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Abstract
We compute the monodromy dependence of the isomonodromic tau function
on a torus with n Fuchsian singularities and SL(N) residue matrices by using
its explicit Fredholm determinant representation. We show that the exterior
logarithmic derivative of the tau function defines a closed one-form on the
space of monodromies and times, and identify it with the generating function
of the monodromy symplectomorphism. As an illustrative example, we dis-
cuss the simplest case of the one-punctured torus in detail. Finally, we show
that previous results obtained in the genus zero case can be recovered in a
straightforward manner using the techniques presented here.
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1. Introduction

Isomonodromic tau functions are defined as the generating functions of Poisson commuting
Hamiltonians Hi that generate flows in times ti ∈ T,

dt logT :=
∑
times ti

dti∂ti logT = ωJMU :=
∑
times ti

Hidti. (1.1)

Here dt is the exterior differential on the space of times T, ωJMU ∈ T∗T is the so called Jimbo-
Miwa-Ueno (JMU) one-form [17], and its closedness

dtωJMU = 0 (1.2)

is equivalent to the consistency of the Hamiltonians flows, describing deformations of a linear
system of ODEs

∂zΦ(z) = Φ(z)A(z) (1.3)

that preserve its monodromies. The Hamiltonians themselves are obtained from contour integ-
rals of 1

2 tr A
2(z). Through the Riemann-Hilbert correspondence that maps the spaceA of coef-

ficients of the linear system to the space of monodromiesM, the Hamiltonians can be written
in terms of the times and the monodromy data. The tau function T in (1.1) is defined only up
to an overall monodromy-dependent constant C(M), and extending it to a closed one-form on
T∗(M×T) allows to determine the asymptotic behaviour of the tau function near its critical
points, while revealing the symplectic properties of the tau function.

In [14, 16, 22], building upon an earlier work [2, 3], a procedure to construct such an
extended closed one-form was presented based on the Riemann-Hilbert approach to Painlevé
equations. The one-form was explicitly written for the cases of Painlevé VI, II, III1, and I,
where it was used to obtain the ratios of the corresponding tau functions at the critical points,
known as the connection constants, a longstanding problem in the theory of Painlevé equations.
A Hamiltonian approach to this construction was put forward in [15] for all Painlevé equations
and the Schlesinger system. The closed one-form for the Schlesinger systemwas written expli-
citly in [5], with an elegant interpretation of the tau function as the generating function of the
monodromy symplectomorphism, i.e. a homomorphism from a symplectic leaf in the space of
coefficients A of the system to a symplectic leaf in the monodromy manifoldM.

In this paper, we determine the closed one-form dlogT for tau functions on a torus with
regular singularities by using their Fredholm determinant representation [10], and show that
they generate the monodromy symplectomorphism.

A key technique in our construction involves the Fredholm determinant representation,
which is obtained using a pants decomposition of the torus (see theorem 1, [10]). Specifically,
the pants decomposition of the torus with n punctures consists of n spheres with three simple
poles, which translates to describing the local behaviour of the solution to the linear system we
call L in terms of the solution to an appropriate linear problem defined on a sphere with three
simple poles denoted by L3pt. It then turns out that the kernel of the Fredholm determinant is
completely described by n such three-point solutions with suitable shifts that capture the topo-
logy of the torus. The tau function of the torus is then related to the Fredholm determinant by
a proportionality factor. The pith of the monodromy dependence of the tau function therefore
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lies in understanding the derivative of the Fredholm determinant w.r.t the monodromy data.
The resulting one-form has the structure

d logT = ω−ω3pt, d= dt+ dM, (1.4)

where ω depends on the data coming from the global properties of L, whereas ω3pt depends on
the local behaviour described by L3pt. Moreover, ω depends on the monodromy data and the
times, while ω3pt depends only on the monodromy data. Such a structure of the one-form is
instrumental in obtaining the connection constant, which will be the subject of an upcoming
paper. We also observe that our approach does not rely on the information of the asymptotics
or additional assumptions to obtain the closedness.

This paper is structured as follows: we setup the linear system on an n-punctured torus,
describe the pants decomposition, and briefly recap the construction of the Fredholm determ-
inant in section 2, we compute the monodromy dependence of the Fredholm determinant in
proposition 1 and obtain the closed one-form in theorem 1, highlighting the splitting described
in (1.4). In section 3.1, we use the example of the torus with one puncture to illustrate the role
of the one-form dlogT as the generating function of the monodromy symplectomorphism in
theorem 2.

Notation 1. Throughout this paper we use the following notation
Given an N-tuple of parameters (ξ1, . . . ξN), and a function g(ξi), i = 1, . . . ,N of these para-

meters, we define

g(ξ) := diag(g(ξ1), . . . ,g(ξN)) . (1.5)

In particular, when g(ξi) = ξi, this is

ξ = diag(ξ1, . . . , ξN) . (1.6)

2. Isomonodromic deformations on the torus and tau function

In this section, we setup the SL(N) linear system on the n-point torus, introduce the pants
decomposition with corresponding 3-point local solutions, and briefly describe the construc-
tion of the Fredholm determinant representation of the isomonodromic tau-function.

2.1. Setup

Isomonodromic deformations on a torus with n simple poles can be characterised by the fol-
lowing system of linear differential equations [20, 24]

∂
∂zΦ(z) = Φ(z)Lz (z) ,

(2π i) ∂
∂τΦ(z) = Φ(z)Lτ (z) , ∂

∂zk
Φ(z) = Φ(z)Lk (z) ,

(2.1)

withΦ(z) ∈ SL(N,C). Here z is the coordinate on the n-point torusC1,n viewed as the identific-
ation space z∼ z+ r+ ℓτ , r, ℓ ∈ N, with singularities at the points zk for k= 1 . . .n, τ ∈H is the
modular parameter of the torus, andH is the upper half-plane. The Laxmatrices Lz,Lτ ,Lk ∈ slN
have elements

(Lz)ij(z) = δij

{
Pi+

n∑
k=1

θ ′
1(z− zk)
θ1(z− zk)

(Ak)ii

}
− (1− δij)

n∑
k=1

x(Qj−Qi,z− zk)(Ak)ij, (2.2)

(Lk)ij(z) =−δij
θ ′
1(z− zk)
θ1(z− zk)

(Ak)ii+(1− δij)x(Qj−Qi,z− zk)(Ak)ij, (2.3)
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(Lτ )ij(z) =
1
2
δij

n∑
k=1

θ ′ ′
1 (z− zk)
θ1(z− zk)

(Ak)ii+
n∑

k=1

y(Qj−Qi,z− zk)(Ak)ij, (2.4)

where x,y are the Lamé functions defined as

x(ξ,z) =
θ1(z− ξ)θ ′

1(0)
θ1(z)θ1(ξ)

, y(ξ,z) = ∂ξx(ξ,z), (2.5)

where θ1 is the Jacobi theta function

θ1(z) :=
∑
n∈Z

(−1)n−
1
2 eiπτ(n+

1
2 )

2

e2π i(n+
1
2 )z, (2.6)

and has the periodicity

θ1(z+ 1) =−θ1(z), θ2(z+ τ) =−e−2π i(z+ τ
2 )θ1(z).

