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Abstract
We consider the probability of two large gaps (intervals
without eigenvalues) in the bulk scaling limit of the Gaus-
sian Unitary Ensemble of random matrices. We determine
themultiplicative constant in the asymptotics.We also pro-
vide the full explicit asymptotics (up to decreasing terms)
for the transition between one and two large gaps.

1 INTRODUCTION

Let 𝐾𝑠 be the (trace class) operator on 𝐿2(𝐴), where 𝐴 ⊂ ℝ is a finite union of intervals (gaps),
with kernel 𝐾𝑠(𝑥, 𝑦) =

sin 𝑠(𝑥−𝑦)

𝜋(𝑥−𝑦)
. Consider the Fredholm determinant

𝑃𝑠(𝐴) = det(𝐼 − 𝐾𝑠)𝐴. (1)

The determinant (1), called the sine-kernel determinant, is the probability that the set 𝑠

𝜋
𝐴 =

{
𝑠

𝜋
𝑥 ∶ 𝑥 ∈ 𝐴} contains no eigenvalues of the Gaussian Unitary Ensemble (GUE) of random

matrices in the bulk scaling limit where the average distance between eigenvalues is 1. Similar
statements hold in other contexts: the sine-process with kernel𝐾𝑠(𝑥, 𝑦) is the simplest, and one of
the most common and well-studied determinantal point processes appearing in random matrix
theory, random partitions, and so on. Two other most common ones are the Airy and Bessel pro-
cesses which appear, in particular, as the scaling limits at the edge of the spectrum of the GUE and
at the origin of the Laguerre Unitary Ensemble (LUE), respectively. The corresponding Fredholm
determinants on a finite union of intervals may be described in terms of solutions to integrable
systems of partial differential equations (see [30, 37, 38], and [39] for an overview). If 𝐴 is a single
interval, Painlevé equations appear: It was discovered by Jimbo et al. [30] that 𝑠 𝑑

𝑑𝑠
log 𝑃𝑠([0, 𝜋])
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2 FAHS and KRASOVSKY

satisfies the 𝜎 form of Painlevé V introduced by Jimbo et al. in [29, 35]. Subsequently, analogous
observations were made for the edge scaling limits by Tracy andWidom, namely, the distribution
of the largest eigenvalue of the GUE (the Airy-kernel determinant, widely known as the Tracy-
Widom distribution [37]) and the smallest eigenvalue of the LUE (a Bessel-kernel determinant
[38]) are described in terms of solutions to Painlevé II and Painlevé V, respectively.
In the present paper, we are interested in the asymptotics of 𝑃𝑠(𝐴) as 𝑠 → ∞. Consider first

𝑃𝑠(𝐴)when𝐴 is a single interval. We can assume without loss1 that𝐴 = (−1, 1). The asymptotics
of the logarithm of (1) have the form:

log 𝑃𝑠((−1, 1)) = −
𝑠2

2
−
1
4
log 𝑠 + 𝑐0 + (𝑠−1), 𝑠 → ∞, (2)

where

𝑐0 =
1
12

log 2 + 3𝜁′(−1). (3)

Here 𝜁′(𝑧) is the derivative of Riemann’s zeta function.
The leading term−

𝑠2

2
was found by Dyson in 1962 in one of his fundamental papers on random

matrix theory [20]. Dyson used Coulomb gas arguments. The terms −𝑠2

2
−

1

4
log 𝑠 were computed

by des Cloizeaux and Mehta [13] in 1973 who used the fact that the eigenfunctions of 𝐾𝑠 are
spheroidal functions. The constant (3), known as the Widom-Dyson constant, was identified by
Dyson [21] in 1976 who used the inverse scattering techniques and the earlier work of Widom [41]
on Toeplitz determinants. The works [13, 20], and [21] are not fully rigorous. The first rigorous
confirmation of the main term, that is, the fact that log 𝑃𝑠((−1, 1)) = −

𝑠2

2
(1 + 𝑜(1)), was given by

Widom [42] in 1994. The full asymptotic expansion (2), apart from the expression (3) for 𝑐0, was
proved by Deift et al. in a landmark work [18] in 1997, where the multi-interval case was also
addressed. The authors of [18] used Riemann-Hilbert techniques to determine asymptotics of the
logarithmic derivative 𝑑

𝑑𝑠
log 𝑃𝑠(𝐴), where𝐴 is one (or a union of several) interval(s). The asymp-

totics for 𝑃𝑠(𝐴) were then obtained in [18] by integrating the logarithmic derivative with respect
to 𝑠. The reason the expression for 𝑐0 was not established in [18] is that there is no initial integra-
tion point 𝑠 = 𝑠0 where 𝑃𝑠(𝐴)would be known explicitly. In [31], the author was able to justify the
value of 𝑐0 in (3) by using a different differential identity for associated Toeplitz determinants and
again the result of Widom [41]. An alternative proof of (3) was given in [17], which was based on
another differential identity for Toeplitz determinants. In [17], the result of [41] was also rederived
this way. Both [31] and [17] relied on Riemann-Hilbert techniques. Yet another proof of (3) was
given by Ehrhardt [22] who used a very different approach of operator theory. (Analogous results
on the probability of a large gap were obtained for the Airy-kernel determinant in [1, 16, 37], and
for the Bessel-kernel determinant in [19, 23], see [33] for an overview. For further related results
on gap probabilities see [5, 9–12, 26] and references therein.)
If 𝐴 is a union of several intervals, it was shown by Widom in [43] that

𝑑
𝑑𝑠

log 𝑃𝑠(𝐴) = −𝐶1𝑠 + 𝐶2(𝑠) + 𝑜(1), 𝑠 → ∞, (4)

1 𝑃𝑠(𝐴) is invariant under translations of 𝐴, and rescaling results only in the appearance of a prefactor of 𝑠.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 3

F IGURE 1 Cycles on the Riemann surface Σ.

where𝐶1 > 0 and𝐶2(𝑠) is a bounded oscillatory function. The constant𝐶1 can be computed explic-
itly, but 𝐶2(𝑠) is an implicit solution of a Jacobi inversion problem. This result was extended and
mademore explicit by Deift et al. in [18]. We will now present the solution of [18] in the case when
𝐴 is the union of two intervals, which is relevant for the present work.
As above, we assume without loss that

𝐴 = (−1, 𝑣1) ∪ (𝑣2, 1), −1 < 𝑣1 < 𝑣2 < 1.

Let 𝑝(𝑧) = (𝑧2 − 1)(𝑧 − 𝑣1)(𝑧 − 𝑣2), and consider the two-sheeted Riemann surface Σ of the func-
tion 𝑝(𝑧)1∕2. On the first sheet 𝑝(𝑧)1∕2∕𝑧2 → 1 as 𝑧 → ∞, while on the second, 𝑝(𝑧)1∕2∕𝑧2 → −1
as 𝑧 → ∞. The sheets are glued at the cuts (−1, 𝑣1), (𝑣2, 1). Each point 𝑧 ∈ ℂ ⧵ ((−1, 𝑣1) ∪ (𝑣2, 1))
(including infinity) has two images on Σ. The Riemann surface Σ is topologically a torus.
Let the elliptic integrals 𝐼𝑗 = 𝐼𝑗(𝑣1, 𝑣2) > 0, 𝐽𝑗 = 𝐽𝑗(𝑣1, 𝑣2) > 0 be given by

𝐼𝑗 = ∫
1

𝑣2

𝑥𝑗𝑑𝑥√|𝑝(𝑥)| = 𝑖
2 ∫𝐴1

𝑥𝑗𝑑𝑥

𝑝(𝑥)1∕2
, 𝐽𝑗 = ∫

𝑣2

𝑣1

𝑥𝑗𝑑𝑥√|𝑝(𝑥)| = 1
2 ∫𝐵1

𝑥𝑗𝑑𝑥

𝑝(𝑥)1∕2
, 𝑗 = 0, 1, 2,

(5)

where the loops (cycles) 𝐴1, 𝐵1 are shown in Figure 1. The loops 𝐴0, 𝐴1 lie on the first sheet, and
the loop 𝐵1 passes from one to the other: the part of it denoted by a solid line is on the first sheet,
the other is on the second.
Let

𝜓(𝑧) =
𝑞(𝑧)

𝑝(𝑧)1∕2
, 𝑞(𝑧) = (𝑧 − 𝑥1)(𝑧 − 𝑥2), (6)

where the constants 𝑥1 ∈ (−1, 𝑣1) and 𝑥2 ∈ (𝑣2, 1) are defined by the conditions

∫𝐴𝑗

𝜓(𝑧)𝑑𝑧 = 0, 𝑗 = 0, 1. (7)

It follows that

𝑥1 + 𝑥2 =
𝑣1 + 𝑣2

2
, (8)

𝑥1𝑥2 =
(
−𝐼2 +

𝑣1 + 𝑣2
2

𝐼1
) 1
𝐼0
, (9)

which gives an explicit expression for 𝑞(𝑧) in terms of elliptic integrals.
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4 FAHS and KRASOVSKY

Note that (7) implies that 𝜓(𝑧) has no residue at infinity. More precisely, we obtain as 𝑧 → ∞
on the first sheet

𝜓(𝑧) = 1 +
𝐺0

𝑧2
+ (𝑧−3), 𝐺0 = −

𝐼2 −
𝑣1+𝑣2

2
𝐼1

𝐼0
+
1
2
+
(𝑣2 − 𝑣1)

2

8
. (10)

As shown in [18], 𝐺0 > 0.
Denote the holomorphic differential

𝝎 = 𝑖
𝑑𝑧

2𝐼0𝑝(𝑧)1∕2
. (11)

Clearly, it is normalized:

∫𝐴1

𝝎 = −∫𝐴0

𝝎 = 1. (12)

Let

𝜏 = ∫𝐵1 𝝎 = 𝑖
𝐽0
𝐼0
, Ω = −

1
2𝜋 ∫𝐵1 𝜓(𝑥)𝑑𝑥 =

1
𝜋 ∫

𝑣2

𝑣1

𝜓(𝑥)𝑑𝑥 =
1
𝐼0
, (13)

where the integration ∫ 𝑣2
𝑣1

𝜓(𝑥)𝑑𝑥 is taken on the first sheet, and where the last equation for Ω
follows by Riemann’s period relations (Lemma 3.45 in [18] for 𝑛 = 1). Recall the definition (A.1)
in Appendix A of the third Jacobian 𝜃-function 𝜃3(𝑧; 𝜏). Deift et al. found in [18] that

log 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) = −𝑠2𝐺0 + 𝐺1 log 𝑠 + log 𝜃3(𝑠Ω; 𝜏) + 𝑐1 + (𝑠−1), 𝑠 → ∞, (14)

with 𝐺0 as in (10), and 𝜏, Ω as in (13). Constants 𝐺1, 𝑐1 are independent of 𝑠. The constant 𝐺1 is
written in [18] in terms of a limit of an integral of a combination of 𝜃-functions. The constant term
𝑐1 remained undetermined (for the same reason as given above in the case of one interval).
The main result of the present paper is the expression for the constant term 𝑐1, which com-

pletes the description of the asymptotics (14). We also find that the original expression for 𝐺1 in
[18] can be simplified, and we obtain that 𝐺1 = −1∕2 (see Appendix B). We also determine this
coefficient−1∕2 of log 𝑠 in a different way, as a direct result of our computation of (14) which also
produced 𝑐1. We describe this computation in more detail below in the introduction.
Thus, we obtain

Theorem 1. The asymptotics (14) hold with

𝐺1 = −
1
2
, 𝑐1 = −

1
2
log

𝐼0
𝜋
−
1
8

∑
𝑦∈{−1,𝑣1,𝑣2,1}

log |𝑞(𝑦)| + 2𝑐0, 𝑐0 =
1
12

log 2 + 3𝜁′(−1).

(15)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22147 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [13/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 5

Remark 2. Using a connection between the elliptic integral 𝐼0 and 𝜃3(0), equation (101) below, and
substituting 𝐺1, 𝑐1 into (14), we can write2

log 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) = −𝑠2𝐺0 −
1
2
log 𝑠 + log

𝜃3(𝑠Ω; 𝜏)

𝜃3(0; 𝜏)

+
1
4
log(1 − 𝑣1)(1 + 𝑣2) −

1
8

∑
𝑦∈{−1,𝑣1,𝑣2,1}

log |𝑞(𝑦)| + 2𝑐0 + (𝑠−1), 𝑠 → ∞. (17)

Remark 3. The elliptic integrals 𝐼𝑗 , 𝐽𝑗 can be reduced to the complete ones. In particular, in the
symmetric case of−𝑣1 = 𝑣2 = 𝑣, (14) becomes (by a straightforward use of (A.37) in Appendix A)

log 𝑃𝑠((−1, −𝑣) ∪ (𝑣, 1)) = −𝑠2
(
1 + 𝑣2

2
−

𝐸(𝑣′)

𝐾(𝑣′)

)
−
1
2
log

𝑠
𝜋
+ log 𝜃3

(
𝑠

𝐾(𝑣′)
; 2𝑖

𝐾(𝑣)

𝐾(𝑣′)

)
−
1
4
log[(𝐾(𝑣′) − 𝐸(𝑣′))(𝐸(𝑣′) − 𝑣2𝐾(𝑣′))] + 2𝑐0 + (𝑠−1), (18)

where 𝑣′ =
√
1 − 𝑣2, and 𝐾(𝑧), 𝐸(𝑧) are the complete elliptic integrals of first and second kind,

respectively, see (A.32).

Analogous results to (14), although up to an undetermined constant term, were recently
obtained for the Airy and Bessel kernel determinants by Blackstone et al. in [6, 7] and [8], respec-
tively. The latter paper dealt not only with determinants supported on two intervals, but any fixed
number of intervals. Another related recent study is [32], whose authors drew inspiration from
techniques of the present paper to obtain the full asymptotics (including the constant term) for
the Airy kernel determinant supported on two intervals.
The asymptotics (14) with the coefficients given by (10), (13), (15) can be extended (with a worse

error term) to various double scaling regimes where 𝑣1, 𝑣2 are allowed to approach each other or
the endpoints ±1 at a sufficiently slow rate as 𝑠 → ∞: Theorems 4, 10 below. In Section 10, we
prove

Theorem 4 (Extension to slowly merging gaps). For a fixed 𝜖 > 0, let −1 + 𝜖 ≤ 𝑣1 < 𝑣2 ≤ 1 − 𝜖
be such that 2𝜈 ≡ 𝑣2 − 𝑣1 > 𝑠−5∕4. Then the asymptotics (14) hold with the error term (𝑠−1∕9). In
particular, if 𝑠𝜈 → 0 as 𝑠 → ∞, the expansion of the terms in (14) gives

log 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) = 𝑠2
(
−
1
2
+

|𝛼𝛽|
log(𝛾𝜈)−1

)
−
1
2
log 𝑠 +

1
4
log log(𝛾𝜈)−1 − ⟨𝜔0⟩2 log(𝛾𝜈)−1

+ log
(
1 + (𝛾𝜈)1−2|⟨𝜔0⟩|) − 1

8
log |𝛼𝛽| + 2𝑐0 + 𝑜(1), (19)

2 Perhaps, the corresponding formula for the logarithm of the probability of 𝑛 + 1 gaps 𝐴 = ∪𝑛𝑗=0(𝑎𝑗, 𝑏𝑗) is

log det(𝐼 − 𝐾𝑠)𝐴 = −𝛼𝑠2 −
𝑛 + 1
4

log 𝑠 + log
𝜃(𝑠𝑉)

𝜃(0)

+
1
4

∑
0≤𝑗<𝑘≤𝑛

log(𝑏𝑘 − 𝑏𝑗)(𝑎𝑘 − 𝑎𝑗) −
1
8

𝑛∑
𝑗=0

log |𝑞(𝑎𝑗)𝑞(𝑏𝑗)| + (𝑛 + 1)𝑐0 + (𝑠−1), 𝑠 → ∞. (16)

The coefficient 𝛼 here was determined in [18], and 𝑉, 𝑞, and the multivariable 𝜃-function are in the notation of [18].
Certainly (16) behaves the way we would expect when all the gaps separate, cf. Theorem 11 below.
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6 FAHS and KRASOVSKY

where −𝛼 = 1 +
𝑣2+𝑣1

2
> 0, 𝛽 = 1 −

𝑣2+𝑣1
2

> 0, 𝛾 = 1

8
(𝛽−1 + |𝛼|−1),

𝜔0 =
𝑠
√|𝛼𝛽|

log(𝛾𝜈)−1
> 0, (20)

and ⟨𝑥⟩ ∈ (−1∕2, 1∕2] denotes the difference between 𝑥 and the integer nearest to it.

Remark 5. In Theorem 4, the rate −5∕4 which appears in the condition 2𝜈 > 𝑠−5∕4 can be
somewhat decreased with an appropriate change of the error term (𝑠−1∕9).
Remark 6. Using the translational invariance of det(𝐼 − 𝐾𝑠), we see by the shift of variable 𝑥 →
𝑥 −

𝑣1+𝑣2
2

that

𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) = 𝑃𝑠((𝛼, −𝜈) ∪ (𝜈, 𝛽)).

Thus Theorem 4 provides the asymptotics for 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) in the case when |𝑣1 − 𝑣2| >
𝑠−5∕4. In recent work [24], we obtained the asymptotics of 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) = 𝑃𝑠((𝛼, −𝜈) ∪
(𝜈, 𝛽)) in the case of two gapsmerging into one, that is, where 𝑣1, 𝑣2 are scaledwith 𝑠 in such away
that |𝑣1 − 𝑣2| ≤ 1∕(𝑠 log2 𝑠) while being bounded away from ±1. We also showed implicitly that
the asymptotics we obtained in that case uniformly connect to those of fixed 𝑣1 < 𝑣2. Theorem 4
provides an explicit matching: More precisely, we showed in [24] that3

Theorem 7 Splitting of the gap (−1, 1) [24]. As 𝑠 → ∞, uniformly for 𝜈 =
𝑣2−𝑣1

2
∈ (0, 𝜈0), where

𝑠𝜈0 log 𝜈
−1
0 → 0,

log 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) =−
𝑠2

2
+ 𝑠

√|𝛼𝛽|(𝜔0 −
⟨𝜔0⟩2
𝜔0

)
−
1
4
log 𝑠 + 𝑐0 + log

(
22𝑘

2−𝑘

𝜋𝑘

𝐺(𝑘 + 1)4

𝐺(2𝑘 + 1)

)
+ log

(
1 + 2𝜋𝜅2𝑘−1(𝛾𝜈)

1+2⟨𝜔0⟩) + log
(
1 + (2𝜋𝜅2𝑘)

−1(𝛾𝜈)1−2⟨𝜔0⟩)
+ 

(
max

{
𝑠𝜈0 log 𝜈

−1
0 ,

1

log 𝜈−10
,
1
𝑠

})
, 𝑘 = 𝜔0 − ⟨𝜔0⟩, (21)

where 𝐺 is the Barnes G-function, and where 𝜅𝑗 is the leading coefficient of the Legendre polynomial
of degree 𝑗 orthonormal on the interval [−2, 2], given by

𝜅𝑗 = 4−𝑗−1∕2
√
2𝑗 + 1

(2𝑗)!

𝑗!2
, 𝑗 = 1, 2, … , 𝜅0 = 1∕2, 𝜅−1 = 0. (22)

The rest of notation in (21) is from Theorem 4.

3 In [24], 𝛽 − 𝛼 was arbitrary, but by a rescaling argument we can assume without loss that 𝛽 − 𝛼 = 2, which is the
assumption in the present work.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 7

As 𝑠 → ∞, uniformly for 𝜈 ∈ (𝜈1, 𝜈0), where 𝑠𝜈0 log 𝜈−10 → 0,
𝑠

log 𝜈−11
→ ∞ (i.e., 𝑘 → ∞), formula

(21) reduces to

log 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) = 𝑠2
(
−
1
2
+

|𝛼𝛽|
log(𝛾𝜈)−1

)
−
1
2
log 𝑠 +

1
4
log log(𝛾𝜈)−1 − ⟨𝜔0⟩2 log(𝛾𝜈)−1

+ log
(
1 + (𝛾𝜈)1−2|⟨𝜔0⟩|) − 1

8
log |𝛼𝛽| + 2𝑐0 + 

(
max

{
𝑠𝜈0 log 𝜈

−1
0 ,

1

log 𝜈−10
,
log 𝜈−11

𝑠

})
.

(23)

Thus we see that the asymptotic regime of Theorem 4 overlaps with that of Theorem 7 (for
example, 𝜈 = 𝑠−6∕5 belongs to both regimes), and comparing (19) with (23) we see an explicit
matching. Taken together, these theorems describe the asymptotics for two large gaps and one
large gap (note that (21) reduces to (2) when 𝜈 → 0 sufficiently rapidly) as well as the transition
between them.
Our strategy to prove Theorem 1 relies on connecting the asymptotics for fixed 𝑣1 < 𝑣2 with

another double-scaling regime, namely the one where 𝑣1 approaches −1, and 𝑣2 approaches 1.
In this regime the scaled gaps, 𝑠(−1, 𝑣1), 𝑠(𝑣2, 1), although still growing with 𝑠, become small in
comparisonwith the separation between them, andwe show that in that case𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1))
splits to the main orders into the product of 𝑃𝑠(−1, 𝑣1) and 𝑃𝑠(𝑣2, 1). The advantage is that for
each of the separate gaps we can use an appropriately rescaled asymptotics (2) which contains the
constant 𝑐0. More precisely, we prove in Section 2 by elementary arguments the following

Lemma 8 (Separation of gaps). Let

𝐴𝑠 =

(
−1,−1 +

2𝑡
𝑠

)
∪

(
1 −

2𝑡
𝑠
, 1

)
, 𝑡 =

1
2
(log 𝑠)1∕4.

Then

log det(𝐼 − 𝐾𝑠)𝐴𝑠
= −𝑡2 −

1
2
log 𝑡 + 2𝑐0 + (1∕𝑡), 𝑡 → ∞. (24)

Remark 9. The rate of increase of 𝑡, 𝑡 = 1

2
(log 𝑠)1∕4, can be replaced with a slower rate of growth

with 𝑠, and the statement will still hold.

Now we describe the steps of the proof of Theorem 1. First, we obtain in Section 3 an identity
(equation (42) of Lemma 14) for the derivative 𝜕

𝜕𝑣2
log 𝑃𝑠((−1, 𝑣1) ∪ (𝑣2, 1)) in terms of a certain

Riemann-Hilbert (RH) problem, the Φ-RH problem. The fact that we use a differential iden-
tity with respect to one of the edges (𝑣2) of the gaps is crucial in allowing us to determine the
constant 𝑐1.
We then give in Section 4.4 an asymptotic solution of the Φ-RH problem as 𝑠 → ∞ with 𝑣1, 𝑣2

fixed. This problem is very similar to that solved in [18], and its solution involves the Jacobian
𝜃-functions (we give a collection of various useful properties of 𝜃-functions in the Appendix A
below). In Section 4.5, we show that the solution of the Φ-RH problem can be extended to
the double-scaling range where 𝑣2 is allowed to approach 1 at such a rate that (1 − 𝑣2)𝑠 → ∞
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8 FAHS and KRASOVSKY

(by symmetry, also 𝑣1 is allowed to approach−1 so that (1 + 𝑣1)𝑠 → ∞). It is this extension which
eventually provides a connection with Lemma 8.
In Section 5, we then substitute the solution into our differential identity (see (164), (170)).

In Proposition 17, we characterize the main asymptotic terms (equation (171)) in the differential
identity using averaging with respect to fast oscillations.
A large part of our work, Sections 7, 8, 9, is to bring the expression (171) to an explicit form.

This relies, apart from the use of standard formulae, on (specific to our setting) identities for 𝜃-
functions obtained in Lemma 16 of Section 4.2. As a result, we obtain an explicit form (194) for
the non-small part (171) of the right-hand side of the differential identity (42).
We then, by Proposition 17, integrate the resulting identity with respect to 𝑣2 from the point

when 𝑣2 = −𝑣1 is close to 1 to a fixed 𝑣2 = −𝑣1, and then, with 𝑣1 fixed, over 𝑣2, so that at one of
the integration limits we can use the result of Lemma 8. This proves Theorem 1. Thus the part 2𝑐0
of the constant 𝑐1 in (15) comes from Lemma 8, while the rest of 𝑐1 comes from the integration.
As a byproduct of our proof we also obtain the following extension of the asymptotics (14).

Theorem 10 (Extension to separation of gaps). For a fixed 𝜖 > 0, let −1 < 𝑣1 < 𝑣2 < 1 be such
that 𝑣2 − 𝑣1 ≥ 𝜖, (1 − 𝑣2)𝑠 → ∞, (1 + 𝑣1)𝑠 → ∞. Then the asymptotics (14) hold with the error term
(max{

1

(1−𝑣2)𝑠
,

1

(1+𝑣1)𝑠
}).

The independence of separated gaps established in Lemma 8 for the gaps contracting to −1
and 1, respectively, with the rate (log 𝑠)1∕4∕𝑠 can now be extended to a slower rate of contraction.
Namely, relying on Theorem 10 and evaluating the terms 𝐺0, 𝑐1, and 𝜏 in the limit 𝑣2 → 1 and
𝑣1 → −1, we obtain the following result in Section 6.

Theorem 11 (Independence of separated gaps). Let 𝑣1 = −1 + 𝑠−𝜌1 and 𝑣2 = 1 − 𝑠−𝜌2 , where
𝜌1, 𝜌2 ∈ (1∕2, 1). Then as 𝑠 → ∞,

𝑃𝑠([−1, 𝑣1] ∪ [𝑣2, 1])

𝑃𝑠([−1, 𝑣1])𝑃𝑠([𝑣2, 1])
→ 1. (25)

More generally, the limit (25) holds in any scaling limit where

min

{
𝑠(1 − 𝑣2), 𝑠(1 + 𝑣1),

1
𝑠(1 − 𝑣2)2

,
1

𝑠(1 + 𝑣1)2

}
→ ∞. (26)

Note that the use of Toeplitz determinants in [17, 31] was essential to determine the constant 𝑐0
in the asymptotics for one gap. In this paper, however, we use Lemma 8 which, in turn, relies on
the already known constant 𝑐0.

2 SEPARATION OF GAPS: PROOF OF LEMMA 8

For 𝑤 > 2 let

𝐴(𝑤) = 𝐴(𝑤)
1 ∪ 𝐴(𝑤)

2 , 𝐴(𝑤)
1 = (−𝑤,−𝑤 + 1), 𝐴(𝑤)

2 = (𝑤 − 1,𝑤).

With 𝑡 as in Lemma 8 and 𝑣 = 𝑠∕(2𝑡), we have

det(𝐼 − 𝐾𝑠)𝐴𝑠
= det(𝐼 − 𝐾2𝑡)𝐴(𝑣) . (27)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 9

By (2) and translational invariance, as 𝑡 → ∞,

det(𝐼 − 𝐾2𝑡)𝐴(𝑣)
1

= det(𝐼 − 𝐾2𝑡)𝐴(𝑣)
2

= det(𝐼 − 𝐾𝑡)(−1,1) = 𝑒𝑐0𝑡−1∕4𝑒−𝑡
2∕2(1 + (1∕𝑡)).

Therefore, upon setting 𝑢 = 2𝑡, 𝑤 = 𝑣, we obtain Lemma 8 as a direct consequence of the
following lemma we now prove.

Lemma 12. Let 𝑢,𝑤 > 2. There exist absolute constants 𝐶3, 𝐶4 > 0 such that

||||det(𝐼 − 𝐾𝑢)𝐴(𝑤) − det(𝐼 − 𝐾𝑢)𝐴(𝑤)
1

det(𝐼 − 𝐾𝑢)𝐴(𝑤)
2

|||| ≤ 𝐶3

𝑤
𝑒𝐶4𝑢

2
. (28)

We start with

Proposition 13. Let 𝑚 ∈ {0, 1, … } and 𝐵 be an 𝑚 + 1 × 𝑚 + 1 matrix satisfying |𝐵𝑗𝑘| ≤ 𝑢 for all
𝑗, 𝑘 = 1,… ,𝑚 + 1. Let 𝑋 be a set of indices 𝑗, 𝑘 such that |𝐵𝑗𝑘| < 1∕𝑤 for all (𝑗, 𝑘) ∈ 𝑋 and set

𝐵𝑗𝑘 =

{
𝐵𝑗𝑘 if (𝑗, 𝑘) ∉ 𝑋,

0 if (𝑗, 𝑘) ∈ 𝑋.

Then

| det 𝐵 − det 𝐵| ≤ 1
𝑤
(𝐶1𝑢)

𝑚
√
𝑚! (29)

for a sufficiently large absolute constant 𝐶1 > 0.

Proof. Let 𝐵(0) = 𝐵 and

𝐵(𝓁)
𝑗𝑘

=

{
𝐵𝑗𝑘 if (𝑗, 𝑘) ∉ 𝑋,

0 if (𝑗, 𝑘) ∈ 𝑋 and 𝑗 ≤ 𝓁
𝓁 = 1,… ,𝑚 + 1. (30)

In particular, 𝐵 = 𝐵(𝑚+1).
Expanding 𝐵 and 𝐵(1) in the first row we have

| det 𝐵 − det 𝐵(1)| ≤ 1
𝑤

𝑚+1∑
𝑘=1

| det 𝐵(0)(1𝑘)|, (31)

where 𝐵(0)(𝑗𝑘) is the 𝑚 ×𝑚 matrix obtained by removing the 𝑗th row and the 𝑘th column from
𝐵 = 𝐵(0). Similarly, for any 𝓁 = 1, 2, … ,𝑚, expanding in the 𝓁 + 1 row, we have

| det 𝐵(𝓁) − det 𝐵(𝓁+1)| ≤ 1
𝑤

𝑚+1∑
𝑘=1

| det 𝐵(𝓁)(𝓁+1 𝑘)|, (32)

Inequalities (31), (32) imply

| det 𝐵 − det 𝐵| ≤ 1
𝑤

𝑚∑
𝓁=0

𝑚+1∑
𝑘=1

| det 𝐵(𝓁)(𝓁+1 𝑘)|. (33)
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10 FAHS and KRASOVSKY

Hadamard’s inequality yields

| det 𝐵(𝓁)(𝓁+1 𝑘)| ≤ 𝑢𝑚𝑚𝑚∕2, (34)

and so

| det 𝐵 − det 𝐵| ≤ 1
𝑤
(𝑚 + 1)2𝑢𝑚𝑚𝑚∕2 ≤ 1

𝑤
(𝐶1𝑢)

𝑚
√
𝑚! (35)

for some 𝐶1 > 0. □

Proof of Lemma 12. Let

𝐾𝑢(𝑥, 𝑦) =

{
𝐾𝑢(𝑥, 𝑦) if 𝑥, 𝑦 ∈ 𝐴(𝑤)

1 or 𝑥, 𝑦 ∈ 𝐴(𝑤)
2

0 otherwise.
(36)

If we set

𝐵 = det(𝐾𝑢(𝑥𝑗, 𝑦𝑘))
𝑚+1
𝑗,𝑘=1, 𝐵 = det(𝐾𝑢(𝑥𝑗, 𝑦𝑘))

𝑚+1
𝑗,𝑘=1, (37)

with 𝑥𝑗, 𝑦𝑘 ∈ 𝐴(𝑤), then 𝐵, 𝐵 satisfy the conditions of Proposition 13 for some 𝑋. By (29) and
the definition of the Fredholm determinant, we have for sufficiently large absolute constants
𝐶𝑗 > 0

| det(𝐼 − 𝐾𝑢)𝐴(𝑣) − det(𝐼 − 𝐾𝑢)𝐴(𝑣) |
≤

∞∑
𝑚=0

1
(𝑚 + 1)! ∫𝐴(𝑤)

𝑑𝑥1 ⋯∫𝐴(𝑤)
𝑑𝑥𝑚+1

|||det(𝐾𝑢(𝑥𝑖, 𝑦𝑗))
𝑚+1
𝑖,𝑗=1 − det(𝐾𝑢(𝑥𝑖, 𝑦𝑗))

𝑚+1
𝑖,𝑗=1

|||
≤ 1

𝑤

∞∑
𝑚=0

(𝐶2𝑢)
𝑚√

𝑚!
≤ 1

𝑤

√√√√ ∞∑
𝑚=0

(𝐶2𝑢)2𝑚(𝑚 + 1)2

𝑚!

