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Combining RNA structure probing with high-throughput se-
quencing technologies has greatly enhanced our ability to an-
alyze RNA structure at transcriptome scale. However, the high
level of noise and variability encountered in these data call for
the development of computational tools that robustly extract
RNA structural information. Here we present diffBUM-HMM,
a noise-aware model that enables accurate detection of RNA
flexibility and conformational changes from high-throughput
RNA structure-probing data. DiffBUM-HMM is compatible
with a wide variety of high-throughput RNA structure probing
data, taking into consideration biological variation, sequence
coverage and sequence representation biases. We demonstrate
that, compared to the existing approaches, diffBUM-HMM dis-
plays higher sensitivity while calling virtually no false positives.
DiffBUM-HMM analysis of ex vivo and in vivo Xist SHAPE-
MaP data detected many more RNA structural differences, in-
volving mostly single-stranded nucleotides located at or near
protein-binding sites. Collectively, our analyses demonstrate
the value of diffBUM-HMM for quantitatively detecting RNA
structural changes and reinforce the notion that RNA structure
probing is a very powerful tool for identifying protein-binding
sites.
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Introduction
Understanding the structure of an RNA is key to unravel its
in vivo function, and it is also highly relevant to biomedicine,
drug discovery and synthetic biology (1–4). Recent years
have witnessed a blossoming of high-throughput methods
that couple next-generation sequencing with biochemical as-
says to "probe" the structure of thousands of RNA molecules
simultaneously, including whole transcriptomes. (5–16). The
majority of these biochemical assays use reagents such as
SHAPE (Selective 2‘-hydroxyl acylation analyzed by primer
extension) reagents (5–7, 16–20) and dimethyl sulfate (DMS)
(8, 10, 21). These chemicals modify the 2‘-hydroxyl (OH)
group of riboses or bases of flexible/single-stranded nu-
cleotides, respectively, and the sites of modification can be
detected by performing a reverse transcription (RT) reaction.
A major advantage of using chemical probes is that some
are also highly effective for probing RNA structure in living
cells (16, 18, 22–24), making it possible to compare in vivo

and in vitro structures, and reveal potential protein-binding
sites (16, 22). Depending on the RT enzyme and the reac-
tion chemistry used, the modification either causes the RT
enzyme to terminate transcription, resulting in truncated cD-
NAs, or to skip the adduct, frequently introducing mutations
(SHAPE-MaP; (5, 21)). Following on from this, the site and
degree of nucleotide modification can be extracted from NGS
data by quantifying how frequently the RT terminated at a
given nucleotide position (6, 8–10) or by calculating muta-
tion frequencies for each nucleotide (5, 21). Although NGS
has a number of unprecedented advantages in terms of sen-
sitivity and the number of molecules that can be analyzed
simultaneously, the analysis of the resulting data is not triv-
ial and exhibits significant challenges. Depending on the
cDNA library preparation method used, biases in sequence
representation and read coverage can be introduced (25), and
there can also be quite significant inter-replicate variability
in untreated (control) and treated samples (26). To specif-
ically address these issues, we recently developed a proba-
bilistic modelling pipeline called beta-uniform mixture hid-
den Markov model (BUM-HMM) (27). One of the strengths
of BUM-HMM is that it analyzes the inter-replicate variabil-
ity of samples in the treatment and control pools. Moreover,
it adopts an empirical statistical analysis method that obvi-
ates the need of conventional data correction and normaliza-
tion techniques that are used in the majority of the analy-
sis pipelines. Although BUM-HMM generates statistically
sound estimates of nucleotide accessibility at the nucleotide
level, its probabilistic output does not represent an absolute
value that quantifies the degree of accessibility of RNA at a
particular nucleotide. Therefore, it is not immediately usable
for differential analyses between different treatments.
The ability to accurately detect nucleotide regions that un-
der diverse conditions differentially react with RNA structure
probing reagents is of great importance to researchers. As a
consequence, the last few years have seen an increase in the
development of a number of bioinformatics tools to detect
differentially reactive nucleotides (DRNs) in RNA structure
probing datasets. Among the available tools are classSNitch
(28), PARCEL (29), RASA (30), deltaSHAPE (22), StrucD-
iff (31), and the recently published dStruct (32). In particu-
lar, dStruct has been shown to perform best by recording the
lowest false positive rate, while offering compatibility with a
wide range of existing RNA structure probing datasets. How-
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Fig. 1. Overview of the diffBUM-HMM computational analysis pipeline. For each experimental condition (e.g. Condition 1 and 2), the log-ratios of drop-off/mutation
rates (LDRs/LMRs) at each nucleotide position are computed for pairs of control samples to give a null distribution, in order to quantify variability in drop-off or mutation rates
observed by chance. LDRs/LMRs are also computed similarly for all possible treatment-control comparisons. Coverage-dependent biases are then removed by applying
a variance stabilization transformation. Subsequently, per-nucleotide empirical P values are computed for all possible treatment-control comparisons in each condition, by
comparing the corresponding log-ratios to the null distribution. DiffBUM-HMM is run on P values associated with the two independent conditions as observations, leaving
out any nucleotides with missing data. The resulting output is a posterior probability of modification for each nucleotide, ranging from 0 to 1. DiffBUM-HMM reports whether
nucleotides were unmodified in both conditions, modified in either of the conditions or modified in both conditions.

ever, one possible limitation of dStruct is that the pipeline
uses a variety of statistical tests to predict DRNs. As a result,
dStruct corrects for multiple hypothesis testing, which likely
makes it conservative with its predictions. Hence, we rea-
soned that a method that does not rely on statistical tests but
rather on a model and posterior probability, such as BUM-
HMM, would be preferable, because it would be inherently
less vulnerable to problems associated with multiple hypoth-
esis testing. In addition, dStruct imposes normalization and
outlier elimination strategies on quantitative data to generate
a reactivity profile for each nucleotide. Since the distribu-
tion of quantitative data often differs between probing exper-
iments, such procedures might result in useful data being re-
moved. In contrast, the BUM-HMM model uses only the raw
counts for each nucleotide (i.e. read coverage and either total
RT drop-offs or mutation counts). It also employs empirical
statistical analyses that preserves the independent distribu-
tion of each dataset whilst being robust to outliers. To test
whether the BUM-HMM algorithm could be useful for de-
tecting DRNs, we extended the model to develop diffBUM-
HMM (differential BUM-HMM). We used diffBUM-HMM
to compare a number of publicly available RNA structure
probing datasets and benchmarked the tool against dStruct
(32). Similar to dStruct, diffBUM-HMM effectively identi-
fied DRNs in the datasets, however, consistent with our hy-
pothesis, it exhibited higher sensitivity and, like dStruct, has a
very low false positive rate. Because diffBUM-HMM is com-
patible with a wide variety of high-throughput RNA structure
probing methods, it should be of general interest to the RNA
community.

