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1

1 Introduction

In this Chapter, I briefly introduce the research themes that will be explored in this Thesis.
First, I digress on the ergodic hypothesis, and its reconsideration in the current trends of
statistical mechanics. Then, I move on to introduce the physics of glasses and of many-body
localization, explaining how together they represent the leitmotif of the Thesis. Finally, I
present the scheme that tries to lock in the different works I have been carrying out during
the PhD.

The fathers of statistical mechanics, Ludwig Boltzmann above all, understood too
well that the equations of motion for a generic macroscopic system cannot be inte-
grated explicitly. This factual impossibility led a certain disuse of the tools of dy-
namics at the microscopic level, in favor of the statistical description of ensembles in
thermal equilibrium, which proved so fruitful in the years. The job of every physi-
cist is, however, to come back and question every day the assumptions that have
been made along the way—no surprise then of our perennial restlessness and sense
of unease. Therefore, even after the (wrong) proof by Fermi [11], the (rather useless
for physicists) one by Birkhoff [12], and the one by Von Neumann [13], the validity
of the ergodic hypothesis continued to be disputed over time. This defiant attitude
paid well—it always does—as came the surprise of the Fermi-Pasta-Ulam-Tsingou
experiment [14], which was followed by the surge in the field of integrability [15–
17]; not to forget all the developments from the Kolmogorov-Arnol’d-Moser theo-
rem [18–20] to classical [21, 22] and quantum [23–26] chaos theory.

Of course, it is not my intent to review here all the history of statistical mechanics:
I wanted just to highlight how, in the field, a great deal of effort has been devoted
to the continuous questioning of the very founding hypotheses. Most importantly,
this research trend is becoming more and more significant in the last years. One
could wonder whether we have all forgotten the wisdom of the giants on whose
shoulders we stand, but clearly this is not the case. Rather, now it is really the time to
resume again the tools of dynamics, especially in the context of quantum mechanics,
to investigate the multitude of physical systems that may or may not thermalize.

I say it is the time to study the dynamics of complex systems for at least three
reasons. First, in the laboratories it is becoming possible to manipulate individu-
ally the components of many-body systems, attaining a degree of control that was
unimaginable from the perspective of the founders of both statistical and quantum
mechanics [27–33]. Such a control is disclosing an incredibly vast panorama of possi-
bilities for investigations, both at the practical and at the fundamental level [34, 35].
Second, for the purpose of building a universal quantum computer in some future
time [36–39], the need for a system to avoid going to equilibrium is of central impor-
tance. So, the ergodic hypothesis is seen as detrimental, and systems that defy it are
eagerly looked for. Notice that this happens also in basically any instance of quan-
tum technology application, from quantum sensing [40] to quantum simulators [41–
44]. Third—which in part is a consequence of the two before—in the last 20 years
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or so, several theoretical models have been devised, that do not go to thermal equi-
librium on any reasonable timescale, or even at infinite time [45–51]. These models,
together with the classical- and quantum-integrable models already known before
[17, 26], are beginning to constitute a sort of “zoo”, and people are looking both for
a classifying principle, and for new exotic “beasts” to be included in the collection.

In the light of what I have been saying, it is becoming clear that quantum, out-
of-equilibrium systems play an important role both at the fundamental level of in-
vestigations, and in fruitful applications to futuristic devices. It is in this context
that, in the years of my PhD, I have tried to deliver some infinitesimal, yet non-zero
contribution. In order to give a self-consistent presentation of such results, let me
start by identifying the two bearing pillars that underpin all of them: the theory of
classical glasses, and of quantum many-body localization (MBL). Even if these two
phenomena arise in rather different situations, they both revolve around the break-
ing of ergodicity: therefore, it is natural to expect that they may also share some
trait. I will now broadly introduce each of the two separately, while leaving to the
main body of the Thesis some considerations on their common features. Also, I will
not provide a pedagogical introduction to any of the two, leaving it to the excellent
reviews that I will mention.

Glasses, and more in general amorphous solids, are a state of matter that is
known to basically everybody, for their versatile applications and common uses.
Nonetheless, a deep theoretical understanding—say, to the level we understand
gases or crystals—is still lacking, as it is missing a widely accepted description of
their transition from the liquid phase [52–55]. This is true to the point that the very
existence of a standard thermodynamic transition is still debated, see for instance
Refs. [56, 57]. What is known from experiment is that, for a huge class of a materials,
a cooling rapid enough to avoid the first-order crystallization transition drives the
system to a non-crystal, yet solid phase. This phase is characterized by the absence
of definite Bragg peaks (the structure factor is substantially identical to that of the
corresponding liquid), but also by a rigidity typical of crystals. Moreover, sound
waves are present, and they behave in many respects similarly to those of crystals,
even in the absence of long-range order [58]. I will treat more in depth the physics
of amorphous solids in Chaps. 2 and 5, where I will specialize the discussion to their
ultra-low temperature properties. Indeed, not only the alleged glass transition is
poorly understood, but also the nature of the effective quantum excitations above
the ground state is.

All the above features can be traced back to the fact that the phenomenon of
glassiness is dynamical in nature, so that the use of statistical ensembles should be
taken with care from the beginning. It is therefore natural that many of the tools
to tackle many-particle, out-of-equilibrium systems were developed exactly in this
field. Among all of those tools and ideas, some abstract theoretical models stand
out distinctly: for instance, the introduction by Edwards and Anderson of the epon-
imous spin-glass model [59] brought a whole new energy to the field. The celebrated
solution by Parisi [60–63] of its mean-field version, the Sherrington-Kirkpatrick mod-
el [64], did not close all the relevant questions: instead, it spurred an even stronger
interest in the physics of disordered systems. The introduction of the simulated an-
nealing algorithm [65, 66], the theoretical framework of rugged energy landscapes
[67] and ultrametricity [68], and the formulation of the random first-order transition
[69–73], are just examples of the pay-off that came from such investigations. Both
analytical results and convinicing evidence from numerical simulations continue to
point at new connections and unexpected phenomena even in these last years: I am
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referring, for example, to the surprising super-universality of the jamming transi-
tion in dimensions d ≥ 2 [74, 75], and to the exact solution of the thermodynamics
of infinite-dimensional hard-sphere systems [76–79].

In this Thesis, some of the tools developed for classical glasses will be used to
inspect various out-of-equilibrium systems. Without going into much detail, I antic-
ipate that the use of a spherical model [80, 81] and of simulated annealing [65, 66]
will be crucial to the solution of the control problem of a spin qubit sensor in Chap.
7. Then, the concept of entropic barriers will play a central role in understanding the
slow dynamics of the discrete non-linear Schrödinger equation [82] in Chap. 3. Fi-
nally, the framework of dynamical heterogeneity [53, 83, 84] will be used to inspect
entanglement spreading in the MBL phase in Chap. 4. At the same time, insight
developed on the quantum side—especially in the theory of MBL—will be applied
to problems that are investigated typically in the glass community. For instance,
the issue of low-temperature anomalies of thermodynamic observables in structural
glasses [85] will be dealt with in Chap. 2 using a quantum, mean-field model, and
mathematical tools inspired by the physics of spin glasses. Then, the two-level sys-
tem (TLS) model [86–91] for the low-temperature excitations in amorphous solids
will be inspected from the viewpoint of quantum localized dynamics in Chap. 5.

Moving on to the second pillar, the name of Phil W. Anderson appears again
in a milestone work about non-ergodic behaviour [92], in which he argued that
quenched disorder, combined with quantum interference, can lead to suppression of
transport and, ultimately, to the absence of thermalization. Such phenomenon was
first thorougly investigated for non-interacting quantum matter [93–97], and also
observed experimentally using various platforms [98–101]. Then, the investigation
moved on to genuinely many-body systems [45, 46, 102, 103]: it was in particular the
work of Basko, Aleiner and Altshuler on weakly interacting metals [46], followed by
the intuition of Oganesyan and Huse to look at the same physics in spin chains [47],
that really spurred a huge interest in this many-body localization (MBL). Such interest
came from different sides: from the practical one, it was thought that MBL could
help the creation of quantum hardware resilient to noise—but later this idea fell in
disuse, because of residual interactions leading to dephasing. From the theoretical
side, instead, MBL represented a novel, purely quantum, non-ergodic phase, with
no classical counterpart, and characterized by an emergent integrability. Such inte-
grability was found to be utterly different from the well-known Bethe ansatz [16, 17,
104], and instead to be characterized by local integrals of motion (LIOM), interacting
via a particular effective Hamiltonian, called the l-bit model [105–109].

Even if the introduction of the l-bit model solved the problem of describing the
localized phase [110, 111], the problem of the transition to MBL was left open. In-
deed, the very existence of MBL represented a challenge to the celebrated eigenstate
thermalization hypothesis (ETH) [24–26], i.e. a predictive form of the ergodic hy-
pothesis, specified to many-body quantum systems. On the basis of quantum chaos
and ETH, indeed, several authors repeatedly argued that MBL cannot be a stable
phase of matter [112–119]. Others [120] tried to reconcile the analytical results on
the transition [107–109, 114, 121–128] with the numerical results [48, 49, 129–135],
the latter showing contrasting evidence, critical exponents that do not comply well-
established bounds, and a substantial disagreement on the critical disorder strength.
Experiments, unfortunately, do not meet the required level of precision to settle these
questions [136–142], which therefore remain open to date.

In this Thesis, the issue of stability of MBL will not be tackled directly. The results
that concern MBL will be either focused on the phase itself—about which there is
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solid analytical evidence—and not on the transition (Chap. 4), or investigate models
in which localization lasts for some finite time only (Chap. 5). The point of view
adopted here will be thus rather pragmatic: like there is no definitive proof of the
classical glass transition, but everybody agrees on the phenomenology, the same
can be said for MBL, as long as one does not care about the thermodynamic and
infinite-time limits. Moreover, the validity and interest of the results presented will
be motivated regardless of the existence of a true, stable MBL phase.

To elaborate further, it is interesting to notice that, despite all the controversy, the
physics of localization in many-body interacting systems has been developed well
beyond the original scope. In the last years, numerous quantum many-body models
have been proposed, that avoid going to equilibrium for extremely long timescales:
the role of quenched disorder, indeed, can be played by configurational disorder
[143–151], kinetic constraints [152–158], long-range interactions [159–163], or con-
finement of elementary excitations [164–174]. As a consequence of the above fea-
tures, or because of similar mechanisms, some models also display Hilbert-space
fragmentation [175, 176], or quantum many-body scars (i.e. non-thermal eigenstates
at the center of the spectrum) [177, 178]. While in all of the previous examples the
systems are believed to thermalize in the long run, the timescale after this takes place
may become incredibly long, thus being irrelevant in any practical situation.

It is also necessary to mention that there are systems for which MBL is instead
firmly believed to hold in the original form. It is the case of Floquet systems [179–
183], for which in particular a recent numerical study [184] has shown the consis-
tency of the MBL transition at moderate values of disorder, or of quasi-periodic sys-
tems [185–189], for which the presence of locally ergodic regions (that are thought to
cause an avalanche instability, leading to ETH) are suppressed. The stability of the
MBL phase of quasi-periodic systems is thought to be so strong, that it may be pos-
sible also to find a localized phase in two dimensions, as some recent studies argue
[190–192].

On the other hand, systems have been found that escape the localization mech-
anism even in 1d. For instance, the presence of a continuous symmetry is thought
to be incompatible with MBL, because of the presence of resonances among states
forced by the symmetry to be degenerate in energy [193–195]. Also, kinetically con-
strained “PXP” models [196–198], while displaying a slow dynamics per se, become
thermal in the presence of a generic disorder, because the constraints make the dis-
ordered potential effectively non-local [199].

I am describing all of these possibilities, because in Chap. 6 I will present a
work that shares common traits with many of them: a two-dimensional model with
emerging dynamical constraints that both hosts MBL, starting from certain initial
conditions, and that delocalizes upon the introduction of disorder. The interest in
the problem, in view also of the discussion above, stems from the fact that much
insight on non-ergodic behavior is usually gained from one-dimensional systems,
for which advanced analytical [16, 200] and numerical [201] techniques are avail-
able. On the other hand, the non-equilibrium (and possibly non-ergodic) evolution
of higher-dimensional quantum systems is a largely uncharted territory: therefore, I
believe that the results presented will really be of interest.
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Since it would be difficult, if not impossible, to organize the different works that
I have carried out during my PhD in well-defined categories, I opted for a simple
division in chapters, without a real developing thread. The scheme is the following.

• In Chap. 2 I describe the quantum jamming transition of the perceptron model,
with implications for the low-temperature, thermodynamic anomalies of struc-
tural glasses.

• In Chap. 3 I show how a mean-field approximation, followed by a geometrical
analysis, sheds light on the localization mechanism taking place in the discrete
non-linear Schrödinger equation at high energies.

• In Chap. 4 I show how in many-body localized systems there is a complex
entanglement spreading dynamics, that is reminiscent of the dynamical het-
erogeneity found in classical glasses.

• In Chap. 5 I consider the two-level system (TLS) model for the low-temperature
properties of glasses, showing that a transient many-body localization takes
place for the TLS. Such phenomenon is proposed as an explanation for the
very slow thermalization found in experiments.

• In Chap. 6 I describe how the dynamics of the two-dimensional Ising model
can in some cases be reduced to that of simple, one-dimensional effective mod-
els, under some assumptions. The consequences are multiple, and are dis-
cussed at the beginning of the Chapter.

• In Chap. 7 I show how tools coming from spin glass theory can be successfully
applied to solve the optimal control problem of a simple quantum sensor of
magnetic fields.
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2 The quantum perceptron and its
jamming transition

In this Chapter, I present some results on the quantum jamming transition of the perceptron
model. After having introduced and motivated the problem, in Sec. 2.1 I show the known
results for the corresponding classical system. Then, in Secs. 2.2 and 2.3 I show how to get
to a set of equations, that fully capture the thermodynamics of the quantum problem, while
in Sec. 2.4 I show what can be found from the numerical solution of those equations. Finally,
in Sec. 2.5 I summarize the results and indicate some future directions. The Chapter is based
on the publication [1].

In the Introduction it was hinted at why glasses constitute an interesting research
area in physics. Systems that exhibit glassiness of some type range from amorphous
solids, whose properties measured in the labs are not thoroughly understood yet, to
abstract problems in computer science, that typically are hard to solve. In this Chap-
ter, we will present a problem that sits in between those two extrema: the jamming
transition of the perceptron model, when endowed with quantum dynamics.

Let us start from one side of the story: constraint satisfaction problems (CSP). By
definition, a CSP consists, given a set of states and a set of constraints, in determining
the subset of states compatible with all the constraints. In general CSP are hard
problems; the Boolean satisfiability (SAT) CSP was indeed the first one to be proved
NP-complete [202, 203]. In the years, it has become clear that tools from the statistical
physics of disordered systems could be fruitfully applied to the field of CSP [204].
For instance, the origin of their computational difficulty was investigated within the
framework of phase transitions [205–208], and efficient algorithms inspired by glass
physics were devised [209–211].

While CSP defined in terms of discrete variables map naturally to spin glasses,
CSP with continuous variables have shown a deep connection with structural glasses
[74, 212–214]. A prominent example of CSP with continuous variables is the sphere
packing problem [215, 216]. Sphere systems have gained plenty of attention among
the glass physics community, and their jamming transition has been studied with the
mathematical tools coming from structural glasses [217, 218], as well as from mean-
field spin glasses [79, 212]. A result of the investigation was the quite surprising
finding that the critical behaviour of hard-sphere jammed packings is independent
of dimensionality for 2 ≤ d ≤ 10 [74, 75], and presents features typical of the mean-
field solution [219, 220]. This superuniversality led to the development of a simple
toy model, presenting a jamming transition in the same universality class of infinite-
dimensional hard-sphere systems, and that could be analytically solved: the percep-
tron [221–225]. The interest in the perceptron model comes also from the fact that it
supports several applications in learning protocols [226–230], and it constitutes the
building block of deep neural networks.

In this scenario of interplay between statistical mechanics and computer science,
many authors have been also looking at ways to use quantum dynamics to speed up
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the solution of classical problems, thus putting into play the issue of quantum com-
putation as well [36]. In the specific case of discrete-variable CSP, a growing body of
literature has investigated the impact of quantum dynamics on the spin-glass tran-
sition [231–237]. It is worth to stress that the effect of quantum fluctuations may be
also detrimental in a quantum computing or annealing context, since phenomena as
many-body localization could take place [238–242]. The study of CSP with continu-
ous variables and a quantum dynamics, surprisingly, has not received the same kind
of attention so far, but it promises to be equally far-reaching. In this Chapter, we are
exactly going to take a step in this direction, building on the few known results in
the field [243, 244].

Finally, in view of the connection with structural glasses, the study of quantum
continuous CSP might as well provide clues for the anomalous (i.e. non-Debye) be-
havior of thermodynamic quantities in glasses at ultra-low temperatures. As said in
the Introduction, this is currently an open problem in the glass physics community,
and is eagerly looked at. Such anomalies, as CV ∼ T at T ∼ 0 [85], have received
a phenomenological explanation in terms of quantum mechanics [86–88] (see also
Chap. 5), but no firm result exist.

The purpose of this Chapter is to address the jamming transition deep in the
quantum regime through the perceptron model. We show that quantum mechanical
effects change the nature of the critical phase radically. We find that, for any h̄ 6= 0,
the critical exponents are different from the classical ones and independent of the
temperature. We also find that CV(T ∼ 0) ∼ e−∆/T at small T, while at higher
temperatures the specific heat has a power-law behavior. Remarkably, the latter
result, valid in the deep quantum regime, resembles the semiclassical results of Ref.
[244], connecting the physics on the two sides of the jamming transition.

2.1 The classical model

The perceptron model can be formulated as a particle living on a N-dimensional
sphere, subjected to M = αN randomly placed obstacles. The parameter α repre-
sents the density of contraints, and it will be central in understanding the phase
diagram of the model.

The vector ~X represents the position of the particle on the sphere ~X2 = N, and
the obstacles are represented by the N-dimensional vectors ~ξµ = (ξ

µ
1 , . . . , ξ

µ
N), where

µ = 1, . . . , M and ξ
µ
i are i.i.d. Gaussian random variables with zero mean and unit

variance1. For each obstacle, one defines the constraint

hµ(~X) =
1√
N
~ξµ · ~X− σ > 0. (2.1)

Geometrically, it corresponds to asking the particle to be localized on one spherical
cap, since the constraint is cutting away a half N-dimensional space. The parameter
σ controls the convexity of the problem, a quantity of great importance in CSP, as
will become clear soon. One can easily check that if σ > 0 the spherical cap is
smaller than half sphere, thus the intersection of all the constraints always leads to
a convex shape (see also Fig. 2.1a). On the other hand, if σ < 0 then the removed
spherical caps are smaller than half sphere, and the intersection of the constraints
leads to a sphere with several holes punched in it: this is clearly a non-convex set

1One does not need to enforce the normalization of the vectors ~ξµ, since they lie on the N-sphere
of radius N1/2 by the central limit theorem. Also in the following, all the statements concerning the
geometry of the problem will refer to the limit N → ∞, where fluctuations are suppressed.
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(b)(a) (b)(a)

FIGURE 2.1: Sketch of the perceptron configuration space. (a) Case σ > 0: the green area
is the allowed region, and it is convex since it comes from the intersection of spherical caps
smaller than half sphere. (b) Case σ < 0: now spherical caps smaller than half sphere define
instead the excluded region (red shaded areas). Thus, the allowed region (i.e. the comple-
mentary) is a non-convex set.

(see Fig. 2.1b). The connection with hard spheres in very high dimensionality is
now quite easy to grasp, at least pictorially: the particle in the perceptron model
moves in a space that has spherical holes carved out, as if it were a single sphere
in N − 1 dimensions, moving in a background constituted by other frozen spheres2.
It is natural to expect that in high dimensions a mean-field picture should emerge
for the many-body problem as well; that it is to say, the problem should reduce to a
single-particle one, that moves in a self-consistently-induced background [79]. With
all of this in mind, the connection of hard spheres with the perceptron does not come
unexpected.

The constraints may be implemented through a cost function of the form

V =
M

∑
µ=1

v
(
hµ
(
~X
))

, (2.2)

where the function v is such that v(h) ≡ 0 if h ≥ 0, and v(h) 6= 0 if h < 0. The
choice of v does not influence the jamming point, defined to be the highest density
point (in configuration space) at which V = 0, but it does modify the behaviour in
the jammed phase at higher densities. For instance, a hard-wall potential

v(h) =

{
+∞ h < 0
0 h ≥ 0

(2.3)

makes the jammed phase disappear altogether, while a soft-wall potential allows for
non-zero energy configurations, weighted according to the form of v. Here, we will
concentrate on the hard-wall case, leaving to the end a discussion of the implications
for the soft case.

The perceptron model with classical, commuting variables was addressed and
solved in Refs. [222–225]. The phase diagram relative to the hard-wall potential

2The point-like particle of the perceptron model can be interpreted as the center of the sphere under
consideration, moving in a space where the other frozen spheres have been carved out with twice their
radius.
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Figure 3: The zero temperature phase diagram of the perceptron. ↵J (�) is the jamming tran-
sition (or SAT/UNSAT threshold) within the replica symmetric approximation. The replica
symmetric solution is stable for all � > 0. Thus the jamming transition line is exact only for
� > 0. ↵dAT(�) are the lines where replica symmetry breaks. In the non-convex region and for
� 2 [�1RSB, 0], ↵dAT is a transition from a replica symmetric phase to a continuous fullRSB one.
For � 2 [�RFOT,�1RSB] the dAT line is a continuous transition from a replica symmetric phase
to a stable 1RSB phase. For � < �RFOT a RFOT type phenomenology is observed. Keeping
� fixed and increasing ↵, one has first a dynamical transition for ↵ = ↵dyn(�), then a Kauz-
mann transition for ↵= ↵K(�), and finally a Gardner transition for ↵= ↵G(�). In the UNSAT
phase, the instability line ↵dAT(�) represents the transition from a replica symmetric phase to
a continuous fullRSB one for all ↵ > 2. Therefore, fullRSB occurs in the region delimited by
the ↵dAT(�) and ↵G(�) lines, which contains the whole jamming line for � < 0.

clusters decreases and vanishes at the Kauzmann (or condensation) transition ↵ = ↵K(�) [4,
30,32]. At this point, the clusters that dominate the Boltzmann-Gibbs measure are no longer
exponentially many, and the system undergoes a thermodynamic phase transition. Note that
this two-transition scenario, also called RFOT, is at the basis of the mean field theory of glasses
(see [27,33–36] for reviews).

To compute ↵dyn(�) and ↵K(�), we are therefore led to consider the 1RSB entropy for
m⇡ 1, where we can write to the leading order

s1RSB(q1, q0, m) = sRS(q0) + (m� 1)�sRSB(q0, q1) , (61)

18

FIGURE 2.2: Phase diagram of the perceptron model, as derived in Ref. [224]. In the convex
region σ > 0 there is only one phase transition, the jamming one (delimited by the curve
αJ). When σ ≤ 0, instead, the RS solution becomes unstable on the de Almeida-Thouless
line αdAT, and the correct solution presents either one-step RSB (σ1RSB < σ < 0) or full
RSB (σ < σ1RSB). The line αG represents the Gardner transition [214] from one-step RSB to
full RSB. For σ < σRFOT the phenomenology of the random first-order transition (RFOT)
of glasses [55, 69–73] is present, and both a dynamical transition αdyn and a Kauzmann
transition αK take place. This figure is taken from Ref. [224], where also more details can be
found.

case is independent of the temperature (in fact there is no finite energy scale) and
is shown in Fig. 2.2; see also the figure caption for a detailed description. The two
main phases, i.e. constraints satisfied (SAT) or unsatisfied (UNSAT), are determined
by whether there is or there is not any volume left by the intersection of the M con-
straints. More precisely, one has to consider the limit of the set

WN,M := {~X ∈ RN , ~X2 = N | hµ(~X) > 0 ∀ µ = 1, . . . , M} (2.4)

as N, M → ∞, with α = M/N fixed. In the SAT phase, a position ~X for the particle
satisfying all the constraints can be found with probability 1; in the UNSAT phase,
instead, WN,M becomes empty and the CSP problem has no solution. The sharp
SAT-UNSAT transition is induced by increasing the constraint density α up to some
αc(σ). As anticipated, the convexity parameter σ determines the features of the SAT-
UNSAT transition [222, 224]. For σ > 0, the constraints can be thought to force the
particle ~X to be closer than some distance to each obstacle: this is the convex regime
for the allowed region. It is found that the free energy has a single minimum and
the replica-symmetric (RS) solution is everywhere stable. On the contrary, when
σ < 0 the constraints are satisfied if the particle is away from each obstacle, thus the
allowed region is non-convex and can be even composed of disconnected islands.
The SAT-UNSAT transition falls within a phase where the landscape is rugged and
marginally stable. In this Chapter, we will concentrate only on the value σ = 0, at the
border of the RS stable region, for which the jamming point correponds to αc(0) = 2.
In this way, the jamming point can be reached within the RS ansatz, but the physics
of the glassy phase (σ < 0) is captured as well.



2.2. The quantum partition function 11

2.2 The quantum partition function

The perceptron model is quantized by imposing the canonical commutation rela-
tions [Xi, Pj] = ih̄δij. The Hamiltonian reads3

H =
~P2

2m
+

M

∑
µ=1

v
(
hµ
(
~X
))

. (2.5)

To inspect the phase diagram of the quantum model, it is necessary to compute the
quenched disorder average of the free energy:

F = − 1
β

log Z, Z = Tr e−βH. (2.6)

The procedure is very similar to the one employed in the context of quantum spin
glasses [231, 232, 234, 237], and can be found in Refs. [244]. Since it is impossible to
provide any simple sketch of the computation, because of the profusion of indices
and rather long expressions, we will defer all the details to App. A.1. Here, we just
summarize with words the meaning of the computation.

The first thing to do is to represent the partition function as a path integral in
imaginary time (Eq. (A.1)), and use a Lagrange multiplier λ(t) to enforce the spher-
ical constraint. To compute the average of the logarithm, the replica trick should be
used:

log Z = lim
n→0

Zn − 1
n

= lim
n→0

∂

∂n
Zn, (2.7)

where Zn is computed for integer n and then analytically continued to real values.
Therefore, after having introduced replicas Xa(t), a = 1, 2, . . . , n, the average over
disorder should be performed. Such average is carried out more easily if one intro-
duces the auxiliary process

rµ
a (t) :=

~Xa(t) ·~ξµ

√
N

. (2.8)

At this point, the expressions depend on Xa(t) only through the overlap

Qab(t, s) :=
~Xa(t) · ~Xb(s)

N
, (2.9)

which physically measures the similarity between two replicas. Performing the
change of variables from ~Xa(t) to Qab(t, s) (and taking care of the Jacobian of the
transformation), leads finally to the expression (cf. Eqs. (A.15)–(A.16))

Zn =
∮ [ n

∏
a=1

Dλa ∏
b≥a

DQab

]
exp {NA(Qab, λa)} , (2.10)

3The choice of the kinetic term P2/2m, typical of flat space, gives no significant difference from the
correct one the sphere, that should be expressed in terms of the angular momentum (see for instance
the appendices of Ref. [244]).
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where the symbol
∮

indicates that ~X(0) = ~X(βh̄), and the effective action is

A =
1
2

log det Q(t, s) +
βm
2 ∑

a

∫ βh̄

0

dt
βh̄

∂2
s Qaa(t, s)

∣∣∣
s=t

− βm
2 ∑

a

∫ βh̄

0

dt
βh̄

λa(t)[Qaa(t, t)− 1] + α log
〈

e−β ∑a
∫ βh̄

0
dt
βh̄ v(ra−σ)

〉

Q
. (2.11)

Above, we have also introduced the (normalized) averages over the effective degree
of freedom ra(t):

〈F〉Q :=
1√

det Q

∮ [ n

∏
a=1

Dra

]
e−

1
2 ∑a,b

∫∫ βh̄
0

dt
βh̄

ds
βh̄ ra(t)Q−1

ab (t,s)rb(s)F[r]. (2.12)

The functional integrals over Qab(t, s) and λa(t) can now be evaluated via the
saddle point method in the limit N → ∞. However, solving the equation δA/δQ =
0, which yields the matrix Qsp, is not possible in full generality, and an ansatz is
needed. Following Refs. [234, 244], it makes sense to assume (see also App. A.2)

Qsp
ab(t, s) = qd(t− s)δab + Q∗ab (2.13)

where qd is some function, and Q∗ab is a hierarchical matrix. Thus, the time depen-
dence is kept only in the diagonal term, while the permutational symmetry of the
replicas manifests only in a time-independent term.

At this point, let us specify the computation to the replica-symmetric (RS) phase.
Assuming replica symmetry, the overlap becomes

QRS
ab (t, s) = qd(t− s)δab + q(1− δab), (2.14)

so that it is qd for the same replica, and q for any two different replicas. Substituting
QRS is Eqs. (2.10)–(2.11), the expressions simplify significantly, as shown in App. A.3.
The first main point is the introduction of the autocorrelation function

G(t) := qd(t)− q, (2.15)

whose Fourier components are denoted as

Gn := G̃(ωn) :=
∫ βh̄

0

dt
βh̄

G(t)e−iωnt, G(t) = ∑
n∈Z

G̃(ωn)eiωnt, (2.16)

with the Matsubara frequencies

ωn =
2πn
βh̄

, n ∈ Z. (2.17)

Then, on the same line of Eq. (2.12) we introduce the averages

〈F〉G :=
1√

det G

∮
Dr e−

1
2

∫∫ βh̄
0

dt
βh̄

ds
βh̄ r(t)G−1(t−s)r(s)F[r], (2.18)

and define also the Gaussian kernel

γq(h) :=
e−

h2
2q

√
2πq

. (2.19)
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With these ingredients, the free energy (per dimension and per replica) can be ex-
pressed as

− β f RS
=

1
2 ∑

n∈Z

log Gn +
q

2G0
− βm

2 ∑
n∈Z

ω2
nGn −

βµ

2

[
∑

n∈Z

Gn − (1− q)
]

+ αγq ? log
〈

e−β
∫ βh̄

0
dt
βh̄ v(r(t)+h)

〉

G
(−σ). (2.20)

Above, we have absorbed the mass m in the Lagrange multiplier λ, thus defining

µ := mλ, (2.21)

and we have denoted the convolution over h by ?. Unfortunately, the notation is
quite heavy; however, we think that bearing in mind that the convolutions are al-
ways computed over the dummy variable h, and finally evaluated at−σ, everything
should be clear.

2.3 Extremization of the free energy

The free energy Eq. (2.20) needs to be extremized wrt. Gn, q and µ. The resulting
saddle-point equations are very easy to obtain, so we skip the derivation altogether
and give the result:

G−1
n = βmω2

n + βµ + βΣn (2.22)

∑
n∈Z

Gn = 1− q (2.23)

q = αγq ? 〈r0〉2v (−σ) (2.24)

with the self-energy

Σn :=
α

β

{
G−1

n − G−2
n γq ?

[
〈r∗nrn〉v − δn0〈r0〉2v

]
(−σ)

}
(2.25)

and the averages

〈F〉v :=

〈
e−β

∫ βh̄
0

dt
βh̄ v(r(t)+h)F[r]

〉

G〈
e−β

∫ βh̄
0

dt
βh̄ v(r(t)+h)

〉

G

. (2.26)

Notice that the averages 〈· · ·〉v are a function of h (over which then the convolution
acts), and that rn = r̃(ωn) according to Eq. (2.16).

The equations above are quite complicated, and have evaded our attempts of
solving them analytically so far. The main difficulty is the presence of the quantum
averages 〈· · ·〉v, which involve both a non-local (in time) kernel G−1(t − s), and a
hard-wall potential at position h. On the contrary, for the Sherrington-Kirkpatrick
model the corresponding equations could be solved at T = 0 using a sensible ansatz
for the self-energy [237], since the effective degree of freedom in that case is a two-
level system. Here, even using a similar ansatz we were not able to close the equa-
tions (2.22)–(2.24) self-consistently; nevertheless we hope to address this issue in
some future work.
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FIGURE 2.3: Sketch of the Path Integral Montecarlo (PIMC) used to simulate the dynamics
of the βh̄-periodic process r(t) in the potential generated by G−1(t− s) and v(r(t) + h). The
first step consists in discretizing time in S slices; then, the PIMC algorithm proposes a move
r(ts) → r(ts) + δ(ts) for every time step ts, which is accepted or rejected according to the
Metropolis algorithm. The presence of the hard-wall potential makes the convergence of
the Montecarlo very demanding, and it is not sufficient to reject the attempted moves with
r < −h to have a good numerical protocol. Thus, we implemented an improved Montecarlo
sampling which exploits the method of images. We modified the free particle kinetic term of
the Hamiltonian and, instead of sampling the probability P(r0, 0 | r0, β) of the free particle,
we used P(r0, 0 | r0, β)− P(Im(r0), 0 | r0, β) where Im(r0) = −r0− 2h is the image of r0 when
the wall is in−h. Another expedient is to add a move which translates rigidly the time chain
r(ts), i.e. r(ts)→ r(ts) + δ with δ independent of ts. The presence of the convolution implies
the evaluation of the averages 〈· · · 〉v for many positions −h of the wall. We approximate
this Gaussian integral with the Gauss-Hermite quadrature, with always at least 10 sample
points. This first step of the iterative method stops when Gn has converged for every n within
a fixed tolerance (we fixed the relative difference between Gold

n and Gnew
n to be < 0.1%). The

second step is to check if the converged Gn verifies the identity in Eq. (2.23). If it does so,
one can move on to the third step; otherwise, µ is changed via the bisection method and the
first step is performed again. The third step consists in computing the r.h.s. of Eq. (2.24) with
the converged Gn and µ, and check if the identity in Eq. (2.24) is verified. If it is so, one has
found the parameters which solve the self-consistency equations; if not, q is changed and
one has to repeat all the procedure from the first step. This figure is taken from Ref. [1].

2.4 Results from the path-integral Montecarlo

The only analytical progress made from Eqs. (2.22)–(2.24) was in the semiclassical
regime βh̄ → 0 (explored in great detail in Ref. [244]), and a variational computa-
tion that we will present soon. For the rest, Eqs. (2.22)–(2.24) must be solved self-
consistently via some numerical procedure. Since they have the form of typical dy-
namical mean-field theory (DMFT) equations [245], it is reasonable that an iterative
procedure, accompanied by a path-integral Montecarlo (PIMC) for the evaluation of
the averages 〈· · ·〉v, would suffice. In Fig. 2.3 it is shown a sketch of how the PIMC
was implemented for the effective degree of freedom r.

Now, we present some results that have been obtained via PIMC simulations.
The investigation was performed on the line σ = 0 in the phase diagram, from α = 0
to αc(σ = 0) = 2, because we wanted to retain the simplicity of the RS equations,
without going in the RSB regime, but still accessing the physics of the non-convex
phase, which is confined to σ ≤ 0.

As a first thing, the value of the order parameter q as a function of α and β was
found; it is plotted in Fig. 2.4a against the classical counterpart qcl(α) (that was
considered in Ref. [224]). Unlike the quantum case, qcl(α) is independent of the
temperature—indeed, there is no finite energy scale in the classical problem, while
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FIGURE 2.4: (a) Edwards-Anderson order parameter q as a function of the constraint density
α for various temperatures. From bottom to top: infinite temperature classical dynamics
(red line) to finite temperature quantum dynamics (β = 2, 4, 8). The O(α), β = ∞ results
are shown as dashed black lines (while the horizontal black line is a reference for the value
q = 1). Notice how, as soon as α & 1, the temperature dependence of q is effectively lost (it
is ∼ e−cβ/(2−α)2

). (b) Edwards-Anderson order parameter close to the critical point α = 2.
From top to bottom, increasing the number of Trotter slices S = 4, 8, 16, 32 for sufficiently
large β, the slope increases. For reference, the classical value of the slope (from (1− q) ∼
(2− α)) is shown as the diagonal dashed black line. In the inset are shown the values of the
slope with their errors, and its extrapolation to S → ∞ to the value κ = 2.0± 0.1, quoted in
the text. This figure is taken from Ref. [1].

h̄ 6= 0 introduces a new finite scale. Moreover, the critical behaviour around the
jamming transition is, in the classical case,

1− qcl(α) '
2− α

4
+ O

(
(2− α)2) : (2.27)

this defines a critical exponent κcl = 1, that is valid in all the region σ ≥ 0. We recall
that, instead, κcl = 1.41574 · · · if σ < 0.

From Fig. 2.4a one can see that the quantum value of q is always larger than the
classical one, and this can be easily understood. Recalling that q represents how
much two different replicas are similar (cf. Eq. (2.9)), if the space at disposal of the
particle is smaller, necessarily the overlap will be larger. But this is exactly the case,
since the ground state of a quantum particle in a billiard is more concentrated than
a flat distribution on the same billiard, because of Dirichlet boundary conditions at
the walls. Moreover, the particle becomes more concentrated the larger the aspect
ratio of the billiard, namely if one of the sides is larger than the others.

To be more quantitative, one finds q > qcl already at the lowest order in α: from
the self-consistency equation (2.24),

q = α〈r0〉2v,h=0 + O(α2) (2.28)

since γq concentrates to a delta function for small q. The average 〈· · ·〉v,h=0, when
β→ ∞, reduces to the expectation value over the ground state of a harmonic oscilla-
tor with a wall in the origin. The problem is easily solved in App. A.4, and the result
is

q =
8

πm2 α + O(α2), (2.29)

that has to be compared with qcl = 2α/πm2 + O(α2).
Another interesting dependency of the quantum order parameter q is that on
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the temperature T = 1/β: in particular, from Fig. 2.4a it is evident that q becomes
independent of T through a crossover at α . 1. From the classical calculation, it is
expected that the typical linear size ` of the allowed region for the particle on the
sphere vanishes as

` ∼
√

1− qcl ∼
√

2− α (2.30)

for α → 2. Thus, as soon as the energy gap to the first excited state becomes larger
than the temperature, i.e. roughly when

h̄2

m`2 ∼
h̄2

m(2− α)
& T, (2.31)

the quantum dynamics is effectively at zero temperature and the order parameter q
becomes independent of T. This estimate should be corrected by the fact that the
gap, deep in the quantum regime, grows even faster than (2− α)−1 when α → 2, as
will become clear soon.

Since the quantum dynamics recovers the classical dynamics only when the de
Broglie wavelength λT ∼ h̄/

√
mT � `, on approaching jamming it is quantum me-

chanics that dominates. Hence, for any T, h̄, m, as α → 2 one eventually enters a
quantum critical regime, where quantum mechanics controls the dynamics and de-
fines, among other things, novel critical exponents. The classical result is recovered
only by taking the limit T → ∞ before α→ 2.

The value of the critical exponent κ regulating the relation (1 − q) ∼ (2 − α)κ

in the quantum regime can be extracted by looking at the low-temperature, large-α
data from the PIMC. As usual, a sufficiently large number of Trotter slices S must
be taken (see Fig. 2.3), and S should be increased even more when α → 2, making
the numerical simulations rather demanding. However, fortunately, the asymptotic
region is reached already at α & 1. The data in Fig. 2.4b clearly show that the critical
exponent of the quantum theory is not the classical one, κcl = 1, and it departs more
and more from it as the number of Trotter slices is increased. Performing a log-log fit
to extract such critical exponent, in a region 1 ≤ α ≤ 1.7, and extrapolating S → ∞,
it is found κ = 2.0± 0.1.

That κ > 1 in the quantum case can be understood also from a simple variational
calculation. Using in the scaling region α→ 2 the (uncontrolled) approximation

G−1
n =

βm
1− q

(
ω2

n +
h̄2

4m2

)
, (2.32)

the self-consistency equations can be solved explicitly for β→ ∞, as detailed in App.
A.5, finding κ = 3/2. The value κ ' 2 from the Montecarlo simulations presumably
comes once the true behavior of Σ(ω) is considered.

Another quantity of interest is the regularized internal energy per degree of free-
dom

u =
1

2β ∑
n∈Z

µ + Σn

mω2
n + µ + Σn

, (2.33)

cf. Ref. [244] for the regularization procedure. Like q, it becomes independent of β
already at α & 1. Extrapolating its behavior for an infinite number of Trotter slices,
the internal energy diverges as (see also Fig. 2.5a)

u ∼ h̄2

m(2− α)2 (2.34)
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for α→ 2. This can be again interpreted in terms of reduced volume and uncertainty
principle, and confirms the previous result κ ' 2.

All the results presented above show that, at fixed temperature, in the quantum
regime the critical properties of the system are essentially determined by the ground
state, and the gap to the first excited state grows as

∆ ∼ h̄2

m(1− q)
for α→ 2. (2.35)

This implies that, if one focuses on frequencies ω � ∆/h̄, or times t � h̄/∆, there
is no dynamics. In order to see some dynamical behavior, one should consider in-
stead ω & ∆/h̄. As shown in Fig. 2.5b, at these large frequencies the form of the
self-energy Σ(ω) changes significantly. Indeed, at any α < 2, the self-energy is an
analytic function of ω2 in a neighborhood of the origin ω = 0 (see the inset of Fig.
2.5b). As α→ 2, this behavior becomes extended to increasing values of ω. At larger
frequencies, however, Σ(ω) develops a linear behavior. Moreover, for any α < 2,
it must hold limω→∞ Σ(ω) = 0, as can be seen from the definition Eq. (2.25). Per-
forming a log-log fit, it is found that the constant contribution to the autocorrelation
function scales as βµ ∼ (1− q)δ where δ ' −0.9. From a quadratic fit of Σ(ω) at
small ω, the coefficient of the quadratic term is found to be instead almost indepen-
dent of (1− q).

The behavior of Σ(ω) defines the effective dynamics of the theory, and its ana-
lytical properties around the origin determine the low-temperature behavior of ther-
modynamical observables. Both the analyticity of Σ(ω) around ω = 0 and the inde-
pendence from β of all the observables, including the internal energy u, show that
the specific heat is non-analytic in T when α→ 2. More precisely, our findings show
that the specific heat

CV(T) ∼ e−∆/T, for T ∼ 0, (2.36)

due to the presence of the gap, Eq. (2.35). However, since at not-so-small ω it holds
Σ(ω) ∼ |ω|, the specific heat presents a power-law behavior at high enough tem-
peratures:

CV(T) ∼ Tγ, for T > Tcutoff. (2.37)

Since ∆→ ∞ as α→ 2, Tcutoff → ∞ too.

It is interesting to conclude noticing that the linear dispersion Σ(ω) ∼ |ω|, ob-
served in the critical regime, is similar to the results of Ref. [244], where the authors
performed a semiclassical analysis to investigate the UNSAT phase with soft poten-
tials. In particular, they sent h̄ → 0 with βh̄ kept fixed, while in this study it is h̄ to
be kept finite. They found the linear dispersion Σ(ω) ∼ |ω| in a neighborhood of
the origin ω = 0, implying a power-law behavior of the specific heat CV(T) at small
T near the jamming point. The similarities between the two results are surprising,
since the regimes considered are different, and suggest that the linear dispersion
Σ(ω) ∼ |ω|might be a universal feature of quantum models near jamming.

2.5 Conclusions and outlook

In this Chapter we have shown how the perceptron with hard-wall potentials can
be used as a model for reaching the quantum jamming transition with analytical
control. Studying the replicated, quenched free energy in the RS approximation, a
quantum critical point corresponding to the classical jamming point αc = 2 at σ = 0
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FIGURE 2.5: (a) Internal energy u as a function of the density of constraints α. The dashed
line is a fit of the form u = A(2− α)−κ(1+ B(2− α) +C(2− α)2) with κ = 2.0 obtained from
the behavior of order parameter q. This confirms u ∼ (1− q)−1 ∼ (2− α)−2 as discussed in
the main text. In the inset one can see, from bottom to top for α = 0.35, 0.5, 0.7, 1, 1.3, 1.5, 1.7,
the extrapolation of the values of uS = u + a/S + b/S2 as a function of the number of Trotter
slices S (in log-log scale). (b) Self-energy Σ(ω) at α = 1.7, β = 1/23 as a function of the
Matsubara frequency ω, for increasing number of Trotter slices (accessing higher and higher
frequencies). We see that Σ(ω) develops a linear ω behavior (black, dotted line) for inter-
mediate ω’s, while retaining its analyticity in terms of ω2 around the origin for any q < 1
(inset). In the inset, it is shown Σ(ω) at small ω’s for α = 1.5, β = 8. This figure is taken
from Ref. [1].

is found. Usually, quantum critical points are confined and influence the physics
around T = 0 [233]; here, instead, the quantum jamming critical point exists for
any temperature, and the classical results are recovered only by taking T → ∞ before
α→ αc. In other words, it is the classical critical point to be confined to T = ∞.

Using tools from RSB theory and DMFT, we were able to find quantum critical
exponents different from the classical ones, and an exponentially small specific heat
CV at small T. For frequencies higher than the gap but not asymptotically large,
there is instead a dispersion relation G(ω)−1 ∼ |ω|, which implies a power-law
specific heat for T > Tcutoff, where Tcutoff diverges at the critical point. This shows a
connection with the semiclassical analysis of Ref. [244], where a different region of
parameters was considered, and this surely deserves to be investigated further.

An appealing extension of this work would be to consider soft potentials, having
a finite v′ ≡ ∂v/∂r|r=0

4, as in the case of typical models of structural glasses. Em-
ploying soft potentials, it is possible to access the UNSAT phase deep in the quantum
regime. While it is reasonable to expect that the quantum jamming transition will
turn into a crossover (like the classical one does), the same phenomenology outlined
in this Chapter should be observed as far as the change in the potential on length
scales O((1− q)1/2) is large with respect to the gap ∆ ∼ (1− q)−1. This means that
for (1− q) & (v′)−2/3, or α . 2− c(v′)−1/3, the physics is dominated by the hard-
wall quantum jamming critical point. The robustness with temperature of the quan-
tum critical point, shown in the above results, implies that the quantum character
of the system even with soft potentials cannot be neglected. Therefore, it suggests
that standard approaches used to study glassy systems at ultra-low temperatures,
which add quantum effects on top of the classical landscape [246–248], might be
inadequate.

Another interesting extension of this study would be to move to the regions with
σ 6= 0. For the case σ > 0, studied in learning protocols, the same methods adopted

4A similar reasoning applies for the case v′ = 0 but ∂kv/∂rk|r=0 6= 0 with k > 1.
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in our study can be implemented, and one can directly investigate the effects of the
quantum dynamics. In the region σ < 0, instead, it is also necessary to solve the
self-consistency equations in the RSB framework. As the allowed volume becomes
clustered, quantum effects may play a double role: for low disorder, tunneling may
help the particle to explore many disconnected flat regions, and speed up the search
of solutions (as it happens in the quantum random energy model [241, 242]); for high
disorder, quantum localization may take place, breaking ergodicity and changing
significantly the classical phase diagram. The interplay of these behaviors, hard to
be guessed, deserves a complete investigation, which we hope will be object of a
future study.
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3 Weak ergodicity breaking in the
discrete non-linear Schrödinger
equation

In this Chapter, the mechanism of localization in the discrete non-linear Schrödinger equa-
tion is inspected. In Sec. 3.1 I introduce the DNLS model, and then in Sec. 3.2 I put in
perspective the results wrt. the known literature. In Secs. 3.3 –3.5 I show the solution of the
mean-field version of the model, which motivates the independence on dimensionality at high
energy densities. In Sec. 3.6 a rigorous geometrical analysis of the potential energy surface is
performed, and in Sec. 3.7 I present the results of numerical simulations for the dynamics on
such surface. Finally, in Sec. 3.8 I draw the conclusions and indicate future directions. The
Chapter is based on the publication [3].

As mentioned in the Introduction, the seminal work of Fermi, Pasta, Ulam and
Tsingou (FPUT) [14] spurred a renewed interest in the ergodic hypothesis, and in
particular in the dynamics of thermalization for nonlinear systems. Since then, a
huge amount of work has been accumulated, ranging from numerical studies of
several microscopic models (see e.g. Refs. [249–252] and references therein), to beau-
tiful analytical constructions for the hydrodynamic description in the continuum
[15, 17, 253]. This fruitful field of nonlinear studies, however, has remained quite
distinct from the one of structural and spin glasses, despite in both cases the object
of study are systems that find some obstruction in their way to thermalization. This
is perfectly understandable, since FPUT-like systems are mainly one-dimensional
toy models used in fundamental investigations, while the physics of glasses has to
deal with compelling experimental observations, and therefore to use realistic mod-
els amenable of little analytical control. Nevertheless, it is reasonable to expect that
some tools and insights developed on one side may reveal very fruitful on the other
side, as was put forward by a few studies [254–258]—even if the original hypothesis
of metastability in FPUT systems was seriously challenged [252].

In this Chapter, we will describe a work that goes exactly in this direction. The
starting point is the discrete non-linear Schrödinger equation (DNLSE) [82], one of the
prominent models in the field of nonlinear oscillators. It is the lattice version of the
eponymous nonlinear wave equation [17, 259]; however the lattice discretization in
general breaks the symmetries leading to integrability [260], and the model is ex-
pected to be ergodic. The model was indeed observed to be ergodic, in numerical
simulations, for moderate values of the energy density; however, erogidicity was
found to break down for highly energetic initial conditions [261–264]. This feature
was quite surprising, since the configurations that showed localization were as far
as they could from the continuum (integrable) description: rather, they seemed to be
constituted by few sites accumulating a finite fraction of the total charge. Because
of this observation, numerous works have tried to ascribe the lack of ergodicity
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at high energy density to the presence of very-long-lived, breather-like excitations
[265–271], but the rigorous results are still few1 [274]. On the other hand, some ex-
periments have reported that Rubidium atoms on one-dimensional lattices—in the
Bose-Einstein condensate phase well described by the DNLSE—survive very close
to the initially prepared, localized configurations [29, 275], thus confirming the pre-
diction of the numerical simulations.

Another reason for interest in the ergodicity breaking in the DNLSE are the simi-
larities with the quantum MBL phenomenon. In particular, some works put forward
the idea that MBL-like physics could be observed in Josephson junction chains [276,
277]—a model very similar to the DNLSE. The non-ergodicity in this case is due
to an initial state with sufficiently large charge fluctuations, that play the role of
quenched disorder in an otherwise clean system. A natural question that follows is
then what would happen in a semiclassical setting for such models: of course MBL,
like Anderson localization, cannot survive when h̄ → 0. Therefore, the origin of the
phenomena are definitely not the same, and it would be interesting to find out what
is the crossover between the two, as h̄ is tuned2.

An explanation for the weak ergodicity breaking in the DNLSE, different from
the presence of breathers, was recently proposed in Refs. [281–283]. The argument
is based on the inequivalence of the microcanonical and canonical Gibbs ensembles
at high energy density, and a point central to the computation is the complete disre-
gard for the geometry of the lattice on which the problem is set. This feature is very
interesting, as it suggests that a mean-field description could perfectly apply. In this
Chapter it is shown that this is exactly the case: the problem is set on a graph with
large connectivity, and it is proven how in the limit of infinite connectivity the con-
struction of Refs. [282, 283] is perfectly justified. Since the mean-field limit is known
to be a very good approximation in many statistical mechanics problems, and it is
(in the description of phases and transition between them) exact above a certain crit-
ical dimension, we believe that our results are able to describe qualitatively also the
experimentally relevant situation of 1, 2 or 3-dimensional lattices.

To introduce better the results obtained and the way the proof is reached, let us
first introduce some notation in the next Section. We will then summarize the results
in more detail in Sec. 3.2, and finally move on to the computation.

3.1 The model

As anticipated above, we want to propose a mean-field-like description to the mech-
anism of ergodicity breaking at high energy density in the DNLSE. For this reason,
let us consider the DNLS model on an arbitrary, regular graph G:

H = − g
κ

N

∑
i,j=1

Aij

(
ψ∗i ψj + ψ∗j ψi

)
+

v
2

N

∑
i=1
|ψi|4. (3.1)

Here, the ψi, ψ∗i are complex fields that live on the vertices i of G, and are canonically
conjugated: their Poisson brackets read {ψ∗i , ψj} = iδij. Then, g,v are non-negative

1Some rigorous, mathematical works deal instead with the quantum version of the problem [272,
273].

2Please pay attention to the fact that the interplay between disorder, quantum-mechanical localiza-
tion and nonlinear effects in the DNLSE has been the subject of vast research (see e.g. Refs. [278–280]
and references therein), but the physics behind it is appreciably different from the one discussed here.
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parameters, which will be eventually set to g = 1 and v = 2; for the time being,
however, it is convenient to leave them unspecified. Finally, κ is the connectivity of
G and A its adjacency matrix, so each entry Aij is either 0 (ij disconnected) or 1 (ij
connected). Notice that, thanks to the 1/κ normalization of the kinetic term (known
as Kac rescaling), H = O(N) for any G, even in the limit of fully connected graph
κ ∼ N → ∞, without having to rescale g.

The Hamiltonian (3.1) can be rewritten in a more convenient form by means of
the canonical transformation

{
ψi =

√
qi eiφi

ψ∗i =
√

qi e−iφi
(3.2)

with qi ≥ 0 and φi ∈ [0, 2π]. Equation (3.1) becomes

H = −2g
κ

N

∑
i,j=1

Aij
√

qiqj cos(φi − φj) +
v
2

N

∑
i=1

q2
i . (3.3)

Apart from the energy, there is another natural conservation law to take into
account: defining the charge

Q := ∑
i
|ψi|2 =

N

∑
i=1

qi, (3.4)

it holds {Q, H} = 0. Without loss of generality, we choose to work with fixed Q ≡ N
from now on (or, more generally, with the average charge fixed).

We take the chance to fix some conventions for the computation of the partition
function: let us employ a dimensionless chemical potential µ, call the inverse tem-
perature β := 1/T (so that kB ≡ 1), and

Z(N, β, µ) =
∫
[dψ dψ∗]e−βH+µQ, (3.5)

with the measure chosen to be

[dψ dψ∗] := ∏
i

1
2π

dψi dψ∗i =
N

∏
i=1

1
2π

dqi dφi =: [dq dφ]. (3.6)

The energy density is defined as ε := H/N. The previous works [261, 282, 283],
from which this one takes inspiration, have shown that ε = εc = v corresponds
to the T = ∞ limit of the model on a 1d chain when coupled to a thermal reser-
voir at temperature T, and that at εc the Gibbs distribution ceases to be valid: the
states with energy density ε > εc remain well-defined only in the microcanonical
ensemble. Moreover, other works have shown that the dynamics of a chain ceases
to be ergodic in this non-Gibbs phase, with the charges localizing on isolated sites
in solitons rather than moving around. This has been seen both by using a simpli-
fied stochastic evolution algorithm, for all ε ≥ εc [269, 270], and with Hamiltonian
dynamics [262] (although in this latter work the threshold is put at ε ' 1.25 v).

