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1 Introduction

In the context of counting the quantum microstates of black holes [1], a lot of work has
been done over the years for what concerns the supersymmetric (or BPS) sector, both in
flat space and in anti-de-Sitter (AdS) space. Much less is known about non-supersymmetric
black holes. With the development of our understanding of 2d JT gravity [2–5] and the SYK
model [6–9], though, progress has been possible for near-BPS and near-extremal black holes.
In particular, in a series of papers [10–13] the authors were able to derive the contribution
to the behavior of the density of states of those black holes above extremality, coming from
the dynamics of gravitational zero-modes in the near-horizon region. The analysis revealed
the presence of a gap above extremality for BPS black holes, and a strong suppression of
the density of states for extremal black holes in the non-supersymmetric case. For black
holes in AdS, where the overall entropy of BPS black holes can be determined from the
dual field theory at large N (see, e.g., [14]), it would be desirable to reproduce the results
above about near-extremal black holes from a field theory computation. In the case of
AdS3, indeed, it has been possible to extract the density of near-extremal states from a
beautiful and general analysis of CFT2’s [15], but no similar computation is available in
higher dimensions.

In this paper we make a step in that direction, by constructing a supersymmetric gauged
quantum mechanics (QM) that we expect to capture information about near-extremal black
hole horizons. We work in a very specific setup: massive Type IIA string theory on S6, which
is dual to a 3d N = 2 SU(N)k Chern-Simons-matter theory [16].1 The supergravity admits
asymptotically-AdS4 static magnetic (or topologically twisted) BPS black holes [17–19], that
we aim to describe. The quantum mechanics is then obtained by reducing the dual 3d field
theory on S2, with a specific background that corresponds to the black hole asymptotics.2

More specifically, the entropy of static3 magnetically-charged BPS black holes in AdS4
is captured by the topologically twisted (TT) index [20, 21] of the dual 3d boundary
theory [14, 22–27], see in particular [28–30] for the specific example in massive Type IIA
studied here. In the Lagrangian formulation, the TT index is the Euclidean partition
function of the theory on S2 × S1, in the presence of a supersymmetric background that
holographically reflects the asymptotics of the BPS black hole. The background can be
thought of as a topological twist on S2 that preserves two supercharges, or equivalently as
an external magnetic flux for the R-symmetry. One observes that the TT index takes the
form of the Witten index of a quantum mechanics, obtained by reducing the 3d theory on
S2 with the twisted background. This fact is not a coincidence: the TT index is robust

1The theory has three adjoint chiral multiplets and a superpotential. It is essentially the 4d N = 4 SU(N)
super-Yang-Mills theory reduced to 3d and deformed by an N = 2 Chern-Simons term. The Chern-Simons
level k is proportional to the quantized Romans mass F0 in massive type IIA string theory.

2The background is dual to the black-hole chemical potentials, or charges, depending on the ensemble.
3To be precise, here we work in the grand-canonical ensemble at zero chemical potential for the angular

momentum quantum number. This means that the BPS states of rotating magnetically-charged black holes
contribute as well. However, at large N , the index is dominated by the states of static (i.e., with vanishing
angular momentum) black holes. It could be interesting to study the refinement of the TT index by a
chemical potential for angular momentum [20].
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under continuous deformations, in particular under the flow to low energies, where one
only remains with the light 1d degrees of freedom contributing to the Witten index. Up
to exponentially small corrections at large N , the index is the grand canonical partition
function for the BPS ground states of that quantum mechanics. In other words, the ground
states of that quantum mechanics are the microstates of a BPS black hole with given
charges, and one expects the excited states to describe near-extremal black holes. The goal
of this paper is to construct such a quantum mechanics.

The procedure we outlined has a technical complication: the formula for the TT index
— schematically in (2.1) — has an infinite sum over gauge fluxes on S2. For each term in
the sum, one obtains a different quantum mechanics upon reduction. Thus it appears that,
even at finite N , one has to deal with a quantum mechanical model with an infinite number
of sectors, over which we do not have good control.4 Nevertheless, in the large N limit
we expect one sector to dominate the entropy5 and thus to contribute the majority of the
states. We determine such a sector by performing a saddle-point evaluation of the index in
the sum over fluxes. This gives us an N = 2 supersymmetric gauged quantum mechanics
with a finite number of fields (at finite N).

The resulting N = 2 QM, that we exhibit in section 4, has some interesting features.
It has U(1)N gauge group, and a number of fields that scales as N

7
3 . It has an SU(2)

global symmetry, dual to the isometry of the S2 black-hole horizon. More importantly, it
has a large number of couplings among the fields, expressed in terms of Clebsch-Gordan
coefficients (arising in the reduction from the overlap of Landau-level wave-functions on S2).
Therefore, although the quantum mechanics is specific and well defined, we expect that
at large N its couplings could be approximated by random variables following a suitable
statistical distribution. This makes us hopeful that the IR dynamics might have some
traits in common with supersymmetric SYK models [31, 32]. The idea of obtaining a
supersymmetric QM with fixed, but statistically distributed, couplings that could describe
near-extremal horizons already appeared in [33] in the context of asymptotically-flat black
holes in string theory.

In the large N saddle-point evaluation of the TT index, we noticed that there is actually
a series of saddle points — one of which dominates the large N expansion. These saddle
points are labelled by shifts of the chemical potentials by 2π, and likely correspond to
a series of complex supergravity solutions with the very same boundary conditions, as
in [34, 35].

The paper is organized as follows. In section 2 we re-examine the large N limit of the
TT index by performing a saddle-point approximation both in the integration variables as
well as in the sum over fluxes. This analysis already appeared recently in [36]. Section 3,
which is the most technical one, is devoted to the dimensional reduction of the 3d theory
on S2 in the presence of gauge magnetic fluxes. This reduction involves a judicious choice
of gauge fixing. In section 4 we exhibit the effective N = 2 gauged quantum mechanics; the

4This is partially due to the fact that the reduction is in the grand canonical ensemble for the electric
charges (though it is micro-canonical for the magnetic charges), with fixed chemical potentials. Therefore,
the states of all BPS and near-BPS black holes are mixed up together.

5We are grateful to Juan M. Maldacena for suggesting this possibility to us years ago.

– 2 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
0

hurried reader who is only interested in the final result can directly jump there. Finally, in
section 5 we comment on which type of classical and quantum corrections to our analysis
one might expect. Many of the technical details are collected in appendices.

2 Saddle-point approach to the TT index

We begin by re-examining the evaluation of the TT index of 3d N = 2 gauge theories at
large N . The localization formula for the index found in [20] involves a sum over gauge
fluxes m on S2, as well as a contour integral in the space of complexified gauge connections
u on S1. At large N , we apply a saddle-point approximation both to the integral over
u as well as to the sum over fluxes, treated as a continuous variable m. The idea to
compute a supersymmetric index in this way was put forward, for instance, in [37, 38] (see
also [36, 39, 40]).6 The upshot is to identify a specific gauge flux sector that dominates the
index and, via holography, the BPS black hole entropy. In section 3 we will use that flux
sector to perform a reduction of the 3d theory on S2 down to a quantum mechanics.

The analysis in this and the following sections is performed in a specific (and simple)
model, presented in section 2.2. This choice is made for the sake of concreteness, but other
theories (for instance ABJM [41]) could be studied in a similar way.

2.1 The basic idea

We are interested in the topologically twisted index [20] of the theory, because this quantity
is known to reproduce the entropy of a class of BPS AdS4 dyonic black holes [28–30]. The
localization formula for the index can be written schematically as

IS2×S1 = 1
|W|

∑
m∈Γh

∮
C

N∏
i=1

dui

2π emV
′(u) + Ω(u) . (2.1)

Here |W| is the order of the Weyl group, Γh is the co-root lattice, N is the rank of the
gauge group, and C is an appropriate integration contour for the complexified Cartan-
subalgebra-valued holonomies {ui} ∈ hC/2πΓh. Let us outline three different approaches to
this expression at large N .

1. The approach developed in [20] was to resum over m, schematically

IS2×S1 = 1
|W|

∮
C

N∏
i=1

dui

2π
eΩ(u)

1− eV ′(u) , (2.2)

then determine the positions ū of the poles by solving the “Bethe Ansatz Equations”
(BAEs)

eV
′(ū) = 1 , (2.3)

and finally take the residues

IBAES2×S1 = 1
|W|

∑
ū∈BAE

eΩ(ū)

iN V ′′(ū) . (2.4)

6In particular, the evaluation of the (refined) TT index of the specific model studied here, through a
saddle-point approximation of the sum over fluxes, has recently already appeared in [36].
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2. Alternatively, we can evaluate both the sum over m and the integral over u in (2.1) in
the saddle-point approximation, treating m as a continuous variable. The simultaneous
saddle-point equations for m and u are, schematically:{

0 = V ′(ū)
0 = m̄V ′′(ū) + Ω′(ū) .