Results
DiffBUM-HMM Model. DiffBUM-HMM is a natural exten-
sion of BUM-HMM (Fig. 1). An intermediate step of
BUM-HMM is the computation of an empirical P value for
each treatment-control comparison at each nucleotide posi-
tion. Each empirical P value is then passed onto a hidden
Markov model. BUM-HMM has a hidden state ht (t = 1,
2, 3, ..., T for T nucleotides) representing the true binary
state of the t-th nucleotide (M - modified by the probe; or
U - unmodified by the probe), and the observed variable vt,
which is the empirical P value at that position. For diffBUM-
HMM, the hidden state is expanded to take on four potential
values instead of two: nucleotide is unmodified in both con-
ditions (UU; hidden state 1); nucleotide is unmodified in the
1st condition but modified in the 2nd (UM; hidden state 2);
nucleotide is modified in the 1st condition, but unmodified
in the 2nd (MU; hidden state 3); nucleotide is modified in
both conditions (MM; hidden state 4). In turn, the observed
variable vt at each state is now represented by two P values
rather than one. As the hidden state can take on four possi-
ble values, extending BUM-HMM to diffBUM-HMM entails
increasing the size of the transition matrix from 2x2 to 4x4
and adapting its values. While in principle an EM algorithm
could be used to identify directly this transition matrix from
data, we found that adapting the original BUM-HMM heuris-
tic values to diffBUM-HMM by assuming independence of
the two conditions yielded good results. A sensitivity anal-
ysis confirmed the validity of this approach (Supplementary
Fig. S1).
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DiffBUM-HMM prediction of structural changes in the
35S pre-rRNA of yeast ribosome synthesis mutants.
To test diffBUM-HMM, we first reanalyzed high-throughput
structure probing datasets generated from two mutant Sac-
charomyces cerevisiae strains that express structurally dis-
tinct pre-ribosomal RNA (pre-rRNA) precursors (33). These
ChemModSeq-type (6) high-throughput datasets were se-
lected because (a) the read coverage for the pre-rRNAs an-
alyzed was very high (i.e. >10.000 reads per nucleotide)
and (b) some of the regions that were predicted to be struc-
turally distinct based on sequencing results have been verified
by primer extension (PE) analysis. Since PE analysis is still
considered to be one of the most reliable approaches for de-
tecting sites of chemical modification, we used the PE data
as ’ground truth’ for evaluating the goodness of the DRNs
predicted by the tools benchmarked in this study, including
diffBUM-HMM, deltaSHAPE and dStruct.
In our previous study (34), we validated some of the Chem-
ModSeq results by performing PE analysis on several regions
in the 5’ external transcribed spacer (ETS) as well as the
5’ end of 18S (Fig. 2B, regions highlighted in grey; Fig.
3). Here, the ChemModSeq analyses predicted a high con-
centration of DRNs, which were largely confirmed by the
PE data (Fig. 3). DeltaSHAPE and diffBUM-HMM iden-
tified many nucleotides as DRNs that also showed differ-
ential reactivity in the PE data (Figs. 3A and B). In the
5’ETS, the patterns of the ChemModSeq SHAPE reactiv-
ity profiles and the regions verified by PE were very sim-
ilar (Figs. 3A and B), suggesting that the ChemModSeq
high-throughput data for the 5’ETS is of high quality. Both
deltaSHAPE and diffBUM-HMM identified DRNs in these
regions of the 5’ETS that also appeared differentially mod-
ified in the PE data. In contrast, dStruct identified one re-
gion in the 5’ETS (nucleotides 462-497; Fig. 3B). One pos-
sible explanation for why dStruct reported only one region
is because it only searches for DRRs that are longer than a
user-specified threshold, whereas diffBUM-HMM calculates
posterior probabilities at the nucleotide level. However, re-
ducing dStruct’s search length did not improve the results. A
1-nucleotide dStruct search did not report any DRRs with an
FDR of ≤0.05. We conclude that, compared to the current
gold standard dStruct, diffBUM-HMM detects DRNs with
much higher sensitivity and resolution.

DiffBUM-HMM calls no false positives in datasets gen-
erated from identically treated RNA samples. Despite
the fact that deltaSHAPE and diffBUM-HMM were able to
detect more experimentally verified DRNs in the 35S dataset,
it is plausible that this apparent higher sensitivity is, at least
in part, the result of the low specificity of the methods. To
test this possibility, we were looking for ways to calculate
false positive rates for the diffBUM-HMM algorithm. As
the number of nucleotides in the 35S dataset that were ver-
ified by PE were too low to perform a meaningful analysis
of false positive rates, we reanalyzed published S. cerevisiae
DMS Structure-Seq datasets generated from in vivo experi-
ments that were previously used to assess the false positive
rates of all the currently available methods for identifying

DRNs (32). These datasets contained biological triplicates
of DMS-modified and unmodified mature rRNA samples that
were treated identically. Hence, the expectation would be that
there would not be any DRNs detected between replicates.
We re-analyzed the raw data generated from this experiment
and generated drop-off rates for each nucleotide position in
the four rRNAs (18S, 25S, 5S and 5.8S). Previously, it was
shown that dStruct only called three false positive nucleotides
in all the rRNAs analysed here, whereas deltaSHAPE re-
ported a total of 97 false positives (Table 1; (32)). Strikingly,
diffBUM-HMM did not report any nucleotide with posterior
probability of differential modification higher than 0.4 (Fig.
4A), suggesting that diffBUM-HMM does not call any spuri-
ous DRNs in this dataset. This is despite diffBUMM-HMM
calling 253 of the 1800 nucleotides modified in all three repli-
cates, which is higher than the value reported for the 18S
DMS datasets we previously analysed (134; (27)). DMS
preferentially modifies A’s and C’s in flexible and single-
stranded regions. Indeed, many of the 18S nucleotides called
modified by diffBUM-HMM in all replicates were A’s that
were located in single-stranded regions in the 18S secondary
structure (Figs. 4B and C). Therefore, we conclude that the
data is of good quality and that diffBUM-HMM has a high
specificity that is on par with dStruct and RASA.

