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1 | INTRODUCTION

Let K be the (trace class) operator on L?(A), where A C R is a finite union of intervals (gaps),

sin s(x—,

with kernel K (x,y) = ;’ ). Consider the Fredholm determinant

w(x—y

Py(A) = det(I —Ky) 4. ey

The determinant (1), called the sine-kernel determinant, is the probability that the set ~A =
T

{Zx : x € A} contains no eigenvalues of the Gaussian Unitary Ensemble (GUE) of random
n71Tatrices in the bulk scaling limit where the average distance between eigenvalues is 1. Similar
statements hold in other contexts: the sine-process with kernel K(x, y) is the simplest, and one of
the most common and well-studied determinantal point processes appearing in random matrix
theory, random partitions, and so on. Two other most common ones are the Airy and Bessel pro-
cesses which appear, in particular, as the scaling limits at the edge of the spectrum of the GUE and
at the origin of the Laguerre Unitary Ensemble (LUE), respectively. The corresponding Fredholm
determinants on a finite union of intervals may be described in terms of solutions to integrable
systems of partial differential equations (see [30, 37, 38], and [39] for an overview). If A is a single

interval, Painlevé equations appear: It was discovered by Jimbo et al. [30] that s% log P4([0, 7r])
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2 | FAHS and KRASOVSKY

satisfies the o form of Painlevé V introduced by Jimbo et al. in [29, 35]. Subsequently, analogous
observations were made for the edge scaling limits by Tracy and Widom, namely, the distribution
of the largest eigenvalue of the GUE (the Airy-kernel determinant, widely known as the Tracy-
Widom distribution [37]) and the smallest eigenvalue of the LUE (a Bessel-kernel determinant
[38]) are described in terms of solutions to Painlevé II and Painlevé V, respectively.

In the present paper, we are interested in the asymptotics of Py(A) as s — oo. Consider first
P,(A) when A is a single interval. We can assume without loss' that A = (=1, 1). The asymptotics
of the logarithm of (1) have the form:

2

log Py((=1,1)) = = - ilogs b+ O, s oo @

where
Co = = log2 + 3¢'(~1) 3)
0= 12 g .

Here ¢’(z) is the derivative of Riemann’s zeta function.

2
The leading term —SE was found by Dyson in 1962 in one of his fundamental papers on random

matrix theory [20]. Dyson used Coulomb gas arguments. The terms el log s were computed
by des Cloizeaux and Mehta [13] in 1973 who used the fact that the eigenfunctions of K are
spheroidal functions. The constant (3), known as the Widom-Dyson constant, was identified by
Dyson [21] in 1976 who used the inverse scattering techniques and the earlier work of Widom [41]
on Toeplitz determinants. The works [13, 20], and [21] are not fully rigorous. The first rigorous

confirmation of the main term, that is, the fact that log P,((—1,1)) = —%(1 + 0(1)), was given by
Widom [42] in 1994. The full asymptotic expansion (2), apart from the expression (3) for ¢, was
proved by Deift et al. in a landmark work [18] in 1997, where the multi-interval case was also
addressed. The authors of [18] used Riemann-Hilbert techniques to determine asymptotics of the
logarithmic derivative % log P¢(A), where A is one (or a union of several) interval(s). The asymp-
totics for P;(A) were then obtained in [18] by integrating the logarithmic derivative with respect
to s. The reason the expression for ¢, was not established in [18] is that there is no initial integra-
tion point § = s, where Py(A) would be known explicitly. In [31], the author was able to justify the
value of ¢, in (3) by using a different differential identity for associated Toeplitz determinants and
again the result of Widom [41]. An alternative proof of (3) was given in [17], which was based on
another differential identity for Toeplitz determinants. In [17], the result of [41] was also rederived
this way. Both [31] and [17] relied on Riemann-Hilbert techniques. Yet another proof of (3) was
given by Ehrhardt [22] who used a very different approach of operator theory. (Analogous results
on the probability of a large gap were obtained for the Airy-kernel determinant in [1, 16, 37], and
for the Bessel-kernel determinant in [19, 23], see [33] for an overview. For further related results
on gap probabilities see [5, 9-12, 26] and references therein.)
If A is a union of several intervals, it was shown by Widom in [43] that

% log P,(A) = —C;s + Cy(s) + 0(1), 5§ — o0, @)

1 P,(A) is invariant under translations of A, and rescaling results only in the appearance of a prefactor of s.
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FIGURE 1 Cycles on the Riemann surface X.

where C; > 0and C,(s) is a bounded oscillatory function. The constant C; can be computed explic-
itly, but C,(s) is an implicit solution of a Jacobi inversion problem. This result was extended and
made more explicit by Deift et al. in [18]. We will now present the solution of [18] in the case when
A is the union of two intervals, which is relevant for the present work.

As above, we assume without loss that

A= (—1, Ul) U (Uz, 1), -1 < Ul < Uz < 1.

Let p(z) = (2> — 1)(z — v;)(z — v,), and consider the two-sheeted Riemann surface X of the func-
tion p(z)/2. On the first sheet p(z)'/2/z% — 1 as z — oo, while on the second, p(z)*/2/z? - —1
as z — oo. The sheets are glued at the cuts (—1, v;), (v,,1). Each point z € C \ ((-1,07) U (0y,1))
(including infinity) has two images on X. The Riemann surface X is topologically a torus.

Let the elliptic integrals I; = I;(vy,0,) > 0,J; = J;(v1, ;) > 0 be given by

x/dx i xJdx 2 xdx 1 x/dx .
= — _—, ‘Ij: —:5 —] X J:0,1,2,
4, pP(X)1/2 v VIp(x)] B, PO
(5)

1
I; =

"y VPGl 2

where the loops (cycles) A;, By are shown in Figure 1. The loops A, A, lie on the first sheet, and
the loop B; passes from one to the other: the part of it denoted by a solid line is on the first sheet,
the other is on the second.

Let

92 = 22

A (@=C-xE- ) (6)

where the constants x; € (—1,v;) and X, € (v,,1) are defined by the conditions

[ s@az=0. j=o1. ™)
Aj
It follows that
v+ v
X+ Xx; = 12 2, ®

U+ Uy 1

X1Xy = <—I + I )—, 9)

1X2 2 2 )1

which gives an explicit expression for g(z) in terms of elliptic integrals.
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Note that (7) implies that 1(z) has no residue at infinity. More precisely, we obtain as z — oo
on the first sheet

vyt+v
L, - 2=

G _ 2
b =1+ 210, Gm-e— 2yl G2t (10)
zZ IO 2 8
As shown in [18], Gy > 0.
Denote the holomorphic differential
9 __ ()
2Iop(2)1/?

Clearly, it is normalized:

/Aw=—/A0w=1. (12)

Let
r‘/ w= i Q——i/ ¢(x)dx—l/vz¢(x)dx—l (13)
. ’ 27 Jy, 7 Jy, Iy’

where the integration fv 112 (x)dx is taken on the first sheet, and where the last equation for Q
follows by Riemann’s period relations (Lemma 3.45 in [18] for n = 1). Recall the definition (A.1)
in Appendix A of the third Jacobian 8-function 65(z; 7). Deift et al. found in [18] that

log Py((—1,v1) U (v,,1)) = —s2Gy + @1 logs + log 05(sQ; 1) + ¢; + O(s™1), s— o0, (14)

with G, as in (10), and 7, Q as in (13). Constants @1, c; are independent of s. The constant @1 is
written in [18] in terms of a limit of an integral of a combination of 8-functions. The constant term
¢; remained undetermined (for the same reason as given above in the case of one interval).

The main result of the present paper is the expression for the constant term c¢;, which com-
pletes the description of the asymptotics (14). We also find that the original expression for G, in
[18] can be simplified, and we obtain that G; = —1/2 (see Appendix B). We also determine this
coefficient —1/2 of log s in a different way, as a direct result of our computation of (14) which also
produced c;. We describe this computation in more detail below in the introduction.

Thus, we obtain

Theorem 1. The asymptotics (14) hold with

PN 1 1 I 1 1
G, = -5 0 =-3 log;0 -3 Z log |g)| + 2c¢y, =13 log2 + 3¢'(-1).

YE{=1,01,0,1}
(15)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS | 5

Remark 2. Using a connection between the elliptic integral I, and 65(0), equation (101) below, and
substituting G, ¢ into (14), we can write?

1 05(sQ; 1)
log Py((—1,v1) U (v3,1)) = —s2G, — 5 log s + log W
1 1 -1
+ 7 log( —v)( +vp) — ¢ Y loglg)l+2c+ 0O,  s— o0 (A7)
YE{=1,01,05,1}

Remark 3. The elliptic integrals I, J; can be reduced to the complete ones. In particular, in the
symmetric case of —v; = v, = v, (14) becomes (by a straightforward use of (A.37) in Appendix A)

1402 E(v’)) 1 ‘_K(v))

S S
_ — Zlog 2 +loges( ——;2
2 K@)) 28z 7T8 3<K(v’) 'K

log Py((-1,—v) U (v,1)) = —s2<
—% log[(K(v") = E@"))E®@') — v’K(@" )] + 2¢o + O(s™1), (18)

where v’ = V/1 — 02, and K(z), E(z) are the complete elliptic integrals of first and second kind,
respectively, see (A.32).

Analogous results to (14), although up to an undetermined constant term, were recently
obtained for the Airy and Bessel kernel determinants by Blackstone et al. in [6, 7] and [8], respec-
tively. The latter paper dealt not only with determinants supported on two intervals, but any fixed
number of intervals. Another related recent study is [32], whose authors drew inspiration from
techniques of the present paper to obtain the full asymptotics (including the constant term) for
the Airy kernel determinant supported on two intervals.

The asymptotics (14) with the coefficients given by (10), (13), (15) can be extended (with a worse
error term) to various double scaling regimes where vy, v, are allowed to approach each other or
the endpoints +1 at a sufficiently slow rate as s - oo: Theorems 4, 10 below. In Section 10, we
prove

Theorem 4 (Extension to slowly merging gaps). For a fixed € > 0, let -1 +e <v; <v, <1—¢€
be such that 2v = v, — v, > s~/ Then the asymptotics (14) hold with the error term O(s~/°). In
particular, if sv - 0 as s — oo, the expansion of the terms in (14) gives

1 laB| 1 1 _ -
108 Py((-1,0) U 03, 10) =7 (= # L) = S ogs + § ogIog(r) ™ — (o) og(r)
+log (1 + (yy)! 2wy — % log |afB| + 2¢o + o(1), 19)

2 Perhaps, the corresponding formula for the logarithm of the probability of n + 1 gaps A = U;‘:O(a j,bj)is

logdet(I — Ky)u = —as? — 2 : ! log s + log QQ(E(IJ/))
1 1 ¢
+ i Z log(bx — bj)(a, —a;) — 3 Z log [g(a;)q(bp)| + (n + 1)co + O™, s — . (16)
o0<j<k<n j=0

The coefficient a here was determined in [18], and V, g, and the multivariable 6-function are in the notation of [18].
Certainly (16) behaves the way we would expect when all the gaps separate, cf. Theorem 11 below.
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6 | FAHS and KRASOVSKY

where oc—1+U2+U1 >0,=1- v2+vl >0, y——(ﬁ + |a|™h),
loef]
= VIR o 20
log(yv)~! 20

and (x) € (—1/2,1/2] denotes the difference between x and the integer nearest to it.

Remark 5. In Theorem 4, the rate —5/4 which appears in the condition 2v > s75/4 can be
somewhat decreased with an appropriate change of the error term O(s~1/9).

Remark 6. Using the translational invariance of det(I — K;), we see by the shift of variable x —
U1 +Uy +U2
- that

Py((=1,v1) U (03, 1)) = Py((a, =v) U (v, B)).

Thus Theorem 4 provides the asymptotics for Py((—1, v;) U (v,, 1)) in the case when |v; — v,| >
s~5/4, In recent work [24], we obtained the asymptotics of Py((—1,v;) U (v5,1)) = Py((a, —=¥) U
(v, B)) in the case of two gaps merging into one, that is, where vy, v, are scaled with s in such a way
that |[v; —v,| < 1/(s log2 5) while being bounded away from +1. We also showed implicitly that
the asymptotics we obtained in that case uniformly connect to those of fixed v; < v,. Theorem 4
provides an explicit matching: More precisely, we showed in [24] that?

Theorem 7 Splitting of the gap (—1,1) [24]. As s — oo, uniformly for v = 2=

-1
svy log vy — 0,

% (w)?\ 1 22Kk G(k +1)*
10gPs((—1,Ul)U(Uz,1)):—E‘FS |C(‘8|<CUO— C(:)O > —ZlogS+C0+ 10g TM

+ log (1 + 27r1< (yv)1+2<wo>) +1log (1 + Qm‘k) L)L) )

+ O max < sy, logv?, 11 , k = wy—{wp), (21)
0 log —1 K

where G is the Barnes G-function, and where x; is the leading coefficient of the Legendre polynomial
of degree j orthonormal on the interval [—2, 2], given by

(J) j
K =4771242j +1 “p = 1,2,..., Ko = 1/2, x_1 =0. (22)

The rest of notation in (21) is from Theorem 4.

3In [24], B — a was arbitrary, but by a rescaling argument we can assume without loss that 8 — a = 2, which is the
assumption in the present work.

5UBD17 SUOWILOD SAIERID |cedt|dde sy Ag peusenob e sapie YO ‘8N JO SN 1oy Akelqi] auluQ A8|IAA UO (SUOTIPUOI-PUE-SWB) WD A | IM Aeiq 1 puUl|uO//:Sdiy) SUONIPUOD pue SWS | 8Y) 89S *[£202/2T/ST] Uo Ariqiauljuo AB|IM ‘Sjeuoizeusiu| ejonds essiS Ag 21T2zedd/z00T 0T/I0p/wod AS| 1M Aeqijput|uoy/:sdny wouy pspeojumod ‘0 ‘2TE0L60T



SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS | 7

As s — oo, uniformly forv € (vy,v,), where sv, log Vgl -0, bg% — oo (i.e, k = o), formula
(21) reduces to ]
log Py((—1,v1) U (05, 1)) = 52 1 + _laBl ) _1 logs + 1log log(yv)™! — (wy)? log(yv)~!
st » 2 log(yv)! 2 4 0

logv:!
+log (1 + (yw)l 2@y — %log laf| + 2¢o + O(max {svo log vy, 1 ! — gs ! })
0g V]

(23)

Thus we see that the asymptotic regime of Theorem 4 overlaps with that of Theorem 7 (for
example, v = s~%/5 belongs to both regimes), and comparing (19) with (23) we see an explicit
matching. Taken together, these theorems describe the asymptotics for two large gaps and one
large gap (note that (21) reduces to (2) when v — 0 sufficiently rapidly) as well as the transition
between them.

Our strategy to prove Theorem 1 relies on connecting the asymptotics for fixed v; < v, with
another double-scaling regime, namely the one where v; approaches —1, and v, approaches 1.
In this regime the scaled gaps, s(—1, v,), s(v,, 1), although still growing with s, become small in
comparison with the separation between them, and we show that in that case P;((—1,v;) U (05, 1))
splits to the main orders into the product of Py(—1,v;) and P,(v,,1). The advantage is that for
each of the separate gaps we can use an appropriately rescaled asymptotics (2) which contains the
constant cy. More precisely, we prove in Section 2 by elementary arguments the following

Lemma 8 (Separation of gaps). Let

(1142 2 - Llog )1/
AS_< 1, 1+S>U<1 s’1>’ t—z(logs) .

Then
logdet(I — K,), = —1> — % logt +2c + O(1/1), ¢ — oo. 24)

Remark 9. The rate of increase of ¢, t = %(log 5)!/4, can be replaced with a slower rate of growth
with s, and the statement will still hold.

Now we describe the steps of the proof of Theorem 1. First, we obtain in Section 3 an identity
(equation (42) of Lemma 14) for the derivative ai log P;((—1,v;) U (v,, 1)) in terms of a certain
U2

Riemann-Hilbert (RH) problem, the ®-RH problem. The fact that we use a differential iden-
tity with respect to one of the edges (v,) of the gaps is crucial in allowing us to determine the
constant c;.

‘We then give in Section 4.4 an asymptotic solution of the ®-RH problem as s — oo with vy, v,
fixed. This problem is very similar to that solved in [18], and its solution involves the Jacobian
0-functions (we give a collection of various useful properties of 8-functions in the Appendix A
below). In Section 4.5, we show that the solution of the ®-RH problem can be extended to
the double-scaling range where v, is allowed to approach 1 at such a rate that (1 —v,)s - o
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8 | FAHS and KRASOVSKY

(by symmetry, also v, is allowed to approach —1 so that (1 + v;)s — oo). It is this extension which
eventually provides a connection with Lemma 8.

In Section 5, we then substitute the solution into our differential identity (see (164), (170)).
In Proposition 17, we characterize the main asymptotic terms (equation (171)) in the differential
identity using averaging with respect to fast oscillations.

A large part of our work, Sections 7, 8, 9, is to bring the expression (171) to an explicit form.
This relies, apart from the use of standard formulae, on (specific to our setting) identities for 6-
functions obtained in Lemma 16 of Section 4.2. As a result, we obtain an explicit form (194) for
the non-small part (171) of the right-hand side of the differential identity (42).

We then, by Proposition 17, integrate the resulting identity with respect to v, from the point
when v, = —v; is close to 1 to a fixed v, = —v;, and then, with v, fixed, over v,, so that at one of
the integration limits we can use the result of Lemma 8. This proves Theorem 1. Thus the part 2¢,
of the constant c¢; in (15) comes from Lemma 8, while the rest of ¢; comes from the integration.