√√√√ ∞∑
𝑚=0

1
(𝑚 + 1)2

≤ 𝐶3

𝑤
𝑒𝐶4𝑢

2
. (38)

The reason for introducing 𝐾 is that the corresponding Fredholm determinant splits into the
product of the determinants over 𝐴(𝑤)

1 and 𝐴(𝑤)
2 . Indeed,

det(𝐼 − 𝐾𝑢)𝐴(𝑤) = 𝐼 +
∞∑

𝑚=1

𝑚∑
𝑘=0

(−1)𝑚

(𝑚 − 𝑘)!𝑘!

× ∫ 𝑥1,…,𝑥𝑘∈𝐴
(𝑤)
1

𝑥𝑘+1,…,𝑥𝑚∈𝐴
(𝑤)
2

det 𝐾𝑢(𝑥𝑖 − 𝑥𝑗)
𝑘
𝑖,𝑗=1 det 𝐾𝑢(𝑥𝑖 − 𝑥𝑗)

𝑚
𝑖,𝑗=𝑘+1

𝑑𝑥1 …𝑑𝑥𝑚

= det(𝐼 − 𝐾𝑢)𝐴(𝑤)
1

det(𝐼 − 𝐾𝑢)𝐴(𝑤)
2
. (39)

Combining this with the estimate (38) proves the lemma. □

3 DIFFERENTIAL IDENTITY

Consider the following Riemann-Hilbert problem for a 2 × 2 matrix valued function
Φ(𝑤) = Φ(𝑤; 𝑠), where 𝑠 > 0.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 11

F IGURE 2 The jump contour ΓΦ.

Let ΓΦ be the contour shown in Figure 2, where as usual the + side of the contour is on the left
w.r.t. the direction shown by the arrow, and the − side is on the right.

RH problem for Φ

(a) Φ is analytic for 𝑤 ∈ ℂ ⧵ ΓΦ.
(b) Φ has 𝐿2 boundary values Φ+(𝑤), Φ−(𝑤) as the point 𝑤 ∈ ΓΦ is approached nontangentially

from the+ side,− side, respectively. These values are related by the jump conditionΦ+(𝑤) =
Φ−(𝑤)𝐽Φ(𝑤), where

𝐽Φ(𝑤) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
0 −1

1 0

)
for 𝑤 ∈ 𝐼 = (−1, 𝑣1) ∪ (𝑣2, 1),(

1 0

1 1

)
for 𝑤 ∈ ΓΦ,L,(

1 −1

0 1

)
for 𝑤 ∈ ΓΦ,U.

(40)

(c) As 𝑤 → ∞,

Φ(𝑤) =

(
𝐼 + 

(
1
𝑤

))(
𝑒𝑖𝑠𝑤 0
0 𝑒−𝑖𝑠𝑤

)
. (41)

Remarks.

1) As usual, we write for brevity(
𝑒𝑖𝑠𝑤 0
0 𝑒−𝑖𝑠𝑤

)
= 𝑒𝑖𝑠𝑤𝜎3 , 𝜎3 =

(
1 0
0 −1

)
.

2) By general theory, see, for example, [14], if this problem has a solutionΦ(𝑤), then the solution
is unique. In Section 3.1, we show that the RH problem for Φmay be constructed explicitly in
terms of the 𝑚-RH problem from [18]. It was proven in [18, Proposition 2.18] that a solution
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12 FAHS and KRASOVSKY

exists to the𝑚-RH problem, and thus there exists a solution to our RH problem for Φ for any
𝑠 > 0.

The rest of this section will be devoted to two different proofs of the following

Lemma 14 (Differential identity). Let Φ(𝑧) = Φ(𝑧; 𝑠) solve the RH problem for Φ. The Fredholm
determinant (1) satisfies:

𝜕
𝜕𝑣2

log det(𝐼 − 𝐾𝑠)(−1,𝑣1)∪(𝑣2,1) = 𝑠(𝑣1, 𝑣2) ≡ 𝑖
2𝜋

[
Φ−1
+ (𝑣2)Φ

′
+(𝑣2)

]
12
, (42)

where Φ′(𝑧) =
𝑑

𝑑𝑧
Φ(𝑧) and Φ−1

+ (𝑣2)Φ
′
+(𝑣2) = lim𝜖↓0 Φ

−1(𝑣2 + 𝑖𝜖)Φ′(𝑣2 + 𝑖𝜖). Moreover, if
−𝑣1 = 𝑣2 = 𝑣,

𝜕
𝜕𝑣

log det(𝐼 − 𝐾𝑠)(−1,−𝑣)∪(𝑣,1) = 2𝑠(−𝑣, 𝑣). (43)

3.1 First proof of Lemma 14

The proof of identities of type (42) using the theory of integrable operators is standard [3, 4, 18,
28]. We give an outline. First, we write the kernel of the (integrable) operator 𝐾𝑠 in the form

𝐾𝑠(𝑥, 𝑦) =
𝜆𝑇(𝑥)�⃗�(𝑦)
𝑥 − 𝑦

=

∑2
𝑗=1 𝜆𝑗(𝑥)𝜇𝑗(𝑦)

𝑥 − 𝑦
, 𝜆(𝑧) =

(
𝑒𝑖𝑠𝑧

−𝑒−𝑖𝑠𝑧

)
, �⃗� =

1
2𝜋𝑖

(
𝑒−𝑖𝑠𝑧

𝑒𝑖𝑠𝑧

)
. (44)

Note that
∑2

𝑗=1 𝜆𝑗(𝑧)𝜇𝑗(𝑧) = 0. The resolvent of the operator 𝐾𝑠,

(𝐼 − 𝐾𝑠)
−1 = 𝐼 + 𝑅𝑠,

has the property [18, Lemma 2.8] that the kernel of 𝑅𝑠 is of the form

𝑅𝑠(𝑥, 𝑦) =
Λ⃗𝑇(𝑥)�⃗�(𝑦)

𝑥 − 𝑦
, Λ𝑗 = (𝐼 − 𝐾𝑠)

−1𝜆𝑗, 𝑀𝑗 = (𝐼 − 𝐾𝑇
𝑠 )

−1𝜇𝑗, 𝑗 = 1, 2, (45)

and moreover,
∑2

𝑗=1 Λ𝑗(𝑧)𝑀𝑗(𝑧) = 0. The functions Λ(𝑧) and 𝑀(𝑧) for 𝑧 ∈ 𝐴 can be written as
[18, Lemma 2.12]

Λ⃗(𝑧) = �̂�+(𝑧)𝜆(𝑧), �⃗�(𝑧) = (�̂�−1
+ (𝑧))𝑇�⃗�(𝑧), (46)

where �̂�(𝑧) is the 2 × 2matrix valued functionwhich solves the following RHP (this is the𝑚-RHP
of [18] up to a slight modification: 𝜆2, 𝜇2 are replaced by −𝜆2, −𝜇2, respectively):

RH problem for �̂�

(a) �̂�(𝑧) is analytic in ℂ ⧵ 𝐴.
(b) �̂�(𝑧) has 𝐿2 boundary values related by the condition �̂�+(𝑥) = �̂�−(𝑥)𝐽𝑚(𝑥) for 𝑥 ∈ 𝐴, with

𝐽𝑚(𝑥) = 𝐼 − 2𝜋𝑖𝜆(𝑥)�⃗�𝑇(𝑥). (47)

(c) �̂�(𝑧) = 𝐼 + (𝑧−1) as 𝑧 → ∞.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 13

This problem is reduced to a constant jump problem by the transformation

𝜓(𝑧) = �̂�(𝑧)𝑒𝑖𝑠𝑧𝜎3 . (48)

Indeed so defined 𝜓(𝑧) satisfies

RH problem for 𝜓(𝑧)

(a) 𝜓(𝑧) is analytic in ℂ ⧵ 𝐴.
(b) 𝜓(𝑧) has 𝐿2 boundary values related by the condition 𝜓+(𝑥) = 𝜓−(𝑥)

(
0 −1
1 2

)
for 𝑥 ∈ 𝐴.

(c) 𝜓(𝑧) = (𝐼 + (𝑧−1))𝑒𝑖𝑠𝑧𝜎3 as 𝑧 → ∞.

It is now straightforward to verify that the solution to the Φ-RH problem is written in terms of
𝜓(𝑧) as follows: Φ(𝑧) = 𝜓(𝑧)

(
1 −1
0 1

)
above ΓΦ,𝑈 (see Figure 2); Φ(𝑧) = 𝜓(𝑧)

(
1 0
−1 1

)
below ΓΦ,𝐿;

and Φ(𝑧) = 𝜓(𝑧) inside the lenses in Figure 2.
Writing �̂� in terms of Φ in (46), we obtain

Λ⃗(𝑧) =

(
−Φ12,+(𝑧)
−Φ22,+(𝑧)

)
, �⃗�(𝑧) =

1
2𝜋𝑖

(
Φ22,+(𝑧)
−Φ12,+(𝑧)

)
, 𝑧 ∈ 𝐴. (49)

Now the logarithmic derivative of the determinant

𝜕
𝜕𝑣2

log det(𝐼 − 𝐾𝑠)(−1,𝑣1)∪(𝑣2,1) = −tr

(
(𝐼 − 𝐾𝑠)

−1 𝜕𝐾𝑠

𝜕𝑣2

)
= ((𝐼 − 𝐾𝑠)

−1𝐾𝑠)(𝑣2, 𝑣2)

= ((𝐼 − 𝐾𝑠)
−1(𝐾𝑠 − 𝐼 + 𝐼))(𝑣2, 𝑣2) = 𝑅𝑠(𝑣2, 𝑣2) = −(Λ1(𝑣2)𝑀

′
1(𝑣2) + Λ2(𝑣2)𝑀

′
2(𝑣2)). (50)

Substituting here (49), we obtain (42). The identity (43) is obtained similarly.

3.2 Differential identity for Toeplitz determinants

For the second proof of Lemma 14, we will first represent the Fredholm determinant det(𝐼 − 𝐾𝑠)𝐴
in terms of a special Toeplitz determinant and then obtain (42) as a limit of the corresponding
differential identity for Toeplitz determinants. This way of proving Lemma 14 has a potential
advantage of future applications to computing probabilities in the Circular Unitary Ensemble of
random matrix theory, and to the theory of orthogonal polynomials.
Let 𝐽 = 𝐽1 ∪ 𝐽2 be the union of two disjoint arcs 𝐽1 and 𝐽2 on the unit circle 𝐶. We parametrize

the endpoints of 𝐽1 by 𝑎1 = 𝑒𝑖𝜙1 , 𝑎2 = 𝑒𝑖𝜙2 and the endpoints of 𝐽2 by 𝑏 = 𝑒𝑖𝜙0 , �̄� = 𝑒−𝑖𝜙0 , see
Figure 3. Let 𝑓 be the indicator function of the set 𝐽:

𝑓(𝑧) =

{
1 for 𝑧 ∈ 𝐽,
0 for 𝑧 ∉ 𝐽.
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14 FAHS and KRASOVSKY

F IGURE 3 Arc 𝐽1 on the right and 𝐽2 on the left.

Consider the 𝑛-dimensional Toeplitz determinant with symbol 𝑓 on the unit circle 𝐶:

𝐷𝑛(𝑓) = det(𝑓𝑗−𝑘)
𝑛−1
𝑗,𝑘=0

, 𝑓𝑗 = ∫𝐶 𝑓(𝑧)𝑧
−𝑗 𝑑𝑧
2𝜋𝑖𝑧

= ∫𝐽 𝑧
−𝑗 𝑑𝑧
2𝜋𝑖𝑧

,

where the integration is in the counterclockwise direction.
If the end-points of the arcs vary with 𝑛 as follows, 𝜙0 = 2𝑠∕𝑛 and 𝜙𝑗 = 2𝑣𝑗𝑠∕𝑛 for 𝑗 = 1, 2, then

it is easily verified that

lim
𝑛→∞

𝐷𝑛(𝑓) = det(𝐼 − 𝐾𝑠)(−1,𝑣1)∪(𝑣2,1). (51)

We will now obtain a differential identity for 𝐷𝑛(𝑓), and in the next subsection, by taking
𝑛 → ∞ and using (51), will prove Lemma 14.
Since 𝑓 is nonnegative, it follows from the multiple integral representation for Toeplitz deter-

minants that𝐷𝑗(𝑓) > 0 for all 𝑗 = 1, 2, … . Set𝐷0(𝑓) = 1. Define the polynomials 𝜓0 = 1∕
√
𝑓0, 𝜓𝑗 ,

𝑗 = 1, 2, … by

𝜓𝑗(𝑧) =
1√

𝐷𝑗(𝑓)𝐷𝑗+1(𝑓)
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓0 𝑓−1 … 𝑓−𝑗+1 𝑓−𝑗

𝑓1 𝑓0 … 𝑓−𝑗+2 𝑓−𝑗+1

⋱

𝑓𝑗−1 𝑓𝑗−2 … 𝑓0 𝑓−1

1 𝑧 … 𝑧𝑗−1 𝑧𝑗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝜒𝑗𝑧

𝑗 + … ,

where the leading coefficient 𝜒𝑗 is given by

𝜒𝑗 =

√
𝐷𝑗(𝑓)

𝐷𝑗+1(𝑓)
. (52)

These polynomials are orthonormal on 𝐽:

∫𝐽 𝜓𝑘(𝑧)𝜓𝑗(𝑧)
𝑑𝑧
2𝜋𝑖𝑧

= 𝛿𝑗𝑘, 𝑗, 𝑘 = 0, 1, … (53)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 15

For a given 𝑛 ≥ 1, define the matrix-valued function 𝑌 = 𝑌(𝑧) in terms of the orthogonal
polynomials:

𝑌(𝑧) =

⎛⎜⎜⎜⎜⎝
𝜒−1
𝑛 𝜓𝑛(𝑧) 𝜒−1

𝑛 ∫
𝐽

𝜓𝑛(𝜁)

𝜁 − 𝑧

𝑑𝜁

2𝜋𝑖𝜁𝑛

−𝜒𝑛−1𝑧
𝑛−1𝜓𝑛−1(𝑧

−1) −𝜒𝑛−1 ∫𝐽
𝜓𝑛−1(𝜁

−1)

𝜁 − 𝑧

𝑑𝜁

2𝜋𝑖𝜁

⎞⎟⎟⎟⎟⎠
. (54)

The function 𝑌 is a unique solution to the following RH Problem:

(a) 𝑌 ∶ ℂ ⧵ 𝐽 → ℂ2×2 is analytic;
(b) 𝑌+(𝑧) = 𝑌−(𝑧)

(
1 𝑧−𝑛

0 1

)
for 𝑧 ∈ 𝐽;

(c) 𝑌(𝑧) = (𝐼 + (1∕𝑧))𝑧𝑛𝜎3 as 𝑧 → ∞.

This fact was initially noticed in [25] for orthogonal polynomials on the real line and extended
to the case of orthogonal polynomials on the unit circle in [2]. As in [15, 31], we will use the
orthogonal polynomials to obtain a differential identity for log𝐷𝑛(𝑓) in terms of the solution to
the RH problem for 𝑌. Namely, we have

Proposition 15.

(a) Let 𝑎2 = 𝑒𝑖𝜙2 . The Toeplitz determinant 𝐷𝑛(𝑓) satisfies

𝜕
𝜕𝜙2

log𝐷𝑛(𝑓) = −
1
2𝜋

𝐹(𝑎2), (55)

where 𝐹 is given by

𝐹(𝑧) = −𝑧−𝑛+1[𝑌−1(𝑧)𝑌′(𝑧)]21. (56)

(b) Let 𝑎2 = 𝑎1 = 𝑒𝑖𝜙2 . Then

𝑑
𝑑𝜙2

log𝐷𝑛(𝑓) = −
1
𝜋
𝐹(𝑎2). (57)

Proof. From the definition of the orthogonal polynomials it is clear that

𝐷𝑛(𝑓) =
𝑛−1∏
𝑗=0

𝜒−2
𝑗 . (58)

The orthogonality conditions imply that, with 𝑧 = 𝑒𝑖𝜃,

1
2𝜋 ∫𝐽

𝜕𝜓𝑗(𝑧)

𝜕𝜙2
𝜓𝑗(𝑧)𝑑𝜃 =

1
2𝜋 ∫𝐽

𝜕𝜒𝑗

𝜕𝜙2
(𝑧𝑗 + polynomial of degree 𝑗 − 1)𝜓𝑗(𝑧)𝑑𝜃 =

1
𝜒𝑗

𝜕𝜒𝑗

𝜕𝜙2
, (59)

and similarly,

1
2𝜋 ∫𝐽 𝜓𝑗(𝑧)

𝜕𝜓𝑗(𝑧)

𝜕𝜙2
𝑑𝜃 =

1
𝜒𝑗

𝜕𝜒𝑗

𝜕𝜙2
. (60)
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16 FAHS and KRASOVSKY

By (58)–(60) we obtain:

𝜕
𝜕𝜙2

log(𝐷𝑛(𝑓)) = −2
𝑛−1∑
𝑗=0

𝜕𝜒𝑗

𝜕𝜙2
∕𝜒𝑗 = −

1
2𝜋 ∫𝐽

𝜕
𝜕𝜙2

(
𝑛−1∑
𝑗=0

|𝜓𝑗(𝑧)|2)𝑑𝜃. (61)

The Christoffel-Darboux formula for orthogonal polynomials on the unit circle (see, e.g.,
equation (2.8) in [15]) states that

−
𝑛−1∑
𝑘=0

|𝜓𝑘(𝑧)|2 = 𝑛|𝜓𝑛(𝑧)|2 − 2Re
(
𝑧𝜓𝑛(𝑧)𝜓

′
𝑛(𝑧)

)
for 𝑧 ∈ 𝐶. (62)

On the other hand, using the following identity (equation (2.4) in [15])

𝜒𝑛𝜓𝑛(𝑧) = 𝜒𝑛−1𝑧
−1𝜓𝑛−1(𝑧) + 𝜓𝑛(0)𝑧

−𝑛𝜓𝑛(𝑧), (63)

and (54), we easily verify that

𝐹(𝑧) = −𝑧−𝑛+1[𝑌−1(𝑧)𝑌′(𝑧)]21 = 𝑛|𝜓𝑛(𝑧)|2 − 2Re
(
𝑧𝜓𝑛(𝑧)𝜓

′
𝑛(𝑧)

)
for 𝑧 ∈ 𝐶. (64)

Substitution of (62), (64) into (61) gives

𝜕
𝜕𝜙2

log𝐷𝑛(𝑓) =
1
2𝜋 ∫𝐽

𝜕
𝜕𝜙2

(𝐹(𝑧))𝑑𝜃. (65)

Since by orthogonality

∫𝐽 𝐹(𝑧)
𝑑𝜃
2𝜋

= −∫𝐽
𝑛−1∑
𝑘=0

|𝜓𝑘(𝑧)|2 𝑑𝜃2𝜋 = −𝑛,

we obtain

0 =
𝜕
𝜕𝜙2

(
∫𝐽 𝐹(𝑧)𝑑𝜃

)
= 𝐹(𝑎2) + ∫𝐽

𝜕
𝜕𝜙2

𝐹(𝑧)𝑑𝜃, (66)

and proposition 15 (a) follows from (65). Part (b) is proved similarly. □

3.3 Limit 𝒏 → ∞: Second proof of Lemma 14

Aswe are eventually interested in the limit𝑛 → ∞, we first reduce the𝑌 RHproblem to an approx-
imate problem for Φ which does not contain the parameter 𝑛, and the dependence on 𝑛 is in the
error of approximation.
Let

𝑇(𝑧) =

{
𝑌(𝑧) |𝑧| < 1,

𝑌(𝑧)𝑧−𝑛𝜎3 |𝑧| > 1.
(67)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 17

F IGURE 4 Contour Γ𝑆 .

We open the lenses around 𝐽1 and 𝐽2, see Figure 4. Denote the edges of the lenses inside the
unit disc by ΓIn

𝑆
, the edges of the lenses outside the unit disc by ΓOut

𝑆
, and let

𝑆(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑇(𝑧) outside the lenses,

𝑇(𝑧)

(
1 0

−𝑧𝑛 1

)
inside the lenses, for |𝑧| < 1,

𝑇(𝑧)

(
1 0

𝑧−𝑛 1

)
inside the lenses, for |𝑧| > 1.

(68)

Then 𝑆 satisfies the following RH problem:

(a) 𝑆 is analytic on ℂ ⧵ (𝐶 ∪ ΓIn
𝑆
∪ ΓOut

𝑆
).

(b) The jumps of 𝑆 are given by 𝑆+(𝑧) = 𝑆−(𝑧)𝐽𝑆(𝑧), where

𝐽𝑆(𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)
for 𝑧 ∈ 𝐽,

(
1 0

𝑧−𝑛 1

)
for 𝑧 ∈ ΓOut

𝑆(
1 0

𝑧𝑛 1

)
for 𝑧 ∈ ΓIn

𝑆
,

𝑧𝑛𝜎3 for 𝑧 ∈ 𝐶 ⧵ 𝐽.

(c) As 𝑧 → ∞,

𝑆(𝑧) = 𝐼 + (
𝑧−1

)
. (69)
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18 FAHS and KRASOVSKY

We assume that the lenses around 𝐽1 and the contour part 𝐶 ⧵ 𝐽 are contained within the set|𝑧 − 1| < 1∕2. The following function will approximate 𝑆 for |𝑧 − 1| > 1∕2:

(𝑧) =

⎧⎪⎨⎪⎩
(

0 1

−1 0

) |𝑧| < 1,

𝐼 |𝑧| > 1.

(70)

For |𝑧 − 1| < 1∕2, we construct the following function 𝑄. Let

𝑤(𝑧) = −𝑖
𝑛
2𝑠

log 𝑧, (71)

so that 𝑤(𝑒2𝑖𝑡
𝑠

𝑛 ) = 𝑡 for any 𝑡, and define

𝑄(𝑧) =

⎧⎪⎨⎪⎩
Φ(𝑤(𝑧); 𝑠)𝑧

−
𝑛

2
𝜎3

(
0 1

−1 0

) |𝑧| < 1,

Φ(𝑤(𝑧); 𝑠)𝑧
−

𝑛

2
𝜎3 |𝑧| > 1,

(72)

where Φ is the solution of the Φ RH problem at the beginning of the section.
Let

𝑅(𝑧) =

{
𝑆−1 for |𝑧 − 1| > 1∕2,
𝑆𝑄−1 for |𝑧 − 1| < 1∕2.

(73)

Then 𝑅 is analytic for ℂ ⧵ Γ𝑅, where

Γ̂𝑅 = {the edge of the lens for |𝑧 − 1| > 1∕2} ∪ {𝑧 ∶ |𝑧 − 1| = 1∕2}. (74)

We have using (41), (72),

𝑅−1+ (𝑧)𝑅−(𝑧) = 𝑄(𝑧)−1(𝑧) = 𝐼 + (1∕𝑛)
uniformly on the circle |𝑧 − 1| = 1∕2 oriented counterclockwise. Furthermore, 𝑅−1+ 𝑅− − 𝐼 =
(𝑒−𝑛𝜖), 𝜖 > 0, uniformly on the edges of the lenses. Thus, by standard small norm analysis (see,
e.g., [14]),

𝑅(𝑧) = 𝐼 + (1∕𝑛), 𝑅′(𝑧) = (1∕𝑛), (75)

uniformly for 𝑧 ∈ ℂ.
We now express 𝐹(𝑎2) from Proposition 15 in terms of elements of Φ. Tracing back the trans-

formations, we see that as 𝑧 approaches 𝑎2 from the inside of the unit circle and being outside the
lens,

𝑌(𝑧) = 𝑇(𝑧) = 𝑆(𝑧) = 𝑅(𝑧)𝑄(𝑧) = 𝑅(𝑧)Φ(𝑤(𝑧))𝑧−(𝑛∕2)𝜎3
(

0 1
−1 0

)
.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 19

Using this, we obtain

−𝑧𝑛+1(𝑌(𝑧)−1𝑌′(𝑧))21 = 𝑧

(
Φ(𝑤(𝑧))−1

𝑑
𝑑𝑧

Φ(𝑤(𝑧))

)
12

+ 𝑧
(
Φ−1(1∕𝑛)Φ)

12

= 𝑧

(
Φ(𝑤)−1

𝑑
𝑑𝑤

Φ(𝑤)

)
12

𝑑𝑤
𝑑𝑧

+ 𝑧
(
Φ−1(1∕𝑛)Φ)

12

= −
𝑖𝑛
2𝑠

(
Φ(𝑤)−1

𝑑
𝑑𝑤

Φ(𝑤)

)
12

+ 𝑧
(
Φ−1(1∕𝑛)Φ)

12
.

Taking the limit 𝑧 → 𝑎2 = exp(𝑖𝜙2) = exp(𝑖2𝑣2𝑠∕𝑛) along this trajectory, we obtain

𝐹(𝑎2) = −
𝑖𝑛
2𝑠

[
Φ−1
+ (𝑣2)Φ

′
+(𝑣2)

]
12
+ (1∕𝑛), (76)

as 𝑛 → ∞. Substituting this into (55), recalling (51), and noting that 𝑑𝑣2∕𝑑𝜙2 = 𝑛∕(2𝑠), proves
(42). The symmetric case identity (43) follows from (57). Thus we finished the proof of Lemma 14.
We now solve the RH problem for Φ, compute the asymptotics of the r.h.s. of (42), integrate it,

and use Lemma 8 at one of the integration limits to obtain Theorem 1.

4 SOLUTION OF THE RH PROBLEM FOR 𝚽

In this section, the main objective is to provide asymptotics for Φ(𝑧) = Φ(𝑧; 𝑠) as 𝑠 → ∞. We con-
struct an outside parameterix in Section 4.1, local parametrices in Section 4.3, and solve a small
norm problem in Section 4.4. In Section 4.4 we consider 𝑣1 and 𝑣2 to be fixed as 𝑠 → ∞, and in
Section 4.5 we extend the solution to the regime where 𝑣2 → 1 such that 𝑠(1 − 𝑣2) → ∞, and also
to the regime where 𝑣1 → −1 such that 𝑠(1 + 𝑣1) → ∞. Additionally, in Section 4.2, we provide
some identities for 𝜃 functions which we will rely on later in the paper.
Recall the definition of 𝜓(𝑧) in (6), and for 𝑧 ∈ ℂ ⧵ (−1, 𝑣1) ∪ (𝑣2, 1) on the first sheet of the

Riemann surface Σ, let

𝜙(𝑧) = ∫
𝑧

1
𝜓(𝜉)𝑑𝜉. (77)

We see by (7) that 𝜙(𝑧) is a well defined function, analytic on ℂ ⧵ (−1, 𝑣1) ∪ (𝑣2, 1). Since
𝜓+ = −𝜓− on (−1, 𝑣1) ∪ (𝑣2, 1), we have

𝜙+(𝑧) + 𝜙−(𝑧) =

{
0 for 𝑧 ∈ (𝑣2, 1),

−2𝜋Ω for 𝑧 ∈ (−1, 𝑣1),
Ω =

1
𝜋 ∫

𝑣2

𝑣1

𝜓(𝑥)𝑑𝑥 > 0. (78)

Since by (7) 𝜓(𝑧) has zero residue at infinity, 𝜓(𝑧) = 1 + (1∕𝑧2) as 𝑧 → ∞, and we have

𝜙(𝑧) = 𝑧 + (1), 𝑧 → ∞. (79)

Let

(𝑧) = 𝑒𝑖𝑠𝓁𝜎3Φ(𝑧)𝑒−𝑖𝑠𝜙(𝑧)𝜎3 , 𝓁 = ∫
∞

1
(𝜓(𝑥) − 1)𝑑𝑥 − 1, (80)

then  satisfies the following RH problem.
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20 FAHS and KRASOVSKY

RH Problem for 
(a)  is analytic for 𝑧 ∈ ℂ ⧵ ΓΦ,
(b)  has jumps given by +(𝑧) = −(𝑧)𝐽 (𝑧), where

𝐽 (𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
0 −1

1 0

)
for 𝑧 ∈ (𝑣2, 1),(

0 −𝑒−2𝜋𝑖𝑠Ω

𝑒2𝜋𝑖𝑠Ω 0

)
for 𝑧 ∈ (−1, 𝑣1),(

1 0

𝑒−2𝑖𝑠𝜙(𝑧) 1

)
for 𝑧 ∈ ΓΦ,L,(

1 −𝑒2𝑖𝑠𝜙(𝑧)

0 1

)
for 𝑧 ∈ ΓΦ,U.

(81)

(c) As 𝑧 → ∞,

(𝑧) = 𝐼 + 
(
1
𝑧

)
. (82)

We need the conditions Im𝜙(𝑧) < 0, Im𝜙(𝑧) > 0, to hold uniformly on ΓΦ,L, ΓΦ,U, respectively,
away from some fixed 𝜖 neighborhoods of the end-points for the corresponding jumps to be expo-
nentially close to the identity. Since (79) is uniform as |𝑧| → ∞, the conditions hold for |𝑧| > 𝑊 for
some sufficiently large but fixed 𝑊 > 0. Since 𝑑

𝑑𝑥
𝜙(𝑥) = 𝜓(𝑥) > 0 for 𝑥 ∈ ℝ ⧵ (−1, 𝑣1) ∪ (𝑣2, 1),

the conditions hold on the contour as stated assuming (and we do this) that the angle between
the parts of ΓΦ,L, ΓΦ,U emanating from ±1 and the real axis was chosen to be sufficiently small
and the lens around (𝑣1, 𝑣2) was sufficiently narrow. Therefore

𝐽 (𝑧) = 𝐼 + (
𝑒−𝑐𝑠(1+|𝑧|)), (83)

as 𝑠 → ∞, for some constant 𝑐 > 0, uniformly on ΓΦ,L, ΓΦ,U away from fixed 𝜖-neighborhoods of
±1, 𝑣1, 𝑣2.

