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1 Introduction

In a scattering event, a particle whose momentum in the center of mass frame is much lower

than other particles is called a soft particle and the relation between the S-matrix with and

without the soft particles is known as the soft theorem. The soft theorems capture certain

universal features of the theories. Study of soft theorems is an old subject [3–13]. However,

in the last few years the interest on soft theorems has been renewed because of its connec-

tion to asymptotic symmetry [14–19]. It has been argued that the flat space S-matrix in

four dimensions should possess the symmetry of an asymptotically flat space. This symme-

try is spontaneously broken and the graviton is the Goldstone boson of this spontaneously

broken symmetry. Similarly, soft photon theorem can also be understood as a consequence

of the large gauge transformations. These studies established the relation between seem-

ingly different phenomena — Asymptotic symmetry, soft theorems, and memory effect. In

subsequent papers the study of asymptotic symmetry was extended to higher than four

dimensions [18, 20, 21] but our understanding of asymptotic symmetries in an arbitrary

dimension is far from being complete. The spacetime dimension independent treatment

mostly relies on Feynman diagrammatic techniques. In this approach, one starts from a

specific Lagrangian and then computes only a subclass of the Feynman diagrams which

contribute to the (sub-)leading soft theorem(s). Soft photon and soft graviton theorem

were computed in [22–67]. The new impetus in this direction came from Sen’s work [1, 2].

This method relies on covariantization of 1PI effective action with respect to the soft field.

So the result does not depend on any particular Lagrangian or on asymptotic symmetry.

This powerful method was used to compute sub-sub-leading soft graviton theorem [68] and

also to compute multiple (sub-)leading soft graviton theorem [65]. It has been noted that

the soft-photon theorem is universal at leading order [6, 7] and the soft-graviton theorem

is universal not only in the leading order but also in the sub-leading order [69]. In a recent

paper [70], the soft theorems has been investigated when two different types of massless

particles are present.

In four and higher dimensions the theories of massless particles are severely constrained

by Poincare invariance and Unitarity. Massless particles with spin > 2 cannot couple mini-

mally; they can couple only through the field strength. So the only particles which possess

gauge invariance and can have minimal coupling are spin 1, 3/2, 2. We already have a com-

plete understanding of soft photon and soft graviton theorem. However, our knowledge

of the soft gluon and the soft gravitino theorems is limited. These computations involve

subtlety in the sense that the leading soft factors do not commute and their commutator

is also leading order in soft momenta. At the level complexity, the soft gravitino theo-

rem is more subtle than photon or graviton but significantly less subtle than that of the

gluon. This is because even though the commutator of two soft factors is non-vanishing,

the commutator of three soft factors vanishes in the case of gravitino but it does not vanish

for gluon. However, for specific type of theories, soft gluon theorem can be conveniently

computed using CHY formalism [71–74]. This advantage is not currently available for

soft gravitino/photino. In this paper, we wish to derive the leading order soft theorem

for gravitino in a general quantum field theory with local Supersymmetry in an arbitrary
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number of dimensions. Soft gravitino operator is a fermionic soft operator. Though a lot

is known about bosonic soft theorems, the available literature for fermionic soft theorems

is significantly little. Single soft photino theorem was computed in [75].

Amplitudes with one and two soft gravitini for four-dimensional supergravity theories

were computed for a particular model in [76–78]. The result for single soft gravitino in

D = 4 can also be obtained from asymptotic symmetry [79, 80]. We generalize the result

to the case with an arbitrary number of soft gravitini. In our work, we follow Sen’s

covariantization approach [1, 2, 68]. The advantage of this method is that it is valid for

arbitrary theories, to all orders in perturbation theory and in arbitrary dimensions, as

long as there is no infrared divergence. In this paper, we mostly follow the notation and

conventions of [68]. We have summarized our notation and convention in section A. We

find that for multiple gravitini the leading order result is universal.

An important aspect of quantum theories with massless particles is IR divergence. In

D = 4 loop diagrams suffer from IR divergences. In QED, there is a procedure to write IR

finite S matrix element [81]. This procedure has also been understood from the perspective

of asymptotic symmetries [82–84]. There has been some recent progress for quantum

gravity [85, 86]. In section 7 we discuss the IR divergence of supergravity theories. Our

result is valid for any theory of supergravity in D ≥ 4.1

Background independence of String field theory implies that String field theory in

the presence of a soft field is obtained simply by deforming the world-sheet CFT by a

marginal super-conformal operator which corresponds to that field. Recently Sen has

proved background independence in superstring field theory [87]. So our analysis is also

valid for any supersymmetric compactification of superstring theory.

1.1 Main result

Our main result is equation (5.1) where we have written the soft factor for arbitrary number

of external soft gravitini. Consider an amplitude ΓM+N ({pi}, {ku}) for M soft gravitini

and N hard particles. It is related to the amplitude of N hard particles ΓN ({pi}) in the

following way

ΓM+N ({pi}, {kui}) =

 M∏
i=1

Sui +

bM/2c∑
A=1

A∏
i=1

Muivi

M−2A∏
j=1

Srj

ΓN ({pi}) +O(1/kM−1) (1.1)

Various terms in this expression are explained below

1. pi are the momenta of the hard particles, ku are momenta of the soft particles

2. Su is the soft factor for single soft gravitino. It is given by

Su = κ
N∑
i=1

(
ε
(u)α
µ pµi
pi · ku

Qα
)

(1.2)

Here κ is the gravitational coupling constant. ε
(u)α
µ is the polarization of the uth

gravitino; it has a Lorentz vector index & a majorana spinor index and it is grassmann

1In D ≤ 3 there is no graviton and gravitino.
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odd. The gravitino polarization (in the harmonic gauge) satisfies the transversality

condition and gamma traceless condition.

(ku)µε(u)αµ = 0 , γµαβ ε
(u)β
µ = 0 (1.3)

Qα are the supersymmetry charges/generators. The single soft gravitino factor in

four dimensional theories was also computed in [77, 79, 80]. Since Su is a product of

two grassmann odd quantities, it is grassmann even. Two single soft factors do not

commute with each other.

Su Sv 6= Sv Su (1.4)

3. Whenever there is more than one gravitino, they can combine pairwise to give a soft

graviton which in-turn couples to the hard particles. Muv encodes these type of

contributions. The explicit expression for Muv is given by

Muv = κ2
N∑
i=1

1

2

ε
(u)
µ /piε

(v)
ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]
(1.5)

Muv is neither symmetric nor anti-symmetric in its (particle-)indices

Muv 6= ±Mvu (1.6)

4. Since the single soft factors for gravitino do not commute, the final expression for the

arbitrary number of soft gravitini depends on the choice of ordering of external soft

gravitini. In section 5.1, we demonstrate that any order can be obtained from any

other ordering. However, our expression is not manifestly symmetric in various soft

gravitini.

5. The first term is the product of single-soft gravitino factors. The single-soft factors

appear in a particular order and the explicit form of second piece changes depending

on the ordering of soft factors because two soft factors do not commute.

6. In the second term, bM/2c denotes the greatest integer which is less than or equal to

M/2. A counts the number of pairs of gravitini giving a soft graviton. The subscripts

{rj , ui, vi} can take values from 1, . . . ,M and vi > ui and rj ’s are also ordered with

the largest rj appearing on the right.

7. The supersymmetry algebra may contain central charges. In this case, the gravitino

super-multiplet contains graviphoton. In the presence of central charge, there are

additional contributions to Muv due to graviphoton couplings. In the presence of

central charge the expression of Muv is modified as follows

Muv −→ M̃uv = Muv +
κ2

2

N∑
i=1

ei
ε
(u)
µ Zε(v)ν

pi · (ku + kv)

×
[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]
(1.7)
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ei is the charge of the ith external state under symmetry generated by graviphoton. Z
is an element of the Clifford algebra such that Z α

β commutes with all other element

of the Clifford algebra and2

Zαβ = Zβα (1.8)

We checked the gauge invariance of (1.1).

In the presence of soft graviton, we have to multiply the above expression by soft factors

of the graviton. For M1 soft gravitini and M2 soft gravitons equation (1.1) is modified as

given below

ΓN+M1+M2({pi}, {kr}) =

M2∏
j=1

S̃uj

M1∏
i=1

Sui +

bM1/2c∑
A=1

A∏
i=1

Muivi

M1−2A∏
j=1

Srj

ΓN ({pi})

(1.9)

S̃u is the leading soft factor for graviton. It given by

S̃u = κ

N∑
i=1

(
ζ
(u)
µν p

µ
i p

ν
i

pi · ku

)
(1.10)

here ζµν is the polarization of soft graviton.

