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Abstract
It is known that on RCD spaces one can define a distributional Ricci tensor Ric. Here we
give a fine description of this object by showing that it admits the polar decomposition

Ric = ω |Ric|
for a suitable non-negative measure |Ric| and unitary tensor field ω. The regularity of both
the mass measure and of the polar vector are also described. The representation provided
here allows to answer some open problems about the structure of the Ricci tensor in such
singular setting. Our discussion also covers the case of Hessians of convex functions and,
under suitable assumptions on the base space, of the Sectional curvature operator.
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1 Introduction

A classical statement in modern analysis asserts that a positive distribution is a Radon mea-
sure. This fact extends to tensor-valued distributions so that, for instance, the distributional
Hessian of a convex function on R

d , that for trivial reasons is a symmetric non-negative
matrix-valued distribution, can be represented by a matrix-valued measure. The proof for the
tensor-valued case follows from the scalar-valued case simply by looking at the coordinates
of the tensor. To put it differently, the fact that on R

d we can find an orthonormal basis of
the tangent bundle made of smooth vectors allows to regard a tensor-valued distribution as
a collection of scalar-valued ones and thus to transfer results valid in the latter case into the
former one.
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The fact that positive functionals defined on a sufficiently large class of functions are
represented by measures can be extended far beyond the Euclidean setting, up to at least
locally compact spaces: this is the content of the Riesz–Daniell–Stone representation theo-
rems. In this paper we are concerned with the tensor-valued case when the underlying space
is an RCD(K , N ) space. These classes of spaces, introduced in [20] after [3, 34, 36, 37] (see
the surveys [1, 24] and references therein) are the non-smooth counterpart of Riemannian
manifolds with Ricci curvature ≥ K and dimension ≤ N . One of the key features of these
spaces, and in fact the essence of the proposal in [20], is that calculus on them is built upon
the notions of “Sobolev functions” and “integration by parts”. As such, it is perhaps not
surprising that distribution-like tensors appear frequently in the field. Let us mention three
different instances when this occurs, where the relevant tensor is non-negative (or at least
bounded from below):

i) TheHessian of a convex function. As observed in [31, 39], to a regular enough function
f on an RCD space one can associate a suitable “distributional Hessian” that acts on
sufficiently smooth vector fields: reformulating a bit the definition in [31], the Hessian
of f is the map

{smooth vector fields} � X , Y

�→ Hess( f )(X , Y ) := −1

2

∫
X

(
div X∇ f · Y + div Y∇ f · X + ∇ f · ∇(X · Y )

)
dm

and it turns out, see [31, Theorem 7.1] that under suitable regularity assumptions on f
we have

f is κ-convex ⇔ Hess( f )(X , X) ≥ κ for every X ,

thus matching the Euclidean distributional characterization of convexity.
ii) The Ricci curvature of an RCD(K ,∞) space. As discussed in [22], one can use the

Bochner identity to definewhat the Ricci tensor is in this low regularity setting, by putting

{smooth vector fields} � X , Y

�→ Ric(X , Y ) := �
X · Y
2

+
(
1

2
X · �HY + 1

2
Y · �HX − ∇X · ∇Y

)
m

and it turns out that, see [22], in a suitable sense we have

the space (X,d,m) is RCD(κ,∞) ⇔ Ric(X , X) ≥ κ|X |2m for every X .

We add a couple of words about the notation used in the equation above, but we refer to
[22] for the rigorous definitions. In particular, � is the distributional, or measure valued
Laplacian and is defined via integration by parts as in the case of the L2 Laplacian, but
it is a signed measure instead of an L2 function. Moreover, �H is the Hodge Laplacian
(we identify vector and covector freely, thanks to the Riesz’s identification), and, in the
smooth context, reads, as usual, as dδ + δd.

iii) The Sectional curvature of an RCD(K ,∞) space. As discussed in [23], one can give a
meaning to the full Riemann curvature tensor on a generic RCD space. In general, one
cannot expect any sort of regularity on it, as the lower bound on the Ricci, encoded in
the RCD assumption, cannot give any information on the full Riemann tensor. Still, this
opens up the possibility of saying when is that the “sectional curvature of an RCD space
is bounded from below”. The geometric significance of this statement is still unknown.
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In each of these cases, a better understanding of the relevant tensor is desirable and a first
step in this direction is to comprehend whether the given bound from below forces it to be a
measure-like object. To fix the ideas, let us discuss the case of the Ricci curvature: what one
would like to know is whether the operator Ric described above can be represented via a sort
of polar decomposition as

Ric = ω |Ric|, (1.1)

where |Ric| is a non-negative measure and ω is a tensor of norm 1 |Ric|-a.e., meaning that
the identity

Ric(X , Y ) = ω · (X ⊗ Y ) |Ric|
holds as measures for any pair of sufficiently smooth vector fields X , Y . The main result of
this manuscript is that, yes, a representation like Eq. 1.1 holds for the three tensors discussed
above, see Theorem 1.2.

Few important remarks are in order (we shall discuss the case of the Ricci curvature, but
similar comments are in place for the Hessian and the sectional curvature):

– A writing like that in the right hand side of Eq. 1.1 requires the tensor field ω to be
|Ric|-well-defined. In this respect notice that on one side on RCD spaces tensor fields
can be well-defined up to Cap-null sets, where Cap is the 2-capacity (in some sense,
thanks to the fact that one can speak about Sobolev vector fields - see [18]). On the other
hand, the mass measure |Ric| is absolutely continuous with respect to Cap (because the
distributional definition of Ricci tensor is continuous on the space of Sobolev vector
fields). The combination of these two facts makes it possible to consider an expression
as the one in Eq. 1.1. This perfect matching between the regularity achievable by ω and
the sets that can actually be charged by |Ric| is far from being a coincidence.

– The construction of the polar decomposition as in Eq. 1.1 follows the same rough idea
described at the beginning of the introduction: wewould like to take a pointwise orthonor-
mal basis X1, . . . , Xn of sufficiently regular vector fields and then study the real valued
functionalsϕ �→ ∫

X ϕ dRic(Xi , X j ). Clearly, even in a smoothRiemannianmanifold one
in general cannot find such a global orthonormal basis, but a first problem we encounter
here is that such bases only exist on suitable Borel sets Ak ⊆ X (whose interior might in
general be empty). This causes severe technical complications in handling the necessary
localization arguments, see for instance the proof of Theorem 1.1.

– Related to the above there is the fact that the mass measure |Ric| turns out to be a σ -
finite Borel measure that in general is not Radon. More precisely, on the sets Ak ⊆ X on
which we have a pointwise orthonormal basis, the restriction of |Ric| is finite (whence σ -
finiteness). However, in general it might very well be that there is some point x ∈ X such
that every neighbourhood of x encounters infinitely many of the Ak’s. This happens even
in very simple examples such as the tip of a cone, as it is known, see [17] and reference
therein, that at the tip of a cone every sufficiently regular vector field must vanish. In
particular, it seems very unlikely that a direct application of the technique of [11] can
be used in place of the ad-hoc argument that we employ in this manuscript. Indeed, it
seems that we cannot use the Riesz’s Theorem of [11], as we are not able to prove that
the functional (X , Y ) �→ Ric(X , Y )(X) is bounded with respect to the relevant norm
on vector fields (and we believe that this issue can really happen, especially for what
concerns the same discussion in the case of the Hessian). Nevertheless, once that one
restricts integration to a set Ak , i.e. considers (X , Y ) �→ Ric(X , Y )(Ak), it is possible
to use the language of [11], but this possibility comes a posteriori, once we know that
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|Ric| Ak is a finite measure (and, to have this information, it seems necessary to argue
as in this paper). As just discussed, this is not simply a matter of localization, but comes
from the fact that some of the sets Ak may have empty interior.
To have a glance at the difficulties that prevent us from proving that |Ric| is a Radon
measure, it may be useful to consider the following example, which should be compared
to [18, Example 3.17]. Consider the RCD(0, 1) space X := [0, 1], endowed with the
natural metric and measure. Assume that we have A0 = {0}, A1 = (0, 1) and A2 = {1},
so that X = A0 ∪ A1 ∪ A2. If we have three Radon measures μ0, μ1, μ2 on A0, A1, A2,
respectively, it is in general false that μ0 +μ1 +μ2 is a Radon measure on X. To recover
Radon measures, we have to consider compact sets of X \ {0, 1}. In other words, it is
certainly necessary to remove the “compactifying effect” of the boundary. Recalling [18,
Example 3.17], it is clear that the decomposition of X in sets Ak given by Theorem 2.1
is certainly not better that the one proposed above, just look at the dimension change
of the Cap-tangent module over the sets Ak (moreover, with a little more care, we see
that the decomposition of X in sets Ak is much worse than the one described above,
due to the vanishing of |∇ f |(0) for f ∈ D(�)). Even though, after [12], boundaries of
(non-collapsed) RCD spaces are well understood, we are not able to exploit this theory
to give more precise information about the measures involved.

– Despite the above, for any pair of sufficiently regular vector fields X , Y we havew · (X ⊗
Y ) ∈ L1(|Ric|).

– Since |Ric| is not Radon, in constructing the representation Eq. 1.1, and more generally
in understanding these distributional objects we have discussed, we cannot rely on the
theory of local vector measures that we recently developed in [11].

– The representation Eq. 1.1 marks a clear step forward in the understanding of the Ricci
tensor on RCD spaces, as what was previously manageable only via integration by parts
- and thus required regularity of the vector fields involved - now is realized as a 0th-order
object and thus has a more pointwise meaning. For instance, it allows to quickly solve a
problem that was left open in [22]. The problem was as follows: suppose that Xi , X , Y ,
i = 1, . . . , n, are smooth vector fields, that fi ∈ Cb(X) and that

∑
i fi Xi = X . Can we

conclude that
∑

i fiRic(Xi , Y ) = Ric(X , Y )? One certainly expects the answer to be
affirmative, but if the only definition of Ric involves integration by parts - as it was the
case in [22] - then it is not clear how to conclude, given that in general fi Xi is not regular
enough to justify the necessary computations. On the other hand, the representation
Eq. 1.1 immediately allows to positively answer the question.

1.1 Statements of theMain Results

We now state the main results of this paper. These results aim at addressing points i), ii) and
iii) raised in the first part of the introduction. We refer to the main part of the manuscript for
the relevant definitions, to avoid overloading this introduction. In particular, we will need
Definition 3.2 and Definition 3.6 for what concerns the Hessian, Theorem 3.10, which is [22,
Theorem 3.6.7], for the Ricci tensor, and finally the definition of Riemann tensor as recalled
at the beginning of section 3.4 (that is [23]) with Definition 3.17 for the Riemann tensor.

Theorem 1.1 Let (X,d,m) be anRCD(K , N ) space and f ∈ H1,2
loc (X) satisfyingHess f ≥ κ ,

for some κ ∈ R. Then, f ∈ D(Hess), say Hess f = ν f |Hess f |. Moreover, we have that

ν f |Hess f | ≥ κgm,
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in the sense that for every v ∈ L0
Cap(TX), it holds, as measures,

v ⊗ v · ν f |Hess f | ≥ κ|v|2m.

Finally, if in addition f ∈ H1,2(X), then for every X , Y ∈ H1,2
H (TX) ∩ L∞(TX), we have

that X ⊗ Y · ν f ∈ L1(|Hess f |), in particular, Eq. 3.4 holds for every h ∈ S2(X) ∩ L∞(m)

and X , Y ∈ H1,2
H (TX) ∩ L∞(TX). More precisely, we have the explicit bound, for every

X ∈ H1,2
H (TX) ∩ L∞(TX)

∫
X
|X ⊗ X · ν f | d|Hess f | ≤

∫
X
−div X∇ f · X − ∇ f · ∇( 12 |X |2) + 2κ−|X |2 dm.

Theorem 1.2 Let (X,d,m) be an RCD(K , N ) space. Then there exists a unique σ -finite
measure |Ric| that satisfies |Ric| � Cap and a unique, up to |Ric|-a.e. equality, symmetric
tensor field ω ∈ L0

Cap(T
⊗2X) with |ω| = 1 |Ric|-a.e. such that Ric = ω|Ric|, in the sense

that for every X , Y ∈ H1,2
H (TX) we have that X ⊗ Y · ω ∈ L1(|Ric|) and it holds that, as

measures,
X ⊗ Y · ω|Ric| = Ric(X , Y ).

Moreover
ω|Ric| ≥ Kgm,

in the sense that for every v ∈ L0
Cap(TX), it holds, as measures,

v ⊗ v · ω|Ric| ≥ K |v|2m.

