since the only change with respect to previous sections is the replacement of ε by√ε2 + δ, all results still

hold true if in the statements one performs the same replacement (without touching the initial data uε0, u
ε
1).

In particular, Theorem 3.10 (ii) can be rewritten as follows.

Theorem 5.9. Let𝕄 and 𝕍 satisfy (2.2) and (2.3) and assume (E1)–(E5), (E3’) and (R1). Let uε0 → u0 and
εuε1 → 0. Then for every sequence (τj , εj , δj) → (0, 0, 0) satisfying

sup
j∈ℕ

τj
ε2j + δj < +∞, (5.35)

there exists a subsequence (not relabelled) along which the sequence of piecewise affine interpolants ûτj ,εj ,δj
pointwise converges to an inertial virtual viscosity solution of the rate-independent system (1.1).

Furthermore, the limit function is an inertial balanced viscosity solution if𝕍 is positive-definite.
The advantage of condition (5.35) is that it is automatically satisfied by any sequence δj for which

sup
j∈ℕ

τj
δj
< +∞, (5.36)

and thus it permits to separate the vanishing rates of τj and εj, which can be completely unrelated.
We finally notice that the simplest choice of δ = τ in (5.34) trivially fulfils (5.36) along any subsequence,

and thus allows to obtain Theorem 5.9 without really adding a further parameter.
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