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Exploiting data invariances is crucial for efficient learning in both artificial and biological
neural circuits. Understanding how neural networks can discover appropriate represen-
tations capable of harnessing the underlying symmetries of their inputs is thus crucial in
machine learning and neuroscience. Convolutional neural networks, for example, were
designed to exploit translation symmetry, and their capabilities triggered the first wave
of deep learning successes. However, learning convolutions directly from translation-
invariant data with a fully connected network has so far proven elusive. Here we show
how initially fully connected neural networks solving a discrimination task can learn a
convolutional structure directly from their inputs, resulting in localized, space-tiling
receptive fields. These receptive fields match the filters of a convolutional network
trained on the same task. By carefully designing data models for the visual scene, we
show that the emergence of this pattern is triggered by the non-Gaussian, higher-
order local structure of the inputs, which has long been recognized as the hallmark of
natural images. We provide an analytical and numerical characterization of the pattern
formation mechanism responsible for this phenomenon in a simple model and find an
unexpected link between receptive field formation and tensor decomposition of higher-
order input correlations. These results provide a perspective on the development of low-
level feature detectors in various sensory modalities and pave the way for studying the
impact of higher-order statistics on learning in neural networks.

neural networks | convolution | receptive fields | invariance

Exploiting invariances in data is crucial for neural networks to learn efficient represen-
tations and to make accurate predictions. Translation invariance is a key symmetry in
image processing and lies at the heart of feed-forward (1, 2) and recurrent (3, 4) models
of the visual system. In the early sensory stage, the feature maps obtained by convolving
a set of filters with an input arise from the collective action of localized receptive fields
(RFs) organized in a tessellation pattern. The importance of RFs for understanding neural
networks was recognized in the seminal work of Hubel and Wiesel (5) on the early stages
of the visual system. RFs remain a key building block in theoretical neuroscience (6–8),
from the statistical formulation of single-neuron encoding (9, 10) to hierarchical models of
cortical processing in various sensory modalities (11, 12). A key question in neuroscience
is how these RFs are developed and what mechanism drives their spatial organization.
The computational inquiry into how RFs can originate from image statistics goes back to
the seminal work of Olshausen and Field (13), who showed that a specific unsupervised
learning algorithm maximizing sparseness of neural activity was sufficient for developing
localized RFs, similar to those found in primary visual cortex.

In machine learning, convolutional neural networks (CNNs) (14) were inspired by the
ideas of Hubel and Wiesel (5) and rely on linear convolutions, followed by nonlinear
functions and pooling operations (15) that encourage translation invariance of the
network output (16–18). CNNs classify images significantly better than vanilla, fully
connected (FC) networks, which do not take this symmetry explicitly into account (19).
Since their success in computer vision (15, 20–22), deep CNNs have served as a prime
example for how encoding prior knowledge about data invariances into the network
architecture can improve both sample and parameter efficiency of learning.

Subsequent work has since engineered architectures and representations capable of
dealing with data characterized by different invariances and geometries, such as social
or gene regulatory networks (23–31). These invariances, however, are not always known
beforehand. Deep scattering networks (32–34) have been proposed as architectures that
are invariant to a rich class of transformations. Another approach altogether would be
to learn low-level feature detectors that take basic symmetries into account directly from
data. In the case of images, the question thus becomes, Can we learn convolutions from
scratch?
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Fig. 1. The emergence of convolutional structure in FC neural networks is driven by higher-order input correlations. (A) Two-layer, FC neural network with
K neurons in the hidden layer. (B) Networks are trained on a binary classification task with two-dimensional inputs x = (xij) of size D = L × L drawn from
a translation-invariant random process (Eq. 1) with L = 28. The network has to discriminate inputs with different correlation lengths, ξ− = 0.1L (Left) and
ξ+ = 0.2L (Right). (C) RFs of some representative neurons taken from a network with K = 100 neurons after training. The elements of the each weight vector
are arranged in a L × L grid. Half the neurons develop localized RFs: the magnitude of their weights is significantly different from zero only in a small region of
the input space. The other neurons converge to superpositions of two-dimensional Fourier components. (D) IPR (Eq. 2) of each neuron during training. The IPR
is large for localized RFs but remains small for oscillatory RFs. (E) Gaussian control dataset: the network is trained on a mixture of two Gaussians, each having
zero mean and the same covariance as inputs in B. (F) RFs after training the network on the Gaussian control data. (G) IPR (Eq. 2) of the RFs of a network trained
on Gaussian data.

The hallmarks of convolutional structure that we are looking
for are local connectivity, resulting in localized RFs, and the
sharing of weights between neurons. Furthermore, we require
that the local filters have to be applied across the whole image;
i.e., the filters have to tile the sensory space. Uniform tiling of
sensory space is crucial in our understanding of input processing
in biological circuits, and a number of theoretical justifications
have been given in terms of coding efficiency (35, 36).

FC layers are expressive enough to implement such convolu-
tional structure, with weights that are sparse (due to locality) and
redundant (due to weight sharing). The emergence of localized
RFs has been recently shown in unsupervised models such as
autoencoders (37, 38) and restricted Boltzmann machines (39) or
with the use of similarity-preserving learning rules (40). However,
learning convolutions directly from data by training an initially
FC network on a discriminative task has so far proven elusive:
FC networks do not develop any of the hallmarks of convolutions
without tailor-made regularization techniques, and they perform
significantly worse than convolutional networks (19, 41, 42). The
problem thus lies in the learnability of the convolutional structure
through the standard paradigm of machine learning (optimization
of a cost function via first-order methods).