As a consequence of the periodicity properties of θ1, the matrices Lz, Lk, Lτ transform as fol-
lows (using notation 1) under the shift z 7→ z+ τ

Lz(z+ τ) = e−2π iQL(z)e2π iQ,

Lk(z+ τ) = e−2π iQLk(z)e
2π iQ+ 2π i diag((Ak)11, . . . ,(Ak)NN) , (2.7)

Lτ (z+ τ) = e−2π iQ (Lτ (z)+ L(z))e2πQ− 2π iP.

The matrices Ak are assumed to be diagonalizable

Ak = G−1
k mkGk (2.8)

and to satisfy the constraint
n∑

k=1

(Ak)ii =
n∑

k=1

(G−1
k mkGk)ii = 0. (2.9)

Moreover,

mi−mj /∈ Z,
N∑
j=1

Pj =
N∑
j=1

Qj = 0. (2.10)

Any solution of the linear system (2.1), under the z 7→ z+ τ shift therefore transforms as

Φ(z+ τ) =MBΦ(z)e
2π iQ, (2.11)

whereMB ∈ SL(N) is the B-cycle monodromy, and the monodromies around the punctures zk
and the A-cycle monodromy are respectively

Mk = Cke
2π imkC−1

k , MA = S1e
2π ia1S−1

1 , (2.12)

with the constraint

M−1
B M−1

A MBMA

n∏
k=1

Mk = 1. (2.13)

Definition 1. 1. The Laxmatrices Lz(z) in equation (2.2) are described by the following space:

A1,n := {τ, (Gk,mk,zk)
n
k=1, (Pj,Qj)

N
j=1 : τ ∈H, zk ∈ T2τ , Gk ∈ SL(N), Pj,Qj ∈ C, (2.9),(2.10)}/∼,

(2.14)
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where ∼ is the equivalence relation Gk → GkD, where D ∈ SL(N) is diagonal7, and T2τ
denotes the torus with modular parameter τ and without punctures. The dimension of this
space is

dimA1,n = n(N2 − 1)+ n(N− 1)+ n+ 1. (2.15)

A1,n can be viewed as the symplectic reduction of the moduli space of flat SL(N,C) connec-
tions on the n-punctured torus [1, 13, 18–21]). Resultantly, one has symplectic and Poisson
structures onA1,n for which {Pj,Qj}= δij− 1

N andGk have quadratic Poisson brackets (see
proposition 2.2 in [6]), both of which can be obtained in an invariant way from the r-matrix
structure on the space of Lz(z), Lτ (z) [20]. The times τ,zk are Casimir elements, and all
other variables can be interpreted as coordinates on the phase space of the isomonodromic
system.

2. The extended character variety of SL(N) flat connections on T2τ \ {z1, . . . ,zn}(see [6] for
genus zero case) is

M1,n = {MA,MB,(Ck,mk)
n
k=1 : MA,MB,Ck ∈ SL(N), (2.12),(2.13)}

/
∼, (2.16)

where /∼ means that we identify monodromy representations related by an overall con-
jugation. The dimension of the extended character variety is

dimM1,n = n(N2 − 1)+ n(N− 1). (2.17)

For arbitrary genus, dimMg,n = (N2 − 1)(2g− 2+ n)+ n(N− 1). The space M1,n has a
nondegenerate symplectic structure [1], inverting the extended Goldman Poisson bracket
(see equation (1.11) in [4]).

The usual (non-extended) character variety would be

M(0)
1,n = {MA,MB,M1, . . . ,Mn ∈ SL(N)|(2.13)}/∼, dimM(0)

1,n = n(N2 − 1), (2.18)

and the standard space of coefficients

A(0)
1,n := {τ, (Ak,zk)nk=1, (Pj,Qj)

N
j=1 : τ ∈H, zk ∈ T2τ , Ak ∈ SL(N), Pj,Qj ∈ C, (2.9),(2.10)}

/
∼,

(2.19)

where now Ak ∼ D−1AkD, and the dimension

dimA(0)
1,n = n(N2 − 1)+ n+ 1. (2.20)

It is always possible to normalize the solution so that S1 = 1 in the A-cycle mono-
dromy (2.12), i.e.

MA ≡ e2π ia1 . (2.21)

The local behaviour of the solution to the linear system in a tubular neighbourhood of the
puncture zk is

Φ (z→ zk) = Ck (z− zk)
mk

(
1+

∞∑
l=1

gk,l(z− zk)
l

)
Gk, (2.22)

7 The full gauge group acts as Gk → GkH, where H ∈ SL(N) is an arbitrary matrix. However, the choice of diagonal
e2π iQ uniquely fixes H to be diagonal.
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where the matrices Ck,Gk diagonalize the monodromies (2.12) and the residue matrices (2.8)
respectively. There is an ambiguity of the form

Ck 7→ CkD
−1
k , gk,l 7→ Dkgk,lD

−1
k , Gk 7→ DkGk, (2.23)

with Dk diagonal, that does not change the asymptotics (2.22), and it amounts to a change
of normalization for the eigenvectors of Mk, Ak. The extended spaces (2.16) and (2.19) dif-
fer from the non-extended ones by the inclusion of the parameters that are changed by the
transformation (2.23). These parameters turn out to be canonically conjugated to mk [5].

The matrices gk,l are computed recursively with the i, j component given by

[
G−1
k (gk,1 + [mk,gk,1])Gk

]
ij
= δij

Pi+
n∑

k ′ ̸=k

θ ′
1(zk− zk ′)
θ1(zk− zk ′)

(Ak ′)ii


− (1− δij)

n∑
k=1

x(Qi−Qj,zk− zk ′)(Ak ′)ij.

(2.24)

The isomonodromic time evolution8 arising from the compatibility of (2.1) is generated by
the n+ 1 Poisson commuting Hamiltonians

Hk := Resz=zk
1
2
tr Lz(z)

2, Hτ :=

˛
A
dz

1
2
tr Lz(z)

2. (2.25)

Definition 2. The isomonodromic tau function TH is then defined as

∂zk logTH = Hk, 2π i∂τ logTH = Hτ . (2.26)

2.2. Pants decomposition of the n-point torus and Hilbert spaces

The n-punctured torus can be decomposed into n trinions, that we choose to be glued along
copies of the A-cycle as in figure 1. Each trinion is a one-punctured cylinder with the identific-
ation z∼ z+ 1, conformally equivalent to a three-punctured sphere under the map z→ e2π iz.
There is a three-point problem associated to each trinion T [k]

∂zΦ
[k]
3pt(z) = Φ

[k]
3pt(z)L

[k]
3pt(z),

L[k]3pt(z) =−2π iA[k]
− − 2π i

A[k]
0

1− e2π iz
, (2.27)

with diagonalizable residue matrices

A[k]
− = (G[k]

− )−1akG
[k]
− , A[k]

0 = (G[k]
0 )−1mkG

[k]
0 , (2.28)

A[k]
+ =−A[k]

− −A[k]
0 = (G[k]

+ )−1ak+1G
[k]
+ , (2.29)

for k= 1, . . .n. The local solution on each trinion Φ
[k]
3pt(z) is such that the ratio

Φ
[k]
3pt(z− zk)

−1Φ(z)

is regular and single-valued around z= zk, with Φ
[k]
3pt(z− zk) approximating the analytic beha-

vior of Φ(z) in the trinion T [k].