DiffBUM-HMM analysis of differentially probed Xist
lncRNA. The earliest studies that reported high-throughput
RNA stucture chemical probing analyses relied on the re-
verse transcriptase falling off the modified RNA once the en-
zyme encountered a chemically modified nucleotide (6, 8–
10, 14, 15). However, by changing the conditions for the
RT reaction, one can force a reverse transcriptase to misin-
corporate non-complementary nucleotides or introduce dele-
tions into the cDNA transcript instead (5). This approach,
dubbed SHAPE-MaP (selective 2’-hydroxyl acylation ana-
lyzed by primer extension and mutational profiling), maps
the site of chemical modification by analyzing the mutation
frequency of the nucleotides. To calculate SHAPE reactiv-
ities, sequencing data generated from untreated (or solvent
treated) RNA and chemically modified denatured RNA are
often included. However, it has been suggested that such
controls may not be essential for accurately predicting RNA
structures (21, 35). Since SHAPE-MaP essentially relies on
the counting the number of mutations and diffBUM-HMM
relies on count data, we asked whether diffBUM-HMM can
accurately detect sites of modification from SHAPE-MaP
data. To test this we reanalyzed the mouse Xist SHAPE-
MaP datasets (23). The 18-kb Xist lncRNA is essential
for X-chromosome inactivation during the development of
female eutherian mammals (36). Although previous stud-
ies have suggested the importance of RNA structures in spe-
cific regions of Xist, the locations and structures of functional
domains within Xist are still not well defined. To identify
Xist RNA structural features as well as regions occupied by
proteins, the Weeks lab recently performed a comprehensive
SHAPE-MaP analysis of the Xist RNA that was probed in liv-
ing cells (in cell/in vivo) and in protein-free (ex vivo) condi-
tions (23). Analyses of these data identified 33 regions in Xist
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Fig. 2. DiffBUM-HMM effectively detects differentially reactive nucleotides in the earliest detectable yeast pre-rRNA precursor. (A) The top panel shows the SHAPE
reactivities (34) from the first biological replicate of both wild-type Mrd1 and Mrd1∆5 deletion mutant, which were used to identify DRNs with deltaSHAPE. The deltaSHAPE
values were calculated according to (22). For the deltaSHAPE panel, positive values indicate the position of nucleotides that are more reactive in pre-rRNA associated with
wild-type Mrd1, whereas negative values indicate the position of nucleotides that are more reactive in pre-rRNA associated with the Mrd1∆5 mutant. The same data was
reanalyzed using the diffBUM-HMM and dStruct algorithms (panels 4 and 5, respectively). For the diffBUM-HMM results, the posterior probabilities for differential states were
calculated using the raw counts. For the dStruct analyses, 2-8% normalized RT drop-off rates were used, as recommended by the authors (32). (B) Same as in A but only for
the 5’ ETS and 5’ end of 18S rRNA. We additionally included the results from the PE analysis (panel 2). The grey areas indicate the regions validated by PE analysis.

Table 1. Comparison of the capabilities of existing methods designed to detect differential reactive nucleotides in rRNA molecules. The table shows the previously
published results of the analyses on the identically DMS-treated yeast rRNA datasets (32) as well as the results from our diffBUM-HMM analysis of these datasets. The
column displaying the number of false positives indicates the number of nucleotides that were called differentially modified in DMS chemical probing data.

Tool Reference Inter-replicate variability? Noise considered? Detection level? False positives reported
classSNitch (28) 7 3 Regional N/A
PARCEL (29) 3 7 Regional 61

RASA (30) 3 3 Regional 4
deltaSHAPE (22) 7 3 Regional 97

StructDiff (31) 7 3 Regional N/A
dStruct (32) 3 3 Regional 3

diffBUM-HMM This work 3 3 Regional & Nucleotide 0
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Fig. 3. diffBUM-HMM detects differentially reactive nucleotides (DRNs) in the 5’ETS of the 35S pre-rRNA precursor. (A and B). SHAPE reactivities, deltaSHAPE,
diffBUM-HMM and dStruct analysis results for two regions (positions 268-352 and 405-502) within the 5’ETS. The top panel shows the SHAPE reactivities (34) from the first
biological replicate, which were used to identify DRNs with deltaSHAPE (deltaSHAPE panel). Positive values indicate the 1M7 nucleotide reactivities in pre-rRNA associated
with wild-type Mrd1, whereas negative values indicate the reactivities in pre-rRNA associated with the Mrd1 deletion (∆5) mutant. The second panel shows the quantification
of the PE analysis for these regions. The same data was reanalyzed using the diffBUM-HMM and dStruct algorithms (panels 3 and 4, respectively). For the diffBUM-HMM
results, the posterior probabilites for differential reactivity were calculated using the raw counts. For the dStruct analyses, 2-8% normalized RT drop-off rates were used, as
recommended by the authors (32). dStruct did not report any DRRs in the region between positions 268-352.
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Fig. 4. DiffBUM-HMM has a very high specificity. (A) DiffBUM-HMM only reports nucleotides with posterior probability of less than 0.4 on identically treated DMS-probed
S. cerevisiae rRNA StructureSeq datasets. The box plot shows the distribution of the posterior probabilities for each rRNA sample in the control dataset. Shown are the
posterior probabilities indicating the likelihood that the nucleotides were called modified in all three replicates (modified in all) or differentially modified between replicates. (B)
Base composition of nucleotides called modified in all replicates of the yeast 18S rRNA, when considering only nucleotides with posterior probabilities ≥ 0.95. (C) Nucleotides
that were called modified in all replicates (posterior probabilities ≥ 0.95) are highlighted in red in the secondary structure of the molecule. The names of the helices in the
structure are indicated in blue.
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Fig. 5. DiffBUM-HMM detects a larger number of differentially modified nucleotides in the ex vivo Xist lncRNA data compared to deltaSHAPE and dStruct. (A)
Shown are the differential reactivities of two deltaSHAPE replicate experiments (23) compared to the diffBUM-HMM and dStruct outputs. The Xist RNA transcript was binned
in region of 500 nucleotides and the differential reactivities for each bin is plotted. Regions with negative reactivities are more reactive in vivo. Only those nucleotides
that according to the deltaSHAPE analyses had sufficient coverage are plotted. The normalized diffBUM-HMM and dStruct panels indicate differential reactivities obtained
after normalizing the mutation rates in treated and untreated samples based on the denatured data. (B) Overview of RNA-binding sites detected in the Xist transcript, as
shown in (23). (C) Overview of the number of DRNs that overlap with RNA-binding protein (RBP) binding sites in Xist in the in vivo and ex vivo data. Total DRNs indicates
the total number of DRNs identified by diffBUM-HMM and deltaSHAPE in the datasets. (D) Enrichment of DRNs in RBP binding sites in Xist obtained from the CLIPdb
database. Statistical significance for enrichment was determined using a hypergeometric test. Colour legend indicates significance level, with binding sites for RBPs that are
not statistically significant coloured in grey.

that formed well-defined structures as well as many regions
that could be occupied by RNA-binding proteins (RBPs). Im-
portantly, this dataset contained two biological replicates for
each condition for SHAPE-treated, untreated and SHAPE-

treated denatured RNA samples. As it was unclear whether
including the denatured data in our calculation was essential,
we performed the diffBUM-HMM with and without normal-
izing the data to the mutation rates of the denatured RNA
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samples. An overview of the results is shown in Fig. 5. To
compare our data to the deltaSHAPE results, we applied the
deltaSHAPE algorithm to the individual replicates (Fig. 5A).
When reactivities from the denatured data were not consid-
ered, diffBUM-HMM detected 1164 DRNs in the ex vivo
condition and 188 in the in vivo condition (Figs. 5A and
C). We generally observed a much bigger difference in the
number of DRNs between the two conditions compared to
deltaSHAPE (≈ 9-fold with diffBUM-HMM and ≈ 1.4-fold
with deltaSHAPE, as shown in Figs. 5A and C). The rea-
son for this is unclear, however, intuitively one would expect
that removing proteins from a very large ribonucleoprotein
(RNP) complex will substantially increase in the flexibility
of the RNA, resulting in more nucleotides being chemically
modified on the deproteinized RNA. In this dataset, dStruct
was also very conservative with its predictions: with a search
length of 11 nt, dStruct reported 8 DRRs with an FDR of
≤0.05 (Fig. 5A). Again, shortening the search length to 1 nu-
cleotide did not yield statistically significant DRRs. Remark-
ably, normalizing the data to the denatured samples further
increased the number of DRNs detected by diffBUM-HMM
and dStruct (Figs. 5A and C), with dStruct now detecting
more DRRs in the 3’ region of Xist (Fig. 5A). This confirms
that including data from SHAPE-treated denatured samples
can improve the detection of DRNs in SHAPE-MaP data.