4.1 Outside parametrix and 𝜽-functions

Consider the following RH problem for the 2 × 2-matrix valued function  (𝑧; 𝜔) with a real
parameter 𝜔, which will give an approximate solution to the Φ RH problem away from the edge
points±1, 𝑣1, 𝑣2, when 𝜔 = 𝑠Ω. Later on we also construct approximate solutions (local paramet-
rices) on a neighborhood of each edge point, and match them to the leading order with (𝑧; 𝜔)
on the boundaries of the neighborhoods.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 21

RH problem for
(a)  (𝑧) is analytic on ℂ ⧵ (−1, 𝑣1) ∪ (𝑣2, 1).
(b) On (−1, 𝑣1) ∪ (𝑣2, 1), has 𝐿2 boundary values related by the jump conditions:

+(𝑧) = −(𝑧)

(
0 −1
1 0

)
for 𝑧 ∈ (𝑣2, 1),

+(𝑧) = −(𝑧)

(
0 −𝑒−2𝜋𝑖𝜔

𝑒2𝜋𝑖𝜔 0

)
for 𝑧 ∈ (−1, 𝑣1).

(c) As 𝑧 → ∞,

 (𝑧) = 𝐼 + (𝑧−1). (84)

A more general problem with jumps on𝑚 intervals was solved in [18] in terms of multidimen-
sional 𝜃-functions. We now present the solution in our case of two intervals: (−1, 𝑣1), (𝑣2, 1). Let

𝛾(𝑧) =

(
(𝑧 − 1)(𝑧 − 𝑣1)

(𝑧 − 𝑣2)(𝑧 + 1)

)1∕4

, (85)

also with branch cuts on (−1, 𝑣1) ∪ (𝑣2, 1), such that 𝛾(𝑧) → 1 as 𝑧 → ∞ on the first sheet of the
Riemann surface Σ.
Recall the definition of the holomorphic differential (11). Let 𝑢 be the following analytic

function on ℂ ⧵ {(−∞, 𝑣1] ∪ [𝑣2, +∞)}:

𝑢(𝑧) = −∫
𝑧

𝑣2

𝝎, (86)

with integration taken on the first sheet. Note that, modℤ,

𝑢(−1) = −
𝜏
2
−
1
2
, 𝑢(𝑣1) = −

𝜏
2
, 𝑢(𝑣2) = 0, 𝑢(1) = −

1
2
. (87)

The function 𝑢(𝑧) extends to the Riemann surface Σ and is then called the Abel map. It maps the
Riemann surface onto the torus where 𝜃-functions are defined.
A simple calculation (see [18]) shows that the function 𝛾(𝑧) − 𝛾(𝑧)−1 has a single zero on (𝑣1, 𝑣2)

on the first sheet, denote it by �̂�, and no zeros on the second sheet. We have

�̂� =
𝑣1 + 𝑣2

2 + 𝑣1 − 𝑣2
. (88)

Similarly, the function 𝛾(𝑧) + 𝛾(𝑧)−1 has no zeros on the first sheet and one zero on the second.
Let

𝑑 = −
1 − 𝜏
2

− ∫
�̂�

𝑣2

𝝎, (89)

with integration taken on the first sheet.
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22 FAHS and KRASOVSKY

Consider the third Jacobian 𝜃-function 𝜃(𝑧) = 𝜃3(𝑧; 𝜏) (see Appendix A). Since 𝜃((1 − 𝜏)∕2) =
0, we have 𝜃(𝑢(�̂�) − 𝑑) = 0. The function 𝜃(𝑢(𝑧) − 𝑑) = 0 has no other zeros on the Riemann
surface. The function 𝜃(𝑢(𝑧) + 𝑑) = 0 has only one zero on the Riemann surface located on the
second sheet which coincides with the only zero of 𝛾(𝑧) + 𝛾(𝑧)−1.
By an argument in [18] we have

𝑢(∞) + 𝑑 = 𝑚𝜏 modℤ,

for some integer𝑚. Consider the integral of 𝝎 along the closed contour composed of a large inter-
val along the real axis and a semicircle in the upper half-plane. Then using (12) and the definition
of 𝜏 in (13) we obtain in the case 𝑣1 = −𝑣2 that 𝑢(∞) + 𝑑 = 0 modℤ with 𝑢(𝑧) considered on the
first sheet. Therefore also in the general case of 𝑣1, 𝑣2, by continuity,

𝑢(∞) + 𝑑 = 0 modℤ. (90)

The solution to the RH problem for is given by

 (𝑧; 𝜔) =
⎛⎜⎜⎝
𝛾+𝛾−1

2
𝑚11 −

𝛾−𝛾−1

2𝑖
𝑚12

𝛾−𝛾−1

2𝑖
𝑚21

𝛾+𝛾−1

2
𝑚22

⎞⎟⎟⎠ ,

𝑚(𝑧) =
𝜃(0)

𝜃(𝜔)
×

⎛⎜⎜⎜⎜⎝
𝜃(𝑢(𝑧) + 𝜔 + 𝑑)

𝜃(𝑢(𝑧) + 𝑑)

𝜃(𝑢(𝑧) − 𝜔 − 𝑑)

𝜃(𝑢(𝑧) − 𝑑)

𝜃(𝑢(𝑧) + 𝜔 − 𝑑)

𝜃(𝑢(𝑧) − 𝑑)

𝜃(𝑢(𝑧) − 𝜔 + 𝑑)

𝜃(𝑢(𝑧) + 𝑑)

⎞⎟⎟⎟⎟⎠
(91)

with 𝑧 on the first sheet. To see that  solves the RH problem for  , one makes several
observations. First note that 𝛾(𝑧) is analytic on ℂ ⧵ (−1, 𝑣1) ∪ (𝑣2, 1) and

𝛾+(𝑧) = 𝑖𝛾−(𝑧), 𝑧 ∈ (−1, 𝑣1) ∪ (𝑣2, 1).

Hence for 𝑤 ∈ (−1, 𝑣1) ∪ (𝑣2, 1) (
𝛾 + 𝛾−1

2

)
+

= −

(
𝛾 − 𝛾−1

2𝑖

)
−

;

(
𝛾 − 𝛾−1

2𝑖

)
+

=

(
𝛾 + 𝛾−1

2

)
−

.

(92)

Secondly, as follows from (A.2) and the relations

𝑢+(𝑧) =

{
−𝑢−(𝑧) modℤ 𝑧 ∈ (𝑣2, 1),

−𝑢−(𝑧) − 𝜏 modℤ 𝑧 ∈ (−1, 𝑣1),
(93)

the matrix𝑚 has the jumps:

𝑚+(𝑧) = 𝑚−(𝑧)

(
0 1
1 0

)
for 𝑧 ∈ (𝑣2, 1),

𝑚+(𝑧) = 𝑚−(𝑧)

(
0 𝑒−2𝜋𝑖𝜔

𝑒2𝜋𝑖𝜔 0

)
for 𝑧 ∈ (−1, 𝑣1).

(94)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 23

The singularities of𝑚 cancel with the zeros of 𝛾 ± 𝛾−1. Furthermore,

 (𝑧) = 𝐼 + (𝑧−1)
as 𝑧 → ∞.

4.2 Identities for 𝜽-functions

Our proof of Theorem 1 will use several identities satisfied by 𝜃-functions. We present these iden-
tities now. Standard definitions and properties of theta-functions that we need are summarized
in Appendix A.

Lemma 16. With the coefficients of the expansion 𝛾0, 𝑢0, 𝛾1, 𝑢1, given in (157) below we have:

(a) For any4 𝜔 ∈ ℝ,

𝜃3(0)
2𝜃3(𝑑 + 𝜔)𝜃3(𝑑 − 𝜔)

𝜃3(𝑑)2𝜃3(𝜔)2

(
1 −

𝛾20𝑢0
2

[
𝜃′3(𝑑 + 𝜔)

𝜃3(𝑑 + 𝜔)
+
𝜃′3(𝑑 − 𝜔)

𝜃3(𝑑 − 𝜔)
− 2

𝜃′3(𝑑)

𝜃3(𝑑)

])
= 1. (95)

(b)

𝜃′1(𝑑)

𝜃1(𝑑)
−
𝜃′3(𝑑)

𝜃3(𝑑)
=

1

𝛾20𝑢0
= −𝑖𝐼0(1 + 𝑣2). (96)

(c) (
𝜃1(𝑑)

𝜃3(𝑑)

)′′′

=
3

𝛾20𝑢0

(
𝜃1(𝑑)

𝜃3(𝑑)

)′′

−
6(2𝛾1 + 𝑢1)

𝛾20𝑢
3
0

(
𝜃1(𝑑)

𝜃3(𝑑)

)
. (97)

(d) For 𝑧0 ∈ {−1, 𝑣1, 𝑣2, 1},

𝜃21(𝑢(𝑧0) + 𝑑)

𝜃23(𝑢(𝑧0) + 𝑑)

(
𝜃3
𝜃′1

)2

ℎ(𝑧0) = −
1

𝐼20
, ℎ(𝑧) = (𝑧 − 1)(𝑧 − 𝑣1) + (𝑧 − 𝑣2)(𝑧 + 1). (98)

(e)

𝜃4(0; 𝜏)
4 = 𝜃44 =

𝐼20
𝜋2

2(𝑣2 − 𝑣1). (99)

(f)

𝜃2(0; 𝜏)
4 = 𝜃42 =

𝐼20
𝜋2

(1 + 𝑣1)(1 − 𝑣2). (100)

4 If 𝑑 ± 𝜔 is a zero of 𝜃3, we multiply through in (95) before evaluating. We adopt the same convention in other formulae
below. Furthermore, it is easily seen that 𝜃3(𝑑) ≠ 0 and 𝜃3(𝜔) ≠ 0 for any 𝜔 ∈ ℝ.
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24 FAHS and KRASOVSKY

(g)

𝜃3(0; 𝜏)
4 = 𝜃43 =

𝐼20
𝜋2

(1 − 𝑣1)(1 + 𝑣2). (101)

Proof. We begin by proving (a). Consider 𝜂1(𝑧) defined by

𝜂1(𝑧) =

(
𝛾(𝑧) + 𝛾−1(𝑧)

2

)2 𝜃23𝜃3(𝑢(𝑧) + 𝜔 + 𝑑)𝜃3(𝑢(𝑧) − 𝜔 + 𝑑)

𝜃3(𝜔)2𝜃3(𝑢(𝑧) + 𝑑)2

−

(
𝛾(𝑧) − 𝛾−1(𝑧)

2

)2 𝜃23𝜃3(−𝑢(𝑧) + 𝜔 + 𝑑)𝜃3(−𝑢(𝑧) − 𝜔 + 𝑑)

𝜃3(𝜔)2𝜃3(−𝑢(𝑧) + 𝑑)2
(102)

Of course, we know that 𝜂1(𝑧) = det (𝑧) = 1 for all 𝑧 from the Riemann-Hilbert problem.
However, it is easy to provide a direct proof: By (92) and (94), and the fact that 𝜃3(𝜉+𝜔+𝑑)𝜃3(𝜉−𝜔+𝑑)

𝜃3(𝜉+𝑑)2

is an elliptic function of 𝜉, the function 𝜂1(𝑧) no jumps on 𝐴 and is thus meromorphic. By the
fact that 𝜃3(±𝑢(𝑧) + 𝑑) has the same zeros as 𝛾(𝑧) ± 𝛾(𝑧)−1, respectively, it follows that 𝜂1(𝑧) has
no singularities and is an entire function. By (90), 𝜂1(𝑧) → 1 as 𝑧 → ∞, and thus 𝜂1(𝑧) = 1 for all
𝑧 ∈ ℂ by Liouville’s theorem.
The expansion of 𝜂1(𝑧) as 𝑧 → 𝑣2 (using (157) below) shows that

𝜂1(𝑧) →
𝜃23𝜃3(𝑑 + 𝜔)𝜃3(𝑑 − 𝜔)

𝜃3(𝑑)2𝜃3(𝜔)2

(
1 −

𝛾20𝑢0
2

[
𝜃′3(𝑑 + 𝜔)

𝜃3(𝑑 + 𝜔)
+
𝜃′3(𝑑 − 𝜔)

𝜃3(𝑑 − 𝜔)
− 2

𝜃′3(𝑑)

𝜃3(𝑑)

])
, (103)

and since 𝜂1(𝑣2) = 1, we obtain Part (a) of the proposition.
Now consider

𝜂2(𝑧) =

(
𝛾(𝑧) + 𝛾−1(𝑧)

2

)2 𝜃21(𝑢(𝑧) + 𝑑)

𝜃23(𝑢(𝑧) + 𝑑)
−

(
𝛾(𝑧) − 𝛾−1(𝑧)

2

)2 𝜃21(−𝑢(𝑧) + 𝑑)

𝜃23(−𝑢(𝑧) + 𝑑)
. (104)

By the fact that 𝜃21(𝜉)

𝜃23(𝜉)
is an elliptic function of 𝜉, and by (92) and (93), it follows that 𝜂2(𝑧) is a

meromorphic function, and again by cancelation of the poles from 𝜃3(±𝑢(𝑧) + 𝑑) by the zeros of
𝛾(𝑧) ± 𝛾(𝑧)−1, it follows that 𝜂2(𝑧) in fact is entire. As 𝑧 → ∞, 𝜂2(𝑧) → 0 by (90) since 𝜃1(0) = 0,
and thus, 𝜂2(𝑧) ≡ 0 by Liouville’s theorem.We see from the expansion of 𝜂2(𝑧) in powers of 𝑧 − 𝑣2
as 𝑧 → 𝑣2 that

𝜂2(𝑧) →
𝜃1(𝑑)

𝜃3(𝑑)

[
𝜃1(𝑑)

𝜃3(𝑑)
− 𝛾20𝑢0

(
𝜃1(𝑑)

𝜃3(𝑑)

)′
]
, 𝑧 → 𝑣2. (105)

Since this limit is zero, we obtain that(
𝜃1(𝑑)

𝜃3(𝑑)

)′

=
1

𝛾20𝑢0

𝜃1(𝑑)

𝜃3(𝑑)
, (106)

which gives Part (b) of the proposition.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 25

To prove part (c), we consider the coefficient of the first power 𝑧 − 𝑣2 in the expansion of 𝜂2(𝑧)
as 𝑧 → 𝑣2. Denote here 𝑔(𝑧) =

𝜃1(𝑧)

𝜃3(𝑧)
, then as 𝑧 → 𝑣2,

0 = 𝜂2(𝑧) − 𝜂2(𝑣2) = 4(𝑧 − 𝑣2)

[
−𝛾20

𝑢30
6

(
𝑔′′′(𝑑)𝑔(𝑑) + 3𝑔′′(𝑑)𝑔′(𝑑)

)
− 𝑢0𝑔

′(𝑑)𝑔(𝑑)
(
𝑢1𝛾

2
0 + 𝛾−20 + 2𝛾1𝛾

2
0

)
+ 𝑢20

(
𝑔′′(𝑑)𝑔(𝑑) + 𝑔′(𝑑)2

)]
+ ((𝑧 − 𝑣2)

2). (107)

By substituting the identity for 𝑔′(𝑑) from Part (b) of the proposition into the right hand side of
(107) and setting the resulting coefficient of 𝑧 − 𝑣2 equal to zero, we obtain Part (c).
Finally, to prove Part (d), we consider

𝜂3(𝑧) = 𝑅(𝑧)

[(
𝛾(𝑧) + 𝛾−1(𝑧)

2

)2 𝜃21(𝑢(𝑧) + 𝑑)

𝜃23(𝑢(𝑧) + 𝑑)
+

(
𝛾(𝑧) − 𝛾−1(𝑧)

2

)2 𝜃21(−𝑢(𝑧) + 𝑑)

𝜃23(−𝑢(𝑧) + 𝑑)

]
. (108)

By the same arguments as for 𝜂1 and 𝜂2 (and in addition by the fact that𝑅+ = −𝑅− on𝐴), it follows
that 𝜂3 is entire. By recalling the definition of 𝑢 in (86), by (90), and by the definition of 𝛾 in (85),
we obtain

lim
𝑧→∞

𝜂3(𝑧) = −
1

4𝐼20

(
𝜃′1
𝜃3

)2

+
(2 + 𝑣1 − 𝑣2)

2

16

(
𝜃1(2𝑑)

𝜃3(2𝑑)

)2

, (109)

so that 𝜂3(𝑧) is identically equal to this constant. Now consider the asymptotics of 𝜂2(𝑧) as 𝑧 → ∞.
We have

0 ≡ 𝜂2(𝑧) = −𝑧−2
⎡⎢⎢⎣ 1

4𝐼20

(
𝜃′1
𝜃3

)2

+
(2 + 𝑣1 − 𝑣2)

2

16

(
𝜃1(2𝑑)

𝜃3(2𝑑)

)2 ⎤⎥⎥⎦ + (𝑧−3), (110)

from which we conclude that

−
1

4𝐼20

(
𝜃′1
𝜃3

)2

=
(2 + 𝑣1 − 𝑣2)

2

16

(
𝜃1(2𝑑)

𝜃3(2𝑑)

)2

. (111)

By substituting this into (109), we obtain

𝜂3(𝑧) = −
1

2𝐼20

(
𝜃′1
𝜃3

)2

(112)

for all 𝑧 ∈ ℂ. On the other hand, for 𝑧0 ∈ {−1, 𝑣1, 𝑣2, 1}, from (108) by (87) and ellipticity,

𝜂3(𝑧0) =
1
2

𝜃21(𝑢(𝑧0) + 𝑑)

𝜃23(𝑢(𝑧0) + 𝑑)
ℎ(𝑧0). (113)
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26 FAHS and KRASOVSKY

Equating this to (112) we obtain Part (d). To show Parts (e), (f), (g), we consider the function (as
usual, theta functions written without argument stand for their values with argument zero)

𝜃3(𝑢(𝑧))
2

𝜃1(𝑢(𝑧))2
+ 𝐼20(𝑣2 − 𝑣1)(𝑣

2
2 − 1)

𝜃23
𝜃′21

1
𝑧 − 𝑣2

. (114)

As before, we see that this function is identically constant. By evaluating at infinity, it is equal to
𝜃3(𝑑)

2

𝜃1(𝑑)2
. On the other hand, part (d) at 𝑧0 = 𝑣2 gives

𝜃3(𝑑)
2

𝜃1(𝑑)2
= −𝐼20(𝑣2 − 𝑣1)(𝑣2 − 1)

𝜃23
𝜃′21

. (115)

Equating this constant to (114) we obtain the identity for all 𝑧:

𝜃3(𝑢(𝑧))
2

𝜃1(𝑢(𝑧))2
= −𝐼20(𝑣2 − 𝑣1)(𝑣2 − 1)

𝜃23
𝜃′21

𝑧 + 1
𝑧 − 𝑣2

. (116)

Evaluating it at 𝑧 = 1 (recall from (87) that 𝑢(1) = 1∕2 modℤ and recall the definition of 𝜃𝑗(𝑧)
from Appendix A), and using the identity 𝜃′1 = 𝜋𝜃2𝜃3𝜃4, we obtain Part (e). We similarly obtain
Part (f) by evaluating (116) at 𝑧 = 𝑣1. Finally, we obtain Part (g) by making use of the identity
𝜃43 = 𝜃42 + 𝜃44 . □

4.3 Local parametrices

Our goal in this section is to construct a function 𝑃 on a neighborhood of each point of the set
 = {−1, 𝑣1, 𝑣2, 1}, with the same jump conditions as  on these neighborhoods, and with an
asymptotic behavior matching that of  to the main order on the boundaries of these neigh-
borhoods. The first step is to recall the following model RH problem from [34] with an explicit
solution in terms of Bessel functions.

RH problem for Ψ

(a) Ψ ∶ ℂ ⧵ ΓΨ → ℂ2×2 is analytic, where ΓΨ = ℝ− ∪ Γ±Ψ, with Γ
±
Ψ = {𝑥𝑒

±
2𝜋

3
𝑖
∶ 𝑥 ∈ ℝ+}, and with

orientation of ℝ−, Γ±Ψ towards zero.
(b) Ψ satisfies the jump conditions:

Ψ+(𝜁) = Ψ−(𝜁)

(
0 1
−1 0

)
for 𝜁 ∈ ℝ−,

Ψ+(𝜁) = Ψ−(𝜁)

(
1 0
1 1

)
for 𝜁 ∈ Γ±Ψ.

(c) As 𝜁 → ∞,

Ψ(𝜁) =

(
𝜋𝜁

1

2

)−
𝜎3
2 1√

2

(
1 𝑖
𝑖 1

)(
𝐼 +

1

8
√
𝜁

(
−1 −2𝑖
−2𝑖 1

)
−

3

27𝜁

(
1 −4𝑖
4𝑖 1

)
+ 

(
𝜁
−

3

2

))
𝑒𝜁

1
2 𝜎3 .

(d) As 𝜁 → 0, Ψ(𝜁) = (log |𝜁|).
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 27

For | arg 𝜁| < 2𝜋∕3, we have

Ψ(𝜁) =
⎛⎜⎜⎝

𝐼0(𝜁
1∕2)

𝑖

𝜋
𝐾0(𝜁

1∕2)

𝜋𝑖𝜁1∕2𝐼′0(𝜁
1∕2) −𝜁1∕2𝐾′

0(𝜁
1∕2)

⎞⎟⎟⎠ , (117)

where 𝐼0 and𝐾0 are Bessel functions, 𝐼′0(𝑥) =
𝑑

𝑑𝑥
𝐼0(𝑥),𝐾′

0(𝑥) =
𝑑

𝑑𝑥
𝐾0(𝑥). For definitions and prop-

erties of Bessel functions see, for example [27]. Here the principal branch of 𝜁1∕2 with the cut
along the negative real axis is chosen. For the explicit expression of the solution in the sector| arg 𝜁| > 2∕3, see [34].
We have the following useful asymptotics as 𝑧 → 0 for 𝐼0:

𝐼0(𝑧) = 1 +
𝑧2

4
+

𝑧4

64
+ (𝑧6). (118)

We denote by 𝑈(𝑝) fixed open nonintersecting balls containing 𝑝 ∈  = {−1, 𝑣1, 𝑣2, 1}.
Recalling 𝜓 in (6), we define 𝜁 = 𝜁(𝑝) on 𝑈(𝑝) by

𝜁(𝑝)(𝑧) = −

(
𝑠 ∫

𝑧

𝑝
𝜓(𝜉)𝑑𝜉

)2

. (119)

As 𝑧 → 𝑝, we have the expansion

𝜁(𝑝)(𝑧) = (𝑧 − 𝑝)𝑠2𝜁0(1 + 𝑜(1)), 𝜁0 = −
4(𝑝 − 𝑥1)

2(𝑝 − 𝑥2)
2∏

𝑞∈ ⧵{𝑝}(𝑝 − 𝑞)
. (120)

Note that 𝜁(𝑝)(𝑧) is a conformal mapping of 𝑈(𝑝) onto a neighborhood of zero. Observe also that
𝜁0 > 0 for 𝑝 = 𝑣2, −1, and 𝜁0 < 0 for 𝑝 = 𝑣1, 1, and so the contours in 𝑈(𝑝) are mapped from the
𝑧-plane to the 𝜁-plane accordingly.We choose the exact form of the contours in the 𝑧-plane so that
their images are direct lines.
Keeping in mind our conventions for the root branches, we obtain

(𝜁(𝑝)(𝑧))1∕2 + 𝑖(𝜙(𝑧) − 𝜙(𝑝)) = 0, Im 𝑧 > 0

(𝜁(𝑝)(𝑧))1∕2 − 𝑖(𝜙(𝑧) − 𝜙(𝑝)) = 0, Im 𝑧 < 0
(121)

By (7), (77) and the definition of Ω in (13),

𝜙(𝑣2) = 𝜙(1) = 0, 𝜙(−1) = 𝜙(𝑣1) = −𝜋Ω. (122)

Let

𝑋(𝑧) =

⎧⎪⎨⎪⎩
(
0 −1

1 0

)
for Im 𝑧 > 0,

𝐼 for Im 𝑧 < 0.

(123)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22147 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [13/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



28 FAHS and KRASOVSKY

For 𝑝 = −1, 𝑣2, we define the local parametrix on 𝑈(𝑝) by

𝑃(𝑧) = 𝐸(𝑧)Ψ(𝜁(𝑧))𝑋(𝑧)𝑒−𝑖𝑠𝜙(𝑧)𝜎3 ,

𝐸(𝑧) =  (𝑧; 𝑠Ω)𝑒𝑖𝑠𝜙(𝑝)𝜎3𝑋(𝑧)−1
1√
2

(
1 −𝑖
−𝑖 1

)(
𝜋𝜁

1

2

) 1

2
𝜎3

,
(124)

where we have suppressed the superscript in 𝜁 = 𝜁(𝑝), and the branch cut for 𝜁1∕4 is the same one
as for 𝜁1∕2.
Using the jump conditions, it is straightforward to verify that 𝐸(𝑧) has no jumps in 𝑈(𝑝), and

since its singularity at 𝑝 is removable, 𝐸(𝑧) is analytic in the neighborhood 𝑈(𝑝), 𝑝 = −1, 𝑣2.
Furthermore, it is easy to verify that 𝑃(𝑧) satisfies the same jump conditions as (𝑧) in 𝑈(𝑝),

𝑝 = −1, 𝑣2.
Finally, using the condition (c) in the Ψ-RHP and (121), we obtain for 𝑤 ∈ 𝜕𝑈(𝑝)

𝑃(𝑧) (𝑧; 𝑠Ω)−1 = 𝐼 + Δ1(𝑧) + (1∕𝑠2), Δ1(𝑧) = (1∕𝑠), (125)

uniformly on the boundary as 𝑠 → ∞, where

Δ1(𝑧) ≡ Δ1(𝑧; 𝑠Ω);

Δ1(𝑧; 𝜔) =
∓1

8
√
𝜁(𝑧)

 (𝑧; 𝜔)𝑒𝑖𝑠𝜙(𝑝)𝜎3
(
−1 −2𝑖
−2𝑖 1

)
𝑒−𝑖𝑠𝜙(𝑝)𝜎3−1(𝑧; 𝜔), 𝑝 = −1, 𝑣2,

(126)

where ∓ is taken to be − on 𝑈(𝑝) ∩ ℂ+, and + on 𝑈(𝑝) ∩ ℂ−. Note that Δ1(𝑧) is meromorphic in
𝑈(𝑝), 𝑝 = −1, 𝑣2, with the first-order pole at 𝑧 = 𝑝.
Similarly, for 𝑝 = 𝑣1, 1, we define the local parametrix on 𝑈(𝑝) by

𝑃(𝑧) = 𝐸(𝑧)𝜎3Ψ(𝜁(𝑧))𝜎3𝑋(𝑧)𝑒
−𝑖𝑠𝜙(𝑧)𝜎3 ,

𝐸(𝑧) =  (𝑧; 𝑠Ω)𝑒𝑖𝑠𝜙(𝑝)𝜎3𝑋(𝑧)−1
1√
2

(
1 𝑖
𝑖 1

)(
𝜋𝜁

1

2

) 1

2
𝜎3

.
(127)

Here 𝐸(𝑧) is analytic on𝑈(𝑝), 𝑃(𝑧) has the same jumps as (𝑧) in𝑈(𝑝), 𝑝 = 𝑣1, 1, and the same
condition (125) holds with

Δ1(𝑧) ≡ Δ1(𝑧; 𝑠Ω);

Δ1(𝑧; 𝜔) =
∓1

8
√
𝜁(𝑧)

 (𝑧; 𝜔)𝑒𝑖𝑠𝜙(𝑝)𝜎3
(
−1 2𝑖
2𝑖 1

)
𝑒−𝑖𝑠𝜙(𝑝)𝜎3−1(𝑧; 𝜔), 𝑝 = 𝑣1, 1,

(128)

where ∓ is taken to be − on 𝑈(𝑝) ∩ ℂ+, and + on 𝑈(𝑝) ∩ ℂ−. As at 𝑣2, −1, Δ1(𝑧) in (128) is
meromorphic in 𝑈(𝑝), 𝑝 = 𝑣1, 1, with the first-order pole at 𝑧 = 𝑝.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 29

F IGURE 5 The jump contour Γ𝑅 .

4.4 Small norm RH problem: Solution of the 𝚽-RH problem for fixed
𝒗𝟏, 𝒗𝟐

Let

𝑅(𝑧) =

⎧⎪⎨⎪⎩
(𝑧)−1(𝑧; 𝑠Ω) for 𝑧 ∈ ℂ ⧵

(
∪𝑝∈ 𝑈(𝑝)

)
,

(𝑧)𝑃−1(𝑧) for 𝑧 ∈ ∪𝑝∈ 𝑈(𝑝).
(129)

Then 𝑅(𝑧) is analytic for 𝑧 ∈ ℂ ⧵ Γ𝑅, where Γ𝑅 is as in Figure 5. We have

𝑅+(𝑧) = 𝑅−(𝑧)𝐽𝑅(𝑧), 𝐽𝑅(𝑧) =

⎧⎪⎨⎪⎩
𝑃(𝑧)−1(𝑧) for 𝑧 ∈ ∪𝑝∈ 𝜕𝑈(𝑝),

 (𝑧)𝐽𝑆(𝑧)−1(𝑧) for 𝑧 ∈ Γ𝑅 ⧵
(
∪𝑝∈ 𝜕𝑈(𝑝)

)
.