Here we show that FC neural networks can indeed learn a
convolutional structure directly from their inputs if trained on
data with non-Gaussian, higher-order local structure. We design
a supervised classification task that fulfils these criteria and show
that the higher-order statistics of the inputs can drive the emer-
gence of localized, space-tiling RFs.

Results

Fully Connected Networks Can Learn Localized RFs from
Scratch. In our first experiment, we trained a simple two-layer
neural network with K neurons in the hidden layer (Fig. 1A)
on a synthetic data set with two-dimensional inputs x = (xij )
of size D = L× L as in Fig. 1B. We generated inputs by first
drawing a random vector z = (zij ) from a centered Gaussian
distribution with a covariance that renders the input distribution

translation invariant along both dimensions. Each pixel in the
synthetic image xij is then computed as

xij =
ψ (gzij )

Z (g)
, [1]

where ψ(·) is a symmetric, saturating nonlinear function such as
the error function, g > 0 is a gain factor, and the normalization
constant Z (g) ensures that pixels have unit variance for all values
of g (see Materials and Methods for details). Intuitively, the gain
factor controls the sharpness in the images: a large gain factor
results in images with sharp edges and important non-Gaussian
statistics (Fig. 1B), while images with a small gain factor are close
to Gaussians in distribution.

Inputs are divided inM = 2 classes, labeled y =±1, that differ
by the correlation length ξ± between pixels: the image shown
in Fig. 1 B, Left, has a shorter correlation length than the one
in Fig. 1 B, Right; hence, the input in Fig. 1 B, Left, varies
more rapidly in space. The learning task consists in discriminating
inputs based on these correlation lengths.

A network with K = 100 hidden neurons reaches >98% pre-
diction accuracy on this task when trained using online stochastic
gradient descent (SGD), where a new sample (x , y) is drawn
from the input distribution at each step of the algorithm. This
limit allows us to focus on the impact of the data distribution;
we discuss the case of finite training data in Fig. 2. After learning,
the hidden neurons have split into two groups, with about half the
neurons acting as detectors for inputs with long-range correlation.
We plot the weight vector, or the RF, of four of these neurons
in Fig. 1 C, Top. The RFs of these neurons are localized: they
only have a few synaptic weights whose magnitude is signifi-
cantly larger than zero in a small region of input space. On the
other hand, neurons that detect short-range correlations develop
very different representations: they converge to highly oscillatory
patterns, i.e., sparse superpositions of higher-frequency Fourier
modes.

Beyond the visual inspection of the RFs, we can quantify their
localization by computing the inverse participation ratio (IPR) of
their weight vector w = (wi),
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Fig. 2. RFs of FC networks tile input space and resemble the filters learned by a CNN. (A) (Left) Color plot of the translation-independent distance matrix (dkl)

(Materials and Methods) in a network with K = 200, trained on a two-dimensional binary classification task with
(
ξ−, ξ+

)
=

(√
2, 2

)
, L = 20. (Right) Permuted

distance matrix using hierarchical clustering, showing how synaptic weight vectors cluster into two groups. (B) (Left) Weight intensity of localized RFs of a subset
of neurons from the network in A. (Right) Centers (gray) and contour lines (blue) of the whole set of localized RFs plotted over the two-dimensional input space.
(C) Localized RFs in a network with K = 301 trained on a one-dimensional task with

(
ξ−, ξ+

)
=

(√
10,

√
20

)
, D = L = 100. Weight intensity of each neuron is

plotted along the rows, showing that RFs are arranged so as to tile the input space. Hidden units were sorted according to their center, in view of the permutation
symmetry. (D) Overlay of five randomly selected RFs from C, after centering. (E) Filters of a two-layer convolutional network trained on the same task as C and D.
Different colors correspond to different kernel sizes kS , ranging from 9 to 59 pixels. Additional parameters are as follows: gain g = 3, batch learning with P = αD
inputs, α = 105, and SGD with batch size 1,000.

IPR(w) =

∑D
i=1 w

4
i(∑D

i=1 w
2
i

)2 . [2]

The IPR quantifies the amount of nonzero components of a
vector. It is commonly used to distinguish localized from extended
eigenstates in quantum mechanics and random matrix theory (43)
and is related to the kurtosis of the weights. We can successfully
employ the IPR to measure the localization of RF in space
throughout learning. We plot the IPR for the RFs of all neurons
in Fig. 1D as a function of learning time, which is defined as the
number of SGD steps divided by the total input size D. Localized
neurons develop a large IPR over the course of training, while the
IPR of neurons with oscillatory RFs remains very small.

Higher-Order Input Correlations Induce Localized RFs. To de-
termine which of the characteristics of the dataset drive the
emergence of localized RFs, we trained the same network on a
Gaussian control task (Fig. 1E). For each class of inputs, we drew a
new set of control images c from a Gaussian distribution with the
same covariance as the inputs x from that class. We will sometimes
refer to these inputs as the Gaussian process (GP) and denote
the nonlinear inputs as NLGP. While both the inputs x and the
Gaussian controls c from a given class have the same covariance by
construction and are thus both translation-invariant, the original
inputs x have increasingly sharp edges as we increase the gain
factor g . These edges are a visual manifestation of the higher-order
spatial correlations that cannot be captured by the simple Gaussian
model. Indeed, the Gaussian samples appear blurry in comparison
to the original data.