Now, we will present our results, putting them in perspective wrt. the previous
literature, and then move on to the proof.
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3.2 Presentation of the results

Now that we have introduced the model, we can present with more precision the
results obtained. They can be summarized in the following points:

1. the equilibration time for the DNLSE at high energy density is exponentially
long in N, where N is the number of sites composing the lattice;

2. this is not due to a breakdown of connectivity of the topology of the micro-
canonical surface (when only the potential energy is taken into account), i.e.
there is no trace of strong ergodicity breaking;

3. the origin of the localization phenomenon at high energy density can be traced
to the behaviour of the gap of the Laplace operator on the (N− 2)-dimensional
microcanonical energy manifold.

To prove these points, we proceed as follows.
The first issue is about the possibility of neglecting the term containing phase

variables in the Hamiltonian, i.e. the first term on the r.h.s. of Eqs. (3.1) or (3.3).
Such term allows the exchange of charges between different sites, and the analysis
of Refs. [282, 283] started exactly with the assumption that it can be simply dropped
off. This is a fundamental point, since the partition function does not factorize in
a form Z = ZmomentumZposition, as it happens for example when looking at gases
or liquids, where typically the phase-space variables (p, x) appear each in its own
term: H(p, x) = K(p) + V(x). We therefore show that expansion around infinite
temperature of the free energy (and, consequently, of all relevant observables) gets
contributions from the kinetic term only at O(1/κ), where κ is the connectivity of
the graph on which the DNLSE is set. Therefore, if one considers a fully connected
model, the assumption of neglecting the kinetic term is completely justified. As said
before, this is a first approximation to the physics of finite-connectivity lattices.

We then solve the fully connected model finding that the “infinite temperature
phase”, in which the free energy becomes essentially given by the potential term
alone, extends all the way down to a finite temperature Ts = 2g (g is the strength
of the kinetic term and v that of the potential). This is in stark contrast with the 1d
model, where there is no mathematical proof showing that the kinetic term plays
no role around infinite temperature. At temperatures lower than Ts, or equivalently
energy densities ε < εs = 1.481 . . . (with the parameters g = 1, v = 2 used through-
out this Chapter), the fully-connected model enters a synchronized phase in which the
phases φi stop rotating independently from each other and eventually move together
at T = 0 (energy density εGS = v/2− 2g = −1). Conversely, for temperatures higher
than Ts the motion of the phases φi is incoherent and the charges move randomly on
the microcanonical, potential energy surface. The phase diagram described so far is
shown in Fig. 3.1.

Subsequently, after having highlighted the importance of the potential energy
surface, we study the topology of such manifold. We prove, using tools from strat-
ified Morse theory, that the manifold undergoes a series of critical points (critical
in the language of Morse theory, not of statistical physics) but it remains connected
until energy densities ε = vN/4 = N/2, which means super-extensive energy. The
infinite-temperature localization phase transition, described in the introduction to
this Chapter and taking place at energy density εc = v = 2, is therefore not due to
a breakdown of connectivity in such manifold. Rather, we attribute it to the change
in the scaling with N of the smallest, non-zero eigenvalue λ1 of (minus) the Laplace
operator on the microcanonical surface (the smallest eigenvalue λ0 = 0 corresponds
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εc = 2εs =1.481…εGS = − 1

FIGURE 3.1: Phase diagram of the fully connected DNLS model for v = 2 and g = 1. The
region ε > εc corresponds to non-positive temperatures and localized dynamics; the region
εs < ε < εc to ergodic incoherent dynamics for the phases φi (Eq. (3.2)); the region ε < εs to
coherent dynamics for the same phases. Notice that in the 1d model the syncrhonized region
is confined to zero temperature, and the paramagnet/localized transition coincides with the
full Hamiltonian/only potential transition. This figure is taken from Ref. [3].

to the uniform distribution on the manifold). Namely, for ε < εc = 2 (the numerics
agrees with the thermodynamic calculation within errors) we have λ1 = O(1), while
for ε > εc we have λ1 ∼ e−γN . The function γ(ε) ≥ 0 and vanishes as ε → ε+c with
critical exponent close to 2.

We conjecture that this transition is related to an entropic effect for the motion of
a particle on the microcanonical energy surface. In other words, the volume of the
regions of phase space close to an imbalanced configuration (i.e. when a few charges
are considerably larger than the others) becomes bigger, at energies ε > εc, than the
volume of balanced configurations. We suggest that this mechanism, and the link
with the behaviour of the smallest eigenvalue of the Laplacian on the microcanonical
surface, is generic for DNLSE with different choices of graphs and potentials (as also
indicated by the results of Refs. [284, 285]).

3.3 Infinite temperature limit

Let us start exploring the limit T → ∞. Assuming ergodicity, the computation of the
canonical partition function for the Hamiltonian (3.1) should describe the behavior
of the system for ε ≤ 2.

Denoting the thermal average of an observable A as

〈A〉β,µ :=
1
Z

∫
[dq dφ] e−βH+µQ A, (3.7)

one can inspect the infinite temperature limit, β→ 0, by considering the expansion

〈A〉β,µ = 〈A〉0,µ − β
[
〈AH〉0,µ − 〈A〉0,µ〈H〉0,µ

]
+ O(β2). (3.8)

The first thing to do is to adjust the chemical potential to have a fixed average charge
(recall the choice in Sec. 3.1):

N ≡ 〈Q〉β,µ ' 〈Q〉0,µ − β
[
〈QH〉0,µ − 〈Q〉0,µ〈H〉0,µ

]

' N〈q〉0,µ − β
[v

2
(

N〈q3〉0,µ + N(N − 1)〈q〉0,µ〈q2〉0,µ
)
− N〈q〉0,µ

v
2

N〈q2〉0,µ

]

' −N
µ

+ β
2Nv
µ3 (3.9)
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so that µ ' −1 + 2βv. In the computation above, it was used that the averages
involving the kinetic energy vanish by symmetry, and 〈qk〉0,µ = k!/(−µ)k.

Now focus on the internal energy. It was already found 〈H〉0,µ = Nv/µ2; thus
just 〈H2〉0,µ is needed. The only non-zero angular integrals in 〈H2〉0,µ are

∫
[dφ] cos(φi − φj) cos(φk − φl) =

1
2
(δikδjl + δilδjk); (3.10)

therefore

〈H2〉0,µ =
4g2

κ2 Nκ〈q〉20,µ +
v2

4
[
N〈q4〉0,µ + N(N − 1)〈q2〉20,µ

]
(3.11)

where recall κ is the connectivity of the graph. The final result is

ε(β) = v− β

(
v2 +

4g2

κ

)
+ O(β2) (3.12)

From this expression one can see that the result of the non-interacting case ε(β =
0) = v is not modified by the presence of the hopping on any graph geometry. Notice
also that the kinetic energy term (measured by g) contributes only with O(g2/κ) and
therefore vanishes to this order in the mean-field, fully connected limit κ → ∞. Such
limit will be explored in the next section.

3.4 Large connectivity limit

As noted at the end of the last section, in Eq. (3.12) the O(β) correction to the in-
ternal energy density becomes independent of g in the limit of large connectivity
κ → ∞. Indeed, one can verify that all the terms in the expansion involving the hop-
ping are subleading in κ. The situation is reminiscent of the Thouless-Anderson-
Palmer (TAP) high temperature expansion of the Sherrington-Kirkpatrick model
[286]. Alongside with TAP, one can expand the free energy density f := − log(Z)/βN
in powers of 1/κ:

f = f0 +
1
κ

f1 + O
(

1
κ2

)
, (3.13)

where f0 is the free energy density at κ → ∞, or g = 0, while one can express f1 (and
successive orders too) as a sum of diagrams.

To see it, start by expanding in powers of g the full free energy density:

−β f N = log
∫
[dq dφ]e−βH0+µQ

∞

∑
k=0

1
k!

[
2gβ

κ ∑
ij

Aij
√

qiqj cos(φi − φj)

]k

(3.14)

=: −β f0N +
∞

∑
`=1

(
2gβ

κ

)`

∑
Λ∈D`

Λ (3.15)

where consistently quantities evaluated at g = 0 are denoted by a “0” subscript.
Equation (3.15) represents the definition of the diagrams Λ ∈ D`, that are also shown
graphically in Fig. 3.2. More precisely, at each order ` of the effective coupling con-
stant g/κ there are averages

∫
[dφ] cos(φi1 − φi2) cos(φi3 − φi4) · · · cos(φi2`−1 − φi2`)

N

∏
j=1
〈qnj/2〉0, (3.16)
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FIGURE 3.2: Allowed diagrams Λ ∈ D` in the expansion (3.15) up to order ` = 4. Including
counting factors, they evaluate (from left to right) to Nκ/2, Nκ(κ− 1)/3, Nκ(κ− 1)(κ− 2)/4,
Nκ(κ− 1)/3, and Nκ/8. Circled in red are the one-loop, connected diagrams of which there
are one per each order `: these contribute to lowest order in 1/κ. Notice also that there is no
watermelon diagram at O((g/κ)3) because of point 2 in the text. This figure is taken from
Ref. [3].

where nj is the multiplicity with which index j appears in the string i1i2 · · · i2`. Notice
that

1. since we are expanding a logarithm, by the linked-cluster theorem each dia-
gram Λ ∈ D` must consist of one connected piece only;

2. for the angular integration not to yield 0, each φi must appear an even number
of times; in particular this means that all the diagrams in D` must be closed
and each vertex must have an even number of legs (see Fig. 3.2);

3. the permutation symmetry of the couples i2pi2p+1 yields a factor `!/SΛ, where
SΛ is the symmetry factor of the diagram Λ. Therefore, according to the usual
arguments this cancels the 1/`! in the expansion of the exponential, leaving
the symmetry factor in the denominator;

4. the permutation symmetry within each couple i2pi2p+1 of the two indices yields
a factor 2 for each pair, and so a factor 2` in total;

5. the angular integration for simple loops evaluates to 21−`, while multiple loops
give a result depending on the geometry (e.g. in Fig. 3.2 the first three diagrams
are simple loops and receive respectively a factor 1/2, 1/4 and 1/8, while the
fourth receives a factor 1/4 and the last a factor 3/8).

By using the previous rules, and having a look at Fig. 3.2, one can get convinced
that at fixed order ` the simple loops (e.g. the diagrams circled in red in Fig. 3.2) are
the least suppressed by κ. Indeed, since they are composed by the maximum number
of distinct points, the factor κ` in the denominator of Eq. (3.15) is compensated by the
∼ Nκ`−1 possible choices of the points. Having noted this feature, we can explicitly
compute f1: the angular integration yields a factor 21−` (as noted in point 5 before),
the symmetry factors are SΛ = 2`, and only the averages 〈q1〉0 = 1 appear. Therefore
one has

− β f1 =
κ

N

∞

∑
`=2

(
2gβ

κ

)`

Nκ`−1 1
2`

2`
1

2`−1 = −2gβ− log(1− 2gβ), (3.17)

with the sum starting from ` = 2 because there is no diagram at order 1.
At this point, one can give a physical interpretation to Eqs. (3.13)–(3.17). In the

large connectivity limit κ → ∞, the extensive contribution to the free energy is al-
ways regular and independent of the hopping between different sites. Moreover, as
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long as β < βs := (2g)−1, the sub-extensive contribution f1 can be forgotten, while
at β = βs it diverges and there is a phase transition: interactions must be taken into
account and to go beyond one needs to address the problem non-perturbatively.

3.5 Solution of the fully-connected model

To go beyond perturbation theory, one can compute the partition function of the
fully-connected model κ = N − 1 using saddle-point methods. Dropping sub-
leading terms in N:

ZMF(N, β, µ) =
∫
[dq dφ] exp

{
− βv

2 ∑
i

q2
i + µ ∑

i
qi

+
2βg
N

(
∑

i

√
qieiφi

)(
∑

i

√
qie−iφi

)}
. (3.18)

We expand

(
∑

i

√
qieiφi

)(
∑

i

√
qie−iφi

)
=
(

∑
i

√
qi cos φi

)2
+
(

∑
i

√
qi sin φi

)2
, (3.19)

so that a Hubbard-Stratonovich transformation can be performed:

ZMF(N, β, µ) =
N
2π

∫
[dq dφ]

∫
dy1dy2 exp

{
− βv

2 ∑
i

q2
i −

N
2
(y2

1 + y2
2) + µ ∑

i
qi

+ 2
√

βg y1 ∑
i

√
qi cos φi + 2

√
βg y2 ∑

i

√
qi sin φi

}
. (3.20)

Now all the q,φ integrals are factorized, and the basic constituents are of the form

1
2π

∫
dq dφ exp

[
− βvq2/2 + µq +

√
βgq (y−eiφ + y+e−iφ)

]
(3.21)

with y± = y1 ± iy2. One can perform first the angular part:

1
2π

∫ 2π

0
dφ ez(y−eiφ+y+e−iφ) =

1
2π

∫ 2π

0
dφ ∑

k≥0

zkyk
−

k!
eikφ ∑

`≥0

z`y`+
`!

e−i`φ

= ∑
k≥0

(z2y+y−)k

(k!)2 = I0(2z
√

y+y−), (3.22)

I0 being the modified Bessel function of the first kind. Thus, defining

J(β, µ, Y) :=
∫ ∞

0
dq e−βvq2/2+µq I0

(
2
√

βgqY
)

(3.23)

with Y := y+y− = y2
1 + y2

2, one arrives at

ZMF(N, β, µ) = N
∫ ∞

0
dYe−NY/2+N log J(β,µ,Y). (3.24)

When performing this integral in the N → ∞ limit, if the saddle point is within the
domain of integration Y ≥ 0, one can use the saddle point method, otherwise one
needs to integrate by parts around the lower limit of integration Y = 0 (see Fig. 3.3).
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FIGURE 3.3: Plot of the free energy density f (β, µ, Y) + µ/β, with g = 1, v = 2, and µ fixed
so that 〈Q〉 = N. The red dot is the solution of Eq. (3.26), i.e. the extremal point. It moves
from the bulk of the allowed region Y > 0 at low temperature (panel (a)), to the boundary
Y = 0 at high temperature (panel (b)). This figure is taken from Ref. [3].

In any case, the free energy density is

f (β, µ, Y) = β−1(Y/2− log J), (3.25)

where Y solves the saddle-point equation (with the above proviso)

1
2
=

1
J

∂J
∂Y

. (3.26)

It also is convenient to trade µ for the (average) total charge 〈Q〉 = N:

1 =
1
J

∂J
∂µ

. (3.27)

Equations (3.26)–(3.27) can be easily solved numerically by iteration for any desired
β.

Another way of rewriting Eqs. (3.26)–(3.27) is by interpreting J(β, µ, Y), defined
in Eq. (3.23), as a partition function for the variable q, which thus acquires the prob-
ability density

p(q) =
1
J

e−βvq2/2+µq I0
(
2
√

βgqY
)
. (3.28)

Then, the two equations (3.26)–(3.27) take (respectively) the form
√

Y
4βg

=

〈
√

q
I1(2

√
βgqY)

I0(2
√

βgqY)

〉

p

(3.29)

1 = 〈q〉p . (3.30)

These last expressions are convenient to control the limits β → ∞ and β → 0.
Indeed, as β → ∞ the problem simplifies and the probability concentrates around
the saddle point q = 1 (Eq. (3.30)). One can also expand the Bessel functions (as long
as, self-consistently, Y � 1/β) for large arguments, and substituting q = 1 in Eq.
(3.29) gives √

Y
4βg

= 〈√q(1 + · · · )〉p =⇒ Y = 4gβ + O(β0). (3.31)
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FIGURE 3.4: Saddle-point value of Y found upon solving Eqs. (3.26)–(3.27) by iteration, with
g = 1 and v = 2 (black solid line). For β < (2g)−1 = 0.5 the correct solution is Y1, while at
larger values of β it becomes Y2 (see Eq. (3.35)). For comparison, we show the approximate
solutions at β→ ∞ and βY → 0 as dashed lines. Note that the β→ ∞ approximation, to the
order obtained in Eqs. (3.31)–(3.32), still needs a O(β0) term to be fixed. Inset: Corresponding
values found for µ. This figure is taken from Ref. [3].

Also, imposing Eq. (3.30) explicitly on Eq. (3.28), one gets

µ = β(v− 2g) + O(β0). (3.32)

For small β, instead, one can expand the Bessel functions for small argument (as
long as this returns self-consistently βY � 1), and obtain

√
Y

4βg
=

〈√
q
[
(βgqY)1/2 − 1

2
(βgqY)3/2 + · · ·

]〉

p
(3.33)

= (βgY)1/2〈q〉p −
1
2
(βgY)3/2〈q2〉p + · · · . (3.34)

There are two solutions:

Y1 = 0, Y2 =
2βg− 1

(βg)2〈q2〉p
. (3.35)

The second solution is negative for β < βs = (2g)−1, so in this region one must stick
with Y1 (since the Y integral in Eq. (3.24) is on the positive domain). As β & βs,
instead, Y2 becomes the correct solution, until the condition βY � 1 is no more valid
and the approximation breaks down. In Fig. 3.4, the comparison of the numerically
exact solutions with the small-β and large-β approximations is presented.

To connect with the diagrammatic expansion done in Sec. 3.4, notice that the
critical value βs = (2g)−1 is the same given by the radius of convergence of pertur-
bation theory for f1, the sub-extensive contribution to the free energy. We are now in
position to give an interpretation to the phase transition taking place at Ts = 1/βs:
it is the temperature below which the angles φi no more average to zero, but start
acquiring a common orientation. Indeed, on one hand

− g
∂

∂g
(β f ) = β

2g
N2 ∑

i 6=j

〈√
qiqj cos(φi − φj)

〉
; (3.36)
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on the other hand, by differentiating the saddle-point free energy,

− g
∂

∂g
(β f ) = g

1
J

∂J
∂g

= Y
1
J

∂J
∂Y

=
Y
2

. (3.37)

The comparison of the last two equations implies

Y =
4βg
N2 ∑

i 6=j

〈√
qiqj cos(φi − φj)

〉
. (3.38)

We conclude that, as β → ∞, the angles must all point in the same direction (albeit
the latter can change in time). Indeed, recalling that q concentrates around 1, in
order to find the asymptotic, low temperature behaviour Y ' 4βg one needs that
all the phases align: 〈cos(φi − φj)〉 → 1, so φi → φ0 for all i = 1, 2, . . . , N. This is
the statistical mechanics signature of a synchronized phase [287, 288], in which all
fields have a common phase and the fluctuations of the amplitudes are negligible.
The synchronization phase transition is second-order, with the order parameter Y
growing linearly close to βs = (2g)−1.

One can also express the above observations in terms of the energy density ε. At
T = 0 the system is in the ground state, with energy density εGS = v/2− 2g: this
readily follows from the β→ ∞ expansion of the free energy. At the synchronization
transition T = Ts = 2g, instead, the energy density can be found numerically by
imposing Y = 0 and fixing µ from Eq. (3.27): for g = 1 and v = 2 we find εs =
1.481 . . . (see also Fig. 3.1).

Finally, one can identify the order parameter Y with the average interaction en-
ergy density (see Eq. (3.38)), which vanishes at temperatures T > Ts.

3.6 Topological structure of the equipotential surface

It’s time to start focusing on the region ε ≥ εc = v. Having completely lost the
spatial structure given by the hopping for any graph geometry, the model has become
effectively non-interacting. For this reason, we can also fix v ≡ 2 wlog. from now on.

The microcanonical surface is non-trivial, because of the presence of two con-
servation laws: energy (H = Nε) and charge (Q = N). For large energy density,
the bulk of the volume of the microcanonical surface is concentrated in the region
where a few charges get a large share of the total charge (the participation ratio is
O(1) [282, 283]). These are localized charge configurations. However, these config-
urations are not isolated from each other, and a continuous charge rearrangement
can move any localized lump anywhere else in space, passing through regions of
equally distributed charges. In this Section, we show that this can be done by mov-
ing continuously on the microcanonic surface for any ε = O(1).

Let us summarize here what is proven as a theorem in this Section: The micro-
canonical surface remains a connected manifold for all the energy densities ε < N/2 (exten-
sive energy density), in particular through the dynamical transition observed numerically
at εc = 2, which then cannot be imputed to a deficiency in connectivity. Moreover, as ε
increases, the surface passes a series of critical points, according to stratified Morse
theory. At the dynamical transition εc = 2, the number of transverse dimensions of the pipe
connecting two regions corresponding to localized charges equals the number of longitudi-
nal dimensions. What this topological proof cannot tell is how the equilibration time
depends on N. That is a property of the dynamics, which one can only conjecture is



32 Chapter 3. Weak ergodicity breaking in the DNLSE

FIGURE 3.5: Two different views of the same stereographic projection of the manifoldMε

(Eq. (3.39)), for N = 5 and ε = 2. While this projection respects the topology of the manifold,
clearly its metric structure is altered. Colors depend on the distance from the vertices of
∆N−1, varying from blue for the five 0-handles around those vertices to green for the median
sections of the ten 1-handles. This figure is taken from Ref. [3].

due to the shape of the pipes linking the “fat" regions of localized charge, and it is
presented at the end of this Section as a Problem.

In order to prove these two results, let us introduce the manifold and some rel-
evant results of Morse theory. Again, change variables from the ψi’s to the local
charges qi = |ψi|2 (Eq. (3.2)), that are the only combinations of the ψi’s entering in
the conservation laws. Thus, one is left with the equations





1
N ∑N

i=1 qi = 1
1
N ∑N

i=1 q2
i = ε

qi ≥ 0 ∀i = 1, 2, . . . , N.

(3.39)

These equations define a (N− 2)-dimensional manifold with boundary and corners
Mε (see Fig. 3.5 for a visual impression of the case N = 5), naturally embedded
in RN , whose central role was recognized already in Ref. [289]. The topology of
this manifold undergoes a series of changes as ε varies, which can be outlined by
stratified Morse theory in the following way.

The first and the last equation in (3.39) represent the affine simplex ∆N−1 ⊂ RN

spanned by the vectors Ne1, . . . , NeN , where e1, . . . , eN is the canonical base of RN .
Hence, Mε is non-empty for 1 ≤ ε ≤ N. Moreover, Mε is a small (N − 2)-sphere
around the barycenter of ∆N when ε approaches 1, while it is the disjoint union of N
small (N − 2)-disks, each near to a vertex of ∆N−1, when ε approaches N.

In order to see what happens for the intermediate values of ε, think of the bound-
ary ∂∆N−1 as a stratified space, whose strata are its open sub-simplices of ∆N−1, and
observe that ϕ : ∂ ∆N−1 → R given by ϕ(q) = ‖q‖2/N is a stratified Morse func-
tion, meaning that it restricts to a Morse function on every stratum. Then, for every
1 < ε < N, the radial projection from the barycenter of ∆N−1, that is the vector
e1 + · · ·+ eN , induces a stratified diffeomorphism betweenMε and the suplevel set
Mε(ϕ) = {q ∈ ∂∆N−1 | ϕ(q) ≥ ε} ⊂ ∂∆N−1, according to the second equation in
(3.39).

Morse theory tells us that the topology of Mε
∼= Mε(ϕ) changes only at the

critical values of the restrictions of ϕ to the strata of ∂∆N−1. Such critical values have
the form N/k with 1 < k < N. Indeed, for each k we have (N

k ) corresponding non-
degenerate critical points of index N− k− 1 located at the barycenters of the (k− 1)-
dimensional faces of ∆N−1. This implies that for δ > 0 small enough MN/k− δ(ϕ)
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ε = N/2 − δ ε = N/2 ε = N/2 + δ

p0

FIGURE 3.6: The last critical point, at which the microcanonic manifold splits into N dis-
connected pieces each representing a different set of localized configurations, close to each
of the vertices of ∆N−1. The figure concerns the case N = 4. Everything is depicted in the
(N − 1)-dimensional affine subspace AN−1 given by the first equation in (3.39). In yellow
Mε ⊂ SN−2

ε and in red the suplevel set Mε(ϕ) ⊂ Bd ∆N−1. This figure is taken from Ref. [3].

can be obtained by attaching (N
k ) narrow (k − 1)-handles to MN/k + δ(ϕ). Each of

these (k− 1)-handles is an (N − 2)-cell CN−2 which is the product of a (k− 1)-cell
Ck−1 = Cl(Σ−MN/k + δ(ϕ)) (where Cl stands for the closure operator) for a (k− 1)-
dimensional face Σ of ∆N−1 and a small (N − k − 1)-cell CN−k−1 such that CN−2 ∩
MN/k + δ(ϕ) = ∂ Ck−1 × CN−k−1.

As a consequence, for every k = 1, . . . , N− 1 and N/(k+ 1) < ε < N/k the (N−
2)-manifold Mε(ϕ) is a regular neighborhood, meaning an (N − 2)-dimensional
thickening, of the (k − 1)-skeleton of ∆N−1 in ∂∆N−1. In particular, recalling the
homeomorphismMε

∼= Mε(ϕ), we can conclude thatMε has N connected compo-
nents for N/2 < ε ≤ N, while it is connected for 1 ≤ ε ≤ N/2.

The above discussion shows that, for N > 4, at ε = 2 the manifoldMε has gone
through a series of gluing handles procedures described above, yet remaining con-
nected. This raises the intriguing problem of characterizingM2 also from a purely
geometrical point of view. Of course the simplest geometrical invariant of Mε is
its volume. Since vol(M1) = vol(MN) = 0, we know by continuity that there ex-
ists ε0(N) ∈ (1, N) which maximizes vol(Mε). Recall that Boltzmann’s law entails
S(ε) = log(vol(M”)), and also that it holds

1
T

=
1
N

dS
dε

. (3.40)

At infinite temperature clearly dS
dε |ε=2 = 0. So, the stationary point for the micro-

canonical manifold volume arises at ε = 2 (value that is correct only in the limit
N → ∞), as already argued before. This classical observation has been significantly
strengthened in [282, 283] for the model under consideration, where it is observed
that ε = 2 is indeed limN→∞ ε0(N) and moreover ε0(N) = 2 + O(N−1/3). We be-
lieve that a direct geometric analysis of the behaviour of vol(Mε) would be very
interesting by itself since it could shed light on various other aspects of the problem
studied.

While we leave this task for future investigation, we now observe that thanks to
the Morse-theoretic description above, we can quantify the volume contribution of
each handle attachment through any critical value of ε = N/k, 1 < k < N. Indeed,
given ε = N/k − δ and p0 a singular point inMN/k, we can look at the projection
Π from the barycenter B of the symplex of a neighborhood of p0 in the sphere SN−2

inside the (N − 1)-dimensional affine subspace AN−1 given by the first equation in
(3.39) onto the tangent space to this sphere (see Figs. 3.6 and 3.7).
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FIGURE 3.7: Image of the projection via Π on Tp0(S
N−2) of a neighborhood of a singular

point p0 inMN/k. ΓWδ
is the profile of Π(MN/k−δ) in Tp0(S

N−2). In blue the handle attach-
ment Yδ,r. This figure is taken from Ref. [3].

As argued above, p0 is a non-degenerate critical point of index N − k − 1 lo-
cated at the barycenter of a (k − 1)-dimensional face ∆k−1 of ∆N−1 and hence we
can choose coordinates (x1, . . . , xk−1, y1, . . . , yN−k−1) on Tp0(S

N−2) in such a way that
x = (x1, . . . , xk−1) parametrize Π(∆k−1), and y = (y1, . . . , yN−k−1) span its orthog-
onal complement. By intersecting Π(Mε) with a (N − 2)-cube Cr centered in the
origin of Tp0(S

N−2) with faces parallel to the coordinate axis, we are led to estimate
the rate change of the local effect on the volume of the handle-attachment proce-
dure (vol(Yδ,r) as shown in Fig. 3.7). This can be done observing that such region
is bounded by a function Wδ(|x|), which is at first order quadratic in |x|, being the
image via Π of the profile of the sphere, and s.t. Wδ(0) = δ1/2 + O(δ). It is now a
straightforward computation to see that

vol(Yδ,r) = C(N, k) rk−1δ(N−k−1)/2 + h.o. (3.41)

for some constant C(N, k). The above computation holds for any k = 2 . . . N − 1,
and singles out yet another peculiarity of the value ε = 2, corresponding to k = N/2
(for even values of N). In fact, this is the only situation in which the contributions
coming from the two factors of the handle Ck−1 × CN−k−1 are of the same order.

Having established that nothing worth of notice in the topology of Mε occurs
at ε = 2, we will see in the next Section that a simple Brownian motion on Mε

does change its behavior precisely at ε = 2. The dynamics of the Brownian motion
is notoriously linked to another natural geometric invariant ofMε, namely its first
non-zero eigenvalue of the Laplacian for the curved metric induced on Mε (with
Neumann boundary conditions). We will then provide in the next Section strong
evidence for the following intriguing (and hard) geometric
Problem. Having set γ(ε) := − limN→∞

1
N log λ1, it holds

{
γ = 0 ε ≤ 2
γ > 0 ε > 2.

(3.42)

Providing fine estimates for the first eigenvalue of the Laplacian is well known
to be a subtle (and important) problem in geometric analysis. The present situation
seems particularly interesting and original also from a purely mathematical point of
view for the concurrence of the value ε = 2 as special value both for the volume and
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λ1, a coincidence that certainly deserves further understanding on the mathematical
side.

We believe, however, that the simple observation in Eq. (3.41) could be a first
step towards the understanding of the coincidence stated above. Indeed, a very
much conjectural, and simplified picture of why the charges become localized could
be based on the counting of “useful" and “useless" directions when crossing the
handles connecting two different localized configurations. One can make as well
a connection with the question of entropic barriers in spin-glass dynamics (on this
topic see e.g. [208, 290–292]). We leave this connection for future investigations.

3.7 A Brownian exploration of the equipotential surface

In order to extract the first non-zero eigenvalue of the Laplacian, we resorted to
studying the correlation functions of a Brownian motion on the surfaceMε. Indeed,
being the diffusion equation described by the Laplacian, it is known that the late
decay of the correlation functions of coordinates (e.g. the charges qi) gives its first
non-zero eigenvalue. Hence, we pick as a starting point a random vector ~q that
satisfies all the conditions in (3.39) (this can be easily done by repeatedly projecting
on the three distinct manifolds defined by each constraint, until they are all obeyed),
and let it evolve by free diffusion onMε up to a final time Tf . Specifically, at each
Monte Carlo step we update the position as ~q(t + dt) = ~q(t) + d~W, where dWi are
i.i.d. Gaussian random variables s.t. 〈dWi〉 = 0 and 〈dW2

i 〉 = dt, dt being small3; and
then we enforce again the constraints until they are all satisfied.

We believe it is important to emphasize that our dynamics is fundamentally
different from that of [264, 269, 270, 282]. In these works, the basic Monte Carlo
step was the redistribution of charge within a triplet of sites. Specifically, a triplet
(qi, qj, qk) was updated to a randomly chosen new triplet (q′i, q′j, q′k), with the con-
straint that the transformation (qi, qj, qk) 7−→ (q′i, q′j, q′k) could be performed con-
tinuously in the subsystem defined by the three charges only, and without vio-
lating the (local) charge and energy constraints. In the case of consecutive triplets
i = j− 1 = k − 2, this Monte Carlo algorithm provides a good description for the
dynamics of a chain. The case of generic i, j, k, instead, addresses a mean-field situ-
ation like the one considered in this work. We believe nevertheless that it would be
difficult to connect this “triplet" dynamics to the Brownian motion (which instead is
related to the eigenvalues of the Laplacian), so we decided to simulate directly the
latter.

In Fig. 3.8 we show the time evolution of the (connected) correlation function

G(t) :=
1
N

N

∑
i=1

〈
qi(t + t′)qi(t′)

〉
t′ −

1
N

N

∑
i=1

〈
qi(t + t′)

〉
t′
〈
qi(t′)

〉
t′ (3.43)

where the angular brackets denote averaging wrt. the time variable in the subscript:

〈
A(t′)

〉
t′ := lim

Tf→∞

1
Tf

∫ Tf

0
A(t′) dt′.

3Notice that with this normalization ‖~q(t+ dt)−~q(t)‖ = O(
√

N)
√

dt and the relative Fokker-Plank
equation is Eq. (3.44), which does not contain any explicit factor of N. Different scalings of dq can be
easily obtained by rescaling time.
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FIGURE 3.8: (a) Correlation function, Eq. (3.43), as a function of physical time t with dt =
0.01. Dashed lines refer to ε = 1.9 (ergodic region), solid lines to ε = 2.05 (near-critical
region) and dashed-dotted lines to ε = 2.5 (localized region). One can see that, except in
the critical region, the decay has a wide simple exponential window. Each curve is obtained
by averaging over at least 5000 different runs. (b) Correlation function at the critical point
ε = 2. The decay is slower than an exponential (and becomes slower as N is increased), as
shows the comparison with the black dashed line. For each N we performed a fit log G(t) =
−t/τ − log(1 + (t/t1)

z), finding values of τ, t1 and z that we report in Fig. 3.10. Each curve
is obtained by averaging over at least 50000 different runs. This figure is taken from Ref. [3].

At t = 0, G(0) = (ε− 1) because of the second constraint in Eq. (3.39). Taking t→ ∞,
instead, if the dynamics on the manifold is ergodic it holds G(∞) = 0. Conversely,
if ergodicity is broken either because Mε is disconnected in pieces or because the
dynamics is effectively confined in a smaller region, it holds G(t) → const > 0.
According to the discussion before, Mε becomes disconnected for ε > N/2. At
this point there is a geometric obstruction to ergodicity: a trajectory starting in a
neighborhood of, say, q1 = O(N) cannot reach the neighborhood of any other qi =
O(N) with i 6= 1. Therefore, for these (large) values of ε the correlation function does
not get to 0 as t → ∞. Before then (viz. for any finite N, and any ε < N/2) there is
always a finite time scale τ, after which the function G(t) does get close to 0. This
correlation time is a good proxy for an equilibrium time (since the charges qi are the
only observables of the systems).

We also note that G(t) must decay exponentially in t (after, of course, a possible
initial transient). This is due to the fact that a diffusion equation is associated to the
Brownian motion:

∂tP(q, t) =
1
2

∆P(q, t), (3.44)

where the Laplacian has the usual definition in curvilinear coordinates:

∆ := g−1/2∂a(g1/2gab∂b). (3.45)

The smallest eigenvalue of −∆ is λ0 = 0, and the corresponding (properly normal-
ized) eigenvector is nothing but the uniform (microcanonical) distribution P(q, t →
∞) = φ0(q). Since the Laplacian on a compact Riemannian manifold has a pure
point spectrum, the first eigenvalue λ1 > 0 and the gap, which we will denote as
λ1 =: 1/τ, controls the asymptotic decay of P(q, t) ' φ0(q) + c1φ1(q)e−t/τ + .... In
particular, this means that G(t) ∼ e−t/τ for large t, as claimed before.

The exponential decay can be seen clearly in Fig. 3.8a. Within the exponential
form, one can distinguish two cases: for ε < 2 the curves fall approximately on a
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FIGURE 3.9: (a) Correlation times τ extracted from the exponential decay of the correla-
tion function, Eq. (3.43): we can see that τ diverges in the thermodynamic limit as ε be-
comes greater than 2 (not all datasets are shown here to improve readability). We have also
performed fits (dashed lines): for ε > 2, we employed log τ = γN + c, from which we
extracted the γ’s presented in the right panel. For ε < 2, instead, since τ is almost con-
stant with N we found that finite-size effects are well accounted for by the fitting function
τ = w/ log(N) + τ0. The τ0’s obtained are displayed in the inset of the right panel. (b) Expo-
nent γ as a function of ε (black dots). It can be clearly seen that γ = 0 within errors for ε < 2,
while γ > 0 for ε > 2. The orange, dashed line is a fit of the form log γ = η log(ε− 2) + h,
yielding η = 1.7± 0.1 and h = −4.7± 0.1. (Inset) The value of τ ' τ0 diverges logarithmi-
cally in the limit ε → 2− (see, for a comparison at the critical point, Fig. 3.10a). The dashed
line is a fit τ0 = −ζ log(2− ε) + u, from which we find ζ = 1.76± 0.02 and u = 0.05± 0.01.
This figure is taken from Ref. [3].

universal curve, which is the limit N → ∞; for ε ≥ 2 various system sizes have
different decays: larger systems decay on a longer timescale and there is no obvious
limit N → ∞. This corresponds to the following statement on the spectrum of the
Laplacian: for ε < 2 the gap remains finite when N → ∞, while for ε ≥ 2 the
gap closes with N. We find numerically that the gap closes exponentially with N:
τ ' eγN for some rate γ > 0, see Fig. 3.9. This fact implies that ε = 2 is a dynamical
critical point, at which the dynamics becomes scale-invariant [293].

More precisely, for ε < 2 the timescale τ is constant with N and grows with ε,
ultimately diverging logarithmically as ε→ 2− (see the inset of Fig. 3.9b). For ε > 2,
it is γ(ε) which grows with ε: γ ∼ (ε− 2)η with η ' 1.7± 0.1 (see Fig. 3.9b).

To sum up: to the left of the critical point ε = 2 the dynamics is ergodic and
G(t) → 0 for any N and also for the limit N → ∞; to the right, instead, the relaxation
becomes progressively slower as N increases and in the limit N → ∞ it holds G(t)→
const > 0. The limiting functional form at ε = 2 must be a function decaying to 0,
but slower than an exponential. We checked that, in a small right neighborhood of
ε = 2, the fitting function G(t) = (ε− 1)e−t/τ/(1 + (t/t1)

z) works pretty accurately
with z ∈ [0.7, 1.0] depending on the values of N used (see Figs. 3.8b and 3.10 for the
details). Indeed, for this estimate to be useful one must have t1 � τ → ∞, to ensure a
sufficiently large fitting window. Since τ grows with N (albeit only logarithmically)
while t1 decreases (see Fig. 3.10a), it will eventually hold t1 � τ. Unfortunately, this
crossover takes place roughly at the largest system sizes we were able to simulate, so
the values of z we can extract cannot be considered precise. By using only the points
in the “asymptotic region" (shaded region in Fig. 3.10), z ' 1.0, while smaller values
of N (non-shaded region) we have a considerably smaller z ' 0.75. The precise
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FIGURE 3.10: (a) Typical timescales of the exponential (τ) and power-law (t1) decay of the
correlation function at the critical point ε = 2, found from the fits of the correlation function
G(t) (Fig. 3.8b). We see that the crossover to power-law decay takes place at N & 2000
(shaded region), so much larger system sizes are needed to extract a clean dynamical critical
exponent z. (b) Corresponding values of the dynamical critical exponent z. The errorbars
represent the fit errors, that surely underestimate the strong fluctuations at finite N (see also
Refs. [282, 283]). Therefore, we can only present two possible fits, one excluding the smallest
N points and one the largest, and give a value of z respectively z ' 1.0 and z ' 0.75. Since
the smallest N points have t1 > τ (as seen in panel (a)), which is a clear pre-asymptotic
behavior, we would tend to discard them in favour of the 3 largest N points in the dataset.
This figure is taken from Ref. [3].

values of the critical exponents clearly requires further numerical investigations. We
end by noticing that the form of G(t) at criticality can be related to the distribution
ρ(λ) of the eigenvalues of the Laplacian at ε = 2, which must be of the form ρ(λ) ∼
λz−1 near λ = 0.

3.8 Conclusions and outlook

We studied the mechanism for weak ergodicity breaking at high energy densities
in a fully connected DNLSE model. We showed that, whatever the interactions be-
tween sites (kinetic energy term) are, they can be neglected for ε ≥ εs = 1.481... that
corresponds to a finite temperature Ts = 2g = 2. We are left therefore with a purely
potential model, whose physical properties reflect the geometrical properties of the
potential energy surface and therefore are subject to a localization transition at infi-
nite temperature (corresponding to εc = v = 2). We proved that the microcanonical,
potential energy surface is connected for all extensive energies (energy densities of
O(1)), thus showing that the ergodicity breaking must be of the weak form. This is
quite remarkable, given that the model is fully connected: for mean-field spin-glass
models, in fact, it was recently argued that the ergodicity breaking must be strong
[294].

Then, we showed that the localization transition is due to a phase transition in
the order parameter γ = −(log λ1)/N, where λ1 is the smallest non-zero eigenvalue
of −∆, the Laplacian on the (curved) equipotential surface. For ε < 2 we have γ = 0
and for ε > 2 we have γ ∼ (ε− 2)η with η around 2. This puts on firmer grounds the
connection between the works on thermodynamics (like Refs. [282, 283]) and those
on the dynamics (like Refs. [264, 269, 270]). The approximation in which one can
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neglect the kinetic energy is exact on the fully connected model, and one can imagine
that it is a good approximation for a finite-dimensional lattice, therefore making our
results qualitatively compelling for the experimental observations [29, 275] and the
numerical works [262]. Making a quantitative connection, and computing a possible
1/κ series of corrections to our results is left for future work, as is the validation of
our predictions using a genuine mean-field Hamiltonian dynamics.

The transition taking place at εc = 2 makes the equilibration time τ change from
O(1) to exponentially large in N, τ ∼ eγN : the phenomenology is very similar to that
observed in the MBL-like phase of Josephson junction arrays [276, 277], and of quan-
tum glasses as well [239, 241]. However, the nature of the transition in the DNLSE
seems to be of entropic origin: the volume of the region of phase space around any
given localized configuration is exponentially larger than the volume connecting
two localized configurations, therefore making the passage from one localized con-
figuration to another exponentially unlikely. Quantum mechanical localization, in
contrast, is a consequence of interference and it vanishes when h̄ → 0. It is also
tempting to notice that the lowest eigenvalue of −∆ becoming exponentially small
in a large parameter is precisely what happens in localized quantum-mechanical
Schrödinger equations. However, given these elements, we cannot argue more than
a similarity at a formal level.

We also refrain from speculating on the effect of turning on h̄. Previous works
have shown that, for h̄ 6= 0 and at least in a 1d geometry, transport is strongly sup-
pressed as T → ∞ [272] and non-Gibbs state exist for ε ≥ 2 as well [281]. In a
more general setting, on the one hand one would expect that a charge localized on
a site could tunnel quantum-mechanically towards a neighboring site; on the other
hand the effects of interference should be taken into account [276, 277]. Sorting out
the leading effects of quantization upon the system (3.1), at least at the semiclassical
level, is left out for future work.

To conclude, it is worth stressing that topology was already used in some studies
related to equilibration or phase transitions. For instance, the slow dynamics of p-
spin models was related to the structure of saddles of the free energy landscape [290,
291, 295–297] (please notice that here, instead, all the computations were performed
in the microcanonical ensemble). Other authors argued that generically phase tran-
sitions are accompanied by a change in topology in the phase space (see e.g. Refs.
[298–300] and other references therein). While leaving aside for now the possible
connections, it is immediate to understand that the topological nature of our results
implies that they are quite general, since the same phenomenology holds for any
convex potential V(q). This conclusion sheds light also on the numerical evidence
for localization in similar models [284, 285], which so far was left unaddressed by
any quantitative means.
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4 Spatiotemporal heterogeneity of
entanglement in many-body
localized systems

In this Chapter, I present some results concerning how entanglement spreading is heteroge-
neous, both in space and in time, deep in the MBL phase. In Sec. 4.1 I describe the models
under study, while Sec. 4.2 I introduce the quantities and methods used for the investiga-
tion. In Sec. 4.3 I show the results for one-site observables, and in Sec. 4.4 the results for the
correlation functions. Finally, in Sec. 4.5 I draw the conclusions and discuss future research
perspectives. The Chapter is based on the publication [4].

With this Chapter and the following, we move on to discuss some instances of the
interplay between the physics of glasses, and of many-body localization (MBL). As
motivated in the Introduction, MBL is an interesting phenomenon, as it realizes a
non-thermal, stable quantum phase of matter. Despite the tremendous effort of the
last 15 years or so, many of its features still remain mysterious: for instance, neither
consensus has been reached on what is the universality class of the transition [112–
114, 121–128], or on what is the order of magnitude for the critical disorder strength
[133–135], or even on whether MBL is a phase or just a transient regime in finite-
size systems, or finite-time experiments [115–120]. What is pretty clear instead from
perturbation theory [46, 107], non-perturbative computations [108, 109] and a body
of numerical works [301–307] is instead the nature of the localized phase (or regime),
which is characterized by the presence of local integrals of motion (LIOM, or l-bits),
making MBL a particular instance of integrability.

In this Chapter—as well as in this whole thesis—we do not want to enter the dia-
tribe on all the open issues about MBL. Rather, we want to present some results that
have a validity regardless of what is the nature of the transition, or of what happens
in the thermodynamic limit at infinite times, somewhat on the lines of Ref. [308].
That is to say, the results presented here are valid even if the localization lasts only
for a finite, yet long time.

What we did was to investigate the MBL phase with the idea that interactions
and disorder, when put together, can lead to heterogeneity that bears clear signatures
of the many-body nature of the dynamics of the system, and can help characterizing
it. It is well known, in fact, that classical glassy dynamics—both in structural and spin
glasses—can be characterized by the presence of so-called dynamical heterogeneity [53,
56, 83, 84, 309–311]. One speaks about dynamical heterogeneity when each local
degree of freedom presents an autocorrelation function that decays in time with a
different functional form, thus strong spatiotemporal fluctuations are present in the
system.

It was already argued that dynamical heterogeneity in classical glass models has
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a quantum counterpart and, at ultra-low temperatures, can be induced by quan-
tum fluctuations [51, 153, 243, 312]. However, previous studies have investigated
quantum glass systems modeled on a classical counterpart. Here we adopt a dif-
ferent approach: we borrow the theoretical tools of classical glass theory in order
to explore the quantum MBL phase, and we study the properties of entanglement.
In this perspective, the observed similarities in the heterogeneous behavior of local
correlations, which are quantum in the MBL case and classical for glasses, appear
unexpected.

Another reason for interest in the phenomenon treated in this Chapter is the
physics of entanglement itself. While entanglement can be completely character-
ized for two qubits [36, 313, 314], this becomes more challenging in the many-body
context, which presents a multitude of facets [315–318]. The numerous studies on
the entanglement growth in the MBL phase [48, 129, 319, 320] are mainly focused
on global properties, employing measures such as the entanglement entropy, pu-
rity, quantum Fisher (or mutual) information, or total correlations [137, 321–324]. In
this Chapter, we go beyond those approaches, focusing on the local properties of
entanglement, therefore aiming at characterizing its spreading in a more detailed
way. The focus is on the combined temporal and spatial behavior of the local en-
tanglement as measured by the concurrence, which has been used to characterize
entanglement in MBL before (but only at the global level) [325], and which can be
measured experimentally [326, 327].

The starting point is the finding that the dynamics of the concurrence among
couples of spins or l-bits is highly heterogeneous, with a wide range of different
relaxation times. To quantify this observation, the distribution of the relaxation times
τi of the concurrence is investigated within the l-bit model, and its properties are
described in a wide range of parameters and initial-state energies. The main findings
are the following:

1. The strong fluctuations of entanglement at the local level manifest as a power-
law-tailed probability distribution for τi which, in turn, is at the origin of the
known power-law decay of the average concurrence [325].

2. The width of such distribution increases as disorder increases or energy de-
creases.

3. The local relaxation times τi are spatially correlated, with the correlations grow-
ing as disorder increases or energy decreases: this is a counter-intuitive result,
since, naively, one might expect the correlations to increase when approaching
the delocalization transition by lowering the disorder.

It is worth stressing that this latter result suggests that the associated entanglement
correlation length represents a previously unrecognized length scale in the MBL
phase.

Finally, but not less importantly, entanglement heterogeneity persists also out-
side the MBL phase. Here, we choose to focus on the deep MBL phase only because,
thanks to the l-bit model, the numerics can reach larger system sizes, and one can
also get some analytical insight. The detailed study of entanglement heterogeneity
out of the MBL phase, and across the MBL-thermal transition, is deferred to future
studies.
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4.1 Description of the protocol

The aim of this Chapter is to study the general properties of the spatiotemporal
entanglement dynamics of MBL systems. For this purpose, let us use an effective
description in terms of LIOMs, which allows to access the nonequilibrium real-time
dynamics of MBL systems for long times and large system sizes. Deep in the MBL
phase, Hamiltonians of short-range interacting, quantum, spin-1/2 degrees of free-
dom can be diagonalized through a quasi-local unitary transformation [108, 109,
328], yielding a representation of the model in so-called l-bit form:

Hl-bit =
L

∑
i=1

hiσ
z
i +

L

∑
i,j=1

Jijσ
z
i σz

j + . . . (4.1)

where {σx
i , σ

y
i , σz

i } are the localized spin-1/2 operators associated with the LIOMs.
We neglect further terms in the Hamiltonian which comprise n-body interactions
with n ≥ 3, which is a controlled approximation for weakly interacting spins in the
original microscopic model. From analytical results [105, 107–109, 328], it is known
that the interactions Jij are exponentially suppressed with the distance rij between
localization centers. To achieve a model-independent effective description, let us
parameterize the l-bit model as follows. Assume that the hi are independent iden-
tically distributed random fields, with a uniform distribution over [−h, h], and that
the Jij are uncorrelated Gaussian variables of zero average and standard deviation
J0e−rij/κ. For numerical purposes, set also h = J0 = 1.

The particular advantage of the l-bit model (4.1) is that it allows to perform an-
alytical estimates of few-body observables, and to efficiently compute them numer-
ically, reaching system sizes up to L = 140 spins for very long times. To give an
example, Eq. (B.2) in App. B.4 shows how to compute a two-site correlation function
in O(N) steps; cf. Refs. [110, 111, 319, 325] for other examples.

It is worth stressing that the l-bits become closer and closer to the physical spins
as the disorder increases, ultimately coinciding asymptotically at infinite disorder
[307, 329]. Thus, at small values of κ (i.e. large disorder strength), one can safely con-
sider the l-bits as uniformly spaced on a chain, and compute the distances among
them as rij = |i− j|, i, j = 1, 2, . . . , L. The numerical results presented in the follow-
ing are obtained exactly in this strongly localized regime, deep in the MBL phase. It
is important to note that the effective model allows to tune: i) the interaction decay
length κ (equivalent to varying the disorder strength); and ii), the initial condition,
i.e. the energy density at which we probe the system’s properties. Concerning the
latter parameter, it is reasonable to choose as initial state of the dynamics a product
state in the effective spin basis:

|ψ0〉 =
L⊗

i=1

(
Ai|⇑〉i + Bi|⇓〉i

)
, (4.2)

where | ⇑〉i,| ⇓〉i are the eigenstates of σz
i , and |Ai|2 + |Bi|2 = 1. The reasons for

this choice are multiple. First, in this way the initial state is factorized, and the
evolution of entanglement can be followed more easily, as it starts from zero. Second,
employing Eq. (4.2), the system is initially prepared in a superposition of eigenstates,
so the dynamics is non-trivial. Third, Eq. (4.2) allows to tune the coefficients Ai
and Bi such that the initial-state energy expectation value E := 〈ψ0|Hl-bit|ψ0〉 can be
varied at will. This tuning can be achieved using a classical simulated annealing
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algorithm (see App. B.1 for details), and allows to explore different regions of the
energy spectrum. Let us measure E in units of the standard deviations of hi and
∑j Jij, defining the dimensionless energy density

ε :=
E
N

[
h2

3
+

2J2
0

e2/κ − 1

]−1/2

. (4.3)

Notice that ε = 0 corresponds to the center of the spectrum, while ε ≈ −1 to the
ground state (more details in App. B.1). Let us remark that the localization properties
of MBL systems depend on the energy of the considered state and are stronger near
the edges of the spectrum [131, 330].

For small system sizes, the results of the effective model can be compared with a
full microscopic calculation for the spin-1/2 XXZ chain with random fields:

HXXZ =
L−1

∑
i=1

[
J
2
(S+

i S−i+1 + h.c.) + VSz
i Sz

i+1

]
+

L

∑
i=1

∆iSz
i , (4.4)

where J = V = 1 (unless otherwise stated) and ∆i are random variables uniformly
distributed over [−W

2 , W
2 ]. For Wc ' 7± 2, this model exhibits an MBL transition

[49–51, 331] (see Refs. [307, 329] for the relation between W and the effective model
parameters h, κ and J0). When employing (4.4), we probe the centre of the energy
spectrum initializing the system in a Néel state |ψ0〉 = | ↑↓↑↓ . . .〉where ↑, ↓ indicates
the physical spin basis, and average the results over different disorder realizations.
Notice that the XXZ model can be employed to explore the presence of entangle-
ment heterogeneity also in the thermal phase; however, due to the smallness of the
accessible system sizes, we will not investigate thoroughly the thermal phase in the
present Chapter. We defer such investigation to future studies.

4.2 Methods of analysis

For the purpose of exploring the spatiotemporal heterogeneity of entanglement in
MBL systems, we concentrate on the two-site concurrence, which quantifies the
pairwise entanglement between two qubits [313, 314, 317, 325]. For two spins-1/2
located at lattice sites i and j, the concurrence is defined as [314, 317]

Ci,j := max {0, λ1 − λ2 − λ3 − λ4}. (4.5)

λ2
a are the eigenvalues of the matrix Rij = ρij(σy ⊗ σy)ρ∗ij(σy ⊗ σy) sorted in descend-

ing order, where ρij is the two-site reduced density matrix, and the complex conju-
gation is done in the standard computational basis.

While the general formula (4.5) must be applied to the l-bit model, for the mi-
croscopic XXZ Hamiltonian the concurrence can be computed more easily. Since the
dynamics conserves the z component of the total magnetic field, Sz

tot, and we ini-
tialize the system in the Néel state, having Sz

tot = 0, Eq. (4.5) can be simplified as
[332]

Ci,j = 2 max
[
0,
∣∣∣〈S+

i S−j 〉 −
√

P++P−−
∣∣∣
]

(4.6)

with
P±± ≡

1
4
± 1

2

(
〈Sz

i 〉+ 〈Sz
j 〉
)
+ 〈Sz

i Sz
j 〉. (4.7)

and 〈•〉 := 〈ψ(t)| • |ψ(t)〉, where ψ(t) is the state of the system at time t.
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It has been shown that in MBL systems the concurrence averaged over all cou-
ples i, j decays in time as a power law [325], while it decays exponentially fast in er-
godic systems. Our key goal is to establish a more detailed spatiotemporal analysis
of the concurrence beyond its averaged value. Specifically, we wish to investigate,
in MBL systems, the relationship between the late-time, power-law behavior of the
average concurrence and the relaxation of the concurrence at the local level. Because
of the presence of quenched disorder, we expect to observe that the relaxation of
the two-site entanglement is heterogeneous, i.e. it has a different functional form and
characteristic time scale in distinct spatial regions. We aim at verifying and quantify-
ing such entanglement heterogeneity. Similar questions have been already explored
in the framework of classical glasses; in this Chapter, we will adapt some tools and
ideas developed in that context to the case of quantum localized systems.