As a byproduct of our proof we also obtain the following extension of the asymptotics (14).

Theorem 10 (Extension to separation of gaps). For a fixed € > 0, let —1 < v; < U, < 1 be such
thatvy — vy > €, (1 —Vy)s = o0, (1 + v;)s — oo. Then the asymptotics (14) hold with the error term
O(max{ b.

(1-vy)s ’ (14vy)s

The independence of separated gaps established in Lemma 8 for the gaps contracting to —1
and 1, respectively, with the rate (log s)'/*/s can now be extended to a slower rate of contraction.
Namely, relying on Theorem 10 and evaluating the terms Gy, c¢;, and 7 in the limit v, — 1 and
v; — —1, we obtain the following result in Section 6.

Theorem 11 (Independence of separated gaps). Let v; = —1+ s "1 and v, =1 — 52, where
P1> P2 € (1/2,1). Then as s — oo,

Ps([_l’ vl] U [02’ 1])
Ps([_la vl])Ps([UZ’ 1])

- 1. (25)

More generally, the limit (25) holds in any scaling limit where

min {s(l —0y), (1 +vy), sa —lvz)z’ sa -:01)2 } — 0. (26)

Note that the use of Toeplitz determinants in [17, 31] was essential to determine the constant ¢
in the asymptotics for one gap. In this paper, however, we use Lemma 8 which, in turn, relies on
the already known constant c,.

2 | SEPARATION OF GAPS: PROOF OF LEMMA 8
For w > 2 let

AW = A uAY AW = (cw,—w+), A = w-1,w).
With ¢ as in Lemma 8 and v = 5/(2t), we have

det(I — Ky, = det(I — Ky) 4. @27
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 9

By (2) and translational invariance, as t — oo,
det(I — Ky) ;o = det(I —Ky) o = det(I —K,)_11) = efot=1/4e=1*/2(1 + O(1/1)).
1 2

Therefore, upon setting u = 2t, w = v, we obtain Lemma 8 as a direct consequence of the
following lemma we now prove.

Lemma 12. Let u,w > 2. There exist absolute constants C5,C4 > 0 such that
2

c
det(I — Ky) yw) — det(I — Ky) @ det( —K,) | < —eC4t (28)
1 2 w

We start with

Proposition 13. Let m € {0,1,...} and B be an m + 1 X m + 1 matrix satisfying |Bj| < u for all
jok=1,..,m+ 1. Let X be a set of indices j, k such that IBji| < 1/w forall (j, k) € X and set

5 _[Bi HGLER
jk = e N
0 if (j,k) € X.

Then
|detB — det B| < %(Clu)m\/m! 29)
for a sufficiently large absolute constant C; > 0.

Proof. Let B® = Band

By, if (j,k) X,
BY) = {7k U )séA £=1,..,m+1. (30)
J 0 if (j,k)eXandj<?
In particular, B = B("+D),
Expanding B and B in the first row we have
1 m+1
| detB —det BV < — 3" | detBOIY)], (1)
k=1

where BUK) is the m x m matrix obtained by removing the jth row and the kth column from
B =BO, Similarly, for any ¢ = 1, 2, ..., m, expanding in the ¢ + 1 row, we have

m+1

| det B® — det B¢ +D] < = = > | det BOCHB), (32)
W
Inequalities (31), (32) imply
|det B — detB| < 1 i il | det BOCHLIER)| (33)
Wisoim

5UBD17 SUOWILOD SAIERID |cedt|dde sy Ag peusenob e sapie YO ‘8N JO SN 1oy Akelqi] auluQ A8|IAA UO (SUOTIPUOI-PUE-SWB) WD A | IM Aeiq 1 puUl|uO//:Sdiy) SUONIPUOD pue SWS | 8Y) 89S *[£202/2T/ST] Uo Ariqiauljuo AB|IM ‘Sjeuoizeusiu| ejonds essiS Ag 21T2zedd/z00T 0T/I0p/wod AS| 1M Aeqijput|uoy/:sdny wouy pspeojumod ‘0 ‘2TE0L60T



10 | FAHS and KRASOVSKY

Hadamard’s inequality yields

| det BOEHIR)| < yymmm/2, (34)

and so
|detB — det B| < %(m +1)2ummm? < %(clu)m\/ﬁ (35)
for some C; > 0. O

Proof of Lemma 12. Let

: (w) (w)
~ K, (x,y) ifx,ye A  'orx,y€A
wy) =39 " ! 2 (36)
0 otherwise.
If we set
B = det(K,(x;, y) 7l B = det(®y(x, )T 37

with x;j,y, € AW) | then B, B satisfy the conditions of Proposition 13 for some X. By (29) and
the definition of the Fredholm determinant, we have for sufficiently large absolute constants
Ci>0

J

| det(I — K,,) 40 — det(I — K) 40|

1 ~
< Z —/( )dx1 /( )dxm+1|det(Ku(xi,yj) :’;111 — det(K,(x;,y;) 1"7;11
Aw Aw

1 | - (Cu)Pm(m+1)? Cs e
m=o V/m! w ET z“(m+1)2_ wec : (38)

The reason for introducing K is that the corresponding Fredholm determinant splits into the
product of the determinants over Agw) and Agw). Indeed,

det(l =R ) =1+ ), ﬁ

m=1k=0

k m
X /x1 xpeA® det K, (x; — xj)l.’j=1 detK, (x; — xj)i,j=k+1dx1 ..dx,,

,,,,,

Combining this with the estimate (38) proves the lemma. O

3 | DIFFERENTIAL IDENTITY

Consider the following Riemann-Hilbert problem for a 2 X2 matrix valued function
d(w) = d(w;s), where s > 0.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS | 11

Leu L'y v

IR a1,

FIGURE 2 Thejump contour I'.

Let I'q, be the contour shown in Figure 2, where as usual the + side of the contour is on the left
w.r.t. the direction shown by the arrow, and the — side is on the right.

RH problem for ®

(a) ®isanalytic forw € C\ Iy.

(b) @ has L? boundary values @ (w), ®_(w) as the point w € I'y is approached nontangentially
from the + side, — side, respectively. These values are related by the jump condition @, (w) =
®_(w)Jp(w), where

0 -1
< 0 ) forwel=(-1,v;) U (v, 1),

1 0
J¢(w) = 3 < 1> for w (S F(D,L’ (40)

- forweT
0 1 wEleu
d(w) = <I + 0(%)) (ei:)w e_?sw> . (41)

(c) Asw — oo,

Remarks.

1) As usual, we write for brevity

eisw 0 . 1 0
(5 L) an(3 8)

2) By general theory, see, for example, [14], if this problem has a solution ®(w), then the solution
is unique. In Section 3.1, we show that the RH problem for ® may be constructed explicitly in
terms of the m-RH problem from [18]. It was proven in [18, Proposition 2.18] that a solution
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12 | FAHS and KRASOVSKY

exists to the m-RH problem, and thus there exists a solution to our RH problem for @ for any
s> 0.

The rest of this section will be devoted to two different proofs of the following

Lemma 14 (Differential identity). Let ®(z) = ®(z;s) solve the RH problem for ®. The Fredholm
determinant (1) satisfies:

o) i _
6_1)2 log det(I — K)(—1,0)u(v,,1) = Fs(v1,02) = e [¢+1(02)‘1’,+(02)] 12 (42)

where ®'(z) = :—th(z) and O (0@, (v,) = lim, o (v, + i€)®' (v, + i€).  Moreover, if
U1 =0 =0,

0
3p logdetd = Ky)1,—ouwn = 2Fs(=0, ). (43)
3.1 | First proof of Lemma 14

The proof of identities of type (42) using the theory of integrable operators is standard [3, 4, 18,
28]. We give an outline. First, we write the kernel of the (integrable) operator K in the form

3T o 2 A; i isz —isz
Ks(x,y):/l (x)u(y)zzjzl J<x)uj(y>’ Z(z)=< e > ﬁ=L<e ) )

xX—y xX—y —e7isz 2mi \ eis?
Note that ijl 1j(z)uj(z) = 0. The resolvent of the operator Ky,
(I-K)'=I+R,

has the property [18, Lemma 2.8] that the kernel of Ry is of the form

Ry(x,y)= ———=, Aj=U-K);, M=0-K)) 'y, j=12 (45
and moreover, ijl Aj(z)M(z) = 0. The functions A(z) and M(z) for z € A can be written as
[18, Lemma 2.12]

Az) = (DA(z),  M(2) = (A (2) Hi(2), (46)

where 7i(z) is the 2 X 2 matrix valued function which solves the following RHP (this is the m-RHP
of [18] up to a slight modification: 1,, u, are replaced by —4,, —u,, respectively):

RH problem for i

(a) #i(z) is analytic in C \ A.
(b) 7i(z) has L? boundary values related by the condition 7, (x) = mi_(x)J,,,(x) for x € A, with

T, (x) = I —27il(0)i" (x). (47)

(©) mz)=I+0(zYHasz - co.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 13

This problem is reduced to a constant jump problem by the transformation
D(z) = M(z)el%%. (48)

Indeed so defined @(z) satisfies

RH problem for zﬁ(z)

(a) z,’b\(z) is analytic in C \ A.
(b) @(z) has L? boundary values related by the condition z$+(x) = $_(x) ((1) _21> for x € A.
©) P(2) =T + Oz 1))e¥%% as z — .

It is now straightforward to verify that the solution to the ®-RH problem is written in terms of
@(z) as follows: ®(z) = zﬁ(z) <(1) _11> above I'q iy (see Figure 2); ®(z) = 1,3(2) <_11 ?) below I'g, 1;

and ®(z) = @(z) inside the lenses in Figure 2.
Writing i in terms of @ in (46), we obtain

e (D 4(2) = _ L @y, 4+(2)
A(z) = <_ @22,: (Z)>, M(z) = o <_ <1>12T+ (Z)), z€E€A. (49)

Now the logarithmic derivative of the determinant

d 0K,
—— logdet(I — Ky)(—1,0,)u(w,1) = —tr ( T —K)™' =— ) = (I = Ky) 'K )(v2,02)
502 avZ

= (I = K) 7' (Ky = I + 1))(02,03) = Ry(02, 1) = —=(A1(0)M] (13) + Ay(0)M(13)).  (50)

Substituting here (49), we obtain (42). The identity (43) is obtained similarly.

3.2 | Differential identity for Toeplitz determinants

For the second proof of Lemma 14, we will first represent the Fredholm determinant det(I — K) 4
in terms of a special Toeplitz determinant and then obtain (42) as a limit of the corresponding
differential identity for Toeplitz determinants. This way of proving Lemma 14 has a potential
advantage of future applications to computing probabilities in the Circular Unitary Ensemble of
random matrix theory, and to the theory of orthogonal polynomials.

LetJ = J; UJ, be the union of two disjoint arcs J; and J, on the unit circle C. We parametrize
the endpoints of J; by a; = e'%1,a, = ¢#2 and the endpoints of J, by b = e!%, b = e~i%0, see
Figure 3. Let f be the indicator function of the set J:

1 forzel,
f(Z)={
0 forzéglJ.
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14 FAHS and KRASOVSKY

FIGURE 3 Arc/J, on the right and J, on the left.

Consider the n-dimensional Toeplitz determinant with symbol f on the unit circle C:

dz
-j22 = -j=2
Dn(f) = det(fjx Js k 0 / f@)z Zmz /]Z 2miz’
where the integration is in the counterclockwise direction.
If the end-points of the arcs vary with n as follows, ¢y = 2s/nand ¢; = 2v;s/n for j = 1,2, then
it is easily verified that

nh—>nc}o Dn(f) = dEt(I - Ks)(—l,ul)u(vz,1)~ (51)

We will now obtain a differential identity for D, (f), and in the next subsection, by taking
n — oo and using (51), will prove Lemma 14.

Since f is nonnegative, it follows from the multiple integral representation for Toeplitz deter-
minants that D;(f) > Oforall j = 1,2, ... Set Dy(f) = 1. Define the polynomials ¢, = 1/\/f_, Pjs
j=12,.. by

fo fa N ) [
f1 fo v o2 fon
$(2) = ——— det =27+,
\/Di()Dj41(f) it Fios fo i
1 z z/71 zJ

where the leading coefficient y is given by

D;(f)
J
Xi=14 ——. (52)
! Dj1(f)
These polynomials are orthonormal on J:
/¢k(z)zp1(z) ]ka ]5k =0,1,.. (53)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS | 15

For a given n > 1, define the matrix-valued function Y = Y(z) in terms of the orthogonal
polynomials:

-1 —1 p Pa(§) dS
Xn ¥n(2) Xn' J; { T
Y(z) = . (54)
— Zn—li (Z—l) / n 1@ ) d§’
Xn—-1 n—1 —Xn-1 —Z 27Tl§

The function Y is a unique solution to the following RH Problem:

(@) Y : C\J — C*?is analytic;
®) Y, @)=Y_(2) (3 ") forzer;
() Y(2)=U+0Q1/2))z"°3 as z - 0.

This fact was initially noticed in [25] for orthogonal polynomials on the real line and extended
to the case of orthogonal polynomials on the unit circle in [2]. As in [15, 31], we will use the
orthogonal polynomials to obtain a differential identity for log D,,(f) in terms of the solution to
the RH problem for Y. Namely, we have

Proposition 15.

(a) Let a, = e'®2. The Toeplitz determinant D, (f) satisfies

55 0BDA(f) = ~3-F (@) (59)
where F is given by
F(z) = =z Y1 (2)Y'(2)]- (56)
(b) Leta, = a; = e'®2. Then
9 10gD,(f) = ~2F(ay). (s7)
dg,
Proof. From the definition of the orthogonal polynomials it is clear that
n—1
DN =]1x> (58)
j=0
The orthogonality conditions imply that, with z = e°,
27.[ / lﬁ;(z )zp]( )do = /@(zf + polynomial of degree j — 1)1p](z)d6 ;j g;:, (59)
and similarly,
=/ 86 = - =z (60)
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16 | FAHS and KRASOVSKY

By (58)-(60) we obtain:

3 ~ n—-1 a)(]
5, O =2 %, 50 = 5 = (2|¢,<z>|2> (61)

The Christoffel-Darboux formula for orthogonal polynomials on the unit circle (see, e.g.,
equation (2.8) in [15]) states that
n—1

= Y )P = nlpu@F — 2Re (2,2}@) forz e C. (62
k=0

On the other hand, using the following identity (equation (2.4) in [15])

Xn¥n(z) = Xn—lz_lz»bn—l(z) +9,(0)27"P,,(2), (63)
and (54), we easily verify that
F@) = =z ™Y @Y (D)1 = nlgn(2) - 2Re (2h,(2W(2)) forzeC.  (64)

Substitution of (62), (64) into (61) gives

5] 1
5 18D = 3 [ e, (69)
Since by orthogonality
dé
F<z>—=—/ PDPL =
/J 2 7 kzo
we obtain
0
0= F(z)d6 ) = F(a +/—de6, 66
- ([reue) =ray+ [ 2-r) (66)
and proposition 15 (a) follows from (65). Part (b) is proved similarly. O
3.3 | Limitn — oco: Second proof of Lemma 14

Aswe are eventually interested in the limitn — oo, we first reduce the Y RH problem to an approx-
imate problem for ® which does not contain the parameter n, and the dependence on n is in the
error of approximation.

Let

T(z) = {Y(z) |z] <1, 67)

Y(z)z7"% |z| > 1.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 17
b
a9
FQut FQut
S S
a1

FIGURE 4 ContourIs.

We open the lenses around J; and J,, see Figure 4. Denote the edges of the lenses inside the
unit disc by FISP, the edges of the lenses outside the unit disc by Fgut, and let

rT(z) outside the lenses,

1 0
T(z)< 0 1) inside the lenses, for |z| < 1,
—Z

S(z) =3 (68)
1 0 .
T(2) ( ) inside the lenses, for |z| > 1.
{ z" 1
Then S satisfies the following RH problem:
(a) SisanalyticonC \ (CuU Fgl U I‘SQ‘“).
(b) The jumps of Sare given by §+(z) =5 (z)J 3(2), where
0 1
forzelJ,
-1 0
1 O
( . ) forz e F(SE‘“
J §(Z) =q\2 1
1 0
( ) forz e TI?,
z" 1 s
z"%3 forze C\J.
(c) Asz — oo,
Sz)=1+0(z). (69)
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18 | FAHS and KRASOVSKY

We assume that the lenses around J; and the contour part C \ J are contained within the set
|z — 1| < 1/2. The following function M will approximate S for |z — 1| > 1/2:

0 1
|z <1,
M(zZ)=4\-1 0 (70)
I |z| > 1.
For |z — 1] < 1/2, we construct the following function Q. Let

. n
w(z) = —lx log z, (71)

so that w(emﬁ) = t for any ¢, and define

e 01
0(2) = D(w(z);8)z 2 (_1 0) lz] <1, )

D(w(z);8)z 2% lz| > 1,

where @ is the solution of the ® RH problem at the beginning of the section.
Let

~ SM™ for|z—1|>1/2,
R(Z) = ~ | | / (73)
SQ~! for|z—1|<1/2.
Then R is analytic for C \ T's, where
fR = {the edge of the lens for |z — 1| > 1/2}uU{z : |[z—1| =1/2}. (74)

We have using (41), (72),
RN @)R_(2) =Qz)IM ™ (z) =T+ O(1/n)

uniformly on the circle |z — 1| = 1/2 oriented counterclockwise. Furthermore, ﬁ;ll’i_ 1=
O(e7 "), € > 0, uniformly on the edges of the lenses. Thus, by standard small norm analysis (see,

e.g., [14]),
Rz)=I1+0Q1/n), R(z)=001/n), (75)

uniformly for z € C.