Theorem 1.3 Let (X,d,m) be anRCD(K , N ) space with sectional curvature bounded below
by κ , for some κ ∈ R. Then there exists a unique σ -finite measure |Riem| that satisfies
|Riem| � Cap and a unique, up to |Riem|-a.e. equality, tensor field ν ∈ L0

Cap(T
⊗4X) with

|ν| = 1 |Riem|-a.e. such that for every X , Y , Z ,W ∈ H1,2
H (TX) ∩ L∞(TX) we have that

X ⊗ Y ⊗ Z ⊗ W · ν ∈ L1(|Riem|) and it holds∫
X
f X ⊗ Y ⊗ Z ⊗ W · ν|Riem| = R(X , Y , Z ,W )( f ) for every f ∈ S2(X) ∩ L∞(m).

For every v,w ∈ L0
Cap(TX),

v ⊗ w ⊗ w ⊗ v · ν|Riem| ≥ κ|v ∧ w|2m.

The tensor field ν has the following symmetries. Let I,J ,K : L0
Cap(T

⊗4X) →
L0
Cap(T

⊗4X) be the linear maps characterized as follows

I(v1 ⊗ v2 ⊗ v3 ⊗ v4) := v2 ⊗ v1 ⊗ v3 ⊗ v4

J (v1 ⊗ v2 ⊗ v3 ⊗ v4) := v3 ⊗ v4 ⊗ v1 ⊗ v2

K(v1 ⊗ v2 ⊗ v3 ⊗ v4) := v2 ⊗ v3 ⊗ v1 ⊗ v4.

Then, with respect to |Riem|-a.e. equality,
I(ν) = −ν

J (ν) = ν

ν + K(ν) + K2(ν) = 0.
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2 Preliminaries

2.1 RCD Spaces

In this note we are going to consider RCD spaces, which we now briefly introduce. An
RCD(K , N ) space is an infinitesimally Hilbertian [20] metric measure space (X,d,m) satis-
fying a lower Ricci curvature bound and an upper dimension bound (meaningful if N < ∞)
in a synthetic sense according to [34, 36, 37], see [1, 24, 40] and references therein. We
assume the reader to be familiar with this material. Whenever we write RCD(K , N ), we
implicitly assume that N < ∞, unless otherwise stated.

Also, we assume that the reader is familiar with the calculus developed on this kind
of non-smooth structures ([20, 22], see also [21, 25]): in particular, we assume familiarity
with Sobolev spaces (and heat flow), with the notions of (co)tangent module and its tensor
and exterior products, which are the non-smooth analogue of the space of sections of the
(tensor/exterior product of the) tangent bundle (see also Section 2.2.1 and 2.2.2), and with
the notions of divergence, Laplacian, Hessian and covariant derivative, together with their
properties.

Throughout this work, we are going to use several function spaces, as well as operators.
This material can be found in [22] (or [25]), however, we recall some of the notions that
we are going to use more frequently, for the readers’ convenience. First, the subscript “bs”
has to be understood as “with bounded support”, whereas “loc” means locally, in the sense
that the given property has to hold in an open neighbourhood of each point (for spaces in
which bounded sets are relatively compact, this means that the property has to hold on open
sets with compact closure). We adopt the standard notation for the Lebesgue space Lp and
space of Lipschitz functions LIP. H1,2(X) is the space of Sobolev functions, whereas § is the
Sobolev class, i.e. those functions f non necessarily integrable, but whose gradient is in L2.
The spaces H1,2

C (TX) and H1,2
H (TX) are the closure of test objects in L2(TX) with respect

to the norm induced by the covariant derivative ∇C (that we sometime simply denote by ∇)
and the operator (d, δ), respectively (i.e. the topologies W1,2

C (TX) and W1,2
H (TX)), see [22,

Definition 3.4.3 and Definition 3.5.13].
We give now our working definition for the space of test functions and test vector fields.

Following [22, 35] (with the additional request of an L∞ bound on the Laplacian), we define
the vector space of test functions on an RCD(K ,∞) space as

TestF(X) := { f ∈ LIP(X) ∩ L∞(m) ∩ D(�) : � f ∈ H1,2(X) ∩ L∞(m)},
and the vector space of test vector fields as

TestV(X) :=
{

n∑
i=1

fi∇gi : fi ∈ S2(X) ∩ L∞(m), gi ∈ TestF(X)

}
.

To be precise, the original definition of TestV(X) given by the second named author was
slightly different. However, when using test vector fields to define regular subsets of vector
fields such as H1,2

C (TX) and H1,2
H (TX), the two definitions produce the same subspaces, see

for example the proofs of [9, Lemma 4.3 and Lemma 4.4]. The advantage of working with
this slightly more general class lies in the fact that

1

1 ∨ |v|v ∈ TestV(X) for every v ∈ TestV(X),
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whereas the drawback is that for v ∈ TestV(X), in general we do not have div(v) ∈ L∞(m).
Nevertheless, we are still going to need the classical definition of test vector fields (used, in
particular in the references [22, 23] for what concerns Ricci and Riemann tensors): we call
such space V , i.e.

V :=
{

n∑
i=1

fi∇gi : fi , gi ∈ TestF(X)

}
. (2.1)

For future reference, we recall here [9, Lemma 4.3].

Lemma 2.1 Let (X,d,m) be an RCD(K ,∞) space, X ∈ W1,2
H (TX) ∩ L∞(TX) and f ∈

S2(X) ∩ L∞(m). Then f X ∈ W1,2
H (TX) and

div( f X) = ∇ f · X + f div X ,

d( f X) = ∇ f ∧ X + f dX .

If moreover X ∈ H1,2
H (TX), then f X ∈ H1,2

H (TX).

The following calculus lemma will serve as a key tool in proving, in a certain sense, a
strong locality property of some measures.

Lemma 2.2 Let (X,d,m) be an RCD(K ,∞) space and let X ∈ H1,2
H (TX). Take {ϕ̃n}n ⊆

LIPb(R) defined by

ϕ̃n(x) :=

⎧⎪⎨
⎪⎩
1 if x ≤ 0,

1 − nx if 0 < x < n−1,

0 if x ≥ n−1.

Let then ϕn := ϕ̃n ◦ |X |. Then ϕn ∈ H1,2(X), ‖ϕn‖L∞(m) ≤ 1 and ϕn X → 0 in theW1,2
H (TX)

topology.

Proof By [18, Lemma 2.5], ϕn ∈ H1,2(X) for every n with

|∇ϕn | = |ϕ̃′
n | ◦ |X | |∇|X || ≤ nχ{|X |∈(0,n−1)}|∇X | m-a.e.

In particular,
|∇ϕn ||X | ≤ χ{|X |∈(0,n−1)}|∇X | m-a.e. (2.2)

Notice that integrating by parts and using standard approximation arguments, taking into
account Eq. 2.2 (which also gives the membership of the right hand sides to the relevant
spaces) we have

div(ϕn X) = ∇ϕn · X + ϕndiv X ∈ L2(m)

d(ϕn X) = ∇ϕn ∧ X + ϕnd X ∈ L2(
2T ∗X).

Therefore,

div(ϕn X) → χ{|X |=0}div X in L2(m)

d(ϕn X) → χ{|X |=0}dX in L2(
2T ∗X).

Now, by dominated convergence, ϕn X → 0 in L2(TX) so that by the closure of the operators
div and d (see [22, Theorem 3.5.2]), it holds that ϕn X → 0 in W1,2

H (TX). ��
Remark 2.3 Inspecting the proof of Lemma 2.2, we see that if (X,d,m) is an RCD(K ,∞)

space and X ∈ H1,2
H (TX), then div X = 0 m-a.e. on {X = 0} and similarly dX = 0 m-a.e.

on {X = 0}. �
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2.2 Cap-Modules

In this subsection we recall the basic theory of Cap-modules for RCD spaces. We assume
familiarity with the definition of capacitary modules, quasi-continuous functions and vector
fields and related material in [18]. A summary of the material we will use can be found in
[13, Section 1.3]. For the reader’s convenience, we write the results that we will need most
frequently.

First, we recall that exploiting Sobolev functions, we define the 2-capacity (to which we
shall simply refer as capacity) of any set A ⊆ X as

Cap(A) := inf
{
‖ f ‖2H1,2(X)

: f ∈ H1,2(X), f ≥ 1m-a.e. on some neighbourhood of A
}

.

(2.3)
An important object will be the one of fine tangent module, as follows (QCR stands for “quasi
continuous representative”).

Theorem 2.4 ([18, Theorem 2.6]) Let (X,d,m) be an RCD(K ,∞) space. Then there exists
a unique pair (L0

Cap(TX), ∇̄), where L0
Cap(TX) is a L0(Cap)-normed L0(Cap)-module and

∇̄ : TestF(X) → L0
Cap(TX) is a linear operator such that:

i) |∇̄ f | = QCR(|∇ f |) Cap-a.e. for every f ∈ TestF(X),
ii) the set

{∑
n χEn ∇̄ fn

}
, where { fn}n ⊆ TestF(X) and {En}n is a Borel partition of X is

dense in L0
Cap(TX).

Uniqueness is intended up to unique isomorphism, this is to say that if another pair
(L0

Cap(TX)′, ∇̄′) satisfies the same properties, then there exists a unique module isomor-

phism � : L0
Cap(TX) → L0

Cap(TX)′ such that � ◦ ∇̄ = ∇̄′. Moreover, L0
Cap(TX) is a Hilbert

module that we call capacitary tangent module.

Notice that we can, and will, extend the map QCR [18] from H1,2(X) to S2(X) ∩ L∞(m)

by a locality argument. Also, we often omit to write the map QCR. We define

TestV̄(X) :=
{

n∑
i=1

QCR( fi )∇̄gi : fi ∈ S2(X) ∩ L∞(m), gi ∈ TestF(X)

}
⊆ L0

Cap(TX).

We define also the vector subspace of quasi-continuous vector fields, QC(TX), as the
closure of TestV̄(X) in L0

Cap(TX).
Recall now that asm � Cap, we have a natural projection map

Pr : L0(Cap) → L0(m) defined as [ f ]L0(Cap) �→ [ f ]L0(m)

where [ f ]L0(Cap) (resp. [ f ]L0(m)) denotes the Cap (resp. m) equivalence class of f . It turns
out that Pr, restricted to the set of quasi-continuous functions, is injective ([18, Proposition
1.18]).Wehave the followingprojectionmap P̄r, givenby [18, Proposition 2.9 andProposition
2.13], that plays the role of Pr on vector fields.

Proposition 2.5 Let (X,d,m) be an RCD(K ,∞) space. There exists a unique linear contin-
uous map

P̄r : L0
Cap(TX) → L0(TX)

that satisfies

i) P̄r(∇̄ f ) = ∇ f for every f ∈ TestF(X),
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ii) P̄r(gv) = Pr(g)P̄r(v) for every g ∈ L0(Cap) and v ∈ L0
Cap(TX).

Moreover, for every v ∈ L0
Cap(TX),

|P̄r(v)| = Pr(|v|) m-a.e.

and P̄r, when restricted to the set of quasi-continuous vector fields, is injective.

Notice that P̄r(TestV̄(X)) = TestV(X). When there is be no ambiguity, we omit to write
the map P̄r.

Theorem 2.6 ([18, Theorem 2.14 and Proposition 2.13]) Let (X,d,m) be an RCD(K ,∞)

space. Then there exists a unique map QC̄R : H1,2
C (TX) → L0

Cap(TX) such that

i) QC̄R(v) ∈ QC(TX) for every v ∈ H1,2
C (TX),

ii) P̄r ◦ QC̄R(v) = v for every v ∈ H1,2
C (TX).

Moreover, QC̄R is linear and satisfies

|QC̄R(v)| = QCR(|v|) Cap-a.e. for every v ∈ H1,2
C (TX),

so that QC̄R is continuous.

We will often omit to write the QC̄R operator for simplicity of notation (but it will be
clear from the context when we need the fine representative). This should cause no ambiguity
thanks to the fact that

QC̄R(gv) = QCR(g)QC̄R(v) for every g ∈ S2(X) ∩ L∞(m) and v ∈ H1,2
C (TX) ∩ L∞(TX).

(2.4)

This can be proved easily by locality and using the fact that the continuity of the map QCR
implies that QCR(g)QC̄R(v) as above is quasi-continuous and the injectivity of the map P̄r
restricted the set of quasi-continuous vector fields yields the conclusion.

The following theorem, that is [13, Section 1.3], will be crucial in the construction of
modules tailored to particular measures (see [9, Theorem 4.10] for an explicit proof of this
result).

Theorem 2.7 Let (X,d,m) be a metric measure space and let μ be a Borel measure finite
on balls such that μ � Cap. Let alsoM be a L0(Cap)-normed L0(Cap)-module. Define the
natural (continuous) projection

πμ : L0(Cap) → L0(μ).

We define an equivalence relation ∼μ on M as

v ∼μ w if and only if |v − w| = 0 μ-a.e.