In this perspective, we define a local on-site concurrence as

Ci(t) := ∑
j

Ci,j(t) , (4.8)

quantifying the total amount of two-qubit entanglement of i with all the other lattice
sites. In the case of the XXZ model, we find that Ci,j ' 0 for |i− j| > 1, so that we
can trade the sum in Eq. (4.8) with the nearest-neighbour term: Ci(t) := Ci,i+1(t) (see
also [325]).

For large systems and for a single disorder realization, we find that the local con-
currence defined in Eq. (4.8) typically decays to zero on a certain time scale, and then
definitely remains so (see Fig. 4.1). This motivates us to define the local relaxation
time as

τi := t0 e〈log(t/t0)〉C := t0 exp

∫ tfin
0 log(t/t0)Ci(t)dt
∫ tfin

0 Ci(t)dt
, (4.9)

where t0 = J−1
0 . Notice that Ci ≥ 0, so the averages above are well-defined and

independent of t0 (in the thermodynamic limit). The definition (4.9) employs the
logarithm log(t/t0); this ensures that τi is a good estimator of the typical time scale of
the relaxation time of the concurrence even if Ci(t) decays very slowly1. Notice that
typically, for finite systems, Ci(∞) ' O(2−L) (see App. C.7): thus, the function Ci(t)
might be interpreted as a probability distribution over R only in the thermodynamic
limit.

Our aim is to estimate the distribution function of τi exactly in the thermody-
namic limit. Such limit can be approached by fixing the maximum simulation time
of the dynamics tfin and increasing L, until convergence is reached. We find from
our numerics that this typically happens for L & 30, which is achievable in the l-bit
but not for microscopic Hamiltonians by means of exact diagonalization. Indeed,
for the microscopic XXZ Hamiltonian in the MBL phase and for finite L, one finds
a spurious peak in the distribution of τi due to those realizations of Ci(t) which are
still nonzero at the final evolution time tfin. This is precisely due to the fact that, for
small L and whatever the choice of tfin, there will be always a finite number of such
nonvanishing realizations. Unfortunately, for the XXZ model, we cannot consider

1We verified that, upon changing the definition of τi, e.g. with

τi := 〈t〉C =

∫ tfin
0 t Ci(t)dt
∫ tfin

0 Ci(t)dt
(4.10)

or τi := max{t|Ci(t) > 0}, our findings do not qualitatively change.
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FIGURE 4.1: Single instance for the on-site concurrences Ci(t), defined in Eq. (4.8). Hetero-
geneity in the entanglement spreading can be clearly seen: the curves Ci(t) are described by
different functional forms, and decay to zero on different time scales. The chain length is of
L = 80 sites. The concurrence of one site every three is plotted to enhance readability. This
figure is taken from Ref. [4].

system sizes larger than L = 20. This represents a crucial argument for the use of
the effective l-bit model.

Let us emphasize again that the average concurrence in the MBL phase decays as
a power law, while the on-site concurrence vanishes after a finite time, as depicted in
Fig. 4.1. Thus, the power-law decay of the average is nothing but a consequence of
the heterogeneous behavior at the local level. This can be also captured by a simple
analytical model, as sketched in the following. Let us schematize the on-site concur-
rence as a step function fτ(t) = θ(τ− t), where τ is a random variable drawn from a
power-law-tailed distribution. Assuming P(τ) = N θ(τ− τ0)τ−γ, with γ > 1 andN
a normalization constant, one gets a disorder average 〈 f (t)〉 = (τ0/t)γ−1 that decays
as a power law. This shows that, when fτ(t) has a simple form and vanishes after a
finite time in each disorder realization, and when the relaxation times have a long-
tailed power-law distribution, the average 〈 f (t)〉 decays as a power law. We expect
this argument to be at the origin of the power-law decay of the average concurrence
in MBL systems.

While the τi’s provide temporal information of the entanglement dynamics, we
are further interested in the spatial component. For that purpose we quantify the
spatial correlations of the local relaxation time via (see also Ref. [309])

Gτ(r) :=
[ 〈τiτj〉is − 〈τi〉is〈τj〉is
〈τ2

i 〉is − 〈τi〉2is

]

|i−j|=r
, (4.11)

where 〈•〉is denotes the average over different initial states, [•]|i−j|=r the average
over all sites i, j separated by a distance r, and • the average over different disor-
der realizations2. In App. B.5, we show that Gτ(r) as defined in Eq. (4.11) is very
robust to finite-size effects and disorder fluctuations: it is a self-averaging quan-
tity. From our numerical simulations, we find that Gτ(r) experiences in general a
stretched-exponential decay as a function of r. This allows to define a length scale
ητ by performing a fit of the form log Gτ(r) ∼ a + (r/ητ)b for some suitable a and b.
The length ητ quantifies the distance over which the local entanglement relaxation is
spatially correlated, i.e. it gives the size of the typical clusters of fast or slow entan-
gling spins. In App. B.5, we show also that ητ is almost independent of the system
size for L ≥ 40.

2Notice that the averages have to be taken in the proper order: first 〈•〉is, second [•]|i−j|=r, finally •.
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FIGURE 4.2: Probability distribution functions of log(τi). (a) Results for the XXZ model
(4.4), for L = 16, tfin = 103, and various W. We performed the XXZ unitary dynamics
using the Krylov technique [333], with dimension of the M = 40, and at least 8000 disorder
realizations. For comparison, the l-bit model at L = 10, κ = 1, ε = 0 is shown as well
(300 disorder realizations). J0 has been fixed to make the pdf’s maximum coincide with the
XXZ ones. (b)-(c) Results for the l-bit model (4.1) at L = 80, for various κ (in steps of ∆κ =
0.25) and ε, averaged over at least 4000 disorder realizations and 20 initial states for each
of them. As κ decreases, i.e. disorder increases, the distributions broaden; the same when ε
decreases, in analogy with classical amorphous materials approaching the glass transition.
We performed power-law fits on the tails of the pdf’s, obtaining the exponents β whose
behavior is shown in Fig. 4.3b. This figure is taken from Ref. [4].

4.3 Distribution of the relaxation times

We show in Fig. 4.2 the probability distribution function (pdf) of log τi, obtained
within both the XXZ and the l-bit model. We see that within the XXZ model (Fig.
4.2a) the pdf’s show a peak at large relaxation times, corresponding to the final sim-
ulation time of the dynamics tfin. In App. B.2 we argue that this feature is due to the
(typical) asymptotic value Ci(∞) ' O(2−L); see also the discussion below Eq. (4.9).
If the time spent in such asymptotic region is too large, the relaxation time is heavily
influenced by the final time of the dynamics. This is a finite-size effect, and it does
disappear upon considering larger system sizes, as we show for the l-bit model in
App. B.2.2 (larger system sizes for the XXZ model cannot be presently considered).

The pdf’s obtained considering the l-bit model for L = 80 and for different values
of κ, and ε are shown in Figs. 4.2b–4.2bc. Thanks to the large system size, these plots
do not present any peak at large times, and clearly show that the the pdf of log τi has
a power-law tail; thus the distribution of τi has a power-law tail as well. We see that
the pdf’s become broader as the disorder is increased (both in the XXZ and the l-bit
model), or the energy is lowered (in the l-bit model).

We define the typical value of τi as typ[τi] := t0 exp〈log(τi/t0)〉τi , where 〈•〉τi

is the average over the pdf of τi. In Fig. 4.3a, we show the behavior of typ[τi] as a
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FIGURE 4.3: (a) The typical value of τi, defined in the main text, is shown as a function of κ
for different ε (dots). The dashed lines are fits with the function exp[a + (bκ + c)−1]. From
a, we performed the linear fits depicted in the inset: log(typ[τi]− a)−1 as a function of κ is
found to be linear, as expected (see App. B.4). (b) Slope β as a function of κ, obtained from
the linear fits of the tails of log P(log τi) in Fig. 4.2b. β(κ) is consistent with a linear behavior;
with a linear fit we obtain: β = 2.8(5)κ − 1.(2). This figure is taken from Ref. [4].

function of the parameters κ and ε. Following usual arguments for the l-bit model
[110, 111, 319], in App. B.4 we derive the rough estimate

log(typ[τi]/t0) ≈ (2κ log 2− 1)−1 . (4.12)

Fig. 4.3a depicts the fits of typ[τi] with this functional relation with respect to κ,
showing that our numerical results are in reasonable agreement with the functional
form of the prediction, even if the coefficients of the fit do not match those in Eq.
(4.12).

We performed fits log P(log τi) ∼ −β(log τi), shown in Fig. 4.2b, and from there
extracted the power-law exponents β, that we report in Fig. 4.3b. We see that β has
a roughly linear dependence on κ, a property which will help us interpreting the
behavior of the correlation function in the next Section.

Before moving to the study of the correlation function, let us emphasize that
dynamical heterogeneity is not restricted to the MBL phase. In App. B.3, we present
some qualitative results also in the ergodic regime. Further investigations in this
direction promise to be fruitful; however, they go beyond the scope of this Chapter
and will be discussed in forthcoming publications.

4.4 Spatial correlations of the relaxation times

Fig. 4.4 shows the spatial correlations between τi’s. Due to the strong finite-size
effects for the XXZ model, we restrict ourselves to the l-bit model. In Fig. 4.4a we
report the spatial distribution of the τi’s for a disorder realization. As κ decreases,
i.e. the disorder increases, the relaxation times of the local entanglement become
spatially correlated over longer distances. The correlation function Gτ(r), defined in
Eq. (4.11), is shown in Figs. 4.4b–4.4c: Gτ(r) decays more slowly upon decreasing κ
and ε, confirming the pattern observed in Fig. 4.4a. The same result is also supported
by the (qualitative) behavior of the dynamical correlation length ητ as a function of κ.
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FIGURE 4.4: Spatial correlation of the τi’s in the l-bit model. (a) Snapshot of the spatial dis-
tribution of the τi’s at three different values of κ (in one realization of disorder), showing
the emergence of dynamically correlated clusters as the disorder increases. (b)–(c) The cor-
relation function Gτ(r), defined in Eq. (4.11), for L = 140, and various κ and ε. We see that
the spatial correlation among τi’s increases for decreasing κ and ε. Data averaged over at
least 1000 disorder realizations, and 20 initial states each. (Inset of (c)) The dynamical corre-
lation length ητ , from stretched exponential fits of Gτ(r), as a function of κ. ητ decreases as
κ increases: for larger disorder, larger clusters of dynamically correlated spins emerge. This
figure is taken from Ref. [4].

We see in the inset of Fig. 4.4c that ητ decreases when κ increases, i.e. when disorder
decreases.

The implications are twofold. Recall that the local entanglement spreading slows
down when κ decreases (i.e. the disorder increases) or the energy decreases (Fig. 4.2).
Therefore, first, increasingly larger clusters of spins emerge, in which the entangle-
ment relaxation is correlated (Fig. 4.4). Second, since the distribution of relaxation
times becomes broader as disorder increases, more clusters are likely to assume an
extreme value of the relaxation time in the slow, as well as in the fast tail.

These findings might seem surprising in the quantum case, as a more localized
structure might be expected when disorder increases. Remarkably, a similar growth
of dynamical heterogeneous clusters takes place in classical amorphous materials
and spin glasses [309], suggesting a connection between the phenomenology close
to the glass transition and to the MBL one.

We can provide an analytical argument to justify why the correlation length
should increase for increasing disorder as follows. An MBL system develops increas-
ing correlations as the time goes on, as witnessed by the entanglement entropy [48,
129, 319]. It is well established that, for finite systems, there is a time tc at which the
system becomes fully correlated: therefore, one can roughly assume that relaxation
times τi ≥ tc are more spatially correlated with each other than the times τi < tc.
If, decreasing κ, the fraction of times larger than tc increases, then one can argue
that the relaxation times become more correlated, in agreement with the increasing
relaxation-time correlation length ητ that we observe.

Let us substantiate the above argument. First, we estimate tc by quantifying
the degree of correlation in the system via the half-system entanglement entropy: it
increases in time as S(t) ∼ κ log(t) [48, 129, 319] and, for a finite system of size L, it
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saturates to a value of order L at a time tc ' exp(L/κ). For times τi ≥ tc, the system
has reached its maximum correlation, as we have stated before. Now, let us evaluate
the fraction f> of relaxation times τi > tc as

f> :=
∫ ∞

log tc

P(log τi)d(log τi), (4.13)

i.e. f> quantifies the weight of the relaxation-time distribution P(log τi) correspond-
ing to relaxation times τi larger than tc. Finally, we can show that f> increases
with decreasing κ, meaning that the relaxation times become more correlated for
increasing disorder. This simply follows from the results of Sec. 4.3, for which
log P(log τi) ' −β log τi, with exponent β = Aκ − B (A ' 2.8 and B ' 1, see
Fig. 4.3b). Thus, Eq. (4.13) reads

f> =
∫ ∞

L/κ

1
(log τi)Aκ−B d(log τi) ∼

(
L
κ

)1−Aκ+B

(4.14)

and f> increases with decreasing κ. This means that the weight of the relaxation-time
distribution associated with a maximally correlated system increases when increas-
ing the disorder. This conclusion agrees with the behavior found for the relaxation-
time correlation length, ητ. Finally, let us notice that the limit κ → 0 is singular (since
tc → ∞), and the argument above ceases to be valid.

4.5 Conclusions and outlook

In this Chapter, we studied the spatiotemporal spreading of entanglement in MBL
systems by monitoring the on-site concurrence. We showed that in the MBL phase
the on-site concurrence behaves heterogeneously, with different functional forms
and relaxation times for each site of the lattice. Using the tools developed for dynam-
ical heterogeneity in classical glasses, we quantified such heterogeneous behavior of
entanglement by investigating the on-site concurrence relaxation times τi, which dis-
play a non-trivial spatiotemporal structure.

First, we observed that the local relaxation times τi increase upon increasing the
disorder, or upon lowering the energy of the initial states. Specifically, their dis-
tribution broadens significantly, as the exponent β, dictating the decay P(log τi) ∼
(log τi)

−β increases as κ → 0. This can be understood in terms of the slowing down
of the dynamics, due to the stronger disorder or the vicinity to the edges of the spec-
trum.

In addition, taking into account the spatial correlations among the τi’s, we ob-
served that, as disorder increases or energy decreases, increasingly larger dynam-
ically correlated clusters arise. Within a cluster, the relaxation times are similar
among sites and, due to the broadness of the τi distribution, are likely to assume
an extremely small or large value. We defined a correlation length of the relaxation
times, ητ, which quantifies the typical extension of the correlated clusters. It repre-
sents a new length scale characterizing the MBL phase.

The emergence of increasingly large clusters of correlated spins is somewhat sur-
prising since one might naively expect the clusters to grow in size upon decreasing
the disorder strength, i.e. when the delocalization transition is approached. A possi-
ble explanation lies in the fact that the concurrence quantifies only the entanglement
shared by two qubits: therefore, at lower disorder, it may miss the tri-partite, or
generally multi-partite, entanglement growth.
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Our analysis was mainly focused on the deep, many-body localized phase, where
the l-bits are close to the physical spins. Similar properties for the entanglement het-
erogeneity are expected in all systems that present a long, localized transient before
they reach a thermal state. Such systems include MBL systems coupled to a bath [51,
334–340], MBL systems in d ≥ 2 [113, 308, 323, 341–346], and two-level systems in
structural glasses (see Chap. 5). In addition, it is worth emphasizing that entangle-
ment heterogeneity should be present also in the ergodic phase; however, we leave
its characterization to future studies.

Our findings open up future research directions towards the characterization of
spatiotemporal entanglement properties. A next crucial step is to explore the spatial
correlation of local relaxation times in observables less affected by finite-size effects
and disorder fluctuations. It would be desirable to define suitable macroscopic ob-
servables, in the way the four-point susceptibility χ4(t) is for classical glasses [53,
56, 83, 84]. In the MBL case, such observables need to detect only local entanglement
fluctuations and be experimentally measurable (if possible). A further interesting
extension of our contribution could be to consider entanglement heterogeneity for
two subsystems consisting of more than one spin, which could provide additional
information on the multipartite spatiotemporal structure of quantum entanglement.
Finally, we note that the observed entanglement correlated clusters, which grow in
size for increasing disorder strength, might be linked to the localized bubbles which
have been the subject of numerous recent studies [112, 114]. Exploring such connec-
tions promises to be an interesting research direction for future studies.
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5 Signatures of many-body
localization in the dynamics of
two-level systems in glasses

In this Chapter, I show how tools developed in the context of many-body localization can
explain the slowness of thermalization for two-level systems in glasses. I start by introducing
the model in Sec. 5.1, and then in Sec. 5.2 I show how a non-perturbative transformation can
be used to put the model in a form amenable of analytical treatment. Then, in Sec. 5.3 I show
how to derive from first principles a Gorini-Kossakowski-Sudarshan-Lindblad equation for
the relaxational dynamics of the TLS, which predicts a very long, localized transient for
the TLS. In Sec. 5.4 I show that the presence of such transient is confirmed by numerical
simulations, and what are its features in terms of entanglement spreading. Finally, I draw
the conclusions in Sec. 5.5. The Chapter is based on the publications [2, 9].

While in Chapter 4 I have shown how tools developed in the context of classical
glasses can be fruitfully applied to quantum disordered systems, and in particular
many-body localization (MBL), in this one I will show how the physics of MBL may
be realized to some extent in structural glasses at ultra-low temperatures.

The starting point is the celebrated two-level system (TLS) model. The story be-
gins in 1971, when Zeller and Pohl, in a famous study [85], noticed that there was a
surprising degree of universality in the low-temperature properties of many differ-
ent amorphous solids. Few months later, Anderson, Halperin and Varma [86], and
independently Phillips [87], introduced the TLS model as an explanation for such
universality. The main point was the postulation of existence of low-temperature,
localized excitations in structural glasses, basically coming from the presence of mul-
tiple equilibria for some atoms or molecules. With a minimal set of assumptions on
the shape of such equilibrium configurations, the TLS model was able to reproduce
the temperature dependence of the specific heat, thermal conductivity, sound atten-
uation, and other quantities [88, 89]. However, the model left unaddressed several
questions, the most important of which probably is the super-universality of the so-
called Q factor [347]: within the TLS model, such dimensionless factor acquires an
astonishingly consistent value for all known glass formers, but only because of a
precise cancellation of small and large, independent quantities. It was in particular
Leggett [348–350] to recognize this puzzle, and since then many works have tried
to put forward some explanation, usually by modifying in some respect the original
TLS model [90, 91, 351]. The most promising of these explanations for the univer-
sality of Q is the presence of interactions among TLS, generated by phonons (and,
if the TLS have an electric dipole, also photons). While the presence of interactions
was recognized long ago [352–354], and also observed experimentally at the level of
the single TLS [355, 356], the study of the consequences has proven difficult, since
the model becomes many-body.
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A first consequence of the presence of a phonon bath is, as just said, that TLS-
TLS interactions are generated, in the form of dipole-dipole interactions∼ 1/r3 [353,
354]. On the other hand, the phonon bath is also responsible for the equilibration of
the TLS at the bath temperature. While the former have been subject of extensive
studies [357–365], the issue of thermalization has been overlooked so far. Namely,
TLS are always assumed thermal on all experimentally accessible timescales, and
standard thermodynamic ensembles are applied. The purpose of this Chapter is
precisely to investigate the quantum dynamics of TLS coupled to phonons, and to
discuss how they reach thermal equilibrium. We idealize the system composed of
TLS and phonons as an isolated system, and we analytically derive the Gorini-Kos-
sakowski-Sudarshan-Lindblad (GKSL) master equation for the reduced density ma-
trix of the TLS, tracing out the phonons under the assumption of weak coupling
(more on this later). We find that the TLS unitary evolution (the so-called Liouvil-
lian) is governed by a Hamiltonian with an extensive number of local conserved
quantities, as the effective l-bit Hamiltonian of MBL systems; the dissipative term
(the so-called Lindbladian) destroys localization and drives the system to a thermal
state. We show that, considering the typical values of the TLS disorder parameters,
dissipation is much slower than any other timescale of the problem, and TLS relax-
ation dynamics shows the fingerprint of localization for a long time window.

The work presented here shares many traits with a growing body of recent litera-
ture, that has investigated the impact of dissipation and dephasing on MBL systems
[51, 334–340, 366]. The research question underlying these works concerns how the
imperfect isolation from the environment enters the experimental measurements on
MBL systems [136–138, 367]. Even though dissipative baths necessarily lead to delo-
calization, it has been found that at intermediate and long timescales the relaxation
dynamics of MBL systems coupled to heat baths shows clear signatures of the lo-
calized phase, and differs from the one of ergodic systems. Such findings are in
agreement with the results of the present Chapter, as will become evident in the
following.

We focus in particular on the creation and spreading of entanglement as mea-
sured by the concurrence [313, 314, 317] and the entanglement entropy. The former
measures the amount of entanglement between two TLS; under time evolution it
grows to a maximum, and then decays and vanishes. The latter instead increases
monotonically with time to reach a thermodynamic value. We simulate both the ar-
tificially isolated TLS system (i.e. dissipation is set to zero), and the open system. For
the artificially isolated system, we can confidently investigate the thermodynamic
limit (our numerics goes up to N = 60 TLS). We observe that, for long timescales, the
concurrence decays as a power law C ∼ t−βi , down to a plateau value which is expo-
nentially small in the number of TLS. This slow power-law decay is the signature of
localization, and contrasts with the exponentially fast decay one would observe for
an ergodic system. In the open system we find that the concurrence always vanishes,
never reaching the plateau observed in the unitary case. This is not surprising, since
the phonon (and photon) bath to which TLS are coupled is effectively infinite, and
entanglement can spread indefinitely. Moreover, for not-too-large dissipation, we
find that the concurrence decays as a power law C ∼ t−βo , as in the artificially iso-
lated system, indicating that the signatures of TLS localization are observable even
in this case for long time windows. The exponents βi,o in the two scenarios are of the
same order of magnitude. Their comparison shows that, within the statistical errors
and finite-size corrections, β increases in the presence of dissipation.

Before discussing the relaxational dynamics via the GKSL equation, however,
we will digress on the issue of strong vs. weak coupling between the TLS and the
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FIGURE 5.1: Sketch of the two-level system (TLS) model. (a) In the amorphous lattice struc-
ture, some groups of atoms (blue shaded circles) may have several equilibrium positions,
that modify only locally the lattice. Because of thermal and quantum fluctuations, they os-
cillate among such positions, yielding a greater number of degrees of freedom wrt. a regular
lattice. (b) For each of such groups of atoms, generalized coordinates may be introduced,
that parametrize the displacement of the atoms. The simplest assumption is to take one only
coordinate, with two minima at energy difference ε, separated by a potential barrier V0. The
tunnelling rate between the two minima (dashed arrow) is given by Eq. (5.5), while the acti-
vated process (full arrow) is completely negligible at ultra-low temperatures. The dynamics
of the ensemble of TLS is then dominated by quantum mechanical effects.

phonons. Namely, in Sec. 5.2 we will show how a renormalization group transfor-
mation, when applied to strongly-coupled TLS, generates yet another TLS model,
that is instead weakly coupled. The consequences are several. First, this will provide
a justification of using the weak-coupling approximation when deriving the GKSL
equation. Second, this will make manifest what is the nature of the localized impuri-
ties, and in what sense they undergo MBL. Third, this will pave the discussion for a
more refined approach to the problem of relaxation, through a generalization of the
Lindblad equation, which will be object of a future study [9].

5.1 The two-level system model

The standard Hamiltonian considered in the literature for the TLS model in presence
of the phonon bath is [90, 357, 365]

H = HTLS + Hph + Hint. (5.1)

The first term describes the TLS, and it is often parametrized by Pauli matrices:

HTLS = ∑
i
(ε iσ

z
i + ∆iσ

x
i ) . (5.2)

In the previous expression, ε i is the asymmetry energy between the two states and
∆i is the tunnelling strength, see also Fig. 5.1b. Both ε i and ∆i are random vari-
ables, whose microscopic distributions are very difficult to access experimentally.
However, one can infer from experimental data their probability distributions using
some tricks and assumptions, as will become clear in the following.

From ab initio numerical simulations [247, 248] and from simple physical reason-
ing [86, 88], it turns out that ε i should be taken from a distribution with compact
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support, typically1

pε(ε) =

{
W−1 if 0 ≤ ε ≤W
0 otherwise.

(5.3)

The tunneling rate ∆i has instead a very broad distribution, usually taken to be log-
uniform:

p∆(∆) =

{
[∆ log(∆max/∆min)]

−1 if ∆min ≤ ∆ ≤ ∆max

0 otherwise.
(5.4)

That ∆ should have such a wide distribution can be understood at a semiclassical
level: by WKB approximation

∆ ∼ exp
[√

2mV0δx
h̄

]
, (5.5)

where m,V0 and δx are respectively the mass, potential barrier and displacement in
some generalized coordinates, parametrizing the potential well that defines a TLS
(see Fig. 5.1b). Thus, even small fluctuations of m, V0 or δx are strongly amplified at
the level of ∆. In general we choose (see Table 5.1)

∆min = 10−9 W, ∆max = 10−1 W. (5.6)

It is important to stress that the typical value of ∆i will be very small:

∆typ = exp
∫

d∆ p∆(∆) log(∆) = 10−5 W. (5.7)

The phonon Hamiltonian is

Hph = ∑
qs

h̄ωqsb†
qsbqs, (5.8)

ωqs being the dispersion relation, and bqs (resp. b†
qs) the annihilation (resp. creation)

operator for a phonon with wavevector q and polarization s. As usual, their com-
mutator reads [bqs, b†

q′s′ ] = δs,s′δq,q′ . Even in amorphous materials the dispersion
relation ωqs can be roughly approximated by the Debye model: ωqs = vs|q|. The
only proviso is that the transverse (T) and longitudinal (L) velocities are slightly
different, with vL/vT ≈ 1.5; see Table 5.1 for the actual values.

For later convenience, introduce also the coordinate and momentum operators
of the phonon field:

xqs =

√
h̄

2ωqs

(
bqs + b†

−qs
)
, pqs = i

√
h̄ωqs

2
(
b†

qs − b−qs
)
, (5.9)

with commutator [xqs, pq′s′ ] = ih̄δs,s′δq,−q′ . In these variables, the Hamiltonian reads

Hph =
1
2 ∑

qs
(pqs p−qs + ω2

qsxqsx−qs) (5.10)

having dropped a zero-point constant.

1One is free to set εi, ∆i ≥ 0 for all i by adjusting the sign of the Pauli matrices.
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Finally, the interaction Hamiltonian that couples phonons to TLS is

Hint = ∑
iqs

γis σz
i Ξiqs xqs : (5.11)

γis is the site-dependent coupling strength, with the dimension of an energy, and
Ξiqs parametrizes the spatial and angular form of the interaction:

Ξiqs =
1√
ρV

(−iq)Dab
i eab

qse
iq·ri . (5.12)

In the above expression, V is the volume of the sample, ρ the material density, ri is
the position of the i-th TLS and Dab

j a dimensionless, random elastic dipole tensor.
Finally, there is the projector eab

qs := 1
2

(
q̂a êb

qs + q̂b êa
qs
)
, where êqs are the polarization

versors2. Notice that Eq. (5.11) entails that the phonons do not make the TLS flip
from one state to the other, instead their presence modifies the imbalance between
the two minima of the potential. Notice that this picture will get modified in Sec.
5.2, where the renormalized TLS will flip because of the emission or absorption of
phonons.

In the following, we will set γis ≡ γs for each site, and absorb in Dab
i all the

randomness. The experimentally correct form of Dab
i is clearly inaccessible, therefore

some approximations are in order. To our knowledge, there are two main ways of
parametrizing Dab

i (for a more detailed discussion see App. C.1).

1. Following the standard literature (e.g. Ref. [88]), one can just assume that Dab
i

is a random symmetric tensor with entries of O(1).

2. Following Ref. [365], Dab
i should be taken as the difference between two random

tensors, one for each well of the TLS. Moreover, its entries should not be of
O(1), instead they should be fixed from self-consistent criteria for the stability
of the amorphous lattice. This different choice boosts the entries from O(1) to
O(10).

As shown in App. C.1, the two choices give rise to sensibly different results; how-
ever, the overall physical picture remains qualitatively the same for what concerns
this study. Throughout the text, it will be made clear what type of dipole structure
we will be using.

5.2 Strong-coupling renormalization

From Table 5.1, it is clear that the experimentally relevant situation for TLS is when
ε . γ, i.e. when TLS and phonons are strongly coupled. It is convenient, then, to
perform a polaron transformation that takes into account the strong-coupling effects,
generating new renormalized couplings which, hopefully, can be treated perturba-
tively [357, 365]. In the next pages, such procedure will be laid out in detail.

5.2.1 A polaron-like transformation

To our knowledge, the easiest way to derive the correct form of the transformation
is the following. Having a closer look at the interaction Hamiltonian (5.11), one sees

2Note that with our conventions ê∗qs = ê−qs, thus Ξ∗iqs = Ξi−qs and the interaction Hamiltonian is
Hermitian, as it should be.
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Parameter Physical meaning SiO2 BK7 PMMA

εi
TLS asymmetry energy W = 130 meV W = 73 meV W = 33 meV∼ unif[0, W]

∆i
TLS tunneling stregth ∆max = 10 meV ∆max = 10 meV ∆max = 3 meV
∼ log-unif[∆min, ∆max] ∆min = 100 peV ∆min = 100 peV ∆min = 30 peV

P̄ TLS density of states
0.8× 1045 J−1m−3 1.1× 1045 J−1m−3 0.6× 1045 J−1m−3

= ρTLS/W log(∆max/∆min)
ρTLS TLS number density 0.30 nm−3 0.24 nm−3 0.058 nm−3

vL sound velocity 5800 m/s 6200 m/s 3150 m/s
vT 3800 m/s 3800 m/s 1570 m/s
ρ material density 2200 kg/m3 2510 kg/m3 1180 kg/m3

TD Debye temperature 348 K 360 K 101 K
γL TLS-phonon coupling 1.04 eV 0.96 eV 0.39 eV
γT 0.65 eV 0.65 eV 0.27 eV
Dab

i elastic dipole tensor O(1−10) entries O(1−10) entries O(1−10) entries

TABLE 5.1: Parameters of the model, specifying the material to fused quartz (SiO2), borosil-
icate glass (BK7) and plexiglass (PMMA). The values of P̄, vL, vT , ρ, TD are unambiguous
since they come from direct measurements [365, 368]. The values of W, ∆min, ∆max, ρTLS are
instead more difficult to extract, since they are inferred from the density of states (DOS) P̄.
One can reasonably set W = kBTglass: indeed, the TLS are formed at the glass transition [88].
One must then set ∆max ≈ 10−1 W in order to have a DOS that goes to zero above W [86],
and ∆min ≈ 10−9 W to reproduce instead a flat DOS at low temperatures [89]. These values
are to be considered the less precise, since they enter only logarithmically in the observables;
in general there is a lot of confusion about them in the literature. With these estimates, ρTLS
remains fixed as well to the values in the table. Finally, we need to specify γis and Dab

i , which
in truth always figure multiplied one by another. We fix γis ≡ γs on every site, take γL, γT
from Ref. [368], and we defer to App. C.1 for the form of Dab

i .

that it is nothing but a linear term in the phonon coordinate operator. Thus, one
can “complete the square” in Eq. (5.10) by shifting the origin of the xqs fields. By
inspection, this is accomplished by the unitary transformation

U = exp
[
− i

h̄ ∑
iqs

γs

ω2
qs

σz
i Ξiqs pqs

]
. (5.13)

It is a simple exercise to verify that

U(Hph + Hint)U† = Hph −∑
ij

∑
qs

γ2
s

2ω2
qs

σz
i σz

j ΞiqsΞ∗jqs : (5.14)

indeed, the second term on the r.h.s. is just the “missing piece of the square”. It is
important to notice that the only interaction generated at this level is in the σz–σz

channel, with couplings

Jij := ∑
qs

γ2
s

2ω2
qs

ΞiqsΞ∗jqs. (5.15)

Already by dimensional analysis one finds

Jij ∼
γ2

ρv2|ri − rj|3
. (5.16)

In App. C.2 the exact computation is reported, yielding

Jij =
γ2Dij

16πρv2r3
ij

, (5.17)
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where we defined the sound velocity averaged over polarizations v as

1
v3 :=

1
3 ∑

s

1
v3

s
, (5.18)

and similarly an averaged coupling strength γ:

γ2 :=
v3

3 ∑
s

γ2
s

v3
s

. (5.19)

Also, Dij are averages of the dipole moments Dab
i , that are defined in Eq. (C.19),

and whose distribution are shown in Fig. C.1b. It is interesting to notice that these
interactions correspond exactly to the ones found via a weak-coupling expansion
[353], but here they gain a non-perturbative justification. Putting in the formula the
numbers of Table 5.1, using the choice 2 for the dipole tensors, and taking the i-th
and j-th TLS at a distance rij = ρ−1/3

TLS , one finds for our example glasses

SiO2 : Jij ' 1.6× 10−5 eV ' 2.4× 1010 Hz;

BK7 : Jij ' 3.1× 10−5 eV ' 4.8× 1010 Hz;

PMMA : Jij ' 4.2× 10−5 eV ' 6.5× 1010 Hz.

(5.20)

It is also easy to transform the TLS Hamiltonian, that involves only Pauli matri-
ces. Defining the phonon operators Pi from

U =: exp

[
−i ∑

i
Pi

σz
i

2

]
=⇒ Pi := ∑

qs

2γs

h̄ω2
qs

Ξiqs pqs, (5.21)

—i.e. Pi is the amount of which the TLS basis has to be rotated—one finds

UHTLSU† = ∑
i

[
ε iσ

z
i + ∆iσ

x
i cos(Pi) + ∆iσ

y
i sin(Pi)

]
. (5.22)

Putting everything together, one finds an equivalent Hamiltonian for the TLS in
an elastic medium, that reads3

H′ = UHU† = Hph + ∑
i

[
ε iσ

z
i + ∆iσ

x
i cos(Pi) + ∆iσ

y
i sin(Pi)

]
+ ∑

ij
Jijσ

z
i σz

j (5.23)

= Hph + ∑
i

[
ε iσ

z
i + ∆iσ

+
i e−iPi + ∆iσ

−
i eiPi

]
+ ∑

ij
Jijσ

z
i σz

j (5.24)

with σ± = 1
2 (σ

x ± iσy). In the equations above one sees that the polaron transforma-
tion has generated a direct coupling between TLS, and a new TLS-phonon coupling
via σx

i cos(Pi) + σ
y
i sin(Pi), or equivalently σ+

i e−iPi + σ−i eiPi . These phonon operators
are complicated, yet have absolute value less than 1, and the hope is that by normal
ordering they could be put in an easier form to deal with. Equation (5.24) also gives
a clear physical interpretation of the whole transformation: the operators e±iPi “shift
the origin” of the phonon field as a TLS jumps between the up and down states.

3Notice that H′ is exactly equivalent to H; no approximation has been made so far.
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5.2.2 Debye-Waller factor

Let us pause a moment, and compute a quantity that will be useful in the following:
it is the average on a thermal state

〈eiPi〉T = exp

{
−∑

qs

γ2
s

h̄ω3
qs

ΞiqsΞ∗iqs coth
(

βh̄ωqs

2

)}
(5.25)

=: e−Γ2
i (T)/2. (5.26)

We will refer to Γ2
i as Debye-Waller factor, and denote its zero-temperature value as

Γ2
i,0 := Γ2

i (0). The Debye-Waller factor is computed explicitly in App. C.3, finding
that at very low temperatures

Γ2
i

2
=

γ2q2
D Tr(D2

i )

12π2ρh̄v3 + O
(
e−TD/2T), (5.27)

where again the average velocity v and coupling γ were used, since the polarization
differences are not crucial. Hence, from Eq. (5.27) the Debye-Waller factor increases
exponentially slowly with the temperature. One can rewrite

Γ2
i

2
=

E2
D

4E2
i
+ O

(
e−TD/2T). (5.28)

where ED is the Debye energy and Ei is defined as

Ei :=

√
3π2h̄3ρv5

γ2 Tr(D2
i )

. (5.29)

For the materials of Table 5.1, and parametrizing the dipole tensors according to
point 2, one readily finds at zero temperature

SiO2 :
Γ2

i,0

2
' 19; BK7 :

Γ2
i,0

2
' 19; PMMA :

Γ2
i,0

2
' 19 . (5.30)

These values are very close to the ones found in Ref. [365] (parameter α, p. 3). We
stress that Γ2

i does fluctuate also at zero temperature, since the TLS are coupled via
the random dipole tensor D to the phonons. In particular, the distribution of the
random variable Tr(D2

i ) is plotted in Fig. C.1a. If the temperature is higher, it is
shown in App. C.3 that the Debye-Waller factor grows slowly, gaining only a factor
4 at T = TD.

5.2.3 Normal ordering

At this point, one can go back to Eq. (5.24), and find a more manageable expression
for the operators e±iPi . Without making any approximation yet, they can be normal-
ordered. Using the Baker-Campbell-Hausdorff formula (specified to creation and
annihilation operators)

ecibi+c∗j b†
j = ec∗j b†

j ecibi e
1
2 cic∗j δij , (5.31)

one finds
eiPi = eiΓi,0 b̃†

i e−iΓi,0 b̃i e−Γ2
i,0/2, (5.32)
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having defined

b̃i :=
1

Γi,0
∑
qs

γs

√
2

h̄ω3
qs

Ξ∗iqsbqs, b̃†
i :=

1
Γi,0

∑
qs

γs

√
2

h̄ω3
qs

Ξiqsb†
qs. (5.33)

Indeed, the normal ordering procedure generates the Debye-Waller factor on the
vacuum state, i.e. at zero temperature. Notice also that, thanks to the definition with
the factor (Γi,0)

−1 in front, the operators b̃ and b̃† can be considered of order 1.

At this point, one can rewrite exactly

H′ = Hph + ∑
i

[
ε iσ

z
i + ∆iσ

+
i e−iΓi,0 b̃†

i eiΓi,0 b̃i + ∆iσ
−
i eiΓi,0 b̃†

i e−iΓi,0 b̃i
]
+ ∑

ij
Jijσ

z
i σz

j , (5.34)

with renormalized tunneling rates

∆i := e−Γ2
i,0/2∆i. (5.35)

The physical interpretation is rather straightforward: the tunnelling rate of a TLS is
exponentially suppressed, since it has to “bring along” a cloud of phonons, namely
the polaron. Such suppression is regulated by the Debye-Waller factor, that by Eq.
(5.30) is not a small number. It is for this reason that, as shown in Fig. 5.2, the
paramters ∆ are pushed down to very small energies, providing a clear separation
of timescales between the fast, coherent dynamics of the TLS alone, and the slow,
decoherence-inducing influence of the phonon bath. This picture is in perfect agree-
ment with the wide distribution of the tunneling strengths found in experiments,
and for their considerably small values.

Before moving on, it is worth mentioning that already at the level of Eq. (5.34)
one can begin to see the physics of MBL appearing. Indeed, ignoring for a moment
the presence of phonons, that are only exponentially weakly coupled, the dynamics
of the TLS is governed by an Hamiltonian that is diagonal in σz, and in the form of
the l-bit model already discussed in Chap. 4. One therefore expects to see features,
in the dynamics of TLS, that are similar to the ones predicted by the l-bit model. The
influence of the phonons through the σx term will be the object of study of the next
Section.

5.2.4 Relaxation of the TLS via Fermi’s Golden Rule

In this Section, we provide some simple estimates for the relaxation dynamics of the
TLS, when the phonons are considered as a bath. This will be the starting point for
the more quantitative analysis of Sec. 5.3.1, where the relaxational dynamics will be
investigated through the more sophisticated GKSL equation.

The first thing to do is to notice that the polaron transformation has taken into
account the strong-coupling effects, generating new, small renormalized coupling.
Roughly speaking, there are three energy scales in the Hamiltonian (5.34) (specifying
the material to SiO2; for the other materials the behaviour is the same):

SiO2 : ε i ∼ 1014 Hz, ∆i ∼ 105 Hz, Jij ∼ 1010 Hz. (5.36)

Since both ε i � ∆i and ε i � Jij, one can integrate out the phonons in a system of
non-interacting TLS. It is not important that ∆i . Jij, since the level spacing will be
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of the order of ε i. Anyway, we will also contemplate on the effect of adding the
interactions at the end of this section.

Suppose to start from an infinite-temperature state: the “up” and “down” states
of the TLS are equally populated. The main process one needs to consider is the de-
cay of an “up” TLS into phonons. It is important to stress at this point that it will be
the “up” and “down” states of the Hamiltonian (5.24) (or equivalently Eq. (5.34)) to
be considered physical, that is to say the TLS states after having applied the polaron
transformation. This point is subtle, since the distinction between TLS and phonons
becomes blurry in the strong-coupling regime. However, since the interactions Jij
are small, one can safely consider the TLS one by one when they decay; moreover,
since the phonons are a thermodynamically large system, the influence of just one
TLS being flipped is negligible. For these reasons, one can safely assume that the
phonon ground state is left unchanged in the asymptotically far regions, even if the
operators ∆iσ

∓
i e±iΓi,0 b̃†

i e−iΓi,0 b̃i not only flip the TLS, but also shift locally the phonon
ground state.

For the reasons outlined above, on can use Fermi’s Golden Rule applied to only
one TLS. The decay rate reads

Yi = ∑
f

2π

h̄

∣∣∣〈 f , ↓|∆iσ
−
i eiΓi,0 b̃†

i e−iΓi,0 b̃i |0, ↑〉
∣∣∣
2

ρ f (2ε i) (5.37)

where ρ f (E) is the final density of states of the phonons at energy E. In particu-
lar, for the reasons above the final state can be thought as made of phonons of the
unperturbed Hamiltonian Hph. In App. C.4 it is determined

Yi =
π∆

2
i ε i

h̄E2
i

e−2εi/ED 0F2

(
;

3
2

, 2;
ε2

i
4E2

i

)
(5.38)

where 0F2 is a generalized hypergeometric function (see Eq. (C.53)), ED is the Debye
energy and Ei is defined in Eq. (5.29).

The expression above, in terms of the generalized hypergeometric function, is not
very transparent: using its asymptotic expansions (Eq. (C.54)) everything becomes
clear instead. For weak coupling between TLS and phonons, one needs to take the
small argument expansion, and finds 0F2(; 3/2, 2; ε2

i /4E2
i ) ' 1: it follows

Yi =
γ2

i ∆
2
i ε i Tr(D2

i )

3πh̄4ρv5
e−2εi/ED . (5.39)

The meaning of this equation is made clear by the comparison with the single-phonon
computation that will be performed in Sec. 5.3 in the framework of the GKSL equa-
tion, see Eq. (5.53): the two expressions are practically the same. In the strong-
coupling limit, instead, Eq. (5.38) takes into account the emission of many real phon-
ons, and this is reflected from an enhancement in the decay rate. However, for
physical values of the parameters, such enhancement is not enough to overcome
the exponential suppression ∝ e−2εi/ED , due to the finite bandwidth of the phonons.

The decay rate of Eq. (5.38) is correct to order O(∆
2
i ) (which is a small parame-

ter), and to all orders in the phonon operators b̃i,b̃†
i . Therefore, it is expected to give a

pretty accurate result. Considering only the typical values for all the random param-
eters, and employing the choice 2 for the dipole tensors, one finds that the typical
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FIGURE 5.2: Probability distribution functions (pdf) for the (disordered) parameters of SiO2.
The distributions are computed following the prescriptions explained in the main text (in
particular, point 2 at the end of Sec. 5.1 is used). One can see a clear separation of timescales:
the single-site energies ε represent the fastest scale, and are followed by the interactions
Jij. Then there is the renormalized tunnelling ∆, which in the strong-coupling computation
dictates also the coupling to phonons. Finally, the thermalization rates Y are the slowest,
and are spread across many orders of magnitude.

values of Yi are

YSiO2 ' 7.6× 10−1 Hz, YBK7 ' 3.7× 10−2 Hz, YPMMA ' 7.2× 10−1 Hz . (5.40)

Since Jij � h̄Yi (at least at the level of typical values), the coherent dynamics of the
TLS should be observed for a wide time window, before thermalization ultimately
takes place.

The values given above for the thermalization rates Yi should be taken with a
grain of salt. As can be seen in Fig. 5.2, the probability distribution of Yi is extremely
wide, spanning many orders of magnitude. Therefore, we do expect thermalization
to be slow, but reasonably it will take place on timescales shorter than this average
value. On the other hand, several experiments observe that a time of the order of
minutes is necessary for the TLS to behave as thermal (see e.g. Refs. [355, 369]), so
the distributions in Fig. 5.2 may explain well such experimental observation.

At this point, the last thing to do is to address what happens when the interac-
tions among TLS are taken into account as well, when computing the decay rate.
First of all, the rates of Eq. (5.38) are nearly unchanged if perturbation theory is done
wrt. the interacting Hamiltonian ∑i ε iσ

z
i + ∑ij Jijσ

z
i σz

j . Indeed, the only difference
that may take place is that a phonon-mediated process speeds up the decay of a
group of “up” states. However, even if interactions may favour the energy match-
ing condition for the decay, nevertheless more TLS in the configuration need to be
flipped, and this happens at higher orders in ∆i. In conclusion, we are confident that
perturbation theory as we have developed it captures the essential features of the
relaxation dynamics of the TLS, and is quantitatively accurate to a fair degree. In
a forthcoming study [9], we will address the possibility of applying a GKSL frame-
work to the many-body problem of Eq. (5.34), thus putting the results of this Section
on firmer grounds.
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5.3 Dissipative dynamics at weak coupling

In the previous Section we described in detail what is the effect of strong interactions
between TLS and phonons. The overall picture is that each TLS is renormalized by a
cloud of phonons (a version of the polaron problem) and, in terms of the renormal-
ized operators, the Hamiltonian (5.34) presents a weak coupling between phonons and
TLS. It is therefore customary in the literature to start directly from the weakly-coupled
Hamiltonian, taking it as an alternative microscopic model. This is exactly what we
are going to do in this Section, with the purpose of studying the out-of-equilibrium
dynamics of the TLS in presence of the phonon bath. Working at weak coupling will
enable one to get a rather intuitive picture of the TLS dynamcs, and we will comment
again on the consequences of the underlying strong coupling in Sec. 5.5.

5.3.1 Gorini–Kossakowski–Sudarshan–Lindblad master equation

Let us start again from Eq. (5.1). We choose to work in the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) framework [370, 371], obtaining a master equation for
the (reduced) density matrix of the TLS ρ, that must have the general form

∂tρ(t) = −
i
h̄
[HTLS + HLS, ρ(t)] + ∑

κ

Lκρ(t). (5.41)

The first term on the r.h.s. describes the unitary evolution of the system, and it is
called the Liouvillian. It is composed of HTLS, which is the TLS Hamiltonian of Eq.
(5.2), and HLS, which is the Lamb-Stark shift Hamiltonian (it will be specified below
in Eq. (5.48), and it basically contains the same interactions found from the strong-
coupling treatment). The second term on the r.h.s., the so-called Lindbladian, de-
scribes instead dissipation and decoherence. The Lκ are Lindblad super-operators;
in general, the label κ can assume O(N2) values but, as we will show in the follow-
ing, in our system the dominant terms are on-site, reducing κ ≡ i = 1, 2, . . . , N.

The GKSL master equation (5.41) relies on some approximations [370, 371]. First,
one assumes weak coupling between TLS and phonons: this was already discussed
at length; here we just remark that one can perform another consistency check a
posteriori, by verifying that the energy scales of decoherence and dissipation induced
by phonons are smaller than the TLS energy set by W. The GKSL framework consists
in three further approximations:

1. Born approximation: at all times the influence of the TLS on the phonon thermal
population is negligible. This is a consequence of weak coupling, and of the
TLS being a dilute system in the (amorphous) lattice. Therefore, we expect the
approximation to be valid to a good extent in our system.

2. Markov approximation: all the bath excitations decay on very fast timescales
with respect to those of the TLS. This is not guaranteed when working at ultra-
low temperatures, but it is still a good starting point.

3. Rotating-wave approximation: when considering two TLS, the resonant processes
are dominant. Equivalently, the relaxation time of TLS in the open-system, τR,
is long with respect to the timescale of the intrinsic evolution of the system
[370]; in formulas: τR � |νi − νj|−1. We will validate a posteriori this assump-
tion in Sec. 5.3.4.

Within these assumptions, the TLS-TLS interactions in HLS commute with the iso-
lated TLS Hamiltonian: [HTLS, HLS] = 0, ultimately leading to the MBL character
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of the unitary dynamics. It is interesting to notice that MBL features appear from
different, complementary computations, in the weak- and strong-coupling limits.

5.3.2 Free TLS evolution

In order to compute the Lamb-Stark shift HLS and the Lindblad super-operators Lκ,
it is convenient to diagonalize the TLS Hamiltonian HTLS 5.2 [370, 371]. We look for
single-site operators Si such that

[HTLS, Si] = −h̄νSi. (5.42)

The linear problem is easily solved, finding eigenvalues

h̄νi,0 = 0, h̄νi,± = ±h̄νi = ±2
√

ε2
i + ∆2

i , (5.43)

with corresponding eigenoperators

Sz
i = ~vi,0 ·~σi, S±i = ~vi,± ·~σi, (5.44)

where
~vi,0 = − 2

h̄νi
(∆i, 0, ε i), ~vi,± =

2
h̄νi

(−ε i,±ih̄νi/2, ∆i). (5.45)

Notice that, since typically ∆i � ε i ∼ W, h̄νi will be of order W. Also, defining
Sx

i = (S+
i + S−i )/2 and Sy

i = (S+
i − S−i )/2i, the operators Sx

i , Sy
i , Sz

i form a Pauli
basis. At this point, it is easy to verify that the TLS Hamiltonian reads

HTLS = −1
2 ∑

i
h̄νiSz

i . (5.46)

5.3.3 Coupling to phonons

The coupling with phonons induces both dissipation and TLS–TLS interactions. Un-
der the assumptions discussed above, they can be be modelled via the GKSL master
equation. Its final form for TLS in glasses is given by:

∂tρ(t) = −
i
h̄

[
− 1

2 ∑
i

h̄νiSz
i + ∑

ij
Jw
ij Sz

i Sz
j , ρ(t)

]

+ ∑
i

Yw
i fT(h̄νi)

(
S+

i ρ(t)S−i + S−i ρ(t)S+
i − 4ρ(t)

)

+ ∑
i

Yw
i

(
S+

i ρ(t)S−i + {ρ(t), Sz
i } − 2ρ(t)

)
. (5.47)

In the previous equation, the first term on the r.h.s. corresponds to the commutator
− i

h̄ [HTLS + HLS, ρ(t)], where
HLS = ∑

ij
Jw
ij Sz

i Sz
j (5.48)

is the Lamb-Stark shift Hamiltonian. With the notation Jw and Yw we are empha-
sizing that such quantities are derived via a weak-coupling computation, therefore
they are in principle different from the ones obtained in Sec. 5.2.

The second term on the r.h.s. of Eq. (5.47) contains the dissipative terms: it is writ-
ten separating explicitly the temperature dependent and independent contributions,
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FIGURE 5.3: Virtual (a,b) and real (c,d) phonon processes that lead to TLS-TLS interactions
and dissipation, respectively. (a) Interactions in the Sz–Sz channel are mediated by phonons
of vanishing frequency ω, and take place among each couple ij, yielding HLS of Eq. (5.48).
(b) Flip-flop interactions can take place only if the two TLS resonate: this is a very rare event,
because the νi’s are widely distributed random variables. We disregard this possibility alto-
gether throughout this study. (c) Dephasing of a single TLS under the action of the phonon
bath. This process is negligible because there are no real phonons at ω = 0. (d) Decay of
a TLS into a phonon. Considering that resonating TLS are very rare and the phonon den-
sity of states vanishes at ω = 0, as noted above, it is easy to see that non-unitary processes
involving two TLS can be neglected. This figure is taken from Ref. [2].

indeed fT(ε) := (eε/kBT − 1)−1 is the Bose-Einstein distribution function at temper-
ature T. Considering that h̄νi ∼ W ∼ 0.1 eV, however, at ultra-low temperature
(T ∼ 1 K and below) fT ' 0, and our system is effectively at zero temperature. Thus,
in the following we will keep only the temperature-independent contributions.

Before introducing the expressions for Yw
i and Jw

ij , a few comments are in order.
As depicted in Fig. 5.3, in general interactions can take place either in the Sz–Sz

channel (panel (a)), or by flipping two spins with the emission and absorption of a
virtual phonon (panel (b)). This latter case, for our system, can be neglected: since
νi and νj are random variables, the matching condition ω = νi = νj (ω is the phonon
frequency), entailed by the rotating wave approximation, is a rare event. Thus, the
Lamb-Stark shifts are always diagonal in Sz4. Moreover, the Lindblad superopera-
tors of Eq. (5.41) correspond only to the decay processes in Fig. 5.3d, since purely
dephasing processes (panel (c)) are absent: this simply follows from the density of
states of the phonons at zero frequency being zero.

Having understood what are the physical processes behind the GKSL evolution,
we can compute explicitly the dissipation rates Yw

i and the interaction strengths Jw
ij .