8 Here by isomonodromy we mean that the Ck’s are constant, as opposed to just the monodromies. This is the correct
notion for the extended spaces A1,n and M1,n.
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Figure 1. Pants decomposition for the n-punctured torus.

The choice of the fundamental domain is specified in the figure below.
The parameters mk, ak are local monodromy exponents, i.e the monodromies around the

contours γk, C[k]
in , C

[k−1]
out , are respectively

Mk = Cke
2π imkC−1

k , MC[k]
in
= Ske

2π iakS−1
k , MC[k]

out
= Sk+1e

−2π iak+1S−1
k+1, (2.30)

for k= 1, . . .n, where the Ck, Sk are constant matrices with Sk’s assuming the form

S1 = 1, Sn+1 =M−1
B , an+1 = a1. (2.31)

Note that a1 corresponds to the usual A-cycle as described in (2.21). The pants decomposition
induces a homomorphism of monodromy groups π1 (C0,n+2)→ π1 (C1,n) as can be seen from
the the constraint (2.13)

MA

n∏
k=1

MkM
−1
B M−1

A MB = 1=MC[1]
in

(
n∏

k=1

Mk

)
MC[n]

out
. (2.32)

The local behaviour of the three-point solution Φ[k] around the point zk is then

Φ
[k]
3pt (z→ 0) = Ckz

mk

(
1+

∞∑
l=1

g[k]1,lz
l

)
G[k]

0 , (2.33)

while its local behavior on the circles C[k]
in and C[k]

out is

Φ
[k]
3pt

∣∣
z∈C[k]

in
= Ske

2π izak

(
1+

∞∑
l=1

g[k]−,le
−2π i lz

)
G[k]

− , (2.34)

Φ
[k]
3pt

∣∣
z∈C[k]

out
= Sk+1e

2π izak+1

(
1+

∞∑
l=1

g[k]+,le
2π i lz

)
G[k]

+ . (2.35)

Once again note thatCk,Sk,G
[k]
0 ,G[k]

− ,G[k]
+ are the diagonalization matrices in (2.28) and (2.30).

As before, the matrices g1,l can be computed recursively with the 1,1 matrix entry given by

g[k]1,1 +
[
mk,g

[k]
1,1

]
=−2π iG[k]

0 A
[k]
0

(
G[k]

0

)−1
. (2.36)

We now associate Hilbert spaces to each of the boundary contours C[k]
in ,C

[k]
out specified in

figure 1. The projection operators on these spaces provide the building blocks to write the tau-
function as a Fredholm determinant. The total Hilbert space H is decomposed into a direct

7
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sum of spacesH[k] corresponding to each pair of pants:

H :=
n⊕

k=1

H[k] =H+ ⊕H−, (2.37)

where

H± :=
n⊕

k=1

(
H[k]
in,∓ ⊕H[k]

out,±

)
. (2.38)

Definition 3. Let

CΣ :=
n⋃

k=1

C[k]
out ∪C[k+1]

in , C[n+1]
in := C[1]

in . (2.39)

We define the single-valued functions Ψ(z) on CΣ, and Ψ
[k]
3pt(z) on C[k]

in ∪C[k]
out in terms of the

solutions to the linear systems Φ(z) and Φ
[k]
3pt(z) in (2.1) and (2.27) as

9

Ψ(z)|C[k]
out
:= e−2π i(z−δk,nτ)ak+1S−1

k+1Φ(z)|C[k]
out
, Ψ(z)|C[k]

in
:= e−2π izakS−1

k Φ(z)|C[k]
in
,k= 1, . . . ,n

(2.40)

Ψ
[k]
3pt(z)|C[k]

out
:= e−2π i(z−δk,nτ)ak+1S−1

k+1Φ
[k]
3pt(z− zk)|C[k]

out
, Ψ

[k]
3pt(z)|C[k]

in
:= e−2π i zakS−1

k Φ
[k]
3pt(z− zk)|C[k]

in
,

(2.41)

where δk,n is the Krönecker delta and the identities (2.31) hold.

2.3. Fredholm determinant representation of the tau-function

We define the projection operators PΣ, P⊕ on the Hilbert space defined in (2.37) in terms
of the solutions to the n-point linear sytem (2.40), and the solutions (2.41) to the three-point
problems respectively10:

• The operator PΣ is defined as

(PΣf)(z) :=
˛
CΣ

dw
2π i

Ψ(z)ΞN(z,w)Ψ(w)−1f(w), (2.42)

where ΞN is the (twisted) Cauchy kernel on the torus

ΞN(z,w) = diag

(
θ1(z−w+Q1 − ρ)θ ′

1(0)
θ1(z−w)θ1(Q1 − ρ)

, . . . ,
θ1(z−w+QN− ρ)θ ′

1(0)
θ1(z−w)θ1(QN− ρ)

)
=

θ1(z−w+Q− ρ)θ ′
1(0)

θ1(z−w)θ1(Q− ρ)
, (2.43)

9 The z− τ in Ψ is so that Ψout,n is ‘identified’ with Ψin,1, in the sense that the only difference is the twist.
10 The Cauchy kernel are written in the cylindrical coordinates below, as they are more natural for our parametrization
of the torus.
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has the following transformation resulting from the periodicity properties of (2.6):

ΞN(z+ τ,w) = e2π i(Q−ρ)ΞN(z,w), ΞN(x,w+ τ) = ΞN(z,w)e
−2π i(Q−ρ). (2.44)

The twist along the B-cycle of the Cauchy kernel is parameterized by ρ andQ, where ρ is an
auxiliary parameter entering in the definition of the Fredholm determinant (see [7, 10] for
more details).

• The operator P [k]
⊕ is defined as

(
P [k]
⊕ f[k]

)
(z) :=

ˆ
C[k]
in ∪C[k]

out

dw
Ψ

[k]
3pt(z)Ψ

[k]
3pt(w)

−1

1− e−2π i(z−w)
f[k](w), (2.45)

and

P⊕ :=
n∑

k=1

P [k]
⊕ . (2.46)

In the paper [10] we proved that the tau function (2.26) has the following Fredholm determinant
representation:

TH(τ) = det
H+

[
P−1
Σ,+P⊕,+

]
eiπτ tr (a

2
1+

1
6 )e−iπNρ

N∏
i=0

η(τ)

θ1 (Qi− ρ)

n∏
k=1

e−iπ zk(tr a
2
k+1−tr a2k), (2.47)

where PΣ,+ := PΣ

∣∣
H+

, P⊕,+ := P⊕
∣∣
H+

, Qi ≡ Qi(τ,z1, . . .,zn) are the dynamical variables
of the SL(N) linear system (2.2), ak are the monodromy exponents defined in (2.30), ρ is the
auxiliary parameter, and η(τ) is the Dedekind eta function. The tau function TH is independent
of ρ, so that the ρ-dependence of the determinant can be read directly from (2.47) (see the
discussion around equation (4.13) in [7] and remark 2 in [10] for more details). Furthermore,
the time derivative of the Fredholm determinant recovers the JMU one form:

ωJMU :=

(
dτ +

n∑
k=1

dzk

)
logTH =

1
2π i

Hτdτ +
n∑

k=1

Hkdzk. (2.48)

We will do this by explicitly computing the derivative of the tau function (2.47) with respect
to the monodromy data.