Define the quotient module M0
μ := M/∼μ with the natural (continuous) projection

π̄μ : M → M0
μ.

Then M0
μ is a L0(μ)-normed L0(μ)-module, with the pointwise norm and product induced

by the ones of M: more precisely, for every v ∈ M and g ∈ L0(Cap),{
|π̄μ(v)| := πμ(|v|),
πμ(g)π̄μ(v) := π̄μ(gv).

(2.5)
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If p ∈ [1,∞], we set
Mp

μ := {
v ∈ M0

μ : |v| ∈ Lp(μ)
}
,

that is a Lp(μ)-normed L∞(μ)-module. Moreover, if M is a Hilbert module, also M0
μ and

M2
μ are Hilbert modules.

Similarly as for QC̄R, we often omit to write the π̄μ operator (and also the πμ opera-
tor) for simplicity of notation (but it will be clear from the context when we need the fine
representative). Again, this should cause no ambiguity thanks to Eqs. 2.4 and 2.5.

The following lemma, that is [13, Lemma 2.7], provides us with the density of test vector
fields in quotient tangent modules.

Lemma 2.8 Let (X,d,m) be an RCD(K ,∞) space and let μ be a finite Borel measure such
that μ � Cap. Then TestVμ(X) is dense in Lp

μ(TX) for every p ∈ [1,∞).

In what follows, with a little abuse, we often write, for v ∈ L0
Cap(TX), v ∈ D(div) if and

only if P̄r(v) ∈ D(div) and, if this is the case, div v = div(P̄r(v)). Similar notation will be
used for other operators acting on subspaces of L0(TX).

2.2.1 Tensor Product

In this subsectionwe study the tensor product of normedmodules.We focus onCap-modules,
as in these spaces we are going to find the main objects of this note. Fix then n ∈ N, n ≥ 1.
We assume that (X,d,m) is an RCD(K ,∞) space, even though this is clearly not always
needed. Just for the sake of notation, we set

L2(T⊗nX) := L2(TX)⊗n .

Let now C ⊆ L2(TX) be a subspace. We define C⊗n as the vector subspace of the Hilbert
L2(m)-normed L∞(m)-module L2(T⊗nX) that consists of finite sums of decomposable ten-
sors of the type v1 ⊗ · · · ⊗ vn where v1, . . . , vn ∈ C, endowed with the structure of module
(included the pointwise norm) induced by the one of L2(T⊗nX). Notice that we can equiva-
lently define C⊗n as follows. First, we consider the multilinear map

(v1, . . . , vn) �→ v1 ⊗ · · · ⊗ vn ∈ L2(T⊗nX) if v1 . . . , vn ∈ C
that factorizes to a well defined linear map

C ⊗alg
R

· · · ⊗alg
R

C → L2(T⊗nX)

and see that C⊗n coincides with the image of this map. Here,⊗alg
R

denotes the algebraic tensor
product of real vector spaces. Notice that, unless we are in pathological cases, the map we
have just defined is not injective. This is equivalent to the fact that not every map defined on
C ⊗alg

R
· · · ⊗alg

R
C induces a map defined on C⊗n , in general.

Let now M be an Hilbert L0(Cap)-normed L0(Cap)-module. We define the L0(Cap)-
normedL0(Cap)-moduleM⊗n repeating the construction done to define the tensor product of
L0(m)-normedL0(m)-modules in [25, Subsection 3.2.2] (originally of [22]), that is endowing
the algebraic tensor product

M ⊗alg
L0(Cap)

· · · ⊗alg
L0(Cap)

M
with the pointwise Hilbert-Schmidt norm and then taking the completion with respect to the
induced distance.
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If μ is a Borel measure finite on balls and such that μ � Cap, we set

Lp
μ(T⊗nX) := Lp

μ(TX)⊗n for p ∈ {0} ∪ [1,∞],
where the right hand side is given by Theorem 2.7.

Remark 2.9 Let μ be a Borel measure, finite on balls, such that μ � Cap. Let also M be
an Hilbert L0(Cap)-normed L0(Cap)-module. Then, using the notation of Theorem 2.7, we
have a canonical isomorphism

(M⊗n)0μ
∼= (M0

μ)⊗n .

This isomorphism is obtained using the map induced by the well defined multilinear map

(M0
μ)n � ([v1]∼μ, . . . , [vn]∼μ) �→ [(v1 ⊗ · · · ⊗ vn)]∼μ ∈ (M⊗n)0μ

and noticing that such map turns out to be an isometry with dense image between complete
spaces. Therefore we also have the canonical inclusion

(M⊗n)pμ
∼= {

v ∈ (M0
μ)⊗n : |v| ∈ Lp(μ)

}
if p ∈ [1,∞].

In particular, with the obvious interpretation for L0
Cap(T

⊗nX),

(L0
Cap(T

⊗nX))0μ
∼= L0

μ(T⊗nX)

so that
(L0

Cap(T
⊗nX))pμ

∼= Lp
μ(T⊗nX) if p ∈ [1,∞],

where Lp
μ(T⊗nX) := {

v ∈ L0
μ(T⊗nX) : |v| ∈ Lp(μ)

}
. �

Now we consider TestV(X)⊗n . Notice that TestV(X)⊗n is a module over the ring S2(X) ∩
L∞(m) in the algebraic sense and, by Lemma 2.11 below,

1

1 ∨ |v|v ∈ TestV(X)⊗n for every v ∈ TestV(X)⊗n .

By the following lemma (with μ = m), TestV(X)⊗n is dense in L2(T⊗nX), in particular,
TestV(X)⊗n generates in the sense ofmodulesL2(T⊗2X). The following lemma is provedwith
an approximation argument as in [25, Lemma 3.2.21], and is a generalization of Lemma 2.8.

Lemma 2.10 Let (X,d,m) be anRCD(K ,∞) space and letμ be a finite Borel measure such
that μ � Cap. Then TestV(X)⊗n is dense in Lp

μ(T⊗nX) for every p ∈ [1,∞).

Proof Fix p ∈ [1,∞) and w ∈ Lp
μ(T⊗nX). This is to say that |w| ∈ Lp(μ) and we can find

a sequence of tensors

{wk}k ⊆ L0
μ(TX) ⊗alg

L0(μ)
· · · ⊗alg

L0(μ)
L0

μ(TX)

such that
∣∣w − wk

∣∣ → 0 in L0(μ). We can assume that {|wk |}k ⊆ Lp(μ) is a bounded

sequence, up to replacingwk with |w|
|wk |w

k . In this case, by dominated convergence, we see that

wk → w inLp
μ(T⊗nX). As a consequence of this discussion, an orthonormalization procedure

and a truncation argument, we see that we can reduce ourselves to the casew = w1⊗· · ·⊗wn

where wi ∈ L∞
μ (T⊗nX) for every i . Then we can conclude iterating Lemma 2.8. ��

Lemma 2.11 Let (X,d,m) be an RCD(K ,∞) space and let v ∈ (H1,2
C (TX) ∩ L∞(m))⊗n.

Then |v| ∈ H1,2(X) ∩ L∞(m).
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Proof Fix v = ∑m
i=1 vi1 ⊗ · · · ⊗ vin ∈ (H1,2

C (TX) ∩ L∞(m))⊗n , where {vij } ⊆ H1,2
C (TX) ∩

L∞(m), so that there exist Hv ∈ R and hv ∈ L2(m) such that for every i = 1, . . . ,m and
j = 1, . . . , n it holds

|vij | ≤ Hv m-a.e.

|∇vij | ≤ hv m-a.e.

Following a standard argument as e.g. in the proof of [18, Lemma 2.5] it is enough to show
that |∇|v|2| ≤ gv|v| m-a.e. for some gv ∈ L2(m). For Z ∈ L0(TX) we define ∇Zv as in the
discussion right above [22, Proposition 3.4.6], that is the unique vector field in L0(TX) such
that for every Y ∈ L0(TX)

∇Zv · Y = ∇v · Z ⊗ Y m-a.e.

Clearly, |∇Zv| ≤ |∇v||Z |. If Z ∈ L0(TX), we compute, by [22, Proposition 3.4.6 i)],

∇(v · v) · Z =
m∑

i, j=1

∇
(

n∏
k=1

vik · v
j
k

)
· Z = 2

m∑
i, j=1

n∑
h=1

(∇Zvih) · v
j
h

n∏
k=1
k �=h

vik · v
j
k

= 2

(
m∑
i=1

n∑
h=1

vi1 ⊗ · · · ⊗ vih−1 ⊗ ∇Zvih ⊗ vih+1 ⊗ · · · ⊗ vin

)
·

⎛
⎝ m∑

j=1

v
j
1 ⊗ · · · ⊗ v

j
n

⎞
⎠ .

Now we have finished, as, by the arbitrariness of Z ∈ L0(TX), the equality above implies
that

|∇|v|2| ≤ 2mnHn−1
v hv|v| m-a.e.

��
We consider now the multilinear map

(H1,2
C (TX)∩L∞(m))n � (v1, . . . , vn) �→ QC̄R(v1)⊗· · ·⊗QC̄R(vn) ∈ L0

Cap(T
⊗nX) (2.6)

and we notice that (the left hand side is well defined thanks to Lemma 2.11 - but as there is
a squared norm here, this is indeed trivial)

QCR

⎛
⎝

∣∣∣∣∣
m∑
i=1

vi1 ⊗ · · · ⊗ vin

∣∣∣∣∣
2
⎞
⎠ =

∣∣∣∣∣
m∑
i=1

QC̄R(vi1) ⊗ · · · ⊗ QC̄R(vin)

∣∣∣∣∣
2

Cap-a.e. (2.7)

so that the map in Eq. 2.6 induces a map QC̄R : (H1,2
C (TX) ∩ L∞(m))⊗n → L0

Cap(T
⊗nX)

that satisfies, thanks to Eq. 2.7,

QCR(|v|) = ∣∣QC̄R(v)
∣∣ Cap-a.e. for every v ∈ (H1,2

C (TX) ∩ L∞(m))⊗n .

As usual, we often omit to write the maps QC̄R and QCR.

2.2.2 Exterior Power

Much like the previous section dealt with tensor product, in this section we deal with exterior
power (see [22]). As the arguments are mostly identical, we are going just to sketch the key
ideas and we will assume familiarity with the related theory. We assume again that (X,d,m)

is a RCD(K ,∞) space. Similarly to what done before, we set

L2(T∧nX) := L2(TX)∧n
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and define, for C ⊆ L2(TX), C∧n as before.
Let now M be an Hilbert L0(Cap)-normed L0(Cap)-module. We define the L0(Cap)-

normed L0(Cap)-module M∧n as the quotient of M⊗n with respect to the closure of the
subspace generated by elements of the form v1 ⊗ · · · ⊗ vn , where v1, . . . , vn ∈ M are such
that vi = v j for at least two different indices i and j . This definition is the trivial adaptation
of [22] to our context and it is possible to prove that M∧n is indeed an L0(Cap)-normed
L0(Cap)-module and that its scalar product is characterized by

v1 ∧ · · · ∧ vn · w1 ∧ · · · ∧ wn = det(vi · w j ) Cap-a.e.

Similarly to what done before, if μ is a Borel measure finite on balls such that μ � Cap,
we set

Lp
μ(T∧nX) := Lp

μ(TX)∧n for p ∈ {0} ∪ [1,∞].
Remark 2.12 Now we adapt Remark 2.9. Let μ be a Borel measure, finite on balls, such that
μ � Cap. Let also M be an Hilbert L0(Cap)-normed L0(Cap)-module. Then, using the
notation of Theorem 2.7, we have a canonical isomorphism

(M∧n)0μ ∼= (M0
μ)∧n .

This isomorphism is obtained using the map induced by the well defined multilinear map

(M0
μ)n � ([v1]∼μ, . . . , [vn]∼μ) �→ [(v1 ∧ · · · ∧ vn)]∼μ ∈ (M∧n)0μ

and noticing that such map turns out to be an isometry with dense image between complete
spaces. Therefore we also have the canonical inclusion

(M∧n)pμ ∼= {
v ∈ (M0

μ)∧n : |v| ∈ Lp(μ)
}

if p ∈ [1,∞].
In particular, then, with the obvious interpretation for L0

Cap(T
∧nX),

(L0
Cap(T

∧nX))0μ
∼= L0

μ(T∧nX)

so that
(L0

Cap(T
∧nX))pμ

∼= Lp
μ(T∧nX) if p ∈ [1,∞],

where Lp
μ(T∧nX) := {

v ∈ L0
μ(T∧nX) : |v| ∈ Lp(μ)

}
. �

Now we consider TestV(X)∧n , that is a module over the ring S2(X) ∩ L∞(m) in the
algebraic sense and, by Lemma 2.14 below,

1

1 ∨ |v|v ∈ TestV(X)∧n for every v ∈ TestV(X)∧n .