DRNs detected in Xist using diffBUM-HMM are primar-
ily single-stranded and enriched in protein-binding
sites. A key question that we wished to address was whether
the large number of additional and unique DRNs detected
by diffBUM-HMM in the Xist ex vivo data were biologi-
cally meaningful. Despite the high specificity of diffBUM-
HMM, we could not rule out the possibility that diffBUM-
HMM simply called many false positives in this SHAPE-
MaP dataset. Deproteinizing an RNP should make sites nor-
mally occupied by RBPs more accessible to chemical probes.
Therefore, we first asked whether the diffBUM-HMM DRNs
were located in protein-binding sites previously identified by
crosslinking or RNA immunoprecipitation (CLIP/RIP). The
CLIPdb database contains Xist binding sites for a large num-
ber of RBPs, including CELF1, PTBP1, HuR, TARDBP, FUS
and RBFOX2 (Fig. 5B). Similar to what was previously ob-
served in the Xist deltaSHAPE analysis (23), many of the
DRNs in the ex vivo data detected by diffBUM-HMM over-
lapped with RNA-binding sites of these RBPs (Figs. 5B
and C). When compared to the deltaSHAPE data, diffBUM-
HMM identified more DRNs overlapping with FUS and
TARDBP RNA-binding sites in the ex vivo data, whereas
the number of ex vivo DRNs overlapping with other RBPs
was comparable between the two datasets (Fig. 5C). This
is presumably because most of the deltaSHAPE signal con-
centrated around 2-3 regions within the Xist RNA, whereas
diffBUM-HMM detected DRNs throughout the transcript
(Fig. 5A). We also found that in the ex vivo data for both
diffBUM-HMM and deltaSHAPE many of the RBP binding
sites were statistically significantly enriched for DRNs, with
diffBUM-HMM DRNs preferentially enriched in CELF1 and
FUS binding sites (Fig. 5D). However, diffBUM-HMM also

detected many DRNs outside of these RBP binding sites,
which may explain why the P values for binding site enrich-
ment are overall lower compared to deltaSHAPE. This is not
necessarily surprising since many other proteins bind Xist in
vivo (37) and therefore diffBUM-HMM could also be pick-
ing up binding sites from other proteins in addition to the
ones reported in the CLIPdb database. As a second measure
for determining whether these unique DRNs could be bio-
logicaly meaningful, we performed a motif search analysis to
assess whether enriched sequence motifs could be detected in
regions containing DRNs. For this purpose, we grouped to-
gether DRNs located within 5nt from each other into genomic
intervals, extended these to 30nt and analysed sequence motif
enrichment using MEME (38). MEME detected three highly
enriched motifs in the CLIPdb binding sites for CELF1, HuR
and PTBP1 (Supplementary Fig. S2). Interestingly, simi-
lar motifs could also be detected in the diffBUM-HMM and
deltaSHAPE data. In the in vivo data only a motif resembling
the CELF1 binding site was significantly enriched. However,
in the ex vivo data, sequences resembling HuR and PTBP1
binding sites could be detected. Moreover, diffBUM-HMM
again recovered a CELF1-like motif as well as another se-
quence motif that was not detected in the deltaSHAPE anal-
ysis. Thus, these data strongly suggest that the DRNs dec-
tected by diffBUM-HMM are frequently located in or near
protein-binding sites.
One possible explanation for why deltaSHAPE calls fewer
DRNs in the ex vivo data is because it looks within 5 nu-
cleotide windows and only calls a given nucleotide as DRN
if at least three nucleotides within that window fit the re-
quired criteria. DiffBUM-HMM also assumes that DRNs
are present in up to 5 nucleotide stretches, however, the al-
gorithm will call single nucleotide DRNs if it is very clear
from the data that only a single nucleotide was differentially
modified. Indeed, we found that deltaSHAPE preferentially
reports three nucleotide stretches, whereas diffBUM-HMM
also frequently reports single nucleotide DRNs (Fig. 6A).
If the DRNs uniquely detected by diffBUM-HMM indeed
represent real changes in RNA flexibility, one would expect
that many of these would be A’s or U’s as these are more
frequently located in single-stranded regions such as loops
or bulges. This was indeed the case (Fig. 6B). We ob-
served the same trend in the data normalized to the data from
the denatured RNA control as well as for those DRNs that
were uniquely called by diffBUM-HMM. The deltaSHAPE
results were slightly more variable but still showed a mod-
est nucleotide preference. Because the SHAPE reagents
used to modify Xist preferentially react with nucleotides
in single-stranded or flexible regions, the DRNs called by
diffBUM-HMM, including those uniquely detected by the
tool, should be primarily located in regions that are pre-
dicted to be single-stranded in Xist. Indeed, over 80% of
all the DRNs called by diffBUM-HMM in the deproteinized
data were located in single-stranded regions (Fig. 6B). A
few examples showing DRNs in Xist secondary structures
is shown in Fig. 7. In those cases where deltaSHAPE
results between replicate samples did not agree, diffBUM-
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HMM frequently calls the nucleotide unmodified in both
conditions. However, as evident from the figures, many of
the DRNs reported by diffBUM-HMM were not detected
by deltaSHAPE. Collectively, these data suggest that the
DRNs detected by diffBUM-HMM in Xist represent bona-
fide changes in nucleotide flexibility that in many cases are
located in single-stranded regions and overlap with or are lo-
cated near protein-binding sites. In conclusion, all the avail-
able data strongly suggest that diffBUM-HMM outperforms
deltaSHAPE and dStruct in both sensitivity and/or specificity.

Discussion
Over the past several years there has been an explosion in
the number of methodologies that make it possible to anal-
yse RNA structure both in vivo and in vitro. However, the
analysis of the resulting data is notoriously difficult. To be
able to extract all the relevant information from the high-
throughput sequencing data, many variables need to be taken
into consideration. This include sequence coverage, biologi-
cal variability between experiments (i.e. noise), background
signal observed in untreated samples as well as sequence rep-
resentation bias introduced during the preparation of NGS li-
braries. Adding to the complexity, research groups have now
started focusing on the analysis of RNA structural changes
introduced by SNPs or absence of protein binding, etc. This
therefore prompted a number of labs to develop bioinformat-
ics tools that would enable users to detect differences in RNA
flexibility by comparing datasets generated under different
conditions (see Table 1 for examples and references). The
Aviran lab recently published a thorough review of the pros
and cons of the various methods and tested them on a vari-
ety of datasets (32), so we will not discuss this in detail here.
However, that study showed that dStruct was the best per-
forming approach, particularly when it comes to specificity.
One of the great strengths of dStruct is that it is compatible
with a wide variety of RNA structure probing methodologies
and takes into consideration biological variability. However,
as outlined above dStruct uses a variety of statistical tests to
predict DRNs within a certain sequence window. The cor-
rection for multiple hypothesis testing that dStruct employs
likely also makes the tool conservative with its predictions.
Indeed, our analysis of rRNA and mouse Xist SHAPE-MaP
data showed that dStruct generally calls few DRRs. This
prompted us to develop a tool that was based on a probabilis-
tic graphical model as this should be less vulnerable to prob-
lems associated with multiple hypothesis testing. Here we
demonstrate that our approach (diffBUM-HMM) is indeed
much more sensitive in calling DRNs compared to dStruct
on all the datasets tested. However, this high sensitivity does
not mean that diffBUM-HMM compromises on specificity:
like dStruct, diffBUM-HMM has a very low false positive
rate. In fact, our analysis on identically-treated rRNA sam-
ples probed with DMS (including rRNAs up to ≈ 3400 nu-
cleotides long; (32)) revealed that diffBUM-HMM did not
call any false positives.
Our reanalysis of the Xist data revealed that diffBUM-HMM
also called many more DRNs in the ex vivo data compared