We now express F(a,) from Proposition 15 in terms of elements of ®. Tracing back the trans-
formations, we see that as z approaches a, from the inside of the unit circle and being outside the
lens,

Y(2) = T(2) = $(2) = R@)Q(2) = R@)d(w(2)z~ /) <—01 (1)> '
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 19

Using this, we obtain

2" (Y (2)7'Y(2)y = 2 <<IJ(w(z))_1 %@(w(z))) + z(<1>_1(9(1/n)d>)12
12

dw

= z<¢(w)_1%d>(w)>ua + Z(¢’_1(9(1/n)q))12

_in

1 d _
> ((D(w) 1Efb(w)> +z(® 1(9(1/71)(1))12.

12

Taking the limit z — a, = exp(i¢,) = exp(i2v,s/n) along this trajectory, we obtain

Fay) = — 00 [0, (0,)], + 001 /), (76)

as n — oo. Substituting this into (55), recalling (51), and noting that dv,/d¢, = n/(2s), proves
(42). The symmetric case identity (43) follows from (57). Thus we finished the proof of Lemma 14.

We now solve the RH problem for @, compute the asymptotics of the r.h.s. of (42), integrate it,
and use Lemma 8 at one of the integration limits to obtain Theorem 1.

4 | SOLUTION OF THE RH PROBLEM FOR &

In this section, the main objective is to provide asymptotics for ®(z) = ®(z;s) as s - c0. We con-
struct an outside parameterix in Section 4.1, local parametrices in Section 4.3, and solve a small
norm problem in Section 4.4. In Section 4.4 we consider v; and v, to be fixed as s - o0, and in
Section 4.5 we extend the solution to the regime where v, — 1 such that s(1 — v,) - oo, and also
to the regime where v; — —1 such that s(1 + v;) — co. Additionally, in Section 4.2, we provide
some identities for 8 functions which we will rely on later in the paper.

Recall the definition of (z) in (6), and for z € C \ (—1,v;) U (v, 1) on the first sheet of the
Riemann surface X, let

$(2) = / PEVE. 77)
1

We see by (7) that ¢(z) is a well defined function, analytic on C\ (—1,v;) U (v,,1). Since
Y, = —1_on(—1,v;) U (v,, 1), we have

0 for z € (v,,1),
—27Q forz € (—1,vy),

$.(2)+¢_(2) = { Q= % /U1 2 P(x)dx > 0. (78)

Since by (7) ¥(z) has zero residue at infinity, ¥(z) = 1+ O(1/z%) as z — oo, and we have
P(z) =z +0OQ), z — o0. (79)

Let
S(z) = eisfcrg,q)(z)e—iSd’(Z)U}, t = / @W(x) - dx -1, (80)
1

then S satisfies the following RH problem.
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20 | FAHS and KRASOVSKY

RH Problem for S

(a) Sisanalyticforz € C\ I'g,
(b) S has jumps given by S, (z) = S_(2)Js(z), where

0 -1
< > for z € (vy, 1),
—stQ
Qs forz € (—-1,v,),
]S(Z) =3 (81)
( —2isg(2) 1) forz e FID,L’
1 21s¢(z)
forz € Tyy.
0
(c) Asz — oo,
1
S(Z):I+O<E>' (82)

We need the conditions Im ¢(z) < 0, Im ¢(z) > 0, to hold uniformly onT'g, 1, T' y, respectively,
away from some fixed € neighborhoods of the end-points for the corresponding jumps to be expo-
nentially close to the identity. Since (79) is uniform as |z| — oo, the conditions hold for |z| > W for

some sufficiently large but fixed W > 0. Since :—xgb(x) =y(x)>0forx e R\ (—1,0;) U (03, 1),
the conditions hold on the contour as stated assuming (and we do this) that the angle between
the parts of I'y 1, I'p, y €manating from =1 and the real axis was chosen to be sufficiently small
and the lens around (v;, v,) was sufficiently narrow. Therefore

Js(z) =1+ O(e~cs1tzD), (83)

as s — oo, for some constant ¢ > 0, uniformly on I'q 1, I'p y away from fixed e-neighborhoods of
il, U1, Uy,

4.1 | Outside parametrix and 8-functions

Consider the following RH problem for the 2 X 2-matrix valued function N (z;w) with a real
parameter w, which will give an approximate solution to the & RH problem away from the edge
points +1, vy, v,, when w = sQ. Later on we also construct approximate solutions (local paramet-
rices) on a neighborhood of each edge point, and match them to the leading order with N'(z; w)
on the boundaries of the neighborhoods.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 21

RH problem for N

(a) N(z)isanalyticon C\ (=1,v;) U (vy,1).
(b) On (=1,v;) U (v,,1), N has L? boundary values related by the jump conditions:

N.o(@) = N_(2) <(1’ ‘01> for z € (v, 1),
No@) = N_(2) (ezgm —e—02 m) for z € (=1, 0y).
(c) Asz — oo,
N(@Z)=I+0E). (84)

A more general problem with jumps on m intervals was solved in [18] in terms of multidimen-
sional 6-functions. We now present the solution in our case of two intervals: (—1, v7), (v,, 1). Let

_(Ez=DE-v)\""
= (Goeh) ©

also with branch cuts on (—1,v;) U (v,, 1), such that y(z) — 1 as z — oo on the first sheet of the
Riemann surface X.

Recall the definition of the holomorphic differential (11). Let u be the following analytic
function on C \ {(—o0,v;] U [v,, +o0)}:

z
u@=-[ o (86)
U2
with integration taken on the first sheet. Note that, modZ,
T 1 T 1
u(-1) = —5 73 u(vy) = 5 u(vy) =0, u(l) = —5 (87)

The function u(z) extends to the Riemann surface X and is then called the Abel map. It maps the
Riemann surface onto the torus where 6-functions are defined.

A simple calculation (see [18]) shows that the function y(z) — y(z)~! has a single zero on (vy, v,)
on the first sheet, denote it by Z, and no zeros on the second sheet. We have

U1+U2

2= —.
2+Ul—02

(88)

Similarly, the function y(z) + y(z)~! has no zeros on the first sheet and one zero on the second.

Let
d=_1gf_/’@ (89)

with integration taken on the first sheet.
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22 | FAHS and KRASOVSKY

Consider the third Jacobian 8-function 8(z) = 65(z; 7) (see Appendix A). Since 6((1 — 7)/2) =
0, we have 8(u(2) — d) = 0. The function 8(u(z) — d) = 0 has no other zeros on the Riemann
surface. The function 6(u(z) + d) = 0 has only one zero on the Riemann surface located on the
second sheet which coincides with the only zero of y(z) + y(z)~L.

By an argument in [18] we have

u(oo) + d = mt modZ,

for some integer m. Consider the integral of w along the closed contour composed of a large inter-
val along the real axis and a semicircle in the upper half-plane. Then using (12) and the definition
of 7 in (13) we obtain in the case v; = —v, that u(co) + d = 0 modZ with u(z) considered on the
first sheet. Therefore also in the general case of vy, v,, by continuity,

u(o0) +d =0 modZ. (90)

The solution to the RH problem for A is given by

1 -1

Vandl Y=y
NEo=[, a0
M S M2
Ouiz)+w+d) Ou(z)—w-—d) (9D
iy 8O | TEE@ T e -
0w |0ui@)+w—-d) 6u(z)—w+d)
B(u(z) —d) B(u(z) +d)

with z on the first sheet. To see that N solves the RH problem for N, one makes several
observations. First note that y(z) is analytic on C \ (—1,v;) U (v,, 1) and

v+(2) =iy_(2), ze(=1v)U(vy,1).

r+rt\ __(r=rt
2 ), 2 )
4

Hence for w € (—1,v;) U (v, 1)

(92)
(=50), - (737)
2i B 2 '
+ —_
Secondly, as follows from (A.2) and the relations
—u_ dzZ € (vy,1),
1 (2) = u_(z) mo z € (Uy, 1) 93)
—u_(z)—7 modZ ze(-1,v;),
the matrix m has the jumps:
0 1
m,(z) =m_(z) <1 O) for z € (v,,1),
(94)
e—Zm'cu

m(2)=m_(2) (ezgiw .

> forz € (-1,vy).
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 23

The singularities of m cancel with the zeros of y + y 1. Furthermore,
N(@)=I+06(=zh

as z — 0.

4.2 | Identities for 8-functions

Our proof of Theorem 1 will use several identities satisfied by 8-functions. We present these iden-
tities now. Standard definitions and properties of theta-functions that we need are summarized
in Appendix A.

Lemma 16. With the coefficients of the expansion y,, Uy, ¥y, Uy, given in (157) below we have:

(a) Forany* w € R,

2 T , /
a1 5 B s e )=t
(b)
zﬁ; - 22&2 = ygluo = —il(1 + vy). (96)
(©
<91(d)>”’ _ 3 <91(d)>" 62y +w) (el(d)) -
8] Yoy \0x(@) i \oxd)

(d) For 20 € {_1’ U1, g, 1}:

62 YEAY
T(u(zp) + )(%) h(zo) = _Ilz’ hz)=(-1(z—-v)+EZ-v)z+1). (98)

62(u(zp) +d) \ 6, 2
(e)
12
0,(0;0)* =6 = ﬂ—022(v2 —v)). (99)
@
I
6,(0;7)* = 65 = F(l + )1 —vy). (100)

4If d + w is a zero of 85, we multiply through in (95) before evaluating. We adopt the same convention in other formulae
below. Furthermore, it is easily seen that 653(d) # 0 and 6;(w) # 0 for any w € R.
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®
12
03(0;7)" =63 = — (1 - v))(1 +,). (101)

Proof. We begin by proving (a). Consider #;(z) defined by

(7(@) +771(2) 630:(u(2) + @ + D)O3(u(2) — w + d)
= ( 2 ) 6:(P0;(u(z) + d)?

(102)

y(2) — 7~ 1(2)\ 6263(~u(2) + @ + d)B3(~u(z) — w + d)
- ( 2 ) 63()?63(—u(z) + d)?

Of course, we know that 7,(z) = det N'(z) = 1 for all z from the Riemann-Hilbert problem.
03(E+w+d)03(E—w+d)

05(§+d)?
is an elliptic function of &, the function 7,(z) no jumps on A and is thus meromorphic. By the

fact that 65(+u(z) + d) has the same zeros as y(z) + y(z) ™!, respectively, it follows that 7,(z) has
no singularities and is an entire function. By (90), 7;(z) — 1 as z — oo, and thus 7;(z) = 1 for all
z € C by Liouville’s theorem.

The expansion of 7;(z) as z — v, (using (157) below) shows that

However, it is easy to provide a direct proof: By (92) and (94), and the fact that

71(z) -

6?63(d + w)0;(d — w) B y(z)uo Qg(d + w) N Gg(d —w) _ 2Gg(d) 103)
03(d)?65(w)? 2 |6:(d+w)  65(d-w) 6;(d) | )°

and since 7, (v,) = 1, we obtain Part (a) of the proposition.
Now consider

(@) + 7 (2) > 2 62(u(z) + d) B <y(z) -y (2) > 2 02 (—u(z) + d) (109)

nelz) = < 2 0%(u(z) + d) 2 02 (—u(z) + d)

6;(&)
62(6)
meromorphic function, and again by cancelation of the poles from 6;(xu(z) + d) by the zeros of
y(z) + y(2)71, it follows that 7,(z) in fact is entire. As z — o0, ,(z) — 0 by (90) since 6,(0) = 0,
and thus, 7,(z) = 0 by Liouville’s theorem. We see from the expansion of 7,(z) in powers of z — v,

as z — v, that

By the fact that

is an elliptic function of &, and by (92) and (93), it follows that n,(z) is a

La@le@ . (a@y .
) 63(d>leg<d> ) ] o 1o

Since this limit is zero, we obtain that

<el<d)>’ __1 a@ (106)

6:;(d)) Youo 6;(d)’

which gives Part (b) of the proposition.
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To prove part (c), we consider the coefficient of the first power z — v, in the expansion of 7,(z)
61(2)
05(2)

as z — U,. Denote here g(z) = ,thenasz — v,,

oK

0= 15(2) = 12(v2) = 4z — vy) | —¥5— (& (d)g(d) + 3¢" (d)g'(d))

— uog (Dg(d) (g +75° +21175) +ug (8" (d)g(d) + g’(d)z)] +0((z - vy)*). (107)

By substituting the identity for g’(d) from Part (b) of the proposition into the right hand side of
(107) and setting the resulting coefficient of z — v, equal to zero, we obtain Part (c).
Finally, to prove Part (d), we consider

_ y(@) + y—l(z)>293(u(z) +d) <y(2) -7r"'@ )2 Oi(-u(@) +d)
73(2) = R() l( 2 Eu@+d) 2 62(-u(2) + d)

By the same arguments as for 7; and 7, (and in addition by the fact that R, = —R_ on A), it follows
that 75 is entire. By recalling the definition of u in (86), by (90), and by the definition of y in (85),
we obtain

] . (108)

2
. 16\  @+uv—-v)?[6,0ed)\°
1 =——( 2
lim 75(z) 4Ig<93> + G a.ad) ) (109)

so that 55(z) is identically equal to this constant. Now consider the asymptotics of 7,(z) as z — oo.
We have

2
6, — )2 (6,2d)\°
0=1,(z) = —z72 Tjg(e—:) +(2+Ui6 ) (9;gd;> +0(z%), (110)

from which we conclude that

2
18\ Q+u-v)2[/60ed)
_4Tg<€> AT <63<zd>>' (

By substituting this into (109), we obtain

2
__1(5
73(2) = 213( 93> 112)

for all z € C. On the other hand, for z, € {—1, vy, v,, 1}, from (108) by (87) and ellipticity,

167 (u(zp) +d)

2 eg(u(zo) +d) o) )

n3(z0) =
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Equating this to (112) we obtain Part (d). To show Parts (e), (f), (g), we consider the function (as
usual, theta functions written without argument stand for their values with argument zero)

6 2 @2
—eigzg; + I3 (vy — v)(3 — 1)9_132 " _1 o (114)

As before, we see that this function is identically constant. By evaluating at infinity, it is equal to

2
%@ O the other hand, part (d) at z, = v, gives

61(d)?
6, d? _ 6
= —I;(; — v, — D= (115)
0
6,(d)? o7
Equating this constant to (114) we obtain the identity for all z:
@) _ 6 z+1
2 = (v, — -1)—= . 116
8, (u(2))? o2 —v1)(v, )612 Z—0, (116)

Evaluating it at z = 1 (recall from (87) that u(1) = 1/2 modZ and recall the definition of 6;(z)
from Appendix A), and using the identity 6; = 76,056,, we obtain Part (e). We similarly obtain
Part (f) by evaluating (116) at z = v;. Finally, we obtain Part (g) by making use of the identity
o4 =g + 0%, O

4.3 | Local parametrices

Our goal in this section is to construct a function P on a neighborhood of each point of the set
T = {-1,v;,0,, 1}, with the same jump conditions as S on these neighborhoods, and with an
asymptotic behavior matching that of N to the main order on the boundaries of these neigh-
borhoods. The first step is to recall the following model RH problem from [34] with an explicit
solution in terms of Bessel functions.

RH problem for ¥

2r
(a) ¥ : C\ Ty —» C>*?isanalytic, where 'y = R~ UTE, withTE = {xe™ 5
orientation of R, 1% towards zero.
(b) ¥ satisfies the jump conditions:

i

: x € R*}, and with

v@=v©(5 §) meer,

¥ =v.6) ] 9 for¢ € T2,

(c) As¢ - oo,

wo=(xt) 5D G )26 7 el))

(d) As¢ — 0, %($) = Olog []).
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For | arg{| < 27 /3, we have

1'% “Ky(¢/?)

> (117)
ﬂi§1/216(§1/2) _gl/zK(l)({l/z)

¥(¢) =

where I, and K, are Bessel functions, I(’)(x) = diIo(x), Ké(x) = diKo(x). For definitions and prop-
X X
erties of Bessel functions see, for example [27]. Here the principal branch of ¢1/2 with the cut
along the negative real axis is chosen. For the explicit expression of the solution in the sector
|arg{| > 2/3, see [34].
‘We have the following useful asymptotics as z — 0 for Ij:
In(z) =1+ z + z + 0O(z%) (118)
EAn 4 " 64 :

We denote by U® fixed open nonintersecting balls containing p € T = {—1,v;,0,,1}.
Recalling ¥ in (6), we define ¢ = ¢P) on UP) by

2
¢P(z) = —<s / ¢<§)d§> . (119)
p

As z — p, we have the expansion

4(p = x)X(p — %)

) (120)
qur\{p}(p - Q)

(P(z) = (z - p)sCo(L +0(1), ¢ =

Note that ¢(P)(z) is a conformal mapping of UP) onto a neighborhood of zero. Observe also that
Eo > 0 for p = vy,—1, and 50 < 0 for p = vy, 1, and so the contours in U®) are mapped from the
z-plane to the {-plane accordingly. We choose the exact form of the contours in the z-plane so that
their images are direct lines.

Keeping in mind our conventions for the root branches, we obtain

CPEY? +i(¢(2) - $(p) =0, Imz>0

(121)
PNV - i(p(z) - $(p) =0, Imz<0
By (7), (77) and the definition of Q in (13),
$(vy) = ¢(1) =0, $(—1) = ¢(vy) = —7Q. (122)
Let
0o -1
forImz > 0,
X(2) = <1 0 ) (123)

I forimz < 0.
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28 | FAHS and KRASOVSKY

For p = —1,v,, we define the local parametrix on UP) by

P(2) = E(2)¥({(2))X (z)e 5%,

i 1\ 293 (124)
E(z) = N(Z;SQ)eisd’(P)UsX(Z)—l% <_11 —11> <7T§‘E> ’

where we have suppressed the superscript in ¢ = ¢(P), and the branch cut for ¢1/# is the same one
as for ¢1/2,

Using the jump conditions, it is straightforward to verify that E(z) has no jumps in U, and
since its singularity at p is removable, E(z) is analytic in the neighborhood U, p = -1, v,.