As a consequence of of Lemma 2.10, we have the following result.

Lemma 2.13 Let (X,d,m) be anRCD(K ,∞) space and letμ be a finite Borel measure such
that μ � Cap. Then TestV(X)∧n is dense in Lp

μ(T∧nX) for every p ∈ [1,∞).

The following result corresponds to Lemma 2.11.

Lemma 2.14 Let (X,d,m) be an RCD(K ,∞) space and let v ∈ (H1,2
C (TX) ∩ L∞(m))∧n.

Then |v| ∈ H1,2(X) ∩ L∞(m).
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Proof The proof is very similar to the one of Lemma 2.11, we simply sketch the key
computation for the sake of completeness. Take v ∈ (H1,2

C (TX) ∩ L∞(m))∧n , say v =∑m
i=1 vi1 ∧ · · · ∧ vin , where {vij } ∈ H1,2(X) ∩ L∞(m). Take Hv ∈ R and hv ∈ L2(m) as in

the proof of Lemma 2.11. We will prove that

|∇|v|2| ≤ 2mnHn−1
v hv|v| m-a.e.

and thus the proof will be concluded as in Lemma 2.11.We take Z ∈ L0(TX) andwe compute
(here Sn denotes the symmetric group)

∇(v · v) · Z =
m∑

i, j=1

∇ det((vik · v
j
h )h,k) · Z =

m∑
i, j=1

∑
σ∈Sn

sign(σ )∇
(

n∏
k=1

vik · v
j
σ(k)

)
· Z

= 2
m∑

i, j=1

∑
σ∈Sn

sign(σ )

n∑
h=1

(∇Zvih) · v
j
σ(h)

n∏
k=1
k �=h

vik · v
j
σ(k)

= 2

(
m∑
i=1

n∑
h=1

vi1 ∧ · · · ∧ vih−1 ∧ ∇Zvih ∧ vih+1 ∧ · · · ∧ vin

)
·

⎛
⎝ m∑

j=1

v
j
1 ∧ · · · ∧ v

j
n

⎞
⎠

so that we have proved the claim. ��
As before, we consider the multilinear map defined by Eq. 2.6 and we notice that (the left

hand side is well defined thanks to Lemma 2.14 - but as there is a squared norm here, this is
indeed trivial)

QCR

⎛
⎝

∣∣∣∣∣
m∑
i=1

vi1 ∧ · · · ∧ vin

∣∣∣∣∣
2
⎞
⎠ =

∣∣∣∣∣
m∑
i=1

QC̄R(vi1) ∧ · · · ∧ QC̄R(vin)

∣∣∣∣∣
2

Cap-a.e. (2.8)

so that the map in Eq. 2.6 induces a map QC̄R : (H1,2
C (TX) ∩ L∞(m))∧n → L0

Cap(T
∧nX)

that satisfies, thanks to Eq. 2.8,

QCR(|v|) = ∣∣QC̄R(v)
∣∣ Cap-a.e. for every v ∈ (H1,2

C (TX) ∩ L∞(m))∧n .

As usual, we often omit to write the maps QC̄R and QCR.

3 Main Part

3.1 Decomposition of the Tangent Module

The following theorem provides us with a dimensional decomposition of the Cap-tangent
module, along with an orthonormal basis made of “smooth” vector fields of the Cap-tangent
module on every element of the induced partition. This will be the first step towards the
construction of the most relevant objects of this note. Notice that one should not expect the
relevant dimension to be unique: in a smooth manifold of dimension n with boundary, the
Cap-tangent module sees the boundary, thus it has dimension n in the interior of the manifold
and dimension n−1 at the boundary. It is unclear if the situation on RCD spaces can be more
complicated than that.

In view of the theorem below, recall that the essential dimension of an RCD(K , N ) space
(X,d,m), after [14], is the unique integer n ≤ N such that atm-a.e. x , the tangent at x isRn .
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Theorem 2.1 ([10, Theorem 3]) Let (X,d,m) an RCD(K , N ) space of essential dimension
n. Then there exists a partition of X made of countably many bounded Borel sets {Ak}k∈N
such that for every k there exist n(k) with 0 ≤ n(k) ≤ n and

{
vk1, . . . , v

k
n(k)

} ⊆ TestV̄(X)

with bounded support which is an orthonormal basis of L0
Cap(TX) on Ak, in the sense that

vi · v j = δ
j
i Cap-a.e. on Ak

and for every v ∈ L0
Cap(TX) there exist g1, . . . , gn(k) ∈ L0(Cap) such that

v =
n(k)∑
i=1

giv
k
i Cap-a.e. on Ak,

where, in particular,
gi = v · vki Cap-a.e. on Ak .

Here we implicitly state that if n(k) = 0 then for every v ∈ L0
Cap(TX) we have v = 0 Cap-

a.e. on Ak.

3.2 Hessian

3.2.1 Convexity

In the following definition we restrict ourselves to the case of RCD spaces. This restriction
is clearly unnecessary for items (1) and (2), however, we preferred this formulation for the
sake of simplicity, taken into account that all the results of this note are in the framework of
RCD spaces.

Definition 3.2 Let (X,d,m) be an RCD(K ,∞) space and let f : X → (−∞,+∞]. Let also
κ ∈ R. We say that

(1) f is weakly κ geodesically convex if for every x0, x1 ∈ X, there exists a constant speed
geodesic γ : [0, 1] → X joining x0 to x1 satisfying

f (γ (t)) ≤ (1 − t) f (γ (0)) + t f (γ (1)) − κ

2
t(1 − t)d(x0, x1)

2 for every t ∈ [0, 1].
(3.1)

(2) f is strongly κ geodesically convex if for every x0, x1 ∈ X, for every constant speed
geodesic γ : [0, 1] → X joining x0 to x1, Eq. 3.1 holds.

If moreover f ∈ H1,2
loc (X), we say that

(3) Hess f ≥ κ if for every h, g ∈ TestFbs(X) with h ≥ 0 m-a.e.∫
X
−div(h∇g)∇ f · ∇g − 1

2
h∇ f · ∇(|∇g|2)dm ≥ κ

∫
X
|∇g|2hdm. (3.2)

Remark 3.3 Notice that if moreover f ∈ H1,2(X) and the space is locally compact, then item
(3) of the definition above implies that Eq. 3.2 holds for every h ∈ S2(X) ∩ L∞(m) and
g ∈ TestF(X). This follows from an approximation argument, taking into account also the
existence of good cut-off functions as in [5, Lemma 6.7] together with the algebra property
of test functions. �
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Some implications among the various items of the previous definition have already been
extensively studied in the literature, see e.g. [19, 26, 30, 31, 33, 38] for similar statements.
Notice that (2) ⇒ (1) is trivially satisfied in geodesic spaces. The implication (1) ⇒ (3),
recalled in Proposition 3.5 below, is particularly important in the sequel, as it motivates
Theorem1.1, one of themain results of this note. For the proof of Proposition 3.5we are going
to follow the lines of the proof of [31, Theorem 7.1]. As we are going to work with weaker
regularity assumptions, we give the details anyway. Indeed, the fact that we do not assume
f ∈ D(Hess) forces us to proceed through a delicate approximation argument. Finally, under
additional regularity assumptions, e.g. (X,d,m) is a locally compact RCD(K ,∞) space and
f ∈ TestF(X), it turns out that items (1), (2) and (3) are all equivalent (see [31] and [38]). The
equivalence of these notions of convexity is expected to hold even under weaker assumptions
on f (see, in this direction, Proposition 3.5) but this investigation (in particular (3) ⇒ (1))
is beyond the scope of this note.

Remark 3.4 The implication (3) ⇒ (1) seems anything but trivial, if one does not assume that
f ∈ D(Hess). Indeed, one could hope to follow [31] and start by proving that (X,d, e− fm)

is RCD(K + κ,∞) whenever (X,d,m) is RCD(K ,∞) and Hess f ≥ κ . In this context, the
natural way to verify the RCD(K + κ,∞) condition is via the Eulerian point of view, i.e. via
the weak Bochner inequality. However, in order to so, we would have wanted to exploit an
approximation argument, to plug in the weak Bochner inequality for (X,d,m) and the fact
that Hess f ≥ κ and such approximation argument seems to require that the heat flow on
(X,d, e− fm) maps regular enough functions to Lipschitz functions, and we were not able to
prove this fact (that we remark is linked with the RCD condition). �

Proposition 3.5 Let (X,d,m) be anRCD(K ,∞) space and let f ∈ H1,2
loc (X) be a continuous

and weakly κ geodesically convex function, for some κ ∈ R. Assume moreover that f is
bounded from below and locally bounded from above, in the sense that f is bounded from
above on every bounded subset of X. Then Hess f ≥ κ .

Proof As remarked above, we follow the proof of [31]. Define m̃ := e− fm. When we want
to stress that an object is relative to the space (X,d, m̃), we add the symbol .̃

Step 1. We show that (X,d, m̃) is an RCD(K + κ,∞) space, following [3, Proposition
6.19], which builds upon [36, Proposition 4.14] and [2, Lemma 4.11].

To show (K + κ)-convexity of Entm̃, first notice that the continuity of f and classical
measurable selection arguments (e.g. [8, 6.9.13]) grant that there exists am⊗m-measurable
map � : X × X → Geod(X) such that for m ⊗ m-a.e. (x0, x1) ∈ X × X, �(x0, x1) is a
geodesic joining x0 to x1 satisfying Eq. 3.1. Also ([15, Theorem 3.2]), the RCD(K ,∞)

assumption on (X,d,m) implies that Entm is K -convex along every constant speed geodesic
{μt }t ⊆ P2(X). Then, given μ, ν ∈ P2(X) ∩ D(Entm̃) we can argue as in [36, Proposition
4.14], verifying (K + κ)-convexity of Entm̃ along the geodesic given by {(et ◦�)∗(μ⊗ ν)}t .

Step 2. Notice that, as f is locally bounded, [2, Lemma 4.11] implies that φ ∈ H1,2
loc (X) if

and only if φ ∈ H̃1,2
loc (X) and, if this is the case

|∇φ| = |∇̃φ|.
Also, polarizing, we obtain that the · product between gradients is independent of the space,
so that we will drop the ˜ on gradients. Moreover, if φ ∈ H1,2(X), then φ ∈ H̃1,2(X) and, if
φ ∈ TestFbs(X), then φ ∈ D(�̃) and

�̃φ = �φ − ∇ f · ∇φ. (3.3)
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By the equivalence result in [4] (see also [6, 19]), we know that if k, g ∈ D(�̃) with
�̃k ∈ L∞(m), �̃g ∈ H̃1,2(X) and k ∈ L∞(m), k ≥ 0,

(K + κ)

∫
X
|∇g|2kdm̃ ≤ 1

2

∫
X
|∇g|2�̃kdm̃ −

∫
X
(∇g · ∇�̃g)kdm̃

= 1

2

∫
X
|∇g|2�̃kdm̃ +

∫
X

˜div(k∇g)�̃gdm̃

= 1

2

∫
X
|∇g|2�̃kdm̃ +

∫
X
∇k · ∇g �̃gdm̃ +

∫
X
k(�̃g)2dm̃.

By an approximation argument based on the mollified heat flow (for the space (X,d, m̃)) on
g, we can use what we just proved to show that if g ∈ TestFbs(X) and k is as above,

(K + κ)

∫
X
|∇g|2kdm̃ ≤ 1

2

∫
X
|∇g|2�̃kdm̃ +

∫
X
∇k · ∇g�̃gdm̃ +

∫
X
k(�̃g)2dm̃

= −1

2

∫
X
∇|∇g|2 · ∇kdm̃ +

∫
X
∇k · ∇g�̃gdm̃ +

∫
X
k(�̃g)2dm̃.

Then, with an approximation argument based on the mollified heat flow on k, we have
that if g ∈ TestFbs(X) and k ∈ H1,2(X) ∩ L∞(m), it holds that

(K + κ)

∫
X
|∇g|2kdm̃ ≤ −1

2

∫
X
∇|∇g|2 · ∇kdm̃ +

∫
X
∇k · ∇g�̃gdm̃ +

∫
X
k(�̃g)2dm̃.

We choose then k = he f to obtain (h ∈ TestFbs(X)), recalling Eq. 3.3,

(K + κ)

∫
X
|∇g|2hdm ≤ −1

2

∫
X
∇|∇g|2 · ∇hdm − 1

2

∫
X
(∇|∇g|2 · ∇ f )hdm

+
∫
X
∇h · ∇g(�g − ∇ f · ∇g)dm

+
∫
X
∇ f · ∇g(�g − ∇ f · ∇g)hdm

+
∫
X
h(�g − ∇ f · ∇g)2dm

= −1

2

∫
X
∇|∇g|2 · ∇hdm − 1

2

∫
X
(∇|∇g|2 · ∇ f )hdm

+
∫
X
div(h∇g)�gdm −

∫
X
div(h∇g)∇g · ∇ f dm.