The rest of the paper is organized as follows. In section 2, we derive the vertices from

the 1PI effective action. Then we start with the simplest case of single soft gravitino in

section 3. We show the gauge invariance of the expression. Then we compute the expression

for the two soft gravitini in section 4. The coupling of the gravitini to the graviton is

essential to show the gauge invariance of the expression for two soft gravitini. Then we

write down the expression for multiple soft gravitini in section 5. We do not present any

derivation of this result. We check the gauge invariance of this expression. Our conjectured

result is based on the computation in section 3, section 4 and appendix B. In section 6,

we derive the contribution to the soft theorem, when the supersymmetry algebra contains

central charges. In section 7 we discuss infrared divergence in supergravity and we show

that the soft gravitino theorem is not affected by the IR divergence. Then we present our

brief conclusion and potential future directions.

2 Set-up

We are interested in deriving the leading order soft theorem for gravitino in an arbitrary

theory of supergravity. We follow the approach of Sen [1, 2]. As in [1, 2] we treat finite

energy gravitino and soft gravitino differently. One can always do that at the level of tree

amplitudes. So, we consider 1PI effective action and replace all the derivatives by covariant

derivative with respect to the soft gravitino.

Our starting point is a globally super-symmetric 1PI effective action which is invariant

under some number of Majorana supersymmetries.3 So the usual (dimension-dependent)

2Spinor indices are raised and lowered using charge-conjugation matrix.
3From Coleman-Mandula theorem and HLS theorem, the maximum number of super-charge is 32.
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restriction for the existence of a globally super-symmetric action applies. We promote

the global supersymmetry to a local one by replacing all the derivatives with covariant

derivatives. At the leading order, only the minimal coupling of gravitino with matter fields

contribute. We do not assume anything about the multiplet in which matter fields are

sitting. Our analysis is valid for the matter in any supersymmetry multiplet.

Let Φm be any quantum field which transforms under some reducible representation of

the Poincare group, supersymmetry, and the internal symmetry group(s). The transform

of the fields under the global supersymmetry is given by

Φm −→ Φm + i(θαQα)m
n Φn (2.1)

Qα are supersymmetry generators. They satisfy the following algebra{
Qα,Qβ

}
= −1

2
γµαβPµ (2.2)

Here Pµ is the momentum generator. The indices α, β are the collection of all possible

spinor indices, not the indices for the minimal spinor (of that dimension). So, in a theory

with more than one supersymmetry, Qα are the collection of all the super-charges. Gamma

matrices are in Majorana representation and symmetric in the spinor indices.

Now we will evaluate the vertex that describes the coupling of a soft gravitino to any

hard particle. We start from the quadratic term of the 1PI effective action [2]

S =
1

2

∫
ddp1

(2π)D
ddp2

(2π)D
Φm(p1)Kmn(p2)Φn(p2)(2π)Dδ(D)(p1 + p2) (2.3)

The kinetic term is invariant under global supersymmetry transformation. This implies

Km1m3(Qα)m3

m2 +Km3m2(Qα)m3

m1 = 0 (2.4)

Later we will need the propagator. Let’s assume it has the following form:

Ξ(q)(q2 +M2)−1 (2.5)

where Ξ(q) is defined as

Ξ(q) = i(q2 +M2)K−1(q) (2.6)

and M is some arbitrary mass parameter.4 From (2.4) we get,

Ξm1m3(Qα)m3

m2 + Ξm3m2(Qα)m3

m1 = 0 (2.7)

We write down two more relations which will be useful later

Km1m2(−p)Ξm2m3(−p) = i(p2 +M2) δm1
m3

∂Km1m2(−p)
∂pµ

Ξm2m3(−p) = −Km1m2(−p)∂ Ξm2m3(−p)
∂pµ

+ 2ipµ δm1
m3 (2.8)

4We have already used M for number of soft-particles. Since the mass-parameter does not appear

extensively, we also M for mass-parameter.
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2.1 Covariant derivative

In super-gravity theories, the super-covariant derivative [88] is given by

Da = Ea
µ

(
∂µ − i Ψµ

αQα − i
1

2
ωµ

cdJcd
)

(2.9)

The local-supersymmetry transformation of the vielbein eaµ and the gravitino Ψµα are

given by

δeaµ =
1

2
θγaΨµ (2.10a)

δΨµα = Dµ θα = ∂µ θα +
1

4
ωµabγ

abθα (2.10b)

Here θ is the local supersymmetry parameter. We consider the covariant derivative with

respect to the soft fields only. So we consider a small fluctuation with soft momenta [2]

Ea
µ = δa

µ − κ ζaµeik·x (2.11a)

Ψµ
α = κ εµ

αeik·x (2.11b)

Here κ is the gravitational coupling constant. At linear order in fluctuation of the soft

fields we get the following expression for the super-covariant derivative

Da = ∂a − κ ζaµ∂µ − iκ εαaQα − iκ
1

2
ωa

cd(ζa
µ)Jcd (2.12)

2.2 Vertex of one soft gravitino to matter

The coupling of one soft gravitino to matter fields at linear order can be found by covari-

antizing the derivative in (2.3). Due to the interaction with gravitino, the momenta of

hard particle changes by δq = −κ εαµQα. So the quadratic part of the 1PI effective action

changes as follows (2.3) [2]:

• δ(D)(p1 + p2) gets replaced by δ(D)(p1 + p2 + k) where k is the momenta of soft

gravitino.

• The change in kinetic operator Kmn due to shift in momenta has to be substituted.

So we get

S(L) =
1

2

∫
ddp1

(2π)D
ddp2

(2π)D
Φm(p1)

[
−∂K(p2)

∂p2µ
κεαµQα

]mn
Φn(p2)(2π)Dδ(D)(p1 + p2 + k)

(2.13)

So the vertex is given by

−
[
iκ

∂K(pi)

∂ piµ
εαµQα

]mn
(2.14)

– 7 –
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2.3 External particles

Since we compute only S-matrix elements, all the external particles satisfy on-shell and

transversality condition. The external particle of polarization εi,m and momenta pi satisfies

the conditions:

εi,mKmn(q) = 0 (2.15a)

p2i +M2
i = 0 (2.15b)

2.4 Coupling of two soft gravitini to a soft graviton

When we have more than one soft gravitino, we need to consider the minimal coupling of

gravitino with graviton. To derive this vertex, we followed [2]. The graviton coupling to

any matter field can be written as:

S =
1

2

∫
dDk1
(2π)D

dDk2
(2π)D

(2π)Dδ(D)(k1 + k2 + p)

×Φm(k1)

[
−ζµνkν2

∂

∂k2µ
Kmn(k2) +

1

2
(pbζaµ − paζbµ)

∂

∂k2µ
Kmp(k2)(J ab)p

n
]

Φn(k2)

(2.16)

where ζµν is the graviton polarization.

The kinetic term for the gravitino, in the harmonic gauge, is given by

Kµα;νβ(p) = (pργ
ρ)αβηµν (2.17)

The angular momentum generator is

(J ab)µ,α
ν,β

= (J ab
V

)µ
ν
δα
β + (J ab

S
)α
β
δµ
ν (2.18)

where J ab
V

and J ab
S

are angular momentum generator in vector and spinor representations

respectively.

(J ab
V

)µ
ν

= δaµη
bν − δbµηaν (2.19a)

(J ab
S

)α
β

= −1

2
(γab)α

β
γab ≡ 1

2
(γaγb − γbγa) (2.19b)

Our gamma matrix convention is given in (A.2). Our convention is that all the particles

are incoming; the gravitino has momentum k1 and k2 and the graviton has momenta p.

The momentum conservation implies

p+ k1 + k2 = 0 (2.20)

So the vertex (Vµν;µ1µ2)αβ is given by

− iκ

[
kµ22 (γµ1)αβηµν +

1

4
(pd δ

µ2
c −pc δµ2d )(γµ1γcd)αβηµν + (pµηνµ2 −pνηµµ2)(γµ1)αβ

]
(2.21)

2.5 Note on Feynman diagrams

We use a red double-arrowed line for soft-gravitino, a blue wavy line to denote soft gravi-

tons, a violet wavy line for graviphoton, Cyan double arrowed5 line for hard fermionic

particles (including hard gravitini) and black line to denote hard bosonic particles.

5We use a double arrowed line for Majorana particles because they are their own anti-particle; they only

have Z2 charge.
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Hard bosonic particle

Hard fermionic particle

Soft gravitino

Soft graviton

Soft gravi-photon

Figure 1. Conventions for Feynman diagrams.

(εµα, k)

pi

Figure 2. Feynman diagram for single soft gravitino.