(130)

By (83) and (125), it follows that

𝐽𝑅(𝑧) = 𝐼 + (𝑠−1∕(|𝑧2| + 1))), (131)

as 𝑠 → ∞, uniformly for 𝑧 ∈ Γ𝑅, and by the definition of  and , we have

𝑅(𝑧) = 𝐼 + (𝑧−1), (132)

as 𝑧 → ∞. By standard small norm analysis, it follows that there is a solution to the RH problem
for 𝑅 for 𝑠 sufficiently large, and that

𝑅(𝑧) = 𝐼 + (1∕𝑠), (133)

uniformly for 𝑧 ∈ ℂ ⧵ Γ𝑅 as 𝑠 → ∞. As usual, we expand 𝑅 in the powers of the small parameter,
1∕𝑠 in our case, to write

𝑅(𝑧) = 𝐼 + 𝑅1(𝑧) + (1∕𝑠2), (134)

where 𝑅1 solves the following RH problem. 𝑅1(𝑧) is analytic outside the clockwise oriented
boundaries 𝜕𝑈(𝑝) of the neighborhoods 𝑈(𝑝),

𝑅1+(𝑧) = 𝑅1−(𝑧) + Δ1(𝑧), 𝑧 ∈ ∪𝑝∈ 𝜕𝑈(𝑝),
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30 FAHS and KRASOVSKY

and 𝑅1(𝑧) → 0 as 𝑧 → ∞. The solution to this problem is given by

𝑅1(𝑧) =
1
2𝜋𝑖 ∫∪𝑝∈ 𝜕𝑈(𝑝)

Δ1(𝑥; 𝑠Ω)
𝑥 − 𝑧

𝑑𝑥, 𝑧 ∈ ℂ ⧵ ∪𝑝∈ 𝜕𝑈(𝑝), (135)

where the integrals are taken with clockwise orientation.
Taking (134) (one can obtain further terms in that expansion in a standard way) and tracing

back the transformations 𝑅 →  → Φ, we obtain an asymptotic solution of the Φ-RH problem.
Additionally, we will need the main asympotitcs of 𝑑

𝑑𝑧
𝑅(𝑧), which we obtain from the standard

representation

𝑅(𝑧) = 𝐼 + ∫Γ𝑅
𝑅−(𝜉)(𝐼 − 𝐽𝑅(𝜉))

𝜉 − 𝑧

𝑑𝜉
2𝜋𝑖

. (136)

It follows that

𝑑
𝑑𝑧

𝑅(𝑧) = ∫Γ𝑅
𝑅−(𝜉)(𝐼 − 𝐽𝑅(𝜉))

(𝜉 − 𝑧)2
𝑑𝜉
2𝜋𝑖

, (137)

and by (131) and (133) we obtain

𝑑
𝑑𝑧

𝑅(𝑣2) = (
𝑠−1

)
. (138)

4.5 Extension of the solution to the regimes 𝒗𝟐 → 𝟏, 𝒔(𝟏 − 𝒗𝟐) → ∞;
𝒗𝟏 → −𝟏, 𝒔(𝟏 + 𝒗𝟏) → ∞

In our solution of the previous section, the end-points−1 < 𝑣1 < 𝑣2 < 1were fixed. In this section,
we show that the solution can be extended to the regime where 𝑣2 not only can be fixed but can
also approach 1 (and 𝑣1 approach −1) sufficiently slowly as 𝑠 → ∞. This will be needed for the
proof of Theorem 1 below.
More precisely, we fix 𝜖 > 0 and assume

1 − 𝑣2 ≤ 1 + 𝑣1, 𝑣2 − 𝑣1 ≥ 𝜖, 𝑠(1 − 𝑣2) → ∞. (139)

We let 𝑈(𝑣2) and 𝑈(1) have radius equal to 𝑐(1 − 𝑣2), and similarly 𝑈(𝑣1) and 𝑈(−1) have radius
equal to 𝑐(1 + 𝑣1), for some fixed and sufficiently small 𝑐 > 0. Note that the neighborhoods can
now contract with growing 𝑠.
As 𝑣2 → 1, 𝐼𝑗 →

𝜋√
2(1−𝑣1)

, for 𝑗 = 0, 1, 2, and computing an additional term in the expansion
we find by (9) that

𝑥1𝑥2 =
𝑣1 − 𝑣2

2
−
(1 − 𝑣2)(1 + 𝑣1)

4
+ (

(1 − 𝑣2)
2
)
, 𝑣2 → 1

uniformly in the regime (139). By (8),

𝑥1 =
𝑣1 − 1
2

+ (
(1 − 𝑣2)

2
)
, 𝑥2 =

1 + 𝑣2
2

+ (
(1 − 𝑣2)

2
)
. (140)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 31

By (140) and (119),

1√
𝜁(𝑧)

= 
(

1
𝑠(1 − 𝑣2)

)
, (141)

uniformly in the regime (139) and also uniformly for 𝑧 ∈ 𝜕𝑈(𝑝), 𝑝 ∈  = {−1, 𝑣1, 𝑣2, 1}.
Next we will show that  and −1 are uniformly bounded on 𝜕𝑈(𝑝) for 𝑝 ∈  . As 𝑣2 → 1

(under conditions (139)), we see from (85) that both 𝛾(𝑧) and 𝛾−1(𝑧) are uniformly bounded also
on 𝜕𝑈(𝑝) for 𝑝 ∈  .
We now consider 𝜃-functions, and start with 𝜏. For 𝐽0, we have

𝐽0 = ∫
𝑣2−

√
1−𝑣2

𝑣1

𝑑𝑥
(
1 + (√

1 − 𝑣2
))

(1 − 𝑥)
√
(𝑥 + 1)(𝑥 − 𝑣1)

+ ∫
𝑣2

𝑣2−
√
1−𝑣2

𝑑𝑥
(
1 + (√

1 − 𝑣2
))

√
2(1 − 𝑣1)(1 − 𝑥)(𝑣2 − 𝑥)

, (142)

as 𝑣2 → 1, and since

𝑑
𝑑𝑧

log

⎛⎜⎜⎜⎝
√
𝑧2 − 1 + (𝑖𝑡 +

√
1 − 𝑡2)𝑧 + 𝑖√

𝑧2 − 1 +
(
𝑖𝑡 −

√
1 − 𝑡2

)
𝑧 + 𝑖

⎞⎟⎟⎟⎠ =
√
1 − 𝑡2

(𝑧𝑡 + 1)
√
𝑧2 − 1

, (143)

for any parameter 𝑡, it follows that

𝐽0 =
1√

2(1 − 𝑣1)

[
5 log 2 + log(1 − 𝑣2)

−1 + log
1 − 𝑣1
1 + 𝑣1

](
1 + (√

1 − 𝑣2
))

. (144)

Thus, since 𝐼0 =
𝜋√

2(1−𝑣1)
(1 + (1 − 𝑣2)),

𝜏 = 𝑖
𝐽0
𝐼0

=
𝑖
𝜋

[
5 log 2 + log

1
1 − 𝑣2

+ log
1 − 𝑣1
1 + 𝑣1

](
1 + (√

1 − 𝑣2
))

, 𝑣2 → 1 (145)

in the regime (139), so that we have −𝑖𝜏 → +∞.
As −𝑖𝜏 → +∞, 𝜃3

𝜃3(𝜔)
→ 1 for any 𝜔 ∈ ℝ. We also observe that as −𝑖𝜏 → +∞, the fraction

𝜃(𝜉 + 𝜔; 𝜏)

𝜃(𝜉; 𝜏)
(146)

is bounded uniformly under conditions (139) and over all 𝜔 ∈ [0, 1), for 𝜉 bounded away from
the zero of the 𝜃-function 1+𝜏

2
modulo the lattice, and the same holds for derivatives of (146) with

respect to 𝜉, 𝜔, and 𝜏. We now show that 𝜉 = 𝑢(𝑧) ± 𝑑 remains bounded away from 1+𝜏

2
modulo

the lattice for 𝑧 ∈ 𝜕𝑈(𝑝), 𝑝 ∈  .
We have by (90), (86), (87),

𝑑 = −𝑢(∞) = −𝜏∕2 + 1∕2 +
𝑖
2𝐼0 ∫

−1

−∞

𝑑𝑥√
𝑝(𝑥)

modℤ. (147)

As 𝑣2 → 1,

∫
−1

−∞

𝑑𝑥√|𝑝(𝑥)| = ∫
−1

−∞

𝑑𝑥(1 + (1 − 𝑣2))

(1 − 𝑥)
√
(−1 − 𝑥)(𝑣1 − 𝑥)

, (148)
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32 FAHS and KRASOVSKY

and by using (143)

1
2𝐼0 ∫

−1

−∞

𝑑𝑥√
𝑝(𝑥)

=

√
2(1 − 𝑣1)

(3 − 𝑣1)𝜋

√
1 −

(
1+𝑣1
3−𝑣1

)2 log
⎛⎜⎜⎜⎜⎝
1 +

1+𝑣1
3−𝑣1

+

√
1 −

(
1+𝑣1
3−𝑣1

)2
1 +

1+𝑣1
3−𝑣1

−

√
1 −

(
1+𝑣1
3−𝑣1

)2
⎞⎟⎟⎟⎟⎠
(1 + (1 − 𝑣2)),

(149)

as 𝑣2 → 1 in the regime (139). We also have in the same regime by the definition (86) of 𝑢(𝑧),

𝑢(𝑧) = −
𝑖
2𝜋 ∫

𝑧

𝑣2

𝑑𝑧

((𝑧 − 𝑣2)(𝑧 − 1))1∕2
(1 + (1 − 𝑣2)), 𝑧 ∈ 𝜕𝑈(𝑣2) ∪ 𝜕𝑈(1),

𝑢(𝑧) = −
𝜏
2
−
𝑖
√
1 − 𝑣1√
2𝜋 ∫

𝑧

𝑣1

𝑑𝑧

((𝑧 + 1)(𝑧 − 𝑣1))1∕2(𝑧 − 1)
(1 + (1 − 𝑣2)), 𝑧 ∈ 𝜕𝑈(𝑣1) ∪ 𝜕𝑈(−1).

(150)

We note that (149) is bounded below by a fixed positive constant 𝑐1 > 0 under conditions
(139) and is uniformly to the main order 1

2𝜋
log(1 + 𝑣1)

−1, which is less or equal to |𝜏|∕4, since
𝜏 ∼

𝑖

𝜋
(log(1 − 𝑣2)

−1 + log(1 + 𝑣1)
−1). By (150), provided 𝑐 is sufficiently small (where we recall

that the radii of𝑈(𝑣2) and𝑈(1) are equal to 𝑐(1 − 𝑣2), and the radii of𝑈(𝑣1) and𝑈(−1) are equal to
𝑐(1 + 𝑣1)), 𝑐1∕2 < |Im (𝑢(𝑧) − 𝑑 − 𝜏∕2 + 1∕2)| < 𝜏∕3 for 𝑧 ∈ 𝑈(𝑣2), and as a consequence𝑢(𝑧) − 𝑑
is bounded away from 𝜏∕2 + 1∕2modulo the lattice. Similarly, it is straightforward to verify that
𝑢(𝑧) ± 𝑑 is bounded away from 𝜏∕2 + 1∕2 on 𝑈(𝑝), for 𝑝 ∈  . By the boundedness of (146), it
follows that 𝑚𝑖𝑗(𝑧; 𝜔) and

𝜕𝑚𝑖𝑗(𝑧;𝜔)

𝜕𝜔
are uniformly bounded for 𝑖, 𝑗 ∈ {1, 2} and for 𝑧 ∈ 𝑈(𝑝), with

𝑝 ∈  , and for future reference we note that by the boundedness of the derivatives of (146) with
respect to 𝜉, 𝜔, 𝜏,

𝜕
𝜕𝑣2

𝜕𝑚𝑖𝑗(𝑧; 𝜔)

𝜕𝜔
,
𝜕𝑚𝑖𝑗(𝑧; 𝜔)

𝜕𝑣2
= 

(
max

{|||| 𝜕𝑑𝜕𝑣2 ||||, ||||𝜕𝑢(𝑧)𝜕𝑣2

||||, |||| 𝜕𝜏𝜕𝑣2 ||||
})

, (151)

as 𝑣2 → 1 in the regime (139), for 𝑧 ∈ 𝑈(𝑝).
Combining the statements about boundedness of 𝑚 and 𝛾 and 𝛾−1, it follows that  (𝑧) and

 (𝑧)−1 are uniformly bounded for 𝑧 ∈ 𝑈(𝑝), 𝑝 ∈  , and thus by (141), the jump matrix 𝐽𝑅(𝑧) for
𝑅(𝑧) on 𝜕𝑈(𝑝), 𝑝 ∈  , has the form

𝑃(𝑧) (𝑧; 𝑠Ω)−1 = 𝐼 + 
(

1
𝑠(1 − 𝑣2)

)
, (152)

as 𝑠 → ∞, uniformly under conditions (139) and also uniformly for 𝑧 ∈ 𝜕𝑈(𝑝), 𝑝 ∈  .
The analysis of 𝐽𝑅(𝑧) on the rest of the jump contour is similar, and we obtain uniformly for

(139) and uniformly on this part of the contour

 (𝑧; 𝑠Ω)𝐽𝑆(𝑧) (𝑧; 𝑠Ω)−1 = 𝐼 + (
𝑒−𝑠(1−𝑣2)𝑐

′(1+|𝑧|)), 𝑐′ > 0. (153)

Thus we have a small norm problem for 𝑅, and as in the previous section we now obtain

𝑅(𝑧) = 𝐼 + 
(

1
𝑠(1 − 𝑣2)

)
, (154)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 33

uniformly for 𝑧 ∈ ℂ ⧵ Γ𝑅 under conditions (139). Therefore the solution of theΦ-Riemann-Hilbert
problem for fixed 𝑣1, 𝑣2 extends to the regime (139). Note, however, that the error terms are
different from those in the previous section.
By (136), (152), and (153)

𝑅′(𝑧)||𝑧=𝑣2 = 
(

1
𝑠(1 − 𝑣2)2

)
. (155)

5 PRELIMINARY ASYMPTOTIC FORMULA FOR THE
DETERMINANT

For 𝜈 = 𝑧 − 𝑣2 in a neighborhood of 0, we write the expansions of 𝜁(𝑧),√
𝜁(𝜈 + 𝑣2) = 𝑠𝜁0

√
𝜈(1 + 𝜁1𝜈 + (𝜈2)), 𝜁0 =

2(𝑣2 − 𝑥1)(𝑥2 − 𝑣2)√
(1 − 𝑣22)(𝑣2 − 𝑣1)

> 0, (156)

where −𝜋 < arg 𝜈 < 𝜋, and the branch cut is on (−∞, 0]. Similarly, we expand 𝛾(𝑧), 𝑚(𝑧), and
𝑢(𝑧),

𝛾(𝜈 + 𝑣2) = 𝛾0𝜈
−1∕4(1 + 𝛾1𝜈 + (𝜈2)), 𝛾0𝑒

−𝜋𝑖∕4 =

(
(1 − 𝑣2)(𝑣2 − 𝑣1)

1 + 𝑣2

)1∕4

> 0,

𝑢(𝜈 + 𝑣2) = −𝑢0𝜈
1∕2(1 + 𝑢1𝜈 + (𝜈2)), 𝑢0 =

1

𝐼0

√
(𝑣2 − 𝑣1)(1 − 𝑣22)

> 0,

𝑚𝑗𝑘(𝜈 + 𝑣2) = 𝑚𝑗𝑘,0 + 𝑚𝑗𝑘,1𝜈
1∕2 + 𝑚𝑗𝑘,2𝜈 + (𝜈3∕2),

(157)

but with branches chosen such that 0 < arg 𝜈 < 2𝜋, and the branch cut on [0, +∞). Here𝑚𝑗𝑘 are
thematrix elements of𝑚. Thus, arg 𝜈 in (156) and (157) are the same for Im 𝜈 > 0, but are different
for Im 𝜈 < 0.
Using the definition of𝑚 and the jump conditions (94), we easily obtain the relations:

𝑚11,0 = 𝑚12,0, 𝑚21,0 = 𝑚22,0,

𝑚11,1 = −𝑚12,1, 𝑚21,1 = −𝑚22,1,

𝑚11,2 = 𝑚12,2, 𝑚21,2 = 𝑚22,2.

(158)

We also find

𝑚𝑗𝑗,0 = 𝑚𝑗𝑗,0(𝜔) =
𝜃(0)𝜃(±𝜔 + 𝑑)

𝜃(𝜔)𝜃(𝑑)

𝑚𝑗𝑗,1 = −𝑚𝑗𝑗,0𝑢0

(
𝜃′(±𝜔 + 𝑑)

𝜃(±𝜔 + 𝑑)
−
𝜃′(𝑑)

𝜃(𝑑)

)
,

𝑚𝑗𝑗,2 =
𝑚𝑗𝑗,0𝑢

2
0

2

(
𝜃′′(±𝜔 + 𝑑)

𝜃(±𝜔 + 𝑑)
−
𝜃′′(𝑑)

𝜃(𝑑)
+ 2

(
𝜃′(𝑑)

𝜃(𝑑)

)2

− 2
𝜃′(±𝜔 + 𝑑)𝜃′(𝑑)

𝜃(±𝜔 + 𝑑)𝜃(𝑑)

)
,

(159)

where ±means + for 𝑗 = 1 and − for 𝑗 = 2.
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34 FAHS and KRASOVSKY

Let

𝑃(𝑧) =  (𝑧; 𝑠Ω)
1√
2

(
0 1
−1 0

)(
1 −𝑖
−𝑖 1

)(
𝜋𝜁

1

2

) 1

2
𝜎3

Ψ(𝜁(𝑧)) (160)

By the definition of  in (80), 𝑅 in (129) and 𝑋 in (123), and the fact that 𝜙(𝑣2) = 0,[
Φ−1
+ (𝑣2)Φ

′
+(𝑣2)

]
12

= −
[
𝑃−1+ (𝑣2)𝑃

′
+(𝑣2) + 𝑃−1+ (𝑣2)𝑅

−1(𝑣2)𝑅
′(𝑣2)𝑃+(𝑣2)

]
21
. (161)

With the notation of (156) and (157) (where the branches of
√
𝜈 coincide for Im 𝜈 > 0), it is a

straightforward calculation relying on the expansion of 𝐼0(𝑧) in (118), the definition of in (91),
and the identities for𝑚𝑖𝑗 in (158), to obtain

𝑃+(𝑣2) = −𝛾0

√
𝜋𝑠𝜁0
2

(
𝑖𝑚11,0 ∗
𝑚22,0 ∗

)
,

𝑃′+(𝑣2) = −𝛾0

√
𝜋𝑠𝜁0
2

⎛⎜⎜⎜⎜⎝
𝑖𝑚11,0

[
𝑚11,2

𝑚11,0
+

𝑚11,1

𝑚11,0

(
𝛾−20 −

𝑠𝜁0
2

)
+

𝜁1
2
+

𝑠2𝜁20
4

+ 𝛾1 − 𝛾−20
𝑠𝜁0
2

]
∗

𝑚22,0

[
𝑚22,2

𝑚22,0
+

𝑚22,1

𝑚22,0

(
𝛾−20 +

𝑠𝜁0
2

)
+

𝜁1
2
+

𝑠2𝜁20
4

+ 𝛾1 + 𝛾−20
𝑠𝜁0
2

]
∗

⎞⎟⎟⎟⎟⎠
,

(162)

where we are uninterested in the entries ∗, and 𝜔 = 𝑠Ω in𝑚𝑗𝑗,𝑘.
We will nowmake use of the first identity (95) in Lemma 16, which, by the definitions of𝑚𝑗𝑘,𝓁,

we can write in the form

𝑚11,0𝑚22,0 +
𝛾20
2
(𝑚11,0𝑚22,1 + 𝑚22,0𝑚11,1) = 1. (163)

Using this relation, we obtain by (161) and (162) for the r.h.s. of the differential identity of
Lemma 14,

𝑠(𝑣1, 𝑣2) =
𝑖
2𝜋

[
Φ−1
+ (𝑣2)Φ

′
+(𝑣2)

]
12
=

𝑠2𝜁20
4

−
𝑠𝜁0
4
𝑚11,0𝑚22,0

(
𝛾20Γ2 + Γ1

)
+
𝑖𝑠𝜁0𝛾

2
0

4

(
𝑖𝑚22,0 𝑚11,0

)
𝑅−1(𝑣2)𝑅

′(𝑣2)

(
𝑚11,0

−𝑖𝑚22,0

)
(164)

where

Γ𝑗 =
𝑚11,𝑗

𝑚11,0
−

𝑚22,𝑗

𝑚22,0
, (165)

and we take 𝜔 = 𝑠Ω in𝑚𝑗𝑗,𝑘.
Now the more explicit asymptotic expression of (164) is different (in the error term) for fixed

𝑣1, 𝑣2 (Section 4.4) and for the double scaling regime of Section 4.5.
For fixed 𝑣1, 𝑣2, by (134), (135),

𝑠(𝑣1, 𝑣2) =
𝑖
2𝜋

[
Φ−1
+ (𝑣2)Φ

′
+(𝑣2)

]
12

=
𝑠2𝜁20
4

−
𝑠𝜁0
4
𝑚11,0𝑚22,0

(
𝛾20Γ2 + Γ1

)
+
𝑖𝜁0𝛾

2
0

4
𝑊(𝑠Ω) + (

𝑠−1
)
, (166)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 35

as 𝑠 → ∞ (uniformly for 𝑣1, 𝑣2 bounded away from each other and {−1, 1}), where

𝑊(𝜔) =
(
𝑖𝑚22,0(𝜔) 𝑚11,0(𝜔)

) ∑
𝑝∈{−1,𝑣1,𝑣2,1}

∫𝜕𝑈(𝑝)

𝑠Δ1(𝑧; 𝜔)𝑑𝑧

2𝜋𝑖(𝑧 − 𝑣2)2

(
𝑚11,0(𝜔)
−𝑖𝑚22,0(𝜔)

)
(167)

with integration in the clockwise direction.
For the regime (139) of Section 4.5, by (154) and boundedness of𝑚𝑗𝑘,

𝑠
(
𝑖𝑚22,0 𝑚11,0

)
𝑅−1(𝑣2)𝑅

′(𝑣2)

(
𝑚11,0

−𝑖𝑚22,0

)
= 𝑊(𝑠Ω) + 

(
1

𝑠(1 − 𝑣2)3

)
, (168)

and since by (156) and (157), and the formulas for 𝑥1, 𝑥2 in (140), we have

𝜁0𝛾
2
0 = (1 − 𝑣2), 𝑣2 → 1, (169)

equation (164) becomes

𝑠(𝑣1, 𝑣2) =
𝑠2𝜁20
4

−
𝜁0𝑠
4
𝑚11,0𝑚22,0

(
𝛾20Γ2 + Γ1

)
+
𝑖𝜁0𝛾

2
0

4
𝑊(𝑠Ω) + 

(
1

𝑠(1 − 𝑣2)2

)
, (170)

uniformly under conditions (139).

Proposition 17. Let

𝐷(𝑣1, 𝑣2) =
𝑠2𝜁20
4

−
𝑠𝜁0
4
𝑚11,0𝑚22,0

(
𝛾20Γ2 + Γ1

)
+
𝑖𝜁0𝛾

2
0

4 ∫
1

0
𝑊(𝜔)𝑑𝜔, (171)

where 𝜁0 and 𝛾0 are given in (156), (157), Γ𝑗 =
𝑚11,𝑗

𝑚11,0
−

𝑚22,𝑗

𝑚22,0
, with𝑚𝑗𝑗,𝑘 = 𝑚𝑗𝑗,𝑘(𝑠Ω) from (159), and

where𝑊 is given in (167) (with Δ1 defined by (126) and (128)).

(a) Let𝑉 ∈ (0, 1), and let𝐴 = (−1,−𝑉) ∪ (𝑉, 1). Let 𝑣2 = −𝑣1, and denote 𝑣 = 𝑣2. Fix 𝜖 > 0. Then

log det(𝐼 − 𝐾𝑠)𝐴 − log det(𝐼 − 𝐾𝑠)𝐴𝑠
= 2∫

𝑉

1−
2𝑡

𝑠

𝐷(−𝑣, 𝑣)𝑑𝑣 + 
(
1
𝑡

)
,

as 𝑠 → ∞, uniformly for 𝜖 ≤ 𝑉 ≤ 1 −
2𝑡

𝑠
, where 𝑡(𝑠) → ∞, 𝑡 ≤ 1

2
(log 𝑠)1∕4, and 𝐴𝑠 =

(−1,−1 + 2𝑡∕𝑠) ∪ (1 − 2𝑡∕𝑠, 1).
(b) Let −1 < 𝑉1 < 0 and 𝑉2 be fixed, 𝑉1 < 𝑉2 < 1, and denote 𝐴 = (−1, 𝑉1) ∪ (𝑉2, 1). Then

log det(𝐼 − 𝐾𝑠)𝐴 − log det(𝐼 − 𝐾𝑠)(−1,𝑉1)∪(−𝑉1,1) = ∫
𝑉2

−𝑉1

𝐷(𝑉1, 𝑣2)𝑑𝑣2 + 
(
1
𝑠

)
,

as 𝑠 → ∞.
(c) Let 𝐴 = (−1, 𝑉1) ∪ (𝑉2, 1), and a fixed 𝜖 > 0, and with −1 < 𝑉1 < 𝑉2 < 1 and

1 − 𝑉2 ≤ 1 − 𝑉2 ≤ 1 + 𝑉1, 𝑉2 − 𝑉1 ≥ 𝜖, 𝑠(1 − 𝑉2) → ∞. (172)

Then

log det(𝐼 − 𝐾𝑠)𝐴 − log det(𝐼 − 𝐾𝑠)(−1,𝑉1)∪(𝑉2,1)
= ∫

𝑉2

𝑉2

𝐷(𝑉1, 𝑣2)𝑑𝑣2 + 
(

1
(1 − 𝑉2)𝑠

)
,

as 𝑠 → ∞, uniformly in the regime (172).
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36 FAHS and KRASOVSKY

Remark 18. In the proof, considering the effects of averaging w.r.t. 𝜔 = 𝑠Ω, we will show that (171)
gives the main contribution, and the error terms are as presented.

Remark 19. Part (a) allows us to integrate over symmetric intervals from the position of two small
ones at 1 and −1 (where Lemma 8 holds) to general symmetric intervals with a fixed 0 < 𝑉 < 1.
Part (b) allows then to move the 𝑉2 edge to an arbitrary fixed position 𝑉1 ≡ −𝑉 < 𝑉2 < 1. Note
that the condition −1 < 𝑉1 < 0 here is not a loss of generality for det(𝐼 − 𝐾𝑠)𝐴, since we can use
the symmetry 𝑥 → −𝑥 of the determinant.
Part (c) allows us to to integrate to reach a scaling limit where 𝑉2 = 𝑉2(𝑠) can approach 1

provided 𝑠(1 − 𝑉2) → ∞ and 𝑉1 is fixed.
Finally, choose a 𝑉1(𝑠) = −𝑉2(𝑠) such that 2𝑡 = (1 + 𝑉1)𝑠 → ∞ (in this case, Lemma 8 still

holds byRemark 9), and then, if needed,move𝑉2 closer to 1 using Part (c). Then, if needed, one can
use the symmetry 𝑥 → −𝑥, to reach an arbitrary situation with (1 + 𝑉1)𝑠 → ∞, (1 − 𝑉2)𝑠 → ∞.

Proof. We first prove Part (b) of the proposition, then Part (c), and finally Part (a). By (166) and the
differential identity (42), all we need to do for the proof of Part (b) is to show that, with𝑉2 = −𝑉1,

∫
𝑉2

𝑉2

𝜁0𝛾
2
0𝑊(𝑠Ω)𝑑𝑣2 = ∫

𝑉2

𝑉2

𝜁0𝛾
2
0 ∫

1

0
𝑊(𝜔)𝑑𝜔𝑑𝑣2 + (𝑠−1), (173)

as 𝑠 → ∞. Denote 𝑓(𝜔; 𝑣2, 𝑣1) = 𝜁0𝛾
2
0𝑊(𝜔). This function is analytic in both 𝜔 and 𝑣2 (𝑣2 is

bounded away from 𝑣1 and 1). Let 𝑓𝑗 denote its Fourier coefficients with respect to 𝜔, so that

𝑓(𝜔; 𝑣2, 𝑣1) = 𝜁0𝛾
2
0𝑊(𝜔) =

∞∑
𝑗=−∞

𝑓𝑗(𝑣2, 𝑣1)𝑒
2𝜋𝑖𝑗𝜔. (174)

For 𝑗 ≠ 0, it follows by integration by parts that

|||||∫
𝑉2

𝑉2

𝑓𝑗(𝑣2, 𝑣1)𝑒
2𝜋𝑖𝑗𝑠Ω𝑑𝑣2

||||| = 1
2𝜋|𝑗|𝑠

|||||||||
⎡⎢⎢⎢⎣
𝑓𝑗(𝑣2, 𝑣1)𝑒

2𝜋𝑖𝑗𝑠Ω

𝜕

𝜕𝑣2
Ω(𝑣2, 𝑣1)

⎤⎥⎥⎥⎦
𝑉2

𝑉2

− ∫
𝑉2

𝑉2

𝜕
𝜕𝑣2

⎛⎜⎜⎜⎝
𝑓𝑗(𝑣2, 𝑣1)

𝜕

𝜕𝑣2
Ω(𝑣2, 𝑣1)

⎞⎟⎟⎟⎠𝑒
2𝜋𝑖𝑗𝑠Ω𝑑𝑣2

|||||||| . (175)

In Proposition 24 (b) below we give an explicit formula for 𝜕

𝜕𝑣2
Ω(𝑣2, 𝑣1), and in particular it is a

strictly positive differentiable function bounded away from zero when 𝑣2 is bounded away from
𝑣1 and 1. Thus

∫
𝑉2

𝑉2

𝑓(𝑠Ω; 𝑣2, 𝑣1)𝑑𝑣2 =
∞∑

𝑗=−∞
∫

𝑉2

𝑉2

𝑓𝑗(𝑣2, 𝑣1)𝑒
2𝜋𝑖𝑗𝑠Ω𝑑𝑣2

= ∫
𝑉2

𝑉2

𝑓0(𝑣2, 𝑣1)𝑑𝑣2 + 
(
1
𝑠

)
, 𝑠 → ∞, (176)

which yields (173) since 𝑓0(𝑣2, 𝑣1) = 𝜁0𝛾
2
0 ∫ 1

0
𝑊(𝜔)𝑑𝜔.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 37

We now prove Part (c) of the proposition.
Substituting (140) into the expression (225) for 𝜕Ω

𝜕𝑣2
in Proposition 24 below, and also using (219),

we obtain

𝜕Ω
𝜕𝑣2

=
3 − 𝑣1

4𝜋
√
2(1 − 𝑣1)

+ (1 − 𝑣2),
𝜕2Ω

𝜕𝑣22
= ((1 − 𝑣2)

−1), (177)

and, in particular, 𝜕Ω

𝜕𝑣2
remains bounded away from 0.