3. Monodromy dependence of the torus tau function

We begin with the following identity for the derivative of the Fredholm determinant (see proofs
of theorem 2.9 in [12] and theorem 1 in [10])

d logdet
H+

[
P−1
Σ,+P⊕,+

]
=−tr HP⊕dPΣ, d= dM + dτ +

n∑
k=1

dzk , d• = d • ∂•, (3.1)

where dM is the total exterior derivative on the extended character varietyM1,n and does not
involve differentiation in ρ.

9
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Proposition 1. The derivative of the Fredholm determinant w.r.t the monodromy data is

dM logdet
H+

[
P−1
Σ,+P⊕,+

]
= tr (PdMQ)+ dM log

(
N∏
i=1

θ1(Qi− ρ)

)
+

n∑
k=1

trmkdMGkG
−1
k

+
n∑

k=1

(
tr akdMG[k]

−

(
G[k]

−

)−1
− trmkdMG[k]

0

(
G[k]

0

)−1

−tr ak+1dMG[k]
+

(
G[k]

+

)−1
)

− iπ tr τdMa21 +
n∑

k=1

iπ tr zkdM
(
a2k+1 − a2k

)
, (3.2)

where (with the notation 1) mk, ak are the local monodromy exponents (2.30), P,Q are the
dynamical variables in the Lax matrix (2.2), ρ is an arbitrary parameter, Gk, G

[k]
± are the

eigenvector matrices (2.8) and (2.28).

Proof. We start from the following equality (see equation (3.61) in [10])

−tr H [P⊕dMPΣ] =−
n∑

k=1

˛
C[k]
in ∪C[k]

out

dw
˛
C[k]
in ∪C[k]

out

dz
2π i

1
1− e−2π i(z−w)

tr

{
Ψ

[k]
3pt(z)Ψ

[k]
3pt(w)

−1

× dM
(
Ψ(w)ΞN(w,z)Ψ(z)−1

)}

=−
n∑

k=1

˛
C[k]
in ∪C[k]

out

dz
2π i

tr

{
dMΨ(z)Ψ(z)−1

(
∂zΨ

[k]
3pt(z)

(
Ψ

[k]
3pt(z)

)−1
)}

+
n∑

k=1

˛
C[k]
in ∪C[k]

out

dz
2π i

tr
{
dMΨ(z)Ψ(z)−1

(
∂zΨ(z)Ψ(z)−1

)}

+
n∑

k=1

˛
C[k]
in ∪C[k]

out

dz
2π i

tr

{[
θ ′
1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
Ψ(z)−1dMΨ(z)

}
=: I1 + I2 + I3. (3.3)

We now compute each of the above integrals separately.

• Computing the integral I2:
We begin by noting that the boundary circles in the pants decomposition (see figure 1) can
be identified in the following way

C[k]
out =−C[k+1]

in for l= 1, . . . ,n− 1. (3.4)

10
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With the above identification of contours, the integral I2 in the expression (3.3) simplifies as

I2 =
n∑

k=1

˛
C[k]
in ∪C[k]

out

dz
2π i

tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}
=

n∑
k=1

˛
C[k]
in

dz
2π i

tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}
+

n∑
k=1

˛
C[k]
out

dz
2π i

tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}
=

˛
C[1]
in ∪C[n]

out

dz
2π i

tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}
.

(3.5)

In order to express the above expression in terms of the solution to the linear problem on the
torus Φ, we use the identities coming from (2.40) and (2.41) and fix z1 = 0 without loss of
generality:

Ψ(z)|C[1]
in

= e−2π i za1Φ(z)|C[1]
in
, Ψ(z)|C[n]

out
= e−2π i(z−τ)a1MBΦ(z)|C[n]

out
, (3.6)

where the contours (see figure 2):

C[1]
in =

[
1− τ

2
,− (1+ τ)

2

]
, C[n]

out =

[
1+ τ

2
,− (1− τ)

2

]
. (3.7)

Therefore the solution Φ restricted to the outermost circles C[1]
in , C

[n]
out satisfies the relation:

Φ(z)|C[n]
out

=Φ(z+ τ)|C[1]
in

(2.11)
= M−1

B Φ(z)|C[1]
in
e2π iQ. (3.8)

Substituting (3.6) and using the identity (3.8), the expression (3.5) for the integral I2 simpli-
fies as follows:

I2
(3.6)
=

˛
C[1]
in

dz
2π i

tr
{(

−2π i zdMa1 + dMΦ(z)Φ(z)−1
)(

∂zΦ(z)Φ(z)
−1 − 2π ia1

)}
+

˛
C[n]
out

dz
2π i

tr
{(

−2π i(z− τ)M−1
B dMa1MB+M−1

B dMMB+ dMΦ(z)Φ(z)−1
)

×
(
∂zΦ(z)Φ(z)

−1 − 2π iM−1
B a1MB

)}
(3.8)
=

˛
C[1]
in

dz
2π i

tr
{(

−2π i zdMa1 + dMΦ(z)Φ(z)−1
)(

∂zΦ(z)Φ(z)
−1 − 2π ia1

)}
−
ˆ
C[1]
in

dz
2π i

tr
{(

−2π izdMa1 + dMΦ(z)Φ(z)−1 + 2π iΦ(z)dMQΦ(z)−1
)

×
(
∂zΦ(z)Φ(z)

−1 − 2π ia1
)}

=−
˛
C[1]
in

dz tr
{
dMQ

(
Φ(z)−1∂zΦ(z)− 2π iΦ(z)−1a1Φ(z)

)}
(2.2)
= tr (PdMQ)− 2π i

˛
C[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
. (3.9)

11
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To obtain the last line, we used the constraint (2.9), together with the following property of
θ1(z)

θ1(z+ 1) =−θ1(z) ⇒
˛
C[1]
in

dz∂z logθ1(z) = iπ (3.10)

to simplify the contribution from the Lax matrix Lz(z). In summary,

I2 = tr (PdMQ)+ 2π i
˛
C[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
. (3.11)

• Computing the integral I3: Using the identification of neighbouring contours (3.4), the
integral I3 in (3.3) simplifies as

I3 =
n∑

k=1

˛
C[k]
in ∪C[k]

out

dz
2π i

tr

{[
θ ′
1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
Ψ(z)−1dMΨ(z)