3 Single soft gravitino

In this section, we compute the leading order contribution to soft gravitino theorem due

to one soft gravitino. This result for D = 4 was first derived in [77] and was reproduced

from the analysis of asymptotic symmetries in [79, 80]. The only diagram that contributes

to this process is depicted in figure 2.

The expression for the propagator is given in equation (2.5). In this diagram, the

propagator carries momenta pi + k and Mi is the mass of the i-th particle. Let us denote

the corresponding propagator by Ξmini(pi + k). The contribution to figure 2 is given by:

Γm1...mN
N+1 ({pi}, k)

=

[
iκ

N∑
i=1

(
∂K(−pi)
∂piµ

εαµQα
)mini Ξniñi

(pi + k)2 +M2
i

]
Γ
m1...mi−1ñimi+1...mN

N ({pi})

=

[
iκ

N∑
i=1

(
∂K(−pi)
∂piµ

εαµQα
)mini Ξniñi

(2 pi · k)

]
Γ
m1...mi−1ñimi+1...mN

N ({pi}) (3.1)

where in the second step, we have used the on-shell condition (2.15b) for external hard

particle and the fact that gravitino is soft. Now we will use (2.7) and (2.8) to simplify the

expression(
∂K(−pi)
∂piµ

εαµQα
)mini

Ξniñi = εαµ

(
∂K(−pi)
∂piµ

Qα Ξ
)mi

ñi = −εαµ
(
∂K(−pi)
∂piµ

ΞQα
)mi

ñi

= −εαµ
(
−K(−pi)

∂ Ξ

∂piµ
Qα + 2 i pµi Qα

)mi

ñi (3.2)

– 9 –
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From first step to second step we have used (2.7) and from second step to third step we

have used (2.8). Now the first term drops out because of the on-shell condition (2.15a).

Hence we obtain [77]

Γm1...mN
N+1 ({pi}, k) =

[
κ

N∑
i=1

(
pµi ε

α
µ

pi · k
Qα
)mi

ñi

]
Γ
m1...mi−1ñimi+1...mN

N ({pi}) (3.3)

Soft operator. We define the soft operator Su [77] as

Su = κ

N∑
i=1

(
pµi ε

(u)α
µ

pi · ku
Qα
)

(3.4)

where u labels the soft gravitino. So the above result can be re-written as:

Γm1...mN
N+1 ({pi}, k) =

[
Smi

ñi

]
Γ
m1...mi−1ñimi+1...mN

N ({pi}) (3.5)

3.1 Gauge invariance

As a consistency check, we check the gauge invariance of equation (3.3). We put pure gauge

polarization for the gravitino

εαµ = kµ θα (3.6)

Here θα is a Majorana spinor. For pure gauge gravitino the amplitude should vanish.

From (3.3), we obtain

θα
N∑
i=1

(Qα)mi
ñiΓ

m1...mi−1ñimi+1...mN

N (pi) = 0 (3.7)

This is the ward-identity for the global super-symmetry.

4 Two soft gravitini

Now we will consider the amplitude with N hard particles and 2 soft gravitini. There are

essentially four different types of Feynman diagrams which contribute to this process

1. The class of diagrams where the two soft gravitini are attached to different external

legs (for example, figure 3). These diagrams are easy to evaluate. The computa-

tion for these type of diagrams is essentially the same as single soft gravitino. The

contribution from figure 3 is given by

κ2
N∑
i=1

ε
(1);α
µ pµi
pi · k1

Qα
N∑

j=1;j 6=i

ε
(2);β
ν pνi
pj · k2

Qβ Γ({pi}) (4.1)

2. The class of diagrams where both of the soft gravitini are attached to the same

external leg. There are mainly three types of such diagrams — (figure 4, figure 5,

figure 6). Figure 4, figure 5 denote the diagrams where the soft gravitino directly

attaches the same hard-particles. These two diagrams differ only in order of attaching

to the hard particle. Figure 6 captures the process when the soft gravitini combine

to give a soft graviton and then the soft graviton attaches to the hard particles.

Now will evaluate these diagrams.

– 10 –
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(ε
(1)
µα, k1) (ε

(2)
νβ , k2)

pi pj

Figure 3. Feynman diagram for double soft gravitini — I.

(ε
(1)
µα, k1)(ε

(2)
νβ , k2)

pi

Figure 4. Feynman diagram for double soft gravitini — II.

Figure 5. Feynman diagram for double soft gravitini — III.

Evaluation of figure 4. The contribution from the Feynman diagram in figure 4 is

given by

Γ
(1)
N+2 = κ2

N∑
i=1

∂Kmp(−pi)
∂piµ

[ε
(1);α
µ QαΞ(−pi − k1)]pq

(2pi · k1)

×∂K
qr(−pi − k1)
∂piν

[ε
(2);β
ν Qβ Ξ(−pi − k1 − k2)]rs

(2pi · (k1 + k2))
ΓN ({pi}) (4.2)

Using (2.7) and (2.8) we can simplify this expression and we get

κ2
N∑
i=1

ε
(1);α
µ pµi
pi · k1

ε
(2);β
ν pνi

pi · (k1 + k2)
QαQβ ΓN ({pi}) (4.3)
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Figure 6. Feynman diagram for double soft gravitini — IV.

Evaluation of figure 5. The contribution due to figure 5 can obtained from equa-

tion (4.2) by interchanging 1←→ 2

Γ
(2)
N+2({pi}, k1, k2) = κ2

N∑
i=1

ε
(2);β
ν pνi
pi · k2

ε
(1);α
µ pµi

pi · (k1 + k2)
QβQα ΓN ({pi})

= κ2
N∑
i=1

ε
(1);α
µ pµi
pi · k2

ε
(2);β
ν pνi

pi · (k1 + k2)

[
QαQβ +

1

2
(/pi)αβ

]
ΓN ({pi}) (4.4)

Evaluation of figure 6. Now we would like to evaluate the figure 6. This diagram

denotes the process when two soft gravitini interact first to produce a soft graviton which

then attaches to any of the external legs. The contributions from these kinds of processes

are given by

Γ
(3)
N+2({pi}, k1, k2) = −

[
ε(1)αµ (Vµν;µ1µ2)αβ ε

(2)β
ν

]
×
[(

i

2

)
ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1 − 2

D−2ηµ1µ2ην1ν2
2(k1 · k2)

]

×
[
−iκ pν1i

∂K
∂piν2

Ξ

2pi · (k1 + k2)

]
ΓN ({pi}) (4.5)

where the first square bracket denotes gravitino-gravitino-graviton vertex, the second one is

the graviton propagator and the third one is the matter- soft graviton -matter vertex. Using

the explicit expression for (Vµν;µ1µ2)αβ from (2.21) and simplifying the above expression,

we get

Γ
(3)
N+2({pi}, k1, k2)

=
κ2

2

N∑
i=1

ε(1)αµ (/pi)αβ

[
−ηµνpi · k2 −

1

2
ηµν(k1 + k2)d pieγ

de + (kµ2 p
ν
i − kν1pµi )

]
ε(2)βν

×
[

1

(pi · (k2 + k1))(k1 · k2)

]
ΓN ({pi}) (4.6)

After simplifying the second term and using gamma-traceless condition for gravitino, we get

Γ
(3)
N+2 = κ2

[
N∑
i=1

C12(pi)
1

(pi · (k2 + k1))

]
ΓN ({pi}) (4.7)
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here we have introduced C12 where Cuv(pi) is defined as follows

Cuv(pi) =
1

2
ε(u)µ /piε

(v)
ν

[
1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]
(4.8)

From the property of the gamma matrices it follows that Cuv(pi) is symmetric in its parti-

cle indices

ε(u)µ /piε
(v)
ν = −ε(v)µ /piε

(u)
ν =⇒ Cuv(pi) = Cvu(pi) (4.9)

Total contribution. Now we add the contributions from (4.1), (4.3), (4.4) and (4.7) to

get the full answer for two soft gravitini. The total contribution can be written as

ΓN+2({pi}, k1, k2) =
[
S1S2 +M12

]
ΓN ({pi}) (4.10)

we have already defined Su in (3.4). Muv is defined as follows

Muv = κ2
N∑
i=1

1

2

ε
(u)
µ /piε

(v)
ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]
(4.11)

Some properties of Su and Muv.

• Two soft operators do not commute

[Su,Sv] = −κ
2

2

N∑
i=1

[
(ε(u);αµ /pi;αβε

(v);β
ν )

pµi
pi · ku

pνi
pi · kv

]
(4.12)

• While writing the result for two soft gravitini, we could have chosen the other ordering

of soft factors but both results should match i.e.