The same network with K = 100 neurons achieved a slightly
inferior prediction accuracy on the Gaussian dataset. After learn-
ing, the neurons have again split evenly into two populations,

detecting short- and long-range correlations. However, neurons
learn very different representations from the data, with example
RFs shown in Fig. 1F. There are no more localized fields; instead,
neurons’ weights converge to two-dimensional superpositions of
low- and high-frequency Fourier components. This qualitative
observation is borne out by the measurement of the IPR (Eq. 2)
of the RFs, which stays flat around zero throughout learning
(cf. Fig. 1G).

Taken together, the results summarized in Fig. 1 show that
localized RFs, the first hallmark of convolutions, emerge au-
tonomously when training two-layer FC networks on a task with
translation-invariant inputs that crucially possess non-Gaussian,
higher-order local structure. This is to be contrasted with other
recent studies that focused on the learnability of tasks that can be
expressed as convolutions in a teacher–student setup (44–46).

RFs Tile Input Space and Resemble Filters of Convolutional
Networks. The FC networks we trained also implement weight
sharing, the second hallmark of convolutions, where the same
filter is applied across the whole input. As shown in Fig. 2A,
hidden units tend to cluster in two distinct groups. These clusters,
which are identified by computing similarities between neurons
using a translation-invariant measure (Materials and Methods),
correspond to neurons with localized and oscillatory RFs. These
RFs were obtained from a network that was trained using SGD
on a finite dataset with P = αD samples, α= 105.

We show a representative set of neurons with localized RF in
Fig. 2 B, Left. The centers of these RF are spread over the input
dimensions (Fig. 2 B, Right). The tiling is more striking in the
one-dimensional case: we show in Fig. 2C all the localized RF’s
by plotting the weight vectors along the rows of the matrix. We
see that as the number of hidden neurons K becomes comparable
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to the input sizeD , the RFs tile the input space. A similar tiling has
been observed in unsupervised learning with restricted Boltzmann
machines by Harsh et al. (39).

We also compared the RF learned from scratch with the filters
learned in a two-layer CNN with different filter sizes trained on
the same task (see Materials and Methods for details). We found
that the learned convolutional filters are stable across filter sizes
(Fig. 2E). Strikingly, when a convolutional network is trained
on the same task, the obtained filters strongly resemble the RFs
learned by the FC network, as can be seen from a comparison
of the filters in Fig. 2E with Fig. 2D, where we show RF of five
randomly chosen neurons from Fig. 2C.

Current Theories of Learning Break Down during the Formation
of RFs. How can we capture the formation of RFs theoretically?
There exist precise theories for learning in neural networks with
linear activation functions (47–52). However, the dynamics of
even a deep linear network with several layers will only depend on
the input–input and the input–label covariance matrices, i.e., the
first two moments of the data (50). This formalism thus cannot
capture the formation of RFs, which is driven by non-Gaussian
fluctuations in the inputs. An exact theory describing the learning
dynamics is available for nonlinear two-layer neural networks with
large input size D →∞ and a few neurons K ∼O(1) in the
hidden layer (53, 54). We verified that networks in this limit also
form RFs (SI Appendix, Fig. S4). In this limit, one can derive a set
of ordinary differential equations that predict the evolution of the
prediction mean-squared test error (pmse) of a network (Eq. 10)
when training on Gaussian mixture classification (55). In Fig. 3,
we show the pmse of a network with K = 8 neurons trained on
the Gaussian control task (blue lines) and verify that this theory

Fig. 3. Existing theories of learning in neural networks break down during
the formation of RFs. pmse (10) of a network with K = 8 neurons trained on
nonlinear Gaussian inputs (NLGP [Eq. 1], orange) and on the Gaussian control
task (GP, blue) with length scales ξ+= 2ξ−= 16. The pmse is calculated
using held-out test data during the simulation (solid lines). We also show
the test error of the network trained on GP but evaluated on NLGP data
(GP/NLGP, red). The crosses give the pmse obtained from evaluating an
analytical expression describing the error of an equivalent Gaussian model
(Materials and Methods). While the analytical expression accurately predicts
the error in the beginning of training (blue shaded area), it breaks down for
the network trained on NLGP around time 102. This is precisely the time at
which the weights start to localize, as measured by the average IPR (2) of
the localized weights (Inset, green). Simultaneously, the excess kurtosis of the
preactivations of the network decreases (Inset, orange). Additional parameters
are as follows: one-dimensional task with D = L = 400 and learning rate
η = 0.05. Curves are averaged over 20 runs.

yields matching predictions (blue crosses; full details in Materials
and Methods).

This type of analysis has recently been extended from mixtures
of Gaussians to more complex input distributions thanks to the
phenomenon of Gaussian equivalence, whereby the performance
of a network trained on non-Gaussian inputs is still well captured
by an appropriately chosen Gaussian model for the data. This
Gaussian equivalence was used successfully to analyze random
features (56–58) and neural networks with one or two layers, even
when inputs were drawn from pretrained generative models (59–
62). In Fig. 3, we plot the test error of a network trained on
NLGP data together with the theoretical prediction obtained from
applying the Gaussian equivalence theorem (GET) (61) (details
are given in Materials and Methods). Initially, the theoretical
predictions from the GET (orange crosses) agree with the test error
measured in the simulation (orange line), but the theory breaks
down around time ≈ 102, when predictions start deviating from
simulations.