}
(3.4)
=

˛
C[1]
in ∪C[n]

out

dz
2π i

tr

{[
θ ′
1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
Ψ(z)−1dMΨ(z)

}
(3.6),(3.8)

= −
˛
C[1]
in

dz tr

{[
θ ′
1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
dMQ

}
= tr

(
θ ′
1(Q− ρ)

θ1(Q− ρ)
dMQ

)

= dM log

(
N∏
i=1

θ1(Qi− ρ)

)
. (3.12)

The last line is obtained by remembering that Q ∈ SL(N) and is therefore traceless.
• Computing the integral I1:
Let us start by expressing the integral I1 (3.3) in terms of the solutions to the linear problems
using (2.40) and (2.41):

I1 =−
n∑

k=1

˛
C[k]
in ∪C[k]

out

dz
2π i

tr
{
dMΨ(z)Ψ(z)−1∂zΨ

[k]
3pt(z)Ψ

[k]
3pt(z)

−1
}

(2.40),(2.41)
= −

˛
C[k]
in

dz
2π i

tr
{(

−2π i zSkdMakS
−1
k − dMSkS

−1
k + dMΦ(z)Φ(z)−1

)
×
(
∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1 − 2π iSkakS
−1
k

)}
−
˛
C[k]
out

dz
2π i

tr
{(

−2π i (z− δk,nτ)Sk+1dMak+1S
−1
k+1 − dMSk+1S

−1
k+1 + dMΦ(z)Φ(z)−1

)
×
(
∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1 − 2π iSk+1ak+1S
−1
k+1

)}
=:

n∑
k=1

(
I[k]in + I[k]out

) (2.31),(3.4)
+

˛
C[1]
in

dz tr
{(

−2π i zdMa1 + dMΦ(z)Φ(z)−1
)
a1
}

(3.13)

+

˛
C[n]
out

dz tr
{(

−2π i(z− τ)dMak+ dMMBM
−1
B +MBdMΦ(z)Φ(z)−1M−1

B

)
a1
}
(3.14)

12
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=
n∑

k=1

(
I[k]in + I[k]out

)
− 2π i

˛
C[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
, (3.15)

where we defined

I[k]in :=−
˛
C[k]
in

dz
2π i

tr
{(

−2π i zSkdMakS
−1
k − dMSkS

−1
k + dMΦ(z)Φ(z)−1

)
× ∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}

(3.16)

I[k]out :=−
˛
C[k]
out

dz
2π i

tr
{(

−2π i(z− δk,nτ)Sk+1dMak+1S
−1
k+1 − dMSk+1S

−1
k+1 + dMΦ(z)Φ(z)−1

)
× ∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}
. (3.17)

Note that the functions(
−2π i zSkdMakS

−1
k − dMSkS

−1
k + dMΦ(z)Φ(z)−1

)
,(

−2π i (z− δk,nτ)Sk+1dMak+1S
−1
k+1 − dMSk+1S

−1
k+1 + dMΦ(z)Φ(z)−1

)
, (3.18)

in the integrands above are single-valued on C[k]
in and C[k]

out respectively, but they have logar-
ithmic branch cuts as can be seen from the local solutions (2.22), (2.33)–(2.35), that make
it impossible to close the integration contour.
So, we introduce the following trick: we add and subtract the integrals Ĩ [k]in , Ĩ [k]out, defined to

be analogous to I[k]in , I
[k]
out with the solution of the torus linear systemΦ(z) in (3.16) and (3.17)

replaced by the solution of the 3-pt linear system Φ
[k]
3pt, namely

Ĩ [k]in :=−
˛
C[k]
in

dz
2π i

tr
{(

−2π izSkdMakS
−1
k − dMSkS

−1
k + dMΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)

×∂zΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}
, (3.19)

Ĩ [k]out :=−
˛
C[k]
out

dz
2π i

tr
{(

− 2π i(z− δk,nτ)Sk+1dMak+1S
−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)
× ∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}
. (3.20)

We now compute the differences

I[k]in − Ĩ [k]in =−
˛
C[k]
in

dz
2π i

tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)

× ∂zΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}
, (3.21)

I[k]out− Ĩ [k]out =−
˛
C[k]
out

dz
2π i

tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)

× ∂zΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}
, (3.22)

13
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Figure 2. The fundamental domain of the torus.

and sum the above expressions to obtain the following expression

I[k]in − Ĩ [k]in + I[k]out− Ĩ [k]out

=−
˛
C[k]
in ∪C[k]

out

dz
2π i

tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)

× ∂zΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
}

= Resz=zk tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z)Φ

[k]
3pt(z− zk)

−1
)
∂zΦ

[k]
3pt(z)Φ

[k]
3pt(z− zk)

−1
}
.

(3.23)

Note the orientation of the contours of integration (see figure 2) when taking the residue.
Substituting the local behaviour near z= zk of the functions Φ, Φ[k]

3pt described in (2.22)
and (2.33) respectively, we compute the individual terms in the residue:

dMΦΦ−1 = dMCkC
−1
k + log(z− zk)CkdMmkC

−1
k

+Ck(z− zk)
mkdMGkG

−1
k (z− zk)

−mkC−1
k +O((z− zk)), (3.24)

dMΦ
[k]
3pt(Φ

[k]
3pt)

−1 = dMCkC
−1
k + log(z− zk)CkdMmkC

−1
k

+Ck(z− zk)
mkdMG[k]

0

(
G[k]

0

)−1
(z− zk)

mkC−1
k +O((z− zk)), (3.25)

∂zΦ
[k]
3pt

(
Φ

[k]
3pt

)−1
=
CkmkC

−1
k

z− zk
+O(1). (3.26)

Substituting (3.24)–(3.26) in (3.23)

I[k]in − Ĩ [k]in + I[k]out− Ĩ [k]out

= Resz=zk tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z)Φ

[k]
3pt(z)

−1
)
∂zΦ

[k]
3pt(z)Φ

[k]
3pt(z)

−1
}

= trmkdMGkG
−1
k − trmkdMG[k]

0

(
G[k]

0

)−1
. (3.27)

The last step to compute the integral I1 comes from noting that the integrals Ĩ[l]in,out themselves
can be evaluated explicitly using the local behavior (2.34) and (2.35) of the 3-point solution

14
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at their ‘local’ ±i∞

Ĩ [k]in =−
˛
C[k]
in

dz
2π i

tr

{(
−2π izSkdMakS

−1
k − dMSkS

−1
k + dMΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)

× ∂zΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

}
. (3.28)

We begin by computing the following expressions

dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1|z→−i∞
(2.34)
= dMSkS

−1
k + 2π i(z− zk)SkdMakS

−1
k (3.29)

+ Ske
2π i(z−zk)akdMG[k]

−

(
G[k]

−

)−1
e−2π i(z−zk)akS−1

k ,

and similarly, the z-derivative term

dzΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1|z→−i∞ = 2π iSkakS
−1
k . (3.30)