to deltaSHAPE and dStruct, many of which were uniquely
detected in the diffBUM-HMM analyses. We believe that
the majority of these represent bona-fide changes in RNA
flexibility: SHAPE reagents preferentially react with single-
stranded or flexible nucleotides and over 80% of the DRNs
detected in the deproteinized data were in regions that are
single-stranded in the Xist secondary structure model (Figs.
6 and 7). Moreover, motif analyses revealed that these DRNs
were also enriched in sequence motifs recognised by RNA-
binding proteins (Supplementary Figure S2). Our analyses
as well as the original Xist SHAPE-MaP paper (23) nicely il-
lustrate how comparing in vivo and ex vivo conditions can not
only help with the detection of differences in RNA structure,
but also the identifications of potential protein-binding sites.
The observation that specific RNA-binding motifs could be
detected in the deltaSHAPE and diffBUM-HMM DRN anal-
yses suggests that it should even be possible to use such data
to predict where on the RNA certain sequence-specific RBPs
bind.
Although the available evidence suggests that diffBUM-
HMM is currently the best performing method for detecting
DRNs, it does have a few drawbacks: the method provides a
posterior probability for differential modification, which does
not inform about how large the difference in chemical reac-
tivity was between the two samples (i.e. no absolute measure
of modification). However, to get an impression of reactiv-
ity changes, one could plot the average LDRs or LMRs of
the different conditions together with the output of diffBUM-
HMM. As diffBUM-HMM solely relies on nucleotide count
data, it is compatible with a wide variety of high-throughput
RNA structure probing methods that either measure RT drop-
off or mutations (SHAPE-MaP). However, it is important to
point out that diffBUM-HMM will only work well with struc-
ture probing libraries that are paired-end sequenced, as in or-
der to quantify and correct for local variability in coverage,
the precise start and end position of each cDNA in the li-
brary needs to be determined (6, 26, 27). In our analyses we
therefore only consider reads that are properly paired (i.e. the
forward and the reverse read are mapped within a specified
distance on the same chromosome). Hence, diffBUM-HMM
will not generate reliable results with RNA structure probing
methods that rely on single-end sequencing. Paired-end se-
quencing is also recommended for SHAPE-MaP analysis as
it would enable the selection of high-confidence mutations.
DiffBUM-HMM provides a nucleotide-level measure of dif-
ferential accessibility; however, to obtain insights into global
changes in structure, suitably constrained RNA-folding al-
gorithms need to be used. An alternative approach called
DREEM was recently proposed (35), which instead relies on
a priori selecting a set of plausible structures based on the
chemical probe reactivity profiles, and then determine rela-
tive shifts in abundance of the different structures via a read-
clustering approach. Hence, DREEM and diffBUM-HMM
perform different tasks but provide complementary informa-
tion from structure probing data sets; due to this, a direct
comparison in performance between the two methods is not
straightforward nor necessarily meaningful.
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Fig. 6. diffBUM-HMM detects more differentially reactive nucleotides (DRNs) in the Xist lncRNA that are preferentially single-stranded A’s and U’s. (A) DiffBUM-
HMM calls more single nucleotide stretches as DRNs. The barplots show the distribution of the length of stretches of nucleotides that were called DRNs by diffBUM-HMM and
deltaSHAPE in the in vivo data and ex vivo data. (B) Shown is the comparison between all the DRNs called by diffBUM-HMM, including the data normalized to the denatured
data, those uniquely detected by diffBUM-HMM and the results from the deltaSHAPE analyses on the two replicates individually. DiffBUM-HMM DRNs are mostly A’s and
U’s and enriched in regions predicted to be single-stranded in Xist. DRNs identified by diffBUM-HMM are preferentially located in Xist single-stranded regions. ‘Den norm‘
indicates the data where we normalized the mutation frequencies of treated and control samples based on the denatured RNA data. ‘DiffBUM-HMM (unique)‘ indicates those
DRNs that were uniquely detected by diffBUM-HMM.

Conclusion
We describe a novel modelling approach (diffBUM-HMM)
for detecting changes in RNA flexibility from high-
throughput RNA structure probing datasets. Our results show
that diffBUM-HMM exhibits a higher sensitivity compared
to the current gold standard dStruct as well as deltaSHAPE
and calls very few false positives. We envision that diffBUM-
HMM will be very useful for a variety of analytical tasks
that pertain to different domains ranging from biomedical sci-
ence to synthetic biology. DiffBUM-HMM could be used to

predict novel RNA regulatory elements from transcriptomic
studies, or study the effects of mutations on RNA structure,
to pinpoint crucial functional domains in RNA or to identify
potential protein-binding sites within RNA. The knowledge
from these studies can be used in synthetic biology: to de-
sign and screen for regulators that will allow fine-tuning of
arbitrary functions in synthetic gene circuits.
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Fig. 7. Differentially reactive nucleotides detected by diffBUM-HMM are preferentially localised in single-stranded regions and at the base of stems. (A) Shown is
a secondary structure for a region in the Xist lncRNA containing CELF1, TARDBP and HuR binding sites. The red dots indicate the nucleotides called modified only in the ex
vivo data by diffBUM-HMM, while the violet lines indicate binding sites for RNA-binding proteins that were identified by CLIP/RIP. Also shown is the same secondary structure
with the deltaSHAPE results from the two replicates individually. (B) Same as in A but now for the FUS interaction domain of Xist.

Methods
Analysis of the ChemModSeq dataset. Drop-off and
read counts were generated using the pyCRAC package and
the CRAC_pipeline_PE pipeline (https://bitbucket.
org/sgrann/kinetic_crac_pipeline). Briefly,
Flexbar (version 3.4.0) was used to remove adapter se-
quences and subsequently the reads were collapsed (py-
FastqDuplicateRemover.py) to remove putative PCR dupli-
cates. PyReadCounters from the pyCRAC package was
used to calculate drop-off counts and coverage for each

nucleotide position in the yeast pre-ribosomal RNAs (pre-
rRNAs). These were subsequently fed to diffBUM-HMM.