The breakdown of the Gaussian theory coincides with the
localization of the RFs, as measured by their IPR (Eq. 2; green
line in Fig. 3, Inset). The increased localization of the weights also
coincides with a change in the statistics of the preactivations of the
hidden neurons, λ∼

∑
i wixi : the excess kurtosis of λ (orange

line) is initially close to zero, meaning that λ is approximately
Gaussian, but decreases as the weights localize, indicating a tran-
sition to a non-Gaussian distribution.

We can finally see from Fig. 3 that the network is only influ-
enced by the second-order fluctuations in both the NLGP and
the GP at the beginning of training since the pmse values for
models trained on NLGP and GP initially coincide. Likewise,
a network trained on GP and evaluated on NLGP test data
has the same test accuracy as the network trained directly on
NLGP in the early stages of learning (red line). The higher-order
moments of the NLGP inputs start influencing learning only
at a later stage, when the IPR of the weight vectors increases
and the Gaussian theory breaks down. This sequential learning
of increasingly higher-order statistics of the inputs is reminiscent
of how neural networks learn increasingly complex functions
during training. Simplicity biases of this kind have been analyzed
in simple models of neural networks (51, 53, 63–65) and have
been demonstrated in modern convolutional networks (66). The
sequential learning of increasingly higher-order statistics and the
ensuing breakdown of the GET to describe learning is a result of
independent interest which we will investigate further in future
work.

The failure of the Gaussian theory to describe the emergence
of RFs forces us to develop another theoretical approach. We
make a first step in this direction by introducing a simplified
model, which allows us to analyze the impact of the non-Gaussian
statistics.
A Simplified Model Highlights the Importance of Non-Gaussian
Statistics. The analysis of a reduced model with a single neuron
reveals an interesting connection between the higher-order statis-
tics of the data and the pattern formation mechanism driving
the emergence of convolutional structure. We consider a single
neuron with a polynomial activation function σ̃ of order 3 and
study the weight updates of SGD in the limit of small learning
rate. This leads us to consider the gradient flow (GF) dynamics
of the neuron’s weight vector w after averaging over the data
distribution, which takes the form

ẇ =
1

M

M∑
μ=1

[
cμ2 (yμ, v , b)C μw + c4 (v , b)T

μw⊗3
]
, [3]

4 of 10 https://doi.org/10.1073/pnas.2201854119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
IS

SA
-B

IB
L

IO
T

E
C

A
 I

N
T

L
 S

C
H

O
O

L
 F

O
R

 A
D

V
A

N
C

E
D

 S
T

U
D

Y
 o

n 
D

ec
em

be
r 

11
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

14
7.

12
2.

98
.6

8.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201854119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201854119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201854119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201854119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201854119/-/DCSupplemental
https://doi.org/10.1073/pnas.2201854119


A

B

C

D

≈ +....+γ1 γr
ΔT

E

Fig. 4. Non-Gaussianity drives pattern formation in a simplified model of gradient descent dynamics. (A) Pictorial illustration of CP decomposition (67, 68), a
tensor decomposition technique where a tensor (here a three-way tensor) is decomposed into a weighted sum of rank 1 tensors. (B) IPR as the gain factor g of
the data is increased, thereby increasing the non-Gaussianity of the inputs (cf. Eq. 1). The IPR is shown for 1) the leading CP factor of the fourth-order cumulant
ΔT2 (solid), 2) the weight vector of a single neuron obtained by integrating the GF equation (Eq. 5; dots), and 3) the weight vector obtained by integrating the
GF equation where higher-order moments have been replaced with Gaussian moments of the inputs (crosses). Error bars indicate interquartile range around
median across 30 samples. (C) Synaptic weight vectors w (blue) obtained from integrating the GF equation for (Left) small and (Right) large values of the gain
parameter. In gray, we show the 10 leading CP factors uk of the fourth-order cumulant ΔT2 for both datasets. (D) Half-width of the weight vector obtained
from integrating the GF equation (Eq. 5; blue) and of the leading CP factor of the fourth-order cumulant (green), as the correlation length ξ+ of the inputs is
increased. We also show the half-width of the weight vector obtained by training the simplified model directly using SGD updates with finite step size (orange).
(E) Maximal IPR among the first 20 CP factors for a dataset containing P = αD inputs with g = 3, ξ = 5, for increasing α and size D. Error bars indicate ±3 SE
around the average across 30 samples. Additional parameters in A–D are as follows: one-dimensional inputs, D = L = 100, K = 1, ξ− = 0, cumulants estimated
from a dataset with P = αD inputs, α = 100, learning rate η = 0.01, and bias fixed at b = −1.

where C μ
ij =

〈
xμ
i x

μ
j

〉
and Tμ

ijk� =
〈
xμ
i x

μ
j x

μ
k x

μ
�

〉
are the second-

and fourth-order joint moments of the inputs in the μ th class,
respectively (M = 2). The notation w⊗3 indicates a threefold
outer product of the vector w with itself (Eq. 15). In Eq. 3, we
discarded the fifth-order term and introduced the coefficients c2,
c4, as described in Materials and Methods. The same steps can be
used to derive a similar GF equation for the bias of the neuron.
Since the results do not depend on the exact value of the bias or on
its dynamics, here we simplify the discussion by fixing the bias at
b =−1. We verified that following the GF dynamics of the model
in Eq. 3 yields a localized RF (cf. the blue lines in Fig. 4).