Su Sv +Muv = Sv Su +Mvu (4.13)

Above equation can be explicitly verified by noting that:

Mvu −Muv = κ2
N∑
i=1

ε(u) · pi
pi · ku

ε(v) · pi
pi · kv

(
−1

2
/pi

)
(4.14)

We already computed Su Sv − Sv Su in (4.12). Hence (4.13) is satisfied.

• Three soft operators satisfy Jacobi identity.

[Su, [Sv,Sw]] + [Sv, [Sw,Su]] + [Sw, [Su,Sv]] = 0 (4.15)

In this particular case, each term in the above equation is individually zero.

[Su, [Sv,Sw]] = 0 (4.16)

This is not true for soft gluon operator(s). Though (4.15) is true for soft gluon oper-

ator, (4.16) does not hold for soft gluon operator. This fact makes the computation

of the soft factors for multiple soft gluon even more cumbersome.

• Some more properties of Muv are listed below

Muv 6= ±Mvu (4.17a)

Mu1v1Mu2v2 = Mu2v2Mu1v1 (4.17b)

SwMuv = Muv Sw (4.17c)
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4.1 Gauge invariance

As a consistency check, we check the gauge invariance of the result obtained in (4.10). The

right-hand side should vanish when one puts any of the gravitini as a pure gauge. Here we

will put ε(2) as a pure gauge and check if r.h.s. vanishes or not.

ε(2)αµ = k2µ θ
α
2 (4.18)

So for pure gauge, the first term in (4.10) vanishes because Qβ directly hits ΓN ({pi}) and

gives zero due to supersymmetry ward-identity (3.7). The second piece gives:

M12(ε
µα
1 , kµ2 θ

α
2 )

= κ2
N∑
i=1

1

2

ε
(1)
µ /piθ

(2)

pi · (k1 + k2)

[
pµi pi · k2
pi · k2

+
1

2

kµ2 pi · (k1 − k2)
k1 · k2

+
(kµ2 (k2 · pi)− k2 · k1pµi )

k1 · k2

]

= κ2
N∑
i=1

1

2
ε(1)µ /piθ

(2)

[
1

2

kµ2
k1 · k2

]
= 0 (4.19)

where in the last step we have used momentum conservation
∑N

i=1 pi = 0.

One should be able to show the gauge invariance when ε(1) is pure gauge. But in this

case, first term in (4.10) does not give ward-identity directly and also M12 term does not

vanish. But one can check that the sum is gauge invariant. Alternative we can use (4.13)

to express the amplitude in the other ordering of soft factors

ΓN+2({pi}, k1, k2) =
[
S2 S1 +M21

]
ΓN ({pi}) (4.20)

In this representation, it is obvious that the r.h.s. vanishes for pure-gauge ε(1). In general,

Muv(ε
µα
u , kµv θ

α
v ) = 0 (4.21a)

Muv(k
µ
u θ

α
u , ε

µα
v ) 6= 0 (4.21b)

To express the result for an arbitrary number of soft gravitini, we always choose an ordering

amongst the external gravitini. The gauge invariance would be manifest when one puts the

last gravitino as pure gauge. Using relations of the form (4.13), one can check the gauge

invariance for pure gauge configuration of any soft particle.

At this point, we would like to emphasize that the combined contribution from figure 4

and 5 is not gauge-invariant. Only after adding the contribution from figure 6 the answer

becomes gauge invariant. A different way to state the same result is that the existence

of massless spin 3/2 particles which interact with other fields at low momenta requires an

interacting massless spin 2 particle at low energy. This point was first elucidated in [77].

Symmetrized form the amplitude. The expression for the soft factor in (4.10) is not

manifestly symmetric on the gravitini. That form was useful to prove gauge invariance.

Now we use (4.15) and (4.16) to write the answer in a form which is manifestly symmetric

– 14 –
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on the gravitini

ΓN+2({pi}, k1, k2)

=
1

2

[
S1 S2 + S2 S1 +M12 +M21

]
ΓN ({pi}) (4.22)

=

[
1

2
(S1 S2 + S2 S1)

+κ2
N∑
i=1

1

pi · (k1 + k2)

[
C12(pi) +

1

4
(pi · ε(1)) /pi(ε(2) · pi)

pi · (k1 − k2)
(pi · k2)(pi · k1)

] ]
ΓN ({pi})

Apart from the last term, other terms are clearly symmetric under the exchange 1 ←→ 2.

4.2 Simultaneous and consecutive soft limit

When there are more than one soft particles, there are various ways in which one can take

the soft limit.6 Consider the amplitude with N hard particles with momenta {pi} and two

soft particles with momenta k1 and k2 (ΓN+2({pi}, k1, k2)). Then the consecutive soft limit

is defined as the limit in which the momenta are taken to be soft one after another. So for

two soft particles, this can be done in two different ways

lim
k1→0

lim
k2→0

ΓN+2({pi}, k1, k2) , lim
k2→0

lim
k1→0

ΓN+2({pi}, k1, k2) (4.23)

Alternatively, one can take simultaneous limit where one takes both k1 and k2 to zero

keeping k1/k2 fixed

lim
k1, k2→0

ΓN+2({pi}, k1, k2) (4.24)

In this paper we have focused on the simultaneous limit. If the single soft factors mutually

commute (i.e. if the generators of the gauge symmetry commute) then the simultaneous

limit is the same as the consecutive limit. For example, in the case of photon these two

limits give the same answer. However, if the symmetry generators do not commute then

these two limits differ. In our case, the supersymmetry generators do not commute. For

example, if we take the consecutive limit by taking k1 to be soft first then the Feynman

diagram in figure 5 does not contribute because the soft particle (with momentum k1) in

figure 5 is being emitted from an internal line. Hence the total contribution in this case is

different from the case when we take simultaneous soft limit.

5 Arbitrary number of soft gravitini

Now we consider the amplitude with an arbitrary number of soft gravitini. In this case,

the following type of diagrams can contribute:

• When some soft gravitini attach on one external leg and some on another external

leg(s), but none of them form pairs to give soft graviton as shown in figure 7.

6We are thankful to the unknown referee for pointing out this issue.
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. . . . . .

Figure 7. Feynman diagram for multiple soft gravitini — I.

. . . . . .

Figure 8. Feynman diagram for multiple soft gravitini — II.

. . .

Figure 9. Feynman diagram for multiple soft gravitini — III.

. . . . . . . . .

Figure 10. Feynman diagram for multiple soft gravitini — IV.

• When some soft gravitini attach on one external leg and some on another external

leg(s) and some form pairs to give soft graviton as shown in figure 8.

• All gravitini attach on the same external leg, but none of them form pairs to give

soft graviton as shown in figure 9.

• Some gravitini form pairs and give a soft graviton while some attach directly to

external leg as shown in figure 10.

We performed explicit computation for three soft gravitini, which is shown in ap-

pendix B. By looking at the pattern followed in two and three soft gravitini case, we
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propose the following expression for M -soft gravitini.

ΓN+M ({pi}, {kui}) =

 M∏
i=1

Sui +

bM/2c∑
A=1

A∏
i=1

Muivi

M−2A∏
j=1

Srj

ΓN ({pi}) (5.1)

where bM/2c denotes the greatest integer which is less than or equal to M/2. Now we will

explain various terms.

1. The first term is very similar to the leading soft factor for multiple soft photons

or multiple soft gravitons. The other terms are there because of the fact that soft

gravitino factors do not commute. We always write the first factor in a particular

order, for example, Su1 , . . . ,SuM u1 < u2 . . . < uM and then the particular form of

the second term depends on this choice of ordering for the first term. This way to

write in particular ordering also turns out to be convenient to check gauge invariance.

2. In the second term, A counts the number of pairs of gravitini giving a soft graviton.

For each pair, we have a factor of Cuv coming from gravitino-graviton-gravitino vertex

which combines with a factor due to the use of anti-commutation relation to bring the

first term in particular order, to giveMuv. The subscripts {rj , ui, vi} can take values

from 1, . . . ,M and vi > ui and rj ’s are also ordered with the largest rj appearing on

the right.

The disadvantage of the expression (5.1) is that it depends on the ordering of the external

soft gravitini. The expression is not manifestly invariant under alternation of the ordering.