Furthermore, it is easy to verify that P(z) satisfies the same jump conditions as S(z) in 94928
p=-1v,.

Finally, using the condition (c) in the ¥-RHP and (121), we obtain for w € su®

P(2)N(z;5Q)7 =T+ A (2) + O(1/5%), A (z) = O(1)s), (125)
uniformly on the boundary as s — oo, where

A1(2) = A4(z;5Q);

T . -1 =2 . (126)
A(z;0) = 1 N (z; w)els?(P)os < ' 21) e~ 1583 N1 (z; ), p=-1,0,,
8V¢(2) -2

where F is taken to be — on U®) n C,,and + on UP) 0 C_. Note that A,(z) is meromorphic in
U, p = —1,v,, with the first-order pole at z = p.
Similarly, for p = vy, 1, we define the local parametrix on UP) by

P(z) = E(2)03%({(2))03 X (2)e5¢(2)3,

' 1\ 39 127)
E(z) = N(z; sQ)eiS¢(P)03X(Z)—1% (1 ;) (n_&) |

Here E(z) is analytic on U?, P(z) has the same jumps as S(z) in U?, p = vy, 1, and the same
condition (125) holds with

A1(2) = A(z;5Q);

-1 2i (128)

—ist(p)s AP~z _
2i 1> e N (Z,C()), b Ul’l’

Az ) = —F N (z: )el 0 (

8v¢{(2)

where F is taken to be — on U® N C,, and + on UP) N C_. As at v,,—1, A(z) in (128) is
meromorphic in UP), p = v, 1, with the first-order pole at z = p.
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Lru
Fru
: éQUj |
g1
Lrr

FIGURE 5 The jump contour I'y.

Iru

Irer

4.4 | Small norm RH problem: Solution of the ®-RH problem for fixed
U1, U,

Let

S(Z)NHz;5Q) forz € C\ (Uper UP),
R(z) = (129)
S(z)P~(2) for z € Uper UP.

Then R(z) is analytic for z € C \ I'y, where Ty is as in Figure 5. We have

P(2)N~(2) for z € UperaUP,
R.(2) = R.(2Vk(2),  Jp(@) = (130)
N(@Is@)N 7 (z) forz €Ty \ (UperdUP).
By (83) and (125), it follows that
Jr(@) =1+ 067 /(12° + D)), (131)
as s — oo, uniformly for z € I'g, and by the definition of S and N, we have

R(z) =1+ 0(z™), (132)

as z — oo. By standard small norm analysis, it follows that there is a solution to the RH problem
for R for s sufficiently large, and that

R(z)=1+0@1/s), (133)

uniformly for z € C \ Ty as § — 0. As usual, we expand R in the powers of the small parameter,
1/s in our case, to write

R(z) =1+ Ri(2) + O(1/s?), (134)

where R; solves the following RH problem. R;(z) is analytic outside the clockwise oriented
boundaries U of the neighborhoods U,

Ru(@) =R (@) +A2),  2€UperdUP,

5UBD17 SUOWILOD SAIERID |cedt|dde sy Ag peusenob e sapie YO ‘8N JO SN 1oy Akelqi] auluQ A8|IAA UO (SUOTIPUOI-PUE-SWB) WD A | IM Aeiq 1 puUl|uO//:Sdiy) SUONIPUOD pue SWS | 8Y) 89S *[£202/2T/ST] Uo Ariqiauljuo AB|IM ‘Sjeuoizeusiu| ejonds essiS Ag 21T2zedd/z00T 0T/I0p/wod AS| 1M Aeqijput|uoy/:sdny wouy pspeojumod ‘0 ‘2TE0L60T



30 | FAHS and KRASOVSKY

and R,(z) — 0 as z — oo. The solution to this problem is given by

1 Aq(x;8Q
Ri(z) = — de, z2 € C\ UperdU®, (135)
27i UpeTaU(p) X—2Z

where the integrals are taken with clockwise orientation.
Taking (134) (one can obtain further terms in that expansion in a standard way) and tracing
back the transformations R - S — ®, we obtain an asymptotic solution of the ®-RH problem.
Additionally, we will need the main asympotitcs of ;—ZR(Z), which we obtain from the standard
representation

_ R_(§)T = Jg(§)) d§
R(Z) =1+ '/FR T% (136)
It follows that
d _ [ R(OU —Jr(§)) d§
ER(Z) = /FR (g_—z)zz—m, (137)
and by (131) and (133) we obtain
%R(vz) =0(s™). (138)

4.5 | Extension of the solution to the regimes v, — 1, s(1 — v,) > o;
v, > -1,5(14+v,) > ©

In our solution of the previous section, the end-points —1 < v; < v, < 1were fixed. In this section,
we show that the solution can be extended to the regime where v, not only can be fixed but can
also approach 1 (and v; approach —1) sufficiently slowly as s — co. This will be needed for the
proof of Theorem 1 below.

More precisely, we fix € > 0 and assume

1-v,<1+vy, U, — U > €, 5(1 —v,y) = 0. (139)

We let U2) and U™ have radius equal to ¢(1 — v,), and similarly U and U have radius
equal to ¢(1 + v;), for some fixed and sufficiently small ¢ > 0. Note that the neighborhoods can
now contract with growing s.

T . . oL . .

Asv, > 1,1 — \/ﬁ for j = 0,1,2, and computing an additional term in the expansion

we find by (9) that

v v (1 —v)d +0y) +
2 4

X1Xy = (9((1 - 02)2), Uy — 1

uniformly in the regime (139). By (8),

Ul—l _1+U2

+0((1 - 0y)?), X, = +0((A —0y)?). (140)

X, =
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By (140) and (119),

1 1
Vol () (an

uniformly in the regime (139) and also uniformly for z € U@, pEeT ={-1,v,0,,1}

Next we will show that A" and A ~! are uniformly bounded on U for p € 7. As v, — 1
(under conditions (139)), we see from (85) that both y(z) and y~!(z) are uniformly bounded also
ondUP forpeT.

We now consider 6-functions, and start with t. For J,,, we have

v dx(1+0(V1=0;)) o ax(1+0(y1=0,))
ho= / 1OV DG =00 ey V2 =000 = 2005 — )

as v, — 1, and since

, (142)

VzZ2 =14+ (t+V1—-t2)z +i V1—1t2

4 log = (143)

dz \/zz—l+(it—\/1—t2)z+i @+ VAR1

for any parameter ¢, it follows that

1-—
b e o)) o

Thus, since I, =

ﬁ(l + 001 —vy)),

.JO l 1 1 - Ul
=i — Ll510g2 +1 | (1 (\/1— )) 1 14
T lIo ﬂ[Sog +0g1_02+0g1_|_v1 +0 v, vy = (145)
in the regime (139), so that we have —it — +oo0.
As —it = 400, 96(3 ) — 1 for any w € R. We also observe that as —it — +o0, the fraction
3@
6 +w;T

—(§ ) (146)

0(;1)

is bounded uniformly under conditions (139) and over all w € [0, 1), for £ bounded away from
the zero of the 8-function 1—;“ modulo the lattice, and the same holds for derivatives of (146) with
respect to £, w, and 7. We now show that £ = u(z) + d remains bounded away from 1—;“ modulo

the lattice for z € aU®P, peT.
We have by (90), (86), (87),

. -1
d=—u(c0) = —7/2+1/2 + 2170 / d)(‘ ) modZ. (147)
—oo \/p(X

Asv, = 1,

T dx(14 01 = y)

[
oo VPO -0 = 0)V(ET =)0 — %)

(148)
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and by using (143)

2
1+u; _ ﬂ
L/_l dx _ \/2(1—01) IOg 1+ 3—; + Vl <3—vl>

2[0 —o X - 2 2
W smwmi- () e - ()
1 U1 3—u;

as v, — 1in the regime (139). We also have in the same regime by the definition (86) of u(z),

(1401 - vy)),

(149)

z
i dz
u(z) = —— 14+ 00 —vy)), z €U youW,
=73 ), ooy FOTD)

r iv1-v, [F dz
u(z) = —= —

2 Vor Ju (E+DE-v)2(z-1)

A+00-v,)), zedu® ysutD,
(150)

We note that (149) is bounded below by a fixed positive constant ¢; > 0 under conditions
(139) and is uniformly to the main order i log(1 + v;)~!, which is less or equal to |z|/4, since
T~ i(log(l —vy)7 ! +1og(1 + vy)7Y). By (150), provided c is sufficiently small (where we recall
that the radii of U2 and UM are equal to c(1 — v,), and the radii of UV and UV are equal to
c(1+vy)),¢/2 < |Im(u(z) —d —7t/2 + 1/2)| < t/3forz € U®2), and as a consequence u(z) — d
is bounded away from 7/2 + 1/2 modulo the lattice. Similarly, it is straightforward to verify that
u(z) £ d is bounded away from 7/2 + 1/2 on W, for p € T. By the boundedness of (146), it
follows that m;;(z; w) and am‘;—:;w) are uniformly bounded for i, j € {1, 2} and for z € %, with
p € T, and for future reference we note that by the boundedness of the derivatives of (146) with

respect to &, w, T,
9 omj(z;w) IOm;j(z;w)
— , =0 , 151
v, dw v, fnax (151)
as v, — 11in the regime (139), for z € U®).
Combining the statements about boundedness of m and y and y~!, it follows that N'(z) and
N'(z)7! are uniformly bounded for z € UP), p € T, and thus by (141), the jump matrix Jz(z) for
R(z) on aUP), p € T, has the form

2
6U2

o
602

ou(z)
avz

s s

PN (z:5Q)! = I + o<;> (152)
s(1—v,)

as s — oo, uniformly under conditions (139) and also uniformly for z € sU®), p € T.
The analysis of Jz(z) on the rest of the jump contour is similar, and we obtain uniformly for
(139) and uniformly on this part of the contour

N(z;sQIs(2)N(z;sQ) L =T+ (9<e’s(1’”2)‘3/(”|2|)), ¢ >0. (153)
Thus we have a small norm problem for R, and as in the previous section we now obtain

R(z)=1+ (9< (154)

)
s(1-vy) )’
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uniformly for z € C \ T'y under conditions (139). Therefore the solution of the ®-Riemann-Hilbert
problem for fixed v, v, extends to the regime (139). Note, however, that the error terms are
different from those in the previous section.

By (136), (152), and (153)

R, = (9<;> (155)

s(1 —v,)>?

5 | PRELIMINARY ASYMPTOTIC FORMULA FOR THE
DETERMINANT

For v = z — v, in a neighborhood of 0, we write the expansions of {(z),

VeI 00 = storm(L+ Gy + 00D, =22 Xa ) (g5

VA= v3)(v, — vp)

where —7 < argv < 7, and the branch cut is on (—o0, 0]. Similarly, we expand y(z), m(z), and

u(2),

(1= v)(vs = v1>>”“ o

YO +0) =y VA A + v + 002),  yee T = <
1 + Uz

1
u + vy) = —ugP/2(A 4 uyv + O(v2)), Uy = >0, (157)

Ipy/ (v —0)(1 - v7)

M (v +0y) = Mo + My % + mj v + O@32),

but with branches chosen such that 0 < argv < 27, and the branch cut on [0, +0). Here m jk are
the matrix elements of m. Thus, arg v in (156) and (157) are the same for Im v > 0, but are different
forImv < 0.

Using the definition of m and the jump conditions (94), we easily obtain the relations:

My1,0 = M12,0» My1,0 = M0,
My = —Mp1, My = —Mpg, (158)
My = M2, mMy1,2 = M-
We also find
0(0)8(+w + d)
mjjo =mjjo(@) = T e@e@)

O'(xw+d) 9’(d)> o)

M= _mff’°”°< Bzw+d)  0(d)

mjioul (0" (xw +d) 6"(d) o)\ 0 (+w+d)d(d)
ji2 = =% - +2 T )

Mjjz = 0w +d)  6(d) o(d) 0(+w + d)o(d)

where + means + for j = 1 and — for j = 2.
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Let

Py =NEs)—(© ) (! T ézaglp 160
@=nEsa2 (5 ) (507) (7 (@) (160)
By the definition of S in (80), R in (129) and X in (123), and the fact that ¢(v,) = 0,

(@7 (0P, (0y)] n=" [ﬁll(vz)ﬁ;(vz) + ﬁzl(vz)R_l(Uz)R/(Uz)ﬁ+(Uz)] o (161)

With the notation of (156) and (157) (where the branches of \/; coincide for Imv > 0), it is a
straightforward calculation relying on the expansion of Ij(z) in (118), the definition of N in (91),
and the identities for m;; in (158), to obtain

A~ sy [im *
P =-myf 552 (e 7)),

2
lmllo[ 12 | Mg <yaz 5o >+§_1+ s 7 ygsz"o] < (162)

mi0 miyo

7s¢,
2 2 ’
mzzo[mzzz + myy 1 <752+ S§0>+ §1 + go +y1+y—23§0] *

m2.0 m2.0

13;(02) = Yo

where we are uninterested in the entries %, and w = sQ in m;; ;..
We will now make use of the first identity (95) in Lemma 16, which, by the definitions of m;; .,
we can write in the form
2
my1,0Myo + 70(7”11,0”"22,1 +myomyg) = 1. (163)

Using this relation, we obtain by (161) and (162) for the r.h.s. of the differential identity of
Lemma 14,

2
I _ s gVo S§0
F(v,05) = oy [¢+1(Uz)¢;(vz)] n="7 ~ g™ omzzo(Vgrz +T4)

N is¢ove
4

(imyo myg) RHv)R! (U)< n1110> (164)
22,0

where

mpy ;. My
rj=—2 - =L (165)
M0 Moo

and we take w = sQ in m;; ;..

Now the more explicit asymptotic expression of (164) is different (in the error term) for fixed
U1, U, (Section 4.4) and for the double scaling regime of Section 4.5.

For fixed vy, v,, by (134), (135),

. §2
Fs(v1,0,) = é (@7 ()@, (vy)] L= ﬁ - %mn oMo (7eT, + 1)
g’zyo W(sQ) + O(s7), (166)
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as § — oo (uniformly for v,, v, bounded away from each other and {—1, 1}), where

W(w) = (imzz,o(w) mn,o(w)) Z / M ( My 0(@) > (167)

pe{—Loy,05,13 7 OU® 27i(z — vy)? \—imy; o(@)

with integration in the clockwise direction.
For the regime (139) of Section 4.5, by (154) and boundedness of m

S (imzz,o mll,o) R_l(vz)R,(Uz) <_r:ln1112’(2)0> = W(SQ) + 0(@) , (168)

and since by (156) and (157), and the formulas for x;, x, in (140), we have

Sorg =00 -0y, v -1, (169)
equation (164) becomes
252 )
N go §0S lg()y() 1
F =0 _ 20 Ty +T W(sQ —_— 1
(U1, 03) 7 7 m11,om22,0(70 >+ 1) +—2 Q) +0 SA—0,2 ) (170)
uniformly under conditions (139).
Proposition 17. Let
252 e 2 1
N g” sé’ lgoV
D(vy,vy) = TO - Tomn,omzz,o(y(z)rz +Tp) + 7 0 / W(w)dw, amn)
0
where §, and y, are given in (156), (157),T; = Ty T2 itk mjj = m;j(sQ) from (159), and

mii0 ma2.0

where W is given in (167) (with A, defined by (126) and (128)).

(a) LetV € (0,1),andlet A = (=1,-V) U (V,1). Let U, = —U;, and denote v = v,. Fixe > 0. Then

14
logdet(I — K,); — logdet(I — K,), =2 / _ D(=v,0)dv+ o(%)
1

as s — oo, uniformly for e <V <1-— 2 \Where t(s) > o0, t < é(logs)l/“, and A=
N

(-1,-1+2t/s)u(d —2t/s,1).
(b) Let—1 <V, <0andV, befixed, V| <V, <1, and denote A = (—1,V;) U (V5, 1). Then

Vs

1
logdetr — K - logdett = Krvuv = [ DWViede, +0( 3 ),

_Vl

ass — oo.
(c) Let A= (—=1,V;)U(V5,1), and a fixed € > 0, and with -1 < V; < V, < 1 and

1-V,<1-V, <14V, V,=Vi>¢, s(1-V,)— oo, (172)

Then

Va
1
logdet(I — K;)4 — logdet(I — K o) = D(Vy,vy)dvy + O —— ),
og det( s)a — logdet( S)(—l,Vl)u(Vz,l) ‘/172 (V1,v2)do, <(1—V2)s>

as s — oo, uniformly in the regime (172).
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Remark 18. In the proof, considering the effects of averaging w.r.t. w = sQ, we will show that (171)
gives the main contribution, and the error terms are as presented.

Remark 19. Part (a) allows us to integrate over symmetric intervals from the position of two small
ones at 1 and —1 (where Lemma 8 holds) to general symmetric intervals with a fixed 0 < V < 1.
Part (b) allows then to move the V, edge to an arbitrary fixed position V; = -V <V, < 1. Note
that the condition —1 < V; < 0 here is not a loss of generality for det(I — K) 4, since we can use
the symmetry x — —x of the determinant.

Part (c) allows us to to integrate to reach a scaling limit where V, = V,(s) can approach 1
provided s(1 — V,) — oo and V; is fixed.