While a complete analysis of the synaptic dynamics for generic
fourth-order tensors Tμ is very complicated and beyond our
scope, we can gain insight by rewriting Tμ as a sum of the
cumulant ΔTμ plus the contribution from the second-order
moment

Tμ
ijk� =ΔTμ

ijk� + C μ
ijC

μ
k� + C μ

ikC
μ
j� + C μ

i�C
μ
jk . [4]

The cumulant ΔTμ has the useful property that it is exactly
zero for Gaussian inputs; in other words, it quantifies the non-
Gaussian part of the fourth-order input statistics. We can then
rewrite the synaptic dynamics as

ẇ =
1

M

M∑
μ=1

(cμ2 + c4q
μ)C μw +

c4
M

M∑
μ=1

ΔTμw⊗3, [5]

where qμ =wTC μw is the so-called self-overlap of the synaptic
weight, and we dropped the dependence in c2 and c4 for brevity.

In our data model, the relative importance of the non-Gaussian
statistics in the inputs is controlled by the gain factor g introduced

in Eq. 1: for small values of g , the error function is almost linear,
and the inputs are almost Gaussian. For Gaussian inputs, the
cumulant ΔTμ = 0 and the synaptic dynamics ẇ are thus given
only by the first term on the right-hand side. It can be shown
that the fixed point equations imply a very sparse power spectrum
(Materials and Methods); in other words, the weights converge to a
superposition of only a few Fourier components, in line with our
general finding for K ≥ 1.

We train the single neuron on a task with nonlinear inputs
(NLGP) at various values of the gain factor g . We set the cor-
relation length of inputs in one class to zero, ξ− = 0, and vary the
correlation length for the second class. Integrating Eq. 5 yields the
weight vector of the neuron at the end of training. We plot the IPR
of this weight as a function of the gain factor g with the dotted
line in Fig. 4B (blue and red for ξ+ = 3, ξ+ = 5, respectively),
and show the weight for two values of the gain factor (Fig. 4C ).
The single neuron develops an RF that is increasingly localized
as the gain factor, and hence the non-Gaussianity of the inputs,
increases. We also integrated Eq. 5 keeping only the first term, so
as to only retain the influence of the Gaussian part of the data on
the learning dynamics. Integrating the reduced equation yields a
synaptic weight that is not localized—its IPR is negligible for all
values of the gain (crosses in Fig. 4B). The driving force behind
the emergence of localized RFs in the reduced model is thus the
fourth-order cumulant ΔTμ.

We can gain insight into the structure of these higher-order
correlations by means of tensor decomposition. Just like a matrix
(which is a tensor of order 2) can be decomposed into a sum
of outer products between eigenvectors, higher-order tensors can
be expressed as a sum of a relatively small number of outer
products of vectors, which are called factors in this context. There
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exist several ways to decompose a tensor; here we focus on the
CANDECOMP/PARAFAC (CP) decomposition of the fourth-
order cumulant, whereby

ΔT =

r∑
k=1

γkuk ⊗ uk ⊗ uk ⊗ uk [6]

and r is the rank of the decomposition (see Fig. 4A for an
illustration of a third-order tensor). Tensor decomposition has
been successfully applied to supervised and unsupervised machine
learning (68, 69), and its relevance in the context of unsupervised
synaptic plasticity has also been recently recognized: Ocker and
Buice (70) showed that a polynomial version of Hebbian learning
can recover the dominant tensor eigenvectors of higher-order
correlations, in a way that is similar to how the classic Oja rule
recovers the leading eigenvector of the input covariance (71).

We find that the progressive localization of the RFs mirrors
the localization of the dominant CP factors of the fourth-order
cumulant (full curves in Fig. 4 B and C ). For large enough datasets
and high-rank r , the CP factors of the inputs tile the input space in
a manner similar to the RFs obtained on the supervised task with a
large number of hidden neurons K (Fig. 4 C, Right). The precise
shape of the RFs is controlled by the CP factor obtained from
a rank r = 1 decomposition of the fourth-order cumulant: as we
show in Fig. 4D, the half-width of the localized RF obtained using
both the reduced model (GF) and the full SGD dynamics closely
follows the half-width of the CP factor when the correlation length
ξ+ is varied. Since the CP factor is computed over the correlated
inputs, while the perceptron sees both correlated and uncorrelated
inputs, the half-width of the RFs obtained from learning are
smaller than that of the CP factor. Furthermore, the half-width of
the RF obtained from SGD is closer to the value of the CP factor
as the GF dynamics only has access to the first four moments of
the inputs (cf. Eq. 5), while the perceptron trained with SGD sees
all the moments of its inputs.

It is also attractive to relate pattern formation in weight space
with bump attractor dynamics in models with nonlinear local in-
teractions (72–74). The dynamics of Eq. 5 in the presence of a low-
rank CP decomposition of ΔTμ is instructive, in that it manifests
attractor-like phenomenology (SI Appendix, Fig. S2). This kind
of dynamics in weight space is reminiscent of memory retrieval
in continuous Hopfield models, where a third-order interaction
among spin variables mediated by the fourth-order moment ten-
sor is necessary for retrieval (75). When the previously introduced
polynomial activation function σ̃ is used in conjunction with
finite batch training and a plastic readout weight, both drifting
periods and transitions between localized fields are apparent over
the course of learning, as a result of effective noise induced by finite
batch size (SI Appendix, Fig. S3). Although abrupt transitions
are accompanied by transient sweeps of the readout weight v ,
both v and the bias b remain approximately constant while the
position or sign of the localized field change, as predicted by the
symmetry in the training data. Drifting localized fields have also
been observed when a generative model (restricted Boltzmann
machine) is trained using contrastive divergence (39) to reproduce
configurations from a one-dimensional Ising chain.