(2.5)

Taking into account that V ′(u) in (2.1) is defined up to integer shifts by 2πi, the first
set of equations is exactly the set of BAEs (2.3), while the second set of equations
uniquely fixes m̄ in terms of ū. The Jacobian at the saddle point is

J3d(m, u) = det
(

0 V ′′(u)
V ′′(u) mV ′′′(u) + Ω′′(u)

)
= −

(
V ′′(u)

)2
. (2.6)

Therefore, in the saddle-point approximation:

IsaddleS2×S1 '
1
|W|

∑
ū∈saddles

eΩ(ū)
√
J3d

= 1
|W|

∑
ū∈BAEs

eΩ(ū)

iN V ′′(ū) . (2.7)

This method gives exactly the same answer as the previous method.

3. A more rough approximation is to fix m in (2.1) to the value determined by the
equations (2.5),

Ifix m̄
S2×S1 ' IS1 ≡

1
|W|

∮
C

N∏
i=1

dui

2π em̄V
′(u) + Ω(u) , (2.8)

and then solve the integral in u in the saddle-point approximation. The saddle-point
equations are m̄V ′′(u) + Ω′(u) = 0, therefore all solutions ū of (2.5) are also saddle
points of (2.8). Assuming that there are no other solutions, we find

IS1 '
1
|W|

∑
ū∈BAEs

eΩ(ū)
√
J1d

. (2.9)

The Jacobian in this case is J1d = m̄V ′′′(ū)+Ω′′(ū) = V ′′
( Ω′
V ′′
)′(ū) and is different from

before, however as long as the Jacobian is subleading with respect to the exponential
contribution, this approach captures the leading behavior.

In our setup we will find a series of saddle points (ū, m̄), and the expression IS1 in (2.8)
evaluated on the dominant one will turn out to be the Witten index of an effective quantum
mechanics that we will construct. In order to do so, we will first have to find the saddle-point
flux m̄, and then reduce the 3d theory on S2 in the presence of such a flux.

2.2 The model

We consider the AdS/CFT pair discovered in [16], that was used in [28–30] to study certain
magnetic black holes in massive type IIA on AdS4 × S6 [17–19]. The field theory is a 3d
N = 2 Chern-Simons-matter theory with gauge group SU(N)k, coupled to three chiral
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multiplets Φa=1,2,3 in the adjoint representation. We can simplify the computation by
considering a U(N)k gauge theory, with no sources for the new topological symmetry. No
field is charged under U(1) ⊂ U(N) and thus the only effect of this is to introduce a
decoupled sector, whose Hilbert space on a Riemann surface Σg consists of kg states, which
is a single one in the case of S2. The theory has a superpotential

W = λ3d Tr Φ1 [Φ2,Φ3] . (2.10)

The global symmetry is SU(3)× U(1)R. We parameterize its Cartan subalgebra with three
R-charges Ra, characterized by the charge assignment Ra(Φb) ≡ (Ra)b = 2δab. We choose
the Cartan generators of the flavor symmetry to be q1,2 = (R1,2 −R3)/2. In this basis, all
fields have integer charges. Notice that eiπRa = (−1)F for a = 1, 2, 3.

To study AdS4 BPS dyonic black holes, we place the theory on7 S2 × R using a
topological twist on S2, so that one complex supercharge is preserved [42]. This is precisely
the background of the topologically twisted index in [20]. In other words, there is a
background gauge field AR corresponding to an R-symmetry that is equal and opposite to
the spin connection when acting on the top component of the supersymmetry parameter ε:

1
2π

∫
S2
dAR = −1 . (2.11)

The R-symmetry used for the twist must have integer charge assignments, and a generic
such R-charge can be written as qR = R3− n1q1− n2q2 for n1,2 ∈ Z. Note that

∑
a(qR)a = 2

and the superpotential correctly has R-charge 2. Under these inequivalent twists, the
scalar component of Φa experiences a flux na = (qR)a

∫
S2

dAR
2π = −(R3)a + n1(q1)a + n2(q2)a.

This formula provides a definition of n3 ≡ −2 − n1 − n2. Thus, twisting by a generic
R-symmetry with integer charge assignments is the same as twisting with respect to R3
and simultaneously turning on background gauge fields A1,2 coupled to the flavor charges
q1,2 with

1
2π

∫
S2
dA1,2 = n1,2 . (2.12)

The theory that we are considering has a UV Lagrangian consisting of various building
blocks which are individually supersymmetric off-shell. The vector multiplet V (in Wess-
Zumino gauge) contains the adjoint-valued fields (σ, λ, λ,Aµ, D), where σ is a dynamical
real scalar field and D a real auxiliary field. We consider a supersymmetrized Chern-Simons
Lagrangian for it, but we also add the super-Yang-Mills Lagrangian as a regulator. The
chiral multiplets Φa contain the adjoint-valued fields (Φa,Ψa, Fa), for which we consider
the kinetic Lagrangian and the superpotential term. These Lagrangians, in Lorentzian
signature and Wess-Zumino gauge, are:

LYM = 1
2e2

3d
Tr
[
−1

2FµνF
µν −DµσD

µσ +D2 − iλ
(
D/ − σ

)
λ

]
, (2.13)

LCS = k

4π Tr
[
−εµνρ

(
Aµ∂νAρ −

2i
3 AµAνAρ

)
− iλλ− 2Dσ

]
,

7One could also study the theory on a Riemann surface Σg [21, 23], but here we will focus on the sphere.
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Lchiral = −DµΦ†aDµΦa − Φ†a
(
σ2 +D

)
Φa + F †aFa − iΨa

(
D/ + σ

)
Ψa + iΨaλΦa + iΦ†aλΨa ,

LW = ∂W

∂Φa
Fa + 1

2
∂2W

∂Φa∂Φb
Ψc
b Ψa + c.c. ,

where we used the convention Ψc ≡ iσ1Ψ∗ for the conjugated spinor. The superpotential
must be a gauge-invariant holomorphic function of R-charge 2. The supersymmetry
variations preserved by these Lagrangians are in appendix B.

In order to obtain a microscopic description of the black hole entropy, one counts the
ground states of this theory. It is convenient to work in the grand canonical ensemble,
in which one introduces a set of chemical potentials ∆a, a = 1, 2 for each flavor Cartan
generator. As for the fluxes, it is useful to introduce a third chemical potential ∆3 such that

∆1 + ∆2 + ∆3 ∈ 2πZ , (2.14)

where all chemical potentials are only defined modulo 2π. This constraint [24] is required
in order for qa∆a to commute with the supersymmetry generators. Computing the thermal
partition function is hard because the theory is strongly coupled in the IR, therefore one
can start from a quantity protected by supersymmetry: the topologically twisted index

I3d(n,∆) = Tr (−1)F e−βH eiqa∆a , (2.15)

where F is the Fermion number, H the Hamiltonian on the sphere S2 in the presence of
the magnetic fluxes (2.11)–(2.12), and the trace is over the Hilbert space of states. This
quantity only gets contributions from the ground states of the theory. It was argued in [14],
exploiting the su(1, 1|1) superconformal symmetry algebra expected to emerge from the
AdS2 × S2 near-horizon region in gravity, that the BPS states of a pure single-center black
hole have constant statistics (−1)F in each charge sector, meaning that the index gets
non-interfering contributions (at least at leading order in N) and can account for the black
hole entropy.8

The TT index (2.15) can be computed exactly using supersymmetric localization
techniques [20, 21], and for the model considered here one obtains [28, 29]:

I3d(n,∆) = (−1)N

N !

3∏
a=1

y
N2(na+1)/2
a

(1− ya)N(na+1)

∑
m∈Γh

∮
JK

N∏
i=1

dzi
2πizi

zkmii

×
N∏
i 6=j

(
1− zi

zj

) 3∏
a=1

N∏
i 6=j

(
zi − yazj
zj − yazi

)mi(
1− ya

zi
zj

)−na−1
. (2.16)

Here zi ≡ eiui and ya ≡ ei∆a . This expression can be conveniently compiled into the same
form as (2.1):

I3d(n,∆) = 1
N !

∑
m∈Γh

∮
JK

(
N∏
i=1

dui
2π

)
e
∑

i
miV

′
i (u,∆) + Ω(u,n,∆) . (2.17)

8This expectation was confirmed for rotating black holes in AdS5 in [12].
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The two functions appearing in the exponent are

N∑
i=1

miV
′
i (u,∆) =

N∑
i=1

mi

{
ikui+

N∑
j=1

3∑
a=1

[
Li1
(
ei(uji−∆a)

)
−Li1

(
ei(uji+∆a)

)]
+ iπ

(
N−2ni

)}
,

Ω(u,n,∆) =
3∑

a=1
(1+na)

N∑
i,j

Li1
(
ei(uij+∆a)

)
−

N∑
i 6=j

Li1
(
eiuij

)
(2.18)

+ i
N2

2

3∑
a=1

(1+na)∆a+πi(2M+N) ,

where uji = uj − ui whilst ni and M are integer ambiguities. The JK integration contour is
the so-called Jeffrey-Kirwan residue [43]. We used the polylogarithm function

Li1(z) = − log(1− z) , (2.19)

while more properties are in appendix A.2.