As stated above, they both come from phonon processes; therefore, one can treat
them in a unified way. We start by rewriting the interaction Hamiltonian, Eq. (5.11),
as

Hint =: ∑
i

σz
i Ei : (5.49)

4Even accounting for rare interactions in the Sx–Sx channel, the picture is not modified. Indeed,
terms of the form KijSx

i Sx
j will still decay with the distance rij: the probability of having a resonant ij

couple that is also close in real space is vanishingly small. Therefore, the MBL-breaking effect of weak
Sx

i Sx
j terms [372–374] is negligible in comparison to the Lindblad dissipator.
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Ei are the environment operators that need to be traced out. Then, following Refs.
[370, 371], we define

Γω
ij :=

1
h̄2

∫ ∞

0
ds eiωs TrB

[
ρT

B Ê †
i (t) Êj(t− s)

]
(5.50)

with the hat on Êi(t) indicating the interaction picture. It then holds

Yw
i =

(
∆i

h̄νi

)2 [
Γνi

ii +
(
Γνi

ii

)∗]∣∣∣
T=0

, (5.51)

Jw
ij =

2ε i

h̄νi

2ε j

h̄νj

h̄
2i
[
Γ0

ij −
(
Γ0

ji
)∗]. (5.52)

The prefactors ∆i/h̄νi and 2ε i/h̄νi come from the basis rotation in Eq. (5.44); for the
rest, here below it will appear how Yw

i and Jw
ij are essentially the same of the ones

found via the strong-coupling computations in Eqs. (5.39) and (5.15), respectively.
We leave to Appendix C.5 all the details of the computation of Γω

ij , which is rather
straightforward, while we present here the results obtained:

Yw
i =

∆2
i γ2

i νi Tr(D2
i )

12πρh̄3v5
, (5.53)

Jw
ij =

γiε i

h̄νi

γjε j

h̄νj

Dij

4πρv2r3
ij

. (5.54)

Above, Tr(D2
i ) = ∑ab Dab

i Dba
i , and Dij is again the contraction of the dipoles Dab

i and
Dcd

j defined in Eq. (C.19).
At this point, we can check a posteriori whether the weak-coupling and the rotating-

wave approximations are valid. Plugging in Eqs. (5.53) and (5.54) the typical values
of the parameters, we find h̄Yw

i /W ∼ 10−8 and Jw
ij /W ∼ 10−3. Therefore, even in

the extreme case of a coupling constant comparable to the on-site energies γ ∼ W,
the assumption of weak coupling is perfectly justified a posteriori. Moreover, as an-
ticipated at the beginning of this Section, the rotating-wave approximation is amply
valid too: indeed, the relaxation time in the open system is much longer than the
intrinsic timescale of TLS: (Yw

i )−1 � |νi − νj|−1 ∼ h̄W−1.

5.3.4 Dynamical phases from the GKSL equation

The GKSL equation (5.41) constitutes the starting point for exploring the quantum
dynamics of the TLS. As a first thing, we notice that in the absence of dissipation the
evolution would be unitary, governed by the Hamiltonian

HTLS + HLS = −1
2 ∑

i
h̄νiSz

i + ∑
ij

Jw
ij Sz

i Sz
j . (5.55)

HTLS + HLS is completely expressed in terms of the extensive set of local conserved
quantities Sz

i . This is the same property of the effective Hamiltonian of MBL sys-
tems, known as the l-bit Hamiltonian [106–109, 302, 328]. Borrowing the terminology
from MBL, we can refer to the Sz

i ’s as the l-bits, or local integrals of motion (LIOM);
indeed, they are on-site operators whose values are conserved during time evolu-
tion. However, HTLS + HLS presents two main differences with respect to the l-bit
Hamiltonian of standard MBL systems. First, in the TLS Hamiltonian the l-bits are
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FIGURE 5.4: Sketch of the expected phase diagram for TLS in glasses. From Eq. (5.56) we
see that an MBL transient regime can be observed before thermalization takes place, if the
typical timescales of interaction are short with respect to the dissipation timescales (blue-
shaded area). The three glassy materials reported in Table 5.1 lie well within the MBL region,
even accounting for the large uncertainties in the parameter ∆typ (the standard deviation
of log(∆i) is plotted as an errorbar). Thus, the localized regime should be experimentally
observable. This figure is taken from Ref. [2].

formed by single spins, not exponentially localized groups of them. Second, the in-
teraction between the TLS decays with distance as a power law, Jw

ij ∝ r−3
ij , rather than

exponentially. We will comment more on this point later, in Sec. 5.4.3.
The diagonal interactions in HLS are responsible for the dephasing of the spins.

That is to say, if one artificially turns off the jump operators, i.e. if one sets the dissi-
pation rates Yw

i ≡ 0, diffusive transport is suppressed but the entanglement spread-
ing persists. We will present numerical results on this artificial situation in Sec. 5.4.3,
showing that the entanglement entropy grows slowly, but indefinitely in time, while
the concurrence decays as a power law.

The picture described above is broken by the introduction of the jump operators:
dissipative terms in the GKSL equation kill long-time coherence and drive the sys-
tem to a thermal state. Nevertheless, one can observe an MBL transient regime in
the relaxation dynamics, if the timescales of dissipation are appreciably longer than
those of interactions. Such competition is quantified by the dimensionless ratio

h̄Yw
i

Jw
ij
∼
(

∆typ

W

)2 ( W
h̄τ−1

)3

, (5.56)

where τ = r/v, r = ρ−1/3
TLS being the typical distance between TLS and v the speed

of sound in the glass. If this ratio is sensibly smaller than 1, the signatures of the
localized phase should be observed in the dynamics of the system, and in particular
in the spreading of entanglement. In Fig. 5.4, we show a tentative dynamical phase
diagram for the TLS system.

Recalling that in experiments ∆typ ∼ 10−5 W while W ∼ 0.1 eV and, considering
v ∼ 5 km/s and r ∼ 10 nm, we have h̄τ−1 ∼ 1 meV. Thus, the ratio is approximately
h̄Y/J ∼ 10−5 ÷ 10−4, making dissipation much slower than the interaction part of
the unitary dynamics. Even if one allows ∆typ—the most difficult parameter to infer
from experiments—to vary few orders of magnitude, the system will still present an
observable MBL transient regime.
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FIGURE 5.5: The TLS are uniformly distributed in a cube of size L, at constant density. The
pairwise interactions Jij in Eq. (5.54) are mediated by phonons. These are also responsible
for the dissipation in Eq. (5.53). We employ periodic boundary conditions to minimize finite-
size effects. This figure is taken from Ref. [2].

5.4 Numerical simulations

In this Section we present the results of our numerical simulations on the real-time
evolution of the TLS. The analysis will be divided into two parts. In Sec. 5.4.3, we
will consider the artificially isolated system (i.e. the one evolving only under the uni-
tary dynamics given by the Liouvillian of the GKSL) governed by the Hamiltonian
in Eq. (5.55). In Sec. 5.4.4, we will re-introduce the dissipative terms and consider
the full TLS evolution governed by the GKSL master equation (5.47).

Before going through that, in Secs. 5.4.1–5.4.2 we will briefly discuss the assump-
tions involved in our numerical simulations, and define the dynamical observables.

5.4.1 Disorder distributions of the parameters

As discussed in Sec. 5.1, in the literature the parameters defining the TLS model
are drawn from wide probability distributions (see pε and p∆ in Eq. (5.3) and (5.4),
respectively). It follows that the competing timescales in the GKSL master equa-
tion (namely ν−1

i , h̄/Jw
ij , and (Yw

i )−1) are distributed over several orders of magni-
tude and, even though their typical values are very different, they overlap one with
another. In our numerical simulations we employ simplified and less broad distri-
butions, arguing that this choice, if properly taken, does not qualitatively alter the
physical content and predictions of the model.

We fix W ≡ 1, thus setting the (dimensionless) energy scale; ∆min/W = 10−2

and ∆max/W = 1, thus ∆typ/W = 10−1 (unless otherwise specified). We also set
γi ≡ W, the material density ρ = 2 g/cm3, and the speed of sound vL,T = 5 km/s,
irrespective of polarization. We consider Tr(D2

i ) to be the square of a Gaussian ran-
dom variable of zero average and variance 1, since it must be positive, and Dij to be a
Gaussian random variable of zero average and standard deviation 1, since it can take
both signs (see also App. C). Finally, we consider the TLS as uniformly distributed in
a cube with side L, and compute their distances rij using periodic boundary condi-
tions. The cube side depends on the number of TLS as L = L0N1/3, with L0 ' ρ−1/3

TLS ,
so that we keep fixed the TLS number density ρTLS. For numerical purposes, we fix
L0 = 1 nm. See Table 5.1 for a comparison with the experimental values, and Fig. 5.5
for a sketch of the system.



70 Chapter 5. Signatures of MBL in the dynamics of TLS in glasses

In order to explore the phase diagram obtained in the GKSL framework, and
shown in Fig. 5.4, we introduce two further artificial parameters to tune interaction
and dissipation strengths:

Jij → η Jij, Yi → εYi. (5.57)

In Sec. 5.4.3 we study the artificially isolated system, setting η = 105 (in order to
amplify the effects of interactions on the numerically accessible timescales) and ε =
0. In Sec. 5.4.4 we re-introduce the dissipator in the GKSL master equation, and we
set η = 105 and ε = 10−6, 10−4, 1.

With these choices of the parameters, the on-site frequencies νi, the TLS-TLS in-
teractions η Jij/h̄ (with η = 105), and the dissipation rates εYi (for ε = 1) are of
comparable orders of magnitude and are much less widely distributed than origi-
nally. The latter feature is particularly useful for numerical purposes, since one can
access only small system sizes and, hence, cannot sample well broad distributions.
Our results will be discussed in view of these choices.

5.4.2 Initial state and dynamical observables

We always take the initial state of the dynamics to be a product state, in which each
TLS is represented by a random vector on the Bloch sphere:

|ψ(0)〉 =
N⊗

i=1

(
cos(θi/2)| ↑〉i + eiφi sin(θi/2)| ↓〉i

)
, (5.58)

where θi ∈ [0, π] and φi ∈ [0, 2π). Thus, the system is initially at infinite tempera-
ture, and we can track precisely the entanglement growth and spreading.

The choice of the appropriate entanglement measure is not obvious: since we are
dealing with an open quantum system, we wish to discriminate between quantum
entanglement and thermal entropy. A reliable measure of (pairwise) quantum en-
tanglement in open systems is the concurrence Cij [313, 314, 317] (see also Chap. 4),
where i and j are TLS indices. The concurrence quantifies the distance of the two-
site reduced density matrix ρij from the manifold of mixed, separable states whose
reduced density matrix can be written as ρ = ∑a paρ

sep
a , where ρ

sep
a are separable,

pa ≥ 0, and ∑a pa = 1. This implies that, if Cij > 0, there is no mixture of separable
states that can account for the correlations between sites i and j. For two spins-1/2,
it can be shown [317] that

Cij = max {0, λ1 − λ2 − λ3 − λ4}, (5.59)

where λ2
a are the eigenvalues of the matrix Rij = ρij(σy⊗ σy)ρ∗ij(σy⊗ σy) sorted in de-

scending order, and the complex conjugation is done in the standard computational
basis.

We define the average concurrence as

C(t) :=
1
N ∑

1≤i<j≤N
Cij(t). (5.60)

The normalization factor 1/N (instead of the seemingly natural 1/N2) is due to the
monogamy of entanglement: each TLS can be highly entangled only with another TLS,
so among the N(N − 1)/2 terms in the sum, only O(N) will be non-negligible.
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Its particular definition allows the concurrence to quantify the entanglement be-
tween the two TLS considered, irrespective of how they are entangled with other
degrees of freedom. Thus, it spots entanglement between two TLS even if they are
thermal, i.e. also entangled with a heat bath. For this reason, we employ the concur-
rence as a well-defined entanglement measure both in the absence (Sec. 5.4.3) and in
the presence (Sec. 5.4.4) of dissipation.

It is interesting to compare the time behavior of the concurrence with the half-
system entanglement entropy (HSEE)

SE(t) = −Tr(ρA log ρA), (5.61)

where ρA is the reduced density matrix of the half system A in the bipartition A|B.
Since the system is three-dimensional, and the TLS do not fall on a regular lattice,
we bipartite the system in the following way. For each TLS, a bubble is constructed
around it so that N/2 TLS fall inside and N/2 outside the bubble. The entanglement
entropy relative to the bipartition is computed as in Eq. (5.61), and then averaged
over all such bipartitions. We measure SE(t) both with and without the dissipator
(see Sec. 5.4.3 and 5.4.4, respectively).

5.4.3 Unitary evolution of the TLS

This Section is entirely devoted to the study of the unitary time evolution of a system
of N TLS governed by the Hamiltonian HTLS + HLS of Eq. (5.55). As discussed in Sec.
5.3.4, this Hamiltonian is diagonal in the operators Sz

i , i.e. the values assumed by Sz
i

are conserved quantities; therefore, adopting the terminology of MBL systems, we
say that HTLS + HLS is in the l-bit form, and Sz

i are local integrals of motion.
Studying the dynamics induced only by the Hamiltonian term of the GKSL equa-

tion (5.47) is equivalent to set ε = 0 (see Eq. (5.57)), i.e. to assume that the timescales
of dissipation are much longer than those of interactions: 1/Yw

i � h̄/Jw
ij . In this

limit, it is clear that a coherent many-body dynamics can take place before thermal
equilibrium is reached. This situation corresponds to the bulk of the MBL phase
depicted in the phase diagram of Fig. 5.4.

Thanks to the diagonal nature of the Hamiltonian (5.55) and to the choice of ini-
tial product states, few-sites observables are efficient to compute, as was recognized
in previous studies [110, 111, 325]. We refer the interested reader to App. C.6 for
more details on the computation. Here, we just mention that to compute the con-
currence, which is a two-site observable, within the diagonal Hamiltonian (5.55) it
is not necessary to perform the time evolution of the whole 2N × 2N density matrix,
but only to carry out O(N) operations (see also Chap. 4 and App. B). Therefore, we
could easily simulate systems of N = 60 TLS.

The results of the simulations for the unitary evolution are shown in Figs. 5.6a,
5.6b, and 5.7. One can see that the concurrence C(t), defined in Eq. (5.60), raises lin-
early from the initial value 0 (the initial state is factorized) to a value independent of
N (Fig. 5.6a), but slightly dependent on ∆typ (Fig. 5.6b). It then falls off to a plateau
via a power-law decay, whose exponent βi remains finite in the thermodynamic limit
(inset of Fig. 5.6a), and depends on ∆typ (inset of Fig. 5.6b). Fig. 5.7a shows that the
concurrence plateau decays exponentially with the system size: C(∞) ∝ e−αN . Fi-
nally, from Fig. 5.7b we see that the concurrence reaches its maximum on timescales
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FIGURE 5.6: (a) Average concurrence within the unitary dynamics, ε = 0 (solid lines). Af-
ter a linear raise C ∼ t (black dashed-dotted line), the average concurrence decays with a
power-law C ∼ t−βi (dashed lines), down to a value which is exponentially small in N. We
set ∆typ = 0.1, η = 105; the results are averaged over 5000 disorder realizations. Inset: The
exponent βi depends on N and reaches a finite value in the thermodynamic limit. The er-
rors are computed by using the statistical uncertainties of the concurrence values. Not all
datasets were shown in the main figure to improve readability. (b) Dependence of the av-
erage concurrence decay exponent βi on ∆typ in the case of unitary evolution (ε = 0). We
set N = 50, η = 105 and averaged over 5000 disorder realization. We see that the smaller
∆typ, the faster the decay, which remains however compatible with a power-law C(t) ∼ t−βi

(dashed lines). This figure is taken from Ref. [2].

of order h̄/Jw
ij . In conclusion, the concurrence time behavior can be schematized as

C(t) ∼





t if t < t1

t−βi if t1 < t < t2

e−αN if t > t2,

(5.62)

where t1 does not depend significantly on N, ∆typ but depends parametrically on
h̄/Jw

ij , while t2 grows with N and diverges in the thermodynamic limit.
The decay of the concurrence from its maximum is due to the fact that the inter-

actions make the entanglement spread among many TLS, as illustrated in Fig. 5.8,
while each TLS cannot be highly entangled with more than one other TLS because
of the monogamy of the entanglement. The power-law decay of the concurrence
from its maximum is in contrast to the behavior of ergodic systems, in which the
concurrence vanishes exponentially fast [325]. The slowness of such decay is the fin-
gerprint of the lack of thermalization and of the presence of many-body localization
in the artificially isolated TLS system. In fact, the slow decay of correlation functions
is known [110] to be a feature of MBL dynamics, and the concurrence (albeit not an
operator nor a correlation function) follows the same behavior.

We stress again that HTLS + HLS, although completely expressed in terms of local
integrals of motion, is different from the effective l-bit Hamiltonian of MBL systems,
as already pointed out in Sec. 5.3.4. In particular, the TLS interactions in HLS scale
as a power law with distance. Following general arguments [110, 375], one would
expect that for long-range interactions the correlation functions decay in time as
stretched exponentials. We cannot exclude that a stretched-exponential behavior
would be observed in TLS if one pushes the dynamics at larger times. In the present
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FIGURE 5.7: Results for the unitary dynamics, ε = 0. (a) Plateau value of the average concur-
rence at long times (dots), with errors coming from statistical fluctuations. From a fit (solid
line) we find that C(∞) ∝ e−αN with α ≈ 0.8. This is considerably larger than the value
given by the ETH prediction, i.e. a random state, which obeys C ∝ e−a2N

with a ≈ 0.127 (see
App. C.7). Here η = 105, ∆typ = 0.1, and an average over 10000 disorder realizations was
performed. (b) Average concurrence for different interaction strengths η. Rescaling the time
as t → tη/105 (we normalize to η = 105 to compare to the other plots) the curves collapse,
showing that the value of η only shifts the timescale but does not modify the shape of the
curve C(t). Here N = 50, ∆typ = 0.1, and an average over 1000 disorder realizations was
performed. This figure is taken from Ref. [2].

study, however, we are only interested in the TLS relaxation dynamics at intermedi-
ate timescales since, at long times, dissipation would always bring the system to a
thermal state.

The results on the half-system entanglement entropy (HSEE) are shown in Fig.
5.8, compared with the behavior of C(t). This comparison confirms, as anticipated,
that the concurrence starts to decrease when the entanglement spreads and, thus,
SE(t) starts to increase.

In addition, Fig. 5.8 shows that SE(t) grows slowly for a large time window.
This slowness is known [129] to be the signature of localization, and shows that
TLS remain coherent and non-ergodic during the time-evolution. According to the
arguments in [106, 319, 375], we expect that for a long-range, 3d system as the TLS
one entanglement would grow algebraically in time, SE(t) ∼ tα with α ∼ 1. From
our data, the entanglement growth is compatible with both a power-law with small
exponent (∼ 1), and a logarithmic growth. In the inset of Fig. 5.8, we see that the
asymptotic value of HSEE, SE(∞), is proportional to N, indicating a volume law.

5.4.4 Full evolution of the TLS

This Section is entirely devoted to the study of the time evolution of the TLS gov-
erned by the GKSL master equation (5.47). We set T = 0, but ε 6= 0 (see Eq. (5.57)),
i.e. the system is in the presence of dissipation and decoherence. Increasing ε, we
increase the typical dissipation rate. For our particular choice of parameters (Sec.
5.4.1), when ε = 1, dissipation ultimately becomes comparable with the timescale of
the interactions.

To investigate the time evolution of the system, one has to integrate numerically
the GKSL master equation for the TLS density matrix (see App. C.8 for more details).
Because of the doubling of the Hilbert space dimension, we are forced to small sys-
tem sizes, up to N = 9. In the following analysis, we varied both N (to perform a
finite-size scaling) and ε.
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FIGURE 5.8: Unitary evolution: half-system entanglement entropy per unit volume
SE(t)/N, as defined in Eq. (5.61), for various system sizes (solid lines). We set ∆typ = 0.1,
η = 105, and averaged over 1000 disorder realization. The average concurrences C(t) (Eq.
(5.60)) are shown as dashed lines for comparison. We see that the concurrence reaches a
maximum at short times, as nearby TLS start to evolve coherently. Then, it starts to decay
because the entanglement becomes many-body, as shown by the increase in the HSEE. In
this regime, the growth of the HSEE is compatible both with a small power law SE(t) ∼ tα

with α ∼ 1, as well as log(t); the dotted line shows log(t) as a guide for the eye. Inset: The
HSEE saturates to a volume law, as expected for an MBL system: the phase of each spin
depends on all the others. The error bars are computed from the statistical fluctuations of
the plateau values. This figure is taken from Ref. [2].

As can be seen from Fig. 5.9a, when ε is small enough the concurrence C(t)
reaches its maximum at the same time as with unitary dynamics (ε = 0). Then,
it decays from such peak and stabilizes around a finite value dependent on N (cf.
Sec. 5.4.3), following the same behavior as in the case ε = 0. Ultimately, the dis-
sipation forces C(t) to vanish; C(t) departs from the ε = 0 plateau, C(∞; ε = 0),
with a stretched-exponential functional form (Fig. 5.9b). We can ascribe this feature
to the interaction between TLS and phonons: when ε 6= 0, thanks to the dissipative
terms in the GKSL equation (5.47), entanglement can spread among infinitely many
phonons, preventing the concurrence from stabilizing around the plateau value.

Furthermore, Fig. 5.9a shows that, increasing the dissipation strength (ε = 1), the
concurrence maximum becomes smaller and is reached at earlier times. However,
the decay from the maximum follows a power-law behavior as in the unitary case,
albeit with a different exponent βo, as reported in Fig. 5.10a. This feature is very
important since it shows that the signatures of localization are visible also in the
presence of dissipation, if the latter is not too large. The reason at its origin might be
linked to the specific (in particular, on-site) form of the dissipation operators in the
GKSL equation [335]. The power-law exponent βo depends on ε and N, as shown
in Fig. 5.10b, and remains finite in the thermodynamic limit. Due to the small sizes
accessible when integrating the full GKSL equation, we expect the extrapolated ther-
modynamic value of βo to be underestimated (see Fig. 5.10b, and the results on the
unitary case ε = 0).

Notice that the behavior of the concurrence is determined only by the ratio h̄Yw
i /Jw

ij .
Remember that, in the unitary case, where the dissipation is absent, changing the
typical strength of Jw

ij through the parameter η only shifts the timescale of C(t), with-
out modifying the shape of the curve (see Sec. 5.4.3, Fig. 5.7b). Hence, in this Section,
we employ the artificial parameter ε to investigate the behavior of pairwise entangle-
ment in the different regions of the phase diagram (Fig. 5.4) by (effectively) changing
the ratio h̄Yw

i /Jw
ij .
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FIGURE 5.9: (a) C(t), as defined in Eq. (5.60), for ε = 0, 10−6, 1, and different values of N. We
see that the presence of dissipation in the GKSL master equation (5.47) decreases the con-
currence maximum and moves it at earlier times. We set ∆typ = 0.1, η = 105, and averaged
over at least 1000 disorder realizations. (b) Stretched-exponential fit of the concurrence for
ε = 10−6, 10−4, normalized to the plateau reached at ε = 0: C(t; ε)/C(∞; ε = 0). Using as
fitting function α exp {−( t+t0

τ )δ}, we obtained δ ' 0.2 and τ = O(1). The plot shows the
results for ∆typ = 0.1, η = 105, averaged over at least 1000 disorder realizations. This figure
is taken from Ref. [2].
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FIGURE 5.10: (a) Power-law fit of C(t) at large times for ε = 1. (b) Power-law exponents βi
(ε = 0; data from Fig. 5.6a) and βo (ε = 1) as a function of 1/N. We see that the concurrence
decays faster as ε increases (dashed lines). However, our data can capture the behavior of
C(t) in the presence of dissipation only at small N, i.e. in the pre-asymptotic region. We
expect the large N behavior to give a larger exponent βo, as it happens for βi (dashed-dotted
line). We set ∆typ = 0.1, η = 105, and averaged over at least 5000 disorder realizations. The
errors are computed by using the statistical uncertainties of the concurrence values. This
figure is taken from Ref. [2].
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FIGURE 5.11: Half-system entanglement entropy SE(t), as defined in Sec. 5.4.2, per number
of TLS for various N and ε. The plot shows the results for ∆typ = 0.1 and η = 105, averaged
over at least 1000 disorder realizations. For ε = 10−6, we see that the entanglement spread-
ing takes place in two steps: first, the TLS become entangled with other TLS and SE(t)/N
reaches the plateau found in the case of unitary dynamics (ε = 0); then, HSEE grows further
due to the spread of the entanglement among TLS and phonons. For ε = 1, SE(t)/N is
almost independent of N, indicating a volume law. This figure is taken from Ref. [2].

Complementary to the concurrence is the HSEE SE(t), as defined in Sec. 5.4.2.
Its behavior for various N and ε is shown in Fig. 5.11. As in the unitary case, HSEE
starts to increase roughly when C(t) reaches its maximum, i.e. when the TLS start
to evolve coherently. It keeps increasing at larger times when entanglement spreads
inside the system. From the data at ε = 10−6, it can be seen that the entanglement
spreading takes place in two steps: first, the TLS become entangled one with another
and SE(t) reaches the plateau found with unitary dynamics (ε = 0); then, the HSEE
increases further due to the dissipative terms in the Lindbladian (5.47). Indeed, for
ε 6= 0 the TLS entangle also with the thermal bath.

5.5 Conclusions and outlook

In this Chapter, we investigated the well-known Two-Level System (TLS) model for
glasses at low temperatures. First, in the case of strongly-coupled TLS, we described
how a polaron transformation can be performed, obtaining a new, weakly-coupled
TLS model with renormalized parameters. Such transformation both sheds light on
the separation of timescales between coherent quantum dynamics and dissipation,
and paves the way for a non-perturbative analysis of the many-body relaxation of
TLS (object of the forthcoming study [9]).

Then, assuming weak coupling, we studied the quantum dynamics of tunnelling
TLS coupled to phonons. Within the framework of the GKSL master equation, we
computed explicitly the phonon-mediated interactions among TLS and the dissipa-
tion rates. We found that, as a consequence of disorder, the Hamiltonian responsible
for the unitary part of the TLS dynamics, and accounting for TLS-TLS interactions,
is completely expressed in terms of local integrals of motion, and is thus many-body
localized (MBL). Even though it differs from the effective l-bit Hamiltonian of stan-
dard MBL systems, in particular because the TLS-TLS interactions decay as a power
law with distance, the TLS relaxation dynamics presents clear signatures of quan-
tum MBL. Indeed, simulating the artificially isolated system with unitary dynamics
governed by the TLS Hamiltonian, we found that the concurrence decays slowly in
time as a power law, rather than exponentially fast as it would for an ergodic system.
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We also observed that the entanglement entropy grows slowly, as in standard MBL
systems.

This picture is broken by the presence of dissipation, induced by real processes of
TLS and phonons, which destroy MBL and ultimately drive the system to a thermal
state.

The competition between TLS-TLS interactions and dissipation determines the
presence of two distinct regions in the dynamical phase diagram of the model: when
interactions are comparable or stronger than dissipation, the system dynamics pres-
ents a transient bona fide MBL region; in the opposite case, the system quickly ther-
malizes. Considering the typical disorder distribution parameters encompassed in
the literature, it seems that real glassy materials sit in the bulk of the transient MBL
region of the phase diagram.

We explored numerically the dynamical phase diagram of the model, by tuning
the interaction and dissipation strengths. We found that, in the MBL region of the
phase diagram, even for dissipation strengths of the same order of magnitude of the
interactions, the dynamics of the entanglement resembles the one in the absence of
dissipation, showing clear signatures of localization: the concurrence decays as a
power law as in the artificially isolated system.

These findings suggest that the signatures of MBL might be experimentally ac-
cessible in real glassy samples at ultra-low temperatures, for instance using ultra-fast
laser probes. The dynamics we have depicted in this Chapter should be robust from
material to material and against the uncertainty in the characterization of the disor-
der distributions.
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6 Interface dynamics in the
two-dimensional quantum Ising
model

In this Chapter, I show how the dynamics of the two-dimensional Ising model can be solved
in some sectors of physical interest. In Sec. 6.1 I introduce the model and show that, in
the strong-coupling limit, the full Hamiltonian reduces to an effective “PXP” constrained
Hamiltonian. Then, in Secs. 6.2 and 6.3 I show that, within certain sectors, the dynamical
evolution is integrable if the coupling is infinite. In particular, in Sec. 6.3 I will show how
to compute various quantities, and I will describe a connection to a relevant problem in
contemporary mathematics. In Sec. 6.4 I will comment how integrability is broken when
some of the assumptions are lifted, but also show that the timescales after which the breaking
is manifest are very large. In Sec. 6.5 I will discuss at length the implications of having
quenched disorder in the model: even if weak disorder breaks the integrability, and strong
disorder is not able to form a stable localized phase, I will show that the dynamics undergoes
a severe slowdown, and characterize it. Finally, in Sec. 6.6 I will draw the conclusions and
hint at future developments. The Chapter is based on the publications [6, 8, 10].

As discussed in the Introduction, strongly interacting quantum many-body sys-
tems, evolving out of equilibrium, are generically expected to relax locally to ther-
modynamic equilibrium, after a short transient [376, 377]. In several cases, however,
microscopic interactions support long-lived dynamical stages away from equilib-
rium. In the previous Chapters, we have focused on some systems that escape ther-
malization either by strong, quenched disorder (Chaps. 4 and 5) or by dynamical
constraints (Chap. 3). Here, we move to formulate a general approach to analyze a
wide class of non-ergodic, dynamical regimes of 2d quantum spin lattices.

For concreteness, we consider the quantum Ising model in two spatial dimen-
sions, and inspect the non-equilibrium evolution of large domains (or bubbles) of
negatively magnetized spins, initially prepared in a background of positively mag-
netized ones, as in Fig. 6.1a. We find that the limit of large Ising coupling J � |h|, |g|
(h and g are respectively the longitudinal and transverse fields) is amenable of sev-
eral simplifications. In particular, for a large class of physically relevant initial states,
characterized by the presence of a “smooth” interface, one can find a mapping to a
one-dimensional lattice fermionic theory, which becomes integrable for J → ∞. The
integrability of this effective model is, of course, at the origin of ergodicity break-
ing: we will show, for example, that the corner of a large bubble melts and recon-
structs itself periodically, with period |g/h|. This is to be expected, the model be-
ing integrable, and for the case of the corner we can point directly to the reason
for this happening: the single-particle eigenstates of the dual fermionic theory are
Wannier-Stark localized. More surprisingly, we find that even going away from the
J = ∞ limit, in a perturbation theory in g/J � 1, the many-body eigenstates of the
dual fermionic model are Stark many-body localized [378, 379], therefore reproducing
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the whole MBL phenomenology, which gets uplifted back to the 2d quantum Ising
model.

The phenomena investigated here have profound connections with important
problems in contemporary physics and mathematics. First, they are the quantum
counterpart of the dynamical nucleation of a region of true vacuum in a sea of false
vacuum, which is a classic problem in statistical mechanics [380–382]. Most of the
progress on the problem, however, has been achieved in the context of stochastic
dynamics so far, since unitary quantum dynamics presents apparently insurmount-
able challenges. Undeniably, stochastic dynamics is often an adequate description of
equilibrium condensed matter systems, such as magnets or crystal-liquid mixtures,
due to the continuous influence of noisy, environmental degrees of freedom which
act like a bath at a well-defined temperature. Nevertheless, there are situations in
which one cannot rid of unitary quantum dynamical evolution of a pure initial state.
For instance, this assumption is necessary in a cosmological setting: this was studied
long ago by Kobzarev, Okun and Voloshin [383], and then by Coleman and Callan
[384–386]; and it also found applications in inflationary models of the universe [387].
Furthermore, unitary evolution plays a crucial role in recent experiments with ultra-
cold matter, as motivated above (see also Ref. [388] for a recent experiment in this
direction). Finally, there are quantum optimization algorithms [240, 389, 390], which
are designed to find the ground state of a classical Ising model (a computational
NP-hard task), but can incur in several dynamical drawbacks associated to classi-
cal or quantum effects [238, 292, 391]. One can only expect that, in the near future,
quantum simulators will allow finely controlled explorations of this physics using
table-top experiments, allowing us to observe more counter-intuitive results of co-
herent quantum dynamics.

Second, our results show the presence of Hilbert space fragmentation in the 2d
quantum Ising model: while this was already recognized in Refs. [392, 393], the
dynamical implications of the shattering were left unaddressed. We show, instead,
that analytical and numerical progress can be made on the problem, and we are able
to predict the dynamical evolution of a large class of initial states. The timescales at
which our analytical predictions start to break down are found to be exponentially
large either in the linear size of the initial state, or in the coupling constant, thus
making our description valid for most experimentally relevant situations.

Third, our mapping from the 2d Ising model to 1d confined fermions can also be
interpreted as a toy model of duality between a theory of string (the domain wall)
in 2+1 dimensions, and a theory of particles in one less dimension [394–396], which
becomes integrable in the limit of infinite string tension. In our case, however, the
confinement of the fermions is not due to their mutual interaction, but to an external
potential.

Fourth, the dynamics at the corners of large bubbles in a 2d quantum ferromagnet
turns out to be related to a measure concentration phenomenon for random Young
diagrams, a well-known result to the mathematical community [397–400]. We will
elaborate further on this point in Sec. 6.3.4, after having introduced the notation
needed to make the connection precise, showing that a mapping to Young diagrams
unveils connections with random integer partitions [400–402], determinantal point
processes [403–405], and even Calabi-Yau manifolds [406, 407].

After having gone through all of the previous points, we will study also how the
above picture gets modified if one instead starts from the two-dimensional quantum
Ising model in presence of a random longitudinal field. The interest in the problem



Chapter 6. Interface dynamics in the 2d quantum Ising model 81

stems from the fact that isolated quantum systems, out of equilibrium and in pres-
ence of disorder, can display a serious suppression of transport. Generically, they
can pass from the usual diffusive dynamics at small disorder, to subdiffusive trans-
port [408–411], and then finally to a localized regime (i.e. MBL), becoming effectively
integrable systems.

Also for this latter lines of research, however, most of the results have been ob-
tained in one spatial dimension. In dimensions two and higher, the existence of
MBL beyond the original paper [46] and a few others [51, 308, 338, 412] is even more
questionable. The main issue is that in 2d numerical results are limited to extremely
small systems [345], and at the same time non-perturbative effects are thought to
be stronger [112–114]. Some counterexamples are provided by two studies of dimer
models in 2d [346, 413] which, because of the slow (though still exponential) growth
of their Hilbert space dimension, can be studied up to 100 spins or so; and by some
recent investigations on quasi-periodically-modulated 2d models [190–192]. Such
studies show an MBL transition with the same confidence that it is seen in spin
chains, giving hope that disorder can indeed localize in 2d following the same route
that works in 1d, at least for some particular microscopic Hamiltonians.

In the last part of this Chapter, we consider under the perspective of MBL the
process of melting of a corner-shaped interface, separating a region of negatively
magnetized spins from one of positively magnetized ones. This situation models an
imperfect, two-dimensional quantum crystal. Also here, one can obtain an effective
Hamiltonian, that is particularly suitable for interpreting the process in terms of the
motion of the “crystal-liquid” interface. Such Hamiltonian is in the family of con-
strained PXP models [196–198], but with disordered terms. This difference is crucial:
in the presence of disorder, in fact, PXP models have shown resilience towards local-
ization already in 1d [199]. The explanation relies on the fact that the local disorder
before the constraints are applied maps to non-local terms in the Hamiltonian, which
escape in this way the usual arguments leading to localization in the perturbative
limit. This is a first clue that makes us suspect that crystal melting cannot be stopped
by disorder, no matter how strong the latter can be. We will exactly prove this work-
ing hypothesis: the dynamics of the crystal melting gets only slowed down—albeit
quite dramatically—never stopping at any finite value of disorder. The fact that dis-
order in this case helps thermalization should not surprise: the integrability of the
clean case is due to the free nature of the emergent excitations, therefore generic ran-
dom terms in the Hamiltonian break the integrability, rather than constituting by
themselves a source of MBL.

Because of the interplay of disorder and dynamical constraints, however, the
delocalized nature of the emerging phase is rather peculiar. We find that, for any
given system size, the eigenstate properties show some signs of localization, at least
for disorder sufficiently large. However, the disorder strength for which localization
is seen grows with the system size in a way which seems to indicate that no transition
to MBL is present in the thermodynamic limit. Because of this, the dynamics is
extremely slow: for example, the expected number of spin flips at time t grows like∼
log(gt), irrespective of the value of disorder. This is in contrast with other situations
in which the delocalized side shows transport dictated by continuously changing
exponents, that are functions of the disorder strength (see for example Refs. [133,
410, 411]).
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6.1 Model

As anticipated in the Introduction, we are interested in the dynamics of the quantum
Ising model on a two-dimensional square lattice. The Hamiltonian reads

HIs = −J ∑
〈ij〉

σz
i σz

j − g ∑
i

σx
i − h ∑

i
σz

i , (6.1)

where σ
x,y,z
i are Pauli matrices acting on a lattice site i ∈ Z2, 〈ij〉 indicates the re-

striction of the sum to nearest neighbors, g and h are the strength of the transverse
and longitudinal magnetic fields, respectively, and J > 0 is the ferromagnetic cou-
pling. We set g > 0, while we let h take both positive and negative values: the actual
sign of h, indeed, will be relevant in Sec. 6.4.2. In Sec. 6.5, instead, we will allow the
longitudinal field to take site-dependent values, and study the consequences of such
quenched disorder on the dynamics.

In thermal equilibrium at temperature T, this model displays a quantum phase
transition for T = 0 and h = 0, belonging to the universality class of the classical
3d Ising model: upon decreasing g below a critical value gc, in fact, it passes from
a quantum paramagnet to a quantum ferromagnet, characterized by two degener-
ate, magnetized ground states spontaneously breaking the Z2 symmetry. Upon in-
creasing T, the ferromagnetic phase survives up to a finite critical temperature Tc
(depending on g and J), since the energetic cost of creating domains with reversed
magnetization increases upon increasing their perimeter (as entailed by Peierls’ ar-
gument). At g = 0, the model becomes the 2d classical Ising model, therefore dis-
playing the corresponding critical properties. These critical properties also char-
acterize the transition occurring at the line of thermal critical points which joins the
classical model at g = 0 to the quantum critical point at T = 0. The longitudinal field
h 6= 0 breaks explicitly the Z2 symmetry of the two possible ground states, lifting
their degeneracy. Accordingly, the model at T = 0 and g < gc undergoes a first-order
quantum phase transition as h crosses 0. One expects that highly non-equilibrium
false vacuum states exhibit a slow decay, through the nucleation of bubbles of char-
acteristic size related to the inverse decay rate. With this background motivation in
mind, we will be interested below in the fate of such bubbles, and more generally of
interfaces, under the subsequent, coherent unitary evolution.

Studying the dynamics of 2d interacting models constitutes a priori a formidable
task: numerical methods are limited to very small system sizes or very short times.
In addition, analytical tools are restricted to near-equilibrium conditions or gener-
ally involve uncontrolled approximations, as dynamical mean-field theory [414] or
kinetic equations [415].

Despite these shortcomings, insight can be obtained from suitable limits. While
the extreme paramagnetic regime J � |h|, g reduces to a set of weakly interacting
“magnonic” excitations, the strong-coupling ferromagnetic regime J � |h|, g retains
great part of the interacting nature of the problem. It is the purpose of this Chapter
to show that, in the strong-coupling limit, there exists a relevant class of highly ex-
cited non-equilibrium initial states, the dynamics of which is amenable of analytical
treatment. In particular, in the next pages we show that the formal limit J → ∞ of
infinitely strong ferromagnetic coupling actually renders a highly non-trivial con-
strained dynamical problem, characterized by a fragmented Hilbert space.
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FIGURE 6.1: (a) Example of a “convex” (in the sense defined in Sec. 6.4.1) bubble of “up”
spins (↑= �) in a sea of “down” spins (↓= �). Here each spin is represented by the sur-
rounding square plaquette in the dual lattice. The side of a plaquette separating neighbour-
ing spins with the same or opposite orientation is marked in black or red, respectively, the
latter corresponding to a portion of a domain wall. (b) Example of transitions allowed at the
leading order in the coupling J, i.e. due to the term ∝ g in HPXP, see Eq. (6.6). Flipping the
central spin makes the part (highlighted in red) of the domain wall in the corresponding pla-
quette move as represented in the figure. The remaining possible moves (not displayed) are
obtained by considering all the configurations of the central spin and its neighbours, with
the constraint that two neighbours are up and two down. This figure is taken from Ref. [10].

6.1.1 Constrained dynamics in the strong-coupling limit

Starting from this Section, and throughout this Chapter, we will consider the strong-
coupling limit, corresponding to J � |h|, g. In practice we start by formally taking
J = +∞, while later on in Sec. 6.4.2 we will relax this assumption. In this limit
it is particularly convenient to study the problem in the basis of the Hilbert space
provided by the eigenstates

⊗
i | ↑/↓〉i of σz

i at each lattice site i, with σz
i | ↑〉i = | ↑〉i

and σz
i | ↓〉i = −|↓〉i.

At the leading order in J, the model is actually diagonal (i.e., classical) in this
basis and, up to a common constant, the energy of each of these eigenstates is given
by 2J`, where ` is the number of distinct pairs of neighbouring spins with opposite
orientation. Accordingly, the Hilbert spaceH at infinite coupling is fragmented into
dynamically independent sectorsH =

⊕
`H`, each sector being identified by ` [392].

Being J = +∞, in fact, no transitions are actually allowed from a state in H` to one
in H`′ , unless ` = `′, since the energy difference between them would be infinite.
Note that, equivalently, ` measures the total length of the domain walls which are
present on the lattice, separating the regions with spins σz

i = +1 from those with
σz

i = −1. Accordingly, in the limit J → ∞, dynamical constraints emerge, in the form
of a perimeter constraint on the bubbles of spins aligned along the same direction.

As a consequence of the perimeter constraint, the dynamics of the model can be
effectively studied by focusing on each sector H` separately, thereby reducing sig-
nificantly the complexity of the problem. Let us start by determining the reduced
Hamiltonian in H` by elementary reasoning. Since the total domain wall length
must be conserved, the only spins that can be flipped by the term ∝ g in Eq. (6.1) are
those that just displace an existing domain wall. Considering the 16 possible config-
urations of the four spins Li/Ri/Ui/Di which are, respectively, left/right/above/be-
low a site i ∈ Z2) and which can be up (↑) or down (↓), one easily gets convinced that
the only allowed transitions are those generated by the following reduced Hamilto-
nian:

HPXP = −h ∑
i

σz
i − g ∑

i

(
P↑LiP

↑
Diσ

x
i P↓RiP

↓
Ui + P↑LiP

↓
Diσ

x
i P↓RiP

↑
Ui + P↓LiP

↓
Diσ

x
i P↑RiP

↑
Ui

+ P↓LiP
↑
Diσ

x
i P↑RiP

↓
Ui + P↑LiP

↓
Diσ

x
i P↑RiP

↓
Ui + P↓LiP

↑
Diσ

x
i P↓RiP

↑
Ui

)
, (6.2)
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where we introduced the projectors

P↑i :=
1 + σz

i
2

= | ↑〉〈↑ |, and P↓i :=
1− σz

i
2

= | ↓〉〈↓ |. (6.3)

The term ∝ h in Eq. (6.1), being diagonal in σz
i , is instead unaffected. One can recog-

nize that Eq. (6.2) has the structure of a so-called PXP Hamiltonian [416].
The elementary procedure outlined above can be viewed as the first step of a

systematic elimination, from a Hamiltonian with large energy gaps, of highly non-
resonant transitions. This is formally implemented by an order-by-order unitary
transformation known as Schrieffer-Wolff transformation [417]. In Sec. 6.4.2 we will
be concerned with the possible additional contributions to Eq. (6.2) due to higher-
order corrections O(J−1).

It is important to stress that the constrained Hamiltonian (6.2) is similar to the
one describing strongly interacting Rydberg atom arrays [418, 419] in the regime of
Rydberg blockade, given by

H0
Ryd =

∆
2 ∑

i
σz

i + Ω ∑
i

P↓LiP
↓
Diσ

x
i P↓RiP

↓
Ui. (6.4)

Here, each spin-1/2 describes a trapped neutral atom, which can be in either its
ground state (↓) or in a highly excited Rydberg state (↑). The effective Hamiltonian
that describes a lattice of such strongly interacting atoms reads [418]

HRyd = ∆ ∑
i

ni + Ω ∑
i

σx
i + ∑

i,j
Vijninj (6.5)

where ni = (1 + σz
i )/2 counts the local number of atoms excited to the Rydberg

state, and the interaction Vij is very strong for neighboring sites and decays rapidly
with the distance. The Rydberg-blockaded effective Hamiltonian (6.4) arises from
setting Vij → ∞ for neighboring atoms 〈i, j〉 and Vij = 0 otherwise. In this case,
pairs of neighboring excited atoms are completely frozen, and an atom can flip only
if all its four neighbors are in the ground state, which is expressed by the last term in
Eq. (6.4). Our constrained Hamiltonian in Eq. (6.2), instead, arises from strong σz

i σz
j

rather than ninj interactions. This results in a different form of the constraint, which
implements the local perimeter-conserving motion of domain walls.

It is interesting to note that the two constraints differ only by a strong longi-
tudinal field term, which can be adjusted to transform one into the other. Specifi-
cally, identifying V ≡ −4J, it suffices to take a single-atom energy level detuning
∆ ≡ 2J + h to obtain the Ising model (6.1) and hence, in the regime of Rydberg-
blockade, the effective Hamiltonian Eq. (6.2)1.

The Hamiltonian in Eq. (6.2) can be alternatively written via a shorthand nota-
tion which describes graphically the transitions induced on the domain wall (in red)
possibly existing around the square plaquette surrouding a spin (see also Fig. 6.1):

HPXP = −h ∑
i

σz
i − g ∑

i

(
| 〉i i〈 |+ | 〉i i〈 |+ | 〉i i〈 |+ h.c.

)
. (6.6)

Here, the action of the transitions due to the coupling g is apparent: they can either
move a domain wall corner across the diagonal of a plaquette (| 〉i i〈 |+ | 〉i i〈 |+

1We note, however, that this might be problematic at experimental level, as the Rydberg interactions
are very sensitive to the precise position of the trapped atoms, resulting in unwanted noisy fluctuations
of the longitudinal field.
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| 〉i i〈 |+ | 〉i i〈 |) or recombine two parallel segments of the domain wall across
opposite sides of the square plaquette (| 〉i i〈 |+ | 〉i i〈 |). The conservation of the
domain wall length is thus guaranteed by construction.

6.1.2 Hilbert space fragmentation

The convenient notation of Eq. (6.6) makes it possible to analyze the fate of the dy-
namics of large portions of the 2d lattice in numerous cases. For instance, consider
multiple non-neighboring spins oriented up, i.e. with σz = +1, embedded in a sea
of oppositely aligned spins, with σz = −1. This configuration is fully frozen, as
no allowed transition can shift any of the domain walls. Thus, all of these states
are eigenstates of the constrained Hamiltonian (6.6). This simple example—easily
generalizable to many others [392]—shows that individual sectors H` are, in gen-
eral, further heavily fragmentated. More formally, one can introduce the notion of
Krylov subspace of a state |ψ0〉: by definition, it is the subspace of H spanned by the
set of vectors {|ψ0〉 , H |ψ0〉 , H2 |ψ0〉 , . . . }. With this definition, one recognizes that
the Krylov sector of a state |ψ〉 ∈ H` may not coincide with the full H`, but instead
represent a finer shattering. A detailed study of the Krylov sectors of the model un-
der consideration was carried out in Ref. [393]; in this Chapter, instead, we will be
concerned mainly with the dynamical effects of the fragmentation on some physically
relevant states. This is exactly what we will start studying with the next Section.

6.2 Infinite coupling dynamics

In the previous Section we have argued that, in the limit of large J, the dynamics
of the 2d quantum Ising model greatly simplifies because of the presence of emer-
gent constraints. Here, we show that this simplification is really substantial in some
particular cases, insofar it leads to simple one-dimensional effective models.

From Eq. (6.6), one can see that the first two transition matrix elements (namely,
| 〉i i〈 |+ h.c. and | 〉i i〈 |+ h.c.) correspond to the translation of a domain wall,
while the last one (namely, | 〉i i〈 |+ h.c.) cuts two domain walls and recombines
them in the switched configuration. If the initial condition has a geometry that al-
lows only one of the two types of transitions, then it is possible to have some ana-
lytical control on the dynamics. In particular, we will show in Sec. 6.2.1 that initial
conditions consisting of a thin, pseudo-1d domain only allow interface-recombining
moves. This allows us to make a connection with 1d PXP and confining Ising mod-
els. In Sec. 6.2.2, instead, we show that if the 2d lattice is cut by a single, Lipschitz-
continuous (the meaning of this will become clear later on) interface, then the inter-
face dynamics can be studied by an effectively 1d model, which turns out to be a
model of non-interacting fermions. This emergent integrability allows us to calcu-
late the 2d evolution exactly, and to describe precisely how ergodicity is broken.

6.2.1 Strip-like configurations

In this Section we consider a particular type of initial configurations, that are essen-
tially one dimensional. As it was already pointed out in Ref. [392], for this type of
states, it is possible to make an explicit connection with 1d PXP models. We show
here that, when the initial configuration |Ψ0〉 has no overlap with scarred states, it
is possible to compute the long-time magnetization of the bubble, and it can be ex-
pressed in terms of the golden ratio φ, as a consequence of the dimension of the
Krylov sector of |Ψ0〉.
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As anticipated, let us consider a particularly simple initial condition for the dy-
namics of the 2d Ising model in the limit of infinite coupling: a linear strip of L
“down” spins (↓), surrounded by “up” spins (↑). In the Krylov sector dynamically
accessible from this configuration, in absence of longitudinal magnetic field, the PXP
Hamiltonian (6.2) reduces to the one-dimensional PXP Hamiltonian familiar from
tilted bosonic traps [196], one-dimensional Rydberg-blockaded arrays [32], or dimer
models [420]. To see this, observe that no spin outside the strip can ever be flipped
by HPXP, so the only dynamical degrees of freedom are the spins initially set to be
“down”. This reduces the full, 2d dynamics to an effectively 1d dynamics. Let us
mention in passing that, if instead a longitudinal magnetic field is turned on, a pe-
culiar phase diagram is found for its ground state [32].

We label accessible basis states by the 1d configuration of the spins in the strip;
the initial state is thus denoted |Ψ0〉 ≡ |↓↓ . . . ↓〉. Assuming for the moment h = 0,
the Hamiltonian (6.2) reduces to

HPXP,1d = −g
L−1

∑
j=2

P↓j−1σx
j P↓j+1, (6.7)

as the spins above and below are fixed to be up. Because of the perimeter constraint,
the first and last spin cannot be flipped.

Because of the constraints, not all 1d configurations are dynamically accessible.
Denoting by l the number of dynamical spins reversed wrt. the initial configuration,
the number of accessible basis states at fixed l satisfies the recursion relation (see also
App. D.1)

C(L, l) = C(L− 1, l) + C(L− 2, l − 1), (6.8)

which has solution

C(L, l) =
(

L− l − 1
l

)
, (6.9)

once the initial condition C(L, 0) = 1 for all L is enforced. The maximum number of
spins that can be flipped satisfying the perimeter constraint is

nmax =

⌈
L− 2

2

⌉
, (6.10)

and the total number of accessible configurations is therefore the Fibonacci number

FL =
lmax

∑
l=0

C(L, l). (6.11)

It is worth recalling that the PXP Hamiltonian exhibits quantum many-body
scars [416], i.e. particular eigenstates that violate the eigenstate thermalization hy-
pothesis. The number of such eigenstates increases only algebraically with the sys-
tem size, making them very rare in the many-body spectrum. However, they pro-
foundly affect the dynamical properties of particular initial configurations such as
the Néel state |Z2〉 = |↓↑↓↑ . . .〉, which exhibits remarkable long-lived revivals dis-
covered in early experimental explorations [177]. While it has become clear that
these non-thermal eigenstates slowly disappear in the large-size limit of the PXP
model, their ultimate origin is still presently unclear, despite significant research ef-
forts, and is the subject on an active ongoing debate [178]. On the other hand, our
initial state |Ψ0〉 is not significantly affected by quantum many-body scars [178, 416].
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FIGURE 6.2: (a) Example of some strip configurations, with the initial state depicted in the
top row, while a completely fragmented configuration is displayed in the bottom row. (b)
Magnetization along the strip of panel (a) at equilibrium. The comparison between theoret-
ical (m22(x), in red) and numerical results for the magnetization is reported. The plot shows
the minimum and maximum magnetization for 5000 < t < 10000 (shaded gray area) and
the magnetization for t = 10000 (black). One can see a good agreement between numerical
simulation and theoretical prediction, showing that the classical sampling performed is ef-
fective in describing the infinite-temperature magnetization. This figure is taken from Ref.
[10].

Therefore, it is expected that the equilibrated magnetization profile along the chain
at long times is compatible with an assumption of ergodicity, i.e. all allowed con-
figurations will be occupied with uniform probability. Within this assumption, the
long-time magnetization at position j along the strip is

〈mL(j)〉 = 2
FL−jFj−1

FL
− 1 (6.12)

(see App. D.1 for the complete computation). The resulting profile is compared with
numerical simulations in Fig. 6.2 for short strips, showing fairly good agreement
with the assumption of ergodicity.

As a further step, one can compute the magnetization in the middle of the strip
in the thermodinamic limit. Sending first L → ∞, and then j → ∞ in Eq. (6.12), one
finds

〈m∞,bulk〉 =
2

(2φ− 1)φ
− 1 = − 1√

5
. (6.13)

Above, the properties of the Fibonacci numbers were used, and it was introduced the
golden ratio φ. The value 〈m∞,bulk〉 is reached exponentially fast in the distance from
the boundary, with a characteristic length 1/ log |φ−1 − 1|. The complete derivation
is reported in App. D.1.

We conclude this Section by noting that what we have done, essentially, was to
compute local observables in the infinite-temperature ensemble, instead of comput-
ing the expectation values on |Ψ0(t)〉. The two procedures are equivalent, since
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the initial state |Ψ0〉 lies in the middle of the spectrum (and thus is an infinite-
temperature state)2, and the 1d PXP model is ergodic [178, 416]. These facts also im-
ply that any other classical initial configuration lying at the middle of the spectrum
has the same properties at long times, provided that it does not overlap significantly
with non-thermal energy eigenstates.

6.2.2 Smooth domain walls

In the previous Section we considered strip-like initial configuration, whose dynam-
ics involved only the operators | 〉〈 |+h.c. of Eq. (6.6), i.e. only domain-wall break-
ing transitions. We now turn to a different family of initial states, for which instead
only the operators | 〉〈 |+ h.c. or | 〉〈 |+ h.c. are allowed, i.e. only domain-wall
moving transitions.