Step 3. Let now α > 0. We repeat the same computation of Step 2 but starting from the
RCD(α2K ,∞) space (X, α−1d,m) and the κ convex function α−2 f (of course, with respect
to α−1d) to obtain (all the differential operators are with respect to (X,d,m))

(α2K + κ)

∫
X
α2|∇g|2hdm ≤ −α4 1

2

∫
X
∇|∇g|2 · ∇hdm − α2 1

2

∫
X
∇|∇g|2 · ∇ f hdm

+ α4
∫
X
div(h∇g)�gdm − α2

∫
X
div(h∇g)∇g · ∇ f dm.

Dividing this inequality by α2 and letting α ↘ 0 yields the claim. ��
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3.2.2 Measure Valued Hessian

In this section we state and prove the first main result of this note, namely Theorem 1.1.
More precisely, we show that convex functions have, in a certain sense, a measure valued
Hessian. In the Euclidean space, this is an immediate consequence of Riesz’s Theorem for
positive functionals and it implies that gradients of convex functions are vector fields of
bounded variation. Hence we have that Hessian measures are absolutely continuous with
respect to Cap, and this is the case even on RCD spaces. This absolute continuity allows us
to build the measure valued Hessian on RCD spaces as product of a Cap-tensor field and a
σ -finite measure that is absolutely continuous with respect to Cap. We remark that, as the
decomposition of the Cap-tangent module given by Theorem 2.1 induces a decomposition
of the space in Borel sets (not open ones), we are not able to prove that the total variation of
the Hessian measure is a Radon measure.

Before dealing with the main theorem of this section, we define when a H1,2(X) function
has a measure valued Hessian (cf. [22, Definition 3.3.1]) and study a couple of basic calculus
properties of this newly defined notion.

Definition 3.6 Let (X,d,m) be an RCD(K ,∞) space and f ∈ H1,2
loc (X). We write f ∈

D(Hess), if there exists a σ -finite measure |Hess f | that satisfies |Hess f | � Cap and a
symmetric tensor field ν f ∈ L0

Cap(T
⊗2X) with |ν f | = 1 |Hess f |-a.e. such that

Hess f = ν f |Hess f |,
in the sense that for every X , Y ∈ H1,2

H (TX) ∩ L∞(TX), it holds that X ⊗ Y · ν f ∈
L1
loc(|Hess f |) and, if h ∈ H1,2(X) ∩ L∞(m) has bounded support,

∫
X
hX ⊗ Y · ν f d|Hess f | = −

∫
X
∇ f · Xdiv(hY ) + h∇Y X · ∇ f dm. (3.4)

Proposition 3.7 Let (X,d,m) be an RCD(K ,∞) space and let f ∈ D(Hess). Then the
decomposition of Hess f is unique, in the sense that, adopting the same notation as in
Definition 3.6, themeasure |Hess f | is unique and the tensor field ν f is unique, up to |Hess f |-
a.e. equality.

Proof Assume that (ν, μ) and (ν′, μ′) are two pairs having the same properties of the pair
(ν f , |Hess f |) as in Definition 3.6.We show thatμ = μ′ and that ν = ν′ μ-a.e. By dominated
convergence, we have that

∫
K
X ⊗ Y · νdμ =

∫
K
X ⊗ Y · ν′dμ′

for every K ⊆ X compact and X , Y ∈ H1,2
H (TX)∩L∞(TX). As bothμ andμ′ are σ -finite, we

can partition X, up to subsets that are negligible with respect to both μ and μ′, in a countable
union of compact sets on which both μ and μ′ are finite. Therefore, we prove that μ = μ′
and ν = ν′ μ-a.e. on a compact set K for which μ(K ), μ′(K ) < ∞ and this will be enough
to conclude. Now, we write ν̄ := ν

dμ
d(μ+μ′) and ν̄′ := ν′ dμ′

d(μ+μ′) , so that we have, for every

X , Y ∈ H1,2
H (TX) ∩ L∞(TX),

∫
K
X ⊗ Y · ν̄d(μ + μ′) =

∫
K
X ⊗ Y · ν̄′d(μ + μ′).
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Applying Lemma 2.10 to the space L2
(μ+μ′) K

(T⊗2X), we deduce that ν̄ = ν̄′, (μ+μ′)-a.e.
on K . As |ν| = 1 μ-a.e. and |ν′| = 1 μ′-a.e. we deduce that

dμ

d(μ + μ′)
= dμ′

d(μ + μ′)
(μ + μ′)-a.e. on K ,

which implies, as the two terms above sum to 1, that μ = μ′ on K . Using again that ν̄ = ν̄′
(μ + μ′)-a.e. on K , we deduce that also ν = ν′ μ-a.e. on K . ��

Using the by now classical calculus tools on RCD spaces, the following proposition easily
follows, starting from Eq. 3.4.

Proposition 3.8 Let (X,d,m) be an RCD(K ,∞) space. Then

i) D(Hess) ⊆ D(Hess). Namely, if f ∈ D(Hess), then Hess f = Hess f
|Hess f | (|Hess f |m);

ii) D(Hess) is a vector space. Namely, if f , g ∈ D(Hess), say Hess f = ν f |Hess f |,
Hessg = νg|Hessg|, then f + g ∈ D(Hess) and, setting

μ := |Hess f | + |Hessg|,
ν := ν f

d|Hess f |
dμ

+ νg
d|Hessg|

dμ
,

it holds that Hess( f + g) = ν
|ν| (|ν|μ);

iii) D(Hess)∩L∞
loc(m) is closed undermultiplication.Namely, if f , g ∈ D(Hess)∩L∞

loc(m),
say Hess f = ν f |Hess f |, Hessg = νg|Hessg|, then f g ∈ D(Hess) and, setting

μ := |Hess f | + |Hessg| + m,

ν := gν f
d|Hess f |

dμ
+ f νg

d|Hessg|
dμ

+ (∇ f ⊗ ∇g + ∇g ⊗ ∇ f
)dm
dμ

,

it holds that Hess( f g) = ν
|ν| (|ν|μ);

iv) D(Hess) ∩ L∞
loc(m) is closed under post-composition with C2 functions. Namely, if

f ∈ D(Hess), say Hess f = ν f |Hess f | and ϕ ∈ C2(R), then ϕ ◦ f ∈ D(Hess) and,
setting

μ := |Hess f | + m,

ν := ϕ′ ◦ f ν f
d|Hess f |

dμ
+ ϕ′′ ◦ f ∇ f ⊗ ∇ f

dm
dμ

,

it holds that Hess(ϕ ◦ f ) = ν
|ν| (|ν|μ).

Now we show that convex functions (recall Definition 3.2) have measure valued Hessian.
As a notation, here and below, a− := −a ∨ 0 for every a ∈ R.

Theorem 3.9 (Theorem1.1 restated)Let (X,d,m) be anRCD(K , N ) space and f ∈ H1,2
loc (X)

satisfying Hess f ≥ κ , for some κ ∈ R. Then, f ∈ D(Hess), say Hess f = ν f |Hess f |.
Moreover, we have that

ν f |Hess f | ≥ κgm,

in the sense that for every v ∈ L0
Cap(TX), it holds, as measures,

v ⊗ v · ν f |Hess f | ≥ κ|v|2m. (3.5)

Finally, if in addition f ∈ H1,2(X), then for every X , Y ∈ H1,2
H (TX) ∩ L∞(TX), we have

that X ⊗ Y · ν f ∈ L1(|Hess f |), in particular, Eq. 3.4 holds for every h ∈ S2(X) ∩ L∞(m)
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and X , Y ∈ H1,2
H (TX) ∩ L∞(TX). More precisely, we have the explicit bound, for every

X ∈ H1,2
H (TX) ∩ L∞(TX)∫

X
|X ⊗ X · ν f | d|Hess f | ≤

∫
X
−div X∇ f · X − ∇ f · ∇( 12 |X |2) + 2κ−|X |2 dm. (3.6)

Proof We divide the proof in several steps.
Step 1.We define for h ∈ S2(X)∩L∞(m) with bounded support and X , Y ∈ H1,2

H (TX)∩
L∞(TX),

G f (h, X , Y ) :=
∫
X
−1

2
div(hX)∇ f · Y − 1

2
div(hY )∇ f · X − 1

2
h∇ f · ∇(X · Y )dm

and we write for simplicity
G f (h, X) := G f (h, X , X).

We shall frequently use the fact that for given f , h, Y as above

the map X �→ G f (h, X , Y ) ∈ R is continuous w.r.t. the H1,2
H (TX)-norm

on sets of vector fields with uniformly bounded L∞-norm,
(3.7)

and similarly for Y .
Notice that G f (h, X , Y ) equals the right hand side of Eq. 3.4 for X , Y ∈ H1,2

H (TX) ∩
L∞(TX) and h ∈ S2(X) ∩ L∞(m), as a consequence of a simple approximation argument
on f . Indeed, as h has bounded support, a locality argument shows that it is not restrictive to
assume also f ∈ H1,2(X), then we can approximate f in the H1,2(X) topology with functions
in TestF(X) and see the equality of the two quantities. This shows also that, as Hess f ≥ κ ,

G f (h,∇g) ≥ κ

∫
X
h|∇g|2dm (3.8)

if h ∈ TestF(X) is non negative andhas bounded support and g ∈ TestF(X) (by approximation,
Eq. 3.8 continues to hold if h ∈ S2(X) ∩ L∞(m) is non negative and has bounded support).
This argument also shows that

m∑
i, j=1

G f (h fi g j , Xi , Y j ) =
m∑

i, j=1

G f (h, fi Xi , g jY j ) (3.9)

for every h ∈ S2(X) ∩ L∞(m) with bounded support, { fi }i , {gi }i ⊆ H1,2(X) ∩ L∞(m)

and {Xi }i , {Yi }i ⊆ H1,2
H (TX) ∩ L∞(TX) (we are implicitly using Lemma 2.1). Clearly,

G f (h, · , · ) is symmetric and R-bilinear for every h ∈ S2(X) ∩ L∞(m).
Step 2.ByEq. 3.8, theRiesz—Daniell—StoneTheoremyields that for every g ∈ TestF(X)

there exists a unique Radon measure μ∇g such that

G f (h,∇g) =
∫
X
hdμ∇g for every h ∈ LIPbs(X). (3.10)

Recalling Eq. 3.8, we have that
μ∇g ≥ κ|∇g|2dm. (3.11)

We show now that μ∇g � Cap. Being μ∇g a Radon measure, it is enough to show that if K
is a compact set such that Cap(K ) = 0, then μ∇g(K ) = 0. As K is compact, we can find a
sequence {un}n ⊆ H1,2(X) ∩ LIPb(X) with un = 1 on a neighbourhood K , 0 ≤ un ≤ 1 and
‖un‖H1,2(X) → 0 (see e.g. [7, Lemma 5.4] or [9, Lemma 3.3]). Also, it is easy to see that we
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can assume with no loss of generality also that {un}n ⊆ LIPbs(X) have uniformly bounded
support. Therefore, using Eq. 3.11, dominated convergence and Eq. 3.10,

0 ≤ μ∇g(K ) − κ

∫
K

|∇g|2dm ≤
∫
X
undμ∇g − κ

∫
X
un |∇g|2dm Eq.3.7→ 0,

having used also that m(K )=0 in the last step. In particular, μ∇g(K ) = μ∇g(K ) −
κ

∫
K |∇g|2dm and thus the above proves that μ∇g � Cap, as claimed.
As μ∇g � Cap, using dominated convergence, we can show that

G f (h,∇g) =
∫
X
hdμ∇g for every h ∈ S2(X) ∩ L∞(m) with bounded support

where we implicitly take the quasi continuous representative of h. We define by polarization
the signed Radon measure, absolutely continuous with respect to Cap,

μ∇g1,∇g2 := 1

4

(
μ∇(g1+g2) − μ∇(g1−g2)

)
if g1, g2 ∈ TestF(X)

so that, by the properties of (X , Y ) �→ G f (h, X , Y ),

G f (h,∇g1,∇g2) =
∫
X
hdμ∇g1,∇g2 for every h ∈ H1,2(X) ∩ L∞(m) with bounded support.

Notice that the map (g1, g2) �→ μ∇g1,∇g2 is symmetric andR-bilinear by its very definition.
Step 3.We show that for every X ∈ H1,2

H (TX) ∩L∞(TX) and h ∈ H1,2(X) ∩L∞(m) non
negative and with bounded support,

G f (h, X , X) ≥ κ

∫
X
h|X |2dm. (3.12)

By dominated convergence and [9, Lemma 4.2], we see that it is enough to assume X ∈
TestV(X), say

X =
m∑
i=1

fi∇gi with { fi }i ⊆ S2(X) ∩ L∞(m) and {gi }i ⊆ TestF(X).