2.3 The large N limit

To obtain the saddle-point equations, we first formulate (2.17) in a large N continuum
description as in [44], and subsequently take functional derivatives. The Weyl symmetry
permuting the discrete Cartan subalgebra index i can be used to order the holonomies
ui such that Im ui increases with i. The discrete index i is then substituted with a
continuous variable t ∈ [t−, t+], after which u and the flux m become functions of t. The
reparameterization symmetry in t is fixed by identifying, up to normalization, t with Im u(t):

u(t) = Nα (it+ v(t)
)
. (2.20)

This introduces the density
ρ(t) ≡ 1

N

di

dt
, (2.21)

in terms of which any sum will be replaced by an integral:
∑
i → N

∫
dt ρ(t). The density

ρ must be real, positive, and integrate to 1 in the defining range. The Nα scaling is
introduced in such a way that u(t) is an N -independent continuous function. This ansatz is
also motivated by the fact that dual black holes have an entropy scaling with a power law
in N .

We perform the large N computation in appendix A. In (A.11) and (A.12) we find:∫
dtmV ′ = ikN

∫
dt ρmu+ iN2−2αG(∆)

∫
dt

ṁ ρ2

(1− iv̇)2 +O
(
mN2−3α) ,

Ω = −N2−α f+(n,∆)
∫
dt

ρ2

1− iv̇ +O
(
N2−2α) , (2.22)

where a dot means d
dt and we introduced the functions

G(∆) =
3∑

a=1
g+(∆a) , f+(n,∆) = −

3∑
a=1

(1 + na)
(
g′+(∆a)− g′+(0)

)
, (2.23)
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and
g+(∆) = 1

6∆3 − π

2 ∆2 + π2

3 ∆ . (2.24)

The entire exponent in the integrand of (2.17) is the functional:

V = ikN1+α
∫
dt ρm (it+ v) + iN2−2αG(∆)

∫
dt

ṁ ρ2

(1− iv̇)2 +

−N2−α f+(n,∆)
∫
dt

ρ2

1− iv̇ +N2−α µ

(∫
dt ρ− 1

)
, (2.25)

where we added a Lagrange multiplier µ to enforce the normalization of ρ. In order for the
terms in V to compete and give us a (non-trivial) saddle-point, we need to set α = 1

3 and
m(t) = N

1
3 m̂(t), where m̂(t) is an N -independent function.

To find the saddle-point configurations at large N , we extremize V with respect to ρ, v,
m̂ and µ. After some massaging, the saddle-point equations are:

0 = d

dt

[
2G m̂ ρ

1− iv̇ − µ (it+ v)
]

+ 2if+ ρ , (2.26)

0 = ρ m̂− 2iG
k

d

dt

[ ˙̂m ρ2

(1− iv̇)3

]
+ f+
G
ρ (it+ v) , (2.27)

0 = d

dt

[
k (it+ v)2 − 4iG ρ

1− iv̇

]
, (2.28)

together with
∫
dt ρ = 1. One can check that the functional V is invariant under reparametri-

zations of t that preserve the scaling ansatz (2.20) for the holonomies. Such reparametriza-
tions act as:

t = t(t′) , v(t) = i
[
t′ − t(t′)

]
+ v′(t′) ,

ρ(t) =
(
dt(t′)
dt′

)−1
ρ′(t′) , m̂(t) = m̂′(t′) .

(2.29)

Notice in particular that v′ becomes complex after the transformation.
As we review in appendix A.1, the equations (2.26)–(2.28) can be solved, yielding:

u(t) =
(3NG

k

) 1
3
t , m(t) =

(
N

9kG2

) 1
3
f+ t , ρ(t) = 3

4
(
1− t2

)
, t ∈ [−1, 1] . (2.30)

This solution is obtained after making use of the reparametrization symmetry, so in particular
v(t) is complex. The value of the functional V at the saddle point for ρ, v and m — which
reproduces the logarithm of the index at leading order — is

V = − iN
5
3

5

( 9k
G(∆)

) 1
3
f+(n,∆) . (2.31)

If
∑
a ∆a = 2π, the two functions G and f+ take the particularly simple form

G(∆) = 1
2 ∆1∆2∆3 , f+(n,∆) = −1

2 ∆1∆2∆3

3∑
a=1

na
∆a

. (2.32)
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In this case, the saddle-point value of the logarithm of the index is

V = iN
5
3

5

(9k
4

) 1
3 (

∆1∆2∆3
) 2

3
3∑

a=1

na
∆a

. (2.33)

When the ∆a’s are real this expression matches the result of [28, 29],9 which reproduces
the black hole entropy upon performing a Legendre transform.

As mentioned above, the chemical potentials ∆a are defined modulo 2π. The expression
for V in (2.31), however, is not periodic under ∆a → ∆a + 2π. This means that we have
actually found an infinite number of saddle points, parametrized by the shifts.10 This
suggests that — as in AdS3 [34] and AdS5 [35] — there might be an infinite number of
complex BPS black-hole-like supergravity solutions dual to the semiclassical expansion of
the TT index. This issue deserves more study. In the following we will assume that we have
identified the dominant saddle point, and we will work with it.

3 KK reduction on a flux background

The next step is to perform a Kaluza-Klein (KK) reduction of the 3d N = 2 gauge theory
on the sphere S2, in the presence of the flux background m (2.30) determined as the saddle
point of the TT index. By keeping only the light modes, we will obtain a 1d quantum
mechanical model which we expect to contain information about the horizon degrees of
freedom of the dyonic AdS4 black holes we are interested in. This section is rather technical,
and the reader only interested in the final result can directly jump to section 4.

Here we will first show how the full twisted theory can be seen as a gauged N = 2
quantum mechanics. Afterwards, we will introduce the background of the reduction and
review the standard procedure to fix the 3d gauge group down to the 1d gauge group.
We will then explain why complications arise when computing the KK spectrum of the
vector multiplet, and how they can be resolved by a further modification of the gauge-fixing
Lagrangian. Lastly, we will exhibit the KK spectra of the vector and chiral multiplets.

3.1 Decomposing 3d multiplets into 1d multiplets

After the topological twist, the theory exactly fits into the framework of a gauged N = 2
quantum mechanics, and we perform various changes of variables in this section to make
it explicit. A similar discussion can be found in [45]. We give a brief review of 1d N = 2
supersymmetry in appendix D, adapted from [46], but in D.5 and D.6 we also present new
supersymmetric Lagrangians peculiar to our 3d theory.

We shall write the supersymmetry transformations in terms of anticommuting generators
Q and Q, with the understanding that generators should be multiplied by a complex anti-
commuting parameter to produce a generic supersymmetry transformation. With ε = (1, 0)T,

9In principle, it is not obvious whether the saddle point (2.30) contributes to the integral (2.17) along
the JK contour. This is however confirmed by the fact that the result matches the one in [28, 29], where the
integral was computed as a careful sum of those residues inside the contour.

10In general, only a subset of the complex saddle points contribute to the contour integral: which ones do
(depending on the contour) should be determined with steepest descent.
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Q is obtained from Q̃3d while Q is obtained from Q3d in (B.1) and (B.2). Note that Q and
Q are related by Hermitian conjugation, that is (QX) = (−1)F QX . The supersymmetry
algebra is

Q2 = Q
2 = 0 , {Q,Q} = i

[
∂t − δgauge(At + σ)

]
, (3.1)

where δgauge(α) is a gauge transformation with parameter α. We will use frame fields e1
µ, e1̄

µ

on S2, which we introduce in appendix C, and write differential forms on S2 with flat indices
1, 1̄. From now on, X will denote the Hermitian conjugate of X (since Dirac conjugates
are no longer present anyway). After this rewriting, the supersymmetry variations and
supersymmetric Lagrangians are as described below.

Vector multiplet. In Wess-Zumino gauge, the 3d vector multiplet consists of the gauge
field Aµ, a real scalar σ, a real auxiliary scalar D, and a Dirac spinor λ. The bosonic
components are R-neutral while λ has R-charge −1. We decompose λ in components as

λ =
(−Λt

Λ1̄

)
, (3.2)

and redefine D with a shift
D′ = D − 2iF11̄ . (3.3)

Now, Λ1̄ has R-charge −1 whereas Λt has R-charge +1. These field redefinitions have trivial
Jacobian. Under the supercharges preserved by the twist, the supersymmetry variations
of the vector multiplet split into 2 sets of variations. The first set (Hermitian conjugate
relations being implied) is:

QAt = −Qσ = − i2 Λt , QΛt = −Dtσ − iD ,

QD = −1
2 (Dt − iσ) Λt , QΛt = 0 .