DiffBUM-HMM model. Differential BUM-HMM (diffBUM-
HMM) is a variant of the beta-uniform mixture hidden
Markov model (BUM-HMM) (27), and most of the mod-
elling assumptions made for BUM-HMM also hold for
diffBUM-HMM. For example, the transition probabilities are
defined based on single- and double- stranded nucleotide
stretches derived empirically to be of length 5 and 20, respec-
tively. Emission probabilities follow a beta-uniform mix-
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ture model. This design is based on the expectation that nu-
cleotides that are not modified under a given condition are as-
sociated with P values that follow a uniform distribution (39).
On the other hand, accessible nucleotides are associated with
P values that follow a Beta distribution, as they would exhibit
LDR or LMR values that are greater than most values in the
null distribution. In practice, adherence to this assumption
can be easily monitored by plotting empirical P -value distri-
butions as in Supplementary Fig. S3-S5. It should be pointed
out that, occasionally, saturation phenomena might result in
the presence of two Beta peaks; for example, supplementary
Fig. S3 shows a peak of P -values near zero, corresponding to
nucleotides which have significantly higher drop-off/ muta-
tion rates in treatment (and hence are likely modified), as well
as a peak near 1. This additional peak is likely the result of
saturation in the treated sample, resulting in abnormally few
drop-off reads in unmodified nucleotides; the BUM-HMM
likelihood will in any case assign a very low probability of
modification to such nucleotides, effectively eliminating any
problem that might arise from this mismatch of hypotheses.
The α and β parameters of the Beta distribution were cho-
sen heuristically to be 1 and 10, respectively. This allows
to assign approximately equal likelihood under both P value
distribution hypotheses to nucleotides that have LDR/LMR
falling in the highest quantiles of the empirical distribution.
The hidden Markov model takes as input continuous regions
of nucleotides that satisfy a user-specified coverage thresh-
old (i.e. non-negative threshold for all the experiments in
this manuscript) and non-zero LDR/LMR for at least one
treatment-control comparison. The novel aspect of diffBUM-
HMM is that inference is performed based on two indepen-
dent observed P values, each representing a different con-
dition. The Forward-Backward algorithm is the inference
method for computing the posterior marginals of all hidden
states.

Analysis of enriched sequence motifs in regions
containing DRNs. To detect enriched RNA binding mo-
tifs, DRNs in the ex vivo data that were located within
a window of 5 nucleotides were grouped in to a single
interval, which was subsequently extended to 30 nucleotides
using the pyNormalizeIntervalLenghts.py script from the
pyCRAC package (40). Subsequently, fasta files containing
the Xist sequences associated with these intervals were
analysed by MEME (38) using the following bash command:
meme-chip -meme-minw 4 -meme-maxw 10
-meme-nmotifs 20 -meme-p 8 -meme-mod anr
-norc -rna -noecho -oc OUTFILE INFILE.

Data and Code availability. All the raw and processed data
files, diffBUM-HMM R code and Python data processing
pipelines used for analysing the data in this study are avail-
able from the Granneman Lab GitLab repository (https:
//git.ecdf.ed.ac.uk/sgrannem) and from Paolo
Marangio’s Github page (https://github.com/
marangiop/diff_BUM_HMM). PyCRAC is available
from PyPI: https://pypi.org/project/pyCRAC/.

Acknowledgements
We would like to thank Dr. Chantriolnt-Andreas Kapourani
and Dr. Alina Selega for their helpful advice with the de-
velopment of diffBUM-HMM. We would like to thank Prof.
Kevin Weeks for providing the Xist SHAPE-MaP mutation
count data, read coverage data and CLIPdb coordinates for
the RBPs they described in the original paper. We are grate-
ful to Dr. Krishna Choudhary and Prof. Sharon Aviran for
their help with the dStruct analysis. We also thank Sergey
Belikov for providing the 35S primer-extension data.

Funding
This work was supported by a Medical Research Council
non-Clinical Senior Research Fellowship to Sander Granne-
man (MR/R008205/1).

Bibliography
1. Cameron M. Kim and Christina D. Smolke. Biomedical applications of RNA-based devices.

Current Opinion in Biomedical Engineering, 4:106–115, December 2017. ISSN 2468-4511.
doi: 10.1016/j.cobme.2017.10.005.

2. Linda Minotti, Chiara Agnoletto, Federica Baldassari, Fabio Corrà, and Stefano Volinia.
SNPs and Somatic Mutation on Long Non-Coding RNA: New Frontier in the Cancer Stud-
ies? High-Throughput, 7(4), November 2018. ISSN 2571-5135. doi: 10.3390/ht7040034.

3. Damien Ferhadian, Maud Contrant, Anne Printz-Schweigert, Redmond P. Smyth, Jean-
Christophe Paillart, and Roland Marquet. Structural and Functional Motifs in Influenza Virus
RNAs. Frontiers in Microbiology, 9, 2018. ISSN 1664-302X. doi: 10.3389/fmicb.2018.00559.

4. Katherine Deigan Warner, Christine E. Hajdin, and Kevin M. Weeks. Principles for target-
ing RNA with drug-like small molecules. Nature Reviews Drug Discovery, 2018. ISSN
14741784. doi: 10.1038/nrd.2018.93.

5. Nathan A. Siegfried, Steven Busan, Greggory M. Rice, Julie A. E. Nelson, and Kevin M.
Weeks. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nature
Methods, 11(9):959–965, September 2014. ISSN 1548-7105. doi: 10.1038/nmeth.3029.

6. Ralph D. Hector, Elena Burlacu, Stuart Aitken, Thierry Le Bihan, Maarten Tuijtel, Alina
Zaplatina, Atlanta G. Cook, and Sander Granneman. Snapshots of pre-rRNA structural
flexibility reveal eukaryotic 40s assembly dynamics at nucleotide resolution. Nucleic Acids
Research, 42(19):12138–12154, October 2014. ISSN 1362-4962. doi: 10.1093/nar/gku815.

7. Elena Burlacu, Fredrik Lackmann, Lisbeth-Carolina Carolina Aguilar, Sergey Belikov,
Rob Van Nues, Christian Trahan, Ralph D. Hector, Nicholas Dominelli-Whiteley, Scott L.
Cockroft, Lars Wieslander, Marlene Oeffinger, Sander Granneman, R W van Nues, Ralph D.
Hector, N Dominelli Whitely, Scott L. Cockroft, Lars Wieslander, Marlene Oeffinger, and
Sander Granneman. High-throughput RNA structure probing reveals critical folding events
during early 60S ribosome assembly in yeast. Nature communications, 8(1):714, 9 2017.
ISSN 20411723. doi: 10.1038/s41467-017-00761-8.

8. Yiliang Ding, Yin Tang, Chun Kit Kwok, Yu Zhang, Philip C Bevilacqua, and Sarah M Ass-
mann. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory
features. Nature, 505(7485):696–700, 11 2013.

9. Jason Talkish, Gemma May, Yizhu Lin, John L Woolford, and C Joel McManus. Mod-seq:
high-throughput sequencing for chemical probing of RNA structure. RNA (New York, N.Y.),
20(5):713–720, 5 2014.