Now, we will show that the expression is actually invariant under rearrangement. We can

go to any particular ordering starting from any other ordering. Our strategy is as follows:

1. We first show that any two consecutive entries can be interchanged.

2. By repeating this operation (of interchanging any two consecutive entries) many

times, we can obtain any ordering starting from any other ordering.7

5.1 Re-arrangement

Here we show that any two consecutive terms of equation (5.1) can be interchanged. Con-

sider the ith and (i+ 1)th particle. We write the expression (5.1)

ΓN+M ({pi}, {ku}) =
[
Su1 . . .SuiSui+1 . . .SuM +Mu1u2 Su3 . . .SuiSui+1 . . .SuM

+Mu2u3 Su1 . . .SuiSui+1 . . .SuM−1SuM + . . . .+Mu1uiSu2 . . .Sui+1 . . .SuM−1SuM
+Mu2ui Su1 . . .Sui+1 . . .SuM−1SuM + . . . .+Muiui+1Su1 . . . . . . .SuM−1SuM
+Mu1u2Mu3u4 ..SuiSui+1 . . .SuM−1SuM + ..+Mu1u2 . . .Muiui+1 . . .MuM−1uM

]
×ΓN ({pi}) (5.2)

Here the ith and (i+ 1)th particle can appear only in three different ways

7Theorem 2.1 in this note gives a proof of the above statement.
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• Possibility I: both the ith and (i+ 1)th gravitini appear as S factor[
ASuiSui+1 B

]
ΓN ({pi}) (5.3)

where A and B involves all the other M − 2 gravitini. The other gravitions appear

as ordered multiplications of Su and Mvw’s in all possible ways.

• Possibility II: both the ith and (i+ 1)th gravitino appear in Muv together[
ÃMuiui+1 B̃

]
ΓN ({pi}) (5.4)

Here Ã and B̃ involves all the other M−2 gravitini. Again the other gravitions appear

as ordered multiplications of Su and Mvw’s in all possible ways. This would imply

A = Ã , B = B̃ (5.5)

So same A and B appear in (5.3) and in (5.4). Adding (5.3) and (5.4) we get[
A(Sui Sui+1 +Muiui+1)B

]
ΓN ({pi}) (5.6)

• Possibility III: at least one of them appears asM and if both of them appear inMuv,

they do not appear together. The possibility of both of them to appear together in

Muv has already been taken into account in possibility II.

N∑
j=1,j 6=i,i+1

[
MujuiCi+1(εui+1) +Mujui+1Ci(εui)

]
ΓN ({pi}) (5.7)

Here Ci+1(εui+1) is the all possible arrangements of all the gravitini except ujand ui
and similarly Ci(εui) is the all possible arrangements of all the gravitini except uj
and ui+1.

Now if we started with an ordering in which ui+1 appeared before ui then we can repeat

the same analysis. Equation (5.7) is same in both cases, but in (5.2) and in (5.3) will i and

i+ 1 will be interchanged (i.e. i←→ i+ 1). Hence instead of (5.6) we would get[
A
(
Sui+1Sui +Mui+1ui

)
B
]
ΓN ({pi}) (5.8)

But now we can use (4.13) to see that (5.6) and (5.8) a essentially same. Hence the final

answer is same irrespective of ordering of the soft factors.

5.2 Gauge invariance

We have proved the expression for multiple soft gravitini can be rearranged to any particular

ordering. Using this, we can bring any gravitino to be the rightmost. So we will show the

gauge invariance of the expression only when the rightmost gravitino is pure gauge.

The right-most gravitino can appear only in two ways

1. It can appear in Su. Since it is the right-most gravitino, it will directly hit the

amplitude of the hard-particle and hence zero by (3.7).

2. Or it can appear in Muv. Again it will always appear as the 2nd index. But this

vanishes because of (4.21a).
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6 Two soft gravitini in the presence of central charge

In case of extended supersymmetries,8 one can have central charges in the supersymmetry

algebra. The supersymmetry algebra in (2.2) modifies to{
Qα,Qβ

}
= −1

2
γµαβPµ −

1

2
Zαβ U (6.1)

U is (are) the generator(s) of U(1) symmetry(-ies) generated by the central charge(s). As

explained below equation (2.2), α, β are some (ir-)reducible spinor indices. In this language

the existence of central charge is equivalent to the condition that there exists an element(s)

Zα
β in the Clifford algebra such that, Zαβ satisfies

Zαβ = Zβα (6.2)

In general, there can be higher form central charges. For example, in D = 11, the super-

symmetry algebra is of the form{
Qα,Qβ

}
= −1

2
γµαβPµ + γµ1µ2µ3αβ Aµ1µ2µ3 (6.3)

But for our purpose, we ignore any higher form central charges. This is because the

higher form central charges can only minimally couple to extended objects (of appropriate

dimensions), whereas we consider the scattering of only point-like states.

In this case the commutator of two soft operators in (4.12) is modified as follows

[Su,Sv] = −κ
2

2

N∑
i=1

[
ε(u);αµ (/pi;αβ + eiZαβ)ε(v);βν

pµi
pi · ku

pνi
pi · kv

]
(6.4)

In presence of the central term the computation in section 4 will be modified. In presence

of particles charged under the central charge, the combined contribution from figure 3, 4, 5

and 6 is not gauge invariant. We need a new interaction to make it gauge invariant. In

fact, it is possible to extend the argument in [77] to argue that gauge invariance in presence

of central charge implies the existence of massless photon which interacts at low energy.

Graviphoton and new interaction [89]. When we gauge the global supersymmetry

with central charge to get supergravity, we get a U(1)N gauge symmetry generated by

spin 1 bosons (graviphoton) present in the graviton multiplet. These graviphotons couple

to the gravitino and to any matter which carries the central charge. The coupling of the

graviphoton to gravitino is completely fixed by supersymmetry and is related to that of

graviton. The gravitino-gravitino-graviphoton three point function (Ṽµν;µ1)αβ is given by

−iκ
[
kµ12 (Z)αβηµν

]
− iκ

2

[
[(k1+k2)c δ

µ1
d ](Zγcd)αβηµν

]
+iκ

[
(kµ2 η

µ1ν−kν1 ηµ1µ)(Z)αβ
]

(6.5)

Whenever we have more than one soft gravitini, the vertex in (6.5) contributes. In

particular, consider the case of two soft gravitini. We already evaluated it in section 4. In

presence of the central charge(s) we have a new contribution from the diagram 11

8We are thankful to Matteo Bertolini, Atish Dabholkar, Kyriakos Papadodimas, Cumrun Vafa for dis-

cussion on this point.
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Figure 11. Feynman diagram for double soft gravitini — V.

Evaluation of figure 11. Now we would like to evaluate the figure 11. The evaluation

of this diagram very similar to the evaluation of the figure 6. It is given by

Γ
(4)
N+2({pi}, k1, k2) =

[
ε(1)αµ (Ṽµν;µ1)αβ ε

(2)β
ν

] [ iηµ1µ2
2k1 · k2

]
× [−2κ ei p

µ2
i ]

[
1

2pi · (k1 + k2)

]
ΓN ({pi}) (6.6)

Here the first square bracket denotes gravitino-gravitino-graviphoton vertex, the second

one is the graviphoton propagator and the third one is the matter- soft graviphoton -

matter vertex and the last one is the internal propagator. Now we substitute the explicit

expression for (Ṽab;µ)αβ from equation (6.5) and we obtain

Γ
(4)
N+2({pi}, k1, k2)

=
(−iκ)2

2

N∑
i=1

ei ε
(1)
µα(Z)αβ

[
ηµνpi · k2 +

1

2
ηµν(k1 + k2)d pieγ

de − (kµ2 p
ν
i − kν1pµi )

]
ε
(2)
νβ

×
[

1

(pi · (k2 + k1))(k1 · k2)

]
ΓN ({pi}) (6.7)

We simplify the above expression to get

Γ
(4)
N+2({pi}, k1, k2)

=
κ2

2

N∑
i=1

ei ε
(1)
µα(Z)αβ

[
−ηµνpi · k2 +

1

2
ηµνpi · (k1 + k2) + (kµ2 p

ν
i − kν1pµi )

]
ε
(2)
νβ

×
[

1

(pi · (k2 + k1))(k1 · k2)

]
ΓN ({pi}) (6.8)

In this case the definition of Cuv(pi) in (4.8) will be modified as follows

C̃uv(pi) = Cuv(pi) +
κ2

2
ei ε

(u)
µ Zε(v)ν

[
1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]
(6.9)

In equation (4.9) we show that Cuv is symmetric in its particle induces. The same property

holds for C̃uv

C̃uv(pi) = C̃vu(pi) (6.10)
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We add the contribution from (6.9) to (4.10) to get the final answer. It is given by

ΓN+2({pi}, k1, k2) =
[
S1 S2 + M̃12

]
ΓN ({pi}) (6.11)

Here we have introduced M̃uv. It is defined as

M̃uv =Muv +
κ2

2

N∑
i=1

ei
ε
(u)
µ Zε(v)ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]
(6.12)

Note that the relations in equations (4.17a), (4.17b), (4.17c) remain the same if we replace

Muv with M̃uv. In this particular case

Su Sv − Sv Su = −M̃uv + M̃vu (6.13)

We check this explicitly. We have already the l.h.s. , i.e. Su Sv − Sv Su in (6.4). Now we

compute the r.h.s.