By the properties of the map (X , Y ) �→ G f (h, X , Y ) (in particular, recall Eq. 3.9) we see
that Eq. 3.12 will follow from

m∑
i, j=1

G f (h fi f j ,∇gi ,∇g j ) ≥ κ

∫
X
h|X |2dm.

It suffices then to show then that, as measures,
m∑

i, j=1

fi f jμ∇gi ,∇g j ≥ κ

m∑
i, j=1

fi f j∇gi · ∇g jm.

By dominated convergence and localizing, we further reduce to the case inwhich fi = ci ∈ R

for every i = 1, . . . ,m, this is to say, as measures,

m∑
i, j=1

ci c jμ∇gi ,∇g j ≥ κ

m∑
i, j=1

ci c j∇gi · ∇g jm,

that follows by Eq. 3.11 with
∑m

i=1 ci gi in place of g.
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Step 4.Building upon Eq. 3.12 and arguing as in Step 2, we can define the Radonmeasure
μX ,Y whenever X , Y ∈ H1,2

H (TX) ∩ L∞(TX), such that∫
X
hdμX ,Y = G f (h, X , Y ) for every h ∈ LIPbs(X).

More precisely, we first define μX ,X for X ∈ H1,2
H (TX) ∩ L∞(TX) and then we define μX ,Y

for X , Y ∈ H1,2
H (TX) ∩ L∞(TX) by polarization, taking into account that G f (h, X , Y ) is

symmetric in X and Y .
By the properties of (X , Y ) �→ G f (h, X , Y ) (in particular, recall Eq. 3.9) it follows that,

if for some m and l = 1, 2,

Xl =
m∑
i=1

f li ∇gli with { f li }i ⊆ S2(X) ∩ L∞(m) and {gli }i ⊆ TestF(X),

then we have that

μX1,X2 =
m∑

i, j=1

f 1i f 2j μ∇g1i ,∇g2j
.

In particular, this definition is coherent with the one given in Step 2.
Recall that, by Eq. 3.12, if X ∈ H1,2

H (TX) ∩ L∞(TX),

μX ,X ≥ κ|X |2m. (3.13)

Also, as in Step 2, we show that
μX ,Y � Cap,

whenever X , Y ∈ H1,2
H (TX) ∩ L∞(TX).

Step 5. We use now Theorem 2.1 to take a partition {Ak}k∈N and, for any k, an
orthonormal basis of L0

Cap(TX) on Ak vk1, . . . , v
k
n(k). Fix for the moment k and define, for

i, j = 1, . . . , n(k),

μk
i, j := μvki ,v

k
j

Ak and μk :=
n(k)∑
i, j=1

|μk
i, j |.

Notice that this is a good definition as P̄r(vki ) ∈ H1,2
H (TX) for every i = 1, . . . , n(k) and that

the measures above are finite signed measures absolutely continuous with respect to Cap.
We define

ν̃kf :=
n(k)∑
i, j=1

vki ⊗ vkj

dμk
i, j

dμk

then

νkf := 1

|ν̃kf |
ν̃kf and |Hessk f | := |ν̃kf |μk .

Finally,
ν f :=

∑
k

νkf and |Hess f | :=
∑
k

|Hessk f |.

Clearly, |Hess f | is a σ -finite measure, |Hess| � Cap, |ν f | = 1 |Hess f |-a.e. and ν f is
symmetric.
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Step 6.Let X , Y ∈ H1,2
H (TX)∩L∞(TX) and h ∈ H1,2(X)∩L∞(m)with bounded support.

We verify that X ⊗ Y · ν f ∈ L1
loc(|Hess f |) and that Eq. 3.4 holds. By polarization, there is

no loss of generality in assuming that X = Y and we can also assume, by linearity, that h is
non negative. Notice indeed that the right hand side of Eq. 3.4 is equal to G f (h, X , Y ) (recall
Step 1) and hence is symmetric in X , Y .

Consider the Borel partition {Ak}k as in Theorem 2.1. Assume for the moment that for
every k, for every h ∈ LIPbs(X),∫

Ak

hdμX ,X =
∫
Ak

hX ⊗ X · ν f d|Hess f | (3.14)

(notice that the restriction of |Hess f | to Ak is the finite measure |Hessk f |, so the right hand
side is well defined). Then, it holds that

|X ⊗ X · ν f ||Hess f | = |μX ,X | (3.15)

that yields local integrability. We can then compute, by dominated convergence and Eq. 3.14
(recall that h has bounded support),

G f (h, X , X) =
∫
X
hdμX ,X =

∑
k

∫
Ak

hdμX ,X

=
∑
k

∫
Ak

hX ⊗ X · ν f d|Hess f | =
∫
X
hX ⊗ X · ν f d|Hess f |,

that is Eq. 3.4.
We show then Eq. 3.14. Fix k and recall the notation of Step 6. Notice that, considering

the left hand side of Eq. 3.14, we have, by the very definition of ν f and |Hess f |, on Ak

X ⊗ X · ν f |Hess f | =
n(k)∑
i, j=1

X ⊗ X · vki ⊗ vkjμ
k
i, j =

n(k)∑
i, j=1

X · vki X · vkjμ
k
vki ,v

k
j
= μX̃ ,X̃ ,

where X̃ := ∑n(k)
i=1 (X · vki )v

k
i ∈ TestV(X) satisfies then X̃ = X Cap-a.e. on Ak .

As we have reduced ourselves to check that μX ,X Ak = μX̃ ,X̃ Ak , taking into account
also the bilinearity of the map

(H1,2
H (TX) ∩ L∞(TX))2 � (X , Y ) �→ μX ,Y ,

we see that it is enough to show that

for every X , Y ∈ H1,2
H (TX) ∩ L∞(TX) we have μX ,Y {|X | = 0} = 0.

Let {ϕn}n ⊆ H1,2(X) be as in Lemma 2.2 for the vector field X ∈ H1,2
H (TX) ∩ L∞(TX).

We compute, if h ∈ LIPbs(X), by Eq. 3.9,∫
X
hϕndμX ,Y = G f (hϕn, X , Y ) = G f (h, ϕn X , Y ).

By the very definition, ϕn(x) ↘ χ{|X |=0} Cap-a.e. so that, by dominated convergence,∫
X
hϕndμX ,Y →

∫
X
hχ{|X |=0}dμX ,Y .

On the other hand, as ϕn X → 0 in the W1,2
H (TX) topology (Lemma 2.2), we have

G f (h, ϕn X , Y ) → 0
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by Eq. 3.7. Therefore, for every h ∈ LIPbs(X),
∫
X
hχ{|X |=0}dμX ,Y = 0,

which means μX ,Y {|X | = 0} = 0.
Step 7. We prove Eq. 3.5. By a locality argument, we reduce ourselves to the case v ∈

L∞
Cap(TX). By density and dominated convergence, it is enough to show Eq. 3.5 for v ∈

H1,2
H (TX) ∩ L∞(TX). By Eqs. 3.13 and 3.14 , if v ∈ H1,2

H (TX) ∩ L∞(TX),

v ⊗ v · ν f |Hess f | = μv,v ≥ κ|v|2m,

that proves the claim.
Step 8.We prove the last claim. Again, we assume with no loss of generality that X = Y .

It is enough to show that if moreover f ∈ H1,2(X), then X ⊗ X · ν f ∈ L1(|Hess f |), then
the rest will follow from dominated convergence. The integrability follows from Eq. 3.15 if
we show that μX ,X is a finite signed measure. Inequality Eq. 3.13 implies that the measure
μX ,X − κ|X |2m is non negative, but now, using an immediate approximation argument and
monotone convergence together with Eq. 3.4, we see that it is also finite. As |X |2m is a finite
measure, we see that μX ,X is a finite signed measure and that Eq. 3.6 holds. ��

3.3 Ricci Tensor

As done for the Hessian, we give a fine meaning the Ricci tensor defined in [22]. Namely,
we represent the Ricci tensor as a product of a Cap-tensor field and a σ -finite measure that is
absolutely continuous with respect to Cap. As in the proof of Theorem 1.1, we are going to
use a version of Riesz representation Theorem for positive functionals, this time leveraging
on the bound from below for the Ricci tensor ensured, in a synthetic way, by the definition
of the RCD condition.

We recall now the distributional definition of the objects that we are going to need and,
to this aim, we recall also that the definition of V is in Eq. 2.1.

Theorem 3.10 ([22, Theorem 3.6.7]) Let (X,d,m) be an RCD(K ,∞) space. There exists a
unique continuous map

Ric : H1,2
H (TX)

2 → Meas(X)

such that for every X , Y ∈ V it holds

Ric(X , Y ) := �
X · Y
2

+
(
1

2
X · �HY + 1

2
Y · �HX − ∇X · ∇Y

)
m. (3.16)

Such map is bilinear, symmetric and satisfies

Ric(X , X) ≥ K |X |2m; (3.17)∫
X
dRic(X , Y ) =

∫
X
dX · dY + δX · δY − ∇X · ∇Ydm;

‖Ric(X , Y )‖TV ≤ 2
√
EH(X) + K−‖X‖2

L2(TX)

√
EH(Y ) + K−‖Y‖2

L2(TX)
;

for every X , Y ∈ H1,2
H (TX).
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Theorem 3.11 (Theorem 1.2 restated) Let (X,d,m) be an RCD(K , N ) space. Then there
exists a unique σ -finite measure |Ric| that satisfies |Ric| � Cap and a unique, up to |Ric|-
a.e. equality, symmetric tensor field ω ∈ L0

Cap(T
⊗2X) with |ω| = 1 |Ric|-a.e. such that

Ric = ω|Ric|, in the sense that for every X , Y ∈ H1,2
H (TX)wehave that X⊗Y · ω ∈ L1(|Ric|)

and it holds that, as measures,

X ⊗ Y · ω|Ric| = Ric(X , Y ). (3.18)

Moreover
ω|Ric| ≥ Kgm,

in the sense that for every v ∈ L0
Cap(TX), it holds, as measures,

v ⊗ v · ω|Ric| ≥ K |v|2m. (3.19)

Proof We divide the proof in several steps.
Step 1. Uniqueness follows as in the proof of Proposition 3.7, by a localized version of

Lemma 2.10.
Step 2. We remark that for every X , Y ∈ H1,2

H (TX), it holds |Ric(X , Y )| � Cap, as
a an immediate consequence of Eq. 3.16 together with a density and continuity argument
(notice that it is enough to show that Ric(X , Y )(K ) = 0 whenever K is a compact set with
Cap(K ) = 0).

Step 3. We proceed now as in Step 5 of the proof of Theorem 1.1. In particular, we use
Theorem 2.1 to take a partition of X, {Ak}k . We fix for the moment k and take, (following
Theorem 2.1), an orthonormal basis of L0

Cap(TX) on Ak , vk1, . . . , v
k
n(k). Define, for i, j =

1, . . . , n(k),

μk
i, j := Ric(vki , v

k
j ) Ak and μk :=

n(k)∑
i, j=1

|μk
i, j |.

We define

ω̃k :=
n(k)∑
i, j=1

vki ⊗ vkj

dμk
i, j

dμk

then

ωk := 1

|ω̃k | ω̃
k and |Rick | := |ω̃k |μk .

Finally,
ω :=

∑
k

ωk and |Ric| :=
∑
k

|Rick |.

Clearly, |Ric| is a σ -finite measure, |ω| = 1 |Ric|-a.e. and ω is symmetric.
Step 4. Let X , Y ∈ H1,2

H (TX). We verify that X ⊗ Y · ω ∈ L1(|Ric|) and that Eq. 3.18
holds. This will be similar to Step 6 of the proof of Theorem 1.1 and we keep the same
notation. By polarization, there is no loss of generality in assuming that X = Y and it is
enough to show that for every k, as measures,

Ric(X , X) Ak = X ⊗ X · ω|Ric| Ak (3.20)

(notice that the left hand side of Eq. 3.20 is a finite signed measure).
Assume for the moment that also X ∈ L∞(TX). Notice that Eq. 3.20 also yields integra-

bility (still in the case X ∈ L∞(TX)), as it shows that

‖X ⊗ X · ω‖L1(|Ric|) = ‖Ric(X , X)‖TV. (3.21)
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Also, by Eq. 3.21, we see that the additional assumption X ∈ L∞(TX) is not restrictive: if
X ∈ H1,2

H (TX), we can find a sequence {Xn}n ⊆ H1,2
H (TX) ∩ L∞(TX) with Xn → X in the

W1,2
H (TX) topology. For example, we can define

Xn := n

n ∨ |X | X

H1,2
H (TX) ∩ L∞(TX) � Xn → X in the W1,2

H (TX) topology thanks to the calculus rules of
Lemma 2.1 and the computation

∣∣∣∣∇
(

n

n ∨ |X |
)∣∣∣∣ |X | = χ{|X |≥n}n

|∇|X ||
|X |2 |X | ≤ χ{|X |≥n}|∇|X || → 0 in L2(m).