Finally, choose a V;(s) = —V,(s) such that 2t = (1 4+ V;)s — oo (in this case, Lemma 8 still
holds by Remark 9), and then, if needed, move V, closer to 1 using Part (c). Then, if needed, one can
use the symmetry x — —x, to reach an arbitrary situation with (1 + V;)s — o0, (1 — V;)s - oo.

Proof. We first prove Part (b) of the proposition, then Part (c), and finally Part (a). By (166) and the
differential identity (42), all we need to do for the proof of Part (b) is to show that, with 172 = -V,

Vs Vs, 1
/ Cong(SQ)dvz = / {07(2) / W(C/J)dCOdUZ + O(S_l), (173)
I//\2 ﬁz 0

as s — oo. Denote f(w;v,,07) = Q’OySW(w). This function is analytic in both w and v, (v, is
bounded away from v, and 1). Let f; denote its Fourier coefficients with respect to w, so that

f@ivp,o) = CongW(@) = Y £z v1)e7%. (74)

j=—o0

For j # 0, it follows by integration by parts that

_V2
' : 271 jsQ
2f-(v v,)e2misdy, | = 1 fj(va,01)e
o T | 2mljls 5
; ) 0w,
dv, I,
Vs '(U ,U ) -
_/ ai "3](‘]; eZm]stvz ) (175)
‘72 %) _Q(UZ,Ul)
dv,

In Proposition 24 (b) below we give an explicit formula for aiQ(vz, 1), and in particular it is a
U2

strictly positive differentiable function bounded away from zero when v, is bounded away from
v; and 1. Thus

v, S
/:\ f(SQ, Uy, Ul)dvz = Z /A fj(UZs Ul)eZHistdvz
V2 j=—00 V2
V, 1
= fo(vz,v1)dv, +(9<§>, s — co, (176)
V

which yields (173) since fo(v,, 1) = o¥g ]01 W(w)dw.
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We now prove Part (c¢) of the proposition.
Substituting (140) into the expression (225) for :—Q in Proposition 24 below, and also using (219),
U2

we obtain

a__3-n O(1 — vy), 52—? =0((1—vy)™), 177)

80 420 =) dv;
and, in particular, S—Q remains bounded away from 0.
U2
We now show that

1 o) 1
fi(a,01) = 0<m> a—vzfj(vz,lh) = 0<m> (178)

as v, — 1, for j # 0, uniformly under conditions (139), which proves Part (c) of the proposition by
(170) and arguments similar to those we used in the proof of Part (b).
Since

1

1
d . —2mijow ;
27T] / awf(w’ UZ’ Ul)e dw ) ] ?é 01

(179)

|fj(U2’vl)| = / f(w; vy, 01)e™F%dw| =

and similarly for ai f j(vz, 1), it suffices to show that
U2

0 1 0 0 1
%f(CU,Uz,Uﬂ —0<m>, acua ——flw;0y,07) = <m>, (180)
asv, = 1.
It follows by the definition of W in (167), (152), (169), and the arguments of the previous
section that

%)

f(Cl) U, Ul) - gOYOW(w) <1 _1 > (181)

as v, — 1 under conditions (139).

We recall that aU() i 9 f(w;v2,01)
w

i,j € {1,2}, are uniformly bounded for z € U®P), p € T, and so ~
satisfies the same upper bound as f(w; v,, v7) given in (181), proving the first bound in (180).
To obtain the second one, we observe first that by (145),

0 1
a—UZT—(9<1_v2>, Uz—)l, (182)
and by (150),
ou(z) 1
dv, _0<1—vz>’ (183)

as v, — 1, uniformly for z € duP), peT.
It follows by (147) and (149) that %d = (9(#), as v, — 1. Thus, by (151),
2 -2

amij(z;w):@( ! ) (184)

aU2 1-— Uy
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as v, — 1, uniformly for z € UP), p € T. Furthermore, by the definition (85),

3 o . 1
a—UZV(Z), 30,7 Y(2) = (9< > (185)

1—U2

By (140) and (119),

a 1 1
a_vz( \/g(z)) B 0(8(1 —0,)? ) 150

The above bounds taken together imply

d 1

It follows by the definition of W in (167), (169), and boundedness of m j that

) 1
—_— , , = (9 _— N 188
6vzf(w U2, U1) <(1 — 02)2> (188)
. “ . . o] ami,-(z) 8ml,(z) .
as vz — 1, uniformly under conditions (139). Since o O( ), it follows that
2

Ea_ flw;vy,07) = (9(— f(w;vy,07)), which proves the second bound in (180) completing the

proof of Part (c) of the pr0p051t10n
To show Part (a), we let v, = —v; = v, and take the limit s —» oo such thate < v <1 — M for
N
some € > 0 and a sufficiently large M. By (43),

o}
Em det(I — Ky)(-1,-v)u(w1) = 2Fs(=v, ). (189)
We observe that (170) is valid also for v, = —v; = v, and all that remains to finish the proof of Part

(a) of the proposition is to consider the Fourier coefficients of f. In place of (175), we have

\4

1 fj(v’ _v)e271'ijSQ _ /V 6 fj(vs - )

Zﬂistd

e D].

~ 2zljls iQ(U’_U) Iy dv iQ(v,—v)
du \% ov

‘/ f] v, _U)eZTL'l_]SQd

(190)

By above arguments, it suffices to show that the right hand side of (190) is of order — o
Jj2s(1—v

do this we need the first bound in (180), which holds also for v, = —v; = v, and additionally we
need to prove that

1
aw avf(co v, U) = 0<m>, (191)

as v — 1, and that diQ(v, —v) remains bounded away from 0. Note that, using contour
v
integration,

Udx “Iodx
Qlvyv) =T, = | 22— &
B / Vip(l /—1 Neo]

5UBD17 SUOWILOD SAIERID |cedt|dde sy Ag peusenob e sapie YO ‘8N JO SN 1oy Akelqi] auluQ A8|IAA UO (SUOTIPUOI-PUE-SWB) WD A | IM Aeiq 1 puUl|uO//:Sdiy) SUONIPUOD pue SWS | 8Y) 89S *[£202/2T/ST] Uo Ariqiauljuo AB|IM ‘Sjeuoizeusiu| ejonds essiS Ag 21T2zedd/z00T 0T/I0p/wod AS| 1M Aeqijput|uoy/:sdny wouy pspeojumod ‘0 ‘2TE0L60T



SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 39

and therefore

) 0
Q;,v1) = Q(=vy, 1), 59(0, —v) = 26_1129(02’ —v) - (192)
The last derivative is thus bounded away from 0 by (177).
In order to prove (191), we simply observe that the bounds obtained in (183)-(186) also hold for
the derivatives with respect to v instead of v,, which yields

8 ] _ 1
%f(co, v,—V) = (9(—(1 — v)2>’ (193)

el 6mlj(z)

om;i(z
asv — 1. Smcea ”()

= O(—L=), it follows that ——f(cu v,—V) = O(:—Uf(co; v, —V)), which
proves (191) and thus Part (a) of the proposition. O

6 | PROOF OF THEOREMS 1,10, AND 11

In the next 3 sections, we show that (171) in Proposition 17 can be written as

3 ot ['d ot 8
D(vy,07) = a_vzg(s’ U1, 02) + 0, /0 57 10803(w; T)dw — 30,57 log 65(sQ; 7), (194)
where
Iz _ Uy+0p Il ( )
= 2 2 (v —vy) oy 1 1
g=s Ty 3 +1og 6(sx;7) — 5 logly — ¢ > loglg)l.  (195)

y€{=1,01,02,1}

We now use (194) to prove Theorems 1, 10, and 11. First, we show that with 172 fixed, and in all
asymptotic regimes of Proposition 17,

V2
ot 0 1
/‘7 <502 / FP log 6;3(w; T)dw — 6_6_10g63(SQ T))dvz <m>, s — oo,
2
(196)

uniformly in integration regimes of Proposition 17, and so this part only contributes to the
error term.
Using the differential equation (A.10) and (182), we write

!/
9 (dr & 1 a7 1
%(5 dt log 65(; T)> 47i av2< > (@) = <1 - vz>' 7)
Also since by (145),
9%t < 1 >
2T o ———), 198
a2 \O-u) ()
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40 | FAHS and KRASOVSKY

we similarly obtain

0 d (dr 0 1
3030, <602 3 log 65 (w; 1')> (—(1 — 02)2>‘ (199)

The estimates (197) and (199) imply, by similar arguments to (179), (180), (175), the estimate (196).
We now apply Part (a) of Proposition 17 to integrate (194) from the position of 2 symmetric small

intervals v =-v; =v, =1— 2, t= élog(s)l/ 4 where Lemma 8 can be applied, to the case of

V = —v; = v, > 0 fixed. If —v; = U, = U, by symmetry under the exchange v, — —vy, 0] = —U,,

a 0
Za—UZQ(S, U, 0y) = %Q(S, -0, V).

Thus, applying Part (a) of Proposition 17 and using Lemma 8, we obtain

2t 2t 1
logdet(I — K)z = G(s;=V,V) — g<s -1+ —=,1- ?) . 3 logt + 2¢y + O(1/t). (200)
To finish the proof of Theorem 1 in the symmetric case, we need to estimate G(s; —1 + 2, 1-— 2).
N N

Using formulae (A.37), (A.36), we obtain in our case v = 1 — x (recall that v"? = 1 — v?)
S

Ip(—v,v) = <1 R S—tz +O((t/s) ) ﬁ—Z(_”’”) =1-24 f +0O((t/s)),  (20D)
O(_U’ U)

and so the term with s? in G(s; —1 + 2_1’ 1-— 3) becomes
N N

t2

L(-v,v) v 1
i ik ek O((t/s)?). (202)

Iy(—v,v)

The term log 6 gives a contribution only to the error term, indeed, since by (A.36)

Jo(—v,v) =2K(v) = <log >(1 + O(t/s)), T= i;—o = 2;i(log %)(1 + 0O(t/s)),
0

we have that

log&(sQ) = log (1 + O(t/s1)) = O((t/s)?),  —vy=v,=v=1— % (203)
Finally, in this case
g = gD =1- 2 = 2A+ 0/, la(-0) = 1g@)I = £ = v* = 21+ 0/9),
(204)
and so
5 Y logla)l =3 log > +0G/s) (205)

YE{—=1,01,05,1}

Substituting (201), (202), (203), (205) into the expression (195) for G(s; —1 + E’ 1-— 2), and that,
N N

in turn, into (200), we obtain asymptotics (14) with an error term o(1) and with @1 and ¢; asin (15)
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in the case —v; = v, = V > 0. We then extend it to the general case of fixed —1 < v; < v, < 1 by
now a straightforward application of Part (b) of Proposition 17. (In fact, for v; < 0, but the general
case follows by a symmetry argument see Remark 19.) Now since by [18], (14) (with the error term

O(s™1)) holds for some constants Gy, ¢;, these must be equal to those in (15). This completes the
proof of Theorem 1, assuming (194).

Given Theorem 1, we immediately obtain Theorem 10 by applying Part (c) of Proposition 17 and
a symmetry argument as discussed in Remark 19.

Given Theorem 10, we now consider the limit where v, — 1and v; — —1in order to prove The-
orem 11. We do this by evaluating G, 7, and ¢; in (14) as max{l — v,, 1 + v;} — 0(the regime (139))
and using Theorem 10. From (145), we know that —it — +o0, and it follows that 6;(sQ; 1) — 1.
Substituting the asymptotics of x; and x, from (140) into the definition of q in (6), we obtain

Y loglg)l = 2log(l — v,)(A + v;) + (1), (206)
YE{=1,01,05,1}

as v, —» 1and v; —» —1. From Section 4.5 we recall that I, — /2, and combining this with (206)
and our formula for ¢; in Theorem 1 we obtain
1 1 -vyA+vy)

c, =——log

7 . + 2¢0 + 0(1), (207)

as v, » 1 and v; » —1. Now consider G,. A straightforward (albeit somewhat lengthy)
calculation yields

1-v)* A+
s 8

Gy = — O(max{(1 — vy)*, (1 +v)"), v, > land v, = —1. (208)
Substituting (207) and (208) into (14) with the error term of Theorem 10, we obtain

_s2(1 —0,)? B s2(1 +vy)? 1 s2(1 =01 +vy)

log Py(A) = 3 3 7 log 7 + 2¢y
+0(1) + O max { —1 L s =02 s +0y)?
s(1—=vy)" s(1+ 1)’ 2 !

for the scaling regime of Theorem 11, where the term o(1) is independent of s. Thus, by the
asymptotics for a single gap in (2), we obtain Theorem 11.

We now return to the proof of Theorem 1. All that remains is to verify (194). In Section 7 we
consider the leading order term in (171), in Section 8 we consider the term involving (ygl“z +1Iy),

which yields the derivative of log 6(sQ), and in Section 9 we consider the term with /01 W(w)dw,
which yields the constant. Thus, we will prove the following three lemmata, which taken together
imply (194).
Lemma 20.

U+

So_ 0 SO | (209)
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Lemma 21.

—%mll’omzz,o(yéfz +T) = ai log 6;(sQ; 1) — a—fai 0g 05(sQ; 7). (210)
Note that the r.h.s. here equals the partial derivative Sa—Q —— log 05(sQ; ) with t fixed.

o 9(sQ)

Lemma 22.

iorg [ (1 1 L .
2 /OW(co)dco——a—Uz 5logly + ¢ Y, loglg)l +a_u2/0 5, log63(w; )do,

YE{=1,01,05,1}

(211)
where W (w) is given in (167).

7 | THE LEADING ORDER TERM: PROOF OF LEMMA 21

Recall from (5) the notation for I j =0,1,2. We will calculate the derlvatlves i»J=0,1,2
2

I, Jj,
in terms of the integrals themselves. The crucial identity here is (217) below.

First, we have

oI, J
o 1/ 2 4 j=o012 (12)
[°5) A, (z —v)V/p(2)
Therefore,
i - I
oL _ i/ _EZUtly Io/2 + Uzﬂ, (213)
0v: 4 Ja z—v)Vp(@ o2

and similarly,

o, oL,
E—Il/2+vzavz. (214)
The last two equations imply
oI oI,
avz v2 a0, * I/2 + v,0,/2. (215)
From here and (213),
o] oI,
a—(zlz — (L + o) = (U — V) |25 +1o/2]. (216)
[%)) a

We will now express the derivative d1/dv, in terms of Is. To this end, observe that

—1)(z—vl) —01 z2—1
d I, — vl
/ dz \/ Z-0, /Al R e S a1

0
=—(y —v)z—U = Ip) + I, —vi]4,
v,
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so that
9 L —uvl
— (I, —I)) = ——. 218
P R 218)
Using this equation and (215) we have
3 L+ Uy+0; I + Uz(vz—Ul)IO
—2 = 2 2 (219)
dv,  (1-0v3)(vy—vy)
2 2 1
This and (216) imply
I _ U2+U11 2
92 2 bzt QL — (U1 + VI + vy(v; — vy)]p) (220)
ov, Iy 4 412(1 — v3)(vy — vy) ’

By the formulas for x; and x, in (8) and (9), and the formula for ¢, in (156), we finish the proof of
Lemma 21.