Let us start by rotating, for later convenience, the square lattice by a π/4 angle
with respect to the vertical and horizontal directions; in other words, orient the lat-
tice so that its axes are along the NW-SE and SW-NE directions (as shown in Fig. 6.3).
Then, let us consider an interface separating a domain of spins “up” (↑) from one of
spins “down” (↓). We require that such interface vary only slowly, so that it can be
thought of as the graph of a function (in the rotated setting). We make this statement
more clear in Fig. 6.3: the interface should be described by a function µ : Z → Z

that is “Lipschitz-continuous”, i.e.

|µ(x)− µ(y)| ≤ |x− y|, ∀x, y ∈ Z. (6.14)

Initial states of this type, other than being rather generic in the context of interface
dynamics, are interesting as they can be described by an equivalent one-dimensional
system. The mapping simply consists in associating to each NW-SE segment an
empty site on the 1d chain, and to each SW-NE a site occupied by a particle (see
Fig. 6.3). Let us notice that such mapping is, basically, a differentiation procedure:
one associates an empty (resp. occupied) site if the domain-wall derivative is neg-
ative (resp. positive). Consequently, the interface profile µ(x) can be obtained via
“integration” of the density profile n(x) on the chain:

µ(x) = ∑
y≤x

n(y) + const. (6.15)

The mapping described above works also in a classical setting, where a fluc-
tuating interface induces on the 1d particles an effective dynamics, as the simple
exclusion processes [422–424] (see also the discussion at the end of Sec. 6.3.1). In
the quantum setting, one should also pay attention to what is the statistics of the
particles. For the case under consideration—i.e. the 2d quantum Ising model—such
particles should be hard-core bosons, as different sites commute, and there can be
no more than one particle for each site. Applying a Jordan-Wigner transformation,
the hard-core bosons can then be equivalently represented as fermions. From now
on we will only restrict to this latter, more convenient representation.

Having set up the mapping for the accessible basis states, we can proceed to map
the 2d PXP Hamiltonian to a 1d Hamiltonian on the chain. With a bit of reasoning one
notices that to each spin flip in 2d there corresponds a fermion hop on the chain. At
the same time, due to the longitudinal magnetic field, each spin flip in 2d contributes

2That |Ψ0〉 lies in the middle of the spectrum follows from the fact that, first, it holds 〈Ψ0|H|Ψ0〉 =
0; and second, that the spectrum is symmetric around zero (HPXP,1d commutes with the space reflection
operator I, and anti-commutes with the spectral reflection operator C = ∏j σz

j [421]).
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FIGURE 6.3: Graphical representation of the mapping from the 2d Lipschitz interface to the
1d fermionic chain. Moving from left to right, to each down-going line it corresponds an
empty site on the chain, while an occupied site is associated to each up-going line. Notice
that, in the projection process, the lattice spacing on the chain is reduced by a factor

√
2

compared to the original one on the 2d lattice. This figure is taken from Ref. [10].

with a ±2h energy difference depending on the vertical direction of the domain-
wall transition, and therefore every fermion hop must account for the same energy
change. Thus, the fermionic Hamiltonian reads

HF = −g ∑
x

(
ψ†

xψx+1 + h.c.
)
+ 2h ∑

x
x ψ†

xψx, (6.16)

up to che choice of the origin of x.
Equation (6.16) is the well-known Wannier-Stark Hamiltonian [425]. It is diago-

nalized by the unitary transformation

bm = ∑
x

Jx−m (γ)ψx (6.17)

with γ := g/h and Jν(z) the Bessel function of the first kind, yielding

HF,diag = 2h ∑
m∈Z

m b†
mbm. (6.18)

The energy spectrum is thus given by a set of equally spaced levels Em = 2hm, in-
sensitive to g. We anticipate that this feature will be important in the later discussion
about non-ergodicity in Secs. 6.4.2–6.4.3.

We are now able to give the general description of the dynamics of any “Lips-
chitz” initial state. The initial configuration is expressed as

|Ψ0〉 = ∏
k

ψ†
xk
|0〉 (6.19)

on the chain, where the sequence {xk}k∈Z contains the sites occupied at t = 0. Time-
evolving the operators bm, one finds bm(t) = bm(0)e−2ihtm, and thus

ψx(t) = ∑
m,y

Jx−m(γ)Jy−m(γ)e−2ihtmψy(0). (6.20)
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For the average density it follows, using Wick contractions and the completeness
relation of the Bessel functions (Eq. (D.62)),

〈n(x, t)〉 = ∑
y,z

∑
k

Jxk−y(γ)Jxk−z(γ)Jx−y(γ)Jx−z(γ)e−iht(z−y) (6.21)

= ∑
k

J2
xk−x(ωt), (6.22)

where we defined the averages over the initial state

〈A〉 := 〈Ψ0| A |Ψ0〉 (6.23)

and
ωt := 2|γ sin(ht)| = 2

∣∣∣ g
h

sin(ht)
∣∣∣ . (6.24)

It is interesting to notice that, by time reversal symmetry, Eq. (6.22) can be also in-
terpreted as the total probability of finding a single particle starting at x at time 0, in
the subset {xk} at time t.

Equation (6.22) can also be rewritten in the continuum as

〈n(x, t)〉 =
∫

dy ρ(y)J2
y−x(ωt), (6.25)

having introduced the density

ρ(y) = ∑
k

δ(y− xk). (6.26)

The above expressions are valid in full generality, for any Lipschitz initial state on
the lattice. When the continuum limit is considered (see Sec. 6.3.1 and App. D.3 for
details), the comb-like function ρ(y) in Eq. (6.26) is replaced with a smooth function,
that is obtained by properly rescaling the coordinates with the lattice spacing.

Equations (6.22) and (6.24) entail that the dynamics on the chain is perfectly pe-
riodic, with period π/h: this is due to the Bloch oscillations on the chain [425], which
localize each fermion near to its original position. Such perfect localization is a fea-
ture of the J = +∞ limit, and of the presence of a nonzero longitudinal field h. If
instead one takes h → 0, one finds ωt = 2|gt|. Thus, the dynamics become in gen-
eral ballistic, as the underlying fermionic excitations are free to move. In Secs. 6.4.2
and 6.4.3 we will investigate, on the other hand, to what extent the localization is
preserved at finite but large J, and nonzero h.

Normally, the integral in Eq. (6.25) for 〈n(x, t)〉 cannot be computed in closed
form, even if the expression is valid in full generality in the set of initial configura-
tions we are considering, once the initial distribution ρ(y) is specified. However, in
some special cases it can be done. As an example, take xk = sk for some s ∈N, s ≥ 1:
thus, the initial state is a sequence of particles alternated by s− 1 empty sites. One
can compute the average profile µ(x, t) as follows: start from the average number
density on the chain

〈n(x, t)〉 = ∑
k

J2
sk−x(ωt) =

1
s ∑

0≤n<s
e2ixnπ/s J0

(
2ωt sin

nπ

s

)
, (6.27)

where the last step may be carried out using the integral representation of the Bessel
functions (Eq. (D.55)). Notice that this equation, in the continuum limit (see App.
D.3 for details), leads to 〈n(x, t)〉 = 1/s: only the term n = 0 contributes for large x
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because of the oscillating exponential. This is the expected result, as it corresponds to
the average occupation along the chain in the initial condition. After a summation
over space in Eq. (6.27), as prescribed by the mapping of Eq. (6.15), one is able to
obtain the average shape of the interface. In the continuum limit this corresponds to
〈µ(x, t)〉 = x(2/s− 1). In principle, also the fluctuations of the average shape can be
computed with similar techniques, as we will do in the next section for a particular
type of Lipschitz interface.

6.3 A particular initial condition: the infinite corner

In the previous Section we have studied two particular cases for which the dynam-
ical constraints emerging at infinite J simplify so much the dynamics, that it can be
described by an equivalent 1d model. In this Section we build on the case of Sec.
6.2.2, by considering a single interface shaped as in Fig. 6.4a: that is, an interface
composed of two straight lines (parallel to the lattice directions) and a single, right-
angled corner. This interface is “Lipschitz-continuous” in the sense of Eq. (6.14), so
all the techniques of Sec. 6.2.2 can be applied.

The case of a corner-shaped interface is particularly instructive, because of sev-
eral connections to other fields of physics and mathematics:

1. The evolution of a right-angled interface can be thought of as the quantum
version of corner growth models commonly studied in classical, non-equilibrium
statistical mechanics [405, 422, 426, 427]. Such models can be used to describe
the process of erosion of crystals; thus our case here extends the melting phe-
nomenon to quantum crystals [428, 429]. Indeed, while a straight interface (of
the type considered in Sec. 6.2.2) can only fluctuate around its position at t = 0,
the corner configuration can be eroded indefinitely (if no other localization
mechanism is present, as we will discuss below). However, there is a caveat:
for the model under consideration, the addition/removal of a block from the
corner is always a coherent process, as if the removed blocks do not dephase in
the liquid state before being reattached to the solid.

2. To every configuration that is dynamically connected to the corner there corre-
sponds a Young diagram, as we detail in Sec. 6.3.4. We will show an interesting
connection between two seemingly unrelated measures on such diagrams: the
probability density of a quantum fluctuating interface, coming from the side
of the 2d Ising model, and the Plancherel measure, commonly studied in rep-
resentation theory [397–401, 406, 430].

3. Lastly, it is worth mentioning that the case of a corner the mapping to free
fermions points to an explicit form of holography, where a two-dimensional
quantum problem is mapped, in strong-coupling limit, to a free, simpler prob-
lem in one less spatial dimension. This is reminiscent of the AdS/CFT duality
[394–396]: the interface in the Ising model is the string in two spatial dimen-
sions (plus time), while the non-interacting fermions on the chain are the dual
field theory. When the string tension J is large, the corresponding field theory
is free. When the string tension decreases, the field theory becomes interacting
and, in our case, non-integrable anymore. However, if one would like to dis-
cuss the melting of a bubble and not a simple corner, one should necessarily
introduce a more complicated theory of fermions, possibly with many species.
It worth noticing that going back further in time, one finds the conjecture that
the 3d Ising model be dual to a weakly-coupled string theory [431, 432] (for a
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0 x

FIGURE 6.4: (a) Visual representation of the mapping introduced Sec. 6.2.2 applied to the
corner configuration. The squares highlighted in gray correspond to the eroded area, that
is forming a Young diagram. The interface µ(x) is displayed in red. (b) An example of
Young diagram with the hook h(�) indicated for each element �. The hook length formula
prescribes that, for each box�, its hook is obtained by summing the number of boxes below
it and at its right, plus one. The red curve Ω(v), see Eq. (6.34), represents the shape to which
the Young diagrams converge, in the Plancherel probability measure, in the limit of large N.
This figure is taken from Ref. [10].

recent discussion see Ref. [433]), although that is supposed to hold only at the
critical point.

As discussed in great details in Sec. 6.3.1, we will present the results for the dy-
namics taking as initial condition a perfect corner, corresponding to a domain wall
configuration on the fermion chain. Let us underline that, for finite h 6= 0, this initial
configuration is close to the ground state of the Krylov sector it belongs to. While in
the limit J = ∞ this observation in marginal, as the system is integrable (thus any
initial configuration leads to a non-ergodic behavior), it becomes relevant at finite J,
where the behavior of states at the middle of the spectrum can be also qualitatively
different from the ones at the edges.

6.3.1 Average of the interface and its continuum limit

Let us start by noticing that, in the language of Sec. 6.2.2, a corner-shaped initial state
corresponds on the fermionic chain to a 1d domain-wall configuration:

|Ψ0〉 = ∏
x>0

ψ†
x |0〉 . (6.28)

In the language of electronics, this would be called a “maximum voltage bias” Fermi
sea (vacuum on the left, full on the right). Applying the same methods used previ-
ously (in particular Eq. (6.22)), one easily gets the form of the density profile on the
chain:

〈n(x, t)〉 = ∑
y<x

J2
y (ωt) . (6.29)

With a further summation over space (cf. Eq. (6.15)), one obtains the average inter-
face profile:

〈µ(x, t)〉 = 2 ∑
y≤x

(x− y)J2
y (ωt)− x. (6.30)

The above expressions somewhat simplify in the continuum limit, which is valid
in the regime in which the oscillation amplitude is much larger than the lattice spac-
ing a. Thus, the correct prescription is to take both a → 0 (so that one passes to
the continuum) and h → 0 (otherwise the dynamics is confined into a finite region
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by Bloch oscillations). To do so, as we detail in App. D.3, it is sufficient to rescale
γ → γ/a in Eqs. (6.29)–(6.30), where we recall γ := g/h. The resulting expression
for n(x, t) is

〈n(ax, t)〉 = ∑
y<x

J2
y

(ωt

a

)
. (6.31)

The continuum limit leads to (see App. D.3 or Ref. [434])

〈n(x, t)〉 =





0 x ≤ −ωt
1
2 +

1
π arcsin x

ωt
−ωt < x ≤ ωt

1 x > ωt.

(6.32)

Integrating wrt. x, one determines

〈µ(x, t)〉 = ωt Ω
(

x
ωt

)
(6.33)

with

Ω(v) =

{
|v| |v| ≥ 1,
2
π

(√
1− v2 + v arcsin v

)
|v| < 1.

(6.34)

The function Ω(v) first appeared in the context of random Young diagrams [397–
399]; we will elaborate more on this point in Sec. 6.3.4. Here, instead, we flash out a
connection with classical melting processes: the hard-core particles on the 1d chain,
indeed, can be given a classical stochastic dynamics, as in the simple exclusion pro-
cess (SEP) [405, 422, 423]. In the cases of the symmetric or totally asymmetric SEP
(SSEP or TASEP, respectively), an analytic solution is possible [424, 435–437], and the
long-time behaviour of the density of particles can be found. The scaling functions
describing the erosion of the corner, however, turn out to be parabolas—a differ-
ent functional form wrt. Ω of Eq. (6.34). This fact points at the conclusion that the
concentration of measure in the thermodynamic limit is not a simply entropic phe-
nomenon, but it really depends on the underlying microscopic dynamics. This will
become evident from the discussion in Sec. 6.3.4.

6.3.2 Fluctuations of the interface

With techniques similar to those of the previous Section, the fluctuations of the in-
terface can be obtained as well. While leaving the full computation to App. D.2, we
report here the final result for the connected 2-point function:

〈n(x, t)n(y, t)〉C = δxy ∑
i>0

J2
i−x(ωt)−B(x, y; ωt)

2, (6.35)

where we introduced the Bessel kernel

B(x, y; ω) := ω
Jx−1(ω)Jy(ω)− Jx(ω)Jy−1(ω)

2(x− y)
. (6.36)

Notice that, for x = y, Eq. (6.35) straightforwardly reduces to
〈
n(x, t)2〉

C = 〈n(x, t)〉
(
1− 〈n(x, t)〉

)
, (6.37)

a trivial statement for fermionic particles. Summing over x and y in Eq. (6.35)—thus
applying the prescription of Eq. (6.15)—leads to the 2-point function of the interface
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profile 〈µ(x, t)µ(y, t)〉C.
It is instructive to discuss the continuum limit also for the fluctuations of the

shape µ. As they involve the Bessel kernel Eq. (6.36), they are tightly linked to the
universal fluctuations found in Laguerre and Jacobi ensembles of random matrices
[438], and of random representations of the symmetric group [430]. In particular,
the presence of the Bessel functions entails a light-cone structure for the correlations,
see Fig. 6.5a: if either |x| � ωt or |y| � ωt, then the correlations are exponentially
suppressed (as follows from the large-index asymptotics of the Bessel function, Eq.
(D.67)). If instead both x, y � ωt, then by virtue of the large-argument asymptotics
of the Bessel functions (Eq. (D.68)), the kernel reduces to the sine kernel

S(x, y) =
sin
(

π
2 (x− y)

)

π(x− y)
. (6.38)

The sine kernel is found in numerous contexts in physics and mathematics, among
which gaussian ensembles of random matrices [439], and free fermion chains with-
out a linear potential [440]. Notice that, in passing from the Bessel kernel to the
sine kernel, the dependence on ωt has dropped out, while it remains implicit in the
maximum value attained by x or y (i.e. the border of the light cone).

Finally, a less trivial limit takes place in a region of order ω1/3
t around the light

cone, where by means of a uniform expansion (Eqs. (D.69)–(D.70)) the Bessel kernel
reduces to the celebrated Airy kernel [441, 442]. Notwithstanding all of the connec-
tions, we stress that in this quantum setting the fluctuactions are given by the square
of the Bessel kernel, see Eq. (6.35): thus, they are quantitatively different from the
cited cases, which involve the kernels without the square.

6.3.3 Entanglement dynamics

Being the “holographic” description of the cornered interface in terms of an inte-
grable 1d model (viz. free fermions), much more information besides averages and
correlations can be extracted, using the vast amount of analytical techniques devel-
oped in recent years [16, 200, 443, 444]. For instance, one can compute the so-called
full counting statistics, i.e. the probability distribution of the fermions, with the tech-
niques of Ref. [445]. Or else, one can partition the lattice in two halves, by means
of a “vertical” line (e.g. through the corner, corresponding to the time axis in Fig.
6.5a), and compute the entanglement growth accross the bipartition. The compu-
tation goes as detailed in Ref. [446]: from the eigenvalues ζl(t) of the correlation
matrix Cxy(t) :=

〈
ψ†

x(t)ψy(t)
〉
, the entanglement entropy is obtained as

Sent(t) = −
∞

∑
l=0

ζl log ζl + (1− ζl) log(1− ζl). (6.39)

The correlation matrix can be computed explicitly, using the same properties of the
Bessel functions that are used for the average magnetization, obtaining

Cxy(t) = ei( π
2 +ht)(y−x)B(x, y; ωt), (6.40)

B being the Bessel kernel of Eq. (6.36). If one computes the entanglement entropy
between two subsystems A and B, the indices of the correlation matrix Cxy are such
that x, y ∈ A (or B equivalently). For a bipartition located in 0, one has x, y > 0. Let
us notice that the phase factor in the last equation does not affect the entanglement
entropy; in fact, it can be removed via a unitary transformation. It is therefore clear
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x

(

(
FIGURE 6.5: (a) Light-cone structure in the fluctuations, induced by the presence of the
Bessel kernel. The red line represents the position of the light cone x = |omegat|. Inside the
light cone, the Bessel functions oscillate with a non-zero average value: it is in this region,
in the continuum limit, that the Bessel kernel reduces to the sine kernel. Outside the light
cone, instead, the Bessel functions decay exponentially, and in the continuum they can be
approximated with zero. (b) Correlation matrix in the continuum limit. As discussed in the
main text, in this regime Cx,y can be set to zero outside the light cone, while inside the light
cone the Bessel kernel B(x, y; ωt) can be replaced by the sine kernel S(x, y). This figure is
taken from Ref. [10].

that the correlation matrix (and therefore Sent(t)) is periodic with period T = |h|/π,
as the time dependence is only through ωt.

Even if the eigenvalues of the correlation matrix of Eq. (6.40) cannot be obtained
analytically to our knowledge, in the continuum limit some analytical progress can
be made anyways [440, 447]. Let us introduce the entanglement HamiltonianH such
that

ρA = KAe−HA , (6.41)

being ρA the reduced density matrix of a subsystem A, and KA a normalization
constant. With this definition, one finds [447–449]

HA = log
[

1− CA

CA

]
. (6.42)

where CA is here the correlation matrix restricted to positions within the considered
subsystem A. This means that HA and CA are diagonal in the same basis, and the
corresponding eigenvalues satisfy the relation in Eq. (6.42).

As discussed also in Sec. 6.3.2, the Bessel kernel reduces to the Sine kernel in
the continuum limit inside the light cone. In this regime one can approximate the
correlation matrix setting to zero the entries for x, y & ωt, and therefore one is left
with an effective matrix of size ωt × ωt (see Fig. 6.5b for a visual representation).
Thanks to such approximation, one can obtain the eigenvalues εk ofH as [440, 447]

εk(t) = ±
π2

2 log ωt
(2k + 1). (6.43)

Denoting by ζk the eigenvalues of C, one has from Eq. (6.42)

ζk =
1

eεk + 1
. (6.44)

Notice, however, that the asymptotic value Eq. (6.43) needs very large ωt to be ac-
curate. For smaller values of ωt, the eigenvalues vary as 1/(log ωt + bk) rather than
1/ log ωt, where bk are constants depending on the specific eigenvalue [447].
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In this Section, we have shown how the mapping of the original 2d problem to a
1d chain is reflected also in the fact that the half-system entanglement entropy can be
computed from the 1d setting. However, the computation was possible only because
of a convenient choice of the bipartition (i.e. a vertical one): more general bipartitions
of the 2d lattice would instead map non-locally on the chain. We believe that the
possibility of computing the entanglement of the 2d system using the mapping is
effective as long as the cut along which the entanglement is computed is parallel to
the projection performed in the mapping itself.

As a final point of this Section, it is worth noticing that the above results, valid
in general on the lattice for any value of the couplings g and h, reduce, in the limit
h� g, to the outcomes gained using conformal field theory in curved space [450] or
quantum generalized hydrodynamics (GHD) [451] for the entanglement entropy:

S(x, t) =
1
6

log

[
ωt

(
1− x2

ω2
t

)3/2
]
+ c, (6.45)

with c ' 0.475 and x being the position of the bipartition. The GHD formalism al-
lows one to obtain results for the dynamics in one-dimensional integrable quantum
systems directly in the continuum limit, even when the system is interacting; this
justifies the necessity of taking the limit h� g in our system to match the results.

6.3.4 Connection with the asymptotics of the Plancherel measure

As pointed out at the beginning of Sec. 6.3, the states in the Krylov sector connected
to the infinite corner (e.g. the shaded state in Fig. 6.4a) are in one-to-one correspon-
dence with Young diagrams (sometimes also called Ferrers diagrams). By definition, a
Young diagram is a collection of boxes, arranged in left-justified rows, with the row
lengths in non-increasing order [452]. Young diagrams are a graphical tool com-
monly used to represent integer partitions, to compute dimensions of group repre-
sentations, and for many other mathematical purposes [452].

Let us introduce some notation, in order to clarify the discussion. A partition λ
is a decomposition of the integer N as a sum of positive integers λk:

λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), |λ| :=
n

∑
k=1

λk = N. (6.46)

One may easily see that, representing each integer λk as a string of λk boxes�� · · ·�,
to each partition there corresponds a Young diagram, obtained stacking all the strings.
It is a theorem that the irreducible representations of the symmetric group of degree
N, SN , are indexed by partitions of size |λ| = N. Moreover, the dimension of the
representation corresponding to λ can be obtained via the hook length formula

dim(λ) =
|λ|!

∏�∈λ h(�)
(6.47)

h(�) being the so-called hook of the square � [452], see also Fig. 6.4b.
For our purposes, the most interesting interpretation of dim(λ) resides in the

fact that it gives the number of ways to reach the diagram λ starting from the empty
diagram, and adding one square at a time, in such a way that at each step one still has
a partition [402]. In the mathematical literature, it is common to define the Plancherel
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measure on the set of partitions as [397–400, 430]

µP(λ) :=
[dim(λ)]2

|λ|! , (6.48)

It is proved that µP is a normalized measure, i.e. a probability.
Now, an important result of combinatorics is that the Plancherel measure µP con-

centrates at large N, that is to say it becomes a delta function on a particular set of
diagrams [397–400, 430]. The diagrams belonging to this set all have roughly the
same shape; more precisely, rescaling their sides by a factor

√
N, their shape be-

comes described by the function Ω(v) of Eq. (6.34). It is thus quite surprising to find
that another, completely different growth process on the Young diagrams leads to
the same rescaled shape induced by the quantum dynamics of the 2d Ising model.

While we could not devise a proof that would withstand the scrutiny of math-
ematical rigor, we understand the above correspondence in the following, intuitive
way. Recalling that dim(λ) gives the number of paths that reach the diagram λ from
the empty one, always remaining within the set of Young diagrams, we notice that
the Plancherel measure µP is weighting each diagram with the square of the number
of paths. On the other hand, one can consider the Green’s function

G(λ′, λ; E) =
〈
λ′
∣∣ 1

E− H
|λ〉 (6.49)

where λ and λ′ are two Young diagrams. Performing the locator expansion of the
resolvent [92, 94, 453, 454] (see also Sec. 6.5.2 below)

G(λ′, λ; E) =
δλλ′

E− Eλ
+

1
E− Eλ

∑
p∈P(λ,λ′)

|p|
∏
k=1

g
E− Epk

, (6.50)

where P(λ, λ′) denotes the set of paths from λ to λ′. In the spirit of the forward ap-
proximation (FA) [453, 454], one can approximate the sum in Eq. (6.50) by reducing
P(λ, λ′) to SP(λ, λ′), i.e. the set of shortest paths from λ to λ′. This corresponds to
work at lowest order in the hopping. With this assumption, the argument of the sum
does not depend any more on the specific path, but only on its length d(λ, λ′), as all
the diagrams with a fixed number of blocks have the same energy. This means that
the sum gives the number of shortest paths from λ to λ′ (for λ 6= λ′, otherwise it
gives zero). Specifying the computation to the path from the empty diagram 0 to λ,
one finds

G(λ, 0; E) =
dim(λ)

E

d(0,λ)

∏
k=1

g
E + hk

(6.51)

=
dim(λ)

E

(
− g

h

)d(0,λ) Γ
(
1 + E

h

)

Γ
(
1 + E

h + d(0, λ)
) (6.52)

since E0 = 0. Taking the residue at E = 0, one gets the expression for the eigenfunc-
tion

ψE=0(λ) =
dim(λ)

|λ|!
( g

h

)|λ|
. (6.53)

As a consequence of the equation above, the probability |ψ(λ)|2 of being in the state
|λ〉 is proportional to the square of the number of paths leading to it. This motivates
the connection with the results on Plancherel measure concentration.
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Before passing to the next Section, it is interesting to notice that the FA also gives
the correct result for the decay of the eigenfunctions. To see that, one must plug
in Eq. (6.53) the value of dim(λ), which clearly depends on the specific form of the
diagram associated with the state |λ〉. Referring for details to Ref. [399], we just
report that one can bound from above the maximal value and from below the typical
value of dim(λ): in both cases, the leading term scales as

√
|λ|!. Using this result

in Eq. (6.53), one gets that the eigenfunctions go to zero faster than exponentially,
because of the overall factor 1/

√
|λ|!. This estimate is in agreement with the exact

result of Eq. (6.17), since the Bessel functions decay as the inverse factorial of the
(large) index, cf. Eq. (D.67).

6.4 Mechanisms of integrability breaking

Let us summarize briefly what we have done until now. We started from the 2d
Ising model in Sec. 6.1, and showed that in the infinite-coupling limit the Hilbert
space shatters in many disconnected Krylov sectors. Then, we showed that some
physically relevant Krylov sectors have an effective description in terms of 1d mod-
els, and are amenable of analytical treatment. In particular, the evolution of a class
of interfaces described in Secs. 6.2.2–6.3 can be mapped to an integrable model, and
we discussed in detail the exact solution of their dynamics. In this Section we dis-
cuss the phenomenology of interface dynamics beyond integrability, and explore the
robustness of the qualitative features arising from the exact solutions.

We start in Sec. 6.4.1 by showing that interfaces that do not fulfil the Lipschitz
criterion of Eq. (6.14) can potentially have a very different dynamical behaviour than
the one described so far, because of the possibility of breaking into disconnected
pieces. In particular, we will be concerned with the case in which an interface is
locally Liphsitz, but at large scales it is not the graph of a function µ anymore. In Sec.
6.4.2 we consider instead another source of integrability breaking: the presence of a
finite, albeit still large, coupling J. Specifically, we will discuss the O(J−1) corrections
to the infinite coupling Hamiltonian (6.2) and address the ergodicity of the model in
this regime of broken integrability.

6.4.1 Finite bubbles

Throughout Secs. 6.2.2 to 6.3.4 we have always assumed the presence of a single in-
terface, cutting the 2d lattice in two infinitely large domains. It is natural to question
to what extent the presented results apply also to finite domains. The easiest and
first case one should consider is that of a large bubble of “down” spins, surrounded
by “up” spins (or vice-versa). Let us also introduce the notion of convexity on the
lattice: we will say that a domain is convex if any line parallel to the lattice axes join-
ing two points in the domain lies entirely in the domain itself. As already noted
in Ref. [393], all convex bubbles are dynamically connected with the minimal rect-
angle (with sides parallel to the lattice axes) that contains them, i.e. they belong to
the Krylov subspace generated by this rectangle. Moreover, because of the perime-
ter constraint, the domain-wall dynamics is always confined within such rectangle.
Therefore, let us directly assume that at t = 0 the shape of the bubble is a rectangle;
all the other cases follow from the understanding of this one.

We already have all the tools to describe the early-stage dynamics for such a
rectangular bubble: the sides are immobile, since no spin can be flipped without
modifying the perimeter, while the corners start to be eroded, as discussed in great
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detail in Sec. 6.3. The dynamical evolution will however deviate from the one of an
infinite, isolated corner as soon as two corners will start to “feel” the presence of one
another. A lower bound for the timescale at which this happens can be estimated, in
the fermionic language, by computing the probability of finding two fermions, each
coming from an isolated corner, halfway on the flat interface.

Let us denote by L the length of the shortest side of the rectangular, finite bubble.
There are now two possible cases. If the longitudinal field h = 0 (or, more generally,
h is small enough for the Bloch oscillations to overcome the distance L/2) the exci-
tations propagate ballistically on the chain with speed 2g (see Eq. (6.33)), and they
meet at L/2 after a time

Tcorner(h = 0) ∼ L
4g

. (6.54)

If instead h is nonzero and large enough to confine the dynamics in a region smaller
than L/2, one can estimate the probability of having a fermion at distance x < 0
from the corner (equivalently, a hole at distance x > 0) with P(x, t) = 1 − nx(t).
On the maxima of the oscillations3 where ωt∗ = 2γ, i.e. when the eroded area has
maximal expectation value, one finds 〈n(x, t∗)〉 = ∑y<x J2

y(2γ) (cf. Eq. (6.29)), and
consequently

P
(

L
2

, t∗
)
= ∑

y≥L/2
J2
y (2γ) . (6.55)

Recalling that the Bessel functions of large order decay exponentially fast to zero,
one can approximate (see also Eq. (D.67))

P
(

L
2

, t∗
)
≈ J2

L/2 (2γ) ≈ 1
πL

(
2eg
Lh

)L

. (6.56)

Note that, as argued above, this estimate only makes sense in the localized regime
g/h � L/2. From here, one can estimate the typical time a fermion needs to reach
the midpoint of the side as the inverse of the probability:

Tcorner(h 6= 0) ∼ 1
g

eL log L−L log(2eg/h). (6.57)

One can see that, in the case h 6= 0, a time more than exponentially large in the
bubble size must pass, before integrability breaking starts to become manifest.

It is natural to wonder what happens to the bubble after this timescale. Based
on elementary reasoning, one can argue that two kinds of processes may take place.
On the one hand, excitations coming from one corner may start to affect the dynam-
ics of adjacent corners, transferring energy between corners and deteriorating the
perfect coherence of the single-corner oscillations. More dramatically, the interface
may break by detaching isolated flipped spins via the interface-splitting transitions
| 〉〈 | + h.c. of Eq. (6.6). We note, however, that these detached pieces may truly
evaporate away from the interface only via g2/J processes, i.e. away from the J = ∞
limit consider here. We defer the detailed study of these difficult problems to the
future.

We conclude this Section by noting that the case of two corners we have consid-
ered is applicable to any very large bubble, provided its boundaries are “smooth”
enough—i.e., violations of the Lipshitz condition are very dilute. If instead one

3A very similar result is obtained if taking the average over a period, rather than the maximum of
the oscillations.
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starts with a rather corrugated interface, that is not the graph of a function µ(x)
even at the local level, then we expect a complicated time evolution where all acces-
sible configurations may be explored, and the single-interface description severely
breaks down.

6.4.2 Finite coupling

We now relax the assumption that J be strictly infinite, allowing for the possibility of
J < +∞ but very large: J � |h|, g. A very large J is still imposing an effective dynam-
ical constraint, that is valid up to a timescale exponentially long in J: this follows
from the rigorous prethermalization bounds of Ref. [455]. Specifically, the perturba-
tively “dressed” version of the domain-wall length operator D = 1

2 ∑〈i,j〉(1− σz
i σz

j ),
arising from the Schrieffer-Wolff transformation, is accurately conserved for a long
time that scales (at least) exponentially:

Tpreth ≥
C
g

exp
[

cJ
max(g, |h|)

]
(6.58)

(here c and C are numerical constants independent of J, g, h). This is because the
Schrieffer-Wolff effective Hamiltonian Heff = HPXP + (1/J)(· · · ) + (1/J2)(· · · ) +
· · · , computed up to a suitable optimal perturbative order, commutes with D up to
an exponentially small error [455]. Furthermore, the evolution of all local observ-
ables is well approximated by Heff for t ≤ Tpreth [455].

We have already obtained the zeroth-order effective Hamiltonian in Sec. 6.1.2.
Computing higher order corrections to Eq. (6.2) becomes rapidly very complex, as
the number of terms proliferate super-exponentially. In App. D.4.1 we sketch the
computation that leads to the first-order corrections in 1/J of the Hamiltonian Eq.
(6.2), while in App. D.4.2 we specify the computation to the dynamical sector of a
smooth interface, of the type defined in Sec. 6.2.2: in such sector, the perturbative
corrections take on a simpler and handy appearance. Using the fermionic represen-
tation, the resulting correction to the 0-th order fermionic Hamiltonian H(0)

F ≡ HF of
Eq. (6.16) are

Heff = H(0)
F + H(1)

F + O
(

J−2) , (6.59)

with

H(1)
F = − g2

4J ∑
x

(
ψ†

xψx+2 + h.c.
)

+
g2

4J ∑
x

(
2ψ†

xψ†
x+1ψx+1ψx+2 + h.c.− 3ψ†

xψxψ†
x+1ψx+1

)
. (6.60)

One may recognize that in H(1)
F there are next-nearest-neighbour hoppings, as well

as density-density interactions. These terms are rather generic, and therefore it
would be natural to expect that they break the integrability of the model, and make
its dynamics thermalizing fast. Nonetheless, if h is large enough the perturbation is
not able to restore ergodicity. In the next Section we describe this phenomenon in
detail.

Let us briefly mention that, including the O(J−1) corrections, a single flipped
spin can spread in the 2d lattice with a hopping amplitude ∝ g2/J. This means that
it is no longer possible to provide an effective 1d description for initial configurations
of the strip-like form, discussed in Sec. 6.2.1 in the J = ∞ limit.



6.4. Mechanisms of integrability breaking 101

Before moving on, it is important to stress a fundamental issue with the Schrieffer-
Wolff transformation. When J < ∞, taking initial product states of the form of clas-
sical configurations considered so far, the dynamics will exhibit nontrivial vacuum
fluctuations even away from the location of domain walls, due to the perturbative
dressing of the bare ferromagnetic state by virtual spin excitations. Formally, this
arises from the application of the Schrieffer-Wolff unitary transformation exp(iS1),
cf. Eq. (D.38), to the fully polarized initial state. Thus, for such initial states, one
should think of the ferromagnetic vacua (e.g. in the problems considered above, the
two sides of an infinite interface or the inner and outer regions of a bubble) as super-
positions of dilute spin flip excitations, of spatial density ∼ (g/J)2. Such excitations
can be described as magnons, hopping on the 2d lattice with amplitude ∝ g2/J. In
principle these dilute magnon gases contribute to the dynamics of the interface, but
in the following we will ignore this occurrence, leaving it to future, more detailed
studies. Formally, our choice consists in taking as initial state the Schrieffer-Wolff
transformed interface rather than the bare classical interface.

6.4.3 Arguments in favour of Stark many-body localization

The goal of this section is to study the evolution induced by the Hamiltonian (6.59).
The first term in Eq. (6.59) is the Hamiltonian HF considered already in Secs. 6.2.2
and 6.3: it represents a chain of Stark-Wannier-localized, non-interacting fermions.
The second term, viz. H(1)

F of Eq. (6.60), is a small perturbation containing both next-
nearest-neighbour hoppings and two-body interactions. We see therefore that there
is a competition between the localizing nature of H(0)

F and the interactions in H(1)
F

that are generally expected to drive the system to a thermal phase. Previous works
[378, 379, 456] have shown that, for interacting Hamiltonians very similar to Eq.
(6.59), an extended non-thermal phase is present for sufficiently strong h, somewhat
analogous to disorder-induced MBL—the phenomenon has indeed been dubbed
Stark MBL.

To quantify the competition between interactions and the localizing linear poten-
tial, we developed an analytical argument á la Basko-Aleiner-Altshuler (BAA) [46]
that goes as follows. Start from the integrable limit J = +∞: the eigenfunctions are
expressed in terms of the single-particle orbitals of Eq. (6.17), and are all localized.
Their localization length ξ can be quantified by the participation ratio:

ξ−1 = ∑
x

J4
x(γ) =

1
π

∫ π

0
dθ J2

0

(
γ
√

2− 2 cos θ
)

, (6.61)

where we remind γ := g/h. In App. D.5 we perform the asymptotic expansion of
the above integral through the method of the Mellin transform, determining

ξ−1 =
log(γC)

π2γ
+ O

(
log γ

γ3

)
, (6.62)

where C = 25 eγE ' 56 and γE = 0.5772 · · · is the Euler-Mascheroni constant. We
now assume we can partition the system into boxes (“quantum dots”) of size ξ, see
Fig. 6.6. Within each of them, the number of states is clearly Nξ = 2ξ , whereas
the maximum energy difference between two many-particle states is ∆max ≈ |h|ξ2.
To understand this latter statement, assume h > 0: then, the minimum energy is
attained when no particle is present (Emin = 0), while the maximum when all sites
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FIGURE 6.6: Graphical representation of a region of size ξ on the chain, corresponding to
one localization length (a “quantum dot”). As described in the main text, focusing on one of
such intervals, one can derive an estimate for the critical value of h, above which the system
is not ergodic, even in presence of finite J. This figure is taken from Ref. [10].

are occupied (and thus Emax = ∑ξ
x=0 hx ≈ hξ2). With the same reasoning, for h < 0

one gets ∆max ≈ |h|ξ2, thus confirming the claim.
Following BAA (and thus also building on Ref. [103]), we say that interactions

should be unable to restore ergodicity (at least perturbatively) when their strength
λ ∼ g2/J is smaller than the average local level spacing:

δξ ≈
∆max

Nξ
≈ |h|ξ

2

2ξ
, (6.63)

i.e. when λ < δξ . This is equivalent to

g2

J
<
|h| ξ2

2ξ
, (6.64)

which is always satisfied for 0 ≤ |γ| . 1, i.e. for |h| large enough. It is interesting
to notice that the regime of validity of the heuristic criterion (6.64) is only weakly
dependent on J. In Fig. 6.7 we show, varying J and h, the regions of validity of
the inequality (6.64); we can observe how, for fixed J, the criterion is satisfied for
sufficiently large h. Moreover, for J & 1, the relation (6.64) holds for h & 1.

As a check for the above estimate, we performed numerical simulations, focusing
in particular on the imbalance, a well-known witness of ergodicity breaking. Given
a generic initial state |Ψ0〉, the time-evolved imbalance for a system of length L is

IL(t) =
L/2

∑
x=−L/2+1

1
L
〈Ψ0|m(x, t)m(x, 0) |Ψ0〉 , (6.65)

where we defined m(x, t) := 2 n(x, t)− 1. Taking the infinite-size limit and averag-
ing over time, one obtains

I = lim
L,T→∞

1
T

∫ T

0
dt IL(t), (6.66)

which is zero in generic thermalizing systems. Thus, a non-zero value of the im-
balance is a sufficient condition for the system to be non-ergodic (even if it is not
necessary). The infinite-time limit can be obtained also by using the diagonal en-
semble: assuming |Ψ0〉 = ∏k ψ†

xk
|0〉 as in Eq. (6.19), one finds

I = lim
L→∞

1
L

L/2

∑
x=−L/2+1

〈m(x, 0)〉∑
a
〈Ea|m(x, 0)|Ea〉|〈Ψ0|Ea〉|2, (6.67)

with the average 〈· · ·〉 defined in Eq. (6.23).
Such ergodicity test should in principle be verified for every initial configuration.
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FIGURE 6.7: Region of validity of Eq. (6.64) (color), and region where delocalization is ex-
pected (white). The black curve is obtained by setting the two sides of Eq. (6.64) to be equal
(here we set g ≡ 1). We also show, for the two regions, a sketchy comparison between the un-
perturbed level spacings (solid black line) and the strength of the interactions (shaded gray
area). We can notice how, for fixed J, the condition is satisfied for h large enough. For J & 1
(dashed line), the results are no more reliable as higher order corrections become dominant.
This figure is taken from Ref. [10].

However, there are states |Ψ0〉 that will trivially give a non-ergodic result I > 0. For
example, states near the ground state will remain non-ergodic also in presence of
the 1/J corrections, just because they lie at the edges of the spectrum: we checked
numerically that this is the case, for instance, for the domain-wall state of Eq. (6.28).
A non-trivial test is provided by generic states, that lie in the middle of the spectrum:
for our purposes, the Néel state |Z2〉 = ∏k ψ†

2k |0〉, for which 〈m(x, 0)〉 = (−1)x, will
suffice.

In Fig. 6.8 we compare the numerical results for I at finite J, with the analytical
prediction Ĩ at J = +∞: using the definition, Eq. (6.65),

Ĩ∞(t) = lim
L→∞

L/2

∑
x=−L/2+1

1
L
〈Z2|m(x, t)m(x, 0) |Z2〉 (6.68)

= lim
L→∞

2
L

L/2

∑
x=−L/2+1

(−1)x
∞

∑
y=−∞

J2
2y−x(2γ sin ht) (6.69)

= J0(4γ sin ht). (6.70)

In the long-time limit,

Ĩ∞ = lim
T→∞

1
T

∫ T

0
dt J0(4γ sin ht) = J2

0(2γ), (6.71)

where the last step is a known property of the Bessel functions [457].
The curve Ĩ∞ is represented by the dashed lines in Figs. 6.8a and 6.8c. For finite

values of J, instead, one is able to compute the imbalance only numerically and for
L finite. Therefore, the L → ∞ result has to be obtained via finite-size scaling, see
Fig. 6.8b. As displayed there, the numerical values of the imbalance show a linear
dependence on 1/L, allowing for a good extrapolation at L = ∞ (see caption of Fig.
6.8b for more details). The final results are reported in Fig. 6.8c: while for h . 1 the
imbalance is compatible with 0, differently from the integrable case, for h > 1 the
results at finite J are perfectly compatible with the analytic prediction at J = ∞. This
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FIGURE 6.8: (a) Numerical values for the imbalance obtained in the diagonal ensemble at
J = 4. To improve readability, only the data for L = 8, 12, 16 are reported. The dotted line
represents the analytical result at J = ∞ and L = ∞ (see Eq. (6.71)). (b) Extrapolation to
L = ∞ of the imbalance obtained numerically, and reported in panel (a). The extrapolation
is performed using the ansatz I(L) = I∞ + A/L. Different colors correspond to different
values of h (see panel (c) for the legend). (c) The coloured dots are the values of h for which
we reported the extrapolation in panel (b). The red error bars are the results of the extrap-
olation, with the error coming from the fit. The two points at smaller values of h are in
correspondence of the local maxima of I∞ at J = ∞ and are compatible with zero within
the error bars. At larger values of h instead, the extrapolation gives values of the imbalance
compatible with the result at J = ∞. This figure is taken from Ref. [10].

results are in agreement with the argument á la BAA that we discussed previously.
Moreover, we performed also numerical simulations for the time evolution of the
imbalance (that we are not reporting here), and we noticed that the relaxation time to
the diagonal ensemble value depends on J (the larger J, the longer the time needed),
whereas the asymptotic value does not, again in agreement with the argument á la
BAA.

6.5 Melting in presence of quenched disorder

With this Section, we move to the case in which quenched disorder is added at the
level of the original 2d Hamiltonian. That is to say, we start from the 2d Ising model
in presence of a uniform transverse field g, and a random, on-site longitudinal field
hi ∈ [−W/2, W/2]:

HIs,dis = −J ∑
〈ij〉

σz
i σz

j − g ∑
i

σx
i −∑

i
hiσ

z
i . (6.72)

We will perform, for this disordered model, the same analysis of before, to explore
to what extent the localization we have been discussing is resilient to the introduc-
tion of impurities. On the other hand, by making W very large, we will investigate
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whether a different kind of localization takes place, on the lines of the standard MBL.
Throughout this Section, we will assume J = +∞. While we could study also the

effects of a finite J, we believe that such effects would just entail just a quantitative
modification of the results presented, while leaving the physical picture unchanged.
Therefore, in the following we will always neglect the O(1/J) corrections, while
leaving to Sec. 6.5.6 a brief informal discussion of their possible implications.

Because of the assumption of infinite coupling, the PXP-like Hamiltonian arising
in each Krylov sector will be of the form (compare with Eq. (6.6))

HPXP,dis = −∑
i

hiσ
z
i − g ∑

i

(
| 〉i i〈 |+ | 〉i i〈 |+ | 〉i i〈 |+ h.c.

)
. (6.73)

It is important to stress that, for PXP in 1d, both the spectrum as a whole, and the
dynamics at finite energy density, are ergodic (even if they can host scarred states).
Such ergodicity is resistant also to the introduction of quenched disorder [199]: this is
a consequence of the fact that the disorder maps, in an unconstrained basis of states,
to generic, non-local interaction terms. This feature will be present also in the 2d
model under consideration.

Now, in Sec. 6.5.1 we will discuss how the mapping of an interface changes to
take into account the random, on-site potential. Then, in Sec. 6.5.2 we will provide
an analytical argument supporting the absence of a truly localized phase, which is
confirmed by the exact diagonalization results of Sec. 6.5.3. In Sec. 6.5.4 we will show
how the dynamics of interfaces gets modified by the introduction of disorder, and in
Sec. 6.5.5 we will compare such dynamics with similar classical models. Finally, in
Sec. 6.5.6 we will discuss how our results change when taking a finite coupling.

6.5.1 Modifications in the holographic mapping

We are interested in the dynamics of melting generated by the Hamiltonian (6.72)
(or equivalently Eq. (6.73)), starting from the corner initial condition. Thanks to the
mapping described at lenght in Secs. 6.2.2–6.3, the quantum dynamics which makes
the crystal wedge melt can be described equivalently by the hopping on the space
of Young diagrams D, see Fig. 6.9. The initial state, viz. the full wedge, is the empty
Young diagram λ = 0. Then, the energy of a diagram λ ∈ D is given by the sum of
the longitudinal fields on the “blocks” composing the diagram:

Eλ = ∑
i∈λ

hi. (6.74)

The rate of hopping between two Young diagrams λ, λ′ is g if they are connected
by a single block addition or deletion (neighbouring diagrams), or zero otherwise.
Therefore, the adjacency matrix of the Young lattice has non-zero elements only be-
tween the set of diagrams of size N, call itDN , and that of size N− 1 (DN−1) or N + 1
(DN+1); see Fig. 6.9b for a sketch.

In the end, one is left with a Hamiltonian operator, acting on the Hilbert space
HD built on the set of diagrams D, i.e. the Krylov subsector of the original Ising
model that contains the infinite wedge:

HD = −g ∑
〈λ,λ′〉

|λ〉〈λ′| −∑
λ

Eλ|λ〉〈λ|. (6.75)
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FIGURE 6.9: (a) Young lattice, i.e. the set of Young diagrams where two of them are connected
if differing by a single box. In figure the lattice up to N = 5 is represented. (b) Matrix plot of
the Hamiltonian Eq. (6.75) up to N = 8, corresponding to a Hilbert space of dimension 67.
The off-diagonal elements correspond to the adjacency matrix of the Young lattice, and are
all set to −g ≡ 1, while the diagonal part is determined by the disordered magnetic field as
detailed in Sec. 6.3.4. This figure is taken from Ref. [8].

The net gain is that the dimension ofHD is much smaller than that of the full Hilbert
space of all the spins configurations {σi} on the plane. Let us denote the dimen-
sion of the Hilbert subspace, made of diagrams composed of exactly N squares, as
dN := dimHDN . It follows that, for the diagrams made up at most of N squares, one
has to compute the cumulative d̄N := ∑N

k=0 dk. Thus, from the Hardy-Ramanujan
asymptotic formula for partitions, one finds d̄N ' exp (π

√
2N/3)/

√
8π2N: the

mild, stretched-exponential growth of such numbers will enable us to reach system
sizes of up to N = 36 spins. Notice that such dimensions correspond to a vanishing
entropy density in the original model, since s = log(d̄N)/N ∼ N−1/2. In other con-
strained models (including the 2d dimer models of Refs. [346, 413]) the growth of
Krylov sectors is instead exponential, with a finite entropy density.

For what concerns the fermionic language, the hopping term becomes associated
to simple nearest-neighbour hoppings on the chain like in the clean case. The energy
Eλ |λ〉 〈λ|, on the other hand, has no simple interpretation as a local term. Instead, it
is a generic operator which involves all the fermions, through their number operator
nx:

Eλ|λ〉〈λ| ←→ E(nx, ny, . . . ) (6.76)

where x, y, ... are the indices of the sites “touched” by the diagram λ. This non-
locality of the disordered potential terms, already anticipated in the Introduction,
is typycal of PXP models [199], and it comes from the interplay of dynamical con-
straints and local fluctuations in the potential energy. In one spatial dimension, it
was proven to be the cause of the absence of a MBL phase [199]: indeed, the pres-
ence of non-local interactions on the chain makes the model evade all the arguments
in favor of ergodicity breaking. We believe that the same happens in our 2d setting,
since the perturbative arguments supporting MBL work equally in any dimension,
while the non-perturbative effects that destabilize MBL are stronger. We see there-
fore that the presence of disorder is assisting the thermalization, since it breaks the
integrability (in the sense of free fermions) of the model, while it is not able to make
the model athermal by itself, due to its non-local nature.

We conclude this Section by remarking that the mapping of the 2d dynamics onto
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a line of fermions is, also in presence of disorder, a form of holography. This surely
deserves a better investigation, in view of the intense interest of the last years on
such phenomena, especially in presence of quenched disorder [458, 459].

6.5.2 Perturbation theory estimates

It is becoming clear, as the discussion unfolds, that the melting of an infinite quan-
tum crystal wedge does not undergo a localization phenomenon, even if it may be
severely slowed down by disorder. Therefore, as a first thing we perform a pertur-
bative estimate for the critical disorder strength Wc of a putative MBL transition,
showing that such Wc flows to infinity as the thermodynamic limit is approached.
To do so, we employ the so-called forward approximation (FA) [92, 94, 453, 454], which
consists in calculating the Green’s functions to lowest order in the hopping among
localized orbitals. For the sake of being self-contained, we review briefly the main
ideas of the FA, and then discuss the implications for our system.

Brief description of the forward approximation

In the FA, one starts from the locator expansion of the resolvent:

G(b, a; E) = 〈b| 1
E− H

|a〉 (6.77)

=
δab

E− Ea
+

1
E− Ea

∑
p∈P(a,b)

|p|
∏
k=1

−g
E− Epk

(6.78)

where P(a, b) denotes the set of paths from a to b. Notice that in our case the la-
bels a, b, . . . will represent Young diagrams, and the graph will be defined by the
adjacency matrix ∑〈λ,λ′〉 |λ〉〈λ′| (see HD in Eq. (6.75)). As customary, one can pass
from the random walks P(a, b) to the self-avoiding walks SAW(a, b) at the cost of
introducing a self energy term:

G(b, a; E) = G(a, a; E) ∑
p∈SAW(a,b)

|p|
∏
k=1

−g

E− Epk − Σ{p0,p1,...,pk−1}
pk (E)

, (6.79)

where indeed Σ{b,c,... }
a (E) is the self-energy at site a obtained removing from the lat-

tice the sites b, c, . . . . From the exact representation of Eq. (6.79) one can in principle
obtain also the (many-body) amplitude Ψα(b) of the system to be found in configu-
ration b, while being in the eigenstate α localized around configuration a:

Ψα(b) =
1

Ψα(a)
lim

E→Eα

(E− Eα)G(b, a; E). (6.80)

Notice that this reduces to δab in the limit g→ 0. Finally, performing the approxima-
tion of summing only on the shortest paths (or directed polymers) SP(a, b) from a to b,
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and thus working to lowest order in g, one finds

Ψα(b) ≈ ∑
p∈SP(a,b)

|p|
∏
k=1

−g
Ea − Epk

(6.81)

=
(
− g

W

)d(a,b)
∑

p∈SP(a,b)

|p|
∏
k=1

1
E′a − E′pk

. (6.82)

Above, we have introduced the distance d(a, b), and the rescaled diagonal elements
of the Hamiltonian E′a := Ea/W.

At this point, the criterion for localization is given by the requirement that, with
probability 1 over the disorder realizations, the probability of finding a particle at
distance O(L) from the localization center of the state goes to zero for L � 1 [453,
454]. More formally, defining

Ψr := max
b: d(a,b)=r

|Ψα(b)| (6.83)

the system is considered to be localized if Zr := 1
r log |Ψr| satisfies

P
(

Zr ≤ −
1
ξ

)
−→ 1 for r → ∞ (6.84)

for some finite ξ > 0. The other way round, if the system is delocalized we expect

P (Zr ≥ −ε) −→ 1 for r → ∞ (6.85)

for any arbitrarily small ε > 0. The critical value of the disorder can be estimated
from the average value 〈Z∞〉 = limr→∞〈Zr〉 using the condition

〈Z∞(Wc)〉 = − log |g|. (6.86)

The possibility of passing from the statements in probability, Eqs. (6.84)–(6.85), to
the one in terms of the average value, Eq. (6.86), is possible because of probability
concentration as r → ∞ [453].

Application to the melting process

The numerical results, obtained by using the empty diagram λ = 0 as starting point
(“a” in the formulae above), are reported in Fig. 6.10. It is sufficient to plot a value of
W only, in virtue of Eq. (6.82). As r is increased, 〈Zr〉 diverges, being fitted reason-
ably well both by ∼ √r or log r (more on this below). This proves the absence of a
finite critical value Wc, which instead can be present only if 〈Zr〉 saturates to a finite
constant.