(3.4)

These coincide with the supersymmetry variations (D.32) of a 1d U(N) vector multiplet in
Wess-Zumino gauge. Note that here the fields and gauge transformations are also functions
on S2. The second set is:

QA1̄ = 1
2Λ1̄ , QA1̄ = 0 , QΛ1̄ = 0 , QΛ1̄ = 2i

(
∂tA1̄ −D1̄(At + σ)

)
. (3.5)

These coincide with the supersymmetry variations (D.34) of a chiral multiplet
(
A1̄,

1
2Λ1̄

)
in

Wess-Zumino gauge, provided that the corresponding superfields

Ξ1̄,h = A1̄ + θ

2Λ1̄ −
i

2 θθ̄ ∂tA1̄ , Ξ1,h̄ ≡ Ξ1̄,h = A1 −
θ̄

2 Λ1 + i

2 θθ̄ ∂tA1 (3.6)

satisfying DΞ1̄,h = DΞ1,h̄ = 0, transform as connections under super-gauge transformations:

Ξ1̄,h → h
(
Ξ1̄,h + i∂1̄

)
h−1 , Ξ1,h̄ → h

−1(Ξ1,h̄ + i∂1
)
h , (3.7)

with h = eχ and Dχ = 0. We indicated as Λ1 the complex conjugate to Λ1̄.
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The Yang-Mills Lagrangian is composed of two pieces, independently supersymmetric:

2e2
3d LYM = Tr

[
4
∣∣Ft1̄∣∣2 + 4iDF11̄ − 4

∣∣D1̄σ
∣∣2 + iΛ1(Dt + iσ)Λ1̄ + 2ΛtD1Λ1̄ − 2Λ1D1̄Λt

]
+ Tr

[
(Dtσ)2 +D2 + iΛt(Dt − iσ)Λt

]
. (3.8)

Note that 2e2
3d LYM = QQTr

[
−4iA1∂tA1̄ + 4i(At − σ)F11̄

]
+QQTr

[
−ΛtΛt

]
, so both terms

are exact. The first piece is the appropriate kinetic term for a chiral transforming as a
connection and its superspace expression is in (D.51). The second piece is the standard 1d
gauge kinetic term (D.42). Likewise, the Chern-Simons Lagrangian splits into two pieces
which are separately supersymmetric:

4π
k
LCS = Tr

[
4iA1∂tA1̄ − 4i(At + σ)F11̄ + Λ1 Λ1̄

]
+ Tr

[
ΛtΛt − 2Dσ

]
. (3.9)

The superspace expression of the first piece is given in (D.59), whereas the second piece
matches (D.45).

Chiral multiplet. A 3d chiral multiplet consists of a complex scalar φ and a Dirac spinor
Ψ. We split Ψ into components as

Ψ = −i
(
ψ

η

)
. (3.10)

Their R-charges are R(ψ) = R(η) = R(φ) − 1. Under the supercharges preserved by the
twist, the supersymmetry variations of the 3d chiral multiplet can also be organized into
two sets. The first set (Hermitian conjugate relations are again implicit) is:

Qφ = ψ , Qφ = 0 , Qψ = 0 , Qψ = i(Dt − iσ)φ . (3.11)

They coincide with the supersymmetry variations (D.34) of a 1d chiral multiplet (φ, ψ) in
Wess-Zumino gauge, with corresponding superfield Φh = φ+ θψ − i

2 θθ̄ ∂tφ. The second is:

Qη = −f , Qη = −2D1̄φ , Qf = 0 , Qf = −i(Dt − iσ)η − 2D1̄ψ + iΛ1̄φ . (3.12)

They match the variations (D.36) of a 1d Fermi multiplet (η, f) in Wess-Zumino gauge,
whose corresponding superfield

Yh = η − θf + 2θ̄D1̄φ+ θθ̄

(
− i2 ∂tη − 2D1̄ψ + iΛ1̄φ

)
(3.13)

satisfies
DYh = E

(
Φh,Ξ1̄,h

)
= −2

(
∂1̄ − iΞ1̄,h

)
Φh . (3.14)

Here ∂1̄ contains the background U(1)R connection. In the language of 1d supersymmetry,
there is an E-term superpotential for Yh. After the shift (3.3), the kinetic term of a 3d
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chiral multiplet also splits into two separately supersymmetric pieces, i.e., the kinetic terms
of the 1d chiral (D.46) and of the 1d Fermi (D.49):

Lchiral =
[
|Dtφ|2 − |σφ|2 − φDφ+ iψ(Dt + iσ)ψ − iψΛtφ+ iφΛtψ

]
(3.15)

+
[
iη(Dt − iσ)η + ff − |2D1̄φ|2 − 2ψD1η + 2ηD1̄ψ − iηΛ1̄φ+ iφΛ1η

]
.

Note that Lchiral = QQ
(
−iφ(Dt + iσ)φ

)
+QQ

(
−ηη

)
, so both terms are exact.

The superpotential terms can be written as LW = −Q
(
ηa

∂W
∂φa

)
+Q

(
ηa

∂W
∂φa

)
, which in

the language of 1d supersymmetry are J-terms for the Fermi multiplets ηa with Ja = − ∂W
∂φa

.
Supersymmetry of the first term under Q, and of the second term under Q, are obvious.
When Q acts on the first term we get, up to a total time derivative,

QQ

(
ηa
∂W

∂φa

)
= −2Q

(
D1̄φa

∂W

∂φa

)
= −2Q(∂1̄W ) = −2∂1̄QW , (3.16)

which is another total derivative. Thus the superpotential terms are
(
Q + Q

)
-exact.

The supersymmetric Chern-Simons Lagrangian is the only piece that is not exact under
any supercharge.

3.2 Reduction background

As mentioned at the beginning of this section, we want to reduce the theory in the presence
of background fluxes for the global symmetries. In particular, we turn on a (negative) unit
flux for the R-symmetry qR. Since it is a background for a non-dynamical field, it can be
off-shell without any consequences. The presence of this background, under which the chiral
multiplets are differently charged, generically breaks the SU(3) flavor symmetry down to its
diagonal subgroup U(1)2

F . We also single out a configuration of fluxes for the dynamical
gauge fields:

F11̄ = im

4R2 , where m is a constant in the Cartan subalgebra. (3.17)

The choice of m will eventually be the one dictated by the saddle-point approximation to
the topologically twisted index, discussed in section 2. Since F11̄ couples to the auxiliary
field D in (3.8) like a FI parameter, the D-term equation for supersymmetric vacua is:

2i
e2
3d
F11̄ +

∑
a

[φa, φa]−
k

2πσ = 0 . (3.18)

The background should satisfy the D-term equation in order to be supersymmetric, and it
is simplest to turn on a background for σ to cancel the background flux. This falls into
the class of “topological” vacua discussed in [47]. Moreover, since At + σ appears in the
algebra (3.1), we also find it appropriate to turn on a background for At, opposite to that
of σ, so that the background of At + σ is zero. This ensures that BPS states have zero
energy even before projecting onto gauge singlets. Thus, the background we use for the
reduction is:

F11̄ = im

4R2 , σ = − m

2mkR2 , At = m

2mkR2 , where mk ≡
k e2

3d
2π . (3.19)
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One can check that all the equations of motion are satisfied on this background, except for
that of At + σ, unless m = 0. Consequently, when expanding the action, there will be a
Lagrangian term linear in At + σ, that is

Tr
(
km

4πR2 (At + σ)
)
. (3.20)

In other words, background fluxes produce a background electric charge in the presence of
Chern-Simons terms. As we will discuss later, the presence of this linear term is crucial
and it is the main source of complications when computing the vector multiplet spectrum.

We parametrize the Lie algebra su(N) by N ×N matrices Eij (i, j = 1, . . . , N) which
have a single nonzero entry 1 in row i and column j: (Eij)kl = δikδjl. Elements with i = j

are a basis for the Cartan subalgebra, while those with i 6= j correspond to roots with root
vector (αij)k = δki − δkj . The commutation relations in this basis are

[Eij , Ekl] = δjkEil − δilEkj . (3.21)

Note also that Eij = Eji and

TrEijEkl = δjkδil , TrEij [Ekl, Emn] = δjkδlmδni − δilδjmδkn . (3.22)

We write the expansion of adjoint fields in this basis as X = XijEij . Note that X ij = Xji.
The Cartan components will sometimes be written as Xi ≡ Xii for simplicity.