Discussion

CNNs achieve better performance and need fewer samples than
FC networks when trained with SGD, especially in vision, even
though sufficiently wide FC networks can express convolutions.
However, FC networks do not develop a convolutional structure
autonomously when trained on a supervised image classification

task. d’Ascoli et al. (41) recently highlighted the dynamical nature
of this problem when they showed that convolutional solutions are
not reachable by SGD starting from random FC initial conditions.
The training has to be augmented by techniques like weight
pruning (76) or complex regularization schemes (42) in order
to learn weight matrices that display local connectivity and are
organized in patterns reminiscent of convolutional networks.

Here we showed that convolutional structure in FC neural
networks can emerge during training on a supervised learning
task. We designed a minimal model of the visual scene whose
non-Gaussian, higher-order statistics are the crucial ingredient
for the emergence of RFs characterized by both localization and
weight sharing. We further highlighted the dynamical nature of
the learning phenomenon: the progression from second-order to
higher-order statistics during learning is an example of how neural
networks learn functions of increasing complexity.

We studied the pattern formation mechanism of localized RFs
using a reduced model with a single neuron. A similar approach
has recently been used in the context of unsupervised learning
of configurations generated by lattice models in physics (39),
where weight localization was interpreted in terms of a Turing
instability mechanism. Our work follows the legacy of earlier
pioneering studies on single neurons that analyzed storage and
memory retrieval of spatially correlated (77–80) and invariant
datasets (81). At variance with these classical works, here we
focused on the dynamics of learning and studied the role of higher-
order statistics. Encapsulating these higher-order information in
appropriate order parameters presents itself as a crucial next step,
in that it will allow studying the typical structure of the optimal
solution to supervised learning problems with complex datasets.

The analysis of the single-neuron model led us to relate the
emergence of structural properties of network connectivity to
the tensor decomposition of higher-order input cumulants. For a
neural network to be able to capture this structure, a large amount
of data must be processed: one indeed expects the structure in
the dominant CP factors (or tensor eigenvectors) of higher-order
moments to depend on the number of samples. We demonstrate
this point numerically in Fig. 4E, where we plot the localization of
the dominant CP factors of the fourth-order cumulant (measured
by their IPR) as a function of the number of samples for various
input sizes D ; details on how we performed tensor decomposition
for large D are given in SI Appendix, section D. We note that as
D increases (for constant correlation length ξ), the sample fluc-
tuations increase at the transition. A better understanding of this
transition and similar other properties of higher-order cumulants
represents an interesting direction for further study. We expect
that typical-case studies of the decomposition of large random
tensors (82–86) and approaches based on random matrix theory
(87) will prove fruitful in this direction, similar to the progress
in understanding the spectral properties of random covariance
matrices (88–90).

The extension of our single-neuron model to the multi-neuron
case proves complicated due to the effective repulsive interactions
between different weight vectors that appear even for Gaussian
inputs. However, studying these effective repulsive interactions in
the general case is an interesting future direction for our work as
it could shed light on the mechanism of space-tiling.

While in this work we focused on translation symmetry, re-
cent developments in deep learning have dealt with a variety of
symmetry groups (23, 25, 29), and a general framework has been
introduced for constructing equivariant layers capable of dealing
with input invariances (31). It is thus natural to consider the
impact of a generic symmetry group on the higher-order statistics
of the data and ask for the conditions under which such a structure
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is learnable and whether there exists a minimal amount of data
necessary to detect such an invariance.

In the interest of tractability, here we employed a synthetic data
model and a simple two-layer network. A full dynamic analysis
of deeper architectures is complicated by the highly nonlinear dy-
namics of gradient descent, already evident even in linear networks
(50–52). Understanding how invariances in data interact with
depth in a neural network is an interesting direction for future
investigation, both at the analytical and numerical level.

Studying the formation of RFs in recurrent networks is an
interesting future direction for two reasons: recurrent networks
provide an effective tool for capturing the spatiotemporal dynam-
ics of the visual scene (4, 91), and they are promising models for
the processing stages in the visual system (3, 92, 93). The simplest
test bed for our approach would be the study of recurrent networks
solving classification tasks (94) in the presence of data invariances.

Finally, we note that our work establishes an intriguing con-
nection between supervised and unsupervised learning. We found
that the gradient updates drive the weights in directions that
increase the non-Gaussianity of the preactivations of the hidden
neurons, as measured by their excess kurtosis (cf. Fig. 3). The
representations found in this way perform better than the ones
obtained from Gaussian inputs. Maximizing non-Gaussianity has
long been recognized as a powerful mechanism to extract mean-
ingful representations from images, e.g., kurtosis maximization in
independent component analysis (95, 96). This work represents
a step toward linking generative model approaches to vision with
task-relevant feature extraction carried out by supervised learning
rules.

Materials and Methods

Data Models. Our dataset consists of inputs x that can be one- or two-
dimensional, divided in M distinct classes. Here we illustrate the different types
of inputs in one dimension.