10. Silvi Rouskin, Meghan Zubradt, Stefan Washietl, Manolis Kellis, and Jonathan S Weissman.
Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.
Nature, 505(7485):701–705, 1 2014.

11. Mark A. Boerneke, Jeffrey E. Ehrhardt, and Kevin M. Weeks. Physical and Functional
Analysis of Viral RNA Genomes by SHAPE. Annual Review of Virology, 2019. ISSN 2327-
056X. doi: 10.1146/annurev-virology-092917-043315.

12. Michael Kertesz, Yue Wan, Elad Mazor, John L Rinn, Robert C Nutter, Howard Y Chang,
and Eran Segal. Genome-wide measurement of RNA secondary structure in yeast. Nature,
467(7311):103–107, September 2010. ISSN 1476-4687. doi: 10.1038/nature09322.

13. Jason G Underwood, Andrew V Uzilov, Sol Katzman, Courtney S Onodera, Jacob E
Mainzer, David H Mathews, Todd M Lowe, Sofie R Salama, and David Haussler. FragSeq:
transcriptome-wide RNA structure probing using high-throughput sequencing. Nature meth-
ods, 7(12):995–1001, December 2010. ISSN 1548-7105. doi: 10.1038/nmeth.1529.

14. David Loughrey, Kyle E. Watters, Alexander H. Settle, and Julius B. Lucks. SHAPE-Seq
2.0: systematic optimization and extension of high-throughput chemical probing of RNA
secondary structure with next generation sequencing. Nucleic acids research, 2014. ISSN
13624962. doi: 10.1093/nar/gku909.

15. Julius B. Lucks, Stefanie A. Mortimer, Cole Trapnell, Shujun Luo, Sharon Aviran, Gary P.
Schroth, Lior Pachter, Jennifer A. Doudna, and Adam P. Arkin. Multiplexed RNA structure
characterization with selective 2’-hydroxyl acylation analyzed by primer extension sequenc-
ing (SHAPE-Seq). Proceedings of the National Academy of Sciences of the United States of
America, 108(27):11063–11068, 7 2011. ISSN 00278424. doi: 10.1073/pnas.1106501108.

16. Robert C. Spitale, Ryan A. Flynn, Qiangfeng Cliff Zhang, Pete Crisalli, Byron Lee, Jong-
Wha Wha Jung, Hannes Y. Kuchelmeister, Pedro J. Batista, Eduardo A. Torre, Eric T. Kool,
and Howard Y. Chang. Structural imprints in vivo decode RNA regulatory mechanisms.
Nature, 519(7544):486–490, 3 2015. ISSN 14764687. doi: 10.1038/nature14263.

12 | bioRχiv Marangio, Law et al. | Differential BUM-HMM

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229179doi: bioRxiv preprint 

https://git.ecdf.ed.ac.uk/sgrannem
https://git.ecdf.ed.ac.uk/sgrannem
https://github.com/marangiop/diff_BUM_HMM
https://github.com/marangiop/diff_BUM_HMM
https://pypi.org/project/pyCRAC/
https://doi.org/10.1101/2020.07.30.229179
http://creativecommons.org/licenses/by-nd/4.0/


17. Stefanie A Mortimer and Kevin M Weeks. A fast-acting reagent for accurate analysis of RNA
secondary and tertiary structure by SHAPE chemistry. Journal of the American Chemical
Society, 129(14):4144–4145, 4 2007.

18. Robert C Spitale, Pete Crisalli, Ryan A Flynn, Eduardo A Torre, Eric T Kool, and Howard Y
Chang. RNA SHAPE analysis in living cells. Nature chemical biology, 9(1):18–20, 1 2013.

19. K A Wilkinson, E J Merino, and K M Weeks. Selective 2’-hydroxyl acylation analyzed by
primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolu-
tion. Nat Protoc, 1(3):1610–1616, 2006.

20. S A Mortimer and K M Weeks. Time-resolved RNA SHAPE chemistry. Journal of the
American Chemical Society, 130(48):16178–16180, 12 2008.

21. Meghan Zubradt, Paromita Gupta, Sitara Persad, Alan M Lambowitz, Jonathan S Weiss-
man, and Silvi Rouskin. DMS-MaPseq for genome-wide or targeted RNA structure probing
in vivo. Nature methods, 11 2016.

22. Matthew J. Smola, J. Mauro Calabrese, and Kevin M. Weeks. Detection of RNA-protein
interactions in living cells with SHAPE. Biochemistry, 54(46):6867–6875, November 2015.
ISSN 0006-2960. doi: 10.1021/acs.biochem.5b00977.

23. Matthew J. Smola, Thomas W. Christy, Kaoru Inoue, Cindo O. Nicholson, Matthew Frieder-
sdorf, Jack D. Keene, David M. Lee, J. Mauro Calabrese, and Kevin M. Weeks. SHAPE
reveals transcript-wide interactions, complex structural domains, and protein interactions
across the Xist lncRNA in living cells. Proceedings of the National Academy of Sci-
ences, 113(37):10322–10327, September 2016. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1600008113.

24. Steven Busan, Chase A. Weidmann, Arnab Sengupta, and Kevin M. Weeks. Guidelines
for SHAPE Reagent Choice and Detection Strategy for RNA Structure Probing Studies.
Biochemistry, 2019. ISSN 15204995. doi: 10.1021/acs.biochem.8b01218.

25. Erwin L. van Dijk, Yan Jaszczyszyn, and Claude Thermes. Library preparation methods
for next-generation sequencing: tone down the bias. Experimental Cell Research, 322(1):
12–20, March 2014. ISSN 1090-2422. doi: 10.1016/j.yexcr.2014.01.008.

26. Krishna Choudhary, Nathan P. Shih, Fei Deng, Mirko Ledda, Bo Li, and Sharon Aviran. Met-
rics for rapid quality control in RNA structure probing experiments. Bioinformatics (Oxford,
England), 32(23):3575–3583, 2016. ISSN 1367-4811. doi: 10.1093/bioinformatics/btw501.

27. Alina Selega, Christel Sirocchi, Ira Iosub, Sander Granneman, and Guido Sanguinetti. Ro-
bust statistical modeling improves sensitivity of high-throughput RNA structure probing ex-
periments. Nature Methods, 14(1):83–89, January 2017. ISSN 1548-7091, 1548-7105. doi:
10.1038/nmeth.4068.

28. Chanin Tolson Woods and Alain Laederach. Classification of RNA structure change by
‘gazing’ at experimental data. Bioinformatics, 33(11):1647–1655, June 2017. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btx041.

29. Sidika Tapsin, Miao Sun, Yang Shen, Huibin Zhang, Xin Ni Lim, Teodorus Theo Susanto,
Siwy Ling Yang, Gui Sheng Zeng, Jasmine Lee, Alexander Lezhava, Ee Lui Ang, Lian Hui
Zhang, Yue Wang, Huimin Zhao, Niranjan Nagarajan, and Yue Wan. Genome-wide identifi-
cation of natural RNA aptamers in prokaryotes and eukaryotes. Nature Communications, 9
(1):1–10, March 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-03675-1.