In the presence of global and gauge fluxes, the Lie algebra components of various fields
in the vector multiplet and chiral multiplets are U(1)spin sections with different monopole
charges q (see appendix C for details). A field χq(t, θ, ϕ) with monopole charge q can then
be expanded in a complete set of monopole harmonics Yq,l,m(θ, ϕ), and the time-dependent
expansion coefficients χq,l,m(t) are the 1d fields after the reduction:

χq(t, θ, ϕ) =
∑
l≥|q|

∑
|m|≤l

χq,l,m(t) Yq,l,m(θ, ϕ) . (3.23)

Defining the quantities

qij ≡
mi −mj

2 , qaij ≡
mi −mj + na

2 , (3.24)

the monopole charges of the fields and their charges under the global symmetries of the
theory are summarized in table 1.

We assume that mi 6= mj , ∀ i 6= j, since this is true for the saddle-point flux, and thus
qij 6= 0 for i 6= j. Given a Hermitian adjoint field X = XijEij = X in a vector multiplet
(i.e., At, σ, D), its components satisfy Xji = Xij . We parameterize the off-diagonal
components in terms of complex fields Xij with ij such that qij > 0. For complex adjoint
fields Y = Y ijEij in vector multiplets (i.e., A1̄, A1, Λ1̄, Λ1), we initially parameterize the
off-diagonal components in terms of complex fields Y ij , Y ij with ij such that qij > 0. For
complex adjoint fields in chiral multiplets, instead, we simply use all components Y ij .

The flux breaks the gauge group U(N) to its maximal torus U(1)N , and the 1d gauge
group will consequently be U(1)N . Indeed, the generators of 1d gauge transformations have
to be constant on S2, however the components εij of the gauge-transformation parameter
have monopole charges qij , and since l ≥ |qij |, only those in the Cartan subalgebra have an
l = 0 mode which is constant on S2.
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VM σij , Aijt , D
ij Λijt Aij1̄ Aij1 Λij1̄ Λ ij

1

q qij qij qij + 1 qij − 1 qij + 1 qij − 1
qR 0 1 0 0 −1 1
q1 0 0 0 0 0 0
q2 0 0 0 0 0 0

CM φija ψija ηija f ija

q qaij qaij qaij + 1 qaij + 1
qR −na −na − 1 −na − 1 −na − 2
q1 δ1a − δ3a δ1a − δ3a δ1a − δ3a δ1a − δ3a
q2 δ2a − δ3a δ2a − δ3a δ2a − δ3a δ2a − δ3a

Table 1. Monopole and global charges of all fields. The R-charge is qR, while q1,2 are flavor charges.
Above: modes from 3d vector multiplets. The modes are defined for pairs i, j such that qij > 0.
Below: modes from 3d chiral multiplets, defined for any ij. In both cases, the modes are in SU(2)
representations with l ≥ |q| and l = q mod 1.

3.3 Partial gauge fixing

In order to reduce to a gauged quantum mechanics, we need to fix the 3d gauge group
to the unbroken 1d gauge group, consisting of time-dependent transformations that are
constant on S2. A systematic procedure to achieve that is presented in appendix E and we
refer the reader to [48] for more details. We choose the Coulomb gauge with gauge-fixing
function

Ggf = 2√
ξ

(
DB

1 A1̄ +DB
1̄ A1

)
. (3.25)

One can check that it leaves the 1d gauge group unfixed. The covariant derivatives above
only contain the spin connection and monopole background. In general, for any Ggf, the
gauge-fixing procedure adds the following terms to the Lagrangian:

1
e2
3d

Tr
[
b2

2 + b
(
Ggf − {c̃, c}

)
+ i c̃ δgauge(c)Ggf + 1

2 {c̃, c}
2
]
. (3.26)

Here c and c̃ are independent Grassmann scalars, while b is a bosonic auxiliary field.
Importantly, all of them are valued in the part of the gauge algebra that is broken by
Ggf, and do not contain modes in the residual gauge algebra. In the following, a subscript
r will indicate a restriction to the residual gauge algebra, and a subscript f a restriction
to the complement containing fixed (or broken) gauge generators.11 We define a BRST
supercharge s as:

sX = δgauge(c)X , sc = i

2{c, c}f , sc̃ = ib , sb = δgauge(R) c̃ , R ≡ −1
2{c, c}r .

(3.27)
11In the Coulomb gauge (3.25), r contains diagonal transformations with l = 0, while f contains diagonal

transformations with l > 0 as well as all off-diagonal transformations.
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One can check that
s2 = i δgauge(R) , sR = 0 . (3.28)

This allows us to define an s-cohomology on invariants of the residual gauge group. The
terms produced by gauge fixing can then be written in a BRST-exact form:

(3.26) = 1
e2
3d
sTr c̃

(
−iGgf −

i

2 b+ i

2 {c̃, c}
)
≡ sΨgf . (3.29)

We defined Ψgf as the function in parentheses. We note that there is still complete freedom
in specifying the inner product in the ghost sector, i.e., the Hermiticity properties of c and
c̃. In order for the theory to be unitary and have a consistent Hamiltonian formulation [49],
one needs that c and c̃ are Hermitian, so that s is a real supercharge and (3.26) is real.
With this choice, (3.26) is invariant under a ghost-number symmetry valued in R∗, which
acts as:

c 7→ eα c , c̃ 7→ e−α c̃ , s 7→ eα s , (3.30)

with α ∈ R. We say that c has ghost number ng = 1 and c̃ has ng = −1. Physical
observables are identified with the s-cohomology at ng = 0, since external states must be
gauge invariant and cannot contain ghosts. Since c, c̃, and b are Hermitian, they are neutral
under U(1)R, and (3.26) is invariant under U(1)R, since Ggf is R-neutral.

3.4 Supersymmetrized gauge fixing

As anticipated, the linear term (3.20) causes complications in the computation of the KK
spectrum of the vector multiplet, and the following discussion aims to explain why. The
standard Faddeev-Popov gauge-fixing procedure we just reviewed generically breaks the
supersymmetries that were defined on the original action because of the presence of the
BRST-exact term sΨgf, which might not be supersymmetric. Considering a supercharge
Q, and assuming that it does not act on the fields in the gauge-fixing complex, the trans-
formation of sΨgf is −sQΨgf. When computing s-closed (i.e., gauge-invariant) quantities,
this is harmless because the potentially violating term is s-exact, and it does not affect the
result. For example, supersymmetric Ward identities can be derived for any observable in
the theory, since their correlators do not depend on s-exact terms.

However, the spectrum of the Chern-Simons-matter theory around a monopole back-
ground is not gauge invariant, because the quadratic action is not invariant under linearized
BRST transformations.12 This can be seen from the presence of the linear term (3.20). Its
BRST variation is 1

4πR2 Tr
(
ikm [c, At + σ]

)
, and it must cancel with the linearized BRST

variation of the quadratic action, which is then nonzero. Consequently, there is no guaran-
tee that the spectrum will be supersymmetric, because it is computed from a quadratic
action that is not s-closed, and therefore s-exact terms violating supersymmetry cannot
be neglected.

A way to resolve this issue takes inspiration from [50]. In addition to adding sΨgf
to gauge fix our path integral, we can further add QΨgf. The real supercharge Q acts as

12Although the BRST transformations are non-linear in the fields, to have a gauge-invariant spectrum, it
would be enough that the quadratic action be invariant under the linearized transformations.
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Q = Q+Q on physical fields, and we choose its action on the gauge-fixing complex such
that δ ≡ (s+Q) closes on symmetries and unfixed gauge transformations. We will show that
the further addition of QΨgf does not change the expectation value of any (possibly non-
supersymmetric) operator O with ghost number ng ≤ 0. In particular, physical observables
with ng = 0 are not affected. At this point, we have added δΨgf to the original action. The
real supercharge δ is explicitly preserved because our choice that δ2 contains symmetries
and unfixed gauge transformations implies δ2Ψgf = 0. With this procedure, the number of
preserved supercharges has not changed; while the gauge-fixed action with sΨgf is invariant
under s, the gauge-fixed action with δΨgf is invariant under δ. Its usefulness for computing
the spectrum lies in the fact that At + σ can be redefined by shifting with a quadratic
combination of ghosts such that δ(A′t + σ′) = 0, making the linear term (3.20) δ-closed.
By extension, the quadratic action which is modified by the shift is also δ-closed, and its
spectrum is supersymmetric.

In order for δΨgf = (s+Q)Ψgf to be invariant under δ, δ2 should only contain residual
gauge transformations and possibly other symmetries of Ψgf. This condition constrains how
Q can act on fields in the gauge-fixing complex. The supersymmetry transformations of the
physical fields X under Q are given in (3.4)–(3.5) and (3.11)–(3.12). Without specifying
how Q acts on the fields Y in the gauge-fixing complex, we find:

Q2X = {Q,Q}X = i
[
∂t − δgauge(At + σ)

]
X , {Q, s}X = δgauge

(
Qc
)
X ,

δ2X = i
[
∂t − δgauge

(
At + σ + iQc−R

)]
X .