A data vector of the NLGP is given by xμ = Z−1(g)ψ (gzμ), where zμ is a
zero-mean Gaussian vector of length L and covariance matrix Cμ

ij = 〈zμi zμj 〉=
e−(|i−j|/ξμ)2

, with i, j = 1, 2, . . . , L. The covariance thus only depends on
the distance between sites i and j, given by |i − j|. The normalization factor
Z(g) is chosen such that Var (x) = 1. Throughout this work, we took ψ to
be a symmetric saturating function ψ (z) = erf (z/

√
2), for which Z(g)2 =

2/π arcsin
(

g2/(1 + g2)
)

. We also enforce periodic boundary conditions.
We create the Gaussian clone (GP) by drawing inputs from a Gaussian distri-

bution with mean zero and the same covariance as the corresponding NLGP. The
covariance of the NLGP can be evaluated analytically for ψ (z) = erf (z/

√
2) and

reads

〈xμi xμj 〉=
2

πZ(g)
arcsin

(
g2

1 + g2 Cμ
ij

)
, [7]

where we have used that fact that Cii = 1. The experiments on GPs are thus not
performed on the Gaussian variables z; they are performed on Gaussian random
variables with covariance given in Eq. 7. In this way, we exclude the possibility that
the change in the two-point correlation function from applying the nonlinearity
ψ is responsible for the emergence of RFs.

For one-dimensional inputs, the fact that the covariances of the NLGP and the
GP depend only on the distances between pixels |i − j| implies that they are
circulant matrices (97). These matrices display a number of useful properties: they
can be diagonalized using discrete Fourier transform, and thus, any two circulant
matrices of the same size can be jointly diagonalized and commute with each
other. We use this fact in the analysis of the reduced model to diagonalise the
dynamics of the synaptic weights (Gaussian inputs).

We obtain the covariance for two-dimensional inputs by taking the Kronecker
product of the one-dimensional covariance matrix with itself. For any dimension,
we indicate the total input size by D.

Details on Neural Network Training. We trained a two-layer FC network
with K hidden units and activation function σ. The output of the network to an
input x is

φ (x) =
K∑

k=1

vkσ

(
D∑

i=1

wkixi + bk

)
, [8]

with W ∈ R
K×D the matrix of first-layer weights and bk the hidden unit biases.

We initialized W with independent identically distributed (i.i.d.) zero-mean
Gaussian entries with variance 1/D. To obtain a minimal model of developing
convolutions, we fixed the second-layer weights of the network to the value
vk = 1/K. We show that the emergence of RFs also occurs in networks where
both layers are trained from scratch in SI Appendix, Fig. S1. We employed
the sigmoidal activation function σ(h) = erf (h/

√
2) for the results shown in

Figures 1, 2, and 3 and verified that localized RFs also emerge with rectified
linear unit (ReLU) activation σ(x) = max(0, x).

We trained the network using vanilla SGD, using both standard minibatch
learning from a finite dataset and online learning. In the latter, a new sample
(x, y) is drawn from the input distribution for each step of SGD. This limit is widely
used in the theory of neural networks as it permits focusing on the statistical
properties of the inputs, without effects that could arise due to scarce amounts
of data. It has furthermore been shown that online learning is quite close to the
practice of deep learning, where heavy data augmentation schemes lead to very
large effective dataset sizes (98).

For binary discrimination tasks, we used{−1, +1}output for the two classes.
We focus our analysis on mean-square loss for simplicity of mathematical treat-
ment. We verified that cross-entropy loss does not alter our main results. For
the comparison with convolutional networks, we employed a two-layer network
composed of a convolutional layer with circular padding, followed by an FC layer
with linear output.

Invariant Overlap and Clustering. In order to compare different weight
vectors wk (rows of the first-layer weight matrix W), we introduce a similarity
measure that is invariant to translation. Given two normalized weight vectors wk

and wl , the overlap q̃kl reads

q̃kl =
1
D
|w̃k| · |w̃�|, [9]

where w̃kτ stands for the τ th Fourier components of the vector wk and the
absolute value is computed entrywise. The latter operation makes q̃kl invariant
with respect to translation by removing the phase information. To help identify
the set of localized RFs, we cluster the weight vectors wk using a distance matrix
dkl = 1 − q̃kl and (average-linkage) hierarchical clustering. The same procedure
is employed in both one and two dimensions.

Gaussian Equivalence. The pmse for a given network (as shown in Fig. 3) is
defined as

pmse ≡ 〈(φ(x)− y)2〉x,y . [10]

The average is taken over the data distributions (x, y). We compute this error
during the simulation by evaluating the performance of the model on held-out
test data. A crucial observation is that the inputs xμ only affect the network output
(Eq. 8) via the dot product with the network’s weights preactivations

λμ
k =

D∑
i=1

wkix
μ
i . [11]

The high-dimensional average over inputs in Eq. 10 can thus be replaced
by a low-dimensional average over the preactivations. This approach to studying
the learning dynamics of two-layer networks was pioneered by Saad and Solla
(53) and Riegler and Biehl (99), who studied neural networks learning random
functions of i.i.d. Gaussian inputs, and was recently made rigorous (100, 101).
To obtain the theoretical predictions in Fig. 3, we built on a recent extension
of this analysis to the case of mixtures of Gaussian inputs with nontrivial input
correlations (55).

For Gaussian inputs (GP), the K preactivationsλμ
k are jointly Gaussian for each

classμ. For non-Gaussian inputs (NLGP), one can invoke the GET, which stipulates
that for a wide class of input distributions, the preactivationsλμ

k remain Gaussian
(60, 61). In Fig. 3, we evaluate the test error of a network trained on NLGP by
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replacing the actual preactivations λμ
k with Gaussian random variables λ̃μ

k of
mean zero and covariance 〈λ̃μ

k λ̃
μ
� 〉= wT

kCμw� for each input class μ. The GET
prediction for the test error is then obtained by evaluating the average in Eq. 10
over the Gaussian variables λ̃μ

k . As we show in Fig. 3, the predictions based on
Gaussian equivalence match the simulation initially but break down when the
IPR of the localized weights increases.