Remark 23. We also observe for future reference that the arguments may be copied line for line

and applied to the integrals J; = /U ljz xlj‘zx)l (by instead considering an integral over a closed loop
px

containing (v;, v,) and different branches of the roots), and we obtain the analogues to (219) and
(216):

U+ Uy (v —1)
aJO Jz + 5 Jl + 3 JO

— = 221
dv, (1 =0V, —vy) @20

aJ,
a672(212 — (L +vJ) = (v, —vy) [Uzﬁ +Jo/2]- (222)

8 | THE FLUCTUATIONS: PROOF OF LEMMA 21
We write the first subleading term in (171) in the form, using (156), (157) for ¢, ug,

S?zuo T,(sQ), Sty _ (02 = x1)(x —0n) T(w) =— -

4 20y — ) —v2) U

11,0M22,0
———(yeT, +1Iy). (223)

Our goal in this section is to prove the following proposition, of which Lemma 21 is an
immediate corollary.
Proposition 24. There hold the identities:

(@)

ot _dlr| _ u 2

_; 9t _altl _ - m, 24
ov,  0v;  I2(1-v3)(v, —vy) 0 (224)
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(b)

0Q _ (v —x)(x —vy)

0vy  Io(1—v3)(vy —vy)
©
A
3
T =2 . 226
1(w) 8y@) (226)
Proof. To show Part (a) note that in the notation of (5)
el = 22
7| = —,
Iy
and therefore, using (219), (221), we have
olr]  LJo—JTado— Ulzvz (I1Jo = IoJ1)
30 = . . : (227)
Uy I5(1 = vy)(vy —vy)
which gives Part (a) of the proposition by Riemann’s bilinear relations (A.30).
Part (b) follows from (13) and (219) by using (8), (9):
00 _ 10l __ x1X+ 0y —01)/2 _ (b = x1)(x — 1y) (228)
0v, IS ov, Ip(1— U%)(Uz —0y) Ip(1 = U%)(Uz —vy)

We will now show Part (c). Substituting the definitions of m;;, and I'; into T; in (223), and
using the identity (96) of Lemma 16, we write T, in the form

L, 6(0%0(w+ d)B(w—d) [61(d) (8 (w+d)  6(w—d)
@) =5 dra(wy lel(cn (5eva * oe=n)

(229)

_l(@”(w+d) 3 9”(co—d)>
2\ B(w+d) B(w —d) ’

We now show that T; (w) has the same behavior as 26’(w)/6(w) under the shiftw — @ + 7, and
therefore their difference is an elliptic function. We obtain using (A.5)

T\(w+7)=Ti(w) + f(w),
where

00’6 +de(w~d) |&'(@w+d) Ow=d) &

e(d)26(a))2 B(w + d) B(w —d) el(d) : (230)

f(w) = 2miygug

It is easily seen that f(w) = f(w + 7) = f(w + 1), so that f is elliptic. Furthermore, at the zero
(1 +7)/2 of 6(w), by (A.6),

O+d) Ow—d) 6d+v) 0d-v) 6/ s
e(w+d)_6(w_d)_91(d+V)+61(d—v)_el(d)+0(v)’ v=w—
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and thus the expression in the square brackets in (230) vanishes as w — (1 + 7)/2. So the pole of f
at (1 + 7)/2 cannot have the order larger then 1. Thus f is an elliptic function with at most single
first-order pole modulo the lattice, which means f is a constant. At w = 0,

@ _G@y_
od) 6d))

f0)= 47717(2)“0(

by (96) of Lemma 16. Thus

f(w) = —4ri.
This immediately implies that the function
6'(w)
T -2
1(@) 6(w)

is elliptic. To analyze its behavior at the pole, it is convenient to write T, in terms of 6; by (A.6),

(A7) withv = w — 12i:

) =y Q020+ 01 =) [6(@ (8 +)  €1(d =)
1(@) = =Yolo 6(d)26,(v)> O\ 6:1(d+v) 61(d-v)

1(8/d+y) o=\ 6@ (8d+y) 8d—v) -
2\ a@dry ed—» ) @ "\ edry Taa—n )| @Y

It is obvious from this representation that the expression in the square brackets vanishes at v = 0,
and therefore the order of the pole of T; at v = 0 is no larger than 1. Since the same is true for

0'(w)/6(w) = 6,()/6,(v) — i,

6’ (@)

= const.
B(w

Ti(w)—2

The value of this constant is easy to obtain by setting w = 0: since both T;(0) = 0 (see (229)) and
6’(0) = 0, this value is 0, which proves Part (c). O

9 | THE CONSTANT: PROOF OF LEMMA 22

Recalling (167), we write the term with W in (171)

iSors ! iy 1
30 /O W(w)dw = ZO /O (Ty(@) + Ts(w))dw, (232)

where

T2 = (imzz,o mll,O) Z / M < mll,O >’
0

pe{—l vy 1} U(P) 27Ti(z - U2)2 _im22,0

. SA (Z)dZ m
Ty = (impyp mn,o)/ — < 110 ) ,
8

Uy 2mi(z — 03)? \—iMa

(233)

with the integrals traversed clockwise.
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In this section we show (in subsection 9.1) that

0,2 1
17550 1 0 1
i | T@do=2 3 S—I-loglgy)l + 5 log|y ~vy)l|. (234)
4 J, 8 yelaTon ov, 2

and (in subsection 9.2) that

) 1 1
17950 ot ) , (19 )
) /0 T3(w)dw a0, /o 3 log 8(w; 7)dw = — (16 a0, log [(1 v3)(Vy vl)]
1
*3

19
logI, + 330, log |q(vz)|) . (235)

9
602 81)2

Substituting the last two equations into (232), we prove Lemma 22.

9.1 | Evaluation of T,

Our goal in this section is to obtain (234). We first compute T,(w). By the definition of A in (91)
and by (87) and (A.3), with w = 7Q,

6,(w+d) iel(co+d)
y(2)63 0:(d) 6:(d)

N (z)e™i7@0s = (@) _l.91(d “w) 6yd-w) +0(1), z - —1
6,(d) 6.(d)
O,(w +d) iez(w +d)
imesy, _ Y@7'65[ 6@ 6,(d)
NET =0 | ad-w)  a@—w [FOO P00 39
6,(d) 6,(d)
@63 64(ad) 0,(d)
N@ =25 ad-w ou-o [T T
6,(d) 6,(d)

(Note that6;(d) # 0, j = 1, 2,3, 4, by the argument following (89). Moreover, 03(w) # 0forw € R.)
Thus, by (122), (126), (128), and the definition of m ; o in (159), a straightforward calculation yields

'i isy(2)’
161/¢(z)

(i ) sty (2) mio B iS}’(Z)_zF @ +o(l), asz— v @37
= F— , - Uy,
M0 Miy0) SA1Z 1 167/22) 2 1

—im
22,0 3 5
_isy(2)

" 16v2

Fi(w)+0(1), asz— -1,

Fy(w)+o0(1), asz -1,
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where the upper sign is taken if Im z > 0, the lower if Imz < 0, and F; is given by

6416,(w + d)B3(w — d) + 6,(e — d)B3(ew + )]’ .
Fi(w) = 37J 63(w)493(d)2J9 @7 , j=1,2,4. (238)

7(2)?

To compute the residue of (237) at —1, we need to analyze +-—— > at —1. It is meromorphic, and

we need to determine the sign of its residue (the absolute value follows straightforwardly from the
expansions of y(z) and ¢(z)). Let x € UV, with x = =1 +¢, € > 0, and x lying on the positive
side of the cut. For such x, y(x)?> = i|y(x)?| by (85), and by the expansion (120), and in particular

the fact that §’ o is positive, we have that 1/¢(x) is positive. Thus \y/()i =i (/(%l and by (85) and
(120),
i 2 1+
4G . L1 +6,(2) (239)

‘)  Zt+1llg-D)

in a neighborhood of —1, where ¢;(z) is an analytic function uniformly o(1) as z — —1.
Similar analysis in the neighborhoods U™V, UM yields

1 (vy—v)A+10y)
$isy(z)_2 _Jz-u 2|gq(vy)]

V(@) ! — T o 2(1 + e4(2)) forz € UW,

where ¢,(2), €4(z) are analytic function uniformly o(1) as z — vy, 1, respectively.
Thus by the definition of T, in (233), computing the residue by (237) (note the negative
orientation of the contours), we obtain

(1 +¢&,(2)) forz e UV,

(240)

1+ 1+0, 1
16(1 + v2)?q(=1)| Fae) = 32(vy — v1)|q(vy)] Falew) - mF4(w). (241)

T2=

1 . . . e .
‘We now evaluate /0 F j(a))dw. It is easily seen that F j(w), j =1,2,4, are elliptic functions. We
start with F;. Note first that since 65 is even and 9, is odd, we have F;(0) = 0. By the definition of
0, and 65, we have

(O3(w — d)B1(w + d) + 63(w + d)b1(w — d))2 _(6:(v = d)8;(v + d) + 6, (v + d)E5(v — d))

63(w)* 6;(v)*
(242)
wherev = w — 1% Thus, as v — 0, the r.h.s. of this equation becomes
61(d)63(d) — 6,(d)6;(d)
—4 ( ’ ! 3 +0O(v). (243)
(6})"v2
Thus we can apply Lemma A.1 in Appendix A to F;, which gives
1 4 1 !/ !/ 2
6\ 65 [ 01(d 65(d)
Fi(w)dw = —4 - - . 244
, P <e’ > 5\ 6@ 0@ (24
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Using here the identity (96) of Lemma 16, and then the equation 61 = 16,056,, we finally obtain
4 "

1 6 e 1 46/!
F =4( 2 ) 22a 2=4 2123 2 24
| Fieas <61) narer =4 o) SRaer. )

We now evaluate the integrals of F, and F,. Applying the summation formulae (A.8) and (A.9)
to the definition of F, and F,, respectively, in (238), we obtain

46% 92(0))2 46§ 64(&-‘)2

3

Fy(w) = — , Fylw)= — . 246
2 5 03P 4(w) & 65(@)? (246)
By the definitions of 6, for j = 1,2, 3,4, we have with v = w — 1;—1
2 2 92
Oa@)” _ 0,00 _ % v24+0(v), v =0,
B3(w)*  6:(v)? (9;)2
, (247)
64(w)* _  6,(v) %
=_ = — 24+ 0(v1), v = 0;
63(w)*  6,(n)? (9/)2 -
1
and applying Lemma A.1, we obtain
1 2 02 el/ 62 1 2 62 6// 62
/ gZ(w)zdw =— 6—3 + =, / 24(w)zdw =-——> 6_3 + = (248)
o 3(@) (6)° % 6 o 63(@) (@)% ¢

From here, by (246) and the equation 6/ = 76,6,6,,
1

1 1 6” 1 1 6"
Fy(w)dw = 4 =11 /F w)dw =4 =241 249
/0 ) ( s ) [ R ( s ) (249)

Integrating (241) by (245), (249), we obtain

/1T(w)dw_(1+vl)I§< 1 )49_§'_ 1+, 1 9_§’+1
0o 4lg(-DI \ 76,6, 65 8(v, —vplg(v)l \ 7267 65

1 1 6
- — = +1) (250)
41— vla] < 7267 8
We now express all the 8-constants here in terms of elliptic integrals. For 6‘2‘, 63, this was already

"

. . . ] " . .
done in (100), (99) of Lemma 16. To obtain an expression for 9—3, we first note that by the differential
3
equation (A.10) satisfied by 8-functions, and then by (224) and (101),

6// a

9
= 4mi 21
5, ~ 4migylogds = a/a a0,

log63 = I;(1 — v)*(v; — vl) 1og(12(1 +0y)).  (251)
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We now use (219), (9), and then the expression |q(vy)| = (Uy — X1)(Xy — Uy) = —X1X — Uy (U, —
v1)/2, to obtain from here

1

6 U, — U (1 —vy)(vy —1y)
6—3 = 21(2)<x1x2 + 2 5 1) = 21§<—|q(u2)| + +> (252)
3

Substituting this expression as well as (100), (99) into (250), and using the fact that by (157), (156),

i75So _ __lg(y)l
4 2(1+v,y)’

we obtain

ivgdo [ 1 g < 1 ! ! )
Ty(w)dw = 2 -
Z /0 N = o, —on \TaCDI T * g

1 gl <_<1—v2><vz—v1> 1‘”5+(1+”2)(”2‘”1’). (253)

16 (1= v2)(0; — 1) FES IR TTON] (D

In the last three terms here, we express |q(v,)| by |g(—=1)], |g(v1)l, |q(1)], respectively, for example,
for the last term we write (recall (8))

[q(L)| = —x1x2 — V(L —v1)/2 = =|q(D)] + 1 = (] +03)/2 — V(L —vy)/2. (254)

This allows us to write (253) in the form

i 2 1 2
7550 / Iy@)dew = L qz(vz) < 11 1 )
4/, 8 (1—v)(wy —v) \Ig(=DI gl g
1 1 1 1 2_(U2—U1) Uy, + U 2+U2—U1>
+— + - - - . (255
16<1 ¥0, T o—o T 1-w 2genl 2lgenl T 2qmr )P
On the other hand, by (9) and (220),
i|q(—1)| = i<1+x X, + Ul+v2) =270 9wy’ +1 (256)
dv, du,\" TR 4 A-e-v) 2
and
0 Uy — U q(vy)? U1
—|q(vy)| = =,
0v, 9 4 (1-v),—v) 2
i (257)
o) Uy — U (vy) 1
g = -2 T2 -
dv, 4 (1-v)y—vy) 2

We therefore easily obtain the expression for % log |q(—1)q(v1)q(1)|. Comparing it with (255)
2
shows (234).
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9.2 | Evaluation of T,

Now consider T5. Our aim in this section is to prove (235). We write A in (91) in the form

— Al ) _1/0 A i4 _1/B; —iB
N(z) = A(z;sQ) + B(z; sQ), A= 3 (—iA2 A2> , B = 3 (i32 B, )’

O;(u(z) x w + d)

+(r@)-r@™)

AJ(Z, CU) — e3 [(]/(Z) + ]/(Z)_l) 93(—U(Z) +w+ d)] ’

2%(@ 5, + ) REER
o O BE@Eerd L e(u@ e td
@) = s (0 + 10 ) 2GS~ v ) 2SR

(258)
where + means + for j = 1 and — for j = 2. Using the jump conditions (92), (93), we observe that
(z — v,)Y*A(z) and (z — v,)"Y/*B(z) are analytic on U2,

Since A (z) in (126) for p = v, is meromorphic on U2, all odd powers of roots (z — v,)'/? in
the expansion of (126) cancel, and it follows that for z € U®) and Imz > 0,

AfZ) = — 1 [( A iA1> <—1 —21') <A2 —iA1>
32‘ /é’(z) —lA2 A2 —21 1 lA2 Al
B, —iB; -1 —2i B, iB;
+ <iBz B, > <—2i 1 ) <—i32 B, /| (259)
Therefore

, m i
(imaa0 my1o) A (2) < 10 ) = 16— [(Ma20A41 — My 0AL)* + 3(mya 0By + myy 0B,)?].

im0/ 16\2@)

Expanding A;(z) and A,(z) as z — v,, we obtain using (156), (157), and (158),
My 0A;1(2) — my1 gA(2) = =5 ugT1 (@) (z — 02)¥4 +0((z — vy)Y*) (260)

with T (w) as defined in (223). By (226) in Proposition 24, this equals

_ 2u0 6;(50)

- _ 3/4 _ 5/4
e 63(w)(z 0,4+ O((z — vy)/4). (261)

So that by the definition of T5 in (233), we obtain computing the residue for the first term,

. 2 .
Ty(@) = — 1u§ (Gé(w)> +/ ( )3l[m22,OBl(Z)+mn,oBz(Z)]z dz
ou'v2

5= (262)
4y2¢o \ 63() 16(z — v,)24/¢(2) 2mi
where the integration is in the negative direction around v,, and where \/E and B;,B, are
understood to be the analytic continuation from Im z > 0.
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‘We now write the average

1750 B up 6, (w) 175$0Q
i /OT3(co)dcu 1_6 (93(50) dow + YR

where

0= / dco/ 3is[Mmy,0B, (z; ) + my; oBy(z; w)]? dz
U©2)

16(z — 022 (@) 2mi

To compare with Lemma 21, we will now single out a contribution from

1
ot 0

Using the differential equation (A.10) and the fact that
1 !’ / 1 " / 2
0= / 5O g = / @ (G,
0 \ 6@ o | 6@ 3(w)

1 " 1 / 2
_ Q[ @ do ol (%@ do
- 602 0 63((4)) 47i - 602 0 63(0)) ’

Wwe can write

Since, by (224), muj = c;l !
Uy

w’égo IT( d __LM ! Gg(w) 2d +iyg§0Q
4 f, T e o0, J, \ oy ) 0T T 4

Now by (A.19),

, We can rewrite (263) in the form

Ho@Y a2 ey
E
o \ 63w 336

Using the identity 61 = 16,056,, and the identities (99)-(101) of Lemma 16, we write here

+4.

6/” d i 0 4 /4
ry_ Tt o Nt _
? = 47Tla— log (9 ) = 5_‘[ al)z log (61) = 5|T| a Og (926364)
61)2 602
_r 9 — log [I5(1 — v3)(vy — vy)],
- 5|T| a g 2 1
6U2

so that we can rewrite (267) in the form

2 1
175%0 1 ( 47| @ 6 )
2 /0 T5(w)dw = T <7T—av2 + 30, log [I5(1 — v)(vy —v))] | +

7e$oQ
4

+ 4.