Then, by the continuity of Ric and Eq. 3.21, the sequence {Xn ⊗ Xn · ω}n ⊆ L1(|Ric|) is a
Cauchy sequence, whose limit coincides then with X ⊗ X · ω so that this implies the general
case.

We prove now Eq. 3.20, under the additional assumption X ∈ L∞(TX). We first remark
that it holds

fRic(X , · ) = Ric( f X , · ) if f ∈ S2(X) ∩ L∞(m).

This is a consequence of [22, Proposition 3.6.9] together with an approximation argument,
see Lemma 2.1 (here we use that X ∈ L∞(TX)). Therefore, with the same computations of
Step 6 of the proof of Theorem 1.1, we see that

X ⊗ X · ω|Ric| Ak = Ric(X̃ , X̃) Ak

where X̃ ∈ H1,2
H (TX)∩L∞(TX) is such that X̃ = X Cap-a.e. on Ak , so that Eq. 3.20 reduces

to the locality relation
Ric(X , X) Ak = Ric(X̃ , X̃) Ak

whenever X , X̃ ∈ H1,2
H (TX) ∩ L∞(TX) are such that X̃ = X Cap-a.e. on Ak .

By bilinearity, we can just show that if X ∈ H1,2
H (TX)∩L∞(TX) is such that X = 0 Cap-

a.e. on Ak , then Ric(X , Y ) Ak = 0 for every Y ∈ H1,2
H (TX) ∩ L∞(TX). Let {ϕn}n ⊆

H1,2(X) ∩ L∞(m) be as in Lemma 2.2 for the vector field X ∈ H1,2
H (TX) ∩ L∞(TX) and let

h ∈ LIPbs(X) (notice that ϕn X ∈ H1,2
H (TX) by Lemma 2.1). We know that

∫
X
hϕndRic(X , Y ) =

∫
X
hdRic(ϕn X , Y ).

ByLemma2.2 and the continuity of themapRic, the right hand side of the equation above con-
verges to 0, whereas the left hand side converges to (as in Step 6 of the proof of Theorem 1.1)

∫
X
hχ{|X |=0}dRic(X , Y ).

This is to say that for every h ∈ LIPbs(X)

∫
X
hχ{|X |=0}dRic(X , Y ) = 0

which means that Ric(X , Y ) {|X | = 0} = 0, whence the claim.
Step 5. Inequality Eq. 3.19 follows by an approximation argument as in Step 8 of the

proof of Theorem 1.1, Eqs. 3.18 and 3.17. ��
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At the very end of [22], it has been asked how one may enlarge the domain of definition
of the map Ric, and, towards this extension, whether

∑
i

fiRic(Xi , Y ) = Ric

(∑
i

fi Xi , Y

)
(3.22)

whenever X1, . . . , Xn, Y ∈ H1,2
H (TX) and fi ∈ Cb(X). It seems that basic algebraic manipu-

lations based on the formulas involving the Ricci curvature as in Theorem 3.10 do not imply
this fact. However, exploiting Theorem 1.2, we immediately have an affirmative result to
this question, at least in the finite dimensional case, and we record this result in the follow-
ing proposition. More generally, Theorem 1.2 gives a natural way to enlarge the domain of
definition of the map Ric.

Proposition 3.12 Let (X,d,m) be an RCD(K , N ) space. Let X , Y , X1, . . . , Xn ∈ H1,2
H (TX)

and let f1, . . . , fn ∈ Cb(X) such that X = ∑n
i=1 fi Xi . Then

n∑
i=1

fiRic(Xi , Y ) = Ric(X , Y ).

Notice also that an immediate consequence of Theorem 1.2 (the point is Step 4 of its
proof, which relies on an approximation argument based on Lemma 2.2) is that for every
X , Y ∈ H1,2

H (TX), Ric(X , Y ) {|X | = 0} = 0, thus providing a different proof of the
implication 3) ⇒ 1) of [27, Proposition 3.7] (see the comments at [27, Pag. 3 and Pag. 4]).

Remark 3.13 Let (X,d,m) be an RCD(K , N ) space of essential dimension n. According to
[28, Definition 4.2], we can define the modified N -Ricci tensor as

RicN (X , Y ) := Ric(X , Y ) − RN (X , Y ) for every X , Y ∈ H1,2
H (TX),

where

RN (X , Y ) :=
⎧⎨
⎩

1

N − n
(tr(∇X) − divX)(tr(∇Y ) − divY ) if n < N ,

0 if n ≥ N .

In particular, notice that Ric = Ric∞.
Now, [28, Theorem 4.3] proves that still RicN ≥ K , thus improving Eq. 3.17 in the finite

dimensional case. Hence, we can follow the proof of Theorem 1.2, and prove the analogue
of Theorem 1.2 with RicN in place of Ric.

Exploiting to the representation of Ric = ω|Ric| given by Theorem 1.2 (or the analogue
representation forRicN ), we can easily give a meaning to the trace the “tensor” measureRic.
However we do not expect that the trace of this polar measure has a meaning to represent the
scalar curvature, if one does not add artificial correction terms (cf. the characterization of the
scalar curvature on smoothable Alexandrov spaces in [32]). Indeed, already in the setting of
a smooth weighted Riemannian manifold (M,dg, e−VVolg), RicN represents the modified
Bakry-Émery N -Ricci curvature tensor, defined as

RicN :=
⎧⎨
⎩
Ricg + Hessg(V ) − dV⊗dV

N−n if N > n,

Ricg if N = n and V is constant,
−∞ otherwise.

(3.23)

Nevertheless, even if we restrict ourselves to non-collapsed spaces [16], which play the
role of “unweighted” spaces, we can see that looking at the scalar curvature as trace of Ric
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is not yet meaningful: for example Ric vanishes on sets of 0 capacity, whereas the scalar
curvature such behaviour is not expected.

For example, consider a cut-cone C ⊆ R
3, which can be obtained by gluing along the

edges a sector of the unit ball inR2 corresponding to an angle α ∈ (0, 2π). Endowed with its
natural metric and measure, this is an RCD(0, 2) space. Also, such surface is locally flat in
its interior away from the tip. Moreover, assume that we have something like Gauss–Bonnet
Theorem: if C were smooth, then

∫
Co

Kdσ +
∫

∂C
kgds = 2πχ(C) = 2π,

where the first term is the surface integral of the scalar curvature (in the interior of C), the
second term the boundary integral of the geodesic curvature of the boundary, and the third
term the Euler characteristic of the cone. Notice that C is singular only near its tip, so we
expect all the terms except the first one to remain unchanged. We can replace then the first
term by ∫

Co
tr(ω)d|Ric|,

which should be the non-smooth analogue of the area integral of the scalar curvature. By the
(capacitary) discussion above, this term vanishes, so that we would have

α =
∫

∂C
kgds = 2π,

which is clearly wrong. In this particular example, we see also which term should be added
to the scalar curvature to recover the validity of the Gauss–Bonnet Theorem.

Along the same line of though, we can consider the surface of a tetrahedron T , which is
again an RCD(0, 2) space, but this time we have no boundary. Taken any point of T which
lies on an edge of T , but not on one of its vertices, we see that T is locally isometric to the
plane near x . As also the faces of T are clearly flat, every notion of scalar curvature that we
obtain from taking the trace of Ric, should be concentrated on the vertices, hence vanish,
by a capacitary argument as above. As T has Euler characteristic 2, we see that also in this
case one should add correction terms, to have a formula as the one in the statement of the
Gauss–Bonnet Theorem. �

3.4 Riemann Tensor

As done for Hessian and Ricci tensor, now we provide a representation for the Riemann
curvature tensor defined in [23] as the product of a Cap-tensor field and a σ -finite measure
that is absolutely continuous with respect to Cap. In order to do so, we again employ Riesz’s
representation Theorem for positive functionals, and hence we have to impose that the tensor
representing the sectional curvature is bounded from below (hence, we will add the assump-
tion of a bound on the distributional sectional curvature). Then, by standard algebra, we
recover the full Riemann tensor out of the sectional curvatures.

We follow [23] to define ∇XY , [[[X , Y]]], R(X , Y )(Z) and R(X , Y , Z ,W ) on an
RCD(K ,∞) space (X,d,m). Even though we assume familiarity with [23], we recall briefly
the (distributional) definitions. First, recall the definition of V in Eq. 2.1. Then we have what
follows.

123



Fine Representation of Hessian of Convex Functions and Ricci Tensor...

(1) Distributional covariant derivative. If X , Y ∈ L2(TX) with X ∈ D(div) and at least
one of X , Y is in L∞(TX), then

∇XY (W ) := −
∫
X
∇XW · Y + Y · WdivXdm for every W ∈ V.

(2) Distributional Lie bracket. If X , Y ∈ D(div) ∩ L∞(TX),

[[[X , Y]]] := ∇XY − ∇Y X .

(3) Distributional curvature tensor. If X , Y , Z ∈ V , then
R(X , Y )(Z) := ∇X (∇Y Z) − ∇Y (∇X Z) − ∇[X ,Y ]Z .

(4) Distributional Riemann tensor. If X , Y , Z ,W ∈ V , then
R(X , Y , Z ,W )( f ) := (R(X , Y )(Z))( f W ) for every f ∈ TestF(X).

It is clear that the distributional covariant derivative and the distributional Lie bracket
coincide with the covariant derivative ∇XY and the Lie bracket [X , Y ] := ∇XY − ∇Y X ,
whenever both the objects are defined. We are going to exploit this property throughout.

Remark 3.14 We want to extend the definition of R(X , Y , Z ,W ) to the case X , Y , Z ,W ∈
TestV(X) do not necessarily belong to V . Clearly, as TestV(X) ⊆ D(div) ∩ L∞(TX), the
first two terms ∇X (∇Y Z)( f W ) − ∇Y (∇X Z)( f W ) are still well defined. Also the third
term ∇[X ,Y ]Z makes sense for this choice of vector fields. Notice that in [23], ∇[[[X ,Y]]]Z was
used instead of ∇[X ,Y ]Z . This clearly makes no substantial difference, but allows us to drop
the request [[[X , Y]]] = [X , Y ] ∈ D(div), which is not granted if X , Y ∈ TestV(X) do not
necessarily belong to V , cf. [23, Lemma 2.4].

Following the same lines,we see thatR(X , Y , Z ,W )makes sense for every X , Y , Z ,W ∈
H1,2
H (TX) ∩ L∞(TX) and then f ∈ S2(X) ∩ L∞(m). �

Remark 3.15 We do some trivial algebraic manipulations in order to deal with the quantity
R(X , Y , Z ,W )( f ), for X , Y , Z ,W ∈ H1,2

H (TX) ∩ L∞(TX) and f ∈ S2(X) ∩ L∞(m). We
have that

R(X , Y , Z ,W )( f ) = −
∫
X
∇X ( f W ) · ∇Y Z + ∇Y Z · ( f W )div(X)dm

+
∫
X
∇Y ( f W ) · ∇X Z + ∇X Z · ( f W )div(Y )dm

+
∫
X
f ∇Z(∇XY − ∇Y X ,W )

=−
∫
X
f ∇W (X ,∇Y Z)+ ∇ f ·X∇Z(Y ,W )+ f ∇Z(Y ,W )div(X)dm

+
∫
X
f ∇W (Y ,∇X Z)+ ∇ f ·Y∇Z(X ,W )+ f ∇Z(X ,W )div(Y )dm

+
∫
X
f ∇Z(∇XY ,W ) −

∫
X
f ∇Z(∇Y X ,W )dm. �

In the sequel, we will tacitly extend the definition of R(X , Y , Z ,W ) to the case
X , Y , Z ,W ∈ H1,2

H (TX) ∩ L∞(TX) and f ∈ S2(X) ∩ L∞(m), according to Remark 3.14
and Remark 3.15.
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For future reference,we recall here [23, Proposition 2.7]. Notice that an immediate approx-
imation argument (recall Remark 3.15) allows us to extend the claim to the slightly larger
class of vector fields and functions that we are considering.

Proposition 3.16 (Symmetries of the curvature) For any X , Y , Z ,W ∈ H1,2
H (TX)∩L∞(TX)

and f ∈ S2(X) ∩ L∞(m) it holds:

R(X , Y , Z ,W ) = −R(Y , X , Z ,W ) = R(Z ,W , X , Y ),

R(X , Y )(Z) + R(Y , Z)(X) + R(Z , X)(Y ) = 0,

fR(X , Y , Z ,W ) = R( f X , Y , Z ,W ) = R(X , f Y , Z ,W ) = R(X , Y , f Z ,W ) = R(X , Y , Z , f W ).