We now show that

𝑓𝑗(𝑣2, 𝑣1) = 
(

1
𝑗(1 − 𝑣2)

)
,

𝜕
𝜕𝑣2

𝑓𝑗(𝑣2, 𝑣1) = 
(

1
𝑗(1 − 𝑣2)2

)
, (178)

as 𝑣2 → 1, for 𝑗 ≠ 0, uniformly under conditions (139), which proves Part (c) of the proposition by
(170) and arguments similar to those we used in the proof of Part (b).
Since

|||𝑓𝑗(𝑣2, 𝑣1)||| = |||||∫
1

0
𝑓(𝜔; 𝑣2, 𝑣1)𝑒

−2𝜋𝑖𝑗𝜔𝑑𝜔
||||| =

||||| 1
2𝜋𝑗 ∫

1

0

𝜕
𝜕𝜔

𝑓(𝜔; 𝑣2, 𝑣1)𝑒
−2𝜋𝑖𝑗𝜔𝑑𝜔

|||||, 𝑗 ≠ 0,

(179)

and similarly for 𝜕

𝜕𝑣2
𝑓𝑗(𝑣2, 𝑣1), it suffices to show that

𝜕
𝜕𝜔

𝑓(𝜔; 𝑣2, 𝑣1) = 
(

1
1 − 𝑣2

)
,

𝜕
𝜕𝜔

𝜕
𝜕𝑣2

𝑓(𝜔; 𝑣2, 𝑣1) = 
(

1
(1 − 𝑣2)2

)
, (180)

as 𝑣2 → 1.
It follows by the definition of 𝑊 in (167), (152), (169), and the arguments of the previous

section that

𝑓(𝜔; 𝑣2, 𝑣1) = 𝜁0𝛾
2
0𝑊(𝜔) = 

(
1

1 − 𝑣2

)
(181)

as 𝑣2 → 1 under conditions (139).
We recall that 𝜕𝑚𝑖𝑗(𝑧)

𝜕𝜔
, 𝑖, 𝑗 ∈ {1, 2}, are uniformly bounded for 𝑧 ∈ 𝑈(𝑝), 𝑝 ∈  , and so 𝜕𝑓(𝜔;𝑣2,𝑣1)

𝜕𝜔
satisfies the same upper bound as 𝑓(𝜔; 𝑣2, 𝑣1) given in (181), proving the first bound in (180).
To obtain the second one, we observe first that by (145),

𝜕
𝜕𝑣2

𝜏 = 
(

1
1 − 𝑣2

)
, 𝑣2 → 1, (182)

and by (150),

𝜕𝑢(𝑧)
𝜕𝑣2

= 
(

1
1 − 𝑣2

)
, (183)

as 𝑣2 → 1, uniformly for 𝑧 ∈ 𝜕𝑈(𝑝), 𝑝 ∈  .
It follows by (147) and (149) that 𝜕

𝜕𝑣2
𝑑 = ( 1

1−𝑣2
), as 𝑣2 → 1. Thus, by (151),

𝜕𝑚𝑖𝑗(𝑧; 𝜔)

𝜕𝑣2
= 

(
1

1 − 𝑣2

)
, (184)
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38 FAHS and KRASOVSKY

as 𝑣2 → 1, uniformly for 𝑧 ∈ 𝑈(𝑝), 𝑝 ∈  . Furthermore, by the definition (85),
𝜕
𝜕𝑣2

𝛾(𝑧),
𝜕
𝜕𝑣2

𝛾−1(𝑧) = 
(

1
1 − 𝑣2

)
. (185)

By (140) and (119),

𝜕
𝜕𝑣2

(
1√
𝜁(𝑧)

)
= 

(
1

𝑠(1 − 𝑣2)2

)
. (186)

The above bounds taken together imply

𝑠
𝜕
𝜕𝑣2

Δ1(𝑧) = 
(

1
(1 − 𝑣2)2

)
. (187)

It follows by the definition of𝑊 in (167), (169), and boundedness of𝑚𝑗𝑘 that

𝜕
𝜕𝑣2

𝑓(𝜔; 𝑣2, 𝑣1) = 
(

1
(1 − 𝑣2)2

)
, (188)

as 𝑣2 → 1, uniformly under conditions (139). Since 𝜕

𝜕𝜔

𝜕𝑚𝑖𝑗(𝑧)

𝜕𝑣2
= ( 𝜕𝑚𝑖𝑗(𝑧)

𝜕𝑣2
), it follows that

𝜕

𝜕𝜔

𝜕

𝜕𝑣2
𝑓(𝜔; 𝑣2, 𝑣1) = ( 𝜕

𝜕𝑣2
𝑓(𝜔; 𝑣2, 𝑣1)), which proves the second bound in (180), completing the

proof of Part (c) of the proposition.
To show Part (a), we let 𝑣2 = −𝑣1 = 𝑣, and take the limit 𝑠 → ∞ such that 𝜖 < 𝑣 < 1 −

𝑀

𝑠
for

some 𝜖 > 0 and a sufficiently large𝑀. By (43),

𝜕
𝜕𝑣

det(𝐼 − 𝐾𝑠)(−1,−𝑣)∪(𝑣,1) = 2𝑠(−𝑣, 𝑣). (189)

We observe that (170) is valid also for 𝑣2 = −𝑣1 = 𝑣, and all that remains to finish the proof of Part
(a) of the proposition is to consider the Fourier coefficients of 𝑓. In place of (175), we have

|||||∫
𝑉

𝑉
𝑓𝑗(𝑣, −𝑣)𝑒

2𝜋𝑖𝑗𝑠Ω𝑑𝑣
||||| = 1

2𝜋|𝑗|𝑠
||||||||
⎡⎢⎢⎣
𝑓𝑗(𝑣, −𝑣)𝑒

2𝜋𝑖𝑗𝑠Ω

𝜕

𝜕𝑣
Ω(𝑣, −𝑣)

⎤⎥⎥⎦
𝑉

𝑉

− ∫
𝑉

𝑉

𝜕
𝜕𝑣

⎛⎜⎜⎝
𝑓𝑗(𝑣, −𝑣)

𝜕

𝜕𝑣
Ω(𝑣, −𝑣)

⎞⎟⎟⎠𝑒2𝜋𝑖𝑗𝑠Ω𝑑𝑣
||||||||.
(190)

By above arguments, it suffices to show that the right hand side of (190) is of order 1

𝑗2𝑠(1−𝑣)2
. To

do this we need the first bound in (180), which holds also for 𝑣2 = −𝑣1 = 𝑣, and additionally we
need to prove that

𝜕
𝜕𝜔

𝜕
𝜕𝑣

𝑓(𝜔; 𝑣, −𝑣) = 
(

1
(1 − 𝑣)2

)
, (191)

as 𝑣 → 1, and that 𝑑

𝑑𝑣
Ω(𝑣, −𝑣) remains bounded away from 0. Note that, using contour

integration,

Ω−1(𝑣2, 𝑣1) = 𝐼0 = ∫
1

𝑣2

𝑑𝑥√|𝑝(𝑥)| = ∫
𝑣1

−1

𝑑𝑥√|𝑝(𝑥)| ,
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 39

and therefore

Ω(𝑣2, 𝑣1) = Ω(−𝑣1, −𝑣2),
𝜕
𝜕𝑣

Ω(𝑣, −𝑣) = 2
𝜕
𝜕𝑣2

Ω(𝑣2, −𝑣)
|||𝑣2=𝑣. (192)

The last derivative is thus bounded away from 0 by (177).
In order to prove (191), we simply observe that the bounds obtained in (183)–(186) also hold for

the derivatives with respect to 𝑣 instead of 𝑣2, which yields

𝜕
𝜕𝑣

𝑓(𝜔; 𝑣, −𝑣) = 
(

1
(1 − 𝑣)2

)
, (193)

as 𝑣 → 1. Since 𝜕

𝜕𝜔

𝜕𝑚𝑖𝑗(𝑧)

𝜕𝑣
= ( 𝜕𝑚𝑖𝑗(𝑧)

𝜕𝑣
), it follows that 𝜕

𝜕𝜔

𝜕

𝜕𝑣
𝑓(𝜔; 𝑣, −𝑣) = ( 𝜕

𝜕𝑣
𝑓(𝜔; 𝑣, −𝑣)), which

proves (191) and thus Part (a) of the proposition. □

6 PROOF OF THEOREMS 1, 10, AND 11

In the next 3 sections, we show that (171) in Proposition 17 can be written as

𝐷(𝑣1, 𝑣2) =
𝜕
𝜕𝑣2

(𝑠; 𝑣1, 𝑣2) + 𝜕𝜏
𝜕𝑣2 ∫

1

0

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)𝑑𝜔 −
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝑠Ω; 𝜏), (194)

where

 = 𝑠2
⎛⎜⎜⎝
𝐼2 −

𝑣2+𝑣1
2

𝐼1

𝐼0
−
(𝑣2 − 𝑣1)

2

8

⎞⎟⎟⎠ + log 𝜃(𝑠Ω; 𝜏) −
1
2
log 𝐼0 −

1
8

∑
𝑦∈{−1,𝑣1,𝑣2,1}

log |𝑞(𝑦)|. (195)

We now use (194) to prove Theorems 1, 10, and 11. First, we show that with 𝑉2 fixed, and in all
asymptotic regimes of Proposition 17,

∫
𝑉2

𝑉2

(
𝜕𝜏
𝜕𝑣2 ∫

1

0

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)𝑑𝜔 −
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝑠Ω; 𝜏)

)
𝑑𝑣2 = 

(
1

𝑠(1 − 𝑉2)

)
, 𝑠 → ∞,

(196)

uniformly in integration regimes of Proposition 17, and so this part only contributes to the
error term.
Using the differential equation (A.10) and (182), we write

𝜕
𝜕𝜔

(
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)

)
=

1
4𝜋𝑖

𝜕𝜏
𝜕𝑣2

(
𝜃′′3
𝜃3

)′

(𝜔) = 
(

1
1 − 𝑣2

)
. (197)

Also since by (145),

𝜕2𝜏

𝜕𝑣22
= 

(
1

(1 − 𝑣2)2

)
, (198)
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40 FAHS and KRASOVSKY

we similarly obtain

𝜕
𝜕𝜔

𝜕
𝜕𝑣2

(
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)

)
= 

(
1

(1 − 𝑣2)2

)
. (199)

The estimates (197) and (199) imply, by similar arguments to (179), (180), (175), the estimate (196).
We now apply Part (a) of Proposition 17 to integrate (194) from the position of 2 symmetric small

intervals 𝑣 = −𝑣1 = 𝑣2 = 1 −
2𝑡

𝑠
, 𝑡 = 1

2
log(𝑠)1∕4, where Lemma 8 can be applied, to the case of

𝑉 = −𝑣1 = 𝑣2 > 0 fixed. If−𝑣1 = 𝑣2 = 𝑣, by symmetry under the exchange 𝑣2 → −𝑣1, 𝑣1 → −𝑣2,

2
𝜕
𝜕𝑣2

(𝑠; 𝑣1, 𝑣2) = 𝜕
𝜕𝑣

(𝑠; −𝑣, 𝑣).
Thus, applying Part (a) of Proposition 17 and using Lemma 8, we obtain

log det(𝐼 − 𝐾𝑠)𝐴 = (𝑠; −𝑉,𝑉) − 
(
𝑠; −1 +

2𝑡
𝑠
, 1 −

2𝑡
𝑠

)
− 𝑡2 −

1
2
log 𝑡 + 2𝑐0 + (1∕𝑡). (200)

To finish the proof of Theorem 1 in the symmetric case, we need to estimate (𝑠; −1 + 2𝑡

𝑠
, 1 −

2𝑡

𝑠
).

Using formulae (A.37), (A.36), we obtain in our case 𝑣 = 1 −
2𝑡

𝑠
(recall that 𝑣′2 = 1 − 𝑣2)

𝐼0(−𝑣, 𝑣) =
𝜋
2

(
1 +

𝑡
𝑠
+

5𝑡2

4𝑠2
+ ((𝑡∕𝑠)3)

)
,

𝐼2(−𝑣, 𝑣)

𝐼0(−𝑣, 𝑣)
= 1 −

2𝑡
𝑠
+

𝑡2

𝑠2
+ ((𝑡∕𝑠)3), (201)

and so the term with 𝑠2 in (𝑠; −1 + 2𝑡

𝑠
, 1 −

2𝑡

𝑠
) becomes

𝐼2(−𝑣, 𝑣)

𝐼0(−𝑣, 𝑣)
−
𝑣2

2
=

1
2
−

𝑡2

𝑠2
+ ((𝑡∕𝑠)3). (202)

The term log 𝜃 gives a contribution only to the error term, indeed, since by (A.36)

𝐽0(−𝑣, 𝑣) = 2𝐾(𝑣) =

(
log

4𝑠
𝑡

)
(1 + (𝑡∕𝑠)), 𝜏 = 𝑖

𝐽0
𝐼0

=
2𝑖
𝜋

(
log

4𝑠
𝑡

)
(1 + (𝑡∕𝑠)),

we have that

log 𝜃(𝑠Ω) = log
(
1 + ((𝑡∕𝑠)2)) = ((𝑡∕𝑠)2), −𝑣1 = 𝑣2 = 𝑣 = 1 −

2𝑡
𝑠
. (203)

Finally, in this case

|𝑞(1)| = |𝑞(−1)| = 1 −
𝐼2
𝐼0

=
2𝑡
𝑠
(1 + (𝑡∕𝑠)), |𝑞(−𝑣)| = |𝑞(𝑣)| = 𝐼2

𝐼0
− 𝑣2 =

2𝑡
𝑠
(1 + (𝑡∕𝑠)),

(204)

and so

−
1
8

∑
𝑦∈{−1,𝑣1,𝑣2,1}

log |𝑞(𝑦)| = −
1
2
log

2𝑡
𝑠
+ (𝑡∕𝑠). (205)

Substituting (201), (202), (203), (205) into the expression (195) for (𝑠; −1 + 2𝑡

𝑠
, 1 −

2𝑡

𝑠
), and that,

in turn, into (200), we obtain asymptotics (14) with an error term 𝑜(1) and with𝐺1 and 𝑐1 as in (15)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 41

in the case −𝑣1 = 𝑣2 = 𝑉 > 0. We then extend it to the general case of fixed −1 < 𝑣1 < 𝑣2 < 1 by
now a straightforward application of Part (b) of Proposition 17. (In fact, for 𝑣1 < 0, but the general
case follows by a symmetry argument: see Remark 19.) Now since by [18], (14) (with the error term
(𝑠−1)) holds for some constants 𝐺1, 𝑐1, these must be equal to those in (15). This completes the
proof of Theorem 1, assuming (194).
Given Theorem 1, we immediately obtain Theorem 10 by applying Part (c) of Proposition 17 and

a symmetry argument as discussed in Remark 19.
Given Theorem 10, we now consider the limit where 𝑣2 → 1 and 𝑣1 → −1 in order to prove The-

orem 11.We do this by evaluating𝐺0, 𝜏, and 𝑐1 in (14) asmax{1 − 𝑣2, 1 + 𝑣1} → 0 (the regime (139))
and using Theorem 10. From (145), we know that −𝑖𝜏 → +∞, and it follows that 𝜃3(𝑠Ω; 𝜏) → 1.
Substituting the asymptotics of 𝑥1 and 𝑥2 from (140) into the definition of 𝑞 in (6), we obtain∑

𝑦∈{−1,𝑣1,𝑣2,1}

log |𝑞(𝑦)| = 2 log(1 − 𝑣2)(1 + 𝑣1) + 𝑜(1), (206)

as 𝑣2 → 1 and 𝑣1 → −1. From Section 4.5 we recall that 𝐼0 → 𝜋∕2, and combining this with (206)
and our formula for 𝑐1 in Theorem 1 we obtain

𝑐1 = −
1
4
log

(1 − 𝑣2)(1 + 𝑣1)
4

+ 2𝑐0 + 𝑜(1), (207)

as 𝑣2 → 1 and 𝑣1 → −1. Now consider 𝐺0. A straightforward (albeit somewhat lengthy)
calculation yields

𝐺0 = −
(1 − 𝑣2)

2

8
−
(1 + 𝑣1)

2

8
+ (

max{(1 − 𝑣2)
4, (1 + 𝑣1)

4}
)
, 𝑣2 → 1 and 𝑣1 → −1. (208)

Substituting (207) and (208) into (14) with the error term of Theorem 10, we obtain

log 𝑃𝑠(𝐴) = −
𝑠2(1 − 𝑣2)

2

8
−
𝑠2(1 + 𝑣1)

2

8
−
1
4
log

𝑠2(1 − 𝑣2)(1 + 𝑣1)
4

+ 2𝑐0

+ 𝑜(1) + 
(
max

{
1

𝑠(1 − 𝑣2)
,

1
𝑠(1 + 𝑣1)

, 𝑠(1 − 𝑣2)
2, 𝑠(1 + 𝑣1)

2

})
for the scaling regime of Theorem 11, where the term 𝑜(1) is independent of 𝑠. Thus, by the
asymptotics for a single gap in (2), we obtain Theorem 11.
We now return to the proof of Theorem 1. All that remains is to verify (194). In Section 7 we

consider the leading order term in (171), in Section 8 we consider the term involving (𝛾20Γ2 + Γ1),
which yields the derivative of log 𝜃(𝑠Ω), and in Section 9 we consider the term with ∫ 1

0
𝑊(𝜔)𝑑𝜔,

which yields the constant. Thus, wewill prove the following three lemmata, which taken together
imply (194).

Lemma 20.

𝜁20
4

=
𝜕
𝜕𝑣2

⎛⎜⎜⎝
𝐼2 −

𝑣2+𝑣1
2

𝐼1

𝐼0
−
(𝑣2 − 𝑣1)

2

8

⎞⎟⎟⎠. (209)
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42 FAHS and KRASOVSKY

Lemma 21.

−
𝑠𝜁0
4
𝑚11,0𝑚22,0

(
𝛾20Γ2 + Γ1

)
=

𝜕
𝜕𝑣2

log 𝜃3(𝑠Ω; 𝜏) −
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝑠Ω; 𝜏). (210)

Note that the r.h.s. here equals the partial derivative 𝑠 𝜕Ω
𝜕𝑣2

𝜕

𝜕(𝑠Ω)
log 𝜃3(𝑠Ω; 𝜏) with 𝜏 fixed.

Lemma 22.

𝑖𝜁0𝛾
2
0

4 ∫
1

0
𝑊(𝜔)𝑑𝜔 = −

𝜕
𝜕𝑣2

(
1
2
log 𝐼0 +

1
8

∑
𝑦∈{−1,𝑣1,𝑣2,1}

log |𝑞(𝑦)|) +
𝜕𝜏
𝜕𝑣2 ∫

1

0

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)𝑑𝜔,

(211)
where𝑊(𝜔) is given in (167).

7 THE LEADING ORDER TERM: PROOF OF LEMMA 21

Recall from (5) the notation for 𝐼𝑗 , 𝐽𝑗 , 𝑗 = 0, 1, 2. We will calculate the derivatives 𝜕

𝜕𝑣2
𝐼𝑗 , 𝑗 = 0, 1, 2

in terms of the integrals themselves. The crucial identity here is (217) below.
First, we have

𝜕𝐼𝑗
𝜕𝑣2

=
𝑖
4 ∫𝐴1

𝑧𝑗

(𝑧 − 𝑣2)
√
𝑝(𝑧)

𝑑𝑧, 𝑗 = 0, 1, 2. (212)

Therefore,

𝜕𝐼1
𝜕𝑣2

=
𝑖
4 ∫𝐴1

𝑧 − 𝑣2 + 𝑣2

(𝑧 − 𝑣2)
√
𝑝(𝑧)

𝑑𝑧 = 𝐼0∕2 + 𝑣2
𝜕𝐼0
𝜕𝑣2

, (213)

and similarly,

𝜕𝐼2
𝜕𝑣2

= 𝐼1∕2 + 𝑣2
𝜕𝐼1
𝜕𝑣2

. (214)

The last two equations imply

𝜕𝐼2
𝜕𝑣2

= 𝑣22
𝜕𝐼0
𝜕𝑣2

+ 𝐼1∕2 + 𝑣2𝐼0∕2. (215)

From here and (213),

𝜕
𝜕𝑣2

(2𝐼2 − (𝑣2 + 𝑣1)𝐼1) = (𝑣2 − 𝑣1)

[
𝑣2

𝜕𝐼0
𝜕𝑣2

+ 𝐼0∕2

]
. (216)

We will now express the derivative 𝜕𝐼0∕𝜕𝑣2 in terms of 𝐼𝑗s. To this end, observe that

0 =
𝑖
2 ∫𝐴1

𝑑
𝑑𝑧

√
(𝑧2 − 1)(𝑧 − 𝑣1)

𝑧 − 𝑣2
𝑑𝑧 = −𝑖

𝑣2 − 𝑣1
4 ∫𝐴1

𝑧2 − 1

(𝑧 − 𝑣2)
√
𝑝(𝑧)

𝑑𝑧 + 𝐼2 − 𝑣1𝐼1

= −(𝑣2 − 𝑣1)
𝜕
𝜕𝑣2

(𝐼2 − 𝐼0) + 𝐼2 − 𝑣1𝐼1,

(217)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 43

so that

𝜕
𝜕𝑣2

(𝐼2 − 𝐼0) =
𝐼2 − 𝑣1𝐼1
𝑣2 − 𝑣1

. (218)

Using this equation and (215) we have

𝜕𝐼0
𝜕𝑣2

=
−𝐼2 +

𝑣2+𝑣1
2

𝐼1 +
𝑣2(𝑣2−𝑣1)

2
𝐼0

(1 − 𝑣22)(𝑣2 − 𝑣1)
. (219)

This and (216) imply

𝜕
𝜕𝑣2

⎛⎜⎜⎝
𝐼2 −

𝑣2+𝑣1
2

𝐼1

𝐼0

⎞⎟⎟⎠ =
𝑣2 − 𝑣1

4
+
(2𝐼2 − (𝑣1 + 𝑣2)𝐼1 + 𝑣2(𝑣1 − 𝑣2)𝐼0)

2

4𝐼20(1 − 𝑣22)(𝑣2 − 𝑣1)
. (220)

By the formulas for 𝑥1 and 𝑥2 in (8) and (9), and the formula for 𝜁0 in (156), we finish the proof of
Lemma 21.

Remark 23. We also observe for future reference that the arguments may be copied line for line
and applied to the integrals 𝐽𝑗 = ∫ 𝑣2

𝑣1

𝑥𝑗𝑑𝑥√|𝑝(𝑥)| (by instead considering an integral over a closed loop
containing (𝑣1, 𝑣2) and different branches of the roots), and we obtain the analogues to (219) and
(216):

𝜕𝐽0
𝜕𝑣2

=
−𝐽2 +

𝑣2+𝑣1
2

𝐽1 +
𝑣2(𝑣2−𝑣1)

2
𝐽0

(1 − 𝑣22)(𝑣2 − 𝑣1)
, (221)

𝜕
𝜕𝑣2

(2𝐽2 − (𝑣2 + 𝑣1)𝐽1) = (𝑣2 − 𝑣1)

[
𝑣2

𝜕𝐽0
𝜕𝑣2

+ 𝐽0∕2

]
. (222)

8 THE FLUCTUATIONS: PROOF OF LEMMA 21

We write the first subleading term in (171) in the form, using (156), (157) for 𝜁0, 𝑢0,

𝑠𝜁0𝑢0
4

𝑇1(𝑠Ω),
𝜁0𝑢0
4

=
(𝑣2 − 𝑥1)(𝑥2 − 𝑣1)

2𝐼0(𝑣2 − 𝑣1)(1 − 𝑣22)
, 𝑇1(𝜔) = −

𝑚11,0𝑚22,0

𝑢0

(
𝛾20Γ2 + Γ1

)
. (223)

Our goal in this section is to prove the following proposition, of which Lemma 21 is an
immediate corollary.

Proposition 24. There hold the identities:

(a)

−𝑖
𝜕𝜏
𝜕𝑣2

=
𝜕|𝜏|
𝜕𝑣2

=
𝜋

𝐼20(1 − 𝑣22)(𝑣2 − 𝑣1)
= 𝜋𝑢20, (224)
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44 FAHS and KRASOVSKY

(b)

𝜕Ω
𝜕𝑣2

=
(𝑣2 − 𝑥1)(𝑥2 − 𝑣2)

𝐼0(1 − 𝑣22)(𝑣2 − 𝑣1)
, (225)

(c)

𝑇1(𝜔) = 2
𝜃′3(𝜔)

𝜃3(𝜔)
. (226)

Proof. To show Part (a) note that in the notation of (5)

|𝜏| = 𝐽0
𝐼0
,

and therefore, using (219), (221), we have

𝜕|𝜏|
𝜕𝑣2

=
𝐼2𝐽0 − 𝐽2𝐼0 −

𝑣1+𝑣2
2

(𝐼1𝐽0 − 𝐼0𝐽1)

𝐼20(1 − 𝑣22)(𝑣2 − 𝑣1)
, (227)

which gives Part (a) of the proposition by Riemann’s bilinear relations (A.30).
Part (b) follows from (13) and (219) by using (8), (9):

𝜕Ω
𝜕𝑣2

= −
1

𝐼20

𝜕𝐼0
𝜕𝑣2

= −
𝑥1𝑥2 + 𝑣2(𝑣2 − 𝑣1)∕2

𝐼0(1 − 𝑣22)(𝑣2 − 𝑣1)
=

(𝑣2 − 𝑥1)(𝑥2 − 𝑣2)

𝐼0(1 − 𝑣22)(𝑣2 − 𝑣1)
. (228)

We will now show Part (c). Substituting the definitions of 𝑚𝑗𝑗,𝑘 and Γ𝑗 into 𝑇1 in (223), and
using the identity (96) of Lemma 16, we write 𝑇1 in the form

𝑇1(𝜔) = 𝛾20𝑢0
𝜃(0)2𝜃(𝜔 + 𝑑)𝜃(𝜔 − 𝑑)

𝜃(𝑑)2𝜃(𝜔)2

[
𝜃′1(𝑑)

𝜃1(𝑑)

(
𝜃′(𝜔 + 𝑑)

𝜃(𝜔 + 𝑑)
+
𝜃′(𝜔 − 𝑑)

𝜃(𝜔 − 𝑑)

)

−
1
2

(
𝜃′′(𝜔 + 𝑑)

𝜃(𝜔 + 𝑑)
−
𝜃′′(𝜔 − 𝑑)

𝜃(𝜔 − 𝑑)

)]
. (229)

We now show that 𝑇1(𝜔) has the same behavior as 2𝜃′(𝜔)∕𝜃(𝜔) under the shift 𝜔 → 𝜔 + 𝜏, and
therefore their difference is an elliptic function. We obtain using (A.5)

𝑇1(𝜔 + 𝜏) = 𝑇1(𝜔) + 𝑓(𝜔),

where

𝑓(𝜔) = 2𝜋𝑖𝛾20𝑢0
𝜃(0)2𝜃(𝜔 + 𝑑)𝜃(𝜔 − 𝑑)

𝜃(𝑑)2𝜃(𝜔)2

[
𝜃′(𝜔 + 𝑑)

𝜃(𝜔 + 𝑑)
−
𝜃′(𝜔 − 𝑑)

𝜃(𝜔 − 𝑑)
− 2

𝜃′1(𝑑)

𝜃1(𝑑)

]
. (230)

It is easily seen that 𝑓(𝜔) = 𝑓(𝜔 + 𝜏) = 𝑓(𝜔 + 1), so that 𝑓 is elliptic. Furthermore, at the zero
(1 + 𝜏)∕2 of 𝜃(𝜔), by (A.6),

𝜃′(𝜔 + 𝑑)

𝜃(𝜔 + 𝑑)
−
𝜃′(𝜔 − 𝑑)

𝜃(𝜔 − 𝑑)
=

𝜃′1(𝑑 + 𝜈)

𝜃1(𝑑 + 𝜈)
+
𝜃′1(𝑑 − 𝜈)

𝜃1(𝑑 − 𝜈)
= 2

𝜃′1(𝑑)

𝜃1(𝑑)
+ (𝜈), 𝜈 = 𝜔 −

1 + 𝜏
2

,
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 45

and thus the expression in the square brackets in (230) vanishes as𝜔 → (1 + 𝜏)∕2. So the pole of 𝑓
at (1 + 𝜏)∕2 cannot have the order larger then 1. Thus 𝑓 is an elliptic function with at most single
first-order pole modulo the lattice, which means 𝑓 is a constant. At 𝜔 = 0,

𝑓(0) = 4𝜋𝑖𝛾20𝑢0

(
𝜃′(𝑑)

𝜃(𝑑)
−
𝜃′1(𝑑)

𝜃1(𝑑)

)
= −4𝜋𝑖

by (96) of Lemma 16. Thus

𝑓(𝜔) ≡ −4𝜋𝑖.

This immediately implies that the function

𝑇1(𝜔) − 2
𝜃′(𝜔)

𝜃(𝜔)

is elliptic. To analyze its behavior at the pole, it is convenient to write 𝑇1 in terms of 𝜃1 by (A.6),
(A.7) with 𝜈 = 𝜔 −

1+𝜏

2
:

𝑇1(𝜔) = − 𝛾20𝑢0
𝜃(0)2𝜃1(𝑑 + 𝜈)𝜃1(𝑑 − 𝜈)

𝜃(𝑑)2𝜃1(𝜈)2

[
𝜃′1(𝑑)

𝜃1(𝑑)

(
𝜃′1(𝑑 + 𝜈)

𝜃1(𝑑 + 𝜈)
−
𝜃′1(𝑑 − 𝜈)

𝜃1(𝑑 − 𝜈)

)

−
1
2

(
𝜃′′1 (𝑑 + 𝜈)

𝜃1(𝑑 + 𝜈)
−
𝜃′′1 (𝑑 − 𝜈)

𝜃1(𝑑 − 𝜈)

)
− 2𝜋𝑖

𝜃′1(𝑑)

𝜃1(𝑑)
+ 𝜋𝑖

(
𝜃′1(𝑑 + 𝜈)

𝜃1(𝑑 + 𝜈)
+
𝜃′1(𝑑 − 𝜈)

𝜃1(𝑑 − 𝜈)

)]
. (231)

It is obvious from this representation that the expression in the square brackets vanishes at 𝜈 = 0,
and therefore the order of the pole of 𝑇1 at 𝜈 = 0 is no larger than 1. Since the same is true for
𝜃′(𝜔)∕𝜃(𝜔) = 𝜃′1(𝜈)∕𝜃1(𝜈) − 𝑖𝜋,

𝑇1(𝜔) − 2
𝜃′(𝜔)

𝜃(𝜔)
≡ const.

The value of this constant is easy to obtain by setting 𝜔 = 0: since both 𝑇1(0) = 0 (see (229)) and
𝜃′(0) = 0, this value is 0, which proves Part (c). □

9 THE CONSTANT: PROOF OF LEMMA 22

Recalling (167), we write the term with𝑊 in (171)

𝑖𝜁0𝛾
2
0

4 ∫
1

0
𝑊(𝜔)𝑑𝜔 =

𝑖𝜁0𝛾
2
0

4 ∫
1

0
(𝑇2(𝜔) + 𝑇3(𝜔))𝑑𝜔, (232)

where

𝑇2 =
(
𝑖𝑚22,0 𝑚11,0

) ∑
𝑝∈{−1,𝑣1,1}

∫𝜕𝑈(𝑝)

𝑠Δ1(𝑧)𝑑𝑧

2𝜋𝑖(𝑧 − 𝑣2)2

(
𝑚11,0

−𝑖𝑚22,0

)
,

𝑇3 =
(
𝑖𝑚22,0 𝑚11,0

)
∫𝜕𝑈(𝑣2)

𝑠Δ1(𝑧)𝑑𝑧

2𝜋𝑖(𝑧 − 𝑣2)2

(
𝑚11,0

−𝑖𝑚22,0

)
,

(233)

with the integrals traversed clockwise.
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46 FAHS and KRASOVSKY

In this section we show (in subsection 9.1) that

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇2(𝜔)𝑑𝜔 =

1
8

∑
𝑦∈{−1,𝑣1,1}

𝜕
𝜕𝑣2

[
− log |𝑞(𝑦)| + 1

2
log |(𝑦 − 𝑣2)|], (234)

and (in subsection 9.2) that

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇3(𝜔)𝑑𝜔 −

𝜕𝜏
𝜕𝑣2 ∫

1

0

𝜕
𝜕𝜏

log 𝜃(𝜔; 𝜏)𝑑𝜔 = −

(
1
16

𝜕
𝜕𝑣2

log
[
(1 − 𝑣22)(𝑣2 − 𝑣1)

]
+
1
2

𝜕
𝜕𝑣2

log 𝐼0 +
1
8

𝜕
𝜕𝑣2

log |𝑞(𝑣2)|) . (235)

Substituting the last two equations into (232), we prove Lemma 22.