The influence of the localization of the weight wk on the higher-order statistics
of the local fields λμ

k can be seen by computing the statistical excess kurtosis

kurtosis(λμ
k ) =

〈λ4
k〉μ

〈λ2
k〉μ

2 − 3, [12]

where the average is taken over the μ th input class. In Fig. 3, Inset, we plot the
excess kurtosis averaged over the neurons with localized weights and over the
two input classes.

Reduced Model and Tensor Decomposition. In order to analyze the learn-
ing dynamics in the presence of higher-order statistics, we expand the acti-
vation function to third order σ (h)≈ σ̃ (h) = α1h − α3

3 h3. In particular,
for σ (h) = erf (h/

√
2), one has α1 =

√
2/π and α3 = 1/

√
2π. Upon presen-

tation of a pattern from the μ th class, the gradient update reads Δwμ
i =

ηv (yμ − vg (hμ)) g
′
(hμ) xμi , with η a small learning rate. We thus get

Δwμ
i ∝ cμ2 (yμ, v, b)

D∑
a=1

xμa wa + c4 (v, b)
D∑

abc

xμa xμb xμc xμi wawbwc , [13]

where we discarded the fifth-order term in w and set

cμ2 (yμ, v, b) =−v
[(

α1 − α3b2
)2

+ 2α3b
(

yμ − α1vb +
α3

3
vb3

)]

c4 (v, b) = v
[

4
3
α3

(
α1 − α3b2

)
− 2α2

3b2
]

.

Averaging over the inputs xμ and summing across the M classes, we get

〈Δw〉= η

M

M∑
μ=1

(
cμ2 Cμw + c4Tμw⊗3

)
, [14]

where we dropped the dependence in c2 and c4 for brevity. Recall that Cμ
ij =

〈xμi xμj 〉 and Tμijk� = 〈xμi xμj xμk xμ� 〉 are the second- and fourth-order joint moments
of the inputs in the μ th class, respectively. Here and in Eqs. 3 and 5 we used the
notation Tw⊗3 to indicate the 3× product of the tensor T with the vector w:

(
Tw⊗3

)
i
=

D∑
abc

Tabciwawbwc . [15]

Gaussian inputs. Using Wick’s theorem for centered data, Tabcd = CabCcd +
CacCbd + CadCbc , we can express the third-order term using the respective covari-
ance matrices:

D∑
abc

Tμabciwawbwc = 3qμ
D∑

c=1

Cμ
ci wc , [16]

with qμ = wT Cμw the single-unit definition of the overlap. In the limit of small
learning rate η, the full update up to third order in the weights thus reads

ẇ =
1
M

M∑
μ=1

(cμ2 + c4qμ) Cμw. [17]

We can Fourier transform Eq. 17, exploiting the fact that all the Cμ are jointly
diagonalizable. Eq. 17 then implies that at the steady state,

w̃τ = 0 or
M∑

μ=1

λμ
τ (cμ2 + c4qμ) = 0, [18]

where w̃τ are the components of w in the Fourier basis. We thus have a set of D
equations with M + 2 unknown. It follows that w̃τ = 0 for most τ values.
Generic inputs and CP decomposition. We decompose the fourth-order mo-
ment of the μ th class as Tμ = Tμg +ΔTμ, with Tμg and ΔTμ the Gaussian
component and the fourth-order cumulant, respectively. The full update thus
reads

ẇ =
1
M

M∑
μ=1

(cμ2 + c4qμ) Cμw +
c4

M

M∑
μ=1

ΔTμw⊗3. [19]

We employ CP decomposition (68) in order to find a low-rank approximation
of the cumulant tensor ΔT , i.e., a set of r real coefficients γa and vectors ua such
that

ΔTijk� ≈
r∑

a=1

γauiaujaukau�a. [20]

Note that the symmetry of the cumulant tensor implies that the vectors ua are
the same across the four modes. For moderate input size D, we use the Tensorly
package in Python (102). For large D (typically for D > 100), construction and
storage of large tensors of higher order become prohibitive. We thus built upon
the framework recently introduced in ref. 103, which uses an implicit represen-
tation of high-order moment tensors coupled to a gradient-based optimization.
We generalized the method in ref. 103 to deal with the low-rank approximation
of cumulant tensors. A detailed description is given in SI Appendix.

Data, Materials, and Software Availability. Code for data generation
and network training can be found at GitHub (https://github.com/sgoldt/conv
emerge) (104).
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transitions in spiked tensor estimation” in 2017 IEEE International Symposium on Information
Theory (ISIT), Gerhard Kramer, Rudolf Mathar, Eds. (IEEE, 2017), pp. 511–515.

85. W. K. Chen, Phase transition in the spiked random tensor with rademacher prior. Ann. Stat. 47,
2734–2756 (2019).

86. A. Perry, A. S. Wein, A. S. Bandeira, Statistical limits of spiked tensor models. Ann. Inst. Henri Poincare
Probab. Stat. 56, 230–264 (2020)..

87. J. H. de Morais Goulart, R. Couillet, P. Comon, A random matrix perspective on random tensors. arXiv
[Preprint] (2021). https://arxiv.org/abs/2108.00774. Accessed 30 March 2021.
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