(3.31)

If we want δ to close on time translations and residual gauge transformations, the only
possibility is to set Qc = i(At + σ)f. Hence, physical fields satisfy the algebra:

δ2X = i
[
∂t − δgauge

(
At,r + σr −R

)]
X . (3.32)

Having fixed Qc, we find that c also satisfies (3.32) and specifically

Q2c = 0 , {Q, s}c = i
[
∂t − δgauge(At,r + σr)

]
c , (3.33)

which imply (3.32). For uniformity, we demand that (3.33) is satisfied on all fields Y in
the gauge-fixing complex. Setting Q c̃ = 0 for simplicity, we find that this fixes Qb and,
altogether, Q acts on the fields in the gauge-fixing complex as:

Q c = i(At + σ)f , Q c̃ = 0 , Q b =
[
∂t − δgauge(At,r + σr)

]
c̃ . (3.34)

Given Ψgf that we defined in (3.29), we can now determine

QΨgf = 1
e2
3d

Tr
[
i c̃QGgf + i

2 c̃
(
Dt − iσ

)
c̃

]
, (3.35)

where σ acts in the adjoint representation (namely, σc̃ stands for [σ, c̃ ] in matrix notation).
Hence, collecting the contributions from (3.26) and (3.35), the supersymmetrized gauge-
fixing procedure requires us to add the following terms to the original Lagrangian:

δΨgf = 1
e2
3d

Tr
[
b2

2 + b
(
Ggf − {c̃, c}

)
+ i c̃

(
δgauge(c) +Q

)
Ggf + 1

2{c̃, c}
2 + i

2 c̃
(
Dt − iσ

)
c̃

]
.

(3.36)
With the choice that c and c̃ are Hermitian, δΨgf is real.
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It is important to note (following [50]) that adding QΨgf to sΨgf does not change
the expectation values of operators with ng ≤ 0, even if they are not invariant under Q.
In particular, it does not change physical observables. This can be shown explicitly for
the thermal partition function. We first integrate in an adjoint-valued auxiliary field a to
rewrite the quartic ghost interactions, after which the gauge-fixing action becomes:

δΨgf = 1
e2
3d

Tr
[
b2 − a2

2 + bGgf + c̃
[
a+ b, c

]
+ ic̃

(
δgauge(c) +Q

)
Ggf +

i

2 c̃
(
Dt− iσ

)
c̃

]
. (3.37)

Note that a has both gauge-fixed and residual components. Since the full action is quadratic
in the Grassmann fields {Fphys, c, c̃ }, where Fphys is the set of physical fermions, we can
formally perform the path integral over them, obtaining:

det

 S0|F,F 0 QΨgf|F,̃c
0 0 sΨgf|c,̃c

QΨgf |̃c,F sΨgf |̃c,c QΨgf |̃c,̃c

 ∼ det
(
sΨgf|c,̃c

)
det
(
S0|F,F

)
. (3.38)

All entries of the matrix on the l.h.s. are (possibly differential) operators involving the
bosons. This proves that the thermal partition function does not depend on the term QΨgf.

More generally, we prove that the expectation value of any operator O with ghost
number ng ≤ 0 is unchanged by the addition of QΨgf to the Lagrangian. The key property
is that QΨgh is the sum of two terms, of ghost number −1 and −2, respectively. Let 〈·〉s be
the path integral with sΨgf as gauge fixing, and let 〈·〉δ be the path integral with δΨgf as
gauge fixing. We have

〈O〉δ =
〈
O eiQΨgf

〉
s

= 〈O〉s +
∞∑
n=1

(i)n

n!
〈
O (QΨgf)n

〉
s

= 〈O〉s . (3.39)

The last equality holds because ghost number is a symmetry of 〈·〉s, implying null expectation
value for any correlator that has ng 6= 0. Since O (QΨgf)n has ng < 0, one concludes that
〈O (QΨgf)n〉s = 0 for every n. For the restricted set of operators O with ng ≤ 0, one can
constrain 〈·〉δ using the symmetries of 〈·〉s. In particular, although both supersymmetry and
U(1)R are not symmetries of 〈·〉δ because QΨgf breaks them, their Ward identities can still
be used to constrain the correlators 〈O〉δ. This result will play a crucial role in section 5.

We can now show how the linear Lagrangian term containing At + σ can be made
δ-invariant using a field redefinition. This is crucial in order to have a reliable and su-
persymmetric spectrum. The linear term (3.20) only contains modes (At + σ)r which are
constant on S2, due to the integral over S2. Since At,r + σr − R appears in (3.32) as a
central charge, δ(At,r + σr −R) = 0. Therefore, by redefining

A′t,r + σ′r = At,r + σr + 1
2{c, c}r , (3.40)

the linear term (3.20) becomes (dropping the ′ on A′t,r + σ′r):

k

4πR2 Tr
(
m (At + σ)

)
+ mk

4R2e2
3d

Tr
(
c [m, c]

)
, (3.41)
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where m is diagonal and mk was defined in (3.19). The first term is invariant under δ,
therefore after adding the second term to the quadratic action, the latter becomes invariant
under δ as well, and the spectrum has to be supersymmetric (i.e., δ-symmetric). Notice
that the newly shifted field At,r + σr is still Hermitian because c is Hermitian.

3.5 Vector multiplet spectrum

We are now ready to compute the spectrum of the (gauge-fixed) vector multiplet action.
We start by considering the off-diagonal components. The Yang-Mills, Chern-Simons, and
gauge-fixing terms are expanded to quadratic order in fluctuations around (3.19). After
integrating out the auxiliary fields D and b, the independent components consist of 4
complex bosons

(
Aij1 , A

ij
t , σ

ij , Aij1̄
)
and 6 complex fermions

(
Λ ij

1 ,Λ
ij
t ,Λ

ij
t , c

ij , c̃ ij ,Λij
1̄
)
for

every i 6= j such that qij > 0.13 All components are then rescaled by a factor of e3d/R.
Moreover Aij1 , A

ij
1̄ get an extra factor of 1/

√
2, while Λij1̄ , Λ ij

1 , Λijt , Λ ij
t get an extra factor

of
√

2. This is to ensure that the standard 1d kinetic terms are canonically normalized.
After expanding in monopole harmonics according to table 1 and integrating over S2, the
quadratic action for off-diagonal components in momentum space becomes:

∫
dp

2π
∑

i,j | qij>0

∑
l, |m|≤l

(
Bij
l,m(p)MB B

ij
l,m(p) + F ijl,m(p)MF F

ij
l,m(p)

)
(3.42)

where the vectors of bosonic and fermionic fields are, respectively,

Bij
l,m =

(
Aij1,l,m , A

ij
t,l,m , σ

ij
l,m , A

ij
1̄,l,m

)T
,

F ijl,m =
(

Λ ij
1,l,m , Λijt,l,m , Λ ij

t,l,m , c
ij
l,m , c̃

ij
l,m , Λij1̄,l,m

)T
.

(3.43)

The operators acting on the bosonic and fermionic fields are:

MB =



p(p+mk + 2σ0)− ξ + 1
ξ

s2
−

2R2 −
is−(p+mk + σ0)√

2R
− iσ0s−√

2R
1− ξ
ξ

s+s−
2R2

is−(p+mk + σ0)√
2R

s2
0
R2 + σ2

0 σ0(p+ σ0) − is+(p−mk + σ0)√
2R

iσ0s−√
2R

σ0(p+ σ0) (p+ σ0)2 −m2
k −

s2
0
R2 − iσ0s+√

2R
1− ξ
ξ

s+s−
2R2

is+(p−mk + σ0)√
2R

iσ0s+√
2R

p(p−mk + 2σ0)− ξ + 1
ξ

s2
+

2R2


(3.44)

13We have chosen to write Aij1 = Aji1̄ , Λ ij

1 = Λji1̄ and Λ ij

t = Λjit .
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with

σ0 = − qij
mkR2 , s0 =

√
l(l + 1)− q2

ij , s± =
√
l(l + 1)− qij(qij ± 1) =

√
s2

0 ∓ qij (3.45)

(notice that σ0, s0, and s± depend on ij) and

MF =



−p−mk − 2σ0 −s−
R

0 0 − is−√
2ξR

0

−s−
R

−p+mk 0 0 0 0

0 0 −p−mk 0 0 −s+
R

0 0 0 mkqij
R2

is2
0√
ξR2 0

is−√
2ξR

0 0 − is2
0√
ξR2 −p − is+√

2ξR
0 0 −s+

R
0 is+√

2ξR
−p+mk − 2σ0



. (3.46)