9.1 Evaluation of 𝑻𝟐

Our goal in this section is to obtain (234). We first compute 𝑇2(𝜔). By the definition of in (91)
and by (87) and (A.3), with 𝜔 = 𝜋Ω,

 (𝑧)𝑒−𝑖𝜋𝜔𝜎3 =
𝛾(𝑧)𝜃3
2𝜃3(𝜔)

⎛⎜⎜⎜⎝
𝜃1(𝜔 + 𝑑)

𝜃1(𝑑)
𝑖
𝜃1(𝜔 + 𝑑)

𝜃1(𝑑)

−𝑖
𝜃1(𝑑 − 𝜔)

𝜃1(𝑑)

𝜃1(𝑑 − 𝜔)

𝜃1(𝑑)

⎞⎟⎟⎟⎠ + 𝑜(1), 𝑧 → −1

 (𝑧)𝑒−𝑖𝜋𝜔𝜎3 =
𝛾(𝑧)−1𝜃3
2𝜃3(𝜔)

⎛⎜⎜⎜⎝
𝜃2(𝜔 + 𝑑)

𝜃2(𝑑)
−𝑖

𝜃2(𝜔 + 𝑑)

𝜃2(𝑑)

𝑖
𝜃2(𝑑 − 𝜔)

𝜃2(𝑑)

𝜃2(𝑑 − 𝜔)

𝜃2(𝑑)

⎞⎟⎟⎟⎠ + 𝑜(1), 𝑧 → 𝑣1

 (𝑧) =
𝛾(𝑧)−1𝜃3
2𝜃3(𝜔)

⎛⎜⎜⎜⎝
𝜃4(𝜔 + 𝑑)

𝜃4(𝑑)
−𝑖

𝜃4(𝜔 + 𝑑)

𝜃4(𝑑)

𝑖
𝜃4(𝑑 − 𝜔)

𝜃4(𝑑)

𝜃4(𝑑 − 𝜔)

𝜃4(𝑑)

⎞⎟⎟⎟⎠ + 𝑜(1), 𝑧 → 1

(236)

(Note that 𝜃𝑗(𝑑) ≠ 0, 𝑗 = 1, 2, 3, 4, by the argument following (89).Moreover, 𝜃3(𝜔) ≠ 0 for𝜔 ∈ ℝ.)
Thus, by (122), (126), (128), and the definition of𝑚𝑗𝑗,0 in (159), a straightforward calculation yields

(
𝑖𝑚22,0 𝑚11,0

)
𝑠Δ1(𝑧)

⎛⎜⎜⎝
𝑚11,0

−𝑖𝑚22,0

⎞⎟⎟⎠ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

±
𝑖𝑠𝛾(𝑧)2

16
√
𝜁(𝑧)

𝐹1(𝜔) + 𝑜(1), as 𝑧 → −1,

∓
𝑖𝑠𝛾(𝑧)−2

16
√
𝜁(𝑧)

𝐹2(𝜔) + 𝑜(1), as 𝑧 → 𝑣1,

∓
𝑖𝑠𝛾(𝑧)−2

16
√
𝜁(𝑧)

𝐹4(𝜔) + 𝑜(1), as 𝑧 → 1,

(237)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 47

where the upper sign is taken if Im 𝑧 > 0, the lower if Im 𝑧 < 0, and 𝐹𝑗 is given by

𝐹𝑗(𝜔) =
𝜃43

[
𝜃𝑗(𝜔 + 𝑑)𝜃3(𝜔 − 𝑑) + 𝜃𝑗(𝜔 − 𝑑)𝜃3(𝜔 + 𝑑)

]2
𝜃3(𝜔)4𝜃3(𝑑)2𝜃𝑗(𝑑)2

, 𝑗 = 1, 2, 4. (238)

To compute the residue of (237) at−1, we need to analyze± 𝛾(𝑧)2√
𝜁(𝑧)

at−1. It is meromorphic, and
we need to determine the sign of its residue (the absolute value follows straightforwardly from the
expansions of 𝛾(𝑧) and 𝜁(𝑧)). Let 𝑥 ∈ 𝑈(−1), with 𝑥 = −1 + 𝜖, 𝜖 > 0, and 𝑥 lying on the positive
side of the cut. For such 𝑥, 𝛾(𝑥)2 = 𝑖|𝛾(𝑥)2| by (85), and by the expansion (120), and in particular
the fact that 𝜁0 is positive, we have that

√
𝜁(𝑥) is positive. Thus 𝛾(𝑥)2√

𝜁(𝑥)
= 𝑖| 𝛾(𝑥)2√

𝜁(𝑥)
|, and by (85) and

(120),

±
𝑖𝑠𝛾(𝑧)2√
𝜁(𝑧)

= −
1

𝑧 + 1
1 + 𝑣1|𝑞(−1)| (1 + 𝜀1(𝑧)) (239)

in a neighborhood of −1, where 𝜀1(𝑧) is an analytic function uniformly 𝑜(1) as 𝑧 → −1.
Similar analysis in the neighborhoods 𝑈(𝑣1), 𝑈(1) yields

∓
𝑖𝑠𝛾(𝑧)−2√

𝜁(𝑧)
=

⎧⎪⎨⎪⎩
1

𝑧 − 𝑣1

(𝑣2 − 𝑣1)(1 + 𝑣1)

2|𝑞(𝑣1)| (1 + 𝜀2(𝑧)) for 𝑧 ∈ 𝑈(𝑣1),

1
𝑧 − 1

1 − 𝑣2|𝑞(1)| (1 + 𝜀4(𝑧)) for 𝑧 ∈ 𝑈(1),
(240)

where 𝜀2(𝑧), 𝜀4(𝑧) are analytic function uniformly 𝑜(1) as 𝑧 → 𝑣1, 1, respectively.
Thus by the definition of 𝑇2 in (233), computing the residue by (237) (note the negative

orientation of the contours), we obtain

𝑇2 =
1 + 𝑣1

16(1 + 𝑣2)2|𝑞(−1)|𝐹1(𝜔) − 1 + 𝑣1
32(𝑣2 − 𝑣1)|𝑞(𝑣1)|𝐹2(𝜔) − 1

16(1 − 𝑣2)|𝑞(1)|𝐹4(𝜔). (241)

We now evaluate ∫ 1

0
𝐹𝑗(𝜔)𝑑𝜔. It is easily seen that 𝐹𝑗(𝜔), 𝑗 = 1, 2, 4, are elliptic functions. We

start with 𝐹1. Note first that since 𝜃3 is even and 𝜃1 is odd, we have 𝐹1(0) = 0. By the definition of
𝜃1 and 𝜃3, we have

(𝜃3(𝜔 − 𝑑)𝜃1(𝜔 + 𝑑) + 𝜃3(𝜔 + 𝑑)𝜃1(𝜔 − 𝑑))
2

𝜃3(𝜔)4
= −

(𝜃1(𝜈 − 𝑑)𝜃3(𝜈 + 𝑑) + 𝜃1(𝜈 + 𝑑)𝜃3(𝜈 − 𝑑))
2

𝜃1(𝜈)4
,

(242)
where 𝜈 = 𝜔 −

1+𝜏

2
. Thus, as 𝜈 → 0, the r.h.s. of this equation becomes

−4

(
𝜃′1(𝑑)𝜃3(𝑑) − 𝜃1(𝑑)𝜃

′
3(𝑑)

)2(
𝜃′1

)4
𝜈2

+ (
𝜈−1

)
. (243)

Thus we can apply Lemma A.1 in Appendix A to 𝐹1, which gives

∫
1

0
𝐹1(𝜔)𝑑𝜔 = −4

(
𝜃3
𝜃′1

)4
𝜃′′3
𝜃3

(
𝜃′1(𝑑)

𝜃1(𝑑)
−
𝜃′3(𝑑)

𝜃3(𝑑)

)2

. (244)
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48 FAHS and KRASOVSKY

Using here the identity (96) of Lemma 16, and then the equation 𝜃′1 = 𝜋𝜃2𝜃3𝜃4, we finally obtain

∫
1

0
𝐹1(𝜔)𝑑𝜔 = 4

(
𝜃3
𝜃′1

)4
𝜃′′3
𝜃3

𝐼20(1 + 𝑣2)
2 = 4

(
1

𝜋𝜃2𝜃4

)4 𝜃′′3
𝜃3

𝐼20(1 + 𝑣2)
2. (245)

We now evaluate the integrals of 𝐹2 and 𝐹4. Applying the summation formulae (A.8) and (A.9)
to the definition of 𝐹2 and 𝐹4, respectively, in (238), we obtain

𝐹2(𝜔) =
4𝜃23
𝜃22

𝜃2(𝜔)
2

𝜃3(𝜔)2
, 𝐹4(𝜔) =

4𝜃23
𝜃24

𝜃4(𝜔)
2

𝜃3(𝜔)2
. (246)

By the definitions of 𝜃𝑗 for 𝑗 = 1, 2, 3, 4, we have with 𝜈 = 𝜔 −
1+𝜏

2

𝜃2(𝜔)
2

𝜃3(𝜔)2
=

𝜃4(𝜈)
2

𝜃1(𝜈)2
=

𝜃24(
𝜃′1

)2 𝜈−2 + (
𝜈−1

)
, 𝜈 → 0,

𝜃4(𝜔)
2

𝜃3(𝜔)2
= −

𝜃2(𝜈)
2

𝜃1(𝜈)2
= −

𝜃22(
𝜃′1

)2 𝜈−2 + (
𝜈−1

)
, 𝜈 → 0;

(247)

and applying Lemma A.1, we obtain

∫
1

0

𝜃2(𝜔)
2

𝜃3(𝜔)2
𝑑𝜔 =

𝜃24(
𝜃′1

)2 𝜃′′3𝜃3 +
𝜃22
𝜃23

, ∫
1

0

𝜃4(𝜔)
2

𝜃3(𝜔)2
𝑑𝜔 = −

𝜃22(
𝜃′1

)2 𝜃′′3𝜃3 +
𝜃24
𝜃23

. (248)

From here, by (246) and the equation 𝜃′1 = 𝜋𝜃2𝜃3𝜃4,

∫
1

0
𝐹2(𝜔)𝑑𝜔 = 4

(
1

𝜋2𝜃42

𝜃′′3
𝜃3

+ 1

)
, ∫

1

0
𝐹4(𝜔)𝑑𝜔 = 4

(
−

1

𝜋2𝜃44

𝜃′′3
𝜃3

+ 1

)
. (249)

Integrating (241) by (245), (249), we obtain

∫
1

0
𝑇2(𝜔)𝑑𝜔 =

(1 + 𝑣1)𝐼
2
0

4|𝑞(−1)|
(

1
𝜋𝜃2𝜃4

)4 𝜃′′3
𝜃3

−
1 + 𝑣1

8(𝑣2 − 𝑣1)|𝑞(𝑣1)|
(

1

𝜋2𝜃42

𝜃′′3
𝜃3

+ 1

)

−
1

4(1 − 𝑣2)|𝑞(1)|
(
−

1

𝜋2𝜃44

𝜃′′3
𝜃3

+ 1

)
. (250)

We now express all the 𝜃-constants here in terms of elliptic integrals. For 𝜃42 , 𝜃
4
2 , this was already

done in (100), (99) of Lemma 16. To obtain an expression for 𝜃′′3
𝜃3
, we first note that by the differential

equation (A.10) satisfied by 𝜃-functions, and then by (224) and (101),

𝜃′′3
𝜃3

= 4𝜋𝑖
𝜕
𝜕𝜏

log 𝜃3 = 𝜋𝑖
1

𝜕𝜏∕𝜕𝑣2

𝜕
𝜕𝑣2

log 𝜃43 = 𝐼20(1 − 𝑣2)
2(𝑣2 − 𝑣1)

𝜕
𝜕𝑣2

log(𝐼20(1 + 𝑣2)). (251)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 49

We now use (219), (9), and then the expression |𝑞(𝑣2)| = (𝑣2 − 𝑥1)(𝑥2 − 𝑣2) = −𝑥1𝑥2 − 𝑣2(𝑣2 −
𝑣1)∕2, to obtain from here

𝜃′′3
𝜃3

= 2𝐼20

(
𝑥1𝑥2 +

𝑣2 − 𝑣1
2

)
= 2𝐼20

(
−|𝑞(𝑣2)| + (1 − 𝑣2)(𝑣2 − 𝑣1)

2

)
. (252)

Substituting this expression as well as (100), (99) into (250), and using the fact that by (157), (156),

𝑖𝛾20𝜁0
4

= −
|𝑞(𝑣2)|
2(1 + 𝑣2)

,

we obtain

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇2(𝜔)𝑑𝜔 =

1
8

𝑞(𝑣2)
2

(1 − 𝑣22)(𝑣2 − 𝑣1)

(
1|𝑞(−1)| − 1|𝑞(𝑣1)| + 1|𝑞(1)|

)

+
1
16

|𝑞(𝑣2)|
(1 − 𝑣22)(𝑣2 − 𝑣1)

(
−
(1 − 𝑣2)(𝑣2 − 𝑣1)|𝑞(−1)| +

1 − 𝑣22|𝑞(𝑣1)| + (1 + 𝑣2)(𝑣2 − 𝑣1)|𝑞(1)|
)
. (253)

In the last three terms here, we express |𝑞(𝑣2)| by |𝑞(−1)|, |𝑞(𝑣1)|, |𝑞(1)|, respectively, for example,
for the last term we write (recall (8))

|𝑞(𝑣2)| = −𝑥1𝑥2 − 𝑣2(𝑣2 − 𝑣1)∕2 = −|𝑞(1)| + 1 − (𝑣1 + 𝑣2)∕2 − 𝑣2(𝑣2 − 𝑣1)∕2. (254)

This allows us to write (253) in the form

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇2(𝜔)𝑑𝜔 =

1
8

𝑞(𝑣2)
2

(1 − 𝑣22)(𝑣2 − 𝑣1)

(
1|𝑞(−1)| − 1|𝑞(𝑣1)| + 1|𝑞(1)|

)

+
1
16

(
1

1 + 𝑣2
+

1
𝑣2 − 𝑣1

−
1

1 − 𝑣2
−
2 − (𝑣2 − 𝑣1)

2|𝑞(−1)| −
𝑣2 + 𝑣1
2|𝑞(𝑣1)| + 2 + 𝑣2 − 𝑣1

2|𝑞(1)|
)
. (255)

On the other hand, by (9) and (220),

𝜕
𝜕𝑣2

|𝑞(−1)| = 𝜕
𝜕𝑣2

(
1 + 𝑥1𝑥2 +

𝑣1 + 𝑣2
2

)
= −

𝑣2 − 𝑣1
4

−
𝑞(𝑣2)

2

(1 − 𝑣22)(𝑣2 − 𝑣1)
+
1
2
, (256)

and

𝜕
𝜕𝑣2

|𝑞(𝑣1)| = 𝑣2 − 𝑣1
4

+
𝑞(𝑣2)

2

(1 − 𝑣22)(𝑣2 − 𝑣1)
+
𝑣1
2
,

𝜕
𝜕𝑣2

|𝑞(1)| = −
𝑣2 − 𝑣1

4
−

𝑞(𝑣2)
2

(1 − 𝑣22)(𝑣2 − 𝑣1)
−
1
2
.

(257)

We therefore easily obtain the expression for 𝜕

𝜕𝑣2
log |𝑞(−1)𝑞(𝑣1)𝑞(1)|. Comparing it with (255)

shows (234).
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50 FAHS and KRASOVSKY

9.2 Evaluation of 𝑻𝟑

Now consider 𝑇3. Our aim in this section is to prove (235). We write in (91) in the form

 (𝑧) = 𝐴(𝑧; 𝑠Ω) + 𝐵(𝑧; 𝑠Ω), 𝐴 =
1
2

(
𝐴1 𝑖𝐴1

−𝑖𝐴2 𝐴2

)
, 𝐵 =

1
2

(
𝐵1 −𝑖𝐵1
𝑖𝐵2 𝐵2

)
,

𝐴𝑗(𝑧; 𝜔) =
𝜃3

2𝜃3(𝜔)

[(
𝛾(𝑧) + 𝛾(𝑧)−1

)𝜃3(𝑢(𝑧) ± 𝜔 + 𝑑)

𝜃3(𝑢(𝑧) + 𝑑)
+

(
𝛾(𝑧) − 𝛾(𝑧)−1

)𝜃3(−𝑢(𝑧) ± 𝜔 + 𝑑)

𝜃3(−𝑢(𝑧) + 𝑑)

]
,

𝐵𝑗(𝑧; 𝜔) =
𝜃3

2𝜃3(𝜔)

[(
𝛾(𝑧) + 𝛾(𝑧)−1

)𝜃3(𝑢(𝑧) ± 𝜔 + 𝑑)

𝜃3(𝑢(𝑧) + 𝑑)
−

(
𝛾(𝑧) − 𝛾(𝑧)−1

)𝜃3(−𝑢(𝑧) ± 𝜔 + 𝑑)

𝜃3(−𝑢(𝑧) + 𝑑)

]
,

(258)

where ±means + for 𝑗 = 1 and − for 𝑗 = 2. Using the jump conditions (92), (93), we observe that
(𝑧 − 𝑣2)

1∕4𝐴(𝑧) and (𝑧 − 𝑣2)
−1∕4𝐵(𝑧) are analytic on 𝑈(𝑣2).

Since Δ1(𝑧) in (126) for 𝑝 = 𝑣2 is meromorphic on 𝑈(𝑣2), all odd powers of roots (𝑧 − 𝑣2)
1∕2 in

the expansion of (126) cancel, and it follows that for 𝑧 ∈ 𝑈(𝑣2) and Im 𝑧 > 0,

Δ1(𝑧) = −
1

32
√
𝜁(𝑧)

[(
𝐴1 𝑖𝐴1

−𝑖𝐴2 𝐴2

)(
−1 −2𝑖
−2𝑖 1

)(
𝐴2 −𝑖𝐴1

𝑖𝐴2 𝐴1

)

+

(
𝐵1 −𝑖𝐵1
𝑖𝐵2 𝐵2

)(
−1 −2𝑖
−2𝑖 1

)(
𝐵2 𝑖𝐵1
−𝑖𝐵2 𝐵1

)]
. (259)

Therefore

(
𝑖𝑚22,0 𝑚11,0

)
Δ1(𝑧)

(
𝑚11,0

−𝑖𝑚22,0

)
=

𝑖

16
√
𝜁(𝑧)

[
(𝑚22,0𝐴1 − 𝑚11,0𝐴2)

2 + 3(𝑚22,0𝐵1 + 𝑚11,0𝐵2)
2
]
.

Expanding 𝐴1(𝑧) and 𝐴2(𝑧) as 𝑧 → 𝑣2, we obtain using (156), (157), and (158),

𝑚22,0𝐴1(𝑧) − 𝑚11,0𝐴2(𝑧) = −𝛾−10 𝑢0𝑇1(𝜔)(𝑧 − 𝑣2)
3∕4 + (

(𝑧 − 𝑣2)
5∕4

)
(260)

with 𝑇1(𝜔) as defined in (223). By (226) in Proposition 24, this equals

−
2𝑢0
𝛾0

𝜃′3(𝜔)

𝜃3(𝜔)
(𝑧 − 𝑣2)

3∕4 + (
(𝑧 − 𝑣2)

5∕4
)
. (261)

So that by the definition of 𝑇3 in (233), we obtain computing the residue for the first term,

𝑇3(𝜔) = −
𝑖𝑢20
4𝛾20𝜁0

(
𝜃′3(𝜔)

𝜃3(𝜔)

)2

+ ∫𝜕𝑈(𝑣2)

3𝑖[𝑚22,0𝐵1(𝑧) + 𝑚11,0𝐵2(𝑧)]
2

16(𝑧 − 𝑣2)2
√
𝜁(𝑧)

𝑑𝑧
2𝜋𝑖

, (262)

where the integration is in the negative direction around 𝑣2, and where
√
𝜁 and 𝐵1, 𝐵2 are

understood to be the analytic continuation from Im 𝑧 > 0.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 51

We now write the average

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇3(𝜔)𝑑𝜔 =

𝑢20
16 ∫

1

0

(
𝜃′3(𝜔)

𝜃3(𝜔)

)2

𝑑𝜔 +
𝑖𝛾20𝜁0𝑄

4
, (263)

where

𝑄 = ∫
1

0
𝑑𝜔 ∫𝜕𝑈(𝑣2)

3𝑖𝑠[𝑚22,0𝐵1(𝑧; 𝜔) + 𝑚11,0𝐵2(𝑧; 𝜔)]
2

16(𝑧 − 𝑣2)2
√
𝜁(𝑧)

𝑑𝑧
2𝜋𝑖

. (264)

To compare with Lemma 21, we will now single out a contribution from

𝛿 =
𝜕𝜏
𝜕𝑣2 ∫

1

0

𝜕
𝜕𝜏

log 𝜃3(𝜔)𝑑𝜔. (265)

Using the differential equation (A.10) and the fact that

0 = ∫
1

0

(
𝜃′3(𝜔)

𝜃3(𝜔)

)′

𝑑𝜔 = ∫
1

0

⎡⎢⎢⎣
𝜃′′3 (𝜔)

𝜃3(𝜔)
−

(
𝜃′3(𝜔)

𝜃3(𝜔)

)2⎤⎥⎥⎦𝑑𝜔,
we can write

𝛿 = 𝑖
𝜕|𝜏|
𝜕𝑣2 ∫

1

0

𝜃′′3 (𝜔)

𝜃3(𝜔)
𝑑𝜔
4𝜋𝑖

=
𝜕|𝜏|
𝜕𝑣2 ∫

1

0

(
𝜃′3(𝜔)

𝜃3(𝜔)

)2
𝑑𝜔
4𝜋

. (266)

Since, by (224), 𝜋𝑢20 =
𝜕|𝜏|
𝜕𝑣2

, we can rewrite (263) in the form

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇3(𝜔)𝑑𝜔 = −

3
16𝜋

𝜕|𝜏|
𝜕𝑣2 ∫

1

0

(
𝜃′3(𝜔)

𝜃3(𝜔)

)2

𝑑𝜔 +
𝑖𝛾20𝜁0𝑄

4
+ 𝛿. (267)

Now by (A.19),

∫
1

0

(
𝜃′3(𝜔)

𝜃3(𝜔)

)2

𝑑𝜔 =
𝜋2

3
+

𝜃′′′1
3𝜃′1

.

Using the identity 𝜃′1 = 𝜋𝜃2𝜃3𝜃4, and the identities (99)–(101) of Lemma 16, we write here

𝜃′′′1
𝜃′1

= 4𝜋𝑖
𝜕
𝜕𝜏

log
(
𝜃′1

)
=

𝜋𝑖
𝜕𝜏

𝜕𝑣2

𝜕
𝜕𝑣2

log
(
𝜃′1

)4
=

𝜋
𝜕|𝜏|
𝜕𝑣2

𝜕
𝜕𝑣2

log (𝜃2𝜃3𝜃4)
4

=
𝜋
𝜕|𝜏|
𝜕𝑣2

𝜕
𝜕𝑣2

log
[
𝐼60(1 − 𝑣22)(𝑣2 − 𝑣1)

]
, (268)

so that we can rewrite (267) in the form

𝑖𝛾20𝜁0
4 ∫

1

0
𝑇3(𝜔)𝑑𝜔 = −

1
16

(
𝜋
𝜕|𝜏|
𝜕𝑣2

+
𝜕
𝜕𝑣2

log
[
𝐼60(1 − 𝑣22)(𝑣2 − 𝑣1)

])
+
𝑖𝛾20𝜁0𝑄

4
+ 𝛿. (269)
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52 FAHS and KRASOVSKY

It remains to evaluate𝑄 defined in (264). To simplify the computations,we first do the averaging
over 𝜔 and only then compute the residue in this case.
As above for 𝐴(𝑧), we expand 𝐵(𝑧) to obtain

𝛾(𝑧)[𝑚22,0𝐵1(𝑧; 𝜔) + 𝑚11,0𝐵2(𝑧; 𝜔)] − 2 = (𝑧 − 𝑣2), 𝑧 → 𝑣2, (270)

and therefore

𝛾(𝑧)2[𝑚22,0𝐵1(𝑧; 𝜔)+𝑚11,0𝐵2(𝑧; 𝜔)]
2 =−4+4𝛾(𝑧)[𝑚22,0𝐵1(𝑧; 𝜔)+𝑚11,0𝐵2(𝑧; 𝜔)]+(

(𝑧 − 𝑣2)
2
)
,

(271)

as 𝑧 → 𝑣2. Thus, upon changing the order of integration,

𝑄 = ∫𝜕𝑈(𝑣2)

𝑑𝑧
2𝜋𝑖

3𝑖𝑠

4𝛾2(𝑧)(𝑧 − 𝑣2)2
√
𝜁(𝑧)

[
−1 + 𝛾(𝑧)∫

1

0
𝑑𝜔

[
𝑚22,0𝐵1(𝑧; 𝜔) + 𝑚11,0𝐵2(𝑧; 𝜔)

]]
. (272)

By the definition of 𝐵1 and 𝐵2 in (258) and the formula for𝑚11,0 and𝑚22,0 in (159), we have

∫
1

0
𝑑𝜔

[
𝑚22,0𝐵1(𝑧; 𝜔) + 𝑚11,0𝐵2(𝑧; 𝜔)

]
= ∫

1

0
(𝑞(𝜔) + 𝑞(−𝜔))𝑑𝜔, (273)

where

𝑞(𝜔) =
𝜃23𝜃(−𝜔 + 𝑑)

2𝜃(𝑑)𝜃(𝜔)2

((
𝛾(𝑧) + 𝛾(𝑧)−1

)𝜃(𝑢(𝑧) + 𝜔 + 𝑑)

𝜃(𝑢(𝑧) + 𝑑)
−
(
𝛾(𝑧) − 𝛾(𝑧)−1

)𝜃(−𝑢(𝑧) + 𝜔 + 𝑑)

𝜃(−𝑢(𝑧) + 𝑑)

)
.

(274)

Since 𝑞(−𝜔) = 𝑞(1 − 𝜔), we have that

∫
1

0
𝑞(−𝜔)𝑑𝜔 = ∫

1

0
𝑞(𝜔)𝑑𝜔, (275)

Applying (A.20) to evaluate ∫ 1

0
𝑞(𝜔)𝑑𝜔, we obtain:

𝛾(𝑧)∫
1

0
𝑑𝜔

[
𝑚22,0𝐵1(𝑧; 𝜔) + 𝑚11,0𝐵2(𝑧; 𝜔)

]
=

𝜋𝜃23𝑔(𝑑)(
𝜃′1

)2
sin(𝜋𝑢)

×
{(
𝛾(𝑧)2 + 1

)
𝑔(𝑑 + 𝑢)[𝑓(𝑑) − 𝑓(𝑑 + 𝑢)] +

(
𝛾(𝑧)2 − 1

)
𝑔(𝑑 − 𝑢)[𝑓(𝑑) − 𝑓(𝑑 − 𝑢)]

}
, (276)

where

𝑔(𝑥) =
𝜃1(𝑥)

𝜃3(𝑥)
, 𝑓(𝑥) =

𝜃′1(𝑥)

𝜃1(𝑥)
. (277)

Note that (A.13) gives for the derivative of 𝑓(𝑧)

𝑓′(𝑥) = −

(
𝜃′1
𝜃3

)2
1

𝑔(𝑥)2
+
𝜃′′3
𝜃3

. (278)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 53

Using this, we have, in particular, as 𝑧 → 𝑣2, that is, 𝑢 → 0,

𝑓(𝑑) − 𝑓(𝑑 ± 𝑢) =

(
𝜃′1
𝜃3

)2[
± 𝑢

(
1

𝑔(𝑑)2
−
𝜃′′3
𝜃3

(
𝜃3
𝜃′1

)2)
− 𝑢2

𝑔′(𝑑)

𝑔(𝑑)3

±
𝑢3

3

(
−
𝑔′′(𝑑)

𝑔(𝑑)3
+ 3

𝑔′(𝑑)2

𝑔(𝑑)4

)
+
𝑢4

12

(
−
𝑔′′′(𝑑)

𝑔(𝑑)3
+
9𝑔′′(𝑑)𝑔′(𝑑)

𝑔(𝑑)4
−
12𝑔′(𝑑)3

𝑔(𝑑)5

)]
+ (

𝑢5
)
. (279)

Expanding also the other terms in (276), and also expanding 𝑢 by (157), we obtain that, as 𝑧 → 𝑣2,

𝛾(𝑧)∫
1

0
𝑑𝜔

[
𝑚22,0𝐵1(𝑧; 𝜔) + 𝑚11,0𝐵2(𝑧; 𝜔)

]
= 𝑔(𝑑)

(
1 +

𝜋2

6
𝑢20(𝑧 − 𝑣2) + ((𝑧 − 𝑣2)

2)

)
×
[
𝐻0 + 𝑢0𝛾

2
0(1 + (𝑧 − 𝑣2)(𝑢1 + 2𝛾1))𝐻1 + (𝑧 − 𝑣2)(𝑢

2
0𝐻2 − 𝑢30𝛾

2
0𝐻3) + ((𝑧 − 𝑣2)

3∕2)
]
, (280)

where

𝐻0 = 2𝑔(𝑑)
⎛⎜⎜⎝

1
𝑔(𝑑)2

−
𝜃′′3
𝜃3

(
𝜃3
𝜃′1

)2⎞⎟⎟⎠, 𝐻1 = 2𝑔′(𝑑)
𝜃′′3
𝜃3

(
𝜃3
𝜃′1

)2

,

𝐻2 = 𝑔′′(𝑑)
⎛⎜⎜⎝

1
3𝑔(𝑑)2

−
𝜃′′3
𝜃3

(
𝜃3
𝜃′1

)2⎞⎟⎟⎠, 𝐻3 =
𝑔′′′(𝑑)

6

⎛⎜⎜⎝
1

𝑔(𝑑)2
− 2

𝜃′′3
𝜃3

(
𝜃3
𝜃′1

)2⎞⎟⎟⎠ −
1
6
𝑔′′(𝑑)𝑔′(𝑑)

𝑔(𝑑)3
.

(281)

By applying (106) and (97) of Proposition 16, we simplify the combinations of the 𝐻𝑗 as
follows:

𝐻0 + 𝑢0𝛾
2
0𝐻1 =

2
𝑔(𝑑)

, 𝑢20𝐻2 − 𝑢30𝛾
2
0𝐻3 =

2𝛾1 + 𝑢1
𝑔(𝑑)

⎛⎜⎜⎝1 − 2𝑔(𝑑)2
𝜃′′3
𝜃3

(
𝜃3
𝜃′1

)2⎞⎟⎟⎠, (282)

which allows us to write (280) in the form

𝛾(𝑧)∫
1

0
𝑑𝜔

[
𝑚22,0𝐵1(𝑧; 𝜔)+𝑚11,0𝐵2(𝑧; 𝜔)

]
=2+

(
𝜋2

3
𝑢20 + (2𝛾1 +𝑢1)

)
(𝑧 − 𝑣2)+((𝑧 − 𝑣2)

3∕2).

(283)

Substituting this into (272) and calculating the residue, we obtain

𝑄 =
3𝑖

4𝛾20𝜁0

(
𝜁1 − 𝑢1 −

𝜋2

3
𝑢20

)
=

3𝑖

4𝛾20𝜁0

(
𝜁1 − 𝑢1 −

𝜋
3
𝜕|𝜏|
𝜕𝑣2

)
. (284)

For the coefficients 𝜁1, 𝑢1 in expansions (156) and (157) we easily obtain:

𝜁1 =
1
3
𝑑
𝑑𝑥

log 𝑞(𝑥)|𝑥=𝑣2 − 1
6

𝜕
𝜕𝑣2

log(𝑣22 − 1)(𝑣2 − 𝑣1),

𝑢1 = −
1
6

𝜕
𝜕𝑣2

log(𝑣22 − 1)(𝑣2 − 𝑣1),

(285)
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54 FAHS and KRASOVSKY

so that

𝜁1 − 𝑢1 =
1
3
𝑑
𝑑𝑥

log 𝑞(𝑥)|𝑥=𝑣2 = 2𝑣2 − (𝑣1 + 𝑣2)∕2

−3|𝑞(𝑣2)| .