Substituting (3.29) and (3.30) in the integrand of (3.28),

lim
z→−i∞

tr

{(
−2π izSkdMakS

−1
k − dMSkS

−1
k + dMΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1
)

× ∂zΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

}
= tr

{(
−zk2π iSkdMakS

−1
k + Ske

2π i(z−zk)akdMG[k]
−

(
G[k]

−

)−1
e−2π i(z−zk)akS−1

k

)
× 2π iSkakS

−1
k

}
= (2π i)tr

(
−2π i zkakdMak+ akdMG[k]

−

(
G[k]

−

)−1
)
. (3.31)

Substituting (3.29), (3.30) and (3.31) in (3.28) we get

Ĩ [k]in =−
˛
C[k]
in

dz
2π i

(2π i)tr

(
−2π i zkakdMak+ akdMG[k]

−

(
G[k]

−

)−1
)

= tr

(
−2π i zkakdMak+ akdMG[k]

−

(
G[k]

−

)−1
)
. (3.32)

The term Ĩ [k]out is computed in a similar fashion

Ĩ [k]out :=−
˛
C[k]
out

dz
2π i

tr

{(
− 2π i(z− δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

)
× ∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

}
. (3.33)
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Similar to the above computation, start by computing the individual 3-pt derivative terms

dMΦ
[k]
3pt(z)Φ

[k]
3pt(z)

−1|z→+i∞
(2.35)
= dMSk+1S

−1
k+1 + 2π iSk+1 (z− zk)dMak+1S

−1
k+1

+ Sk+1e
2π i(z−zk)ak+1dMG[k]

+

(
G[k]

+

)−1
e−2π i(z−zk)ak+1S−1

k+1,

(3.34)

and the z derivative

∂zΦ
[k]
3pt(z)Φ

[k]
3pt(z)

−1|z→+i∞ = 2π iSk+1ak+1S
−1
k+1. (3.35)

substituting (3.34) and (3.35) in the integrand of (3.33),

lim
z→i∞

tr

{(
− 2π i(z− δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

)
× ∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

}
= tr

{(
2π iδk,nτSk+1dMak+1S

−1
k+1 − 2π iSk+1zkdMak+1S

−1
k+1

+ Sk+1e
2π i(z−zk)ak+1dMG[k]

+

(
G[k]

+

)−1
e−2π i(z−zk)ak+1S−1

k+1

)
2π iSk+1ak+1S

−1
k+1

}
= (2π i)tr

(
2π iτdMa1a1 − zkdMak+1ak+1 + ak+1dMG[k]

+

(
G[k]

+

)−1
)
. (3.36)

In the last line we used that an+1 = a1. Now the term

Ĩ [k]out :=−
˛
C[k]
out

dz
2π i

tr

{(
− 2π i(z− δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

)
× ∂zΦ

[k]
3pt(z− zk)Φ

[k]
3pt(z− zk)

−1

}
=−
˛
C[k]
out

dz
2π i

(2π i)tr

(
2π iτdMa1a1 − zkdMak+1ak+1 + ak+1dMG[k]

+

(
G[k]

+

)−1
)

= tr

(
−2π iτdMa1a1 + zkdMak+1ak+1 − ak+1dMG[k]

+

(
G[k]

+

)−1
)

(3.37)

Gathering the expressions (3.27), (3.32) and (3.37), the integral I1 is

I1 =
n∑

k=1

(
trmkdMGkG

−1
k − trmkdMG[k]

0

(
G[k]

0

)−1
+ tr akdMG[k]

−

(
G[k]

−

)−1

− tr ak+1dMG[k]
+

(
G[k]

+

)−1
)

− iπ tr τdMa21 +
n∑

k=1

iπ tr zkdM
(
a2k+1 − a2k

)
− 2π i

˛
C[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
.

(3.38)
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Substituting the expressions (3.11), (3.12) and (3.38) in (3.3), we get the expression (3.2) for
the derivative of the Fredholm determinant w.r.t the monodromy data.

Having computed the derivative of the Fredholm determinant, we are ready to turn to the
isomonodromic tau function (2.47).

Theorem 1. The full parametric dependence of the tau function TH is

dlogTH = ω−ω3pt, (3.39)

where

ω3pt :=−
n∑

k=1

(
tr akdMG[k]

−

(
G[k]
−

)−1
− trmkdMG[k]

0

(
G[k]

0

)−1
− tr ak+1dMG[k]

+

(
G[k]
+

)−1
)
,(3.40)

ω =
N∑
j=1

PjdMQj+
n∑

k=1

trmkdMGkG
−1
k +

n∑
k=1

Hkdzk+
1
2π i

Hτdτ, (3.41)

Pi,Qi are the dynamical variables in (2.2), mk, ak constitute the monodromy data (see figure 1),
τ is the modular parameter, Hk, Hτ are the Hamiltonians (2.25), the matrices Gk diagonalise
the linear system on the n-point torus (2.8), and the matrices G±,G0 diagonalise the 3-point
linear system (2.28).

Proof. To compute the full parametric dependence of the isomonodromic tau function TH, we
need to differentiate the prefactor in equation (2.47):

dM log

(
e−iπNρ

N∏
i=0

η(τ)

θ1 (Qi− ρ)

n∏
k=1

e−iπ zk(tr a
2
k+1−tr a2k)eiπτ tr (a

2
1+

I
6 )

)

=−
N∑
i=1

dMQi
θ ′
1(Qi− ρ)

θ1(Qi− ρ)
− iπ

n∑
k=1

zktr (dMa2k+1 − dMa2k)+ iπτdMtr a21.

(3.42)

(3.39) then follows from (2.48) and proposition 1.

Remark 1. Note that d logTH is automatically a closed 1-form on the spaceT1,n×M, because
TH defined by equation (2.47) is a (locally) well-defined function of monodromies and times,
so its partial derivatives commute.

The following nontrivial statement follows from theorem 1.

Corollary 1. The exterior derivative of the one-form ω in (3.41) is a (time-independent) two-
form on T∗M1,n, i.e.

dω(∂t,∂µi) = dω(∂t,∂t ′) = 0, ∂tdω
∣∣
{µj} fixed

= 0, (3.43)

for every monodromy coordinate µi and time-coordinate t, t′.