For l ≥ qij + 1, all modes exist and are massive. Moreover, the masses of the modes14 from
bosons and fermions are paired thanks to the δ-invariance of the action, and the ratio of
fermionic to bosonic determinants is 1. For l = qij , the modes of Aij1̄ and Λij1̄ do not exist
(see table 1), so the rightmost column and the bottom row of the matrices MB , MF should
be removed. In this case, there is a massless fermionic mode while the other massive modes
are paired between bosons and fermions. The ratio of determinants is −p. For l = qij − 1
(this case takes place only if qij ≥ 1), modes only exist in Aij1 and Λ ij

1 . The bosonic field
Aij1 has a massless pole, and a massive pole that cancels with that of Λ ij

1 .
The effective degrees of freedom at energies much smaller than mk and 1

R are the
massless fermionic modes with l = qij and the massless modes in Aij1 with l = qij − 1 (if
qij ≥ 1). The identity of the massless fermionic modes is not immediately clear due to the
off-diagonal entries in (3.46). We can first rescale the fields cijl,m → Rcijl,m, so that they
have the same mass dimension as the other fermions. Defining the dimensionless ratio
α = 1/(mkR) for convenience, the fermionic kinetic operator above becomes:

MF

∣∣
l=qij

=



−p− (1− 2qijα2)mk −
√

2qij αmk 0 0 −i
√

qij

ξ αmk

−
√

2qij αmk −p+mk 0 0 0
0 0 −p−mk 0 0
0 0 0 qijmk i

qij√
ξ
αmk

i
√

qij

ξ αmk 0 0 −i qij√
ξ
αmk −p


. (3.47)

By introducing a kinetic term iε cij ∂tc
ij by hand for the fermion cij , the problem of finding

mass eigenstates is reduced to the usual problem of diagonalizing a mass matrix. Taking
ε→ 0 at the end of the computation, we obtain the desired SL(5,C) transformation that

14The counting of modes works as follows. A complex field with 2-derivative kinetic term gives two modes,
with only 1-derivative kinetic term gives one mode, whereas with no kinetic term gives no modes.
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diagonalizes (3.47):

S =



− A−√
8q2
ijα

4ξ +A2
− +B2

−
− A+√

8q2
ijα

4ξ +A2
+ +B2

+
0 0 α√

ξ + qijα2 + 2q2
ijα

4

B−√
8q2
ijα

4ξ +A2
− +B2

−

B+√
8q2
ijα

4ξ +A2
+ +B2

+
0 0

√
2α2√

ξ + qijα2 + 2q2
ijα

4

0 0 1 0 0

− 2
√

2ξqijα3√
8q2
ijα

4ξ +A2
− +B2

−
− 2

√
2ξqijα3√

8q2
ijα

4ξ +A2
+ +B2

+
0 −i

√
ξ
qij

√
ξα√

ξ + qijα2 + 2q2
ijα

4

− i2
√

2qijα2√
8q2
ijα

4ξ +A2
− +B2

−
− i2

√
2qijα2√

8q2
ijα

4ξ +A2
+ +B2

+
0 0 i√

ξ + qijα2 + 2q2
ijα

4



, (3.48)

where we have defined

A± =
√

2qijα
(
qijα

2 (1 + 2ξ)±
√
q2
ijα

4 (1 + 2ξ)2 + 4ξ(qijα2 + ξ)
)

B± = 2ξ + qijα
2 (1 + 2ξ)±

√
q2
ijα

4 (1 + 2ξ)2 + 4ξ(qijα2 + ξ) .
(3.49)

The resulting fermionic kinetic operator is

S†MF

∣∣
l=qij

S =


−p− λ+mk 0 0 0 0

0 −p− λ−mk 0 0 0
0 0 −p−mk 0 0
0 0 0 mk 0
0 0 0 0 −p

 (3.50)

with

λ± =
qij α

2 (1− 2ξ)±
√
q2
ij α

4(1 + 2ξ)2 + 4ξ
(
qij α2 + ξ

)
2ξ . (3.51)

Each row of the matrix S expresses an original fermion in terms of the mass eigenstates.
The linear combinations are generically complicated, but they simplify in the physical
regime of interest. Since we want to reduce a Chern-Simons-matter theory on S2, and
the Yang-Mills term was only introduced to make propagating gauge degrees of freedom
massive, we are motivated to take mk � 1

R or α→ 0. In this limit, the massless fermion at
l = qij is −i

√
ξ c̃ (last row of S), and λ± → ±1.

The spectrum of the diagonal components can be analyzed in the same way and we
will be brief. One finds that every mode is massive for l > 0. After integrating out the l = 0
mode of the auxiliary fields Di, the quadratic Lagrangian (including the linear terms) for
the remaining diagonal l = 0 modes is:∑

i

{
kmi

(
Ait,0,0+σi0,0

)
+ 4πR2

e2
3d

[1
2
(
∂tσ

i
0,0
)2− 1

2m
2
k

(
σi0,0

)2+ 1
2 Λ i

t,0,0
(
i∂t+mk

)
Λit,0,0

]}
. (3.52)

We observe that σi0,0 and Λit,0,0 have mass mk and should be integrated out at low energies
p � mk. Only the combination

(
Ait,0,0 + σi0,0

)
remains, which is a 1d gauge field for the

gauge group U(1)N .15

15In other words, in the language of appendix D, we find that the superfield V − is massive, while Ω stays
light and enforces gauge invariance.
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To summarize, we write the quadratic Lagrangian for the modes from the vector
multiplet that contain massless poles, including fermionic partners which are necessary for
supersymmetry. After having rescaled A1̄ and Λ1̄ by m−1/2

k we have:

k
∑
i

mi (Ait+σi)+
∑
i 6=j

{
Θ(qij−1)

∑
|m|≤qij−1

[
Aji1̄,qij−1,m i∂tA

ji
1̄,qij−1,m+Λji1̄,qij−1,m Λji1̄,qij−1,m

+ 1
mk

(∣∣∣∂tAji1̄,qij−1,m

∣∣∣2 + Λji1̄,qij−1,m i∂t Λji1̄,qij−1,m

)]
+ Θ(qij)

∑
|m|≤qij

(
c̃ ijqij ,m i∂t c̃

ij
qij ,m

)}
(3.53)

where Θ(n) = 1 for n ≥ 0 and it vanishes otherwise. Here we have changed notation, and
used the fields

(
Aji1̄ ,Λ

ji
1̄
)
in place of Aij1 , Λ ij

1 because the former live in a chiral multiplet,
see (3.5), while the latter in an anti-chiral multiplet. Besides, notice that there are matching
degrees of freedom in Aji1̄ and Λji

1̄ with mass mk, which should not be included in the
effective theory at energies p� mk. These modes are encoded in the term proportional to
1/mk and can be integrated out by neglecting that kinetic term. The workings are explained
in [51]. The quadratic Lagrangian for the massless modes is then:16

k
∑
i

mi (Ait + σi) +
∑
ij

{
Θ(qij − 1)

∑
|m|≤qij−1

(
Aji1̄,qij−1,m i∂tA

ji
1̄,qij−1,m

+ Λji1̄,qij−1,m Λji1̄,qij−1,m

)
+ Θ(qij − 1

2)
∑
|m|≤qij

c̃ ijqij ,m i∂t c̃
ij
qij ,m

}
. (3.54)

The bosons Aji1̄ and the fermions c̃ ij have a 1-derivative action, while the fermions Λji
1̄

are auxiliary.

3.6 Matter spectrum

To find the spectrum of modes coming from the 3d chiral multiplets, we expand the chiral
multiplet Lagrangian (3.15) to quadratic order in fluctuations around (3.19). All fields in
the chiral multiplet are rescaled by 1

R . After expanding in monopole harmonics according
to table 1 and integrating over S2, the quadratic action in momentum space is:

∫
dp

2π
∑
a

∑
i,j

∑
l, |m|≤l

{[
p(p+ 2σ0)−

s2
+,a
R2

]∣∣φija,l,m(p)
∣∣2 +

∣∣f ija,l,m(p)
∣∣2

+
(
ψija,l,m(p) , ηija,l,m(p)

)(−p− 2σ0
s+,a
R

s+,a
R −p

)(
ψija,l,m(p)
ηija,l,m(p)

)}
(3.55)

where
σ0 = −qijα2mk ≡ −

mσ

2 , s±,a ≡
√
l(l + 1)− qaij(qaij ± 1) . (3.56)

16Using the assumption that qij 6= 0 for i 6= j, we have substituted Θ(qij) → Θ(qij − 1
2 ) in (3.53), and

consequently we have substituted
∑

i 6=j →
∑

ij
.
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For l ≥ |qaij | + 1, all modes exist (see table 1) and are massive. Moreover, the masses of
bosons and fermions are paired and the ratio of determinants is 1. The modes with l = |qaij |
exist in all fields if qaij ≤ −1

2 , whereas they only exist in φija and ψija if qaij ≥ 0. In the former
case, all modes are massive. In the latter case, the field φija has a massless pole, and a
massive pole that cancels with that of ψija . Provided that qaij ≤ −1, there exist modes with
l = |qaij | − 1 = −qija − 1 in ηija and f ija , such that ηija is massless while f ija is auxiliary.