On the other hand, by (254) and (257),

𝜕
𝜕𝑣2

|𝑞(𝑣2)| = −
3
4
𝑣2 +

𝑣1
4
+

𝑞(𝑣2)
2

(1 − 𝑣22)(𝑣2 − 𝑣1)
, (286)

and by (219), (9),

𝜕
𝜕𝑣2

log 𝐼0 = −
|𝑞(𝑣2)|

(1 − 𝑣22)(𝑣2 − 𝑣1)
. (287)

These equations imply

𝜁1 − 𝑢1 =
2
3

𝜕
𝜕𝑣2

log(|𝑞(𝑣2)|𝐼0). (288)

Substituting this into (284) for 𝑄, and that, in turn, into (269), we obtain (235).

10 SLOWMERGING OF GAPS: PROOF OF THEOREM 4

10.1 Solution of the 𝚽-RH problem as 𝒗𝟐 − 𝒗𝟏 → 𝟎.

We consider the asymptotics of the Φ-RH problem in the double-scaling regime where 𝜈 =
𝑣2−𝑣1

2

can approach zero with 𝑠 → ∞ at a rate such that 2𝜈 >
1

𝑠2−𝜀
, for any fixed 𝜀 > 0.

Let

−𝛼 = 1 +
𝑣2 + 𝑣1

2
> 0, 𝛽 = 1 −

𝑣2 + 𝑣1
2

> 0, 𝛾 =
𝛽−1 + |𝛼|−1

8
. (289)

We need to evaluate the integrals 𝐼𝑗 in the limit 𝜈 → 0. To do this (and to make a compari-
son with [24] easier), we first change integration variable 𝑥 = 𝑡 +

𝑣1+𝑣2
2

, which maps (𝑣2, 1) to

(𝜈, 𝛽); we then split this interval into (𝜈,
√
𝜈) ∪ [

√
𝜈, 𝛽) and use a change of variable 𝑦 = 𝑡∕

√
𝜈 for

integration over the first one. We then obtain:5

𝐼2 −
𝑣2 + 𝑣1

2
𝐼1 =

√|𝛼𝛽| + (
𝜈2 log 𝜈−1

)
, (290)

𝐼0 =
log (𝛾𝜈)

−1√|𝛼𝛽| + (
𝜈2 log 𝜈−1

)
. (291)

Hence, by (9),

𝑥1𝑥2 =
(
−𝐼2 +

𝑣1 + 𝑣2
2

𝐼1
) 1
𝐼0

= −
|𝛼𝛽|

log (𝛾𝜈)
−1

+ (
𝜈2

)
. (292)

5 Cf. equations (278)– (280) in [24].
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 55

Let the neighborhoods𝑈(𝑣1),𝑈(𝑣2) have radius 𝜈∕3; they will be therefore contracting as 𝜈 → 0.
We now evaluate the jumps 𝐽𝑆(𝑧) of 𝑆 on the edges of the lenses ΓΦ,𝐿 ∪ ΓΦ,𝑈 . Recall from (83)
that these jumps were exponentially close to the identity, in the case where 𝑣1 and 𝑣2 were fixed.
For 𝑧 ∈ ΓΦ,𝐿 ∪ ΓΦ,𝑈 and 𝑧 bounded away from the points 𝑣1, 𝑣2, it is clear that the jumps are still
exponentially close to the identity so that (83) holds, and we consider the case where 𝑧 → 𝑣1+𝑣2

2
along the edges of the lenses. We substitute (292) into the definition of 𝜙 in (77) and obtain (taking
𝑢 =

𝑧−𝑣2
𝑣2−𝑣1

)

𝜙(𝑧) =
±𝑖

√|𝛼𝛽|
log (𝛾𝜈)

−1 ∫
𝑧−𝑣2
2𝜈

0

𝑑𝑢√
𝑢(𝑢 + 1)

(
1 + (

𝑧 −
𝑣1 + 𝑣2

2

))
, (293)

as 𝜈 → 0, and 𝑧 → 𝑣1+𝑣2
2

. Here ′+′ sign is taken on ΓΦ,𝑈 , and ′−′ sign is taken on ΓΦ,𝐿, and thus
Im𝜙(𝑧) < 0, Im𝜙(𝑧) > 0 on ΓΦ,𝐿 and ΓΦ,𝑈, respectively. Worsening somewhat the error term, we
have that

𝐽𝑆(𝑧) = 𝐼 + (
𝑒−𝑐

√
𝑠(|𝑧|+1)), 𝑐 > 0, (294)

as 𝑠 → ∞, uniformly for 2𝜈 > 𝑠−2+𝜀 and 𝑧 ∈ ΓΦ,𝐿 ∪ ΓΦ,𝑈 .
Next we consider the jumps of 𝑅 on the boundary 𝜕𝑈(𝑝) for 𝑝 ∈  = {−1, 𝑣1, 𝑣2, 1}. Estimating

𝜙(𝑧) as above but now in the definition of 𝜁 in (119), we obtain that as 𝑠 → ∞, uniformly for
2𝜈 > 𝑠−2+𝜀,

1

𝜁(𝑧)1∕2
=

⎧⎪⎨⎪⎩
(

log 𝜈−1

𝑠

)
, uniformly on 𝜕𝑈(𝑣1) and 𝜕𝑈(𝑣2),

(
1

𝑠

)
, uniformly on 𝜕𝑈(1) and 𝜕𝑈(−1).

(295)

To estimateΔ(𝑧), we need to consider .We first observe that by the definition (85), 𝛾(𝑧), 𝛾(𝑧)−1 =
(1) uniformly on 𝜕𝑈(𝑝) for 𝑝 ∈  as 𝜈 → 0 . Using (291) and a simpler expansion for 𝐽0, we
obtain

𝜏 = 𝑖
𝐽0
𝐼0

=
𝜋𝑖

log (𝛾𝜈)
−1

(1 + (
𝜈2

)
), 𝜈 → 0, (296)

and define

𝜅 = 𝑒−𝜋𝑖∕𝜏 = [𝛾𝜈]
1+(𝜈2)

. (297)

By the inversion formula (A.11) for 𝜃-functions,

𝜃(𝑧) =
1√
−𝑖𝜏

∑
𝑘

𝑒
−

𝑖𝜋

𝜏
(𝑘−𝑧)2

=
𝜅⟨𝑧⟩2√
−𝑖𝜏

(
1 + 𝜅1−2⟨𝑧⟩ + 𝜅1+2⟨𝑧⟩) + 

(
𝜅9∕4√|𝜏|

)
, (298)

where

𝑧 = 𝑗 + ⟨𝑧⟩, −1∕2 < ⟨Re 𝑧⟩ ≤ 1∕2, 𝑗 ∈ ℤ. (299)

We now show, in (301) below, thatΔ(𝑧), which enters the jumpmatrix for𝑅, may be too large for
certain parameter sets, which makes it necessary to modify the solution of the RH problem. First,
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56 FAHS and KRASOVSKY

a simple analysis of (89) shows that 𝑑 → −1∕2 as 𝜈 → 0. On the boundary of𝑈(𝑣1),𝑈(𝑣2), we have|𝑢(𝑧)| → 0, uniformly in 𝑧. Therefore, using the boundedness of 𝛾, 𝛾−1 on 𝜕𝑈(𝑝) for 𝑝 ∈  , and
applying (298), we have for the 11 element of on 𝜕𝑈(𝑣1) if ⟨𝜔⟩ > 0 (and thus 𝑢(𝑧) + 𝑑 + ⟨𝜔⟩ =⟨𝑢(𝑧) + 𝑑 + ⟨𝜔⟩⟩ for 𝜈 sufficiently small):
|11| ≤ 𝐶

|||| 𝜃(0)𝜃(𝜔)

𝜃(𝑢(𝑧) + 𝑑 + 𝜔)

𝜃(𝑢(𝑧) + 𝑑)

|||| ≤ 𝐶1
1

𝜅⟨𝜔⟩2 𝜅
⟨𝜔⟩2−⟨𝜔⟩+1∕4

𝜅1∕4
= 𝐶1𝜅

−⟨𝜔⟩ ≤ 𝐶2𝜈
−⟨𝜔⟩, 𝜔 = 𝑠Ω,

(300)

for some constants𝐶, 𝐶1, 𝐶2 > 0. Similarly, we analyze the behavior of11 for ⟨𝜔⟩ < 0, the behav-
ior of other matrix elements of on 𝜕𝑈(𝑣1), as well as the behavior of on 𝜕𝑈(𝑣2) and 𝜕𝑈(±1).
We find that the estimate (300) is the worst (note that, in fact, the estimates for on 𝜕𝑈(±1) are
much better), and thus recalling (295), we have

Δ(𝑧) =  (𝑧)
(
log 𝜈−1

𝑠

)
 (𝑧)−1

= 
(
log 𝜈−1

𝑠
𝜈−2|⟨𝑠Ω⟩|), (301)

as 𝑠 → ∞ and 𝜈 → 0, for 𝑧 ∈ 𝜕𝑈(𝑣𝑝). Thus if, for example, 𝜈 =
1

𝑠
and |⟨𝑠Ω⟩| = 1∕2 (which is a

case we need to deal with since the splitting of the gap regime described in [24] breaks down in
this limit), we cannot say that Δ is small, and so the corresponding jump of 𝑅 is not guaranteed
to be close to the identity, and so we cannot claim solvability of the 𝑅-RH problem. However,
it was shown in [24] for the case of the RH problem of [18] that we can modify the solution to
ensure solvability for the range 2𝜈 > 𝑠−5∕4. We now provide more details of that construction in
the present case, and apply it for all values of ⟨𝑠Ω⟩.
Let

𝑡 = ⟨𝑠Ω⟩ + 𝑘∕2, (302)

where 𝑘 = ±1 is chosen such that −1∕2 < 𝑡 ≤ 1∕2. Consider the following function:

̃ (𝑧) =

⎛⎜⎜⎜⎝
𝛿 + 𝛿−1

2
�̃�11

𝛿 − 𝛿−1

2𝑖
�̃�12

−
𝛿 − 𝛿−1

2𝑖
�̃�21

𝛿 + 𝛿−1

2
�̃�22

⎞⎟⎟⎟⎠ ,

�̃�(𝑧) =

⎛⎜⎜⎜⎝
𝜃(𝑢(𝑧−) + 𝑑′)

𝜃(𝑢(𝑧−) + 𝑡 + 𝑑′)
0

0
𝜃(𝑢(𝑧−) + 𝑑′)

𝜃(𝑢(𝑧−) − 𝑡 + 𝑑′)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝜃(𝑢(𝑧) + 𝑡 + 𝑑′)

𝜃(𝑢(𝑧) + 𝑑′)

𝜃(𝑢(𝑧) − 𝑡 − 𝑑′)

𝜃(𝑢(𝑧) − 𝑑′)
𝜃(𝑢(𝑧) + 𝑡 − 𝑑′)

𝜃(𝑢(𝑧) − 𝑑′)

𝜃(𝑢(𝑧) − 𝑡 + 𝑑′)

𝜃(𝑢(𝑧) + 𝑑′)

⎞⎟⎟⎟⎠ ,
(303)

where the constant 𝑑′ will be fixed later on, and we now take

𝛿(𝑧) = 𝜈−1∕4
(
(𝑧 − 𝑣1)(𝑧 − 𝑣2)

𝑧2 − 1

)1∕4

, (304)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 57

with branch cuts on (−1, 𝑣1) ∪ (𝑣2, 1), and positive as 𝑧 → ∞ on the first sheet of the Riemann
surface Σ. We have

𝛿(𝑧)+ =

{
𝑖𝛿(𝑧)− on (−1, 𝑣1)

−𝑖𝛿(𝑧)− on (𝑣2, 1)

It is easy to verify that ̃ (𝑧) satisfies the same jump conditions as :

̃+(𝑧)= ̃−(𝑧)

(
0 −1
1 0

)
for 𝑧 ∈ (𝑣2, 1),

̃+(𝑧)= ̃−(𝑧)

(
0 𝑒−2𝜋𝑖(𝑠Ω+𝑘∕2)

−𝑒2𝜋𝑖(𝑠Ω+𝑘∕2) 0

)
= ̃−(𝑧)

(
0 −𝑒−2𝜋𝑖𝑠Ω

𝑒2𝜋𝑖𝑠Ω 0

)
for 𝑧 ∈ (−1, 𝑣1).

(305)

Furthermore, one verifies that 𝛿(𝑧) − 𝛿(𝑧)−1 has two zeros at 𝑧+, 𝑧− located on the first sheet
and such that 𝛿(𝑧+) = 𝛿(𝑧−) = 1 and

𝑧± =
𝑣1 + 𝑣2

2
± 𝑖

√
𝜈|𝛼𝛽| + (𝜈), 𝜈 → 0. (306)

Set

𝑑′ = 𝑢(𝑧+) + 1∕2 + 𝜏∕2,

then it follows by the properties of the Abel map 𝑢(𝑧) (86) that 𝜃(𝑢(𝑧) − 𝑑′) has a single zero at 𝑧+,
and 𝜃(𝑢(𝑧) + 𝑑′) has no zeros on the first sheet ℂ ⧵ 𝐴. Thus ̃ (𝑧−) = 𝐼, and since det ̃ extends
to an entire function, det ̃ (𝑧) = 1 for 𝑧 ∈ ℂ. Considering the zeros and poles of themeromorphic
function 𝛿−2 − 1 on Σ, and using the Abel theorem, we have

𝑢(𝑣1) + 𝑢(𝑣2) − 𝑢(𝑧−) − 𝑢(𝑧+) ≡ 0, (307)

modulo the lattice. Since 𝑢(𝑣1) + 𝑢(𝑣2) ≡ 𝑢(𝑣1) ≡ 𝜏

2
,

𝑢(𝑧+) + 𝑢(𝑧−) ≡ −𝜏∕2, (308)

𝑢(𝑧−) + 𝑑′ ≡ 1∕2. (309)

Using the change of integration variable 𝑥 = 𝑡 +
𝑣1+𝑣2

2
as above, we obtain (fromnow on always

on the first sheet, so modulo ℤ)

𝑢(𝑧+) = −
𝑖
2𝐼0 ∫

𝑧+

𝑣2

𝑑𝑥

𝑝(𝑥)1∕2
= −

1

2𝐼0
√|𝛼𝛽| ∫

𝑖
√|𝛼𝛽|𝜈

𝜈

𝑑𝑡

(𝑡2 − 𝜈2)1∕2

(
1 + (√𝜈)

)
= −

1 + 𝜏
4

−
�̂�
2
+ (√𝜈), (310)

as 𝜈 → 0, where �̂� is real, satisfying �̂� → 0 as 𝜈 → 0. Similarly,

𝑢(𝑧−) =
1 − 𝜏
4

+
�̂�
2
+ (√𝜈). (311)
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58 FAHS and KRASOVSKY

Therefore by the definition of 𝑑′,

𝑑′ =
1 + 𝜏
4

−
�̂�
2
+ (√𝜈), (312)

and

𝑢(𝑧−) + 𝑑′ = 1∕2.

Thus, since 𝜃 is an even function,

�̃�(𝑧) =
𝜃(1∕2)

𝜃(𝑡 + 1∕2)

⎛⎜⎜⎜⎝
𝜃(𝑢(𝑧) + 𝑡 + 𝑑′)

𝜃(𝑢(𝑧) + 𝑑′)

𝜃(−𝑢(𝑧) + 𝑡 + 𝑑′)

𝜃(−𝑢(𝑧) + 𝑑′)
𝜃(𝑢(𝑧) + 𝑡 − 𝑑′)

𝜃(𝑢(𝑧) − 𝑑′)

𝜃(−𝑢(𝑧) + 𝑡 − 𝑑′)

𝜃(−𝑢(𝑧) − 𝑑′)

⎞⎟⎟⎟⎠ . (313)

By (297), 𝜈 → 0 corresponds to 𝜅 → 0. By (298),

𝜃(1∕2)

𝜃(1∕2 + 𝑡)
=

2𝜅|𝑡|−|𝑡|2
1 + 𝜅2|𝑡| (1 + (𝜅)) = (

𝜈|𝑡|−|𝑡|2), 𝜈 → 0. (314)

As 𝜈 → 0, we have 𝑢(𝑧) → 0 uniformly for 𝑧 in the closure of 𝑈(𝑣1) ∪ 𝑈(𝑣2), and by (312),

𝑑′ ± 𝑢(𝑧) = ⟨𝑑′ ± 𝑢(𝑧)⟩ → 1∕4. (315)

Consider first the case 0 < 𝑡 ≤ 1∕4. Pick 0 < 𝜖 < 𝜀∕8. Then, uniformly on the closure of𝑈(𝑣1) ∪
𝑈(𝑣2),

𝜃(1∕2)𝜃(𝑑′ ± 𝑢(𝑧) + 𝑡)

𝜃(1∕2 + 𝑡)𝜃(𝑑′ ± 𝑢(𝑧))
= (

𝜅𝑡−𝑡
2
𝜅𝑡

2+2𝑡(±𝑢(𝑧)+𝑑′)
)
= (

𝜈3𝑡∕2−𝜖
)
,

which is the asymptotics of �̃�(𝑧)11, �̃�(𝑧)12. Moreover,

𝜃(1∕2)𝜃(−𝑑′ ± 𝑢(𝑧) + 𝑡)

𝜃(1∕2 + 𝑡)𝜃(−𝑑′ ± 𝑢(𝑧))
= (

𝜅𝑡−𝑡
2
𝜅𝑡

2+2𝑡(±𝑢(𝑧)−𝑑′)
)
= (

𝜈𝑡∕2−𝜖
)
,

which is the asymptotics of �̃�(𝑧)21, �̃�(𝑧)22.
For 1∕4 < 𝑡 ≤ 1∕2, we have ⟨±𝑢(𝑧) + 𝑡 + 𝑑′⟩ = ±𝑢(𝑧) + 𝑡 + 𝑑′ − 1 so that

𝜃(1∕2)𝜃(𝑑′ ± 𝑢(𝑧) + 𝑡)

𝜃(1∕2 + 𝑡)𝜃(𝑑′ ± 𝑢(𝑧))
= (

𝜅𝑡−𝑡
2
𝜅𝑡

2+2𝑡(±𝑢(𝑧)+𝑑′−1)+(3∕4)2−(1∕4)2−𝜖
)
= (

𝜈(1−𝑡)∕2−𝜖
)
,

which is the asymptotics of �̃�(𝑧)11, �̃�(𝑧)12, and finally

𝜃(1∕2)𝜃(𝑑′ ± 𝑢(𝑧) + 𝑡)

𝜃(1∕2 + 𝑡)𝜃(𝑑′ ± 𝑢(𝑧))
= (

𝜈𝑡∕2−𝜖
)
,

which is the asymptotics of �̃�(𝑧)21, �̃�(𝑧)22.
Similarly, we analyze the case of −1∕2 < 𝑡 ≤ 0. Collecting the results together, we obtain

�̃�(𝑧) = (
𝜈|𝑡|∕2−𝜖) + (

𝜈(1−|𝑡|)∕2−𝜖) = (𝜈−𝜖), 𝜈 → 0, (316)

uniformly on the closure of𝑈(𝑣1) ∪ 𝑈(𝑣2). By similar arguments, we obtain the same estimate also
on the closure of 𝑈(1) ∪ 𝑈(−1) (in this case, |𝑢(𝑧) + 1∕2| ≤ 𝜖′, 𝜖′ > 0.)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 59

On the other hand, the definition of 𝛿 gives

𝛿(𝑧) + 𝛿(𝑧)−1, 𝛿(𝑧) − 𝛿(𝑧)−1 = (
𝜈−1∕4

)
, (317)

uniformly for 𝑧 ∈ 𝜕𝑈(𝑝) as 𝜈 → 0, for 𝑝 ∈  = {−1, 𝑣1, 𝑣2, 1}.
Thus,

̃ (𝑧), ̃ (𝑧)−1 = 
(

1

𝜈1∕4+𝜖

)
, (318)

as 𝜈 → 0, uniformly on 𝜕𝑈(𝑝) for 𝑝 ∈  .
Since the solution to the RH problem for is unique, we have

 (𝑧) = ̃ (∞)−1̃ (𝑧). (319)

Define the new local parametrices by

𝑃(𝑧) = ̃ (∞)𝑃(𝑧), (320)

and let

𝑅(𝑧) =

{̃ (∞)𝑆(𝑧)̃ (𝑧)−1 𝑧 ∈ ℂ ⧵ ∪𝑝∈ 𝑈(𝑝),

̃ (∞)𝑆(𝑧)𝑃(𝑧)−1 𝑧 ∈ ∪𝑝∈ 𝑈(𝑝),
(321)

Then 𝑅(𝑧) → 1 as 𝑧 → ∞; and 𝑅(𝑧) has jumps on Γ𝑅, see Figure 5. By (124) and the expansion of
𝜁 in (295), the jumps of 𝑅(𝑧) on 𝜕𝑈(𝑝) have the form

𝑃(𝑧)̃−1(𝑧) = 𝐼 + Δ̃(𝑧), Δ̃(𝑧) = 
(

log 𝜈−1

𝑠𝜈1∕2+2𝜖

)
, (322)

uniformly for 𝑧 ∈ 𝑈(𝑝) as 𝑠 → ∞ for 2𝜈 > 𝑠−2+𝜀.
For the proof of Lemma 25 below, we will also require the finer estimate

Δ̃(𝑧) = Δ̃1(𝑧) + ̃ (𝑧)
⎛⎜⎜⎝
(
log 𝜈−1

)2
𝑠2

⎞⎟⎟⎠̃ (𝑧)−1, (323)

where

Δ̃1(𝑧) =
∓1

8
√
𝜁(𝑧)

̃ (𝑧)𝑒𝑖𝑠𝜙(𝑝)𝜎3
(
−1 −2𝑖
−2𝑖 1

)
𝑒−𝑖𝑠𝜙(𝑝)𝜎3̃−1(𝑧), 𝑝 = −1, 𝑣2,

Δ̃1(𝑧) =
∓1

8
√
𝜁(𝑧)

̃ (𝑧)𝑒𝑖𝑠𝜙(𝑝)𝜎3
(
−1 2𝑖
2𝑖 1

)
𝑒−𝑖𝑠𝜙(𝑝)𝜎3̃−1(𝑧), 𝑝 = 𝑣1, 1,

(324)

where ∓means + for Im 𝑧 < 0 and − for Im 𝑧 > 0.
By (294), the jumps of 𝑅(𝑧) on the rest of the contour are estimated as follows (we decrease

𝑐 > 0 somewhat)

̃ (𝑧)𝐽𝑆(𝑧)̃ (𝑧)−1 = 𝐼 + (
𝑒−𝑐

√
𝑠(|𝑧|+1)), 𝑐 > 0, (325)
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60 FAHS and KRASOVSKY

as 𝑠 → ∞, uniformly for 2𝜈 > 𝑠−2+𝜀 and for 𝑧 ∈ Γ𝑅,𝐿 ∪ Γ𝑅,𝑈 . Thus 𝑅 satisfies a small-norm
problem and therefore has a solution for 𝑠 sufficiently large and 2𝜈 > 𝑠−2+𝜀, and

𝑅(𝑧) = 𝐼 + 
(

log 𝜈−1

𝑠𝜈1∕2+2𝜖

)
, (326)

as 𝑠 → ∞, uniformly for 2𝜈 > 𝑠−2+𝜀, and uniformly for 𝑧 ∈ ℂ ⧵ Γ𝑅.
Since the RH problem for 𝑅 has a unique solution, the RH problem for 𝑆 (and hence for Φ) has

a unique solution obtained by tracing back the transformations.

10.2 Integration of the differential identity

We now prove

Lemma 25. Let −1 < 𝑉1 < 𝑉2 < 1 be fixed, and 𝑉1 < 𝑉2 < 𝑉2 be such that |𝑉2 − 𝑉1| > 𝑠−5∕4.
Then, uniformly for such 𝑉2 as 𝑠 → ∞,

log det(𝐼 − 𝐾𝑠)𝐴 − log det(𝐼 − 𝐾𝑠)(−1,𝑉1)∪(𝑉2,1)
= ∫

𝑉2

𝑉2

𝐷(𝑉1, 𝑣2)𝑑𝑣2 + (𝑠−1∕9), (327)

where 𝐷 is defined in (171) of Proposition 17.

Proof. In this proof, 𝜖 stands for a sufficiently small positive constant whose value may vary from
line to line.
In the previous section, we obtained the asymptotic solution of the 𝑆-RH problem in the regime

𝑠 → ∞, 2𝜈 > 𝑠−2+𝜖. By (129), 𝑅 is also well defined in this regime,

𝑅(𝑧) = �̃�(∞)−1𝑅(𝑧)�̃�(∞), (328)

and thus (164) holds. We now aim to prove the analogue of (166), namely

𝑠(𝑣1, 𝑣2) =
𝑠2𝜁20
4

−
𝜁0𝑠
4
𝑚11,0𝑚22,0

(
𝛾20Γ2 + Γ1

)
+
𝑖𝜁0𝛾

2
0

4
𝑊(𝑠Ω) + 

(
1

𝑠𝜈3∕2+𝜖
+

1

𝑠2𝜈5∕2+𝜖

)
,

(329)

as 𝑠 → ∞, uniformly for 2𝜈 > 𝑠−5∕4, with the same notation as in (164), (166).
By (91) and (303), using (158) and similar identities for �̃�𝑗𝑘, we obtain

̃ (𝑧) =
𝛿−1(𝑧)

2

(
�̃�11(𝑣2) 𝑖�̃�11(𝑣2)
−𝑖�̃�22(𝑣2) �̃�22(𝑣2)

)
+ (

(𝑧 − 𝑣2)
1∕4

)
, (330)

 (𝑧) =
𝛾(𝑧)
2

(
𝑚11(𝑣2) 𝑖𝑚11(𝑣2)
−𝑖𝑚22(𝑣2) 𝑚22(𝑣2)

)
+ (

(𝑧 − 𝑣2)
1∕4

)
, (331)

as 𝑧 → 𝑣2.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 61

Thus, substituting (330) and (331) into (319) and taking the limit 𝑧 → 𝑣2, we obtain(
𝑚11(𝑣2)
−𝑖𝑚22(𝑣2)

)
=

(
lim
𝑧→𝑣2

1
𝛾(𝑧)𝛿(𝑧)

)
̃ (∞)−1

(
�̃�11(𝑣2)
−𝑖�̃�22(𝑣2)

)
,

(
𝑖𝑚22(𝑣2) 𝑚11(𝑣2)

)
=

(
lim
𝑧→𝑣2

1
𝛾(𝑧)𝛿(𝑧)

)(
𝑖�̃�22(𝑣2) �̃�11(𝑣2)

)
�̃�(∞).