M̃vu − M̃uv = Mvu −Muv

+
κ2

2

N∑
i=1

ei
ε
(v)
µ Zε(u)ν

pi · (ku + kv)

[
pµi p

ν
i

pi · ku
+

1

2

ηµνpi · (kv − ku)

ku · kv
+

(kµupνi − kνvpµi )

ku · kv

]

−κ
2

2

N∑
i=1

ei
ε
(u)
µ Zε(v)ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv pνi − kνupµi )

ku · kv

]

= −κ
2

2

N∑
i=1

ε(u) · pi
pi · ku

ε(v) · pi
pi · kv

(
/pi + eiZ

)
(6.14)

Hence (6.13) is satisfied.

6.1 Gauge invariance

As explained in section 4.1, it is easier to prove gauge invariance if we put pure gauge

polarization for the gravitino adjacent to ΓN . So we consider pure gauge polarization for

the second gravitino

εµα2 = kµ2 θ
α
2 (6.15)

For pure gauge

M̃uv =
κ2

2

N∑
i=1

1

pi · (ku + kv)

[
ε(u)µ /piθ

(v) + ei ε
(u)
µ Zθ(v)

]
×
[
pµi pi · kv
pi · kv

+
1

2

kµv pi · (ku − kv)
ku · kv

+
(kµv kv · pi − kv · kupµi )

ku · kv

]
=
κ2

2

N∑
i=1

1

pi · (ku + kv)

[
ε(u)µ /piθ

(v) + ei ε
(u)
µ Zθ(v)

] [1

2

kµv
ku · kv

]
= 0 (6.16)

where in the last step we have used momentum conservation and (central-)charge

conservation
N∑
i=1

pi = 0 ,

N∑
i=1

ei = 0 (6.17)
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6.2 Presence of soft graviton

Following [1, 2, 68] it is easy to include soft graviton into this computation. The vertex

for the leading soft graviton (ζµνP
µP ν) commutes with the vertex for soft gravitino and

also commutes with the vertex for any other soft graviton. So, in the presence of M1 soft

gravitini and M2 soft gravitons equation (5.1) is modified as follows

ΓN+M1+M2({pi}, {kr}) =

M2∏
j=1

S̃uj

M1∏
i=1

Sui +

bM1/2c∑
A=1

A∏
i=1

Muivi

M1−2A∏
j=1

Srj

ΓN ({pi})

(6.18)

S̃u is the leading soft factor for graviton, given in equation (1.10).

We know that the leading and sub-leading soft factors for multiple gravitons are uni-

versal. In this paper, we derived the leading order expression for multiple soft gravitini

and we found that it is also universal. These three soft theorems are inter-related by su-

persymmetry. One way to argue this is to observe that all these three soft theorems follow

from covariantizing the action with respect to the soft field. In supergravity, the structure

of the covariant derivative is uniquely fixed by supersymmetry.

7 Infrared divergence and soft gravitino theorem

Now we briefly discuss infrared divergences in supergravity theories.9 We are using 1PI

effective action for our computation but this approach fails when 1PI vertices are IR di-

vergent. The presence of massless particles in the loops can potentially give rise to these

divergences, hence in the supergravity theories, graviton, gravi-photon and gravitino10 can

contribute. There are no IR divergences in the 1PI effective action for D ≥ 5. We will show

below that the virtual gravitino does not give rise to any IR divergence in any dimensions.

In D = 4, 1PI vertices suffer from IR divergences only due to graviton and graviphoton.

However, a more careful analysis shows that the leading soft gravitino factor is not altered

by IR divergences.

First, we discuss the case of D ≥ 5. Then we discuss the case of D = 4 which

needs more careful analysis. We show that IR divergence does not alter leading soft

gravitino theorem.

7.1 Infrared divergences in D ≥ 5

We want to check if the approach based on 1PI effective action remains valid in D ≥ 5

even after taking the soft limit for the external gravitino.

Consider the Feynman diagram in figure 12(a), if the external momenta are finite, then

by naive power-counting, we can see that the amplitude does not have IR divergence for

D ≥ 4. We have three powers of ` in the denominator, one from each of the propagators

with momenta pi + `, pj − ` and `. The last propagator gives one power of ` because it

9We are thankful to Ashoke Sen for discussion on this section and correcting one mistake in an earlier

version of the draft. We are thankful to the unknown referee for suggesting various improvements to this

section.
10If there is a massless matter multiplet then in principle it can also contribute to infrared divergence.
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`

pi + `pi
k

pi + k + `

pj

pj − `

(a)

`

pi + `pi
k

pi + k + `

pj

pj − `

(b)

Figure 12. Infrared divergence in supergravity I.

is a fermionic particle. In D dimensions, we have D powers of ` in numerator due to the

loop integral and hence the amplitude goes like `D−3 for small loop momentum `. So the

diagram is free of IR divergence in D ≥ 4. Hence any virtual gravitino does not give rise to

IR divergences. But when the momenta k → 0, then the propagator carrying momentum

pi +k+ ` gives another power of ` and makes the result logarithmically divergent in D = 4

but there is no additional divergence in D ≥ 5. So our results are still valid for D ≥ 5.

Next we consider the Feynman diagram in figure 12(b). In this case, the internal

massless particle is graviton (it can also be photon/graviphoton). From power-counting we

see that there are four powers of ` in the denominator, one from each of the propagators

with momenta pi + `, pj − ` and two powers of ` coming from the graviton propagator.

Now in k → 0 limit, the propagator carrying momentum pi + k + ` gives another power

of ` and the diagram is logarithmic divergent in D = 5. But the leading order answer is

O(k−1) and hence it still holds for D ≥ 5.

7.2 Infrared divergences in D = 4

In D = 4, the 1PI effective action suffers from IR divergences due to the presence of

graviton and photon in the loop (We already argued that there is no IR divergence in the

1PI vertex due to the presence of gravitino in the loop). So we cannot use it to compute

the S-matrix. But one can use the tree level action to derive soft theorems order by order

in perturbation theory. So in four dimensions, we use the tree level action instead of 1PI

action in equation (2.3).

Now the question is whether loop corrections can alter the results of leading soft

theorems. In case of soft graviton (and photon11), it has been shown that even though

the amplitudes with and without soft particles suffer from IR divergences but at leading

order, when one sum over diagrams, the divergence factorizes out and cancels from both

sides [7, 25, 40]. In this section, we show that the same result holds for soft gravitino. We

will show that the IR divergence due to graviton and graviphoton is same for amplitudes

with and without soft gravitino.

7.2.1 Single real soft gravitino in presence of virtual graviton

First we consider the loop correction to the soft gravitino factor in D = 4 in presence

of a graviton running in the loop. We denote the contributions from these diagrams as

11With massive matter.
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`

pi + k

pi
k

pi + k + `

pj

pj − `

(a)

`

pi + `pi
k

pi + k + `

pj

pj − `

(b)

pi
k

pj

(c)

Figure 13. Infrared divergence in supergravity II.

Γ
(i;j,k)
N+1 (k, {pi}); here the superscripts j and k denote the legs to which the virtual graviton

attaches and i denote the one to which the soft gravitino attaches. The total contribution

is given by

ΓN+1(k, {pi}) =

N∑
i=1

N∑
j=1

N∑
k=1;k 6=j

Γ
(i;j,k)
N+1 (k, {pi}) (7.1)

First we evaluate Γ
(i;i,j)
N+1 (k, {pi}). It is given by

Γ
(i;i,j)
N+1 (k, {pi}) =

[
Ã1(pi, pj ; k) + Ã2(pi, pj ; k)

]
ΓN ({pi}) (7.2)

Ã1(pi, pj ; k) and Ã2(pi, pj ; k) are contributions from diagram (a) and (b) respectively in

figure 13. In small k and small ` limit, these contributions are given by

Ã1(pi, pj ; k) = κ3βij (pi · εαQα)

∫
d4`

(2π)4
1

`2
1

pi · `
1

pj · `
1

pi · (k + `)
(7.3)

Ã2(pi, pj ; k) = κ3βij (pi · εαQα)

∫
d4`

(2π)4
1

`2
1

pi · k
1

pj · `
1

pi · (k + `)
(7.4)

where βij is given by

βij =

(
i

2

) [
2(pi · pj)2 − p2i p2j

]
(7.5)