We now explain why both the square-root and the logarithmic fits are reasonable
for the data in Fig. 6.10 (larger system sizes are needed to discriminate between the
two). Starting from the former, one can see that it traces back to the dimension of
the Hilbert space as follows. In Eq. (6.82), the dominant contribution to the term
(E′a − E′pk

)−1 is of order ∼ d|pk |, being dk the number of states at distance k from the
initial configuration (cf. Sec. 6.3.4): indeed, one can take the average level spacing
to be δE′pk

≈ 2k/d|pk |, and take only the dominant (exponential) contribution. The
initial configuration being empty, the diagrams at distance k are all made of k blocks,
thus they belong to the subspace HDk ⊂ HD. At this point, one can evaluate the
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FIGURE 6.10: Plot of 〈Zr〉 vs r as described in the main text: in the main panel it is shown
in log-log scale, while in the inset in linear scale. The dots are the numerical results of the
FA up to r = 45. Their growth should be compared either with a square-root (dashed or-
ange line), or a logarithm (dotted purple line). Fitting a square-root behaviour compares
reasonably well with the mean-field-like estimate of the main text: the fit (not shown) gives
Zr ≈ 0.57r0.52, while the analytical prediction was Zr ≈ π(2/3)3/2√r ≈ 1.71

√
r. The nu-

merical data was averaged over 3000 disorder realizations. This figure is taken from Ref.
[8].

product over k in Eq. (6.82):

r

∏
k=1

1
E′a − E′pk

∼
r

∏
k=1

dk ∼ exp

[
r

∑
k=1

π

√
2k
3

]
∼ exp

[
π

(
2
3

)3/2

r3/2

]
, (6.87)

where there was used the Hardy-Ramanujan formula dimHDk = dk ∼ exp
(
π
√

2k/3
)
,

and the asymptotic expansion of the harmonic numbers of order 1/24. Notice that
one can set, according to the convention of Eq. (6.83), |p| = r and |pk| = k.

The further sum over the SP in Eq. (6.82) does not alter the behavior of the es-
timate for large |p|, as one can check by giving an upper bound to the number of
SP: for example, one can bound it by making all diagrams of size k connected to all
diagrams of size k + 1, for all k. In this case, also the number of SP is ∏r

k=1 dk, thus
giving the same asymptotic behavior (see also the discussion below).

Putting the pieces together, one gets

Zr =
1
r

log |Ψr| ∼
√

r. (6.88)

This estimate gives a good prediction for Zr, as shown in Fig. 6.10, but it relies on
the assumption that, at each step of the optimal path, it is feasible to remain as close
as possible to the resonant energy. Therefore, we understand that this is a optimistic
estimate for Zr, yielding a scaling that we can consider to be a sort of upper bound
for it.

4The summation can be performed using the Euler–Maclaurin formula. For the present case, it gives

∑n
k=1

√
k = 2

3 n3/2 +
√

n
2 + ζ

(
− 1

2

)
+O(n−1/2), therefore yielding the leading contribution reported in

Eq. (6.87).
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The assumption of remaining on resonance at each step is not valid for general
geometries: it is false, for instance, on the Bethe lattice—which usually constitutes a
good approximation of many-body Fock spaces. On the other hand, it is surely valid
in the case in which each configuration λ ∈ Dr is connected to any other configu-
ration λ′ ∈ Dr+1, in a mean-field-like setting (this same mean-field approximation
was used above to bound the number of SP). We argue that the Young lattice of Fig.
6.9, i.e. the graph obtained by joining two Young diagrams iff they differ by just one
square, has indeed properties much closer to the mean-field case rather than to the
Bethe lattice.

Let us consider the number of shortest paths connecting the empty diagram to a
configuration made of r blocks, call it λ ∈ Dr. For the Bethe lattice, by definition, the
number of paths going between any two configurations is one, as there are no loops.
On the other hand, considering the mean-field Young lattice in which any configu-
ration in Dr is connected to any configuration in Dr+1, we already showed that the
number of shortest paths connecting the empty diagram with any diagram at level
r is ∏r

k=1 dk ∼ exp(Cr3/2). For the true Young lattice, one can take advantage of the
fact that the number of shortest paths leading to a Young diagram λ coincides with
the so-called dimension dim(λ), computed according to the hook length formula
[402]. Such number dim(λ) corresponds also to the dimension of the representation
of the symmetric group identified by the diagram λ [452]. At this point, the typical
dimension of a diagram λ made of r squares is found to be dim(λ) ∼

√
r! [399], so

the typical number of SP will scale like
√

r! as well. Therefore, even if the SP are less
than in the mean-field case, they are more than exponentially many in the distance
from the starting configuration. In conclusion, one obtains a growth

〈Zr〉 ∼ log r. (6.89)

The true behaviour of the curve in Fig. 6.10 will likely be something in between a
square root and a logarithm. For the system sizes accessible to present-day comput-
ers, and given the slow growth of both curves, it is not possible to discern between
the two hypotheses. Nevertheless, for our purposes the results shown are sufficient
to claim that there is no finite-disorder localization transition, at least at the lowest
order of perturbation theory.

6.5.3 Spectral statistics via exact diagonalization

In this Section, we support the conclusions found in perturbation theory by perform-
ing an extensive numerical study of the model through exact diagonalization. The
numerics was performed by constructing explicitly the Hilbert space of the model,
i.e. the Young lattice of Fig. 6.9a, with ad-hoc methods. An example of the Hamil-
tonian matrix, truncated to a finite N, is shown in Fig. 6.9b5. The code is made
available on GitHub [460].

To distinguish between the MBL and ETH regimes of a system, one can consider
various indicators, each with well-defined, and different behaviors in the two cases.
Here, we consider mainly spectral indicators. Let us start from the results for the

5Another possible way of simulating the system is with the fermionic chain representation. How-
ever, we chose not to do so for two reasons. First, the Fock space of a chain of length L at half filling
does not contain only the Young diagrams made at most of L/2 squares, but also Young diagrams
with more squares: consider e.g. the state in which L/2 fermions are on the left half of the chain, and
the right half is empty, that corresponds to a Young diagram made of (L/2)2 squares. Second, and
more importantly, the disorder maps to non-local interactions on the chain, which are more difficult to
handle.
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FIGURE 6.11: (a) r parameter as a function of the disorder strength W (in units of −g ≡ 1),
and for increasing system sizes. The r value flows from the GOE prediction at small disorder,
to the Poisson one at large disorder for any considered system size. However, no real sign
of the build-up of a transition is found; rather, the crossover from GOE to Poisson simply
seems to shift to larger values of W as the thermodynamic limit is approached. This feature
is analyzed by means of the upper (U) and lower (L) cuts, represented by the dashed-dotted
lines; see the main text for more details. The number of disorder realizations used ranges
from 10000 (smallest system size) to 1700 (largest system size). (Inset) Histogram of the
normalized level spacings s, for N = 32 and 3000 disorder realizations. Also here one can
see flow from GOE (dashed black line) to Poisson (dotted black line). (b) Finite-size scaling
analysis of the disorder strengths for which the r parameter becomes smaller than 0.51 (WU)
and 0.41 (WL). In the inset, it is shown how they seem to diverge linearly with system size,
but with two different slopes. In the main panel, two different possible fits are performed: a
linear one W = a + bN (dashed line), and one of the form W = a′ + b′/N + c′/N2 (dotted
line). Further implications are discussed in the main text. This figure is taken from Ref. [8].
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statistics of the energy levels En, summarized in Fig. 6.11. In the inset of Fig. 6.11a we
show how, at finite system size N, there is a crossover from Wigner’s surmise (viz.
GOE, at small W) to the Poisson gap distribution (at large W) for the normalized
level spacings sn = (En+1 − En)/ 〈En+1 − En〉, taken at the center of the spectrum.
To argue that such crossover builds up into a sharp transition in the thermodynamic
limit, one may look at the spectral gap ratio parameter

r =
〈

min(sn+1, sn)

max(sn+1, sn)

〉
, (6.90)

which needs not be normalized. In the main panel of Fig. 6.11a, one can see that the
crossover from rGOE ' 0.5307 to rPois ' 0.3863 gets slightly steeper as N increases,
but it also moves to larger values of W. To perform a reliable finite-size scaling
analysis, we decided to look at the disorder strengths WU and WL, for which the r
parameter becomes smaller than 0.51 and 0.41, respectively6. Reliable estimates for
WU and WL were obtained by fitting locally the values of r(W) with a polynomial
function, and solving for the intersection. In the inset of Fig. 6.11b, it is shown how
the values found for WU and WL seem to diverge linearly with system size, but with
two different slopes. In particular, the faster divergence of WL indicates that no
transition is being built up; instead, the crossover from GOE to Poisson seems to
become smoother at larger system sizes. Notice that this last fact also prevents one
to perform a scaling collapse of the data: it is impossible to accomodate the scalings
of both r > 0.51 and r < 0.41 with only one function, since the two parts of the curve
r(W) are flowing towards larger values of W with different speeds. In addition to the
previous observations, both WU and WL seem to represent lower bounds (see how the
curves r(W) change with system size in Fig. 6.11a) for the critical disorder strength
Wc, at which a putative MBL transition may take place: therefore, we believe that
such transition does not take place at all in the thermodynamic limit, being pushed
to infinite disorder strength.

A more refined analysis is shown in the main panel of Fig. 6.11b. There, we
try to extrapolate to N = ∞ with two different fits. The dashed line represents
the same fit of the inset, i.e. a linear one: W = a + bN. The dotted line, instead,
is a fit of the form W = a′ + b′/N + c′/N2, which extrapolates to a finite value at
N = ∞. Nevertheless, one can notice that the values extrapolated from WU and WL
are far apart, indicating that either the fitting region is severely pre-asymptotic, or
there is no single transition point, but a slow crossover even in the thermodynamic
limit. Moreover, one can recognize that, to truly distinguish between the two fitting
functions, one would need to go to system sizes N & 60 (at least for WL, which is the
most sensitive to delocalization). Such a system size corresponds to an Hilbert space
dimension of more than∼ 6× 106, which is beyond reach for present-day computers
and algorithms.

It is interesting to compare our Fig. 6.11 with the equivalents of Refs. [184, 461],
where instead the data indicates the existence of a transition in the thermodynamic
limit. The two plots are substantially different in the scaling as N → ∞. In our case
the curves r(W) seem to emanate from a common asymptote as W → ∞, and simply
shift towards larger values of W as N is increased. On the contrary, in Refs. [184,
461] such curves become steeper already at small system sizes, and in particular the
lower part of the curves moves towards smaller values of W. Therefore, in those works
it was possible to analyze another reliable indicator of the MBL transition, namely

6The values of 0.51 and 0.41 are of no special importance; any other values near to rGOE ' 0.5307
and rPois ' 0.3863 yield the same results.
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W∗, the point at which the curves for N and N + 1 intersect. Here, we could not
extract a sensible W∗ from the data of Fig. 6.11a being it ill-defined: the curves r(W)
are almost superposed at large W.

As a last thing, we remark that all the above results apply to the center of the
spectrum, i.e. to generic states of the model under consideration. However, as stated
before, we are interested in the dynamics starting from a particular state, i.e. the empty
Young diagram. Such state has zero expected energy, but for the system under con-
sideration there is no symmetry that forces the spectrum symmetric wrt. zero, thus
making the corner an infinite-temperature state. We checked explicitly, however,
that the corner state on average lies at the center of the spectrum, and that it has a
vanishing probability of being very close to the ground state (or the most excited
state).

6.5.4 Dynamics

In the previous Section, we have looked at spectral indicators of ergodicity, and
the emerging picture is that there is no bona fide MBL phase in the thermodynamic
limit for the model under consideration. The absence of a truly localized phase does
not immediately imply that, even in the thermodynamic limit, the dynamics of the
model should be the same of a standard, ergodic and diffusive system [408–410].
We will now show, in fact, that the 2d quantum Ising model induces on the “holo-
graphic” chain a peculiar type of dynamics. We will relate the properties on the
chain to the ones in 2d: in particular, the speed of the erosion of the corner will be
mapped to the particle current on the chain. The entanglement entropy arising from
a bipartition of the 1d chain, instead, will correspond again to the entanglement en-
tropy of a bipartition of the 2d model. Finally, we present the numerical results both
for transport and entanglement growth.

Transport on the chain

As a first step we find, in the ψx picture, the number of blocks a Young diagram is
composed of. This is done by counting every fermion at distance x to the left from
the domain wall, and every hole at distance x to the right, each weighted with the
distance from the origin:

N = ∑
x>0

x(1− nx) + ∑
x≤0
|x| nx, (6.91)

where nx = ψ†
xψx is the fermion number at site x. Taking into account that the

configurations are definitively nx ≡ 1 as x → +∞, and nx ≡ −1 as x → −∞, the
sum converges. Then, let us take a derivative wrt. time in Eq. (6.91):

Ṅ(t) = −∑
x

x ṅx(t). (6.92)

Using the fermion number conservation ṅx(t) + ∂x J(x, t) = 0, where ∂x is the dis-
crete space derivative, we can rewrite the total block number (after an integration by
parts) as

N(t) = −
∫ t

0
dt′∑

x
J(x, t′). (6.93)

This should be intended as an operator identity.
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In the case of the clean crystal with hi ≡ 0, we have shown before that in the limit
|x|, t→ ∞ with |x/gt| held finite, it holds

〈nx(t)〉 '
1
2
+

{
1
π arcsin

(
x

2|gt|

)
if |x| < 2|gt|

1
2 sgn(x) if |x| > 2|gt|.

(6.94)

Using this result, in the continuum limit

〈Ṅ(t)〉 ' 2g2t, (6.95)

and it follows
〈N(t)〉 ' (gt)2. (6.96)

This power-law scaling can be traced back to the fact that for the ballistic propaga-
tion of free fermions

〈J(x, t)〉 '
{
|g|/2 if |x| < 2|gt|
0 if |x| > 2|gt|, (6.97)

so

〈N(t)〉 ' 2g2
∫ t

0
dt′ t′ = (gt)2. (6.98)

Now consider, instead, the case of diffusive motion of the excitations in the
fermionic chain. One has J = −D∂xnx for a diffusivity coefficient D, so

∫
dx 〈J(x, t)〉 = −D 〈n+∞(t)〉+ D 〈n−∞(t)〉 = −D (6.99)

and
〈N(t)〉 ' Dt. (6.100)

In a more general setting, the exponent of the growth of 〈N(t)〉 in the Young
blocks is related to the nature of transport for the excitations of the ψ chain (x(t) is
the semiclassical trajectory of the excitation):

〈N(t)〉 ∼ t2β ←→ x ∼ tβ. (6.101)

As just shown above, in the ballistic case β = 1 and in the diffusive case β = 1/2. In
Refs. [409, 462, 463] it is discussed at length how the exponent β dictates the decay
of the correlation functions of the current, of the number n, and the non-equilibrium
steady state current Jness in a driven set-up:

〈N(t)〉 x2 〈J(0, t)J(0, 0)〉 〈nx(t)nx(0)〉 Jness

t2β t2β t−2+2β t−β L1− 1
β

The extreme case in which β → 0 is expected when entering a MBL phase: β(W) ∼
(Wc −W)α, although the critical exponent α is currently unknown. In particular,
for MBL systems it is possible to show that N(t) saturate to a constant in the long-
time limit [105–107]. As we will show numerically in Sec. 6.5.4, for the model under
consideration β ' 0, but the absence of true MBL will manifest in the slow growth
〈N(t)〉 ∼ log |gt|. This implies that the total current decays as∼ 1/t, which is indeed
an extremely slow decay. We will comment in Sec. 6.5.5 how these features cannot
be understood on the basis of simple semiclassical pictures, and instead are due to
the quantum nature of the problem.



6.5. Melting in presence of quenched disorder 115

10−1 100 101

t

0

5

10

15

20

25
〈N

(t
)〉

(a)

W = 2

t2

N = 20
N = 22
N = 24
N = 26
N = 28
N = 30

100 101 102 103

t

(b)

W = 5

100 101 102 103 104 105

t

(c)

W = 9

100 102 104

t

0

1

2

d
d

ln
t
ln
〈N

(t
)〉

FIGURE 6.12: Time evolution generated by the Hamiltonian (6.2), starting from the corner
state. The average number 〈N(t)〉 of fermions hops is plotted for various system sizes, and
for three values of the disorder strength W (here we set g ≡ 1, fixing the energy scale).
One can see that at small disorder (i.e. W = 2, panel (a)) the curves do not behave much
differently from the prediction for W = 0, Eq. (6.96), increasing almost as g2t2 (dashed
line) before saturating. Already at W = 5 (panel (b)), instead, the growth of 〈N(t)〉 has
been severely hindered, insomuch that it is compatible with a logarithm (dotted blue line):
〈N(t)〉 ∼ ηN log t. Finally, at W = 9 (panel (c)) the logarithmic behaviour of 〈N(t)〉 becomes
manifest, as shown also by the inset: the logarithmic derivative keeps decreasing towards
0, indicating that 〈N(t)〉 must be slower than a power law. All the values of ηN , extracted
from fits, are displayed in Fig. 6.13a. All the numerical data is averaged over at least 1600
disorder realizations. This figure is taken from Ref. [8].

Entanglement growth

For what concerns the entanglement growth, when the disorder is turned on (W 6=
0) the picture presented in Sec. 6.3.3 changes significantly. As anticipated above,
indeed, the number of particles that hop across the bipartition is severely reduced
from 〈N(t)〉 ∼ (gt)2 to 〈N(t)〉 ∼ log |gt|. Therefore, one should expect SE(t) to grow
at most like ∼ log |gt| as well. Below, we will show the exact growth of SE obtained
numerically, and comment it in detail.

Numerical results

Here we summarize the results of a numerical investigation for the dynamics gen-
erated by the Hamiltonian (6.2). Time evolution was performed through full (for
N ≤ 26) and sparse (for N ≥ 28) matrix exponentiation with SciPy, having con-
structed the Hamiltonian matrix incorporating both the hopping and the on-site dis-
order as in Sec. 6.5.3. The code is made available on GitHub [460].

We start by showing in Fig. 6.12 the time evolution for the average number of
fermions 〈N(t)〉 that have hopped. Equivalently, 〈N(t)〉 is the average number of
squares the state is composed of, in the language of Young diagrams. One can see
that the growth is ballistic—i.e. 〈N(t)〉 ∼ (gt)2—both at short times for all disorder
strengths, and at all times for small disorder: for this latter statement, see the case
of W = 2 (in units of g) in Fig. 6.12a. Then, as the disorder is increased slightly,
the growth of 〈N(t)〉 slows down considerably: it acquires a logarithmic behaviour
that lasts for three decades already at W = 5 (Fig. 6.12b), and for four decades at
W = 9 (Fig. 6.12c), for the largest system sizes considered, before saturating to a
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FIGURE 6.13: (a) For both the average number 〈N(t)〉 and the entanglement entropy SE(t)
we performed logarithmic fits η log t+ c. Here, we display the dependence of the coefficients
ηN and ηE on the disorder strength W. We find both of them compatible with an exponential
decay η = η0e−W/W0 , with W0 ' 1.8 (the dashed lines show the fits). (b) Average number
of fermion hops 〈N(t)〉, for various disorder strengths, with system size N = 30. The log-
log scale makes manifest the behaviour 〈N(t)〉 ∼ (gt)2 at small times (g ≡ 1 for numerical
purposes), from which 〈N(t)〉 departs at the time τ(W). (Inset) Estimates of τ(W), using a
threshold ε = 0.05 (see main text). The fit entails τ(W) ∼ W−γ with γ = 1.0. This figure is
taken from Ref. [8].

finite-system value7. The growth of 〈N(t)〉 is more consistent with a logarithm than
with a very small power law: in the inset of Fig. 6.12c we show how the logarithmic
derivative d log 〈N(t)〉 /d log t keeps decreasing towards 0 also for the largest times
reached—though some fluctuations are present. Large fluctuations are present also
at the level of 〈N(t)〉: we found the fluctuation of N(t) to be of the same order of
magnitude of 〈N(t)〉 for the strongest disorders considered (i.e. W & 8).

The remarkable feature of the results of Fig. 6.12 is that, for the same values of the
disorder strength W, the spectral indicators predict the presence of a thermal phase,
where it is natural to expect 〈N(t)〉 ∼ t (i.e. diffusion), or at most 〈N(t)〉 ∼ t2β,
β < 1/2 (i.e. subdiffusion). We find, instead, a severe impediment to transport,
that pushes down 〈N(t)〉 to a logarithm. In Fig. 6.13a we show the results of fits
〈N(t)〉 = ηN log t + cN : we find the scaling ηN(W) = η0,Ne−W/W0 with W0 ' 1.8.

In Fig. 6.13b we analyze instead the behavior of N(t) at earlier times. To this
end, we define the timescale τ(W) that quantifies when the curve 〈N(t)〉 departs
from the ballistic growth g2t2, e.g. when | log 〈N(t)〉 − 2 log |gt|| > ε for some fixed
threshold value ε. From the results of Fig. 6.12 we expect that τ(W) suffers of little
finite-size effects. Moreover, it is natural to expect τ(W) to be a decreasing function
of W, as for strong disorder, the departure from the ballistic motion is supposed to
occur sooner. Also, one would guess τ(W) → 0 for W → ∞, i.e. for every finite
disorder strength there is a ballistic regime at small times. Indeed, one can see, in
the inset of Fig. 6.13b, that τ(W) ∼W−1.

Let us finally move to the entanglement growth. In Fig. 6.14 we consider the en-
tanglement entropy, relative to the bipartition along the bisectrix of the corner (and,
consequently, that cuts the fermionic chain at the origin). Several comments are in
order. First, despite the ballistic spreading of particles, at W = 0 the entanglement

7Due to the extremely slow dynamics, system sizes larger than N = 30 were not considered. We
believe nonetheless that the system sizes analyzed in this Chapter represent good evidence supporting
our claims.
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FIGURE 6.14: Time evolution of the half-system entanglement entropy SE, for various sys-
tem sizes, and three different disorder strengths. At small disorder (W = 2, panel (a)), the
growth of entanglement is fast, probably a power law (even if larger system sizes are needed
to extract a reliable scaling). Already at moderate disorder (W = 5, panel (b)), however, the
growth of entanglement slows down to a logarithm (the dotted blue line serves as a guide
to the eye), being impeded by a logarithmic transport (as described in the main text). When
disorder is ramped up (W = 9, panel (c)), the logarithmic behaviour SE(t) ∼ ηE log t re-
mains, but with a smaller coefficient ηE in front. The coefficients ηE extracted from fits are
reported in Fig. 6.13a. This figure is taken from Ref. [8].

growth is only logarithmic in time (dashed black line in Fig. 6.14), because of integra-
bility: this is traced back to excluded volume effects among the fermions. It should
not worry, then, that SE(t) grows faster if W > 0, but small: indeed, a small amount
of disorder helps the system in thermalizing, and the entanglement entropy raises
linearly in time, essentially because of chaos propagation [464–466].

Second, in Fig. 6.13a we show the results of fits SE(t) = ηE log t + cE, as was
done for the number growth. We find the scaling ηE(W) = η0,Ee−W/W0 with the
same W0 ' 1.8. Such agreement does not come unexpected: if transport is blocked,
and no long-range dephasing interactions are present (contrary to the l-bit model
of MBL [105–107]), then entanglement cannot spread beyond the melted part of the
corner. Indeed, for each particle that hops across the origin, the entanglement en-
tropy between the left and right halves of the chain increases fast, well before the
next hop, because of non-local interactions entailed by the disordered potential. But
such non-local interactions act only on the melted part of the corner, and thus parti-
cle spreading functions as a bottleneck for the entanglement growth.

6.5.5 Comparison with classical corner growth models

The slow growth of the average number of squares in the Young diagrams 〈N(t)〉,
observed in the quantum dynamics (Sec. 6.5.4), turns out to be anomalous also from
the perspective of similar, classical models. We have already discussed in Sec. 6.3
the comparison with the simple exclusion processes: for instance, in absence of dis-
order the totally anti-symmetric simple exclusion process (TASEP) turns out to have
ballistic dynamics too [436], but a different limiting shape for the eroded part. When
disorder is added, instead, one might hope to reproduce the quantum dynamics
with an exclusion process in which particles are subject to a strongly inhomoge-
neous waiting time before moving, according to some probability distribution. It
turns out that, even when a fat-tailed probability distribution for the waiting times
is chosen (notice that this also makes the process non-Markovian), the growth of
the eroded corner is power-law [467], never attaining a logarithmic behavior as the
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one observed in the quantum regime. In particular, a logarithmic growth can be
obtained only if the waiting-time distribution behaves like p(τ) ∼ τ−1 for large τ,
i.e. it is non-normalizable. This is an indication of the purely quantum nature of the
problem we have discussed, that cannot be reproduced by classical means.

Another interesting question is about the comparison of the average limiting
shapes, between classical and quantum melting processes. The clean case was al-
ready studied in Sec. 6.3.1; the disordered case is more intriguing, and difficult to
analyze: we plan to discuss this issue in a future work.

6.5.6 Limits of validity of the approximations

So far, we have been discussing the dynamics of melting of a 2d disordered quan-
tum crystal, by modelling it through the strong-coupling limit of the 2d quantum
Ising model, in presence of a random longitudinal field. However, the coupling J
was effectively taken to be infinite or, equivalently, the O(1/J) corrections were consid-
ered always negligible. On the other hand, in the clean case the O(1/J) corrections
lead to interesting phenomena as Stark MBL. The rationale behind the choice of ne-
glecting the corrections in this Section was the following: while in the clean system
(W = 0) the introduction of interactions leads to integrability breaking, for W 6= 0
it would lead to just minor quantitative modifications in the dynamical behaviour.
Looking at the precise form of the O(1/J) corrections (Eq. (6.60)), one sees that they
are (parametrically small) four-body interactions on the fermionic chain. Therefore,
they become negligible in comparison with the strong, non-local interactions arising
from the disorder. In particular, the sum appearing in Eq. (6.74) (and therefore in
Eq. (6.76)) makes the disordered interactions of order

√
NW, when acting on Young

diagrams of size N. Consequently, they become stronger as time passes by, and the
Hilbert space of larger Young diagrams is explored, making the O(1/J) corrections
even less relevant.

Of course, we expect the picture presented to break down at small values of J:
there, also the mapping to fermions ceases to be valid, since it becomes possible
for any 2d spin to flip with non-vanishing probability, and the interface is no more
well defined. How the dynamics changes in such limit is however a very interesting
question, that we hope may be the object of future studies.

6.6 Conclusions and outlook

In this Chapter we have shown, how to describe the dynamics of interfaces in the
two-dimensional quantum Ising model, in the strong-coupling limit. As a first step,
we discussed the infinite-coupling limit (J = ∞), focusing both on the equilibrium
properties of 1d linear domains embedded in the 2d lattice, and of interfaces de-
scribed by Lipschitz functions. In the first case, we have shown that, for such initial
conditions, the model reduces to a PXP Hamiltonian, for which one can compute
the equilibrium magnetization (if the initial state has negligible overlap with quan-
tum many-body scars). In the second case, the interest for such configurations is
twofold: on the one hand, they effectively describe smooth interfaces and, on the
other hand, given the impossibility of breaking the domain wall ensured by the Lip-
schitz condition, an effective 1d description can be provided, which is amenable of
exact solution.

Then, we moved to the case of an interface shaped like an infinite corner. After
having discussed the properties of the average limiting shape, both on the lattice and
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in the continuum, we characterized the growth of the entanglement entropy after
a quench, and unveiled a deep connection between the dynamics of the quantum
problem and the asymptotics of the Plancherel measure on Young diagrams. We
finally relaxed the assumption of having an infinite Ising coupling, and made use
of a Schrieffer-Wolff transformation to obtain the O(1/J) corrections. The first-order
corrections break the integrability of the model at J = ∞ but, remarkably, ergodicity
is not restored. In fact, the presence of the longitudinal magnetic field causes the
emergence of Stark many-body localization, that we characterized both numerically,
computing the imbalance, and analytically, giving an argument for its validity.

To support our results, it is fundamental to discuss the timescales entering the
problem in generic conditions. In particular, we identified in Tpreth the prethermal
timescale, after which the description in terms of Schrieffer-Wolff expansion is no
longer valid: it turned out to be (at least) exponentially long in J. Moreover, the
possibility of utilizing a 1d chain to describe interfaces in 2d is well grounded as
long as the effects of a finite bubble size are negligible. We estimated the timescale
Tcorner below which this is a reliable assumption, and it turned out to be more than
exponentially long in the linear size of the domain. Both of these timescales ensure
that the results presented are not valid strictly only in the infinite coupling or infinite
size limits, but they represent a good description also for finite coupling and finite
sizes, up to very large times.

An intriguing question is about the dynamical effects arising at times larger than
Tpreth and Tcorner. While we leave this problem to future work, we can argue that the
description given here is no longer valid, as the interface-splitting moves start play-
ing a major role, and even the conservation of the interface length is no longer strict.
As a consequence, the possibility of employing a 1d chain to describe the dynamics
of a generic 2d domain will likely become impossible. However, for some initial con-
figurations or at least in some regimes, we expect that it will still be possible to give
a description in terms of a 1d effective problem. We aim at attacking this problem in
future works.

Let us remark that, in the general case, the full 2d nature of the problem will
emerge in the long-time limit, or for generic couplings. In these regimes no 1d de-
scription will be reliable and new techniques will be needed. Ultimately, we expect
that a complete solution of the 2d quantum Ising model is at least as hard as the
solution of the 3d classical Ising model.

Finally, in this Chapter we addressed the spectral and dynamical properties of
the disordered version of the problem. We used as initial configuration the infi-
nite, corner-shaped interface: while this same problem turned out to display ergod-
icity breaking in absence of disorder, we presented both analytical and numerical
evidence supporting the absence of a many-body localized phase when disorder is
added. We established, through an analytical argument based on the forward ap-
proximation, and numerical results for spectral properties, that the model is ergodic
for any finite W in the thermodynamic limit. However, we also showed that the
dynamics turns out to be extremely slow: we found through an extensive numerical
analysis that the growth of the average number of melted squares, 〈N(t)〉, passes
from ballistic to logarithmic in time already for small disorder, and we characterized
the crossover between these two regimes with various indicators. Also the entan-
glement entropy SE(t) shows a similar behavior, that traces back to the growth of
〈N(t)〉.

While the results showed in this Chapter support the common belief that MBL
does not survive in dimensions higher than one, we presented strong evidence for
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the onset of slow dynamics, namely slower than subdiffusive. Surprisingly, such
behavior is already present at small disorder strength, when the system, at finite
size, is fully ergodic according to the spectral indicators. An explanation of this
slow, logarithmic dynamics in terms of the phenomenology of avalanches [112–114]
would be desirable, but we did not address it in this first work.
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7 Optimal control of a spin qubit
for quantum sensing

In this Chapter, I demonstrate how to solve the control problem of a single-qubit sensor of
magnetic fields. After having introduced the context, in Sec. 7.1 I describe how to model the
qubit sensor. Then, in Sec. 7.2 I show how to find, with both analytical and numerical tech-
niques, the optimal control protocol. In Sec. 7.3 I compare the results with real experimental
data, showing good agreement. Finally, in Sec. 7.4 I discuss the implications of the results
and suggest future applications. The Chapter is based on the publications [5, 7].

The aim of this Chapter is to show how techniques coming from the physics of
spin glasses, and disordered systems more in general, can be fruitfully applied to
the control problem of a single-qubit quantum sensor. In order to understand the
relevance of the problem, and to motivate the study, let us start with a very brief
introduction of quantum optimal control and quantum sensing.

Optimal control (OC) theory began to be formulated in the 1950s as an extension
of the calculus of variations, with the aim of developing tools for the control of dy-
namical systems. More precisely, when a system is used to to perform some task,
one would like to boost its performance—as measured by some figure of merit—,
and OC theory sets the framework for this optimization. So far, OC methods have
been applied to many different problems, ranging from engineering, to computer
science, economics, and so on. OC methods have been fruitful also in fundamental
science applications. For instance, starting from the 1980s, the technological capa-
bility to manipulate individual quantum objects as electrons, photons or atoms has
been steadily increasing, and OC methods have been a fundamental player in this
[468–471]. Such methods are needed, to begin with, in quantum state preparation,
the first step necessary in any quantum technology application, as one wants to ini-
tialize the system in some well-defined state, possibly in the shortest time. Then,
OC strategies can be helpful also in the engineering of better quantum gates (so that
both the time needed and the losses are minimized) [472–475], or even in devising
better quantum algorithms [476, 477].

One of the quantum technology applications in which OC theory plays a central
role is quantum sensing [40]: by definition, it is the use of quantum mechanics in a
fundamental way to design better sensor of physical properties. By “fundamental”
we mean that properties unique to the quantum world as coherence, superposition,
discreteness of the spectrum or entanglement are pivotal in the design itself of the
sensor. That small quantum systems can be good candidates for sensors is already
understood from the fact that they are very sensitive to external influences: this is a
remarkable intuition, since it turns one of the main weaknesses of quantum devices
into their strength. However, even if quantum sensing devices can in principle at-
tain precision, accuracy, and repeatability reaching fundamental limits [478], their
extreme sensitivity to external perturbations also causes them to couple with detri-
mental noise sources, that induce decoherence and therefore limit the interaction
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time with the target signal. It is in this respect that OC comes into play, providing
effective strategies that can both increase the sensitivity and decrease the influence
of the noise.

In this Chapter, we introduce a method to find OC protocols for alternating cur-
rent (AC) quantum sensing in the presence of dephasing noise. Such optimization
problem is in general a complex classical problem. Our method, that draws an anal-
ogy between pulsed dynamical decoupling (DD) protocols [479–483] and spin glass
systems [68], maximizes the phase acquired by the quantum sensor due to the tar-
get AC field while minimizing the noise detrimental effect. The OC strategy yields
an improved sensitivity, and this is experimentally demonstrated using a spin-qubit
magnetometer based on a Nitrogen-Vacancy (NV) center in diamond [28, 31, 484–
488].

The study of optimization problems in statistical physics is a large field of re-
search in disordered systems, with far-reaching connections from the physics of spin
glasses [206, 209] and other frustrated, classical and quantum models [208, 210, 211,
241, 292, 489, 490] (see also Chap. 2). For our particular case, we find that the prob-
lem of optimizing the control protocol for our quantum sensor is homologous to that
of finding the ground state of a classical Ising spin Hamiltonian. The control π-pulse
times correspond to the locations in the chain of the domain walls. The couplings
between the spins are of both signs, and this is customary in optimization problems:
their antiferromagnetic nature captures the frustration between the different terms
in the Hamiltonian, which then prima facie is that of a spin-glass model [491]—which
does not mean that there is a spin-glass phase at low temperature. Indeed, we find
that, by trading the Ising Z2 spins for the continuous spins of a spherical model (SM)
[80, 81], one gets rid of frustration altogether, and there are little signs of competing
equilibria at low temperature, typical of replica-symmetry-broken phases [68]. Since
the ground state of the spherical model can be found analytically if the spectra of
the signal and of the noise are known, we obtain from this both a lower bound for
the sensitivity1, and a quasi-optimal controlled pulsed field. The quasi-optimal se-
quence can be further fed to a simulated annealing (SA) algorithm [65, 66, 492, 493],
in order to find the optimal one. Such annealed sequences show, in agreement with
the experiments, very good sensitivities (only about 20% higher than the bound). To
show the unparalleled performance of the algorithm, we also run it on a Raspberry
Pi microcomputer, where it takes milliseconds to find the optimal solutions.

7.1 Optimized dynamical decoupling for sensing

We consider a single spin-qubit sensor of time-varying magnetic fields, in the pres-
ence of dephasing noise. This quantum sensing task can be described as a compro-
mise between spin phase accumulation due to the external target field to be mea-
sured b(t) ≡ b f (t), and refocusing of the non-Markovian noise, obtained via dy-
namical decoupling (DD) protocols [479–483]. As in the Hahn’s echo [494–496], a
DD sequence is implemented by applying sets of n π-pulses that act as time reversal
for the phase acquired by the qubit during its free evolution, and can be described
by a modulation function y : [0, T] 3 t 7→ {−1, 1} (see Fig. 7.1b). The DD sequence
is embedded within a Ramsey interferometer, hence the qubit coherence is mapped

1The lower bound is not related to the Cramér-Rao bound, since the latter is used to define the
sensitivity itself (see App. E.1).
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FIGURE 7.1: (a) A single spin sensor is used to detect an AC target magnetic field b(t). (b) An
OC field applied to the spin sensor increases its coherence, hence improving its sensitivity.
(c) The difficult problem of finding an OC sequence can be mapped into a problem of finding
the ground state of a virtual spin chain. This figure is taken from Ref. [5].

onto the probability of the qubit to populate the excited state |1〉:

P(T, b) = Tr (ρ|1〉〈1|) = 1
2

(
1 + e−χ(T) cos ϕ(T, b)

)
. (7.1)

Here, ϕ is the phase acquired by the qubit during the sensing time T:

ϕ(T, b) = bγ
∫ T

0
dt f (t) y(t), (7.2)

with γ the coupling to the field (e.g., the electronic gyromagnetic ratio of the spin
sensor). The noise-induced decoherence function

χ(T) ≡ 1
π

∫ dω

ω2 S(ω)|Y(T, ω)|2 (7.3)

is the convolution between the noise spectral density (NSD) S(ω) and the filter func-
tion Y(T, ω) = iω

∫ T
0 dt e−iωty(t). Note that we neglect the effect of the target field

on the noise source [497].
Dynamical decoupling is a very versatile control technique, with a virtually in-

finite space of degrees of freedom spanned by all the possible distributions of π
pulses, even at finite sensing time T. One of the most common DD sequences is the
Carr-Purcell (CP) sequence [495, 496], formed by a set of equidistant pulses. Non-
equidistant sequences have been proposed and experimentally tested, e.g. in Refs.
[482, 498, 499]. Each of these sequences has internal degrees of freedom, that can be
tuned to increase the sensing capabilities for specific target fields. However, as the
complexity of the target field increases, increases also the difficulty to find a pulse
sequence that successfully filters out the noise components, while still maintaining
the sensitivity to the target field.

A possible approach is to use an optimization algorithm to find a sequence that
optimizes a desired figure of merit, for example the sensitivity, i.e. the smallest de-
tectable signal. This concept was proposed and demonstrated experimentally for an
NV center used as a quantum magnetometer [500]. The sensitivity, which can be
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expressed as (see App. E.1 for a derivation)

η =
eχ(T)

|ϕ(T)/b|
√

T, (7.4)

encompasses both the effect of the detrimental noise, and the effect of the target AC
field. Despite the achieved improvements [500], the computational complexity of
the optimization problem limited its applicability.

In our approach, instead, the cost function η is redefined to mimic the Hamil-
tonian of a classical Ising spin system. In this way, the continuous optimization
problem for the minimization of the sensitivity of a NV-center magnetometer is re-
interpreted as a discrete energy minimization problem. Specifically, we define the
new cost function to be the (dimensionless) logarithmic sensitivity

ε = log
(

ηγ
√

T
)
= χ(T)− log

∣∣∣∣
ϕ(T)
Tγb

∣∣∣∣ , (7.5)

and we will show in Sec. 7.2 that upon time discretization ε will become the Ising
Hamiltonian, albeit with sign-alternating, long-range interactions and a peculiar log-
arithmic field-spin coupling. Before doing that, however, we show how the problem
can be tackled with continuous time, and by means of a reasonable approximation.

7.2 A variational approach

Our task is to find the optimal function y(t) which minimizes the sensitivity η—or
the logarithmin sensitivity ε. First of all, we rewrite ε as

ε[y] =
1
2

∫

[0,T]2
dtdt′ y(t)J(t, t′)y(t′)− log

∣∣∣∣
∫ T

0
dt h(t)y(t)

∣∣∣∣ , (7.6)

with
J(t, t′) =

2
π

∫
dω cos(ω(t′ − t))S(ω). (7.7)

Notice that J is a positive operator even though J(t′, t) can take up any values in R,
and we have the constraint y(t)2 = 1 for all t. We can impose the constraint via a
Lagrange multiplier function λ(t):

F[y, λ] = ε[y] +
1
2

∫ T

0
dt λ(t)

(
y(t)2 − 1

)
. (7.8)

We need to find the stationary point of F[y] w.r.t. y(t) and λ(t). Formally, the saddle
point equations are

0 =
δF

δy(t)
=
∫ T

0
dt′
[

J(t, t′) + λ(t)δ(t− t′)
]

y(t′)− h(t)∫ T
0 dt h(t′)y(t′)

, (7.9)

0 =
δF

δλ(t)
= y2(t)− 1 . (7.10)
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One can see that the extreme w.r.t. λ simply gives the constraint. The formal solution
of the above equations is

y(t) =
1
D

∫ T

0
dt′
(

1
J + λ

)

t,t′
h(t′), (7.11)

where λ stands for the diagonal operator λ(t)δ(t− t′), and

D =
∫ T

0
dt h(t) y(t) =

1
D

∫ T

0
dtdt′ h(t)

(
1

J + λ

)

t,t′
h(t′)

=⇒ D =

(∫ T

0
dtdt′ h(t)

(
1

J + λ

)

t,t′
h(t′)

)1/2

. (7.12)

By plugging Eq. (7.11) in Eq. (7.8), one can express the cost function at the saddle as

F =
1
2

∫

[0,T]2
dtdt′ y(t) J(t, t′) y(t′)− log

∣∣∣∣
∫ T

0
dt h(t)y(t)

∣∣∣∣+
1
2

∫ T

0
dt λ(t)

(
y(t)2 − 1

)

=
1

2D2

∫

[0,T]2
dtdt′ h(t)

(
1

J + λ

)

t,t′
h(t′)− log

∣∣∣∣∣
1
D

∫ T

0
dt h(t)

(
1

J + λ

)

t,t′
h(t′)

∣∣∣∣∣

− 1
2

∫ T

0
dt λ(t)

=
1
2
− log |D| − 1

2

∫ T

0
dt λ(t). (7.13)

The last expression is a function of λ(t) only and one can, in principle, find the
saddle point of it and substitute it in (7.11) to obtain the optimum DD sequence.

Short of solving exactly the model in Eq. (7.8), we can get good results to guide
the experiment by simplifying the space in which we are searching for the minimum.
We can do this in two ways: either we keep y(t) defined on R (i.e. we keep the time
continuum) and we give more structure to λ(t), or we discretize time and enforce
the constraint y(t)2 = 1 exactly (therefore getting rid of λ). These two approaches
will be implemented in the following.

7.2.1 Spherical approximation

In order to make progress, we substitute for the moment the constraint y(t)2 = 1,
for all t, with the constraint

1
T

∫ T

0
dt y2(t) = 1. (7.14)

This is equivalent to finding the stationary point of F[y, λ], Eq. (7.8), in the subspace
in which λ(t) ≡ λ. We call the resulting approximation spherical model (SM) since
the constraint in Eq. (7.14), after discretization of time in N different, equally spaced
values ti = i∆t, puts the variable y(t) on a sphere of radius N = T/∆t. The SM in
the continuum limit, obtained by substituting λ(t) → λ in Eq. (7.13), provides one
theoretical lower bound for the sensitivity: this simply follows from the fact that we
are minimizing ε w.r.t. y(t) over a larger space of functions.

Spherical models are often good mean field models of spin glasses and of their
dynamics [80, 81, 501], and this case will prove to be of similar nature despite the
unusual logarithmic field coupling term. By setting λ(t) → λ we have the function
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FIGURE 7.2: (a) The solution of the spherical model (red square) is, in general, not a point
on the hypercube (black dots), but it can be projected (arrow) onto the latter, giving a good
value for the sensitivity. (b) Comparison between solutions for 200 spins (T = 32 µs, ∆t =
0.16µs): The continuous spins si ∈ R (blue line) can be converted into Ising spins si = ±1
(necessary for π-pulses) by using the sign function (orange line). The sensitivity can be
improved further with a few iterations of SA to get a close-by sequence (dashed black). In
this example, the trichromatic target signal and the noise are equal to the ones used in the
experiment (see text). This figure is taken from Ref. [5].

of the single parameter

εSM(λ) =− 1
2

log

∣∣∣∣∣
∫ T

0
dtdt′ h(t)

(
1

J + λ

)

t,t′
h(t′)

∣∣∣∣∣

+
1
2
− T

2
λ, (7.15)

where J +λ is the operator with integral kernel J(t′, t)+λδ(t′− t). Maximizing w.r.t.
λ ∈ R, one finds a lower bound on the sensitivity: η > ηSM = eεSM /γ

√
T. In princi-

ple the bound is not sharp, however it provides a quick and accurate measure of the
goodness of our results. Moreover, we have found by experience that it is in practice
pretty close to being sharp and that it can hardly be improved analytically by adding
more freedom to the function λ(t) beyond the constant λ(t) = λ. For example the
test function λ(t) = λ1χ[0,T/2](t) + λ2χ[T/2,T](t) (χ[a,b] is the characteristic function of
the interval [a, b]), giving a two-parameters space (λ1, λ2) for minimization, gives at
most a few percent increase on the bound on η. We therefore use it as if it were sharp.

One can, in fact, define for any DD sequence the dimensionless quantity ηSM/η <
1. We will see in the next section how different approximate solutions give different
values of this quantity. Moreover, we will see how the solution of the SM, although
not per se a DD sequence, can function as a starting point for finding an optimal DD
sequence.

7.2.2 Time discretization and Simulated Annealing

Let us focus now on the second method: time discretization. We discretize the sens-
ing time T into small time intervals ∆t, to obtain a sequence of times ti = i∆t with
i ∈ 1, ..., N = T/∆t. The interval ∆t is the smallest time we allow the π-pulses of the
DD sequence to be separated by. Apart from the physical limit given by the experi-
mental apparatus, which gives a possible ∆t to choose, one does not expect to need
in the optimal solution π-pulses separated by much less than the minimum period
of b(t), if it exists (the spectrum of b(t) can extend up to infinite frequency).

As introduced before, the modulation function at each of these times is y(ti) =
±1, which dictates the sign of the phase acquired by the spin qubit during the time
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interval [ti − ∆t,ti]. We can therefore write the modulation function as

y(t) =
N=T/∆t

∑
i=1

siχ[(i−1)∆t,i∆t](t), (7.16)

where si = ±1, and as before χ[a,b] is the characteristic function of an interval [a, b].
Writing the modulation function in this way allows us to recast Eqs. (7.2) and (7.3)
respectively as

ϕ(T) = Tγb
N

∑
i=1

hisi, (7.17)

χ(T) =
1
2

N

∑
i,j=1

Jijsisj (7.18)

where

hi =
1
T

∫ i∆t

(i−1)∆t
dt f (t) (7.19)

represents the interaction with a normalized target AC field, and

Jij ≡
4
π

∫
dω

[1− cos(ω∆t)]
ω2 cos(ω(j− i)∆t)S(ω) (7.20)

represents the interaction with the detrimental noise. We can now express the new
cost function as

ε =
1
2

N

∑
i,j=1

Jijsisj − log

∣∣∣∣∣
N

∑
i=1

hisi

∣∣∣∣∣ , (7.21)

that closely resembles the Hamiltonian of the Ising spin glass problem for a set of N
spins si. The ground state for this Hamiltonian can be used to obtain a modulation
function, therefore a DD sequence, that minimizes the sensitivity η.

At first sight, minimizing ε in Eq. (7.21) on the hypercube {si} ∈ {−1, 1}N can
be in general a difficult problem, since the couplings Jij can be of both signs. There-
fore, one is tempted to use a simulated annealing (SA) minimization algorithm [65,
66, 492] to find the minimum of the energy ε. However, the performance of SA is
strongly affected by the starting configuration both in the final value and, at least as
importantly, in the time to reach it. With this in mind we turn to the SM solved in
the previous section but with our discretized time, in terms of which the spherical
constraint reads ∑N

i=1 y2
i = N. In the discretized form, the solution of the SM is (see

Eq. (7.11))

yj =
1
D

N

∑
k=1

ei 2π j
N k
√

N
h̃k

J̃k + λ
. (7.22)

Above, we introduced the Fourier transform of the signal term h̃k =
1√
N ∑j e−i 2πk

N jhj,

and of the noise term J̃k =
1√
N ∑j e−i 2πk

N j Ji,i−j: indeed, since λ(t) is constant and Jij de-

pends only on the difference i− j, the matrix J + λ is diagonal in Fourier space2. The
value of λ is chosen to enforce the spherical constraint, and D =

(
∑k′ |h̃k′ |2/( J̃k′ + λ)

)1/2
.

2Strictly speaking, the noise term is represented by a Toeplitz matrix Jij, which is diagonalized by
the discrete Fourier transform only in the limit N → ∞. However, already at finite N plane waves con-
stitute a reasonable approximation for the eigenvectors. For numerical purposes, any diagonalization
routine will suffice.
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FIGURE 7.3: (a) Comparison of performances for the DD sequences discussed in the main
text: generalized Carr-Purcell (gCP), spherical model projected with the sign function onto
the hypercube (sign(SM)), simulated annealing (SA), and SA optimization starting from gCP
and sign(SM). One can see that the best results are obtained for the SA optimization guided
by the SM solution. The data refer to the ensemble of random test signals described in
the main text: the dots are the average values, and the shaded area represents the 20–80
percentile of the distribution of results. The discretization interval is ∆t = 0.1 µs. (b) Single
instance of a random signal, corresponding to T = 100 µs. It is shown the comparison of the
unbiased SA, i.e. starting from infinite temperature (purple to green circles), and SA guided
by the SM solution (red square). The unbiased SA needs a ferromagnetic term ∝ K—to be
optimized over—in order to keep under control the number of π pulses (see Eq. (7.23)).
From this plot, one learns that first, the optimal solution represents also the best trade-off
between number of π pulses and sensitivity, and second, that the SA optimization guided
from the SM performs better, and with less fluctuations. Here, each unbiased SA procedure
uses 105 Monte Carlo steps and a power-law temperature ramp, while only 103 steps are
needed for the SA from the SM solution. The dots represents the averages, and the error
bars the standard deviations of the distributions. This figure is taken from Ref. [5].

One can notice that in Fourier space the optimal solution is aligned with the field,
and orthogonal to the noise.

An example solution is shown in Fig. 7.2. The values of yi do not form a sequence
of ±1, but the solution is reasonably close to the minimum of the original functional
Eq. (7.21) over the hypercube {−1, 1}N . We can now use the solution in Eq. (7.22) as
a starting point to find the optimal sequence si ∈ {−1, 1}. To do so, we first define
si = sign(yi) ∈ {−1, 1} and then run few steps of SA moving only the domain walls, i.e.
flipping only spins which are on a sign change: si = −si+1. The π-pulse sequence
is, as before, the sequence of times where the spins change sign (the position of the
domain walls in the spin chain).

We test our procedure on an ensemble of test cases constructed as follows. The
signal is a superposition f (t) = ∑

Nfreq
n=1 An cos(ωnt + φn): we fix Nfreq = 7 and extract

uniformly random frequencies in the interval [0, 1] MHz, uniformly random phases
φn, and uniformly random amplitudes An s.t. ∑

Nfreq
n=1 An = 1. The noise spectrum is

instead a gaussian centered at 0.4316 MHz, and with standard deviation 0.016 MHz:
thus, it is close to (but a little bit stronger w.r.t.) the experimentally relevant situation
discussed in the next session.

First, we use a generalized Carr-Purcell (gCP) protocol in which the DD sequence
is identified by the times at which the signal f (t) changes sign, i.e. its zeros. This
procedure is simple but not very effective: on average, it returns between 2/3 and
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1/3 of the maximum inverse sensitivity, monotonically decreasing with the time of
the sampling (see Fig. 7.3a). Second, we use the solution of the SM, viz. si = sign(yi),
as DD sequence: this gives a better solution, but still not optimal. The best results
are obtained by running a fixed number of steps of SA starting from the SM DD
sequence sign(yi). As it is seen in Fig. 7.3a, this last strategy gives solution close to
the upper bound given by the SM itself (before projecting on the hypercube).

Finally, we compare our results with an unbiased SA optimization, starting at
infinite temperature from a uniformly random sequence of si = ±1. In this case, to
reduce the number of π pulses it is necessary to introduce by hand a ferromagnetic
coupling term in the Hamiltonian:

ε→ ε− K
N−1

∑
i=1

sisi+1 (7.23)

with K > 0 to be tuned. One can see in Fig. 7.3b that still the best sensitivity is
obtained with the combination of the SM solution and SA optimization. Addition-
ally, from Fig. 7.3b one can also understand that the optimal solution represents the
best trade-off between number of π pulses (which the experimenter would like to
maintain low) and sensitivity.

To conclude, we stress that our optimization procedure is very fast, if compared
to standard, general-purpose routines. In particular, we were able to run our codes
on a Raspberry Pi microcomputer, where the single instance takes ∼ 0.5 s for the
unbiased SA algorithm, and ∼ 0.02 s for the solution of the SM and subsequent
annealing (using N = 500 spins). This fact opens the door to the miniaturization
of the control electronics, in view of possible technological applications of quantum
sensing.

7.3 Comparison with experiments

In this Section, we will show how the optimized DD sequences perform in real-life
experiments. The experiments were performed in the “Diamond Quantum Nano-
engineering” group at the European Laboratory for Non-Linear Spectroscopy (LENS),
Florence, by Nicole Fabbri and Santiago Hernández-Gómez.

7.3.1 An application to magnetic field sensing

While our method is general and applicable to any spin-qubit sensor, we exemplify it
through experiments with a single NV center in bulk diamond with naturally abun-
dant 13C nuclear spins, at room temperature. The ground state electron spin of the
NV center can be initialized and measured by exploiting spin-dependent fluores-
cence, and can be coherently manipulated by microwaves [488]. We consider the
two ground-state spin levels, mS = 0 and mS = +1, to form the computational basis
of the qubit sensor {|0〉, |1〉}. The main source of noise for the NV spin qubit derives
from the collective effect of 13C impurities randomly oriented in the diamond lattice.