30. Orel Mizrahi, Aharon Nachshon, Alina Shitrit, Idit A. Gelbart, Martina Dobesova, Shirly
Brenner, Chaim Kahana, and Noam Stern-Ginossar. Virus-Induced Changes in mRNA
Secondary Structure Uncover cis-Regulatory Elements that Directly Control Gene Ex-
pression. Molecular Cell, 72(5):862–874.e5, December 2018. ISSN 1097-2765. doi:
10.1016/j.molcel.2018.09.003.

31. Yue Wan, Kun Qu, Qiangfeng Cliff Zhang, Ryan A. Flynn, Ohad Manor, Zhengqing Ouyang,
Jiajing Zhang, Robert C. Spitale, Michael P. Snyder, Eran Segal, and Howard Y. Chang.
Landscape and variation of RNA secondary structure across the human transcriptome. Na-
ture, 505(7485):706–709, January 2014. ISSN 1476-4687. doi: 10.1038/nature12946.

32. Krishna Choudhary, Yu-Hsuan Lai, Elizabeth J. Tran, and Sharon Aviran. dStruct: identifying
differentially reactive regions from RNA structurome profiling data. Genome Biology, 20(1):
40, December 2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1641-3.

33. Fredrik Lackmann, Sergey Belikov, Elena Burlacu, Sander Granneman, and Lars Wieslan-
der. Maturation of the 90S pre-ribosome requires Mrd1 dependent U3 snoRNA and 35S
pre-rRNA structural rearrangements. Nucleic acids research, 65:2334, 1 2018. ISSN 0305-
1048. doi: 10.1093/nar/gky036.

34. Fredrik Lackmann, Sergey Belikov, Elena Burlacu, Sander Granneman, and Lars Wieslan-
der. Maturation of the 90s pre-ribosome requires Mrd1 dependent U3 snoRNA and 35s pre-
rRNA structural rearrangements. Nucleic Acids Research, 46(7):3692–3706, 2018. ISSN
1362-4962. doi: 10.1093/nar/gky036.

35. Phillip J. Tomezsko, Vincent D. A. Corbin, Paromita Gupta, Harish Swaminathan, Margalit
Glasgow, Sitara Persad, Matthew D. Edwards, Lachlan Mcintosh, Anthony T. Papenfuss,
Ann Emery, Ronald Swanstrom, Trinity Zang, Tammy C. T. Lan, Paul Bieniasz, Daniel R.
Kuritzkes, Athe Tsibris, and Silvi Rouskin. Determination of RNA structural diversity and its
role in HIV-1 RNA splicing. Nature, 582(7812):438–442, June 2020. ISSN 1476-4687. doi:
10.1038/s41586-020-2253-5.

36. Anne-Valerie Gendrel and Edith Heard. Noncoding RNAs and epigenetic mechanisms dur-
ing X-chromosome inactivation. Annual Review of Cell and Developmental Biology, 30:
561–580, 2014. ISSN 1530-8995. doi: 10.1146/annurev-cellbio-101512-122415.

37. Ci Chu, Qiangfeng Cliff Zhang, Simão Teixeira Da Rocha, Ryan A. Flynn, Maheetha
Bharadwaj, J. Mauro Calabrese, Terry Magnuson, Edith Heard, and Howard Y. Chang.
Systematic discovery of Xist RNA binding proteins. Cell, 2015. ISSN 10974172. doi:
10.1016/j.cell.2015.03.025.

38. Timothy L. Bailey, Mikael Boden, Fabian A. Buske, Martin Frith, Charles E. Grant, Luca
Clementi, Jingyuan Ren, Wilfred W. Li, and William S. Noble. MEME Suite: Tools for motif
discovery and searching. Nucleic Acids Research, 2009. ISSN 03051048. doi: 10.1093/
nar/gkp335.

39. Duncan J. Murdoch, Yu-Ling Tsai, and James Adcock. P-Values are Random Variables.
The American Statistician, 62(3):242–245, 2008. ISSN 00031305.

40. Shaun Webb, Ralph D Hector, Grzegorz Kudla, and Sander Granneman. PAR-CLIP
data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of
hundreds of protein coding genes in yeast. Genome biology, 15(1):R8, 1 2014. doi:
10.1186/gb-2014-15-1-r8.

Marangio, Law et al. | Differential BUM-HMM bioRχiv | 13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229179
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Notes and Figures

Fig. S1. Optimization of diffBUM-HMM transition matrix. Boxplot of prediction
mismatch value over 52 transition matrix perturbations for 35S molecule and 61 for
Xist molecule. A conservative approach was used in order to adapt the transition
probabilities, such that the original values would be respected. Perturbation tests
were conducted in order to determine whether the adapted values were indeed opti-
mal. Random Gaussian noise with mean 0 and standard deviation 0.01 was added
to the first 3 transition probabilities for each state, while the last transition probability
was set such that the 4 values would add up to 1. The resulting posterior proba-
bilities for the differential states (i.e. hidden state values 2 and 3) at each position
generated when diffBUM-HMM with the noisy transition matrix was applied to the
data were then compared against the values outputted with the original, noise-free
matrix. A prediction mismatch score can then be computed by dividing the number
of incorrect predictions by the number of correct predictions over the entire molecule
length, indicating the prediction mismatch associated with an individual noisy con-
figuration of the transition matrix. The prediction mismatch for the 35S pre-rRNA
and Xist molecules averaged over more than 50 different, noisy configurations of
the transition matrix was smaller than 0.5%. This suggests that the transition matrix
configuration used to analyse these datasets was optimal.
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Fig. S2. DiffBUM-HMM DRNs are enriched in protein-binding sites. To identify enriched sequence motifs, the MEME tool suite was used (38). The left panel shows the
sequence motifs that were detected in the protein-binding sites detected by CLIP/RIP. The middle panel shows the results for diffBUM-HMM and the right panel shows the
results for the deltaSHAPE analysis of the individual replicates. Only motifs with an E-value ≤ 0.05 are shown.

Marangio, Law et al. | Differential BUM-HMM bioRχiv | 15

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229179
http://creativecommons.org/licenses/by-nd/4.0/


Fig. S3. Distribution of log drop-off rate ratios (LDRs) and P values for the 35S data. ’Treated’ and ’Control’ indicate the individual replicates of the SHAPE-modified
and DMSO-treated samples, respectively. ’WT’ indicates 35S pre-rRNA affinity purified using epitope-tagged wild-type Mrd1 as bait, while mutant indicates that the Mrd1 ∆5
variant has been used as bait.
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Fig. S4. Distribution of log mutation rate ratios (LMRs) and P values for the Xist data. ’Treated’ and ’Control’ indicate the individual replicates of the SHAPE-modified
and DMSO-treated samples, respectively.
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Fig. S5. Distribution of log drop-off rate ratios (LDRs) and P values for the rRNA control datasets. Since the replicates of the control and treated samples showed a
very similar distribution, the data from the different replicates were merged into a single plot. ’Treated’ and ’Control’ indicate the samples with and without DMS treatment,
respectively.
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