Adding the contributions from (7.3) and (7.4), we get

Γ
(i;i,j)
N+1 (k, {pi}) = κ2βij

∫
d4`

(2π)4
1

`2
κ pi · εαQα
pi · k

1

pj · `
1

pi · `
ΓN ({pi}+O(k0)

= A(pi, pj)
κ pi · εαQα
pi · k

ΓN ({pi}) +O(k0) (7.6)
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`

pi

pi + `

pj

pj − `

Figure 14. Infrared divergence in Supergravity III.

where A(pi, pj) is the IR divergence that appears in diagram without soft gravitino which

is depicted in figure 14. It is given by:

A(pi, pj) = κ2βij

∫
d4`

(2π)4
1

`2
1

pi · `
1

pj · `
(7.7)

The contribution from diagram (c) in figure 13 is given by [7]

Γ
(i;j 6=i,k 6=i)
N+1 (k, {pi}) = A(pj , pk)

[
κpi · εαQα
pi · k

]
ΓN ({pi}) (7.8)

Putting (7.6) and (7.8) in (7.1), we obtain

ΓN+1(k, {pi}) =

[
κ

N∑
i=1

pi · εαQα
pi · k

] N∑
j=1

N∑
k=1, 6=j

A(pj , pk)

ΓN ({pi}) (7.9)

Here we found that the soft gravitino factor just factors out from the IR divergent integral.

Now we will compute the two loop contributions to IR divergence. We depicted the

corresponding Feynman diagrams in figure 15. The contribution from these diagrams are

given by

Γ
(i;i,j)
N+1 (k, {pi}) =

[
6∑

a=1

∫
d4`1d

4`2 I
(a)

]
[κ pi · εαQα] ΓN ({pi}) (7.10)

where I(1,2,3) are obtained as the integrands from the three diagrams shown below. The

other three integrands are obtained from the non-planar diagram. The explicit expressions

for these integrands are given by

I(1) = κ2
1

pi · k
βij
`22

1

pi · (k + `2)

βij
`21

1

pi · (k + `1 + `2)

1

pj · `2
1

pj · (`1 + `2)

I(2) = κ2
βij
`22

1

pi · l2
1

pi · (k + `2)

βij
pi · (k + `1 + `2)

1

pj · `2
1

`21

1

pj · (`1 + `2)

I(3) = κ2
βij
pi · `2

βij
pi · (`1 + `2)

1

pi · (k + `1 + `2)

1

pj · `2
1

`21

1

`22

1

pj · (`1 + `2)
(7.11)

Adding the three contributions above and the contributions from the non-planar dia-

grams we obtain,

I(pi, pj ; k) =
1

pi · k

∫
d4`1d

4`2 I(pi, pj ; `1, `2) (7.12)
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`1
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pj

`1

`2

k

pi

pj

`1

`2

k

pi

pj

Figure 15. Infrared divergence in Supergravity IV.

where I(pi, pj ; `1, `2) is given by

I(pi, pj ; `1, `2) = κ2
1

pi · (`1 + `2)

1

pi · `2
1

pj · `2
βij
`21

βij
`22

1

pj · `1
(7.13)

which is the same two loop integrand we get when there is no soft gravitino. There are

other two loop diagrams that we have not depicted here, for example, the diagrams in

which two virtual gravitons attach to different legs etc. Adding contribution from all two

loop diagrams we obtain

ΓN+1(k, {pi}) =
1

2

 N∑
j=1

N∑
k=1; 6=j

A(pj , pk)

2 [
κ

N∑
i=1

pi · εαQα
pi · k

]
ΓN ({pi}) (7.14)

Note that the soft factor appears just as a multiplicative factor with the infrared divergent

piece. One can show that the contribution due to N - virtual soft-gravitons and an external

soft gravitino comes out to be

ΓN+1(k, {pi}) =

[
κ

N∑
i=1

pi · εαQα
pi · k

] ∞∑
N=0

1

N !

 N∑
j=1

N∑
k=1;k 6=j

A(pj , pk)

N
ΓN ({pi}) (7.15)

This implies the soft theorem is not affected by the IR divergence.

7.2.2 Single real soft gravitino in presence of virtual graviphoton

In the presence of graviphoton, there are new IR divergent diagrams due to gravipho-

ton running in the loops. These diagrams can be obtained by replacing graviton with
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graviphoton in the figure 13 and in the figure 15. The computation is very similar to the

one presented in subsection 7.1. The infrared divergence due to graviphoton is given by[ ∞∑
N=0

1

N !
[B(pi, pj)]

N

]
(7.16)

where B(pi, pj) is given by

B(pi, pj) = κ2eiej

∫
d4`

(2π)4
1

`2
1

pi · `
1

pj · `
1

pi · (k + `)
(7.17)

In presence of graviphoton, equation (7.15) will be replaced by the following equation

ΓN+1(k, {pi}) =

[
κ

N∑
i=1

pi · εαQα
pi · k

]

×
[ ∞∑
N=0

1

N !

[
N∑
j=1

N∑
k=1;k 6=j

(A(pj , pk) +B(pj , pk))

]N]
ΓN ({pi}) (7.18)

Again we can see that the soft factor is not affected by the IR divergence.

7.2.3 Massless matter

Now we concentrate on the special case when some (or all) of the matter fields are mass-

less.12 Weinberg in [7] showed that in the presence of massless matter the IR divergence

due to virtual graviton cancels. However, there are irremovable IR divergences in QED

with the massless matter.

In this case, the IR divergence comes from the presence of virtual graviton and virtual

graviphoton. The ones due to virtual graviton cancel due to Weinberg’s argument. How-

ever, in the presence of graviphoton, there might be some non-removable IR divergences.

Graviphoton gauges the symmetries generated by the central charge. The central charge

puts a lower bound on the mass of the particle (the BPS bound). The graviphoton only

couples to matter with non-zero central charge and hence with non-zero mass. So there is

no irremovable IR divergence in this case.

In presence of both the vector multiplet(s) and the massless matter multiplet(s) charged

under the vector multiplet, there are irremovable IR divergences in D = 4 due to the pho-

ton/gluon (of the vector multiplet) running in the loop. Since there is no vector multiplet

in N = 8 supergravity, our analysis implies that there are no irremovable IR divergences

in N = 8 supergravity (and in type II string theory).

8 Conclusion

In this paper, we have computed the multiple soft gravitini theorem at leading order in

soft momenta for an arbitrary theory of supergravity. One natural question to ask is that

what is the structure of the sub-leading soft gravitino theorem and how the structure of

12We are thankful to the unknown referee for pointing out this issue.
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the subleading soft gravitino theorem is related to that of sub-leading and sub-subleading

soft graviton theorem. One can use this approach to compute soft photino theorem and

correction to soft photino theorem in the presence of gravitino, photon, and graviton. An-

other interesting question is to derive the result for multiple soft gravitini from the analysis

of asymptotic symmetries and from CFT living on I ± following [90–93]. Following [94]

one could also try to verify this result from world-sheet methods. We leave these questions

for future work.
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A Notation and convention

Our notation is as follows

Curved space indices µ, ν, ρ, σ (A.1a)

Tangent space indices a, b (A.1b)

SO(d, 1) spinor indices α, β (A.1c)

Soft-particle indices u, v (A.1d)

Hard-particle indices i, j (A.1e)

Number of Soft-particles M (A.1f)

Number of Hard-particles N (A.1g)

Polarization of the graviton ζµν (A.1h)

Polarization of the gravitino εµα (A.1i)

A.1 Gamma matrix and spinor convention

We use the following the gamma matrix convention

{γa, γb} = −2 ηab (A.2)

and we get

[γa, γbc] = −2ηabγc + 2ηacγb (A.3)

The basic spinors are defined as

ψα (A.4)
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gamma matrix is

(γµ)α
β (A.5)

We raise and lower the indices as follows (NW-SE convention)

ψα = Cαβψβ , ψα = ψβCβα (A.6)

Here Cαβ satisfies

CαβCγβ = δαγ CβαCβγ = δγα (A.7)

(γµ)αβ is given by

γµαβ = (γµ)α
γ Cγβ (A.8)

A.2 Majorana spinor

For two Majorana spinors ψ1 and ψ2

(ψ1)
α(ψ2)α = (ψ2)

α(ψ1)α (A.9)

B Three soft gravitini

In this appendix, we present the explicit computation for three soft gravitini. This com-

putation is instructive to understand the soft factor for multiple gravitini, described in

section 5. In this section, we will write only ΓN+3 instead of ΓN+3({pi}, k1, k2, k3) to de-

note the amplitude with the soft gravitini and similarly we will write ΓN instead of ΓN ({pi})
to denote the amplitudes involving only the hard-particles. For three soft gravitini, the

different contributions are as follows:

• First consider Feynman diagrams where all three gravitini attach to separate exter-

nal legs (figure 16). In this case the contribution will be just the multiplication of

individual soft factors. So we get

Γ
(1)
N+3 = κ3

N∑
i=1

pµi ε
(1);α1
µ

pi · k1
Qα1

N∑
j=1,j 6=i

pµj ε
(2);α2
µ

pj · k2
Qα2

N∑
k=1,k 6=i,j

pµkε
(3)α3
µ

pk · k3
Qα3 ΓN ({pi})

(B.1)

• Now we consider the case when two gravitini attach same leg and the third one on

different leg as shown in figure 17. The contribution from such configurations is

given by

Γ
uv|w;1
N+3 = κ3

N∑
i=1

pµi ε
(u)αu
µ

pi · ku
Qαu

pµi ε
(v)αv
µ

pi · (ku + kv)
Qαv

N∑
j=1,j 6=i

pµj ε
(w)αw
µ

pj · kw
QαwΓN ({pi}) (B.2)

where u, v, w can take values 1, 2, 3. We can have different contributions depending

on the order in which gravitini attach.
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Figure 16. Feynman diagram for three soft gravitini — I.

Figure 17. Feynman diagram for three soft gravitini — II.

Figure 18. Feynman diagram for three soft gravitini — III.

• The third possibility consists of the diagrams when all gravitini are being attached

to the same external leg (figure 18). The contribution is given by

ΓuvwN+3 = κ3
N∑
i=1

ε
(u)αu
µ pµi
pi · ku

ε
(v)αv
ν pνi

pi · (ku + kv)

ε
(w)αw
ρ pρi

pi · (ku + kv + kw)
QαuQαvQαwΓN ({pi}) (B.3)

We have 6 diagrams which can be obtained by interchanging the external

soft gravitini.

• Now we consider the diagrams in which any two soft gravitini combine to give a

soft graviton and then the soft graviton attaches to the external leg; the left-over

(lonely!) third one directly attaches to the external leg. This can also give rise to two

scenarios, i.e. the internal soft graviton and the leftover lonely gravitino can attach

to same hard particles or different hard particles.
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Figure 19. Feynman diagram for three soft gravitini — IV.

Figure 20. Feynman diagram for three soft gravitini — V.

In the case when they attach on separate legs as shown in figure 19, we just have the

multiplication of two factors:

Γ
uv|w;2
N+3 = κ3

N∑
i=1

[ Cuv(pi)
pi · (ku + kv)

] N∑
j=1,j 6=i

ε
(w)αw
µ pµj
pj · kw

QαwΓN ({pi}) (B.4)

Since any two gravitini can combine to give the internal soft graviton (and the third one

will attach to the separate leg), there are three possibilities.

Now we can have the case when both the internal soft graviton and the left-over soft

gravitino attach to same external leg as shown in figure 20

Γ
uv|w;3
N+3 = κ3

N∑
i=1

[
ε
(w)αw
µ pµj
pj · kw

Qαw

Cuv(pi)
(pi · (k1 + k2 + k3))

]
ΓN ({pi}) (B.5)

We will have another diagram in which the graviton attaches to the external leg first and

then the gravitino attaches to the external leg i.e.

Γ
uv|w;4
N+3 = κ3

N∑
i=1

[
Cuv(pi)

pi · (ku + kv)

ε
(w)αw
µ pµj

pi · (k1 + k2 + k3)
Qαw

]
ΓN ({pi}) (B.6)

Adding the contributions from (B.4), (B.5) and (B.6), we get

Γ
uv|w;4
N+3 = Γ

uv|w;2
N+3 + Γ

uv|w;3
N+3 + Γ

uv|w;4
N+3

= κ2

[[
N∑
i=1

Cuv(pi)
(pi · (ku + kv))

]
Sw
]

ΓN ({pi}) (B.7)
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Figure 21. Feynman diagram for three soft gravitini — VI.

Now we write the contributions due to the six diagrams shown in figure 18. We choose a

particular ordering. We choose Qγ to be the right-most. The Γ123
N+3 remains the same

Γ123
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(2)β
ν pνi

pi · (k1 + k2)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)
QαQβQγ ΓN ({pi}) (B.8)

Now we bring any other expression into this particular ordering by using (2.2). For example,

Γ132
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(3)γ
ν pνi

pi · (k1 + k3)

ε
(2)β
ρ pρi

pi · (k1 + k2 + k3)
QαQγQβ ΓN ({pi})

= κ3
N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(2)β
ν pνi

pi · (k1 + k3)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)

[
QαQβQγ +

1

2
(/pi)βγQα

]
ΓN ({pi})

(B.9)

Following the same philosophy, we obtain

Γ213
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k2

ε
(2)β
ν pνi

pi · (k1 + k2)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)

×
[
QαQβQγ +

1

2
(/pi)αβQγ

]
ΓN ({pi}) (B.10a)

Γ231
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k2

ε
(2)β
ν pνi

pi · (k3 + k2)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)

×
[
QαQβQγ −

1

2
(/pi)αγQβ +

1

2
(/pi)αβQγ

]
ΓN ({pi}) (B.10b)

Γ321
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k3

ε
(2)β
ν pνi

pi · (k3 + k2)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)

×
[
QαQβQγ −

1

2
(/pi)αγQβ +

1

2
(/pi)αβQγ +

1

2
(/pi)βγQα

]
ΓN ({pi}) (B.10c)

Γ312
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k3

ε
(2)β
ν pνi

pi · (k3 + k1)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)

×
[
QαQβQγ −

1

2
(/pi)αγQβ +

1

2
(/pi)βγQα

]
ΓN ({pi}) (B.10d)
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Adding all the contributions from equation (B.8), (B.9) (B.10a)–(B.10d) we get:

ΓexN+3 = κ3
N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(2)β
ν pνi
pi · k2

ε
(3)γ
ρ pρi
pi · k3

QαQβQγΓN (pi)

+
1

2
κ3

N∑
i=1

[
ε
(1)α
µ pµi
pi · k1

( /pi)βγQα
ε
(2)β
ν pνi

pi · (k2 + k3)
− ε

(1)α
µ pµi

pi · (k1 + k3)

ε
(2)β
ν pνi
pi · k2

( /pi)αγQβ

− ε
(1)α
µ pµi

pi · (k3 + k2)

ε
(2)β
ν pνi
pi · k2

( /pi)αβQγ
]
ε
(3)γ
ρ pρi
pi · k3

ΓN ({pi}) (B.11)

We add the contributions from (B.1), (B.2) and (B.7) to get the full answer. The full result

can be written as

ΓN+3({pi}, {ku}) =
[
S1 S2 S3 +M12 S3 +M23 S1 +M13 S2

]
ΓN ({pi}) (B.12)

where Su and Muv is defined in (3.4) and (4.11) respectively. The above answer matches

with the proposed answer (5.1) with M = 3.

Rearrangement. We have written the answer for a particular ordering (1-2-3). In this

case, we explicitly demonstrate the rearrangement. Let’s say we want to write in the order

1-3-2. We apply the identity (4.13) for u = 2, v = 3

ΓN+3({pi}, {ku}) =
[
S1(S3S2 −M23 +M32) +M12 S3 +M23 S1 +M13 S2

]
ΓN ({pi})

=
[
S1 S3 S2 +M12 S3 +M32 S1 +M13 S2

]
ΓN ({pi}) (B.13)

B.1 Gauge invariance

The gauge invariance of (B.12) is the easiest to show if we put pure gauge polarization

for the last one, for example, 3rd gravitino in (B.12), 2nd gravitino in (B.13). Because

the answer can always be rearranged to any particular ordering, we can always bring any

particular gravitino to be the last entry. So, it’s sufficient to show that the gauge invariance

for the pure gauge polarization of the last one.

Let us consider (B.12) and pure gauge polarization for the 3rd gravitino. The first and

the second term vanish as in equation (3.7) and the third & the fourth term vanish because

of (4.21a).

Symmetric form. Now we write the answer (B.13) in the form which is manifestly

symmetric in all the gravitini

ΓN+3({pi}, {ku}) =

[
1

3!
S(1 S2 S3) + κ2

∑
r 6=u 6=s

N∑
i=1

1

pi · (kr + ku)
(B.14)

×
(

(ε(r) · pi) /pi(ε(u) · pi)pi · (kr − ku)

4(pi · kr)(pi · ku)
+ Cur(pi)

)
Ss
]

ΓN ({pi})
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