In the presence of a relatively high bias field (& 150 G), the collective effect of
the nuclear spin bath on the NV spin is effectively described as a classical stochastic
field, with gaussian noise spectral density (NSD) centered at the 13C Larmor fre-
quency νL [502, 503]. We preliminarily characterize the NSD of the NV spin sensor
as in Ref. [503]. The direct coupling between the target field and the nuclear spins
is negligible due to the small nuclear magnetic moment [497], and the indirect cou-
pling via the NV electronic spin is also negligible due to the presence of the strong
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FIGURE 7.4: (a) Dynamics of the NV spin qubit under a DD sequence with n = 16 equidis-
tant pulses (CP) for a trichromatic signal (see text). The NV spin coherence is mapped onto
the probability of the NV spin to be in the state |1〉), P(nτ, b). Gray bullets: experimental
data. Black dashed line: simulated spin coherence in the presence of noise, without any ex-
ternal target signals. Orange, red, and purple dashed lines: simulated spin coherence in the
presence of monochromatic target fields with ω1, ω2, and ω3, respectively, with no noise.
Gray solid line: simulated data combining all of the above using Eq. (7.1). Residuals be-
tween gray experimental data and gray solid line are shown in the bottom plot. (b) NSD
given by the nuclear spin environment of the NV sensor (black line); fast Fourier transform
(FFT) of the target signal f (t) (gray line). Vertical dotted lines: frequency components of the
target signal, and center of the NSD. Orange, purple, and red lines: filter function for a CP
sequence with T = n

2νi
, for i = −1, 0, and +1, respectively. Blue line: filter function of the

optimized sequence. Inset: examples of time distribution of π pulses. This figure is taken
from Ref. [5].
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FIGURE 7.5: (a) Experimental values of the inverse sensitivity for the optimized sequences
(blue circles), and for the CP sequences (orange, red, and purple triangles). The predicted
values of 1/η are represented by dotted lines. Black dashed line: theoretical upper bound of
1/η, obtained from the solution of the spherical model in the continuum limit. (b) P(T, b) as
a function of the amplitude of b, at T ' 152 µs. Same color code as in (a). Lines are a cosine
fit (see text). This figure is taken from Ref. [5].

bias field [503]. Therefore, the NV spin dynamics is well described by Eq. (7.1).
For the experiments we present throughout this Chapter we used a bias magnetic
field of 403.2(2) G, for which the NSD is S(ω) = S0 + A exp(−(ω − ωL)

2/(2σ2)),
with S0 = 0.00119(9) MHz,ωL/2π ≡ νL = 0.4316(2) MHz, A = 0.52(4) MHz, and
σ/2π = 0.0042(2).

As a test case for our OC method versus standard control, we consider a three-
chromatic target signal, with f (t) = ∑+1

i=−1 Ai cos(2πνit), where νi = {0.1150, 0.2125,
0.1450} MHz are the frequency components, and Ai = {0.288, 0.335, 0.377} are the
relative amplitudes, respectively for i = −1, 0,+1.

In Fig. 7.4a we show the NV spin coherence P(nτ, b) under Carr-Purcell (CP)-
type DD control, formed by n pulses with uniform interpulse spacing τ = T/n, as a
function of τ. The value of b at the position of the NV defect inside the diamond is
obtained from minimizing the squared residuals between experiment (gray bullets)
and simulation (gray line), for which b is the only free parameter.

The CP pulse sequence acts as a quasi-monochromatic filter centered at 1/τ, so
that a single component of b(t) can be sensed in each experimental realization. As
a consequence, P(nτ, b) in Fig. 7.4a shows collapses occurring at τ ∼ 1/2νi. No-
tice that the collapse corresponding to the frequency component ν+1 (τ ' 3.448 µs)
cannot be resolved from noise since the first harmonic of the filter function roughly
coincides with the NSD peak (ν+1 ' νL/3) (see 7.4b). To detect the three components
of the target signal and filter out the NSD, we need an optimized sequence. We thus
apply the optimization algorithm detailed before to solve this experimental sensing
problem.

In order to confirm the theoretical prediction on how the optimized DD sequence
can outperform the standard control in terms of sensitivity, we performed measure-
ments of the sensitivity itself. Specifically we used three different CP sequences, each
with time between pulses τ = 1

2νi
, for i = −1, 0,+1. Having a previous knowledge

of the NSD allows us to predict the sensitivity of the the spin sensor using Eqs. (7.3),
(7.2), and (7.4), for any given DD sequence, and for any target AC signal b(t). In Fig.
7.5a we show the estimated values for the inverse of the sensitivity as a function of
the sensing time T = nτ. Since τ = 1

2νi
is fixed for each of the CP sequences, the

variation of T corresponds to a variation of the number of pulses n. Notice how for
τ = 1

2ν+1
, the inverse of the sensitivity rapidly goes to zero. The estimated inverse
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sensitivity for the optimized sequences is also shown in Fig. 7.5a. The inverse sensi-
tivity increases as a function of T, although we expect it to decrease at longer times
due to decoherence.

In the experiment, we measure P(T, b) as a function of the field amplitude b at a
fixed sensing time. An example of this kind of measurements is shown in Fig. 7.5b.
From the analysis of the oscillation of P(nτ, b), we can directly fit the values of χ and
ϕ/b (see Eqs. (7.1) and (7.2)), and therefore we can obtain the values of η using Eq.
(7.4). The sensitivity measured experimentally shows an excellent agreement with
the expected simulated values (see Fig. 7.5a). See the Supplementary Information
of Ref. [5] for two additional test cases: one for a monochromatic target signal such
that the fifth harmonic of the NSD coincides with the frequency of the target signal;
and one for a target signal with seven frequency components, all close to the NSD
peak. These two cases confirm the results of the experiments shown here.

7.3.2 An application to biological signals sensing

As an exemplary case, we consider the electromagnetic signal generated by a micro-
tubole. Microtuboles are cytoskeletal polymers, whose excitation is supposed to be
a fundamental process of life in multicellular systems [504]. They exhibit a rather
complex spectra, with many peaks in the range of tens of MHz [505]. We consider
here a signal with five frequency components ωi/2π = {9.5, 15, 18, 25, 31} MHz.
The time dependence and normalized spectrum of such a signal are shown in Figs.
7.6a and 7.6b (blue line), respectively. We also consider that the NV spin qubit sensor
is subject to noise dominated by a 1/ f contribution [506, 507], with functional form
A/ f α (with fixed α = 1 and variable amplitude A), plus the intrinsic Gaussian noise
of the diamond device given by the 13C spin bath [503]. The noise spectral density
S(ω) is represented by the orange line in Fig. 7.6b, for a magnetic bias field of B = 40
mT. Note that this value is incidental, since the bias field can be tuned within a wide
range B ≥ 15 mT [502, 503].

We now aim at identifying the pulsed control field that drives the dynamics of
the spin qubit sensor in a way that optimizes its sensitivity to the given signal in the
presence of such a noise.

An intuitive solution that maximizes the phase ϕ acquired by the sensor due to
the coupling to the signal, corresponds to flipping the spin sensor at each zero cross-
ing of the signal (see blue dots in Fig. 7.6a). Note, however, that these solutions (that
we denote as ‘generalized Carr-Purcell (gCP)’ solutions) depend only on the signal
spectral content, and do not take into account the presence of noise, which signifi-
cantly affects sensitivity instead. The inverse of sensitivity (expressed in Hz1/2/µT)
under this kind of control field is reported in Fig. 7.6c (see crosses), as a function of
the sensor interrogation time T, for different amplitudes of the 1/ f noise. As the
noise amplitude increases, the sensitivity rapidly degrades.

By applying the optimization algorithm described in Sec. 7.2.2, we take into ac-
count both the signal and the noise effect. For the optimization, we use a time base
∆t = 10 ns, which sets the minimum distance between the control pulses. Note that
this parameter establishes an upper bound for the detectable target signal frequency
(in the present case, νmax = 1/2∆t ∼ 50 MHz). With this method, we find optimal
pulsed control fields that improve sensitivity to the target signal up to a factor of
3.3× 103. The sensitivity of the optimized sequences in shown in Fig. 7.6c (see dots).
The optimal sequences perform well for arbitrarily strong noise, whose amplitude
we vary over two orders of magnitude (A = 10−2 − 1). The sensitivity of the opti-
mal sequences monotonically improves with the interrogation time reaching around
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30 nT/Hz1/2 at time 30µs, where the gCP sequences already falls down even in the
presence of weak noise.

A bound of the achievable sensitivity can be obtained from the solution of the
spherical model in the continuum limit (N → ∞) (dashed black line in Fig. 7.6c).
The optimized control sequence is up to 4.5 times closer to this bound than the gCP
sequence.

7.4 Conclusions and outlook

We have shown that the problem of finding an optimal solution to the control of a
single spin for quantum sensing can be solved by, first, finding the ground state of a
solvable spherical model of classical spins and, second, using this as a starting point
for a simulated annealing algorithm. In this way, this optimization algorithm is able
to find a control sequence that shows a significant improvement of the sensitivity
with respect to standard control sequences. In addition, from the spherical model
we found a theoretical bound on the sensitivity. Although the spherical model can
be mapped to a control sequence that gives relatively good results, using the sim-
ulated annealing algorithm is necessary to improve even further the sensitivity, ap-
proaching 80–85% of the bound. Our experimental results confirm the theoretical
predictions, hence validating our algorithm as an optimization protocol applicable
to single spin sensors.

The proposed algorithm can solve the problem of finding the optimal DD se-
quence of a given signal b(t) in a few milliseconds on a Raspberry Pi, which opens the
door to the miniaturization of the control electronics, using for example low-power
processors. Fast optimization would also enable the implementation of adaptive
protocols for sensing and spectroscopy.

Of course, several possible routes are left open for future studies. First of all, the
phase diagram of the optimization problem could be studied in more detail (e.g.
on the lines of Ref. [491]), also with the perspective of using more than one qubit
as sensor—and thus increasing the complexity of the spin-glass-like Hamiltonian.
Second, on a practical level, the performance of our optimization scheme could be
compared with the plethora of existing, general-purpose algorithm for quantum op-
timal control, maybe showing that some degree of customization helps substantially
the solution of the optimization problem. Third, as suggested above, one could em-
bed the fast optimization in a larger scheme, with the idea of setting up an adaptive
protocol, that can learn in real time the field that is measured. Finally, so far we re-
stricted the optimization procedure to bang-bang protocols, i.e. only π pulses were
used. One could instead think of more general transformations on the Bloch sphere,
that may boost the sensitivity, as suggested by the higher sensitivity of the spherical
model before the projection on ±1 values.
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FIGURE 7.6: (a) Normalized temporal dependence of the considered AC target field (dashed
black line). Blue dots pick out the zero crossings of the signal, which determine the time
distribution of the π pulses for the generalized Carr-Purcell (gCP) sequence, indicated on
the top as vertical blue lines. In contrast, the vertical red lines represent the time distribution
of the π pulses for the gCP sequence. (b) Blue line: Normalized spectrum of the AC target
field. Orange line: spectral density S(ω) of the noise, which entails a dominant contribution
A/ f α, with α = 1 and A = 1, and a Gaussian peak due to the nuclear spin bath inherent in
the diamond device (centered around ∼ 430 kHz in the presence of a bias magnetic field of
40 mT). Black line: Filter function of the optimized control field that drives the diamond spin
qubit dynamics. The filter function is the Fourier transform of the Ising chain distribution.
(c) Inverse sensitivity to the AC target signal for different control sequences. Crosses: inverse
sensitivity of the sensor when its dynamics is driven by the gCP control solution (the spin
qubit sensor is flipped for each zero crossing of the signal). Note that the gCP sequences
are noise-independent, but 1/η does depend on the noise spectral density. Bullets: inverse
sensitivity of the sensor under optimized control sequences, which take into account noise.
The color code of dots and crosses refers to different values of the noise amplitude A, as
reported in the label. Black dashed line: theoretical upper bound obtained from the solution
of the spherical model in the continuum limit. (d) Number of pulses for the gCP (crosses)
and for the optimized control (bullets) sequences. Inset: difference between the number of
pulses for the gCP solution and for the optimal solution. This figure is taken from Ref. [7].
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A Addendum to Chapter 2

In this Appendix, I give additional details on the perceptron model. In Sec. A.1 I show how
to derive the saddle-point free energy with a standard replica computation. In Sec. A.2 I
show how to parametrize the overlap matrix at the saddle via a RSB ansatz. In Sec. A.3
replica symmetry is assumed, and the free energy used in the main text is derived. In Sec.
A.4 I show how to set up a small-disorder perturbative expansion. In Sec. A.5 I present
a variational computation that shows how the classical critical exponents are modified by
quantum fluctuations.

A.1 Replicated and disorder-averaged free energy

In this Section we show the details of the computation that leads to the replicated
and disorder-averaged partition function in Eqs. (2.10)–(2.11). This is a standard
replica symmetry breaking (RSB) computation; it was originally performed in Ref.
[224] in a classical setting, and then extended to the quantum case in Ref. [244].

Let us start by implementing the spherical constraint through a Lagrange multi-
plier:

Z =
∮

D~X exp

{
−1

h̄

∫ βh̄

0
dt

[
m
2
~̇X2(t) +

M

∑
µ=1

v(hµ(~X))

]}
δ
[
~X2 − N

]
(A.1)

=
∮

D~XDλ exp

{
−1

h̄

∫ βh̄

0
dt

[
m
2
~̇X2(t) +

M

∑
µ=1

v(hµ(~X))

]
(A.2)

+
im
2h̄

∫ βh̄

0
dt λ(t)(~X2(t)− N)

}
, (A.3)

where the symbol
∮

reminds that ~X(0) = ~X(βh̄). Then introduce replicas ~Xa, with
a = 1, 2, . . . , n:

Zn =
∮ [ n

∏
a=1

D~XaDλa

]
exp

{
− 1

h̄

n

∑
a=1

∫ βh̄

0
dt

[
m
2
~̇X2

a(t) +
M

∑
µ=1

v(hµ(~Xa))

]

+
im
2h̄ ∑

a

∫ βh̄

0
dt λa(t)(~X2

a(t)− N)

}
(A.4)

It is convenient to introduce the auxiliary processes (the same of Eq. (2.8))

rµ
a (t) :=

~Xa(t) ·~ξµ

√
N

: (A.5)

they are scalar quantities of O(1), incorporating the quantum fluctuations at large
N, and physically they represent the typical overlap of the particle with an obstacle.
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The processes rµ
a (t) can be inserted in the path integral through the identity

1 =
∮ [ M

∏
µ=1

Drµ
a

]
δ

[
rµ

a (t)−
~Xa(t) ·~ξµ

√
N

]
(A.6)

=
∮ [ M

∏
µ=1

Drµ
a Dr̂µ

a

]
ei ∑µ

∫ βh̄
0

dt
βh̄ r̂µ

a (t)r
µ
a (t)−i ∑µ

∫ βh̄
0

dt
βh̄ r̂µ

a (t)
~Xa(t)· ~ξµ
√

N . (A.7)

It follows, for the replicated and disorder-averaged partition function:

Zn =
∮ [ n

∏
a=1

D~XaDλa

M

∏
µ=1

Drµ
a Dr̂µ

a

]
ei ∑a,µ

∫ βh̄
0

dt
βh̄ r̂µ

a (t)r
µ
a (t)

× e−i ∑a,µ
∫ βh̄

0
dt
βh̄ r̂µ

a (t)
~Xa(t)· ~ξµ
√

N e−
1
h̄ ∑n

a=1
∫ βh̄

0 dt
[

m
2
~̇X2

a (t)+∑M
µ=1 v(rµ

a−σ)
]
+ im

2h̄

∫ βh̄
0 dt λa(t)(~X2

a (t)−N). (A.8)

The only term involved in the average over disorder is

e−i ∑a,µ
∫ βh̄

0
dt
βh̄ r̂µ

a (t)
~Xa(t)· ~ξµ
√

N =
∫ +∞

−∞

[ M

∏
µ=1

N

∏
i=1

dξ
µ
i√

2π

]
e−

1
2 ∑µ,i(ξ

µ
i )

2−i ∑a,µ,i
∫ βh̄

0
dt
βh̄ r̂µ

a (t)
Xa,i(t)ξ

µ
i√

N (A.9)

= e−
1
2 ∑a,b,µ

∫∫ βh̄
0

dt
βh̄

ds
βh̄ r̂µ

a (t)
~Xa(t)·~Xb(s)

N r̂µ
b (s). (A.10)

At this point, the particle position ~Xa(t) appears in the exponent only quadratically.
Therefore, one can change variables from ~Xa(t) to the overlap (the same of Eq. (2.9))

Qab(t, s) :=
~Xa(t) · ~Xb(s)

N
, (A.11)

which is a standard quantity in RSB computations, measuring the similarity between
two replicas. Moreover, integrating by parts the kinetic term, and redefining λa →
iλa, one gets to

Zn N→∞
∝

∮ [ n

∏
a=1

Dλa ∏
b≥a

DQab

]
[det Q(t, s)]

N
2 e

Nm
2h̄ ∑a

∫ βh̄
0 dt [∂2

s Qaa(t,s)|s=t−λa(t)(Qaa(t,t)−1)]

×
{∮ [ n

∏
a=1

DraDr̂a

]
ei ∑a

∫ βh̄
0

dt
βh̄ r̂a(t)ra(t)− 1

2 ∑a,b
∫∫ βh̄

0
dt
βh̄

ds
βh̄ r̂a(t)Qab(t,s)r̂b(s)− 1

h̄ ∑a
∫ βh̄

0 dt v(ra−σ)

}M

,

(A.12)

where the determinant [det Q(t, s)]N/2 is the Jacobian of the transformation ~Xa(t)→
Qab(t, s) (see also Ref. [244]). The integral in the curly brackets can be performed
with the rules of Gaussian integration, finding

∮ [ n

∏
a=1

DraDr̂a

]
ei ∑a

∫ βh̄
0

dt
βh̄ r̂a(t)ra(t)− 1

2 ∑a,b
∫∫ βh̄

0
dt
βh̄

ds
βh̄ r̂a(t)Qab(t,s)r̂b(s)− 1

h̄ ∑a
∫ βh̄

0 dt v(ra−σ)

=
1√

det Q

∮ [ n

∏
a=1

Dra

]
e−

1
2 ∑a,b

∫∫ βh̄
0

dt
βh̄

ds
βh̄ ra(t)Q−1

ab (t,s)rb(s)− 1
h̄ ∑a

∫ βh̄
0 dt v(ra−σ) (A.13)

=:
〈

e−
1
h̄ ∑a

∫ βh̄
0 dt v(ra−σ)

〉
Q

. (A.14)
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Finally,

Zn =
∮ [ n

∏
a=1

Dλa ∏
b≥a

DQab

]
exp {NA(Qab, λa)} (A.15)

where

A =
1
2

log det Q(t, s) +
βm
2 ∑

a

∫ βh̄

0

dt
βh̄

∂2
s Qaa(t, s)

∣∣∣
s=t

− βm
2 ∑

a

∫ βh̄

0

dt
βh̄

λa(t)[Qaa(t, t)− 1] + α log
〈

e−β ∑a
∫ βh̄

0
dt
βh̄ v(ra−σ)

〉

Q
, (A.16)

that are respectively Eqs. (2.10) and (2.11).

A.2 Replica-symmetry-breaking ansatz for the overlap ma-
trix

To carry on with the computations, it is necessary to specify what is the form of the
overlap matrix at the saddle point Qsp

ab(t, s). Recalling the definition of the overlap
from Eqs. (2.9) or (A.11), one notices that

• Qab(t, s) periodic both in t and s with period βh̄;

• Qaa(t, t) = 1 due to the spherical constraint;

• from the very definition, Qab(t, s) = Qba(s, t);

• being the computation at equilibrium, time-translational invariance holds:
Qab(t, s) ≡ Qab(t− s);

• because of time-reversal symmetry, Qab(t− s) ≡ Qab(s− t);

• when a 6= b it holds

NQsp
a 6=b(t, s) =

〈
~Xa(t) · ~Xb(s)

〉
=
〈
~Xa(t)

〉
·
〈
~Xb(s)

〉
=
〈
~Xa

〉
·
〈
~Xb

〉
. (A.17)

In fact, fixing the realization of the disorder, replicas are decoupled, thermal
averages factorizes and 〈~Xa(t)〉 is stationary.

In view of the above, the following ansatz is very reasonable [234, 244]:

Qsp
ab(t, s) = qd(t− s)δab + Q∗ab (A.18)

where qd is some function, and Q∗ab is a static, hierarchical matrix. Thus, the replica
symmetry acts non-trivially only on the zero Matsubara mode, and Q∗ab is the quan-
tum analog of the classical order parameter in mean-field spin glasses.

A.3 Replica-symmetric free energy

In this Section, it is shown how to pass from the general expression for the saddle-
point action, that can be found in Eqs. (2.11) or (A.16), to the RS free energy Eq.
(2.20).
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To begin with, consider the first term on the r.h.s., i.e. the determinant of the RS
overlap at the saddle (introduced in Eq. (2.14)):

det QRS
ab (t, s) = det [qd(t− s)δab + q(1− δab)] , (A.19)

The determinant takes two independent contributions: that from the time indices,
and that from the replica indices, the two sharing only the zero Matsubara mode.
Therefore,

log det [qd(t− s)δab + q(1− δab)] = ∑
k 6=0

log q̃d(ωk)

+ log det [q̃d(ω0)δab + q(1− δab)] (A.20)

using the Fourier transform convention of Eqs. (2.16)–(2.17). The second term of the
r.h.s. above can be computed by means of Sherman-Morrison formula:

det(1+ uvT) = 1 + vTu, with u, v vectors. (A.21)

Thus, defining eT = (1, 1, . . . , 1), it holds

det (q̃d(ω0)δab + q(1− δab)) = det
(
(q̃d(ω0)− q)1+ q eeT

)
(A.22)

= (q̃d(ω0)− q)n det
(
1+

q
q̃d(ω0)− q

eeT
)

(A.23)

= (q̃d(ω0)− q)n
(

1 +
nq

q̃d(ω0)− q

)
(A.24)

= (q̃d(ω0)− q)n−1(q̃d(ω0) + (n− 1)q
)
. (A.25)

In conclusion, only the O(n) contribution to the action is needed (this works as long
as the saddles do not coalesce), so that

log det QRS = const. + n ∑
k∈Z

log G̃(ωk) +
nq

G̃(ω0)
+ O(n2) (A.26)

using the autocorrelation function G defined in Eq. (2.15).

Moving on to the second term of A, it is simply

βm
2 ∑

a

∫ βh̄

0

dt
βh̄

∂2
s Qaa(t, s)

∣∣∣
s=t

= −nβm
2 ∑

k∈Z

ω2
k G̃(ωk). (A.27)

Also the third term is quite immediate:

βm
2 ∑

a

∫ βh̄

0

dt
βh̄

λa(t)[Qaa(t, t)− 1] =
nβmλ

2

[
∑

k∈Z

G̃(ωk)− (1− q)
]

, (A.28)

and the spherical constraint becomes time-independent because Qaa(t, t) is.

To conclude, the last term on the r.h.s. of Eq. (A.16) needs some manipulations.
The main point is to invert the matrix Q by means of another form of Sherman-
Morrison formula: for an invertible matrix A and vectors u,v,

(
A + uvT)−1

= A−1 − A−1uvT A−1

1 + vT A−1u
. (A.29)
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It is sufficient to apply this formula to the zero Matsubara mode:

Q̃−1
ab (ω0) =

[
G̃(ω0)δab + q

]−1 (A.30)

=
δab

G̃(ω0)
− qG̃−2(ω0)

1 + nqG̃−1(ω0)
; (A.31)

and reintroducing all the other modes:

Q̃−1
ab (ωk) =

δab

G̃(ωk)
− δk0

G̃(ω0)

q
G̃(ω0) + nq

. (A.32)

The quantity above goes in the exponent; therefore it is possible to put it in a more
convenient form by writing

〈
e−β ∑a

∫ βh̄
0

dt
βh̄ v(ra−σ)

〉

Q
= γq ?

〈
e−β ∑a

∫ βh̄
0

dt
βh̄ v(ra+h)

〉n

G
(−σ) (A.33)

where 〈· · ·〉G are the averages defined in Eq. (2.18), γq is the Gaussian kernel of Eq.
(2.19) and ? indicates the convolution over h. In words, the combination of q and
G̃(ω0) in a fraction in the exponent has been traded for two separate integrations,
one over all the frequencies G̃(ωk) and the other over h.

Taking finally the limit n → 0, and retaining only the O(n) contributions, one
finds

γq ?

〈
e−β ∑a

∫ βh̄
0

dt
βh̄ v(ra+h)

〉n

G
(−σ) = nαγq ? log

〈
e−β

∫ βh̄
0

dt
βh̄ v(r(t)+h)

〉

r
(−σ) + O(n2).

(A.34)
having used

log
[
γq ? f n] = log

[
γq ? en log f

]
= log

[
γq ? (1 + n log f ) + O(n2)

]

= nγq ? log f + O(n2).
(A.35)

Putting together all the pieces above, one gets to Eq. (2.20).

A.4 Perturbation theory at zero temperature

In this Section, we show how to obtain Eq. (2.29) from the self-consistency equations
(2.22)–(2.24). Let us start from Eq. (2.24), rewritten here for readability:

q = αγq ? 〈r0〉2v . (A.36)

Since there is already an α in front, everything can be computed at order α0; in par-
ticular, the autocorrelation G reduces to

G−1
n = βmω2

n + βµ. (A.37)

Therefore, the only thing to be computed is the average 〈r0〉v, that is the average
position in the ground state of a harmonic oscillator restricted to the half line r > 0:

〈r0〉v =
∫ ∞

0
dr |ψ0(r)|2 r =

√
4h̄

πmΩ
, (A.38)
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where Ω =
√

µ/m and having used

ψ0(r) =
(

m3Ω3

πh̄3

)1/4

r exp
{
−mΩ

2h̄
r2
}

. (A.39)

The only thing left to do is to fix µ from the spherical constraint, Eq. (2.23):

1 = ∑
n∈Z

Gn = ∑
n∈Z

1
βµ + βmω2

n
. (A.40)

Using the identity

∑
n∈Z

1
A2 + n2 =

π

A
coth(πA), (A.41)

one gets to √
m
µ

coth
(

βh̄
2

√
µ

m

)
=

2
mh̄

, (A.42)

which is solved by

µ =
m3h̄2

4
(A.43)

in the limit β→ ∞. Finally,

q =
8

πm2 + O(α2), (A.44)

which is Eq. (2.29).

A.5 Quadratic approximation for the propagator

In this Section, we show the details of the approximate computation leading to the
exponent κ = 3/2. The starting point is the approximation of Eq. (2.32), reported
here for readability:

G−1
n =

βm
1− q

(
ω2

n +
h̄2

4m2

)
. (A.45)

Such approximation is completely uncontrolled, since it is neglecting the long-time
structure of the propagator. However, the spherical constraint Eq. (2.23) is automat-
ically satisfied up to exponentially small corrections, and the values of m and q can
be fixed by Eqs. (2.22) and (2.24). Notice that there is an equation of the form (2.22)
for every n ∈ Z, yielding a deeply overcomplete set of constraints for the ansatz, but
let us restrict to the n = 0 case only.

It is convenient to set

x :=
r√

1− q
, H :=

h√
1− q

, (A.46)

so that Eq. (2.24) becomes

q
(1− q)3/2 = α

∫ dH√
2πq

e−
(1−q)H2

2q
〈

ψ
(H)
0

∣∣∣ x
∣∣∣ψ(H)

0

〉2
. (A.47)
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The reduced Schrödinger problem to solve is

− 1
2

dψ
(H)
k

dx2 +
1
8

x2ψ
(H)
k = E(H)

k ψ
(H)
k , ψ

(H)
k (H) = 0. (A.48)

Self-consistently it will become clear that only the ground-state contribution matters;
indeed, it was already argued that the model becomes temperature-independent as
q → 1. With this in mind, one can employ the one-parameter variational wavefunc-
tion for the ground state

ψ(H)(x; L) =
1√
Z
(x− H)θ(x− H)e−x2/4L2

, (A.49)

with an appropriate normalization Z, for which the energy reads

E(H)(L) =
1 + L4

8L2
φ(H/

√
2L)(H2 + 3L2)− 2HL

φ(H/
√

2L)(H2 + L2)− 2HL
. (A.50)

Above, we introduced the function

φ(y) :=
√

2π ey2
Erfc (y), (A.51)

where Erfc is the complementary error function. The equation dE(H)/dL = 0 can be
solved using suitable asymptotic expansions. Remembering that q → 1, it follows
H → ∞, and the relevant region is H � L. Performing the explicit computation, one
fixes L as a function of the other parameters, and then finds

〈
ψ
(H)
0

∣∣∣ x
∣∣∣ψ(H)

0

〉
' H + 32/3H−1/3 + O(H−5/3). (A.52)

By inserting this expansion in Eq. (A.47), one arrives at

q = α

[
(1− q)ξ

(
q

1− q

)
+

q
2

]
(A.53)

with

ξ(λ) :=
∫ ∞

0

dH√
2πλ

e−H2/2λ

[
(6H)2/3

21/3 + · · ·
]
=

32/3Γ(5/6)√
π21/3

λ1/3 + · · · . (A.54)

Eq. (A.53) can now be solved for q, yielding κ = 3/2:

q = 1−
√

2 π3/4(2− α)3/2

24 Γ(5/6)3/2 . (A.55)

The same scaling has been observed by solving the Schrödinger equation (A.48) nu-
merically, discretizing the x-axis and employing imaginary-time evolution to find
the ground state.

Knowing q as a function of α, one can now check the consistency of the procedure
by inspecting Eq. (2.22) for n = 0. Handling with care the self-energy, such equation
can be put in the form

m = βγq/(1−q) ?
〈

ψ
(H)
0

∣∣∣ x2
∣∣∣ψ(H)

0

〉
conn

. (A.56)
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It is straightforward to determine
〈

ψ
(H)
0

∣∣∣ x2
∣∣∣ψ(H)

0

〉
conn

= 31/3H−2/3θ(H) + · · · , (A.57)

so that finally

m = β
31/3Γ(1/6)

25/6

(
1− q

q

)1/3

. (A.58)

Thus one can see that, as q→ 1, β/m→ ∞ and the approximation of taking only the
ground state becomes more and more reliable.
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B Addendum to Chapter 4

In this Appendix, I give more details on the techiques used to study the heterogeneity of
entanglement in MBL systems. In Sec. B.1 I show how the l-bit model can be used to access
different parts of the spectrum. In Sec. B.2 I show what are the effects of considering finite
systems, and finite samples of the disorder distributions. In Sec. B.3 I show some preliminary
results concerning the heterogeneity of entanglement in the delocalized phase. In Sec. B.4
I show how to perform some analytical estimates, that help understanding the numerical
results. In Sec. B.5 I show that the correlation functions used in the main text are self-
averaging, thus well-suited to study the disordered systems under consideration.

B.1 Energy of the initial states

In the l-bit model, given a disorder realization {Jij}, we sample the local magneti-
zation configurations {mi} = {〈σz

i 〉} with probability ∝ e−E/T, T being a fictitious
temperature to be gradually lowered. Since mi ∈ [−1, 1] are continuous variables,
the annealing procedure has easy access to states down to the edge of the spec-
trum. From {mi}, we fix the coefficients of the initial states of the dynamics (see
Eq. (4.2)) as Ai =

√
(1 + mi)/2, and Bi = eiφi

√
(1−mi)/2. This choice guarantees

that 〈ψ0|Hl-bit|ψ0〉 = E, i.e. the quantum initial state has an energy expectation value
equal to the desired one.

For what concerns our choice of the energy scale in Eq. (4.3), the reasoning goes
as follows. The l-bit Hamiltonian (4.1) can be interpreted as a classical spin glass, if
one substitutes σz

i −→ si = ±1. Then, one can compute the (annealed) density of
states of the model, finding that with high probability the ground state is at

E = −N

√
h2

4
+

4J2
0

e2/κ − 1
, (B.1)

see also Ref. [508]. Changing the spins to continuous variables σz
i −→ mi ∈ [−1, 1]

will just modify the prefactors of h2 and J2
0 /(e2/κ − 1), without changing much the

scale. For this reason, we have chosen to put in Eq. (4.3) simply the sum of the
variances of hi and ∑j Jij. The ground state will not be exactly at ε = −1, but close to
it.

B.2 Finite-size and finite-sample effects

B.2.1 Relaxation times within the XXZ model

In view of the strong finite-size effects in the results for the XXZ model shown in Fig.
4.2a, let us better analyze the probability distribution function (pdf) of τi.
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In Fig. B.1 we show the distribution of the local relaxation times of the concur-
rence, computed within the XXZ model. The tail of the distribution is cut away ac-
cording to the following procedure. We observe that in some instances the nearest-
neighbor concurrence Ci,i+1(t) becomes numerically indistinguishable from 0 at a
time t∗, and then stays equal to 0 definitively. We perform an evolution lasting only
a finite time tfin, so for the finite size we consider there will be many sites and re-
alizations with t∗ > tfin. This is the reason why the full distributions in Figs. B.1
and 4.2a show such a huge peak at large times: it is formed by the contributions of
Ci,i+1(t) which have not vanished on the finite-time window tfin of our evolution,
for the finite system size we consider.

In order to get rid of this peak, we choose a certain truncation time ttr ≤ tfin, and
select only the sites and the realizations for which t∗ < ttr. As we can see in Fig.
B.1 the huge peak disappears and there is a large-time tail which depends on the
chosen value of ttr. The small-time structure is, on the opposite, quite independent
of the truncation, so we expect that it has a physical meaning. There is a peak around
log τi ' −1, which resembles the one appearing in the l-bit distributions; however,
another peak is present around log τi ' 1. The two-peak structure has no equal in
the l-bit model results; we argue that this might be due to the n-body interactions
with n ≥ 3 missing in the l-bit model.

B.2.2 Relaxation times within the l-bit model

Figure B.2a shows the pdf’s of log10 (τi), obtained within the l-bit model for different
values of L, at κ = 1, ε = 0. We see that, when L ≤ 20, the probability distribution
presents a peak at τi = O(tfin), where tfin is the final time used in the numerical
simulations for the time evolution. This is the same effect observed in Fig. 4.2a. In
particular, we see that the shape of the pdf’s at L = 10, 15, 20 strongly resembles
the behavior observed in the XXZ model, confirming that those results are strongly
affected by finite-size effects.

In Figs. B.2b–B.2c we reproduce the pdf’s at L = 16, ε = 0, and different values of
κ an tfin. In the presence of finite-size effects we do not observe the decay of the pdf
that is found in larger system sizes. We observe instead a peak in the distribution at
τi = tfin.

B.3 Heterogeneity in the ergodic regime

We now present some qualitative results on entanglement heterogeneity in the er-
godic regime. As shown in Fig. B.3, broad distributions of the relaxation times ap-
pear for the XXZ model, Eq. (4.4), also in the ergodic regime, and become broader as
the disorder W increases and the MBL-ergodicity transition is approached. Such dis-
tributions present a clear peak at small values of τi, which decreases when disorder
increases and the transition to the MBL phase is approached. This peak corresponds
to realizations of the on-site concurrence that vanish very fast in time, correspond-
ing to situations in which entanglement spreads quickly in the system. The number
of such ergodic sites diminishes as the localization transition is approached, as it is
quantified by the decrease in the peak height.

Notice that in the thermal phase the distributions do not show the spurious peak
for large τi, which in contrast appears in the MBL phase due to those realizations in
which some Ci(t) are still nonzero for t = tfin (contrast Fig. B.3 with Fig. 4.2a).
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FIGURE B.1: Results for the XXZ model. We show the pdf’s of log τi, truncated as described
in the text. The simulations were performed with a chain of length L = 16, final time tfin =
1000, and disorder strength W = 9 (panel (a)), W = 15 (panel (b)), W = 25 (panel (c)). We
compare the truncated distributions with the corresponding full distribution. Data from at
least 8000 disorder realizations.

B.4 Analytical estimates of local timescales

Let us focus on the l-bit model and on the computation of typical relaxation-time
scale of the “one-site concurrence” Eq. (4.8). The concurrence is a complicated non-
linear function of the two-site reduced density matrix ρi,j, therefore it is really hard to
make analytical predictions for it. However, one can hope to get a rough estimate of
its behavior by considering instead the correlation function 〈σx

i (t)σ
x
j (t)〉. This type

of correlation functions were already considered in previous works (see e.g. Ref.
[110]), and are easy to access. Choosing i = 0 and j = 1 without loss of generality, it
explicitly reads

〈
σx

0 (t)σ
x
1 (t)

〉
= ∑

s0,s1=±1
(ρ0,0)s0,−s0(ρ0,1)s1,−s1 e−2ih1s0t−2ih2s1t+8i J01s0s1t

× ∏
j 6=0,1

[
e−4i J0js0t−4i J1js1t cos2 θj

2
+ e4i J0js0t+4i J1js1t sin2 θj

2

]
, (B.2)
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FIGURE B.2: Pdf’s of log10 (τi), obtained within the l-bit model. (a) Results for κ = 1, ε = 0,
and different values of L. We see that, when the system size is too small, the pdf’s present
a spurious peak at large values of τi. Indeed, entanglement cannot spread over many sites,
and the concurrence of some strongly interacting couples remains finite even at infinite times
(Ci(∞) = O(2−L)). We collected data from 20 initial states for, at least, 300 disorder realiza-
tions. (b) Results for L = 16, ε = 0, and different values of κ. Data collected from 21000
disorder realizations. (c) Results for L = 16, κ = 1, ε = 0, and different values of the final
time of the time evolution, tfin. Data collected from 21000 disorder realizations.

where ρ0,0 and ρ0,1 are the initial density matrices of sites 0 and 1, and θj is the
azimuthal angle on the Bloch sphere for the initial state of site j. We take a further
step, and also simplify θj ≡ π/2, i.e. we choose a particular initial condition at
infinite temperature. As a result, we find that 〈σx

0 (t)σ
x
1 (t)〉 is an oscillating function,

modulated by envelopes of the form

A±(t) := ∏
j 6=0,1

∣∣cos
(
4J0jt± 4J1jt

)∣∣ . (B.3)

It is clear that, if we want to understand the leading-order behaviour in time, we can
reduce to study the simpler function

A(t) := ∏
j 6=0

∣∣cos
(

J0jt
)∣∣ (B.4)
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FIGURE B.3: Distributions of the relaxation times in the XXZ model in Eq. (4.4) for different
values of W in the ergodic phase. The peak corresponding to ergodic realizations of the on-
site concurrence is very evident and decreases as the disorder increases and the transition
to MBL regime is approached. Numerical parameters: J = 2, V = 1 (transition to MBL for
W ' 10), L = 18, at least 300 disorder realizations for each curve.

where, we recall, J0j are Gaussian variables of zero average and standard deviation
wj := J0e−|j|/κ.

We can estimate the typical value of A(t) by means of typ[A(t)] := exp log A(t)
(we need to average the logarithm of A because, with hindsight, there is a power-law
tail in the relaxation-time distribution). Since

log A(t) = ∑
j

∫
dJ0j

e−J2
0j/2w2

j

√
2πw2

j

log
∣∣ cos(J0jt)

∣∣, (B.5)

we just need to compute the integral

∫
dJ0j

e−J2
0j/2w2

j

√
2πw2

j

log
∣∣ cos(J0jt)

∣∣

=
∫

dJ0j
e−J2

0j/2w2
j

√
2πw2

j

[
log
∣∣1 + e2i J0jt

∣∣− log 2
]

=
∫

dJ0j
e−J2

0j/2w2
j

√
2πw2

j

∑
n≥1

(−1)n+1

n
e2inJ0jt − log 2

= ∑
n≥1

(−1)n+1

n
e−2n2w2

j t2 − log 2. (B.6)

Let us first focus on the asymptotic value in time of typ[A(t)]. Substituting
Eq. (B.6) in Eq. (B.5), for finite system size L, and applying the dominated conver-
gence theorem when performing the limit t → ∞, one can show that typ[A(∞)] :=
limt→∞ exp log A(t) ' 2−L. This result is also related to the asymptotic value of the
concurrence typ[Ci(∞)] being exponentially small in the system size, as discussed in
Sec. 4.2.

Now, we focus on finite time t, and we consider L � 1 so that typ[A(∞)] ' 0.
We further proceed by approximating

∑
n≥1

(−1)n+1

n
e−2n2w2

j t2 ≈
{

0 w2
j t2 & 1

log 2 w2
j t2 . 1,

(B.7)
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FIGURE B.4: Gτ(r) defined in Eq. (4.11). Results for the l-bit model for: (a) κ = 1, ε = 0, and
various system sizes L, averaged over D = 300 disorder realizations and 20 initial states; (b)
κ = 1, ε = 0, L = 140, averaged over a different number of disorder realizations D, and 20
initial states. We see that Gτ(r) converges quickly to its thermodynamic value (panel (a)),
and is almost independent of the number of disorder realizations (panel (b)). (Inset of (a))
The dynamical correlation length ητ from stretched exponential fits of Gτ(r) reported in (a)
as a function of the system size L. We see that ητ is almost independent of the system size
for L ≥ 40. The error bars are given by the fit errors.

which implies

∑
j

{
∑
n≥1

(−1)n+1

n
e−2n2w2

j t2 − log 2
}
≈ −N(t) log 2 (B.8)

with N(t) given by

N(t) = #{j | w2
j t2 > 1} =

{
2κ log

(
J0t
)

t > 1/J0

0 t < 1/J0.
(B.9)

Finally, we find

typ[A(t)] =

{(
J0t
)−κ log 4 t > 1/J0

1 t < 1/J0.
(B.10)

Substituting this typical value in the definition of τi, Eq. (4.9), one gets

typ[τ] = J−1
0 exp




∫ ∞

0
dt typ[A(t)] log(J0t)
∫ ∞

0
dt typ[A(t)]


 (B.11)

= (eJ0)
−1 exp

{
1

κ log 4− 1

}
. (B.12)

B.5 Self-averaging property of the correlation function

As anticipated in Chap. 4, the correlation function Gτ(r) Eq. (4.11) is a self-averaging
quantity, as depicted in Fig. B.4. It is indeed only slightly sensitive to finite-size
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effects (see Fig. B.4a), and to disorder fluctuations (see Fig. B.4b). As a consequence,
the dynamical correlation length ητ is almost independent of the system size as well
(see inset of (a)).
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C Addendum to Chapter 5

In this Appendix, I detail all the calculations for the two-level system (TLS) model of glasses.
In Sec. C.1 I show how to derive from first principles the form of the dipole tensor, that
couples TLS to phonons. In Sec. C.2 I present the computation of the interactions Jij, in Sec.
C.3 of the Debye-Waller factor, and in Sec. C.4 of the decay rate through Fermi’s golden rule.
In Sec. C.6 I show how the few-site observables are efficient to compute for the artificially
isolated, interacting TLS model. In Sec. C.7 I show what is the expected concurrence for a
fully thermal state. In Sec. C.8 I show how the master equation was integrated numerically.

C.1 Estimate of the dipole tensor

In Table 5.1 all the parameters entering the Hamiltonian (5.1) were fixed, except for
the precise form of the elastic dipole tensors Dab

i . As anticipated in Sec. 5.1, one can
choose Dab

i in different ways. According to point 1, one can set

Dab
i = OT




x 0 0
0 y 0
0 0 z


O (C.1)

where O is a Haar-random orthogonal matrix and x, y, z are i.i.d. random variables
with average 0 and standard deviation 1.

According to Ref. [365] (i.e. point 2 of Sec. 5.1), instead, Dab
i should be the differ-

ence between two random dipoles, one for each well of the TLS:

Di =
1
2
(
D
(l)
i −D

(r)
i

)
. (C.2)

Both D
(l)
i and D

(r)
i are assumed to be vector dipoles oriented in two random direc-

tions:

D
(l,r)
i = δ [O(l,r)]T




0 0 0
0 0 0
0 0 1


O(l,r) (C.3)

where O(l),O(r) are two Haar-random orthogonal matrices, and δ is a dimensionless
number that needs to be fixed to match experiments and simulations. The authors
of Ref. [365] argue that

[γDi]max ≈ 8
(

2π2

9

)2/3
ρv2

q3
D

(C.4)

where v is the average over polarizations of the sound velocity, Eq. (5.18), and sim-
ilarly γ is the average of Eq. (5.19). With Di of the form specified above, one finds
that

[Di]max = max
(

Tr(D2
i )

3

)1/2

=
δ√
6

. (C.5)
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FIGURE C.1: (a) The distribution of x := Tr(D2)/δ2 is simply given by p(x) = (1− 2x)−1/2

(see also Ref. [365]). The values of δ for some typical glass formers are given in Eq. (C.6).
(b) Distribution of Dij/δ2, where Dij is defined in Eq. (C.19). The distribution is sampled
using Dab

i of the form specified in Eqs. (C.2)–(C.3), i.e. using point 2 in Sec. 5.1. To a good
approximation, one can assume Dij/δ2 to come from a compact distribution over [−1, 1].

Therefore, fixing γ from Table 5.1, one finds respectively

δSiO2 ≈ 8.5, δBK7 ≈ 9.4 and δPMMA ≈ 6.4. (C.6)

One can see that the dimensionless number δ is silently boosting the coupling of TLS
and phonons. Since in particular the dipole tensor appears also in rapidly varying
functions (e.g. for the Debye-Waller factor), a δ different from 1 can change notice-
ably the physics.

C.2 Computation of the interaction strength

We want to determine explicitly Jij from Eq. (5.15):

Jij = ∑
qs

γ2
s

2ω2
qs

ΞiqsΞ∗jqs (C.7)

=
1

8ρ ∑
s

γ2
s

∫ d3q
(2π)3

q2

ω2
qs
Dab

i Dcd
j
(
q̂a êb

qs + q̂b êa
qs
)(

q̂c êd
qs + q̂d êc

qs
)
eiq·(ri−rj). (C.8)

To begin with, define some quantities that will help in computing the angular inte-
grals:

Iabcd(ζ) :=
1

4π

∫
dΩ q̂aq̂bq̂cq̂deiζ cos θ , Iab(ζ) :=

1
4π

∫
dΩ q̂aq̂beiζ cos θ . (C.9)
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Explicitly, they read

Ixxyy(ζ) =
1
3

Ixxxx(ζ) = −3ζ cos ζ + (ζ2 − 3) sin ζ

ζ5 ,

Ixxzz(ζ) = − ζ(ζ2 − 12) cos ζ − (5ζ2 − 12) sin ζ

ζ5 ,

Izzzz(ζ) =
4ζ(ζ2 − 6) cos ζ + (ζ4 − 12ζ2 + 24) sin ζ

ζ5 ,

Ixx(ζ) =
−ζ cos ζ + sin ζ

ζ3 ,

Izz(ζ) =
2ζ cos ζ + (ζ2 − 2) sin ζ

ζ3 .

(C.10)

Similar ones are obtained by exchanging x and y and permuting indices; all the
others are zero. One can parametrize them as

Iabcd(ζ) =
1
ζ5

4

∑
l=0

Cabcd
l ζ l sl(ζ), Iab(ζ) =

1
ζ3

2

∑
l=0

Cab
l ζ l sl(ζ) (C.11)

where

sl(ζ) :=

{
sin ζ l even
cos ζ l odd.

(C.12)

Now, remember that for the longitudinal mode êqL = q̂. Thus, the longitudinal
(L) contribution to Jij is

[
Jij
]

L =
γ2

L
2ρv2

L
Dab

i Dcd
j

∫ d3q
(2π)3 q̂aq̂bq̂cq̂deiq·(ri−rj) (C.13)

=
γ2

L

4π2ρv2
Lr3

ij
Dab

i Dcd
j

∫ ∞

0
dζ ζ2 Iabcd(ζ) (C.14)

=
γ2

L

4π2ρv2
Lr3

ij

4

∑
l=0

(Cabcd
l Dab

i Dcd
j )
∫ ∞

0
dζ ζ l−3sl(ζ) (C.15)

where the z axis is set along (ri − rj), and ζ := qrij. The ζ integrals can be easily
computed: the IR divergences of l = 0 and l = 1 cancel out since Cabcd

0 ≡ −Cabcd
1 (see

Eq. (C.10)), and

[
Jij
]

L =
γ2

L

4π2ρv2
Lr3

ij

(π

4
Cabcd

0 +
π

2
Cabcd

2

)
Dab

i Dcd
j (C.16)

For the transverse (T) contribution the computation is very similar; one needs
just to use ∑s trans. êa

qs êb
qs = δab − q̂aq̂b, substitute vL with vT, and handle the Iab func-

tions as done with the Iabcd. The final result is

[
Jij
]

T =
γ2

T

4π2ρv2
Tr3

ij

(π

2
Cac

0 δbd − π

4
Cabcd

0 − π

2
Cabcd

2

)
Dab

i Dcd
j (C.17)
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All in all, the interaction generated by the shift of the phonon vacuum is

Jij =
γ2Dij

16πρv2r3
ij

, (C.18)

having defined

Dij :=
v2

γ2

[
2γ2

T
v2

T
Cac

0 δbd +
(

Cabcd
0 + 2Cabcd

2

)(γ2
L

v2
L
− γ2

T
v2

T

)]
. (C.19)

This is exactly what anticipated in Eq. (5.17). In Fig. C.1b the distribution of Dij is
reported for the case of SiO2.

C.3 Computation of the Debye-Waller factor

The goal of this Appendix is to compute explicitly the Debye-Waller factor of Eq.
(5.26):

Γ2
i

2
= ∑

qs

γ2
s

h̄ω3
qs

ΞiqsΞ∗iqs coth
(

βh̄ωqs

2

)
(C.20)

=
1

4ρh̄ ∑
s

γ2
s

∫ d3q
(2π)3

q2

ω3
qs
Dab

i Dcd
i
(
q̂a êb

qs + q̂b êa
qs
)(

q̂c êd
qs + q̂d êc

qs
)

coth
(

βh̄ωqs

2

)
.

(C.21)

C.3.1 Considering sound polarization differences

As for the computation of Jij, it is convenient to consider separately the longitudinal
(L) and transverse (T) contributions. The former is the easier to compute:

[
Γ2

i
2

]

L
=

γ2
L

ρh̄

∫ d3q
(2π)3

q2

v3
Lq3

Dab
i Dcd

i q̂aq̂bq̂cq̂d coth
(

βh̄vLq
2

)
. (C.22)

One is led to consider

1
4π

∫
dΩ q̂aq̂bq̂cq̂dDab

i Dcd
i =

1
15

(δabδcd + δacδbd + δadδbc)Dab
i Dcd

i (C.23)

=
1
15
[
2 Tr(D2

i ) + (TrDi)
2] (C.24)

=:
1
15
〈〈D2

i 〉〉L, (C.25)

so that [
Γ2

i
2

]

L
=

γ2
L

30π2ρh̄v3
L
〈〈D2

i 〉〉L
∫ qD

0
dq q coth

(
βh̄vLq

2

)
(C.26)

where qD is the Debye wavevector. In terms of a real-space UV cutoff a, qD =
3
√

6π2/a. The previous is a well-known, condensed-matter-textbook integral, that
is usually considered in the two regimes of low and high temperature [425]. In the
end one finds [

Γ2
i

2

]

L
=

γ2
Lq2

D

30π2ρh̄v3
L
〈〈D2

i 〉〉L F
(

h̄vLqD

2kBT

)
(C.27)
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with

F (w) :=
∫ 1

0
dζ ζ coth(ζw) (C.28)

= − 1
2w2 Li2(e−2w) +

1
w

log(1− e−2w) +
π2

12w2 +
1
2

. (C.29)

A more manageable expression can be found by using the asymptotic expansion

F (w) =

{
1/w + O(w) w� 1
1/2 + O(e−w) w� 1.

(C.30)

Considering that w = βh̄vqD/2 = TD/2T, the high and low temperature regimes
are defined with respect to TD/2.

For the transverse contribution, the polarization sums yield

∑
s transv.

(
q̂a êb

qs + q̂b êa
qs
)(

q̂c êd
qs + q̂d êc

qs
)

= δacq̂bq̂d + δadq̂bq̂c + δbcq̂aq̂d + δbdq̂aq̂c − 4q̂aq̂bq̂cq̂d. (C.31)

Since
1

4π

∫
dΩ q̂aq̂b =

1
3

δab, (C.32)

it is convenient to define

〈〈D2
i 〉〉T := 5 Tr(D2

i )− 〈〈D2
i 〉〉L = 3 Tr(D2

i )− (TrDi)
2. (C.33)

Therefore one finds, with a calculation similar to before,
[

Γ2
i

2

]

T
=

γ2
Tq2

D

30π2ρh̄v3
T
〈〈D2

i 〉〉T F
(

h̄vTq2
D

2kBT

)
. (C.34)

Putting the results together:

Γ2
i

2
=

q2
D

30π2ρh̄

[
γ2

L〈〈D2
i 〉〉L

v3
L

F
(

h̄vLqD

2kBT

)
+

γ2
T〈〈D2

i 〉〉T
v3

T
F
(

h̄vTqD

2kBT

)]
. (C.35)

In the limit of small temperature, one can approximate F ≈ 1/2 and find

Γ2
i

2
=

q2
D

60π2ρh̄

[
γ2

L〈〈D2
i 〉〉L

v3
L

+
γ2

T〈〈D2
i 〉〉T

v3
T

]
+ O

(
e−TD/2T). (C.36)

C.3.2 Disregarding sound polarization

Now the same computation of the previous section is performed, but employing
from the beginning an isotropic Debye model. The correct sound velocity to employ
is v from Eq. (5.18); and having a look at Eq. (C.35) one can also see that the correct
average γ to use is the one of Eq. (5.19). Then, we have only one angular average:

1
4π ∑

s

∫
dΩ eab

qse
cd
qsD

ab
i Dcd

i =
1
3

Tr(D2
i ). (C.37)
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Therefore, one finds

Γ2
i

2
=

γ2 Tr(D2
i )

6π2ρh̄v3

∫ qD

0
dq q coth

(
βh̄vq

2

)
(C.38)

=
γ2q2

D Tr(D2
i )

6π2ρh̄v3 F
(

h̄vqD

2kBT

)
, (C.39)

where F was defined in Eq. (C.28). In the limit of small temperature:

Γ2
i

2
=

γ2q2
D Tr(D2

i )

12π2ρh̄v3 + O
(
e−TD/2T). (C.40)

Notice that this equation is also obtained from Eq. (C.36) by putting vL = vT = v
and γL = γT = γ. We can rewrite the previous expression as

Γ2
i

2
=

E2
D

4E2
i
+ O

(
e−TD/2T). (C.41)

where ED is the Debye energy and

Ei :=

√
3π2h̄3ρv5

γ2 Tr(D2
i )

, (C.42)

which is the same of Eq. (5.29). The value of Γ2
i depends on the random variable

Tr(D2
i ), whose distribution is shown in Fig. C.1b.