(263)

(264)

(265)

(266)

(267)

(268)

(269)
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It remains to evaluate Q defined in (264). To simplify the computations, we first do the averaging
over w and only then compute the residue in this case.
As above for A(z), we expand B(z) to obtain

Y(2)[may0B1(z; @) + my o By(z; @)] — 2 = O(z — vy), Z — Uy, (270)
and therefore

¥(2)?[My2,0B1(2; @) + My Ba(2; 0)]? = —4 + 4y(2)[myy 0By (z; @) + My Ba(2z; )] + O((z — v2)?),

7n)
as z — v,. Thus, upon changing the order of integration,
dz 3is !
Q=/ — —1+y(z)/ dw|my; oB1(z; w) + myy 0By(z; )| . (272)
U2 27 4)/2(2)(2 _ 02)2 /_g(Z) l 0 [ 22,0°P1 11,002 ]
By the definition of B; and B, in (258) and the formula for my; ; and m,,  in (159), we have
1 1
[ dalmesobi@o) + muobyzo)] = [ @)+ a-w)de. @7
0 0
where
636(~w +d) 8(u(z) + w + d) 8(—u(z) + w + d)
~ __3 -1 _ _ -1
1) = 5@y <(Y(Z) ) amaa @O T )
(274)
Since g(—w) = (1 — w), we have that
1 1
[ aao = [ qee. @)
0 0

Applying (A.20) to evaluate /01 q(w)dw, we obtain:

' 625(d)
J/(Z)/ dw [mZZ,OBl(Z; CO) + mll’oBz(Z; CU)] = n.ZL
0 (6")" sin(ru)

x{(r(@? +1)g(d +wf(d) - fd+w] + (y(2)* = 1)gd -~ wf(d) — fd-w]}, (276)

where
_ 6 _ 6™
=g JW=g0 @)
Note that (A.13) gives for the derivative of f(z)
e/ 2 9//
’ —__| 1 1 3
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Using this, we have, in particular, as z — v,, thatis, u — 0,

2 2
& 1L %6 8@
Jrdzm= <63> li“<g<d)2 _e_3<e_;> >_“ 8(d)

W gld)  g@?\  ut( g  9¢"(dg'(d) 12g'(d)’ 5
i?<_g(d)3J’3g<al)4>+ﬁ<_ g@F T g@r | g@r >]+0(“ - ™)

Expanding also the other terms in (276), and also expanding u by (157), we obtain that, as z — v,,

1 2
¥(@) [ dwlmyBi(z; @) + my; oBs(z;w)| = g(d)(l + %ué(z —-0) +0((z - 02)2)>
0

X [Ho + uoyg(1 + (z — v2)(uy + 2y1))H; + (z — v)(WZH, — uly2Hs) + O((z — v,)*/?)],  (280)

where

2
B 1 6 (o 6;
H, = 2g(d) (@7 93(6,) , H1—2g(d) <e’> ,
(281)

2
H, = ¢"(d) 1 o/ 63 i, = g'@| 1 ze_g’ 6\ | lg"(d)g’(d).
@? &\o)) | 6 |g@? “e;\e )| 6 g@@

By applying (106) and (97) of Proposition 16, we simplify the combinations of the H; as
follows:

2
2 2)/1 + [Z5% 63 63
H 2H = —, 2H, —ulylH, = ———|1 d2 , 282
ot Uo¥yH: 2@ Uyl — Uy i3 2() 2g(d) 6’ (282)
which allows us to write (280) in the form
1 2
¥(2) | dw|my B (z; @)+ m 0By(z;0)| =2+ <?u§ + 2y, + ul)) (z=vy) +0O((z = vy)/?).
0

(283)

Substituting this into (272) and calculating the residue, we obtain

T ilelkd
2§o <§1 -3 u2> 240 <§1 ga—vz> (284)

For the coefficients ¢;, u; in expansions (156) and (157) we easily obtain:

Q=

d 3
log q(x)| =y, = = 5~ log(L3 = (v, — V1),

1
gl 3 d 6602

(285)

10
" ="5%5, log(v; — (v, — vy),

5UBD17 SUOWILOD SAIERID |cedt|dde sy Ag peusenob e sapie YO ‘8N JO SN 1oy Akelqi] auluQ A8|IAA UO (SUOTIPUOI-PUE-SWB) WD A | IM Aeiq 1 puUl|uO//:Sdiy) SUONIPUOD pue SWS | 8Y) 89S *[£202/2T/ST] Uo Ariqiauljuo AB|IM ‘Sjeuoizeusiu| ejonds essiS Ag 21T2zedd/z00T 0T/I0p/wod AS| 1M Aeqijput|uoy/:sdny wouy pspeojumod ‘0 ‘2TE0L60T



54 | FAHS and KRASOVSKY

so that
20, — (V1 + 1,)/2

1d
$i—u = 3dx log q(x)| =y, =

=3[q(vy)]
On the other hand, by (254) and (257),
d 3 Uy q(vy)?
—Ilq)| = -+ —+ ————, 286)
T A S e S (
and by (219), (9),
ov; (1= v)(vy —vy)
These equations imply
G = 2 - log(lq(v,)IIy) (258)
1 1= 3 30, glgqlv2)lip)-
Substituting this into (284) for Q, and that, in turn, into (269), we obtain (235).
10 | SLOW MERGING OF GAPS: PROOF OF THEOREM 4
10.1 | Solution of the ®-RH problem as v, — v; — 0.
We consider the asymptotics of the ®-RH problem in the double-scaling regime where v = 2
can approach zero with s — oo at a rate such that 2v > SZL_E, for any fixed € > 0.
Let
-1 -1
—a=1 Uz;rvl>o, 5:1—¥>0, =5%. (289)

We need to evaluate the integrals I; in the limit v — 0. To do this (and to make a compari-

son with [24] easier), we first change integration variable x =t + %, which maps (v,,1) to

(v, B); we then split this interval into (v, \/;) U [\/;, B) and use a change of variable y = t/ \/; for
integration over the first one. We then obtain:’

L-2 er 1 = V]eBl + O(»* logv1), (290)
1 -1
I, = logv) +0O(v?logv71). (291)
o7
Hence, by (9),
xixy= (b + ) Lo B o), (292)
Io tog(rv)”

5 Cf. equations (278)- (280) in [24].
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Let the neighborhoods U1, U2 have radius v/3; they will be therefore contracting as v — 0.
We now evaluate the jumps Jg(z) of S on the edges of the lenses ', U ' 7. Recall from (83)
that these jumps were exponentially close to the identity, in the case where v; and v, were fixed.
For z € Ty ;, U 'g iy and z bounded away from the points vy, v, it is clear that the jumps are still
exponentially close to the identity so that (83) holds, and we consider the case where z — %
along the edges of the lenses. We substitute (292) into the definition of ¢ in (77) and obtain (taking

Z—Uy

u=——-
U201

B +iv/|afB| / (
log yv)” Vvu(lu+1)

asv — 0,and z — Ulzﬂ Here '+’ sign is taken on I'q 17, and '~/ sign is taken on Ty, 1, and thus
Im ¢(z) < 0,Im¢(z) > 0on Ty and I'y ;. respectively. Worsening somewhat the error term, we
have that

1+(9(z—vl;rvz>), (293)

Jo(@) =1+ o(e—cx/}(leU), ¢>0, (294)

as s — oo, uniformly for 2v > s™***andz € Ty UTg 1.

Next we consider the jumps of R on the boundary dUP) for p € T = {—1,v;,v,, 1}. Estimating
@(z) as above but now in the definition of ¢ in (119), we obtain that as s — oo, uniformly for
2v > 572+,

-1
1 (9< logv™ ) uniformly on d U@ and aU©2),
N

- = (295)
$(2)1/? 0(%) uniformly on U™ and U,

To estimate A(z), we need to consider N'. We first observe that by the definition (85), y(z), y(z)~! =
O(1) uniformly on dU® for p € T as v — 0 . Using (291) and a simpler expansion for J,, we
obtain

T=i—= —(1+(9( ), v — 0, (296)
log (yv)

and define
k=e 7T = [yv]HO(VZ). (297)

By the inversion formula (A.11) for 8-functions,

_Im o2 (2)? 9/4
6(z) = 1 Z P . S (14 #1722 4 41722) 4 (9( i , (298)
V=it Tk \ =it |7]
where
z=j+(z), -1/2<(Rez)<1/2, jeZ (299)

‘We now show, in (301) below, that A(z), which enters the jump matrix for R, may be too large for
certain parameter sets, which makes it necessary to modify the solution of the RH problem. First,
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a simple analysis of (89) shows that d — —1/2 as v — 0. On the boundary of U®V), U®2), we have
|u(z)| — 0, uniformly in z. Therefore, using the boundedness of y, y~lon dUP) for pET,and
applying (298), we have for the 11 element of N on dU®V if (w) > 0 (and thus u(z) + d + (w) =
(u(z) + d + {(w)) for v sufficiently small):

8(0) O(u(z) + d + w) - 1 xl@—(w)+1/4

=Cx @ < Cp{@), w = sQ,
O(w) 6w(z)+d) |~ i@  yl/4 ! =2

INul<C
(300)

for some constants C, C;, C, > 0. Similarly, we analyze the behavior of M, for (w) < 0, the behav-
ior of other matrix elements of A" on AUV, as well as the behavior of M on dU®2) and dUED,

We find that the estimate (300) is the worst (note that, in fact, the estimates for A" on AUV are
much better), and thus recalling (295), we have

1

AQz) = N(z)@(logs”_ >N(z)—1

-1
_ 0( logs” 2| > (301)

as s — oo and v — 0, for z € UV, Thus if, for example, v = 1 and [(sQ)| = 1/2 (which is a
case we need to deal with since the splitting of the gap regime described in [24] breaks down in
this limit), we cannot say that A is small, and so the corresponding jump of R is not guaranteed
to be close to the identity, and so we cannot claim solvability of the R-RH problem. However,
it was shown in [24] for the case of the RH problem of [18] that we can modify the solution to
ensure solvability for the range 2v > s~>/4. We now provide more details of that construction in
the present case, and apply it for all values of (sQ).
Let

t = (sQ) +k/2, (302)

where k = +1 is chosen such that —1/2 < t < 1/2. Consider the following function:

S§+0671 i §—6"1 -
~ | T2 ™ 5 M2
NEO=1 5 50 s+ _ |
T my my)
B(u(z_)+d") O(u(z) +t+d") Ou(z)—t—d")
#i(z) = Bu(z_)+t+d") B(u(z)+d") B(u(z) —d")
0 Bu(z_)+d") O(u(z) +t—d") O(u(z)—t+d) |’
B(u(z_)—t+d) B(u(z) —d") B(u(z) +d)
(303)
where the constant d’ will be fixed later on, and we now take
1/4
5(z) = v1/4 <(Z_U§)ﬂ> : (304)
z2—1
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with branch cuts on (—1,v;) U (v,, 1), and positive as z — oo on the first sheet of the Riemann

surface X. We have
i6(z)_ on (-1,vp)
8@ =1 '
—id(z)_ on (vy,1)

It is easy to verify that N (z) satisfies the same jump conditions as N

N.(2)=N_(2) (‘1) ‘01> for z € (vy, 1),

— — 0 e—27ri(sQ+k/2) _e—27risQ
N.(2)=N_(2) <_e27ri(sQ+k/2) ) N_(2) ( risO) > forz € (-1,v).

0 0

(305)

Furthermore, one verifies that §(z) — §(z)~! has two zeros at z,, z_ located on the first sheet
and such that 6(z,) = §(z_) = 1 and

v, +U
zZ, = % + iv/v]|aB| + O), v - 0. (306)

Set
d=u(z,)+1/2+71/2,

then it follows by the properties of the Abel map u(z) (86) that 8(u(z) — d’) has a single zero at z_,
and 6(u(z) + d’) has no zeros on the first sheet C \ A. Thus N (z_) =1, and since det N extends
to an entire function, det N'(z) = 1 for z € C. Considering the zeros and poles of the meromorphic
function 872 — 1 on =, and using the Abel theorem, we have

u(vy) + u(v,y) —u(z_) —u(z,) =0, (307)

modulo the lattice. Since u(v;) + u(v,) = u(v;) = %
u(zy) +u(z_) = -1/2, (308)
u(z_)+d =1/2. (309)

U1 U2

Using the change of integration variable x = t + —— as above, we obtain (from now on always

on the first sheet, so modulo Z)

, z, ivlapv
e [ e [ v

1+7

€
=-E-Zho), (310)

as v — 0, where ¢ is real, satisfying € — 0 as v — 0. Similarly,

u(z_) = 1-t (311)

4
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Therefore by the definition of d’,

1+7

= _¢
d=——-> +0O(/v), (312)

and
u(z_)+d =1/2.

Thus, since 6 is an even function,

O(u(z) +t+d") O(—u(z)+t+d")

. 601/2) O(u(z) + d) O(—u(z) +d’)
ME) = gari/p |0 +t-d)  ou@+i-d) | (G13)
B(u(z)—d’) 6(—u(z)—4d)

By (297), v — 0 corresponds to ¥ — 0. By (298),

6(1/2) 2kl
06(1/2+1t) 142l

1+ O%)) = (9(1/""'”2), v 0. (314)

As v — 0, we have u(z) — 0 uniformly for z in the closure of U®1) U U®2), and by (312),
d' +u(z) =(d +u(z)) - 1/4. (315)

Consider first the case 0 < t < 1/4. Pick 0 < € < £/8. Then, uniformly on the closure of U®1) U
U(Uz)’

0(1/2)0(d" +u(z) +1t)

6(1/2 +1)8(d’ +u(z))

(9(.Kt—t2.Kt2+2t(—_|—u(z)+d’)> _ @(VSI/Z—G )

which is the asymptotics of #(z),1, m(z),,. Moreover,

6(1/2)6(—d' +u(z)+1) _
0(1/2 + )0(—d’ +u(z))

(9<Kt—t2Kt2+2[(1-u(z)—d’)> — @(Vt/z—e)
which is the asymptotics of 71(z),, 7(z)y,.
For1/4 <t <1/2,we have (zu(z) +t +d’) = +u(z) + t + d’ — 1 so that

6(1/2)6(d' +u(z) +1) _
6(1/2 +1)8(d’ +u(z))

<Kt—zzKt2+21(iu(z)+d’—1)+(3/4)2—(1/4)2—e) — O(V(l—t)/z—e),

which is the asymptotics of 71(z)1, 7(2)1,, and finally

0(1/2)0(d" +u(z) +t)

— vt/
8(1/2 + Ho(d’ = u(z)) o>,

which is the asymptotics of 71(z),;, 7(z)4,.
Similarly, we analyze the case of —1/2 < ¢ < 0. Collecting the results together, we obtain

i(z) = O(W1/27¢) 4 O(»1-1D/2=6) = O(v~¢), v >0, (316)

uniformly on the closure of Ut U U®2). By similar arguments, we obtain the same estimate also
on the closure of UM U U (in this case, |u(z) + 1/2| < €', ¢’ > 0.)
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On the other hand, the definition of § gives

8(2) +8(2)71, 8(z) — 8(2)" = O(v~1/*), (317)
uniformly for z € dUP as v — 0, for pET ={-1,v,0,,1}
Thus,
—~ —~ 1 1
Ne).¥@ =o( ), 318)

as v — 0, uniformly on dUP for p € 7.
Since the solution to the RH problem for N is unique, we have

N(@) = N(0) N (2). (319)
Define the new local parametrices by
P(z) = N'(c0)P(2), (320)
and let

N N (2)-1 )
R = {N(oo)S(z)N(z) 2 € C\Uper UP, Ga21)

N(0)S@)P(2)™ 2 € Uper UP,

Then R(z) — 1 as z — co; and R(z) has jumps on Iy, see Figure 5. By (124) and the expansion of
¢ in (295), the jumps of R(z) on dUP) have the form

o~ _ _ log v
PN '(z) =TI+ A(z), Alz)= (9<Sjlg/ ’2’+2€ > (322)

uniformly for z € U®) as s — oo for 2v > s2*¢,
For the proof of Lemma 25 below, we will also require the finer estimate

(log 71_1)2
2

A@z) = A,(2) + N(2)O N(z), (323)

where

- -1 ~ -1 —2i . —_
A(z) = Fl N-(Z)els¢(P)03 <_2i ; l> e—1s¢(p)a3N—1(Z)’ p=-1,0,,
8/¢(2)

(324)

Zl(z) = ¥l F(Z)eis¢(P)03 <;l1 211> e—i3¢(P)03ﬁ—1(z)’ p=u,1,

8v¢(2)

where F means + for Imz < 0 and — forImz > 0.
By (294), the jumps of R(z) on the rest of the contour are estimated as follows (we decrease
¢ > 0 somewhat)

N@Is@N@) ™ =1+ o(e—cﬁ<lzl+l>), ¢>0, (325)
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as s — oo, uniformly for 2v > s7**¢ and for z € Ty Uz y. Thus R satisfies a small-norm
problem and therefore has a solution for s sufficiently large and 2v > s~2*¢, and

-1
Rz) =1+ (9< logv ) (326)

spl/2+2e

as s — oo, uniformly for 2v > s72*¢, and uniformly for z € C \ T;.
Since the RH problem for R has a unique solution, the RH problem for S (and hence for ®) has
a unique solution obtained by tracing back the transformations.

10.2 | Integration of the differential identity
‘We now prove

Lemma 25. Let —1 <V, <V, < 1 be fixed, and V; <V, < V, be such that |V, — V| > s~%/*.
Then, uniformly for such V, as s — oo,

Vs
logdet(I — K;)4 — logdet(I — Ks)(—l,Vl)u(?z,l) = /A D(V,,vy)dv, + OG99, (327)
v

2

where D is defined in (171) of Proposition 17.

Proof. In this proof, € stands for a sufficiently small positive constant whose value may vary from
line to line.