Proof. Since ω3pt is a time-independent one-form on T∗M1,n, dω3pt = dMω3pt is a time-
independent two-form on T∗M. On the other hand, from d2 logTH = 0 we have

dω = dω3pt. (3.44)
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3.1. The closed one-form as the generating function of the Riemann-Hilbert map

The closed one-form dlogTH has an elegant geometric interpretation as the generating function
of the extended monodromy map

A1,n →M1,n. (3.45)

Let us consider for illustration purposes the case of the once-punctured torus with the singu-
larity at z= 0, with the Lax pair

L(CM)
z :=

(
P(τ) mx(−2Q(τ),z)

mx(2Q(τ),z) −P(τ)

)
,

L(CM)
τ :=−m

(
0 y(−2Q,z),

y(2Q,z) 0

)
, (3.46)

where y(ξ,z) := ∂ξ x(ξ,z). The consistency condition of the above Lax matrices gives the non-
autonomous elliptic Calogero-Moser equation

2π i
dP
dτ

= m2℘ ′(2Q|τ), 2π i
dQ
dτ

= P, (3.47)

and its Hamiltonian takes the form

HCM :=

˛
A

dz
2
tr
(
L(CM)
z (z)

)2
= P2 −m2℘(2Q|τ)− 2m2η1(τ), (3.48)

where η1(τ) =− 1
6
θ ′ ′ ′
1
θ ′
1
. The corresponding monodromy representation is

MA = e2π iaσ3 ,M0 = C0e
2π imσ3C−1

0 ,

MB =
1

sin2πa

(
e−

iν
2 sin(π (2a−m)) e

iν
2 sin(πm)

−e− iν
2 sin(πm) e

iν
2 sin(π (2a+m))

)
. (3.49)

The spacesA1,1 andM1,1 are parametrerized bym,P,Q,g, τ andm,a,ν,c respectively, where
g is introduced below, and c parametrizes the freedom of sending C0 7→ C0ecσ3 in (3.49)
without changing M0. The variables a,ν are Darboux coordinates for the Goldman bracket
(see appendix A), while the variables P,Q are Darboux coordinates on A(0)

1,1 . The residue of
the Lax matrix

Resz=0L
(CM)
z =−mσ1 = G−1mσ3G, (3.50)

where

G := e
1
2 gσ3G0,G0 :=

(
1 −1
1 1

)
. (3.51)

The equation (3.39) in the one-punctured case takes the simple form

dlogTCM := ω−ω3pt,ω = 2PdMQ+
1
2π i

HCMdτ +mdMg,ω3pt = iadν+mdf, (3.52)

where f is a function only of the extended monodromy data that can be obtained by using the
explicitG-matrices for the three-point problem from [14], and whose specific form will not be
needed in the following.

Theorem 2. The derivative of the 1-form ω in (3.52) can be written as a closed two-form on
A1,1, extending the standard symplectic form11 dP∧ dQ by including variations of the Casimir
m and time τ :

11 Note that dω is not quite a symplectic form. To make it symplectic one first needs to take into account that we work
with extended monodromy space, so there is conjugate variable for m, we call it c. It can also be interpreted as initial
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dω = 2dP∧ dQ− dHCM ∧ dτ
2π i

+ dm∧ dg. (3.53)

Proof. Let us start by computing the total exterior derivative of ω. Using the notation ḟ := ∂τ f,

dω = d

(
2PdMQ+Hτ

dτ
2π i

+mdMg

)
= 2dMP∧ dMQ+ 2Ṗdτ ∧ dMQ+ 2Pdτ ∧ dMQ̇+

(
∂HCM

∂Q
dMQ

+
∂HCM

∂P
dMP− 2m(℘(2Q|τ)+ 2η1)dm

)
∧ dτ
2π i

+ dm∧ dMg+mdτ ∧ dMġ

= 2dMP∧ dMQ+

(
∂HCM

∂Q
− 4π iṖ

)
dMQ∧ dτ

2π i
+

(
∂HCM

∂P
− 4π iQ̇

)
dMP∧ dτ

2π i

+ dm∧ dMg+mdτ ∧ dMġ− 2m(℘(2Q|τ)+ 2η1)dm∧ dτ
2π i

= 2dMP∧ dMQ+ dm∧ dMg− 4m2℘ ′(2Q|τ)dMQ∧ dτ

+mdτ ∧ dMġ− 2m(℘(2Q|τ)+ 2η1)dm∧ dτ
2π i

, (3.54)

where in the last line we used the Hamiltonian equations 2π iQ̇= P, 2π iṖ= m2℘ ′(2Q). To
go further, we need to compute ġ. Consider the local behaviour at zero of the Lax equation
2π i∂τΦ = ΦL(CM)

τ . The LHS and RHS behave respectively as

2π i∂τΦ∼ Czmσ3∂τG, ΦL(CM)
τ ∼ Czmσ3G lim

z→0
L(CM)
τ (z, τ), (3.55)

implying that

2π iG−1∂τG= iπG−1
0 ∂τgσ3G0 = lim

z→0
L(CM)
τ (z, τ) = m(℘(2Q|τ)+ 2η1)σ1, (3.56)

i.e.

2π iġ=−2m(℘(2Q|τ)+ 2η1) . (3.57)

Plugging this in the expression for dω, we find

dω = 2dMP∧ dMQ+ dm∧ dMg− 4m2℘ ′(2Q|τ)dMQ∧ dτ

+m
dτ
2π i

∧ dM (2m℘(2Q|τ)+ 4mη1)+ 2m(℘(2Q|τ)+ 2η1)dm∧ dτ
2π i

= 2dMP∧ dMQ+ dm∧ dMg.

(3.58)

This makes it clear that dω has no dτ -component, as implied by corollary 112. We now rewrite
dω as a 2-form on A1,1:

condition for the equation (3.57) and contributes as dm∧ dc. Then we may either add formal dual variable for τ , h
and consider extended Hamiltonian H= H− 2π i h in order to describe non-autonomus system as autonomous one
by adding equation τ̇ = 1, or just restrict to extended monodromy manifold only.
12 One can also explicitly check its time-independence:

2π i∂τdω = 2dMṖ∧ dMQ+ 2dMP∧ dMQ̇+ dm∧ dMġ (3.59)
= 2dM

(
m2℘ ′(2Q|τ)

)
∧ dMQ+ 2dMP∧ dMP− dm∧ dM (2m℘(2Q|τ)+ 4mη1) = 0.

.
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2dMP∧ dMQ= 2dP∧ dQ− 2Ṗdτ ∧ dMQ+ 2Q̇dτ ∧ dMP

= 2dP∧ dQ+
dτ
2π i

∧
(
−2m2℘ ′(2Q|τ)dMQ+ 2PdMP

)
= 2dP∧ dQ− dHCM ∧ dτ

2π i
− dtg∧ dm,

(3.60)

leading to

dω = 2dP∧ dQ− dHCM ∧ dτ
2π i

− dtg∧ dm+ dm∧ dMg

= 2dP∧ dQ+ dm∧ dg− dHCM ∧ dτ
2π i

.

(3.61)

Corollary 2. The tau function TCM is the generating function for the extended monodromy
map (3.45) on the one-punctured torus, i.e. it is the difference of symplectic potentials onA1,1

andM1,1 respectively.

Proof. This follows from the equation dlogTCM = ω−ω3pt together with the following two
facts:

1. Theorem 2, stating that ω is a symplectic potential on A1,1.
2. ω3pt is a symplectic potential for the extended Goldman’s symplectic form [1]: its exterior

derivative is a closed 2-form on the character variety such that its restriction on the sym-
plectic leaves yields the Goldman symplectic form:

dω3pt

∣∣
dm=0

= ida∧ dν
(A.8)
=

i
2π

ΩG. (3.62)

This statement is readily generalized to the SL(N) case with arbitrary number of punctures
by using the explicit one-forms and (3.41) and (3.40). Among its consequences is the extension
of the point of view of [5], identifying the isomonodromic tau function with the generating
function of the extended monodromy map, to the case of SL(N) Fuchsian systems on elliptic
curves. Indeed, the existing results for Fuchsian systems on the Riemann sphere can be derived
directly from the Fredholm determinant representation of the tau function, in much the same
way as we did in the genus one case, see appendix B.