The following definition has been implicitly proposed in [23, Conjecture 1.1].

Definition 3.17 Let (X,d,m) be an RCD(K ,∞) space. We say that (X,d,m) has sectional
curvature bounded below by κ , for some κ ∈ R, if for every X , Y ∈ TestV(X) and f ∈
TestF(X), f ≥ 0, it holds

R(X , Y , Y , X)( f ) ≥ κ

∫
X
f |X ∧ Y |2dm.

Remark 3.18 It would be interesting to analyse the links between sectional curvature bounds
in the sense of Definition 3.17 and in the sense of Alexandrov. This question is the content
of [23, Conjecture 1.1]. �

Remark 3.19 It is well known that sectional curvatures (i.e.R(X , Y , Y , X)) are sufficient to
identify a unique full Riemann curvature tensor R(X , Y , Z ,W ). We write here an explicit
expression, as we are going to need it in the sequel. For X , Y ∈ H1,2

H (TX) ∩ L∞(TX), set
K(X , Y ) := R(X , Y , Y , X). We claim that

6R(X , Y , Z ,W ) = K(X+ W , Y+ Z)− K(X+ W , Y )− K(X+ W , Z)− K(Y+ Z , X)

− K(Y + Z ,W ) + K(X , Z) + K(W , Y ) − K(Y + W , X + Z)

+ K(Y + W , X) + K(Y + W , Z) + K(X + Z , Y ) + K(X + Z ,W )

− K(Y , Z) − K(W , X).

thebibliography claim follows by algebraic manipulation, by Proposition 3.16. See e.g. [29,
Lemma 4.3.3] for the expression. �

Theorem 3.20 (Theorem 1.3 restated) Let (X,d,m) be an RCD(K , N ) space with sectional
curvature bounded below by κ , for some κ ∈ R. Then there exists a unique σ -finite measure
|Riem| that satisfies |Riem| � Cap and a unique, up to |Riem|-a.e. equality, tensor field ν ∈
L0
Cap(T

⊗4X)with |ν| = 1 |Riem|-a.e. such that for every X , Y , Z ,W ∈ H1,2
H (TX)∩L∞(TX)

we have that X ⊗ Y ⊗ Z ⊗ W · ν ∈ L1(|Riem|) and it holds∫
X
f X ⊗ Y ⊗ Z ⊗ W · ν|Riem| = R(X , Y , Z ,W )( f ) for every f ∈ S2(X) ∩ L∞(m).

(3.24)
For every v,w ∈ L0

Cap(TX),

v ⊗ w ⊗ w ⊗ v · ν|Riem| ≥ κ|v ∧ w|2m.
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The tensor field ν has the following symmetries. Let I,J ,K : L0
Cap(T

⊗4X) →
L0
Cap(T

⊗4X) be the linear maps characterized as follows

I(v1 ⊗ v2 ⊗ v3 ⊗ v4) := v2 ⊗ v1 ⊗ v3 ⊗ v4

J (v1 ⊗ v2 ⊗ v3 ⊗ v4) := v3 ⊗ v4 ⊗ v1 ⊗ v2

K(v1 ⊗ v2 ⊗ v3 ⊗ v4) := v2 ⊗ v3 ⊗ v1 ⊗ v4.

Then, with respect to |Riem|-a.e. equality,
I(ν) = −ν

J (ν) = ν

ν + K(ν) + K2(ν) = 0.

Proof We divide the proof in several steps.
Step 1. Uniqueness follows as in the proof of Proposition 3.7, by a localized version of

Lemma 2.10.
Step 2. Notice that if X , Y ∈ H1,2

H (TX) ∩ L∞(TX) and f ∈ S2(X) ∩ L∞(m), f ≥ 0 then

R(X , Y , Y , X)( f ) ≥ κ

∫
X
f |X ∧ Y |2dm,

thanks to an approximation argument that exploits the computations of Remark 3.15 and [9,
Lemma 4.2].

Therefore, Riesz–Daniell—Stone Theorem yields that for every X , Y ∈ H1,2
H (TX) ∩

L∞(TX) there exists a unique Radon measure μX ,Y such that

R(X , Y , Y , X)( f ) =
∫
X
f dμX ,Y for every f ∈ LIPbs(X).

Clearly, for every X , Y ∈ H1,2
H (TX) ∩ L∞(TX), μX ,Y ≥ κ|X ∧ Y |2dm and the assign-

ment H1,2
H (TX) ∩ L∞(TX) � (X , Y ) �→ μX ,Y is symmetric, by the symmetries of R

(Proposition 3.16). Also, we can prove, following Step 2 of the proof of Theorem 1.1 that
μX ,Y � Cap, so that (see Step 2 of the proof of Theorem 1.1 again and use an approximation
argument based on the computations of Remark 3.15)

R(X , Y , Y , X)( f ) =
∫
X
f dμX ,Y for every f ∈ S2(X) ∩ L∞(m),

where we implicitly take the quasi continuous representative of f . This expression, together
with the positivity of μX ,Y − κ|X ∧ Y |2 yields that μX ,Y is indeed a finite measure.

Step3.Wenotice that byRemark 3.19 andbyStep2, if X , Y , Z ,W ∈ H1,2
H (TX)∩L∞(TX)

then the map LIPbs(X) � f �→ R(X , Y , Z ,W )( f ) is induced by a finite measureμX ,Y ,Z ,W ,
i.e.

R(X , Y , Z ,W )( f ) =
∫
X
f dμX ,Y ,Z ,W for every f ∈ LIPbs(X),

where

μX ,Y ,Z ,W = 1

6

(
μX+W ,Y+Z − μX+W ,Y − μX+W ,Z − μY+Z ,X − μY+Z ,W + μX ,Z + μW ,Y

−μY+W ,X+Z + μY+W ,X + μY+W ,Z + μX+Z ,Y + μX+Z ,W − μY ,Z − μW ,X
)
.
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Clearly, still μX ,Y ,Z ,W � Cap, hence, the equations above continue to hold even if only
f ∈ S2(X)∩L∞(m). Also, for f ∈ S2(X)∩L∞(m), and X , Y , Z ,W ∈ H1,2

H (TX)∩L∞(TX)

f μX ,Y ,Z ,W = μ f X ,Y ,Z ,W = μX , f Y ,Z ,W = μX ,Y , f Z ,W = μX ,Y ,Z , f W (3.25)

by Proposition 3.16.
Step 4. This is similar to Step 5 of the proof of Theorem 1.1, we use the same notation. Let

then {Ak} and {vki } be as in Step 5 of the proof of Theorem 1.1, building upon Theorem 2.1.
Fix for the moment k and define, for i, j, l,m = 1, . . . , n(k),

μk
i, j,l,m := μvki +vkj ,v

k
l +vkm

Ak and μk
i, j,l := μvki +vkj ,v

k
l

Ak and μk
i, j := μvki ,v

k
j

Ak

and also

μk :=
n(k)∑

i, j,l,m=1

(|μk
i, j,l,m | + |μk

i, j,l | + |μk
i, j |

)
.

Now we define

ρ̃k
i, j,l,m :=

dμvki ,v
k
j ,v

k
l ,vkm

Ak

dμk
,

notice that μvki ,v
k
j ,v

k
l ,vkm

� μk by construction for every i, j, l,m = 1, . . . n(k). Set also

ν̃k :=
n(k)∑

i, j,l,m=1

vki ⊗ vkj ⊗ vkl ⊗ vkm ρ̃k
i, j,l,m .

and

νk := 1

|ν̃k | ν̃
k and |Riemk | := |ν̃k |μk .

Finally
ν :=

∑
k

νk and |Riem| :=
∑
k

|Riemk |.

Clearly, |Riem| is a σ -finite measure, |Riem| � Cap and |ν| = 1 |Riem|-a.e.
Step 5. We claim that

X ⊗ Y ⊗ Z ⊗ W · νkd|Riemk | = μX ,Y ,Z ,W Ak

for every X , Y , Z ,W ∈ H1,2
H (TX) ∩L∞(TX) and for every k. Recall that

∫
X f dμX ,Y ,Z ,W =

R(X , Y , Z ,W )( f ) for every f ∈ S2(X)∩L∞(m), so that the claim will imply Eq. 3.24 and
also the fact that

|X ⊗ Y ⊗ Z ⊗ W · νk |d|Riemk | = |μX ,Y ,Z ,W | Ak,

so that, being μX ,Y ,Z ,W a finite measure, X ⊗ Y ⊗ Z ⊗ W · νk ∈ L1(|Riem|).
Fix k and take then X , Y , Z ,W ∈ H1,2

H (TX) ∩ L∞(TX). We write X̃ := ∑n(k)
i=1 Xivki , for

Xi := X · vki and similarly for Y ,W , Z . Notice Xi , Y i , Zi ,Wi ∈ H1,2(X) ∩ L∞(m) and
X̃ , Ỹ , Z̃ , W̃ ∈ TestV(X). Notice that these newly defined functions and vector fields depend
on k, but as we are working for a fixed k, we do not make this dependence explicit. We
compute, on Ak ,

X ⊗ Y ⊗ Z ⊗ W · νkd|Riemk | =
n(k)∑

i, j,l,m=1

X ⊗ Y ⊗ Z ⊗ W · vki ⊗ vkj ⊗ vkl ⊗ vkm ρ̃ki, j,l,mdμ
k

123



Fine Representation of Hessian of Convex Functions and Ricci Tensor...

=
n(k)∑

i, j,l,m=1

X ⊗ Y ⊗ Z ⊗ W · vki ⊗ vkj ⊗ vkl ⊗ vkmdμvki ,v
k
j ,v

k
l ,vkm

Ak

=
n(k)∑

i, j,l,m=1

XiY j ZlWmdμ
vki ,v

k
j ,v

k
l ,vkm

Ak =
n(k)∑

i, j,l,m=1

dμXivki ,Y
jvkj ,Z

lvkl ,Wmvkm
Ak

= μX̃ ,Ỹ ,Z̃ ,W̃ Ak ,

where the next to last equality is due to Eq. 3.25. We verify now that μX̃ ,Ỹ ,Z̃ ,W̃ Ak =
μX ,Y ,Z ,W Ak , which will conclude the proof of the claim. This will be similar to Step 6 of
the proof of Theorem 1.1.

By multi-linearity and Proposition 3.16, it is enough to show that for every X , Y , Z ,W ∈
H1,2
H (TX) ∩ L∞(TX), then μX ,Y ,Z ,W {|X | = 0} = 0. We take {ϕn}n be as in Lemma 2.2

for the vector field X ∈ H1,2
H (TX) ∩ L∞(TX). We take also h ∈ LIPbs(X) and we compute

(recall Lemma 2.1)∫
X
hϕndμX ,Y ,Z ,W =

∫
X
hdμϕn X ,Y ,Z ,W = R(ϕn X , Y , Z ,W )(h).

By Lemma 2.2 and the expression for the mapR in Remark 3.15, the right hand side of the
equation above converges to 0, whereas the left hand side converges to∫

X
hχ{|X |=0}dμX ,Y ,Z ,W .

This is to say that for every h ∈ LIPbs(X)∫
X
hχ{|X |=0}dμX ,Y ,Z ,W = 0

whence the claim.
Step 6. By approximation (Lemma 2.10), it is enough to show the claim for X , Y ∈

TestV(X). Then the claim follows from Eq. 3.24 and the assumption on the bound from
below for the sectional curvature.

Step 7. The symmetries claimed follow from Proposition 3.16. We prove, for example,
the first one. It is enough to show that ν + I(ν) = 0 with respect to |Riem|-a.e. equality.
Now, if X , Y , Z ,W ∈ H1,2

H (TX) ∩ L∞(TX), then

∫
X
X ⊗ Y ⊗ Z ⊗ W · (ν + I(ν))|Riem|

=
∫
X
X ⊗ Y ⊗ Z ⊗ W · ν|Riem| +

∫
X
I(X ⊗ Y ⊗ Z ⊗ W ) · ν|Riem|

= R(X , Y , Z ,W )(1) + R(Y , X , Z ,W )(1) = 0,

so that the claim follows from Lemma 2.10. ��
Remark 3.21 Notice that, thanks to its symmetries, the tensor field ν of Theorem 1.3 can be
seen as an element of

(
L0
Cap(TX)∧2

)⊗2. �

Remark 3.22 Comparing the main results of Section 3.3 and Section 3.4, we may wonder
whether Ric is linked to the trace of R. By what remarked in Remark 3.13, we see that this
question makes sense only on non-collapsed spaces. However, the non-smooth structure of
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the space, in particular, the lack of a third order calculus and charts defined on open sets,
prevent us from giving an easy proof of this fact. �
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