(332)

By the definition of 𝛾 and 𝛿 in (85) and (304), lim𝑧→𝑣2 𝛾(𝑧)𝛿(𝑧) =
√
2𝜈1∕4∕

√
(𝑣2 + 1). Thus, by

(328), the third term on the right hand side of (164) is given by

𝑖𝑠𝜁0𝛾
2
0

4

(
𝑖𝑚22,0 𝑚11,0

)
𝑅−1(𝑣2)𝑅

′(𝑣2)

(
𝑚11,0

−𝑖𝑚22,0

)

=
𝑖𝑠𝜁0𝛾

2
0(1 + 𝑣2)

8𝜈1∕2
(
𝑖�̃�22(𝑣2) �̃�11(𝑣2)

)
𝑅−1(𝑣2)𝑅

′(𝑣2)

(
�̃�11(𝑣2)
−𝑖�̃�22(𝑣2)

)
, (333)

which we now evaluate. By (292), (156), (157),

𝜁0𝛾
2
0 = 

(
1

log 𝜈−1

)
, (334)

as 𝜈 → 0.
By the definition of Δ1, Δ̃1, and by (319),

Δ̃1(𝑧) = �̃�(∞)Δ1(𝑧)�̃�(∞)−1, (335)

and thus, by (332), and (167),

𝑊(𝜔) =
(1 + 𝑣2)

2
√
𝜈

(
𝑖�̃�22(𝑣2; 𝜔) �̃�11(𝑣2; 𝜔)

) ∑
𝑝∈ ∫𝜕𝑈(𝑝)

𝑠Δ̃1(𝑧; 𝜔)

(𝑧 − 𝑣2)2
𝑑𝑧
2𝜋𝑖

(
�̃�11(𝑣2; 𝜔)
−𝑖�̃�22(𝑣2; 𝜔)

)
. (336)

Note that 𝑅 satisfies (we denote the jump of 𝑅 on Γ𝑅 by 𝐼 + Δ̃(𝑧))

𝑅(𝑧) = 𝐼 + ∫Γ𝑅
𝑅−(𝜉)Δ̃(𝜉)

𝜉 − 𝑧

𝑑𝜉
2𝜋𝑖

. (337)

By (337), (322), (325), (326), and the fact that 𝑈(𝑣1) and 𝑈(𝑣2) have radius 𝜈∕3,

𝑅 ′(𝑣2) = ∫Γ𝑅
(
𝐼 + ∫Γ𝑅

𝑅−(𝑢)Δ̃(𝑢)

𝑢 − 𝜉−

𝑑𝑢
2𝜋𝑖

)
Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

= ∫𝜕𝑈(𝑣1)∪𝜕𝑈(𝑣2)

(
𝐼 + ∫Γ𝑅

Δ̃(𝑢)

𝑢 − 𝜉−
𝑑𝑢 + 

(
1

𝑠2𝜈1+4𝜖

))
Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

+ ∫𝜕𝑈(1)∪𝜕𝑈(−1)

Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

+ 
(

1
𝑠2𝜈1+4𝜖

)
,

𝑅(𝑣2)
−1 = 𝐼 − ∫Γ𝑅

Δ̃(𝑢)
𝑢 − 𝑣2

𝑑𝑢
2𝜋𝑖

+ 
(

1
𝑠2𝜈1+4𝜖

)
,

(338)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22147 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [13/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



62 FAHS and KRASOVSKY

as 𝑠 → ∞, uniformly for 𝑧 ∈ ℂ ⧵ Γ𝑅 and for 2𝜈 > 𝑠−5∕4. Thus,

𝑅(𝑣2)
−1𝑅 ′(𝑣2) = ∫𝜕𝑈(𝑣1)∪𝜕𝑈(𝑣2)

(
𝐼 + ∫Γ𝑅 Δ̃(𝑢)

(
1

𝑢 − 𝜉−
−

1
𝑢 − 𝑣2

)
𝑑𝑢 + 

(
1

𝑠2𝜈1+𝜖

))

×
Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

+ ∫𝜕𝑈(1)∪𝜕𝑈(−1)

Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

+ 
(

1
𝑠2𝜈1+𝜖

)
,

in the same limit. Since 1

𝑢−𝜉−
−

1

𝑢−𝑣2
= (𝜈) when 𝑢 ∈ 𝜕𝑈(1) ∪ 𝜕𝑈(−1) and 𝜉− ∈ 𝜕𝑈(𝑣1) ∪ 𝜕𝑈(𝑣2),

we obtain

𝑅(𝑣2)
−1𝑅 ′(𝑣2) = ∫𝜕𝑈(𝑣1)∪𝜕𝑈(𝑣2)

(
𝐼 + ∫𝜕𝑈(𝑣1)∪𝜕𝑈(𝑣2)

Δ̃(𝑢)

(
1

𝑢 − 𝜉−
−

1
𝑢 − 𝑣2

)
𝑑𝑢

+
(

1
𝑠2𝜈1+𝜖

+
𝜈1∕2−𝜖

𝑠

))
Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

+ ∫𝜕𝑈(1)∪𝜕𝑈(−1)

Δ̃(𝜉)

(𝜉 − 𝑣2)2
𝑑𝜉
2𝜋𝑖

+ 
(

1
𝑠2𝜈1+𝜖

)
. (339)

We will now estimate (333). For estimates on 𝜕𝑈(−1) ∪ 𝜕𝑈(1), recall that by (316), �̃�(𝑣2) is of
order 𝜈−𝜖. For estimates on 𝜕𝑈(𝑣1) ∪ 𝜕𝑈(𝑣2) we need more precise information: note that by (330),

(
1
0

)
= ̃ (𝑧)−1̃ (𝑧)

(
1
0

)
=

𝛿−1(𝑧)
2

̃ (𝑧)−1
(

�̃�11(𝑣2)
−𝑖�̃�22(𝑣2)

)
+ (

𝜈−1∕4−𝜖𝛿(𝑧)
)
, (340)

on 𝜕𝑈(𝑣1) ∪ 𝜕𝑈(𝑣2), and therefore

̃ (𝑧)−1
(

�̃�11(𝑣2)
−𝑖�̃�22(𝑣2)

)
= (

𝜈1∕4−𝜖
)
, (341)

as 𝜈 → 0 for 𝑧 ∈ 𝜕𝑈(𝑣1) ∪ 𝜕𝑈(𝑣2). Similarly,(
𝑖�̃�22(𝑣2) �̃�11(𝑣2)

)
�̃�(𝑧) = (

𝜈1∕4−𝜖
)
. (342)

Estimates (339), and (341), (342) on 𝜕𝑈(𝑣1) ∪ 𝜕𝑈(𝑣2), and �̃�(𝑣2) = (𝜈−𝜖),  (𝑧) = (𝜈−1∕4−𝜖)
on 𝜕𝑈(−1) ∪ 𝜕𝑈(1) imply that (333) can be written as

𝑖𝑠𝜁0𝛾
2
0

4

(
𝑖𝑚22,0 𝑚11,0

)
𝑅−1(𝑣2)𝑅

′(𝑣2)

(
𝑚11,0

−𝑖𝑚22,0

)

=
𝑖𝜁0𝛾

2
0

4
𝑠(1 + 𝑣2)

2𝜈1∕2
(
𝑖�̃�22(𝑣2) �̃�11(𝑣2)

)
𝑅−1(𝑣2)𝑅

′(𝑣2)

(
�̃�11(𝑣2)
−𝑖�̃�22(𝑣2)

)

=
𝑖𝜁0𝛾

2
0

4
𝑊(𝑠Ω) + 

(
1

𝑠𝜈3∕2+𝜖
+

1

𝑠2𝜈5∕2+𝜖

)
. (343)

Thus we obtained (329). After integration, the error term here yields the one not larger than
that of the statement of the lemma, (𝑠−1∕9).
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 63

To finish the proof of the lemma we need to estimate the error of replacing𝑊 with its average
value. From the definition (336) and the estimates above, we deduce

𝑓(𝜔) = 𝜁0𝛾
2
0𝑊(𝜔) = 

(
1

𝜈1+𝜖

)
, 𝜈 → 0. (344)

By (291),

Ω =
1
𝐼0

=

√|𝛼𝛽|
log (𝛾𝜈)

−1

(
1 + (𝜈2)), 𝜕Ω

𝜕𝑣2
= 

(
1

𝜈(log 𝜈−1)
2

)
,

𝜕2Ω

𝜕𝑣22
= 

(
1

𝜈2(log 𝜈−1)
2

)
,

(345)

as 𝜈 → 0.
First, we have 𝑓 = (𝜈−1−𝜖) and 𝜕

𝜕𝑣2
𝑓 = (𝜈−2−𝜖). By the analysis leading to (316), 𝜕

𝜕𝜔
�̃�(𝑣2) =

(𝜈−𝜖 log 𝜈), 𝜔 = 𝑠Ω, and therefore, adjusting 𝜖, we also have 𝜕

𝜕𝜔
𝑓 = (𝜈−1−𝜖) and 𝜕

𝜕𝜔

𝜕

𝜕𝑣2
𝑓 =

(𝜈−2−𝜖). Thus, by (179) and a similar expression for 𝜕

𝜕𝑣2
𝑓𝑗 , the right hand side of (175) is of order

1

𝑗2𝑠𝜈𝜖
, and we obtain

∫
𝑉2

𝑉2

𝑓(𝑠Ω; 𝑣2, 𝑣1)𝑑𝑣2 =
∞∑

𝑗=−∞
∫

𝑉2

𝑉2

𝑓𝑗(𝑣2, 𝑣1)𝑒
2𝜋𝑖𝑗𝑠Ω𝑑𝑣2 = ∫

𝑉2

𝑉2

𝑓0(𝑣2, 𝑣1)𝑑𝑣2 + 
(

1
𝑠𝜈𝜖

)
,

(346)

as 𝑠 → ∞, uniformly for 2𝜈 > 𝑠−5∕4. The error term here is better than the one of the statement of
the lemma. Thus the lemma is proved. □

10.3 Proof of Theorem 4

By (194) and Lemma 25, we see that to show that the expansion (14) holds in the asymptotic regime
of Theorem 4 (with the error term (𝑠−1∕9)) it remains to prove that

∫
𝑉2

𝑉2

(
𝜕𝜏
𝜕𝑣2 ∫

1

0

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)𝑑𝜔

)
−

(
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝑠Ω; 𝜏)

)
𝑑𝑣2 = 

(
1
𝑠𝜈𝜖

)
. (347)

Since by (224), (291),

𝜕𝜏
𝜕𝑣2

=
𝑖𝜋

𝐼20(1 − 𝑣22)(𝑣2 − 𝑣1)
= 

(
1

𝜈 log2(𝛾𝜈)−1

)
, (348)

and by (298), (297),

1
𝜃(𝜔)

𝑑𝑘

𝑑𝜔𝑘
𝜃(𝜔) = (

log𝑘(𝛾𝜈)−1
)
,
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64 FAHS and KRASOVSKY

we obtain

𝜕
𝜕𝜔

(
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)

)
=

1
4𝜋𝑖

𝜕𝜏
𝜕𝑣2

(
𝜃′′3
𝜃3

)′

(𝜔) = 
(
log(𝛾𝜈)−1

𝜈

)
. (349)

Also since by (219),

𝜕2𝜏

𝜕𝑣22
= 

(
1

𝜈2 log2(𝛾𝜈)−1

)
, (350)

we similarly obtain

𝜕
𝜕𝜔

𝜕
𝜕𝑣2

(
𝜕𝜏
𝜕𝑣2

𝜕
𝜕𝜏

log 𝜃3(𝜔; 𝜏)

)
= 

(
log(𝛾𝜈)−1

𝜈2

)
. (351)

The estimates (349) and (351) imply, as in the proof of (346), the estimate (347). Thus, we have
proven the first statement of Theorem 4.
Since we have proven the uniformity of Theorem 1 for 2𝜈 > 𝑠−5∕4, all that remains to show (19)

is to expand 𝐺0, log 𝜃3(𝑠Ω; 𝜏), and 𝑐1 as 𝜈 → 0.
By (10) and (292),

𝐺0 =
1
2
−

|𝛼𝛽|
log(𝛾𝜈)−1

+ (
𝜈2

)
, (352)

as 𝜈 → 0.
By the formula for Ω in (345), 𝜃 in (298), 𝜅 in (297), 𝜏 in (296),

log 𝜃3(𝑠Ω; 𝜏) =
1
2
log log(𝛾𝜈)−1 − ⟨𝜔0⟩2 log(𝛾𝜈)−1 + log

(
1 + (𝛾𝜈)1−2|⟨𝜔0⟩|) − 1

2
log 𝜋 + 𝑜(1),

(353)
as 𝑠𝜈 → 0, where

𝑠Ω = 𝜔0 + 𝑜(1),

with 𝜔0 given by (20).
By the asymptotics for 𝐼0 in (291) and 𝑥1𝑥2 in (292), and by (8),

𝑐1 = −
1
4
log log(𝛾𝜈)−1 −

1
8
log |𝛼𝛽| + 1

2
log 𝜋 + 2𝑐0 + 𝑜(1), (354)

as 𝜈 → 0. Thus we obtain (19) if 𝑠𝜈 → 0.
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APPENDIX A: 𝜽-FUNCTIONS AND ELLIPTIC INTEGRALS
Here we collect the properties of Jacobian 𝜃-functions and elliptic integrals we need in the main
text. For more information on the topic, see [27, 36, 40].
The third Jacobian 𝜃-function is defined by a series6:

𝜃3(𝑧; 𝜏) ≡ 𝜃3(𝑧) ≡ 𝜃(𝑧) =
∑
𝑚∈ℤ

𝑒2𝜋𝑖𝑧𝑚+𝜋𝑖𝜏𝑚2
, Im 𝜏 > 0. (A.1)

The function 𝜃(𝑧) satisfies the periodicity properties:

𝜃(𝑧) = 𝜃(𝑧 + 1), 𝜃(𝑧 ± 𝜏) = 𝑒∓2𝜋𝑖𝑧−𝜋𝑖𝜏𝜃(𝑧). (A.2)

It is an entire function which is even, 𝜃(𝑧) = 𝜃(−𝑧). Furthermore, 𝜃(𝑧) has a single zero modulo
the lattice (ℤ, 𝜏ℤ) at 1+𝜏

2
, and at the zero the derivative 𝜃′(𝑧) is non-zero.

The first, second, and fourth 𝜃-functions are then defined as follows:

𝜃1(𝑧) = 𝑖𝑒
−𝜋𝑖𝑧+

𝜋𝑖𝜏

4 𝜃3

(
𝑧 −

𝜏 + 1
2

)
,

𝜃2(𝑧) = 𝜃1(𝑧 + 1∕2) = 𝑒−𝜋𝑖𝑧+𝜋𝑖𝜏∕4𝜃3
(
𝑧 −

𝜏
2

)
, 𝜃4(𝑧) = 𝜃3(𝑧 + 1∕2).

(A.3)

6 𝜃-functions are defined in [40] with argument 𝑧∕𝜋.
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 67

The function 𝜃1(𝑧) is odd, while 𝜃2(𝑧), 𝜃4(𝑧) are even. The unique zeros (modulo the lattice) of 𝜃1,
𝜃2 and 𝜃4 are at 0,1∕2 and 𝜏∕2, respectively, and we have the periodicity properties:

𝜃1(𝑧 + 1) = −𝜃1(𝑧), 𝜃1(𝑧 + 𝜏) = −𝑒−2𝜋𝑖𝑧−𝜋𝑖𝜏𝜃1(𝑧),

𝜃2(𝑧 + 1) = −𝜃2(𝑧), 𝜃2(𝑧 + 𝜏) = 𝑒−2𝜋𝑖𝑧−𝜋𝑖𝜏𝜃2(𝑧),

𝜃4(𝑧 + 1) = 𝜃4(𝑧), 𝜃4(𝑧 + 𝜏) = 𝑒−2𝜋𝑖𝑧−𝜋𝑖𝜏𝜃4(𝑧).

(A.4)

From the periodicity properties we have

𝜃′𝑗(𝑧 + 1)

𝜃𝑗(𝑧 + 1)
=

𝜃′𝑗(𝑧)

𝜃𝑗(𝑧)
,

𝜃′𝑗(𝑧 + 𝜏)

𝜃𝑗(𝑧 + 𝜏)
=

𝜃′𝑗(𝑧)

𝜃𝑗(𝑧)
− 2𝜋𝑖,

𝜃′′𝑗 (𝑧 + 1)

𝜃𝑗(𝑧 + 1)
=

𝜃′′𝑗 (𝑧)

𝜃𝑗(𝑧)
,

𝜃′′𝑗 (𝑧 + 𝜏)

𝜃𝑗(𝑧 + 𝜏)
=

𝜃′′𝑗 (𝑧)

𝜃𝑗(𝑧)
− 4𝜋𝑖

𝜃′𝑗(𝑧)

𝜃𝑗(𝑧)
− 4𝜋2, 𝑗 = 1, 2, 3, 4.

(A.5)

We denote 𝜃𝑗 = 𝜃𝑗(0), and the derivatives at zero 𝜃′𝑗 = 𝜃′𝑗(0), etc. In particular, we have

expansions at zero: 𝜃3(𝑧) = 𝜃3 +
𝑧2

2
𝜃′′3 +⋯, 𝜃1(𝑧) = 𝑧𝜃′1 + 𝑧3

𝜃′′′1
6
+⋯.

We will use representations of 𝜃3 in terms of 𝜃1. By (A.3),

𝜃′3(𝑧)

𝜃3(𝑧)
=

𝜃′1(𝜈)

𝜃1(𝜈)
− 𝜋𝑖, 𝜈 = 𝑧 −

1 + 𝜏
2

, (A.6)

and

𝜃′′3 (𝑧)

𝜃3(𝑧)
=

𝜃′′1 (𝜈)

𝜃1(𝜈)
− 2𝜋𝑖

𝜃′1(𝜈)

𝜃1(𝜈)
− 𝜋2, 𝜈 = 𝑧 −

1 + 𝜏
2

. (A.7)

𝜃-functions satisfy Jacobian addition relations, of which we will make use of the following two:

𝜃2(𝑥 + 𝑦)𝜃3(𝑥 − 𝑦) + 𝜃2(𝑥 − 𝑦)𝜃3(𝑥 + 𝑦) =
2

𝜃2𝜃3
𝜃2(𝑥)𝜃2(𝑦)𝜃3(𝑥)𝜃3(𝑦), (A.8)

𝜃4(𝑥 + 𝑦)𝜃3(𝑥 − 𝑦) + 𝜃4(𝑥 − 𝑦)𝜃3(𝑥 + 𝑦) =
2

𝜃4𝜃3
𝜃4(𝑥)𝜃4(𝑦)𝜃3(𝑥)𝜃3(𝑦). (A.9)

𝜃-functions satisfy the differential equation

𝜃′′𝑗 (𝑧) = 4𝜋𝑖
𝜕
𝜕𝜏

𝜃𝑗(𝑧), 𝑗 = 1, 2, 3, 4, (A.10)

some useful for us well-known identities for the values at zero:

𝜃′1 = 𝜋𝜃2𝜃3𝜃4, 𝜃43 = 𝜃42 + 𝜃44,

and the following transformation formula for 𝜏 → 1∕𝜏,

𝜃3(𝑧) =
1√
−𝑖𝜏

∑
𝑘

𝑒
−

𝑖𝜋

𝜏
(𝑘−𝑧)2

. (A.11)
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68 FAHS and KRASOVSKY

We will also need the following identity:(
𝜃′3(𝑧)

𝜃3(𝑧)

)′

=

(
𝜃′1
𝜃3

)2
𝜃1(𝑧)

2

𝜃3(𝑧)2
+
𝜃′′3
𝜃3

. (A.12)

To show it, we first observe that both sides of the equation are elliptic functions (i.e., they sat-
isfy the periodicity relations 𝑓(𝑧 + 1) = 𝑓(𝑧), 𝑓(𝑧 + 𝜏) = 𝑓(𝑧)) with second-order pole at 𝑧 =
(1 + 𝜏)∕2. Considering the expansions of these functions at the pole, we obtain that the differ-
ence of these functions has a pole of order at most 1, and is therefore a constant. This constant is
then evaluated setting 𝑧 = 0.
Changing variable 𝑧 = 𝜈 +

1+𝜏

2
in (A.12), we also obtain

(
𝜃′1(𝜈)

𝜃1(𝜈)

)′

= −

(
𝜃′1
𝜃3

)2
𝜃3(𝜈)

2

𝜃1(𝜈)2
+
𝜃′′3
𝜃3

. (A.13)

We further have

Lemma A.1. If 𝑔(𝑧) is an elliptic function with a single pole modulo the lattice, located at 𝑧 = 1+𝜏

2
,

and

𝑔

(
𝜈 +

1 + 𝜏
2

)
= 𝑐1𝜈

−2 + (
𝜈−1

)
, (A.14)

as 𝜈 → 0, then

𝑔(𝑧) = −𝑐1

⎡⎢⎢⎣
(
𝜃′3(𝑧)

𝜃3(𝑧)

)′

−
𝜃′′3
𝜃3

⎤⎥⎥⎦ + 𝑔(0), (A.15)

and furthermore

∫
1

0
𝑔(𝑧)𝑑𝑧 = 𝑐1

𝜃′′3
𝜃3

+ 𝑔(0). (A.16)

Proof. The second part of the lemma, (A.16), follows directly from (A.15).
To show (A.15) note first that since 𝜃3(𝑧) has a zero of order 1 at

1+𝜏

2
,

𝜃′3(𝑧)

𝜃3(𝑧)
=

1

𝑧 −
1+𝜏

2

+ (1), (A.17)

as 𝑧 → 1+𝜏

2
. By the fact that ( 𝜃

′
3(𝑧)

𝜃3(𝑧)
)′ is elliptic and the hypothesis of the theorem,

𝑔(𝑧) + 𝑐1

(
𝜃′3(𝑧)

𝜃3(𝑧)

)′

(A.18)

is an elliptic function with a single simple pole modulo the lattice, and therefore is a constant. By
(A.12), this constant is 𝑔(0) + 𝑐1

𝜃′′3
𝜃3
. This shows (A.15). □
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 69

Lemma A.2. We have

∫
1

0

(
𝜃′3(𝑧)

𝜃3(𝑧)

)2

𝑑𝑧 =
𝜋2

3
+

𝜃′′′1
3𝜃′1

, (A.19)

and, for any 𝑑, 𝑢,

∫
1

0

𝜃3(𝑧 − 𝑑)𝜃3(𝑧 + 𝑢 + 𝑑)

𝜃3(𝑧)2
𝑑𝑧 =

𝜋
[
𝜃′1(𝑑)𝜃1(𝑢 + 𝑑) − 𝜃1(𝑑)𝜃

′
1(𝑢 + 𝑑)

]
(
𝜃′1

)2
sin(𝜋𝑢)

. (A.20)

Proof. Since

∫
1

0

𝜃′3(𝜔)

𝜃3(𝜔)
𝑑𝜔 = 0, (A.21)

we have by the relation between the logarithmic derivatives of 𝜃1 and 𝜃3 in (A.6),

∫
1

0

(
𝜃′3(𝑧)

𝜃3(𝑧)

)2

𝑑𝑧 = 𝜋2 + ∫
1

0

(
𝜃′3(𝑧)

𝜃3(𝑧)
+ 𝜋𝑖

)2

𝑑𝑧 = 𝜋2 + ∫𝐽
(
𝜃′1(𝜈)

𝜃1(𝜈)

)2

𝑑𝜈, (A.22)

where

𝐽 =

{
𝜈 = 𝑧 −

1 + 𝜏
2

∶ 𝑧 ∈ (0, 1)

}
. (A.23)

Let Γ̃ be the rectangle with corners ±1∕2 ± 𝜏∕2, with positive orientation. Writing the integral
around the contour and using the periodicity relation of 𝜃′1∕𝜃1 in (A.5), we obtain

∫Γ̃
(
𝜃′1(𝜈)

𝜃1(𝜈)

)3

𝑑𝜈 = 6𝜋𝑖 ∫𝐽
(
𝜃′1(𝜈)

𝜃1(𝜈)

)2

𝑑𝜈 + 12𝜋2 ∫𝐽
𝜃′1(𝜈)

𝜃1(𝜈)
𝑑𝜈 − 8𝜋3𝑖. (A.24)

By (A.6), and (A.21), ∫
𝐽

𝜃′1(𝜈)

𝜃1(𝜈)
𝑑𝜈 = 𝜋𝑖, and therefore

∫𝐽
(
𝜃′1(𝜈)

𝜃1(𝜈)

)2

𝑑𝜈 = −
2𝜋3

3
+

1
6𝜋𝑖 ∫Γ̃

(
𝜃′1(𝜈)

𝜃1(𝜈)

)3

𝑑𝜈. (A.25)

Since 𝜃1 has a single zero modulo the lattice located at 0, and since 𝜃′′1 (0) = 0, we obtain

∫Γ̃
(
𝜃′1(𝜈)

𝜃1(𝜈)

)3

𝑑𝜈 = 2𝜋𝑖
𝜃′′′1
𝜃′1

(A.26)

by evaluating the residue of ( 𝜃
′
1(𝜈)

𝜃1(𝜈)
)3 at 0. Combining (A.22), (A.25), and (A.26), we obtain (A.19).

To obtain (A.20), we first observe that by (A.3), (A.4),

∫
1

0

𝜃(𝑧 − 𝑑)𝜃(𝑧 + 𝑢 + 𝑑)

𝜃(𝑧)2
𝑑𝑧 = 𝑒−𝜋𝑖𝑢 ∫𝐽

𝜃1(𝜈 − 𝑑)𝜃1(𝑢 + 𝜈 + 𝑑)

𝜃1(𝜈)2
𝑑𝜈, (A.27)
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70 FAHS and KRASOVSKY

where again 𝐽 = {𝜈 = 𝑧 −
1+𝜏

2
, 𝑧 ∈ (0, 1)}. With Γ̃ as above, we have by periodicity properties that

∫Γ̃
𝜃1(𝜈 − 𝑑)𝜃1(𝑢 + 𝜈 + 𝑑)

𝜃1(𝜈)2
𝑑𝜈 =

(
1 − 𝑒−2𝜋𝑖𝑢

)
∫𝐽

𝜃1(𝜈 − 𝑑)𝜃1(𝑢 + 𝜈 + 𝑑)

𝜃1(𝜈)2
𝑑𝜈. (A.28)

On the other hand, computing the residue, we obtain

∫Γ̃
𝜃1(𝜈 − 𝑑)𝜃1(𝑢 + 𝜈 + 𝑑)

𝜃1(𝜈)2
𝑑𝜈 =

2𝜋𝑖

(𝜃′1)
2

(
𝜃′1(𝑑)𝜃1(𝑢 + 𝑑) − 𝜃1(𝑑)𝜃

′
1(𝑢 + 𝑑)

)
. (A.29)

The last 3 equations give (A.20). □

Recall the definition of the elliptic integrals 𝐼𝑗 = 𝐼𝑗(𝑣1, 𝑣2), 𝐽𝑗 = 𝐽𝑗(𝑣1, 𝑣2) from (5).

Lemma A.3. There holds a Riemann’s period relation:(
𝐼2 −

𝑣1 + 𝑣2
2

𝐼1
)
𝐽0 − 𝐼0

(
𝐽2 −

𝑣1 + 𝑣2
2

𝐽1
)
= 𝜋. (A.30)

Proof. We cut the Riemann surface Σ along the loops𝐴1, 𝐵1, which yields a 4-gon 𝛾 with the sides
𝐴1, 𝐵1, 𝐴−1

1 , 𝐵−1
1 (the side 𝐴1 is identified with 𝐴−1

1 on the surface, the same with 𝐵1, 𝐵−1
1 ). The

standard Riemann period relation between meromorphic differentials 𝜆, 𝜇 on Σ is as follows:

∫𝛾 Λ𝜇 = ∫𝐴1

𝜆 ∫𝐵1 𝜇 − ∫𝐴1

𝜇 ∫𝐵1 𝜆, Λ(𝑥) = ∫
𝑥

𝑥0

𝜆, 𝑥 ∈ Σ, (A.31)

where 𝛾 is traversed in the positive direction, and where 𝑥0 is a fixed point on the surface away
from the cuts.
Now taking 𝜆 =

𝑥2−𝑥(𝑣1+𝑣2)∕2

𝑝(𝑥)1∕2
𝑑𝑥, 𝜇 =

𝑑𝑥

𝑝(𝑥)1∕2
, we have in the local variable 𝜉 = 1∕𝑧, 𝜆 =

∓(1 + (𝜉2)) 𝑑𝜉
𝜉2
, 𝜇 = ∓(1 + (𝜉))𝑑𝜉, as 𝜉 → 0. Here the upper sign is taken on the first sheet,

and the lower one on the second. Computing the residue at 𝑧-infinity (at two points on Σ
corresponding to it) of Λ𝜇, we obtain (A.30). □

The complete elliptic integrals of first and second kind, respectively, are defined as follows:

𝐾(𝑣) = ∫
1

0

𝑑𝑡√
(1 − 𝑡2)(1 − 𝑣2𝑡2)

, 𝐸(𝑣) = ∫
1

0

√
1 − 𝑣2𝑡2

1 − 𝑡2
𝑑𝑡. (A.32)

Moreover, let

𝐾′(𝑣) = ∫
1∕𝑣

1

𝑑𝑡√
(𝑡2 − 1)(1 − 𝑣2𝑡2)

, 𝐸(𝑣) = ∫
1∕𝑣

1

√
1 − 𝑣2𝑡2

𝑡2 − 1
𝑑𝑡. (A.33)

It is well-known that

𝐾′(𝑣) = 𝐾(𝑣′), 𝑣′ =
√
1 − 𝑣2. (A.34)
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SINE-KERNEL DETERMINANT ON TWO LARGE INTERVALS 71

By integrating the derivative of 𝑡
√

1−𝑡2

1−𝑣′2𝑡2
, we also obtain that

𝐸(𝑣) = 𝐾(𝑣′) − 𝐸(𝑣′). (A.35)

As 𝑣 → 1 (and therefore 𝑣′ → 0), we have the expansions:

𝐾(𝑣) =

(
1
2
log

1
2 − 2𝑣

+ 2 log 2

)
(1 + (1 − 𝑣)),

𝐾(𝑣′) =
𝜋
2

(
1 +

𝑣′2

4
+
9𝑣′4

64
+ (𝑣′6)

)
, 𝐸(𝑣′) =

𝜋
2

(
1 −

𝑣′2

4
−
3𝑣′4

64
+ (𝑣′6)

)
.

(A.36)

Now consider the case symmetric intervals−𝑣1 = 𝑣2 ≡ 𝑣. By the change of variable 𝑥 = 𝑣𝑦 and
by using (A.35), we see that

𝐼0(−𝑣, 𝑣) = 𝐾(𝑣′),
𝐼2(−𝑣, 𝑣)

𝐼0(−𝑣, 𝑣)
= 1 −

𝐸(𝑣)

𝐾(𝑣′)
=

𝐸(𝑣′)

𝐾(𝑣′)
, 𝐽0(−𝑣, 𝑣) = 2𝐾(𝑣). (A.37)

APPENDIX B: PREFACTOR OF 𝐥𝐨𝐠 𝒔
Here we show that the constant 𝐺1 in (14) obtained in [18] is equal to −1∕2. Let

𝑢(𝑧) = −
𝑖
2𝐼0 ∫

𝑧

𝑣2

𝑑𝜉

𝑝(𝜉)1∕2
, (B.1)

and define

𝜌(𝑧, 𝜔) =
𝜃2(0)𝜃(𝑢(𝑧) + 𝜔 − 𝑢(∞))𝜃(𝑢(𝑧) − 𝜔 − 𝑢(∞))

𝜃2(𝜔)𝜃2(𝑢(𝑧) − 𝑢(∞))
, 𝑑 = −𝑢(∞).

It is easily verified that 𝜌 as a function of 𝜔 is elliptic: 𝜌(𝜔) = 𝜌(𝜔 + 1) = 𝜌(𝜔 + 𝜏). Here we use
our definitions of 𝑢(𝑧) (86) and 𝑑 (which has the property (90)) from Section 4. However, it is
straightforward to verify that 𝜌 is exactly the function (1.30) in [18] for𝑛 = 1with𝑥 = 𝜔∕Ω,𝑉 = Ω.
Let

ℎ(𝑧) = (𝑧 − 1)(𝑧 − 𝑣1) + (𝑧 − 𝑣2)(𝑧 + 1), (B.2)

and consider the function 𝐺1 given by (1.33) in [18], which in our case of 𝑛 = 1 becomes

𝐺1(𝑡) = −
1
16

∑
𝑦={−1,𝑣1,𝑣2,1}

𝜌(𝑦, 𝑡Ω)
ℎ(𝑦)

𝑞(𝑦)
.

It was shown in [18] that the coefficient 𝐺1 in (14) is given by

𝐺1 = lim
𝑥→∞

1
𝑥 ∫

𝑥

𝑥0

𝐺1(𝑡)𝑑𝑡,

for some fixed large 𝑥0.
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72 FAHS and KRASOVSKY

By ellipticity of 𝜌, this can be written in the form

𝐺1 = −
1
16

∑
𝑦={−1,𝑣1,𝑣2,1}

ℎ(𝑦)

𝑞(𝑦) ∫
1

0
𝜌(𝑦, 𝜔)𝑑𝜔. (B.3)

To compute the integral, note first that by (A.3)

𝜌

(
𝑦, 𝜈 +

1 + 𝜏
2

)
=

𝜃23
𝜃23(𝑢(𝑧) + 𝑑)

𝜃1(𝑢(𝑧) + 𝑑 + 𝜈)𝜃1(−𝑢(𝑧) − 𝑑 + 𝜈)

𝜃21(𝜈)

= −
𝜃23

𝜃23(𝑢(𝑧) + 𝑑)

𝜃21(𝑢(𝑧) + 𝑑)

(𝜃′1)
2𝜈2

+ (
𝜈−1

)
, 𝜈 → 0.

(B.4)

Using Lemma A.1 in Appendix A, we compute the integral ∫ 1

0
𝜌(𝑦, 𝜔)𝑑𝜔 and obtain

𝐺1 = −
1
16

∑
𝑦∈{−1,𝑣1,𝑣2,1}

ℎ(𝑦)

𝑞(𝑦)

(
1 −

𝜃3𝜃
′′
3

(𝜃′1)
2

𝜃21(𝑢(𝑦) + 𝑑)

𝜃23(𝑢(𝑦) + 𝑑)

)
. (B.5)

By applying the identities (98) of Proposition 16 (d),

𝐺1 = −
1
16

∑
𝑦∈{−1,𝑣1,𝑣2,1}

1
𝑞(𝑦)

(
ℎ(𝑦) +

𝜃′′3
𝜃3𝐼

2
0

)
. (B.6)

By (252),

𝜃′′3
𝜃3𝐼

2
0

= 2𝑞(𝑣2) − ℎ(𝑣2), (B.7)

and therefore the term with 𝑦 = 𝑣2 in (B.6) is

1
𝑞(𝑣2)

(
ℎ(𝑣2) +

𝜃′′3
𝜃3𝐼

2
0

)
= 2.

Now note (recall (8)) that

2𝑞(𝑣2) − ℎ(𝑣2) = 2𝑞(𝑣1) − ℎ(𝑣1) = 2𝑞(1) − ℎ(1) = 2𝑞(−1) − ℎ(−1) = 𝑣2 − 𝑣1 + 2𝑥1𝑥2, (B.8)

so that all the other terms in the sum in (B.6) are also equal 2. Therefore

𝐺1 = −
1
16

(2 + 2 + 2 + 2) = −
1
2
. (B.9)
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