4. Concluding remarks

The genus zero analogue of our one-form dlogTH computed in theorem 1 was used in [14] to
compute the connection constant for the Painlevé VI and II equation, which is the proportion-
ality constant between tau functions in different asymptotic regimes. In the case of Painlevé
VI, it corresponds to the transformation t 7→ (1− t), which belongs to the modular group of
the four-punctured sphere. In the case of the torus, there is a new type of connection constant
corresponding to an S-duality transformation τ 7→ −1/τ ∈ SL(2,Z), the modular group of the
torus. The problem of computing such constants has been traditionally an outstanding problem
in the theory of Painlevé equations, and we defer the explicit computation of the modular con-
nection constant to our upcoming paper. Such connection constants can be viewed as originat-
ing from a change in monodromy coordinates induced by a change in the pants decomposition
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(for example, viewing the torus as a pair of pants glued along the A- or B-cycle, in the case of
τ 7→ −1/τ ).

The higher genus generalization of the Lax matrix (2.2) is a twisted meromorphic differen-
tial on a punctured Riemann surface of genus g [9, 20, 21] , with periodicity properties along
the A- and B-cycles given by twist matrices TAj , TBj ∈ SL(N,C):

Lz(γAjz) = T−1
Aj Lz(z)TAj , Lz(γBjz) = T−1

Bj Lz(z)TBj ,
g∏
j=1

TAjTBjT
−1
Aj T

−1
Bj = 1N. (4.1)

As usual, Lz(z) will have n simple poles, with residues (2.8). The twist matrices encode the
canonical variables of the isomonodromic system, and different types of twists will correspond
to different flat bundles on Cg,n.

The structure (3.39) of the closed 1-form ω−ω0 has a rather straightforward general-
ization, leading to natural expectations on what should happen in the case of a punctured
Riemann surface of genus g≥ 2. The expectation is that a tau function in that case should
satisfy

d logT (g,n)
H =

(N2−1)(g−1)∑
a=1

PadMQa+

3g−3+n∑
j=1

Hjdtj+
n∑

k=1

trmkdMGkG
−1
k −ω3pt.

(4.2)

Here we denoted by Pa,Qa an appropriate set of Darboux coordinates encoded in the twists,
and the tj’s are local coordinates on the Teichmüller space Tg,n. ω0 is as before a time-
independent one-form depending on the pants decomposition.

While the extension (4.2) seems very natural, its derivation would require first the gener-
alization to higher genus Riemann surfaces of the Fredholm determinant construction of [10],
which we leave to future work.
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Appendix A. Character variety for the one-punctured torus

The character variety of the SL(2) one-punctured torus is the cubic surface

M(0)
1,1 :=

{
MA,MB ∈ SL(2) : tr

(
M−1
A M−1

B MAMB
)
=M0

}
/∼ . (A.1)

The trace coordinates

pA := trMA, pB := trMB, pAB := trMAMB, p0 := trM0 (A.2)

satisfy the relation

p0 = tr (M−1
A M−1

B MAMB) = tr (MAMBM
−1
A )tr (MB)− tr (MAMBM

−1
A MB)

= (trMB)
2 − tr (MAMB)tr (MAM

−1
B )+ tr (M2

A)

= (trMB)
2 − tr (MAMB) [tr (MA)tr (MB)− tr (MAMB)]

+ tr (MA)
2 − 2

= p2A+ p2B+ p2AB− pApBpAB− 2, (A.3)

so that the space of monodromy data is described by the cubic surface

W1,1 = p2A+ p2B+ p2AB− pApBpAB− p0 − 2= 0 (A.4)

known as Fricke cubic [11]. We used the following identities to obtain (A.3):

tr (xy)+ tr (xy−1) = tr xtr y, tr (x2) = (tr x)2 − 2, tr (x−1) = tr (x). (A.5)

A.1. Darboux coordinates

The functions pA,pB,pAB satisfy the Goldman bracket:

{pA,pB}= pAB−
1
2
pApB. (A.6)

We now introduce Darboux coordinates for the space M(0)
1,1 . One possible choice is the one

presented in [23], that involves hyperbolic functions and square-roots. A more convenient
choice, involving only trigonometric functions, is explicit in the parametrization (3.49). In
terms of a,ν,m, we have

pA = 2cos2πa,

pB =
sin(π(2a−m))

sin2πa
e−iν/2 +

sin(π(2a+m))
sin2πa

eiν/2,

pAB =
sin(π(2a−m))

sin2πa
ei(2π a−ν/2) +

sin(π(2a+m))
sin2πa

e−i(2π a−ν/2),

p0 = 2cos2πm. (A.7)

From the relations (A.7), we see that a,ν are Darboux coordinates for the Goldman
bracket (A.6), and the Goldman’s symplectic form is

ΩG = 2πda∧ dν. (A.8)
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Figure 3. Pants decomposition for the n-punctured sphere.

Appendix B. Tau function for the n-punctured sphere

The construction of section 3 applies (in a much simpler context) also to the case of an iso-
monodromic problem on the Riemann sphere with n Fuchsian singularities. The tau function
in this case was written as a Fredholm determinant in [8, 12]:

T (g=0)
H = det

H+

[
P−1
Σ,+P⊕,+

] n−2∏
k=1

z
1
2 tr (a

2
k−a2k−1−m2

k)
k , (B.1)

where PΣ,+ and P⊕,+ are here defined from the SL(N) Fuchsian linear system on a sphere
and the corresponding pants decomposition as in figure 3 (see [12] for details).

The computation of the monodromy derivative of (B.1) is a simplified version of the proof
of theorem 1: the result is

d logT (g=0)
H =

n∑
k=1

trmkdMGkG
−1
k +

n∑
k=1

Hkdzk−
n∑

k=1

Θ
(3pt)
k (B.2)

=
n∑

k=1

trmkdGkG
−1
k −

n∑
k=1

Hkdzk−
n∑

k=1

Θ
(3pt)
k , (B.3)

where Hk are the Schlesinger Hamiltonians, and

Θ3pt
k :=−

(
tr akdMG[k]

−

(
G[k]

−

)−1
− trmkdMG[k]

0

(
G[k]

0

)−1
− tr ak+1dMG[k]

+

(
G[k]

+

)−1
)

(B.4)

are the one-forms coming from the pants decomposition, like in the case of the torus. In par-
ticular, this shows that the Fredholm determinant tau function of [8, 12] is indeed the fully
normalized tau function of [14], and thus coincides with the generating function of the mono-
dromy map for the n-punctured sphere with Fuchsian singularities, as in [5].
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