In the previous section, we obtained the asymptotic solution of the S-RH problem in the regime
s — 00,2V > §T2tE, By (129), R is also well defined in this regime,

R(z) = N(c0)'R(2)N(0), (328)
and thus (164) holds. We now aim to prove the analogue of (166), namely

262 o 2
S go gos 2 lgO}/O 1 1
Fs(v1,0p) = = Tmn,omzz,o(yorz +T9) + 7 W(sQ)+ 0O Py + Sy )

(329)

as s — oo, uniformly for 2v > s~5/4, with the same notation as in (164), (166).
By (91) and (303), using (158) and similar identities for 77;, we obtain

N@) = 5_12(2) < m1(v2) iﬁu(vz)) +0((z = vy)'74), (330)

—imyy(vy)  Myp(v,)

N(@) = @ < my1(v2) imu(”z)) +0((z = L)), (331)

—imy (L) my(vy)

asz — L.
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Thus, substituting (330) and (331) into (319) and taking the limit z — v,, we obtain

my;(v;) _ | 1 V(oo _1< my1(0v,) >
<—im22(vz)> (Zlinvlz 7(2)5(Z)>N( ) —iniy(vy) )’

(imzz(vz) mu(vz)) = <Zlg{}12 m) (iﬁzz(vz) ”7111(02))1\7(00)-

(332)

By the definition of y and & in (85) and (304), lim,_,,,, y(2)8(z) = \/2v1/4/1/(v, + 1). Thus, by
(328), the third term on the right hand side of (164) is given by

is¢ovg

. _ m
(imyo mMy1o) R7H )R (vy) <_. 11,0 >

M0

= w (lmzz(vz) I’?I11(Uz)) 1(02)R’(U ) < ﬁll(vZ) ) - O3

gyl1/2 =My (v,)

which we now evaluate. By (292), (156), (157),

Loyl = 0<L> (334)

logv-1

asv — 0.
By the definition of A;, A;, and by (319),

Ay(2) = N(c0)A; (2)N(e0) 7!, (335)

and thus, by (332), and (167),

W(w) = (1;/32) (iFaze) M) 3, [ i) de () ). @o
ou

v per Jou® (z-v)? v2)? 271 \ —irig(v3; )

Note that R satisfies (we denote the jump of RonTg by I+ A(2))

5 R_(OA®) d¢
R(Z) =1+ /FR gT% (337)

By (337), (322), (325), (326), and the fact that U®) and U®2) have radius v /3,

S R (wAw) du \ A®) dé
R(U2)—/FR<I+/I?R u_g_ >(§—Uz)227n
_ A(w) 1 A) d&
B /aU(Ul)UaU(Uz) (I * / g— w_g O( s2yl+ae > > (5 - 02)2 27

A d
+/1 20 g+(9<——]——>,
suusu-y (& — 0y)? 27 2yltde

_ Aw) du 1
1 _q,_ [ AW du
Ryt =1 Aju—%2m+0(ﬁwMJ’
R

(338)
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as s - oo, uniformly for z € C \ T'y and for 2v > s~5/4, Thus,

o - 11 1
R(0) "R (1) = /a o <I+ /F A(u)<u—§_ u_vz>du+0<—szvl+e)>

L B© de O o(_L),

(€ —v)?2mi - Jsymysuen (6 —vy)? 27 sPylte

in the same limit. Since % — L — ©®)whenu € UM udU-D and £ eou yau),
u— u—v,

we obtain

~ ~ -~ 1 1
R(v,))"'R'(vy) = / <I + / A(u)( - >du
auDysU ) AU yaU®2) u—§. u—u

1 v\ A dg AE) dE 1
+ (9<Sz,,1+e + s )) (€ —0,)? i + '/6U(1)U6U(—1) mz—m + o<szvl+€>' (339)

We will now estimate (333). For estimates on UV U dUW, recall that by (316), #i(v,) is of
order v—¢. For estimates on dU®1) U dU"2) we need more precise information: note that by (330),

2 —imy(v,)

<(1)> = N (@) 'N(2) <(1)> _ 5_1(Z)ﬁ(z)_1 < my1(vy) > + Oy 4<5(2)), (340)
on dU®D y aU®2), and therefore

;\7(2)_1 < my1(v,) ) _ 0(V1/4—e)’ (341)

—imy(v,)
asv — 0 for z € U U U2, Similarly,
(i (vy) iy (vy)) N(2) = O(v1/479). (342)

Estimates (339), and (341), (342) on U™ U dU®2), and #i(v,) = O ~°), N (z) = O(v~1/4¢)
on AU u dU® imply that (333) can be written as

isCovs _ m
7 0 (imyo mypo) R7H )R (vy) <—in1112’2,0>
i§oy§ s(I+vy) ,. - — ~ ~ my,(v,)
= ——2 (i R (R’ S
4 1/ (lmzz(vz) mu(Uz)) (V)R (vy) iy (vy)
ilory 1 1
= W(sQ) + (9<SV3 et B /2+E>. (343)

Thus we obtained (329). After integration, the error term here yields the one not larger than
that of the statement of the lemma, O(s~/9).
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To finish the proof of the lemma we need to estimate the error of replacing W with its average
value. From the definition (336) and the estimates above, we deduce

1
f@ = W@ =0(5:). =0 (44
By (291),
a 2
Q=Il=|—m_1(1+(9(7/2)), 6_92(9 ;2 , 6_8‘:(9 ;2 ,
0 log(yv) ov, v(logv—1) ov; v2(logv—1)
(345)
asv — 0.
First, we have f = O(v~17¢) and % f = O(v=?7¢). By the analysis leading to (316), %ﬁ(vz) =
2
O(v~*logv), w = sQ, and therefore, adjusting ¢, we also have %f =OWw 1) and %%f =
2

O(v~27¢). Thus, by (179) and a similar expression for a% fj» the right hand side of (175) is of order
2

1 .
-, and we obtain
J2sv

Vs 0 V2
[ fetivodo = 3 [ 5ieneniae, = [
Vs

Jj=—o0 V, Vs,

Vs

1
fo(vz,01)dv, + (9<ﬁ>,

(346)

as s — oo, uniformly for 2v > s~5/4. The error term here is better than the one of the statement of
the lemma. Thus the lemma is proved. [

10.3 | Proof of Theorem 4

By (194) and Lemma 25, we see that to show that the expansion (14) holds in the asymptotic regime
of Theorem 4 (with the error term O(s~1/9)) it remains to prove that

V, 1
ot el ot 0 1
/72 <a—%[) E 10g63(w,T)dC()> - <a—v25 10g63(SQ, T))dvz = 0(;) (347)

Since by (224), (291),

ot ir 1
LA =0 , 348
0v;  Ip(1—v))(v, —vy) <vlog2(yv)—1> (349
and by (298), (297),
1 dk ko
@ﬂe@) = (9<10g (rv) 1),
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we obtain
/
3 (or o _ 1 or (6 log(yv)~!
Also since by (219),
2
T o ——), (350)
ov; v2log” (yv)~1

we similarly obtain

a 0 <6T ) log(yv)_1>' (351)

22 (=2, 1)) =0
dw v, \ Ov, Ot og63(cu,f)> < v2

The estimates (349) and (351) imply, as in the proof of (346), the estimate (347). Thus, we have
proven the first statement of Theorem 4.

Since we have proven the uniformity of Theorem 1 for 2v > s
is to expand Gy, log 65(sQ; 1), and ¢; asv — 0.

By (10) and (292),

—5/4_ all that remains to show (19)

_1 |aB|
GO = 5 - W + (9(1/2), (352)

asv — 0.
By the formula for Q in (345), 0 in (298), x in (297), T in (296),

log 0(sQ; 7) = %log log(yv) ™" — (wo)* log(yv) ™! + log (1 + (y)=2I@0)l) — % log 7 + o(1),

(353)
as sy — 0, where
5Q = wy + 0(1),
with w, given by (20).
By the asymptotics for I, in (291) and x; X, in (292), and by (8),
1 1 1
€ ==y loglog(yv)™ — 3 log |aB| + 5 log w + 2¢y + o(1), (354)

as v — 0. Thus we obtain (19) if sy — 0.
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APPENDIX A: 6-FUNCTIONS AND ELLIPTIC INTEGRALS
Here we collect the properties of Jacobian 8-functions and elliptic integrals we need in the main
text. For more information on the topic, see [27, 36, 40].

The third Jacobian 0-function is defined by a series®:

05(z;7) = 65(2) = 0(2) = Z e2rizmmitm? Imt > 0. (A1)
meZ

The function 6(z) satisfies the periodicity properties:
0(z) =6(z + 1), 0(z + 1) = T27Z77ITY(7), (A2)

It is an entire function which is even, 8(z) = 6(—z). Furthermore, 6(z) has a single zero modulo
the lattice (Z,tZ) at 1;, and at the zero the derivative 6/(z) is non-zero.
The first, second, and fourth 6-functions are then defined as follows:

g T 1
6,(z) = ie ’”Z+493<z—“2r >

(A3)
6,(2) = 6,(z +1/2) = e-ﬂiz+m'f/4e3<z - %) 64(2) = 65(z + 1/2).

6 9-functions are defined in [40] with argument z /7.
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The function 6,(z) is odd, while 6,(z), 6,(z) are even. The unique zeros (modulo the lattice) of 6,
0, and 6, are at 0,1/2 and 7/2, respectively, and we have the periodicity properties:

0.(z+1) = —-6,(2), 01(z + 1) = —e27Z77ITQ, (),
6,(z + 1) = —6,(2), 0,(z + 1) = e~ 2FiZTITQ,(Z), (A.4)
04(z + 1) = 0,4(2), 04(z + ) = e ZFZ7TIIG (7).

From the periodicity properties we have

6}(2 +1) 6;.(2) 6;.(2 + 1) 6;.(2)
6,z+1) 6,z  8,z+1 06,

— 27,

(A.5)
6;.’(2 +1) ~ 6}’(2) 6}’(2 +17) ~ 6;.’(2) .6;.(2)

6;z+1)  6;(z)’ 6i(z+1) 6;(2) _4m@j(2) -

472, j=1,2,3,4.

We denote 6; = 6;(0), and the derivatives at zero 6;. = 9;.(0), etc. In particular, we have

. 2 o
expansions at zero: 65(z) = 05 + %Gg’ + -0, 01(2) = 26) + 23? + -
We will use representations of 65 in terms of 6;. By (A.3),

62) 6[(») 141
6. G v VTET T (A.6)
and
6;’(2) 3 91’(7}) _61(1}) , ~ l+7
6:(2) = X0 —271161(V) —-7e, V=2z— 5 (A7)

0-functions satisfy Jacobian addition relations, of which we will make use of the following two:

2
0:(x + y)83(x —y) + 0,(x — y)B3(x +y) = ﬁez(x)ez()’)es(x)es(}’), (A8)
203
2
04(x + y)B3(x — ) + O4(x — y)63(x + y) = ﬁ94(X)94(y)93(X)93(y)- (A9)
453
f-functions satisfy the differential equation
0"(z) = _ae j=1,2,3,4 Al
J(Z)_47rla_7_' j(z)a J=1 a3a ) ( . 0)

some useful for us well-known identities for the values at zero:
r_ 4 _ p4 4
61 = 7T926364, 63 = 62 + 64,

and the following transformation formula for r — 1/7,

1 T gy
B3(2) = —— D e (A.11)
—IT &k
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‘We will also need the following identity:

/ 2
@\ _ (O > &
(93(Z)> - (6?) 5,27 ' 8y (12

To show it, we first observe that both sides of the equation are elliptic functions (i.e., they sat-
isfy the periodicity relations f(z + 1) = f(z), f(z + 7) = f(z)) with second-order pole at z =
(1 + 7)/2. Considering the expansions of these functions at the pole, we obtain that the differ-
ence of these functions has a pole of order at most 1, and is therefore a constant. This constant is
then evaluated setting z = 0

Changing variable z = v + 1—? in (A.12), we also obtain
!/
6/ v 2 9//
IS 93(’/) ta (A.13)
6,(v) 1(7/)2

Lemma A.1. Ifg(z) is an elliptic function with a single pole modulo the lattice, located at z = 1;

and

‘We further have

g<v + %) =cv2+0(v), (A14)
asv — 0, then
9;(2) , 6" 0 A.15
=— - = |+ g(0), :
s@=-cll g ) ~5 [+2© (A15)
and furthermore
1 "
/ g(z)dz = 01—3 + g(0). (A.16)
0 6;

Proof. The second part of the lemma, (A.16), follows directly from (A 15).
To show (A.15) note first that since 65(z) has a zero of order 1 at ;

6’
928 - lﬁ +00), (A17)

e/
asz — 1:_1 By the fact that (63_EZ;), is elliptic and the hypothesis of the theorem,
3(Z

62\
g(2) + cl( 3(Z)> (A.18)

03(2)

is an elliptic function with a s1ngle simple pole modulo the lattice, and therefore is a constant. By
(A.12), this constant is g(0) + 01 . This shows (A.15). O
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Lemma A.2. We have

2
1 el(z) 2 QNI
3 T 1
dz = —+ —, A.19
/0 (63(z)> R (A19)

and, for any d, u,

/1 63(z — d)63(zz+ utd) (68t dz) — 6181 +d)] (A20)
0 6:(2) (6])" sin(mru)
Proof. Since
' 6)(@)
xey dw =0, (A.21)

we have by the relation between the logarithmic derivatives of 8; and 85 in (A.6),

1 6,(2) ? ) o 2 2 o' ) 2
/()<63(2)> dz=rm +/0 (63(2)+m dz=rm +/ 8. dv, (A.22)

where
]={v—z—1% z € (O, 1)} (A23)

Let T be the rectangle with corners +1/2 + 7/2, with positive orientation. Writing the integral
around the contour and using the periodicity relation of 6; /61 in (A.5), we obtain

3 2
6,(v) o r{eam , [ N
/f<91(1/)> = 67”/J (el(w) dv+12m /J O (A24)

9()

By (A.6), and (A.21), fj = i, and therefore

2 3
6" (v) ot 1 6|(v)
dv=——+— dv. (A.25)
[(el(V) 3 6ri T 61(7/)
Since 6; has a single zero modulo the lattice located at 0, and since 6;’ (0) = 0, we obtain
6/ (V) 3 6///
1 .91
dv = 27i— (A.26)
/f < 6:(») ) 9{

by evaluating the residue of( oo ))3 at 0. Combining (A.22), (A.25), and (A.26), we obtain (A.19).
To obtain (A.20), we first observe that by (A.3), (A.4),

/1 Oz—d)bz+u+d), _ / 6(v — d)el(“ tv+d), (A.27)
J

0(2)? 0,(v)? @,
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where againJ = {v =z — 1:—1, z € (0,1)}. With T as above, we have by periodicity properties that

/ 6,(v —d)o(u+v+ d)dv _ (1 3 e—2m'u) /61(7/ —d)o(u+v+ d)dv. (A28)
T el(v)z J 91(7/)2
On the other hand, computing the residue, we obtain
el(V—d)el(u+7}+d) 27i

dv = 6/ (d)8,(u +d) — 6,(d)o (u + d)). A.29

[ = o Cl@B Do @e D). (49)

The last 3 equations give (A.20). O

Recall the definition of the elliptic integrals I; = I;(vy,0,),J; = Jj(vy, vy) from (5).
Lemma A.3. There holds a Riemann’s period relation:
v+ U v+ U
(12— = 211)J0—10<J2— = 211) - 7. (A.30)

Proof. We cut the Riemann surface X along the loops A;, By, which yields a 4-gon y with the sides
Ay, By, AT', B! (the side A, is identified with A" on the surface, the same with By, B"). The
standard Riemann period relation between meromorphic differentials 4, u on X is as follows:

X
/A,u://l//,t—/ pt//l, A(x)://l, X €EZ, (A.31)
14 Ay By Ay By Xo

where y is traversed in the positive direction, and where X, is a fixed point on the surface away
from the cuts.
Now taking A =

x2—x(v1+0,)/2 _ dx . . _ _
—p(x)l 72 dx, u= —p(x 72 We have in the local variable £ =1/z, 1 =

FQ+ (9({2))‘;—5, u=7F1+0())dE, as £ —» 0. Here the upper sign is taken on the first sheet,

and the lower one on the second. Computing the residue at z-infinity (at two points on X
corresponding to it) of Au, we obtain (A.30). O

The complete elliptic integrals of first and second kind, respectively, are defined as follows:

! dt N eYS
K(v) = ., Ew=[ 4/ dt. A.32
© /0 VA= 2)a - v22) © /0 1—1 (A3

Moreover, let

e de - Yo e
K'(v) = ., Ew= \/ dt. A33
©= Ve =D -v2?) © /1 -1 (43

It is well-known that

K'(v) = K("), v =v1-02 (A.34)
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—t2
By integrating the derivative of 4/ 11—,[212 we also obtain that
—U

E()=KW') - EQ". (A.35)

As v — 1 (and therefore v’ — 0), we have the expansions:

1 1
K@) = <§log2_2v +210g2)(1+(9(1 —0)),
: . , \ (A.36)
N_T i 9’ 6 N_T _i_fvv’ ”
K(v)—2<1+4+64 +0OW'®) ), E(v)—2 1 y o + OW'"°) ).

Now consider the case symmetric intervals —v; = v, = v. By the change of variable x = vy and
by using (A.35), we see that

L(-v,v) _ . E@) _ EQ)
I(-v,v) K@) K@)

Iy(—v,v) = K(V"), Jo(=v,v) = 2K(v). (A.37)

APPENDIX B: PREFACTOR OF log s
Here we show that the constant G, in (14) obtained in [18] is equal to —1 /2. Let

u(z) = - d

2Ly J,, p(&Y?’ B0

and define

_ 82(0)8(u(z) + w — u(0))8(u(z) — w — u(o)) _
P = B @B (u(z) - u(eo)) L dm e

It is easily verified that p as a function of w is elliptic: p(w) = p(w + 1) = p(w + 7). Here we use

our definitions of u(z) (86) and d (which has the property (90)) from Section 4. However, it is

straightforward to verify that p is exactly the function (1.30)in [18] forn = 1withx = w/Q,V = Q.
Let

hz)=C-1)z—-v)+(EZ—-v)(z+1), (B.2)

and consider the function G, given by (1.33) in [18], which in our case of n = 1 becomes

h®)

1
GiD=-75 2 PO

16
y={=Luv1,02,1}

It was shown in [18] that the coefficient G, in (14) is given by

X

~ 1
Gl = hm - Gl([)dt,
x—o00 X Xo

for some fixed large x.
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By ellipticity of p, this can be written in the form

A _ 1 hoy) [
G, = T Z % / p(y, w)dw. (B.3)
y={=1,01,02,1} 1Y) Jo
To compute the integral, note first that by (A.3)
p(y - 1+r> 8 8@ +d+ )8y (~u(z) —d + )
’ 2 02(u(z) + d) 02()
(B.4)
9% 62(u(z) + d)
=— ; +0O(v71h, v = 0.
O3(u(z) +d) (0))*v?
Using Lemma A.1 in Appendix A, we compute the integral fol p(y, w)dw and obtain
~ h 056" 62(u(y) + d)
6 == _(y)<1_ s P . (B.5)
yei—1.01,00,1} q(y) (02 65(u() + d)
By applying the identities (98) of Proposition 16 (d),
~ 1 1 ey
16 & 1590 612
By (252),
"
3
—— =2q(vy) — h(v,), (B.7)
6313 q(v; 2

and therefore the term with y = v, in (B.6) is

1 6y \ _
q<v2><h(”2) * 631§> =2
Now note (recall (8)) that
2q(vy) — h(vy) = 2q(v1) — h(vy) = 2q(1) — h(1) = 2q(-=1) — h(=1) = v, —v; +2x1X;, (B.8)

so that all the other terms in the sum in (B.6) are also equal 2. Therefore

A~ 1 1
Gl__ﬁ(2+2+2+2)__5' (B.9)
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