C.4 Fermi’s Golden Rule

Here we estimate the rate of decay of a TLS into phonons, namely Yi of Eq. (5.37):

Yi = ∑
f

2π

h̄

∣∣∣〈 f , ↓|∆iσ
−
i eiΓi,0 b̃†

i e−iΓi,0 b̃i |0, ↑〉
∣∣∣
2

ρ f (2ε i). (C.43)

Let us separate the contributions Y(n)
i coming from final states with a fixed number n

of phonons. Therefore, one has to sum over all the n-phonon configurations allowed
by energy conservation:

1
Vn ∑

f
=

1
n! ∑

s1···sn

∫

BZ

d3q1

(2π)3 · · ·
d3qn

(2π)3 δ

(
2ε i −∑

k
h̄ωqksk

)
(C.44)

with n! because there are n indistinguishable bosons in the final state. The matrix
element is formed by two pieces:

∣∣ 〈↓|∆iσ
−
i |↑〉

∣∣2 = ∆
2
i . (C.45)

coming from the TLS, and

∣∣ 〈q1s1, · · · , qnsn| eiΓi,0 b̃†
i |0〉

∣∣2 =
n

∏
k=1

[
2γ2

sk

h̄ω3
qksk

|Ξiqksk |2
]

(C.46)
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coming from the phonons. Notice that the case in which qk = qk′ for some k 6= k′ can
be disregarded, being subleading. All in all, one finds

Y(n)
i =

2πVn

h̄n! ∑
s1···sn

∫

BZ

d3q1

(2π)3 · · ·
d3qn

(2π)3 ∆
2
i

n

∏
k=1

[
2γ2

sk

h̄ω3
qksk

|Ξiqs|2
]

δ

(
2ε i −∑

k
h̄ωqs

)

(C.47)
The δ-function can now be exponentiated via Laplace transform:

Ỹ(n)
i (λ) =

∫ ∞

0
dε e−2λε Y(n)

i (2ε). (C.48)

In this way, all the q integrals are factorized, and similar to the ones already com-
puted for the Debye-Waller factor. In particular, using an isotropic Debye model:

2γ2

h̄ρ ∑
s

∫

BZ

d3q
(2π)3

q2

ω3
qs

e−λh̄ωqsDab
i Dcd

i eab
qse

cd
qs =

γ2 Tr(D2
i )

3π2h̄ρv3

∫ ∞

0
dq q e−ηq−λh̄vq

=
γ2 Tr(D2

i )

3π2h̄ρv3
1

(η + λh̄v)2 (C.49)

having employed an exponential cutoff η ≈ 1/qD. Thus, the Laplace-transformed
rate reads

Ỹ(n)
i (λ) =

2π∆
2
i

h̄n!

[
γ2 Tr(D2

i )

3π2h̄ρv3
1

(η + λh̄v)2

]n

, (C.50)

and now the inverse Laplace transform is immediate:

∫ +i∞

−i∞

dλ

2πi
e2λε

(η + λh̄v)2n =
(2ε)2n−1e−2ηε/h̄v

(h̄v)2n(2n− 1)!
. (C.51)

In conclusion:

Y(n)
i =

π∆
2
i e−2ηε/h̄v

h̄εn!(2n− 1)!

[
γ2ε2 Tr(D2

i )

3π2h̄3ρv5

]n

. (C.52)

At this point, all the n-phonon contributions can be resummed. The resulting series
is of the form

∑
n≥1

wn

n!(2n− 1)!
= w 0F2

(
;

3
2

, 2;
w
4

)
, (C.53)

where 0F2 is a generalized hypergeometric function. It is enough to know its asymp-
totics:

w 0F2

(
;

3
2

, 2;
w
4

)
=





w +
w2

12
+ O(w3) w� 1

exp
(

3w1/3

41/3

) [
w1/6

21/3
√

3π
+ O(w−1/6)

]
w� 1.

(C.54)

Therefore, in general it holds

Yi = ∑
n≥1

Y(n)
i =

π∆
2
i ε ie−2ηεi/h̄v

h̄E2
i

0F2

(
;

3
2

, 2;
ε2

i
4E2

i

)
(C.55)

with Ei defined in Eq. (5.29).
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C.5 Computations for the master equation

We want to compute explicitly Γω
ij defined in Eq. (5.50), that we reproduce here:

Γω
ij :=

1
h̄2

∫ ∞

0
dt′ eiωt′ TrB

[
ρT

B Ê †
i (t) Êj(t− t′)

]
(C.56)

As a first thing, we need to time-evolve the operators Ei in the interaction picture.
Using Eqs. (5.12) and (5.49), one determines

Êi(t) = eiHpht/h̄Eie−iHpht/h̄

= ∑
qs

(
γisΞiqs

√
h̄

2ωqs
e−iωqstbqs + h.c.

)
. (C.57)

Thus, it follows

h̄2Γω
ij =

∫ ∞

0
dt′ eiωt′ TrB

{
ρT

B ∑
qs

∑
q′s′

(
γisΞiqs

√
h̄

2ωqs
e−iωqstbqs + h.c.

)

×
(

γjs′Ξjq′s′

√
h̄

2ωq′s′
e−iωq′s′ (t−t′)bq′s′ + h.c.

)}
. (C.58)

Collecting terms:

h̄2Γω
ij =

∫ ∞

0
dt′ eiωt′ ∑

qs

h̄
2ωqs

{
γisγjsΞiqsΞ∗jqs e−iωqst′ TrB

[
ρT

Bbqsb
†
qs

]

+γisγjsΞ∗iqsΞjqs eiωqst′ TrB

[
ρT

Bb†
qsbqs

]}
, (C.59)

and introducing fT, i.e. the Bose-Einstein distribution function at temperature T:

h̄2Γω
ij =

∫ ∞

0
dt′ eiωt′ ∑

qs

h̄
2ωqs

{
γisγjsΞiqsΞ∗jqs e−iωqst′ ( fT(h̄ωqs) + 1

)

+γisγjsΞ∗iqsΞjqs eiωqst′ fT(h̄ωqs)
}

. (C.60)

We perform the time integral using the identity
∫ ∞

0
dt eiζt = i PV

1
ζ
+ πδ(ζ). (C.61)

Plugging in the explicit expression of Ξiqs from Eq. (5.12), one arrives at

Γω
ij = −

1
2ρ ∑

abcd
Dab

i Dcd
j ∑

s
γisγjs

∫ d3q
(2π)3

q2

h̄ωqs
eab

qse
cd
qs

×
[(

fT(h̄ωqs) + 1
) (

i PV
1

ω−ωqs
+ πδ(ω−ωqs)

)
eiq·(ri−rj)

+ fT(h̄ωqs)

(
i PV

1
ω + ωqs

+ πδ(ω + ωqs)

)
e−iq·(ri−rj)

]
. (C.62)
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From this integral, one can obtain Jw
ij and Yw

i by essentially taking the imaginary
and real parts, respectively. The resulting expressions are very similar to the ones
we already dealt with in Secs. C.2 and C.3, respectively, therefore we will not repeat
the computation, which is practically identical. In the end, one finds the expressions
reported in Eqs. (5.54) and (5.53).

C.6 Two-site observables within the diagonal unitary evolu-
tion

In this Section, we show how to compute with O(N) steps the two-site density ma-
trix ρij, and therefore any two-site observable, for the Hamiltonian (5.55). Call the
initial density matrix

ρ0 =
N⊗

i=1

ρ0,i =
N⊗

i=1
∑
si ,s′i

ρ
sis′i
0,i |si〉

〈
s′i
∣∣ , (C.63)

and recall that the Hamiltonian (5.55) reads explicitly

HTLS + HLS = −1
2 ∑

i
h̄νiSz

i + ∑
ij

JijSz
i Sz

j . (C.64)

Time evolving the density matrix according to the von Neumann equation and rear-
ranging the sum, one finds

ρ(t) = ∑
s,s′

∏
i

ρ
sis′i
0,i |s〉

〈
s′
∣∣ e−i(H[s]−H[s′])t/h̄ (C.65)

with H[s] = − 1
2 ∑i h̄νisi + ∑ij Jijsisj, where si = ±1 is the projection of the spin-1/2

on the z axis. Without loss of generality, we can trace out all the spins but the first
two. The matrix elements of the two-site reduced density matrix read

〈s1s2| ρ12(t)
∣∣s′1s′2

〉
= 〈s1s2|Tr3···N ρ(t)

∣∣s′1s′2
〉

= ∑
s3···sN

ρ
s1,s′1
0,1 ρ

s2,s′2
0,2 ρs3,s3

0,3 · · · ρsN ,sN
0,N e−i(H[s1s2s3···sN ]−H[s′1s′2s3···sN ])t/h̄

= ρ
s1,s′1
0,1 ρ

s2,s′2
0,2 e−i∆H12[s]t/h̄

N

∏
j=3

[
ρ↑,↑0,j e−i∆H12j[s]t/h̄ + ρ↓,↓0,j ei∆H12j[s]t/h̄

]
,

(C.66)
having defined

∆H12[s] := 2J12(s1s2 − s′1s′2)−
h̄ν1

2
(s1 − s′1)−

h̄ν2

2
(s2 − s′2),

∆H12j[s] := 2J1j(s1 − s′1) + 2J2j(s2 − s′2).
(C.67)

From the knowledge of ρij, the concurrence follows by using Eq. (5.59).
Notice that an analogue procedure gives the k-site reduced density matrix with

O(k2N) steps. Thus, this computation allows to access few-sites observables for
large system sizes.
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C.7 Concurrence in a random state

Let us consider a system of N spin-1/2. A random, uniformly distributed state is
|ψ〉 = U |ψ0〉, U being a Haar-random unitary, and |ψ0〉 a reference state. Equiva-
lently, a random state is |ψ〉 = ∑{s} A{s} |{s}〉, with the coefficients A{s} being uni-
formly distributed over CPM−1, with M = 2N .

The concurrence of two spins, say sites 1 and 2 wlog., follows from the knowl-
edge of the square roots of the eigenvalues of the matrix R12 = ρ12(σy ⊗ σy)ρ∗12(σy ⊗
σy). The exact determination of such eigenvalues has evaded our analytical at-
tempts, but we can give an heuristic argument that captures the scaling with N.
Consider, instead of the square roots of the eigenvalues of R12, directly the eigenval-
ues λa of ρ12. Classical works [509, 510] give us their probability density function:

p(λ1, λ2, λ3, λ4) ∝ δ
(

1−
4

∑
a=1

λa

) 4

∏
a=1

λM−4
a ∏

a<b
(λa − λb)

2 (C.68)

with the constraint λa > 0, a = 1, . . . , 4. With hindsight, we perform the change of
variables

ρ12 ≡
1
4

Id +
1

4
√

M− 4
τ12, λa ≡

1
4
+

µa

4
√

M− 4
, (C.69)

so that

p(µ1, µ2, µ3, µ4) ∝ δ
( 4

∑
a=1

µa

) 4

∏
a=1

(
1 +

µa√
M− 4

)M−4

∏
a<b

(µa − µb)
2

∝ δ
( 4

∑
a=1

µa

)
exp

[
−1

2 ∑
a

µ2
a + O

(
1√

M− 4

)]
∏
a<b

(µa − µb)
2.

(C.70)

We see that, at this order, we can let µa range from −∞ to +∞ if N is big enough.
At this point we note that not only the eigenvalues of τ12, but every entry of the

matrix is at most of order 1 because of our rescaling. This enables us to expand

√
R12 =

[
1
16

Id +
1

16
√

M− 4

[
τ12 + (σy ⊗ σy)τ

∗
12(σy ⊗ σy)

]
+ O

(
1
M

)]1/2

=
1
4

Id +
1

8
√

M− 4

[
τ12 + (σy ⊗ σy)τ

∗
12(σy ⊗ σy)

]
+ O

(
1
M

)
(C.71)

The matrix 1
2 [τ12 +(σy⊗ σy)τ∗12(σy⊗ σy)] is traceless and very roughly its eigenvalues

will have a joint probability density function very similar to that of τ12. For this
reason, we can approximate the average concurrence with

〈C〉 ≈
∫

d~µ p(~µ) max
{

0,
2µ1 − 1

4
√

M− 4
− 1

2

}
, (C.72)

where we have used the δ-function constraint and called µ1 the largest eigenvalue.
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FIGURE C.2: The average concurrence in a random state follows the scaling 〈C〉 ∼ e−a2bN
.

The dots show the concurrence averaged over 107 randomly generated states, and over every
couple of spins for each state. A linear fit is shown for comparison: b = 1.0, but a = 0.13,
differing from a = 1/2 found analytically (Eq. (C.74)).

Integrating only on µ1, and forgetting the presence of µ2, µ3, µ4 (otherwise the inte-
gration becomes rather cumbersome), we find

〈C〉 ≈ e−(M+
√

M−4)/2

2
√

2π(M− 4)3/2
, (C.73)

from which
log2

(
− log〈C〉

)
≈ log(a) + bN + · · · (C.74)

with a = 1/2 and b = 1. As can be seen from Figure C.2, this scaling is correct, but
the numerical factor a is different.

C.8 Integration of the GKSL master equation

The density matrix of the system can be parametrized as

ρ(t) = ∑
µ1···µN

Cµ1···µN (t)S
µ1
1 ⊗ · · · ⊗ SµN

N , (C.75)

where Sµi
i ∈ {Idi, S+

i , S−i , Sz
i }. Writing explicitly the GKSL equation (see Eqs. (5.47)

and (5.55) in the main text), we get

∂tρ(t) = −
i
h̄

[
−∑

i

h̄νi

2
Sz

i + ∑
ij

JijSz
i Sz

j , ρ(t)
]

+ ∑
i

Yi fT(h̄νi)
[
S+

i ρ(t)S−i + S−i ρ(t)S+
i − 4ρ(t)

]

+ ∑
i

Yi
[
S+

i ρ(t)S−i + {ρ(t), Sz
i } − 2ρ(t)

]
. (C.76)

In the absence of the interactions (i.e. ignoring the term ∑ij JijSz
i Sz

j ), the evolution
can be easily computed, and the density matrix evolves as

∂tCµ1···µN =
[
∑

i
λ

µi
i

]
Cµ1···µN + ∑

i
4Yi δµizCµ1···0i ···µN , (C.77)
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where the δµiz are Kronecker deltas, the λ
µi
i ’s are given by

λz
i = −4Yi(1 + 2 fT), λ±i =

1
2

λz
i ± iνi, (C.78)

and λ0
i = 0. When interactions are suppressed, the TLSs evolve independently one

from the other and any factorized initial state will remain such at all times. One has

ρ(t) =
N⊗

i=1
∑
µi

Pµi
i (t)Sµi

i =⇒ Cµ1···µN (t) = Pµ1
1 (t) · · · PµN

N (t) ∀t. (C.79)

The interactions among TLSs make the evolution more complicated. Computing
the commutator
[
Sz

i Sz
j , Sµi

i S
µj
j

]
= Sz

i Sµi
i

[
Sz

j , S
µj
j

]
+
[
Sz

i , Sµi
i

]
S

µj
j Sz

j

= 2 ∑
µ′iµ
′
j

[
(δµi0δµ′iz + δµizδµ′i0 + δµi+δµ′i+ − δµi−δµ′i−)(δµj+δµ′j+ − δµj−δµ′j−)

+ (δµj0δµ′jz + δµjzδµ′j0 − δµj+δµ′j+ + δµj−δµ′j−)(δµi+δµ′i+ − δµi−δµ′i−)
]
Sµ′i

i S
µ′j
j , (C.80)

and defining

ζµµ′ := δµ0δµ′3 + δµ3δµ′0, κµµ′ := 2δµ+δµ′+ − 2δµ−δµ′−, (C.81)

one arrives at

∑
i 6=j

Jij

[
Sz

i Sz
j , Sµi

i S
µj
j

]
= 2 ∑

i<j
Jij ∑

µ′iµ
′
j

[
ζµiµ

′
i κµjµ

′
j + (i↔ j)

]
Sµ′i

i S
µ′j
j . (C.82)

The full evolution of the density matrix is given by

∂tCµ1···µN = ∑
i

λ
µi
i Cµ1···µN + ∑

i
4Yi δµizCµ1···0i ···µN

− 2i
h̄ ∑

i<j
Jij ∑

µ′iµ
′
j

(
ζµiµ

′
i κµjµ

′
j + κµiµ

′
i ζµjµ

′
j
)

Cµ1···µ′i ···µ′j···µN
. (C.83)

This is a systems of 4N partial differential equations. We solved it by matrix ex-
ponentiation, using the library for linear algebra with sparse matrices contained in
SciPy.
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D Addendum to Chapter 6

In this Appendix, I report all the computations left aside in the study of the two-dimensional
Ising model at strong coupling. In Sec. D.1 I show how the magnetization for the 1d “em-
bedded” configurations can be obtained analytically. In Sec. D.2 I show how to compute
the two-site correlations for the 1d effective model of interfaces. In Sec. D.3 I detail the cor-
rect prescription for taking the continuum limit. In Sec. D.4 I show the full computation
for the corrections in 1/J. In Sec. D.5 I show how to obtain the localization length for the
Stark-localized model. In Sec. D.6 I group all the useful properties of the Bessel functions.

D.1 Magnetization in the linear strip

We give here a more detailed analysis of the results for the dynamics of a linear strip
of spins, treated in Sec. 6.2.1. As pointed out in Eq. (6.8), the number of configura-
tions for a strip of spins of length L with l flipped spins is

C(L, l) = C(L− 1, l) + C(L− 2, l − 1). (D.1)

Such recursion relation is obtained by summing the number of configurations in
which the L− 1-th spin is not flipped, which is C(L− 1, l), and the number in which
it is flipped, given by C(L − 2, l − 1). The initial condition is clearly C(L, 0) = 1,
as there is only one configuration without any spin flip. The recursion relation has
solution

C(L, l) =
(

L− l − 1
l

)
. (D.2)

In order to obtain the total number of possible configurations, one needs also to
know the maximum number of spins that can be flipped, without violating the
perimeter constraint. Obviously, the first and last spin cannot flip, and therefore
we are left with L− 2 “active” spins. If L− 2 is even, one can flip at most (L− 2)/2
spins, whereas if L− 2 is odd, one can flip (L− 1)/2 spins. Therefore

nmax =

⌈
L− 2

2

⌉
, (D.3)

as reported in Eq. (6.10) in the main text.
The magnetization profile is found using the following argument: consider the

j-th spin of a chain of length L. The number of configurations having the j-th spin
that is “up” are given by the total number of allowed configurations for the two
sub-chains split by the j-th spin, that is FL−jFj−1 configurations. Of course, in the
remaining FL − FL−jFj−1 cases the j-th spin is “down”, and thus the magnetization
at site j is

〈mL(j)〉 = −(FL − FL−jFj−1) + FL−jFj−1

FL
= 2

FL−jFj−1

FL
− 1, (D.4)
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as written in the main text, Eq. (6.12). Using the properties of Fibonacci numbers,
one gets, for L→ ∞

〈m∞(j)〉 = 2
(2φ− 1)φ

− 1 +
2

(φ− 1)(2φ− 1)

(
1
φ
− 1
)j

, (D.5)

φ being the golden ratio. In the limit j→ ∞, one finds the magnetization at center of
the strip to be

lim
j→∞

m∞(j) =
2

(2φ− 1)φ
− 1 = − 1√

5
. (D.6)

D.2 Two-point functions

In order to obtain the fluctuations of the limiting shape µ of the Young’s diagrams,
one needs the two-point function of the number operator n, see also Eq. (6.15). For
simplicity, we report here the computation done at equal times, but the same proce-
dure can be extended also for different times. Let us start by computing

〈Ψ0| n(x, t)n(y, t) |Ψ0〉 = 〈Ψ0|ψ†
x(t)ψx(t)ψ†

y(t)ψy(t) |Ψ0〉 . (D.7)

Also in this case, one can expand the initial state and use the time evolution of the
fermionic operators. The expectation value one gets, using Wick contractions, is

〈0|ψ∞ . . . ψ1 ψ†
j ψiψ

†
l ψk ψ†

1 . . . ψ†
∞ |0〉 = −δ+jk δ+il + δjkδ+il + δ+ij δ+kl , (D.8)

being, by definition,

δ+ab :=

{
1 if a = b > 0
0 otherwise.

(D.9)

After some straightforward steps one arrives at

〈Ψ0| n(x, t)n(y, t) |Ψ0〉 =
(

∑
i>0

J2
i−x(ωt)

)(
∑
i>0

J2
i−y(ωt)

)

−
(

∑
i>0

Ji−x(ωt)Ji−y(ωt)

)2

+ δx,y

(
∑
i>0

Ji−x(ωt)Ji−y(ωt)

)
, (D.10)

being ωt = 2|γ sin(ht)|, as in the main text. Therefore, the connected 2-point func-
tion is

〈Ψ0| n(x, t)n(y, t) |Ψ0〉C = δxy

(
∑
i>0

J2
i−x(ωt)

)
−
(

∑
i>0

Ji−x(ωt)Ji−y(ωt)

)2

. (D.11)

Using Eq. (D.64), one arrives at (see also Ref. [511])

〈Ψ0| n(x, t)n(y, t) |Ψ0〉C = δxy

(
∑
i>0

J2
i−x(ωt)

)

−
(

ωt[Jx(ωt)Jy−1(ωt)− Jx−1(ωt)Jy(ωt)]

2(y− x)

)2

. (D.12)
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The fluctuations of the number operator of the fermions along the chain is readily
obtained from Eq. (D.10) by setting x = y:

δn(x, t) = 〈Ψ0| n(x, t)2 |Ψ0〉C = ∑
i>0

J2
i−x(ωt)

(
1−∑

i>0
J2
i−x(ωt)

)
. (D.13)

At this point, summing over space as it was done before, one arrives at the cor-
relation function for the shape operator

〈Ψ0| µ(x′, t)µ(y′, t) |Ψ0〉C = − ∑
x≤x′

∑
y≤y′

(
ωt
[

Jx(ωt)Jy−1(ωt)− Jy(ωt)Jx−1(ωt)
]

x− y

)2

+ 4 ∑
x≤x′

∑
y≤y′

δxy

(
∑
i>0

J2
i−x(ωt)

)
. (D.14)

With the same procedure one can compute the expectation value of the current
operator, defined as:

j(x, t) ≡ i(ψ†
x(t)ψx+1(t)− ψ†

x+1(t)ψx(t)). (D.15)

Using this definition, one obtains

〈Ψ0| j(x, t) |Ψ0〉 = γ sin 2ht
[

J2
x (2γ sin ht)− Jx+1 (2γ sin ht) Jx−1 (2γ sin ht)

]
.

(D.16)
At x = 0 it reduces to

〈Ψ0| j(0, t) |Ψ0〉 = γ sin 2ht
[

J2
0 (2γ sin ht) + J2

1 (2γ sin ht)
]

. (D.17)

Also the current-current correlator can be computed with the same tools: we report
here the result for x = 0, which is given by

〈Ψ0| j(0, t)j(0, 0) |Ψ0〉 = J2
1 (2γ sin ht)− J2

0 (2γ sin ht) . (D.18)

D.3 Continuum limit of the interface

We now explore how to modify the lattice spacing a in the fermionic model, in order
to obtain a non-trivial continuum limit as a → 0. We start from the results obtained
in the case a = 1, that simply translate in the case of generic a: for instance,

m(ax, t) = 2 ∑
y<x

J2
y (ωt) + const., (D.19)

and consequently
µ(ax, t) = 2a ∑

y≤x
(x− y) J2

y (ωt)− xa. (D.20)

This is what one would expect since, without appropriately rescaling the fields, the
change of lattice spacing simply consists in zooming in (a > 1) or zooming out
(a < 1). In order to get something non-trivial, also the fields g and h should be
rescaled. A simple way to find the correct rescaling is to focus on µ(0, t), and find
under which conditions the limit a → 0 gives a non trivial result. The behaviour of
µ(0, t) suggests that the proper rescaling is γ → γ/a; indeed one has, according to
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Eq. (D.20),

lim
a→0

µ(0, t) = lim
a→0

ωt

[ωt

a
J2
0

(ωt

a

)
− J0

(ωt

a

)
J1

(ωt

a

)
+

ωt

a
J2
1

(ωt

a

)]
=

2
π

ωt. (D.21)

This result is meaningful, as it corresponds to effectively diminishing the value of
h with respect to g, viz. making it easier for fermions to move. In conclusion, the
correct rescaling is the one obtained by including the factor 1/a also in front of the
linear potential in the Hamiltonian Eq. (6.16). This can be understood also because
the electric potential must be taken proportional to the physical position in the con-
tinuum: if V(x) = −Ex = −Eja, then h ∝ a.

Having found the appropriate rescaling for a non-trivial limit a→ 0, one can ask
what happens to the average fermion density and to the whole shape of the domain
wall in such limit. Consider then

µ(ax, t) = 2a ∑
x≤z

(z− x) J2
x

(ωt

a

)
− za : (D.22)

since the shape is symmetric under z→ −z, one can restrict for simplicity to the case
z ≥ 0. Let us define ξ := za and η := xa: in the limit a → 0, ξ and η will be kept
fixed, and it is µ(ξ) that will be evaluated. Write

µ(ξ) = 2

(
∑
x≤0

+ ∑
0<x≤z

)
(ξ − ax) J2

x

(ωt

a

)
− ξ : (D.23)

the first sum is easily computed, and it gives

2 ∑
x≤0

(ξ − ax)J2
x (ωt/a) = ξ

[
1 + J0

(ωt

a

)]

+ ωt

[ωt

a
J2
0

(ωt

a

)
− J0

(ωt

a

)
J1

(ωt

a

)
+

ωt

a
J2
1

(ωt

a

)]
a→0−→ ξ +

2
π

ωt. (D.24)

In order to compute the other sum, notice that, in order to have ξ finite, z needs to
be very large in the limit a � 1. Therefore the sum can be approximated with an
integral as

2 ∑
0<x≤z

(ξ − ax)J2
x

(ωt

a

)
−→ 2

∫ ξ

0

dη

a
(ξ − η)J2

η/a

(ωt

a

)
(D.25)

In the limit a→ 0, one may further approximate the Bessel function with an asymp-
totic expansions. In particular, if η > ωt, the Bessel function decays exponentially as
a → 0, and one can safely neglect its contribution to the integral. This means that,
if ξ > ωt, the integral can be restricted from 0 to ωt. If instead η/a < 2ωt/a, one
should use the expansion Eq. (D.70); in the limit a → 0, one can safely approximate
the fast oscillating squared cosine by its average value 1/2, and obtain

2
∫ ξ

0

dη

a
(ξ − η)J2

η/a

(ωt

a

)
'
∫ ξ

0
dη

ξ − η

πγ

√
1−

(
η

ωt

)2
(D.26)

=
2ξ

π
arcsin

ξ

ωt
+

2ωt

π

(√
1− ξ2

ω2
t
− 1

)
(D.27)
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Putting all the pieces together:

µ(ξ, t) =





2ξ

π
arcsin

ξ

ωt
+

2ωt

π

√
1− ξ2

ω2
t

if 0 ≤ |ξ| ≤ ωt

ξ if |ξ| > ωt.

(D.28)

One arrives then at the expression reported in the main text, Eqs. (6.33) and (6.34).
An equivalent derivation of the above result can be obtained passing through the

continuum limit of the number density. Following Ref. [434], one has

Φ′x (v) ≡ [〈n(x + 1, t)〉 − 〈n(x, t)〉]x/ωt=v = J2
x

( x
v

)
. (D.29)

Since we are in absence of longitudinal field, excitations propagate ballistically in
the system, and thus the continuum limit is achieved by treating v as a continuous
variable (corresponding to the scaling limit x, ωt → ∞ with x/ωt finite). In order
to obtain the scaling form of the magnetization profile, one has to integrate back Eq.
(D.29) over space and this is done more easily using the asymptotic forms of the
Bessel functions. One has to distinguish the cases |v| ≥ 1 and |v| < 1: the former
case gives 0 or 1 (according to the sign of v), whereas the latter yields

Φ(v) = ωt lim
x→∞

∫
dv Φ′x(v) '

∫ 1
π
√

1− v2
dv =

1
π

arcsin v (D.30)

A further integration gives the continuum limit of the limiting shape.
Let us mention also that the continuum limit of Eq. (6.27) can be computed, and

one gets 〈n(x, t)〉 = 1/s, as only the first term in the sum of Eq. (6.27) contributes
when the lattice spacing is sent to zero; this translates into 〈µ(x, t)〉 = x(2/s− 1).

D.4 Second order Schrieffer-Wolff and integrability break-
ing

In this section, we perform a Schrieffer-Wolff transformation [417] to get a renor-
malized Hamiltonian, describing the effective degrees of freedom in each sector H`

when g, h � J < +∞. We remind that the Schrieffer-Wolff transformation con-
sists in a renormalization procedure that progressively eliminates, order by order
in perturbation theory, all the block-off-diagonal Hamiltonian matrix elements, i.e.
the ones coupling different sectors H` and H`′ with ` 6= `′. Mathematically, it is a
unitary rotation U = eS, with S = S1 + S2 + · · · , that gives

eSHe−S = H0 + H1 + H2 + · · · (D.31)

where Sn and Hn are of order n in the perturbative coupling. Moreover, performing
the expansion up to a finite n yields a rotated Hamiltonian in which the block-off-
diagonal terms are of order n + 1 or higher.

We will follow a recent derivation of the transformation, given in Refs. [170, 455],
that gives directly the correct result at any desired order.
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D.4.1 First order corrections: PXP Hamiltonian

Let us start by separating the original 2d Ising Hamiltonian, Eq. (6.1), as follows:

H = HIs =

(
− J ∑

〈i,j〉
σz

i σz
j

)
+

(
− g ∑

i
σx

i − h ∑
i

σz
i

)
≡ H0 + V1. (D.32)

Let us also set h = 0 for the moment. Then, the Schrieffer-Wolff transformation
amounts to the following iterative algorithm (starting from n = 1):

1. Split Vn ≡ Hn + Rn, where Hn contains only the block-diagonal terms and Rn
only the block-off-diagonal ones.

2. Determine Sn from the equation
[
Sn, H0

]
+ Rn = 0. (D.33)

3. Set

Vn+1 = ∑
(k1,...,kp)∈[n+1]′

1
p!
[Sk1 , [Sk2 , . . . , [Skp , H0] . . . ]]

+ ∑
(k1,...,kp)∈[n]

1
p!
[Sk1 , [Sk2 , . . . , [Skp , V] . . . ]] (D.34)

where the summations run over the set [m] of the ordered partitions (k1, . . . , kp)
of an integer m, and [m]′ excludes the partition (k1 = m) with p = 1.

Let us apply the algorithm described above to our case, up to order n = 2. First
of all, we identify in V1 the block-diagonal terms:

H1 = −g ∑
i

(
P↑LiP

↑
Diσ

x
i P↓RiP

↓
Ui + P↑LiP

↓
Diσ

x
i P↓RiP

↑
Ui + P↓LiP

↓
Diσ

x
i P↑RiP

↑
Ui

+ P↓LiP
↑
Diσ

x
i P↑RiP

↓
Ui + P↑LiP

↓
Diσ

x
i P↑RiP

↓
Ui + P↓LiP

↑
Diσ

x
i P↓RiP

↑
Ui

)
.

(D.35)

and the block-off-diagonal terms:

R1 = −g ∑
i

(
P↓LiP

↓
Diσ

x
i P↓RiP

↓
Ui + P↓LiP

↓
Diσ

x
i P↓RiP

↑
Ui + P↓LiP

↓
Diσ

x
i P↑RiP

↓
Ui

+ P↓LiP
↑
Diσ

x
i P↓RiP

↓
Ui + P↓LiP

↑
Diσ

x
i P↑RiP

↑
Ui + P↑LiP

↓
Diσ

x
i P↓RiP

↓
Ui + P↑LiP

↓
Diσ

x
i P↑RiP

↑
Ui

+ P↑LiP
↑
Diσ

x
i P↓RiP

↑
Ui + P↑LiP

↑
Diσ

x
i P↑RiP

↓
Ui + P↑LiP

↑
Diσ

x
i P↑RiP

↑
Ui

)
. (D.36)

In the previous equations, P↑i = (1 + σz
i )/2, P↓i = (1 − σz

i )/2, and Li/Ri/Ui/Di
stands for the left/right/above/below neighbour of site i, as in the main text. One
easily gets convinced that the terms in H1 couple states within each H`, since they
conserve the number of domain walls; contrarily, each term in R1 changes their num-
ber.

Then, we need to solve Eq. (D.33), specified for S1:
[
S1, H0

]
+ R1 = 0. (D.37)

A bit of reasoning leads to the conclusion that one can compensate each term in R1,
of the form PLiPDiσ

x
i PRiPUi, with a term in S1 of the form PLiPDiσ

y
i PRiPUi. Fixing the
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correct signs, one finds

S1 = − ig
4J ∑

i

(
1
2

P↓LiP
↓
Diσ

y
i P↓RiP

↓
Ui + P↓LiP

↓
Diσ

y
i P↓RiP

↑
Ui + P↓LiP

↓
Diσ

y
i P↑RiP

↓
Ui

+ P↓LiP
↑
Diσ

y
i P↓RiP

↓
Ui − P↓LiP

↑
Diσ

y
i P↑RiP

↑
Ui + P↑LiP

↓
Diσ

y
i P↓RiP

↓
Ui − P↑LiP

↓
Diσ

y
i P↑RiP

↑
Ui

− P↑LiP
↑
Diσ

y
i P↓RiP

↑
Ui − P↑LiP

↑
Diσ

y
i P↑RiP

↓
Ui −

1
2

P↑LiP
↑
Diσ

y
i P↑RiP

↑
Ui

)
. (D.38)

Finally, applying Eq. (D.34) for n = 2 yields

V2 =
1
2
[S1, [S1, H0]] + [S1, V1] = −

1
2
[S1, R1] + [S1, V1]. (D.39)

The expression above generates a plethora of terms; however, we are interested only
in the block-diagonal part of V2, namely H2: indeed, the block-off-diagonal part R2 can
be removed by going to the next order in the perturbative construction. For now,
we will compute only the terms in Eq. (D.39) that are diagonal in σz (thus leaving out
terms involving σx and σy that are still block-diagonal). It is easy to spot them, since
they come from commuting σx

i in R1,V1 with σ
y
i in S1, while leaving the projectors

untouched (and therefore the 4 projectors around i have to be the same both in R1,V1
and S1). With a bit of patience, one may work out all the details, to find

[
H2
]

diag =
g2

4J ∑
i

(
1
2

P↓LiP
↓
Diσ

z
i P↓RiP

↓
Ui + P↓LiP

↓
Diσ

z
i P↓RiP

↑
Ui + P↓LiP

↓
Diσ

z
i P↑RiP

↓
Ui

+ P↓LiP
↑
Diσ

z
i P↓RiP

↓
Ui − P↓LiP

↑
Diσ

z
i P↑RiP

↑
Ui + P↑LiP

↓
Diσ

z
i P↓RiP

↓
Ui − P↑LiP

↓
Diσ

z
i P↑RiP

↑
Ui

− P↑LiP
↑
Diσ

z
i P↓RiP

↑
Ui − P↑LiP

↑
Diσ

z
i P↑RiP

↓
Ui −

1
2

P↑LiP
↑
Diσ

z
i P↑RiP

↑
Ui

)
. (D.40)

D.4.2 First order corrections: corner Hamiltonian

Now we specify the results of the previous section to the sector within H` that is
dynamically connected to the corner considered in the main text, i.e. we restrict our
attention to the Young diagrams subspace HY. In the previous section we have al-
ready determined the diagonal part of the second order correction H2, see Eq. (D.40).
We just need to determine the off-diagonal (but block-diagonal) part. With a bit of
reasoning, one may get convinced that the only allowed moves in 2nd order pertur-
bation theory, that bring a state out of HY and then back in, are the ones in Fig. D.1.
Correspondingly, the Schrieffer-Wolff Hamiltonian reads

H2,Y =
[
H2
]

diag −
g2

4J ∑
i

[
P↑LiP

↑
LUiP

↑
UUi

(
σ+

i σ+
Ui + σ−i σ−Ui

)
P↓RiP

↓
RUiP

↓
Di

+ P↑LiP
↑
UiP
↑
RUi

(
σ+

i σ+
Ri + σ−i σ−Ri

)
P↓DiP

↓
RDiP

↓
RRi

]
. (D.41)

The factor in front of the sum is fixed by a careful use of Eq. (D.39).
Now that we have the Hamiltonian in 2d, we can express it in the 1d language of

fermions. Before, however, it is convenient to expand all the projectors P↑,↓ in terms
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FIGURE D.1: Graphical representation of the off-diagonal part of H2,Y, corresponding to a
next-to-nearest neighbors hopping (see Eq. (D.40)), constrained to Young diagrams configu-
rations.

of σz: one finds

[
H2
]

diag = −5g2

64J ∑
i

(
σz

Liσ
z
i + σz

i σz
Ri + σz

i σz
Ui + σz

Diσ
z
i
)

+
3g2

64J ∑
i

(
σz

Liσ
z
Diσ

z
i σz

Ri + σz
Liσ

z
Diσ

z
i σz

Ui + σz
Diσ

z
i σz

Riσ
z
Ui + σz

Liσ
z
i σz

Riσ
z
Ui
)
. (D.42)

The term with only two Pauli matrices gives a constant contribution on the Young di-
agram states, since it counts the number of horizontal and vertical frustrated bonds
(it is a Lamb shift constant in the whole sectorH`). The term with four spins instead
can be represented, up to a term constant in the subspace HY, by an operator that
counts the number of corners in each diagram. Therefore, in the hard-core boson
language one finds the Hamiltonian

H2,B = − g2

4J ∑
x

(
S+

x S−x+2 + S−x S+
x+2 + 3S3

xS3
x+1
)

. (D.43)

By means of a Jordan-Wigner transformation, one gets a fermionized version of the
latter (see also Eq. (6.16)):

H2,F = − g2

4J ∑
x

(
ψ†

xe−iπnx+1 ψx+2 + h.c. + 3nxnx+1

)
(D.44)

= − g2

4J ∑
x

(
ψ†

xψx+2 + h.c.
)
+

g2

4J ∑
x

(
2ψ†

xψ†
x+1ψx+1ψx+2 + h.c.− 3ψ†

xψxψ†
x+1ψx+1

)
,

(D.45)

where the first term is a correction to the kinetic energy and the second a four-
fermions interaction.

D.5 Participation ratio and localization length

In this section we compute the (inverse) participation ratio, from which one can
easily derive the localization length of the eigenfunctions. By definition

IPR = ∑
k

J4
k (γ) =

1
π

∫ π

0
dθ J2

0(γ
√

2− 2 cos θ), (D.46)
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where we used both the Neumann’s addition theorem to write the sum as an integral
and the explicit form of the eigenfunctions. With a change of variables, the integral
can be cast in the form

IPR =
2
π

∫ 1

0
dx

J2
0(2γx)√
1− x2

= 2F3

(
1
2

,
1
2

; 1, 1, 1;−4γ2
)

. (D.47)

At this stage one can take the asymptotic expansion of the hypergeometric function,
and for large γ the (non-oscillating part of the) IPR is

IPR =
2γE + 5 log 4 + log γ2

2π2γ
+

3− γE − log(32γ)

64πγ3 + O
(

1
γ5

)
(D.48)

being γE the Euler constant. Since the localization length of the eigenfunctions is
roughly ξ ≈ 1/IPR,

ξ ∼ 2π2γ

2γE + 5 log 4 + log γ2 . (D.49)

Alternatively, one can also determine the asymptotic expansion for the IPR di-
rectly from the integral, using the Mellin transform. In particular, it holds

∫ ∞

0
f1(x) f2(x)dx =

1
2πi

∫ c+i∞

c−i∞
f̃1(1− s) f̃2(s)ds, (D.50)

being, in our case, f1(x) = 1√
1−x2 (for x < 1, f1(x) ≡ 0 otherwise) and f2(x) =

J2
0(2γx). One gets then

f̃1(s) =
√

π

2
Γ
( s

2

)

Γ
( 1+s

2

) , f̃2(s) =
1

(2γ)s
Γ
( 1−s

2

)
Γ
( s

2

)

2
√

πΓ
(
1− s

2

)2 . (D.51)

Therefore, we obtain the alternative form

IPR =
1

2πi

∫ c+i∞

c−i∞
ds

1
2π

1
(2γ)s

Γ
( 1−s

2

)2
Γ
( s

2

)

Γ
(
1− s

2

)3 ≡ 1
2πi

∫ c+i∞

c−i∞
dsF (s). (D.52)

The poles structure of the Γ-function sets c ∈ (0, 1). To compute the integral, one can
move the Bromwich path towards increasing values of Re(s); this way one has to go
around the poles of the integrand, which are double poles located on the odd integer
numbers, and use the residue theorem to compute their contribution to the integral.
As an example, we report the residue at s = 1, for other values of s the computation
is analogous. By definition one has

Res [F (s), s = 1] =
d
ds

[
(s− 1)2 1

2π

1
(2γ)s

Γ
( 1−s

2

)2
Γ
( s

2

)

Γ
(
1− s

2

)3

]∣∣∣∣∣
s=1

. (D.53)

Expanding around s = 1 one has (s − 1)2 Γ
( 1−s

2

)
= 4(1 + γE(s − 1)) + O(s − 1)2,

from which it follows

Res [F (s), s = 1] = −2γE + 5 log 4 + log γ2

2π2γ
(D.54)

Applying the residue theorem, one obtains a 2πi factor that cancels the one in front
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of Eq. (D.52) and a minus sign given by the index of the contour, which is clock-
wise, obtaining the first term of Eq. (D.48). The other terms are obtained with the
residues of the other poles. In general, from the dependence 1/γs in the integral,
one can see that the residue of the pole at s = 2n + 1 gives the order 1/γ2n+1 of the
asymptotic expansion. In this way, one obtains the same result as in Eq. (D.48) from
the asymptotic expansion of the hypergeometric function. Notice that the residues
of the poles give only the power series contribution to the whole integral. There is
a bounded oscillating term missing, that comes from the remaining part of integral
on the Bromwich path.

D.6 Useful properties of the Bessel functions

We collect here a series of useful properties of Bessel functions that are widely used
in the main text, giving also a sketch of their proof. Many of these properties can be
found in [457, 512]. One of the equivalent definitions for the Bessel function of the
first kind is in terms of the integral:

Jn(γ) =
1

2π

∫ π

−π
dτ ei(nτ−γ sin τ). (D.55)

From this definition it follows immediately that

∞

∑
n=−∞

Jn(x) = 1 (D.56)

and, for n ∈ Z

J−n(γ) = (−1)n Jn(γ). (D.57)

Using again the definition, we can compute

∞

∑
n=−∞

Jx−n(γ)Jy−n(γ)e−2ithn

=
∞

∑
n=−∞

1
(2π)2

∫ π

−π
dτ dτ′ ei((x−n)τ−γ sin τ)ei((y−n)τ′−γ sin τ′)e−2ithn

(D.58)

=
e−2iyht

2π

∫ π

−π
dτ ei[(x−y)τ−γ(sin τ−sin (τ+2ht))] (D.59)

=
e−i(x+y)ht

2π

∫ π

−π
dτ ei[(x−y)τ+2γ sin ht cos τ] (D.60)

= e−i(x+y)ht ix−y Jx−y(2γ sin(ht)) (D.61)

where we used ∑∞
n=−∞ einx = 2πδ(x + 2kπ). Setting t = 0 we obtain the complete-

ness relation
∞

∑
n=−∞

Jn−m(γ)Jn−k(γ) = δmk, (D.62)

that also leads immediately to

∞

∑
n=−∞

J2
n(γ) = 1. (D.63)



D.6. Useful properties of the Bessel functions 173

If the sums of the previous equation is restricted to positive integer values, using
telescopic sums one obtains

∞

∑
j=1

Jj+m(γ)Jj+n(γ) =
γ[Jm(γ)Jn+1(γ)− Jm+1(γ)Jn(γ)]

2(m− n)
, (D.64)

that reduces to

∞

∑
j=0

J2
j+n(γ) =

γ

2
[Jn(γ)∂n Jn−1(γ)− Jn−1(γ)∂n Jn(γ)] (D.65)

when the limit m → n is taken. Using the same procedure as in Eq. (D.58) we can
compute also

∑
k∈Z

J2
mk−x(γ) =

1
m ∑

0≤n<m
e2ixnπ/m J0

(
2γ sin

nπ

m

)
. (D.66)

Another very useful tool is the asymptotic expansion of the Bessel functions for
large order and argument. For fixed γ and x → ∞

Jx(γ) ∼
1√
2πx

( eγ

2x

)x
, (D.67)

i.e. the Bessel functions decay more than exponentially fast for x � γ. Instead, in
the limit γ→ ∞ with fixed x we have, at leading order

Jx(γ) ∼
√

2
πγ

cos
(

γ− π

2
x− π

4

)
(D.68)

If both the order and the argument of the Bessel function diverge, the asymptotic
expansion is different if the argument is larger than the order or vice versa: at leading
order

Jx(x sech α) ∼ ex(tanh α−α)

√
2πx tanh α

, sech α < 1, (D.69)

Jx(x sec β) ∼
√

2
πx tan β

cos
(

x(tan β− β)− π

4

)
, sec β > 1, (D.70)

from which we notice the strong similarity between Eqs. (D.67)–(D.69) and Eqs.
(D.68)–(D.70).
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E Addendum to Chapter 7

In this Appendix, I give some additional details for the optimal control problem of the spin
qubit. In Sec. E.1 I report the derivation of the sensitivity, while in Sec. E.2 the experimental
platform is described in detail. In Sec. E.3 I report some additional test cases that validate
our procedure.

E.1 Definition of the sensitivity

The sensitivity η introduced in Eq. (7.4) represents the minimum detectable signal
for unit time in our experimental platform. To justify this statement, here we sketch
a brief derivation using both a direct approach, and a more formal one through the
Fisher information.

First, let us define η as the signal strength yielding a signal-to-noise ratio SRN =
1 for a total experiment time of 1 s. Following Ref. [40], the SNR for N independent
experiments can be defined as

SNR =
δP(T, b)

σN
, (E.1)

where σN encompasses all the sources of error, and δP(T, b) is the spin population
difference between the cases with and without target signal: δP(T, b) = P(T, b) −
P(T, 0). Now, the error can be shown to be of the form σN ≈ C−1/

√
N, with a

dimensionless constant C = O(1) depending on the experimental platform [40].
Also, using Eq. (7.1), and assuming slope detection, one easily gets to

δP(T, b) ≈ e−χ(T)
∣∣∣∣sin (ϕ(T, b))

∂ϕ(T, b)
∂b

b
∣∣∣∣ = e−χ(T)|ϕ(T, b)|. (E.2)

Thus, imposing SNR ≡ 1 one finds

1 = e−χ(T)|ϕ(T, b)| 1
C
√

N
(E.3)

and finally, using that one performs N experiments in 1 s in total,

η =
eχ(T)

|ϕ(T)/b|
√

T, (E.4)

with T being the time for a single experiment, and C set to unity. This is exactly Eq.
(7.4).

As anticipated above, the sensitivity can be defined also through the Fisher in-
formation and the Cramér-Rao bound. Specifically, we define η to be the minimum
signal that can be distinguished from 0 in a total time of 1 s. Assuming that our
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estimator of the magnetic field b is unbiased, from the Cramér-Rao bound it must be

∆b ≥ 1√
FN

, (E.5)

where FN is the Fisher information associated with N measurements of the magnetic
field strength b from an estimator x [500, 513]:

FN = ∑
x

1
pN(x|b)

(
∂pN(x|b)

∂b

)2

. (E.6)

In our case, since we detect the |±〉 states in a Ramsey interferometry experiment, it
holds p(±|b) = Tr(ρ |±〉 〈±|) with

ρ =

(
1/2 e−χ(T)−iϕ(T,b)/2/2

e−χ(T)+iϕ(T,b)/2/2 1/2

)
, (E.7)

and thus

F =
8ϕ2(T, b)

b2
e−2χ(T) sin2 ϕ(T, b)

1− e−2χ(T) cos2 ϕ(T, b)
. (E.8)

Assuming slope detection, and for N repeated measurements,

FN = N
8ϕ2(T, b)e−2χ(T)

b2 , (E.9)

since the Fisher information is additive for independent trials. At this point, recalling
that the N experiments have to be done in a total time of 1 s, and using the Cramér-
Rao bound Eq. (E.5), one easily gets to Eq. (E.4), that is Eq. (7.4).

E.2 Details on the experimental platform

The ground state of an NV center is a spin triplet S = 1, naturally suited for sensing
magnetic fields via Zeeman effect. The NV electronic spin presents extremely long
coherence times, of the order of milliseconds at room temperature [487], due to the
protective environment provided by the diamond itself. The S = 1 electronic spin
can be initialized into the mS = 0 state by addressing the NV center with green light
(532 nm). This is due to an excitation–decay process involving radiative (637 nm)
and non-radiative decay routes, occurring with a probability that depends on the
spin projection mS. This same mechanism implies that the red photoluminescence
intensity of the mS = 0 state is higher than the one of mS = ±1, hence enabling to
optically readout the state of the system. In addition, the internal structure of the NV
center removes the degeneracy between the mS = ±1 states and the mS = 0 state,
imposing a zero-field-splitting of Dg ' 2.87 GHz. An external bias field, aligned
with the spin quantization axis, removes the degeneracy between the mS = ±1
states, allowing to individually address the mS = 0 ↔ mS = +1 transition using
on-resonance microwave radiation. By using microwave pulses with a appropriate
duration, amplitude and phase, it is possible to apply any kind of gate to the single
two level system. Therefore, the two level system formed by the mS = 0 (|0〉) and
mS = +1 (|1〉) states fulfills the requirements to be used as a qubit based magne-
tometer.
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E.2.1 Characterization of the amplitude of the target signal

The target signal is delivered via a signal radio-frequency (RF) generator connected
to the same wire, placed close to the diamond, that delivers the MW control field.
We can control the amplitude of the target field by changing the output amplitude
of the RF generator. However, the absolute value of the amplitude of the target field
b has to be characterized in order to take into account the attenuation of the cir-
cuit, the emission efficacy of the wire (which depends on the RF frequency) and the
distance between the wire and the NV defect. To achieve such characterization, as
explained in Chap. 7, we measure the spin dynamics for a CP sequence as a function
of the sequence interpulse time, and we compare with the simulation to minimize
the residuals using b as the only free parameter. By performing this measurements
for different values of the RF generator output amplitude aRF, we can extract a re-
lation between aRF (in [Vpp]) and the amplitude of the target magnetic field b (in
[T]).

E.3 Additional test cases

In order to reinforce our results, we repeated the analysis presented in Chap. 7.3 for
two different target signals. A monochromatic target signal that coincides with one
of the NSD harmonics, and a 7-chromatic target signal that accentuates the difference
between the generalized CP and the optimal solution.

E.3.1 Monochromatic target signal

If we want to detect a monochromatic target signal b(t), in most cases a Carr-Purcell
CP sequence of equidistant pulses is the best way to increase the sensor’s response
to that target signal and filter out the noise. This is due to the quasi-monochromatic
filter function associated with a CP sequence. Assuming that τ is the time between
pulses, the filter function shows a peak centered at ω/2π = 1

2τ . However, the filter
function is not exactly monochromatic, it shows harmonics at ω/2π = 1

2(2`+1)τ , with
` ∈ {1, 2, ...}. Therefore, if the frequency associated with b(t) is close to ωL/(2`+ 1),
then a CP sequence will amplify the effect of both, the target signal and the noise,
leading to not-optimal sensitivities.

Here we used the optimization algorithm described in Sec. 7.2.2 in order to ob-
tain optimal sequences for this problem. In particular, we explored the case of a
monochromatic signal with frequency νmono = 39.29 kHz, which is close enough to
νL/11 so that the 5-th harmonic of the CP sequence coincides with the noise compo-
nents. We used the same NSD S(ω) as in the three-chromatic case. The experimental
values of 1/η are obtained from the measurement of P(T, b) as a function of b. The
results of P(T, b) for one value of the sensing time T are shown in Fig. E.1a. The
predicted values of the inverse sensitivity, together with their experimental values
are shown in Fig. E.1b. Similarly to the case detailed in 7.3.1, the optimal sequences
improve the sensitivity of the quantum sensor, resulting in some cases to an inverse
sensitivity that is close to a twice the one from the CP sequence. In the monochro-
matic case explored here, the sensitivity gets worse when increasing the sensing time
beyond 100 µs. Instead the optimal solutions are able to improve the sensitivity even
for times T > 300 µs. For T ' 100 µs, and longer sensing times, the optimized se-
quences achieve higher values of 1/η than the maximum value achieved by a CP
sequence.
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FIGURE E.1: Results for the case of a monochromatic target signal. (a) Probability to remain
in the state |1〉 as a function of b, for fixed sensing times T for an optimal DD sequence (blue),
and for a CP sequence (orange). The values of the sensing time and of the number of pulses
for both sequences are shown as titles of the plots. A cosine function is fitted (solid lines) to
the experimental data (bullets with errorbars) in order to obtain 1/η. (b) Inverse sensitivity
as a function of the sensing time T. Blue data corresponds to the optimized sequences ob-
tained with simulated annealing (SA). Orange data corresponds to the CP sequences with
τ = 12.726 µs. We found a good agreement between the predicted values (dotted lines) and
the experimental values (bullets with errorbars). This figure is taken from Ref. [5].
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FIGURE E.2: Results for the case of a target signal with seven frequency components. (a)
Table to indicate the amplitude, frequency and phase of each component of the target sig-
nal f (t) = ∑6

i=0 Ai cos(2πνit + ci). (b) Fast Fourier transform (FFT) of the target signal. (c)
Inverse sensitivity for T = 80 µs and 160 µs. The predicted values (squares) and the experi-
mental values (bullets with errorbars) show that the sequences obtained from the spherical
solution (Sph.) or from the simulated annealing solution (SA) result in an improved sen-
sitivity with respect to the generalized CP (gCP) sequences. This figure is taken from Ref.
[5].

E.3.2 7-chromatic target signal

We have explored the case of a target signal with 7 frequency components, as speci-
fied in Figs. E.2a–E.2b. As in Chap. 7, we used the optimization algorithm either to
find the approximated spherical solution, or the solution using simulated annealing
(SA) in order to minimize the sensitivity. The predicted values of the inverse sensi-
tivity, together with their experimental values are shown in Fig. E.2c. Similarly to
the previous test cases, the optimal sequences improve the sensitivity of our quan-
tum sensor. In this case, the sensitivity obtained with the optimal solutions almost
1/2, and 1/3 with respect to the generalized CP (gCP) sequence for T = 80 µs, and
T = 160 µs, respectively.
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ergodicity breaking from quantum many-body scars”, Nat. Phys. 14, 745–749
(2018).

[178] M. Serbyn, D. A. Abanin, and Z. Papić, “Quantum Many-Body Scars and
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