To summarize, the quadratic Lagrangian for modes which contain massless poles, and
that of their supersymmetry partners is

∑
ij,a

{
Θ(qaij)

∑
|m|≤qaij

[
mij
σ

(
φija,qaij ,m

i∂tφ
ij
a,qaij ,m

+ψija,qaij ,mψ
ij
a,qaij ,m

)
+
∣∣∣∂tφija,qaij ,m∣∣∣2 (3.57)

+ψija,qaij ,m i∂tψ
ij
a,qaij ,m

]
+Θ(−qaij−1)

∑
|m|≤−qaij−1

(
ηija,−qaij−1,m i∂t η

ij
a,−qaij−1,m+

∣∣f ija,−qaij−1,m
∣∣2)} ,

where the i, j dependence of mσ was made explicit. At low energies p� mij
σ , the quadratic

kinetic term of φija,qaij ,m and the kinetic term of ψija,qaij ,m can again be neglected. Note that
qaij ≥ 0 does not exclude the possibility that i = j, in which case mij

σ = 0. We might also
have mij

σ → 0 as α → 0.17 In either case, all of φija,qaij ,m and ψija,qaij ,m would be classically
massless. However, quantum effects would still generically generate supersymmetric mass
terms like

mij
σ(q)

(
φija,qaij ,m

i∂t φ
ij
a,qaij ,m

+ ψija,qaij ,m
ψija,qaij ,m

)
, (3.58)

whose superspace expression is (D.48). At scales p � mij
σ(q), the quadratic kinetic term

of φija,qaij ,m and the kinetic term of ψija,qaij ,m would still be negligible. Therefore, rescaling
φija,qaij ,m

and ψija,qaij ,m by 1/(mij
σ )1/2 (including quantum corrections), the resulting quadratic

effective Lagrangian is:

∑
ij, a

[
Θ(qaij)

∑
|m|≤qaij

(
φija,qaij ,m

i∂t φ
ij
a,qaij ,m

+ ψija,qaij ,m
ψija,qaij ,m

)
(3.59)

+ Θ(−qaij − 1)
∑

|m|≤−qaij−1

(
ηija,−qaij−1,m i∂t η

ij
a,−qaij−1,m +

∣∣f ija,−qaij−1,m
∣∣2)] .

4 The effective quantum mechanics

In this section we present the proposed low-energy quantum mechanical model, which is
the result of setting to zero all massive modes in the gauge-fixed 3d Lagrangian while only
keeping the light modes.

The gauge group is U(1)N and the vector multiplet only contains the gauge fields
Ait+σi, with i = 1, . . . , N .18 Their role is to impose Gauss’s law. Because of the presence of

17Indeed mσ ∼ α2mk ∼ α/R, therefore its scaling is not fixed by the choices we already made.
18In Wess-Zumino gauge, the only non-vanishing component of the superfield V (or equivalently of Ω) is

At + σ. See appendix D.3.
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Aij1̄,m c̃ ijm φija,m ηija,m

chiral Fermi chiral Fermi
existence: qij ≤ −1 qij ≥ 1

2 qaij ≥ 0 qaij ≤ −1
l |qij | − 1 qij qaij |qaij | − 1
R3 0 0 2δ3a 2δ3a − 1
q1 0 0 δ1a − δ3a δ1a − δ3a
q2 0 0 δ2a − δ3a δ2a − δ3a

Table 2. Matter multiplets (we indicate the bottom components) for indices ij and their representa-
tions under the global symmetries. We label the SU(2) representation by the highest weight l ∈ Z/2.
The charges of the lowest components in each multiplet are indicated, while their superpartners
have R-charges R3 which are shifted by −1.

a Wilson line of charges kmi, coming from the 3d Chern-Simons term, Gauss’s law projects
onto a sector of non-vanishing gauge charges.

The matter content consists of various chiral and Fermi multiplets Xij with charges
+1 under U(1)i ⊂ U(1)N and −1 under U(1)j . They interact with the gauge fields via the
covariant derivative

D+
t X

ij =
(
∂t − i

(
Ait + σi −Ajt − σj

))
Xij . (4.1)

The matter content depends on the fluxes mi — determined in (2.30) — and na through the
combinations qij and qaij defined in (3.24). For every pair of indices ij, from the 3d vector
multiplet we get the following matter multiplets. If qij ≤ −1, there are 1d chiral multiplets
Ξij1̄,m =

(
Aij1̄,m,Λ

ij
1̄,m
)
in the SU(2) representation of highest weight l = −qij − 1. Otherwise,

if qij ≥ 1
2 , there are 1d Fermi multiplets Cijm =

(
c̃ ijm , g

ij
m

)
with l = qij . Here we introduce

the auxiliary fields gijm, even though they are not present in the 3d theory, in order to make
off-shell supersymmetry manifest. From the 3d chiral multiplet with flavor index a, we get
1d chiral multiplets Φij

a,m =
(
φija,m, ψ

ij
a,m

)
with l = qaij if qaij ≥ 0, and otherwise 1d Fermi

multiplets Y ija,m =
(
ηija,m, f

ij
a,m

)
with l = −qaij − 1 if qaij ≤ −1. We summarize this content

in table 2, where we also list the representations and charges of each multiplet under the
global symmetries SU(2), U(1)2

F and U(1)R.
In addition to gauge interactions, other interactions are specified by E and J superpo-

tentials. We have as many E and J functions as there are Fermi multiplets. For a given
Fermi multiplet η, E is in the same gauge and flavor representation as η, and its R-charge
is R(η) + 1. On the contrary, J is in the conjugate gauge and flavor representation with
respect to η, and its R-charge is −R(η) + 1. We find that the E and J functions are zero for
the Fermi multiplets c̃ ijm . For the Fermi multiplets ηija,m, the E and J superpotentials are:

Eija,m = i
∑
k

[
Θ(qakj)

∑
|m′|≤qa

kj

ekj1d
√

2qa
kj

+1 C
( |qik|−1 qakj |q

a
ij |−1

m−m′ m′ m

)
Aik1̄,m−m′ φ

kj
a,m′ (4.2)

−Θ(qaik)
∑

|m′|≤qa
ik

eik1d
√

2qa
ik

+1 C
( |qkj |−1 qaik |q

a
ij |−1

m−m′ m′ m

)
φika,m′A

kj
1̄,m−m′

]
,
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J jia,−m =−
∑
b,c,k

εabcΘ(qbjk)Θ(qcki)
∑

|m′|≤qbjk
|m+m′|≤qcki

λjki1d

[
(2qbjk+1)(2qcki+1)

2|qaij |−1

] 1
2

(−1)−q
a
ij
−1−m

×C
(
qbjk qcki |qaij |−1
m′ −m−m′ −m

)
φjkb,m′ φ

ki
c,−m−m′ , (4.3)

where C
(
l l′ l′′

m m′ m′′
)
are the Clebsch-Gordan coefficients given in (C.20) and we defined

eij1d = 1

R

√
kmij

σ

, λijk1d = λ3d

R

√
4πmij

σ m
jk
σ

. (4.4)

The sign (−1)−q
a
ij−1−m in the J-term is necessary for SU(2) invariance. The term Eija

in (4.2) exists for qaij ≤ −1, then the condition qakj ≥ 0 in the first line guarantees that Aij1̄
and φkja both exist, and the condition qaik ≥ 0 in the second line guarantees that φika and
Akj1̄ both exist. Also the term J jia in (4.3) exists for qaij ≤ −1, which is guaranteed by the
two conditions qbjk ≥ 0, qcki ≥ 0 on the r.h.s. The E-term comes from the reduction of (3.14)
whereas the J-term from the reduction of the 3d superpotential (2.10). One can check, by
substituting (C.22) and relabeling the indices, that∑

ij, a

Θ
(
−qaij − 1

) ∑
|m|≤−qaij−1

Eija,m J
ji
a,−m = 0 , (4.5)

which is required for supersymmetry. The couplings e1d and λ1d are obtained by tree-level
matching.

The complete Lagrangian in terms of the E and J given above is:

LQM = k
∑
i

mi
(
Ait+σi

)
+
∑
ij

{
Θ(qij−1)

∑
|m|≤qij−1

(
Aji1̄,m iD

+
t A

ji
1̄,m+Λji1̄,mΛji1̄,m

)
(4.6)

+Θ(qij−1
2)

∑
|m|≤qij

(
c̃ ijm iD

+
t c̃

ij
m+

∣∣gijm∣∣2)}+
∑
ij,a

{
Θ(qaij)

∑
|m|≤qaij

(
φija,m iD

+
t φ

ij
a,m+ψija,mψija,m

)

+Θ(−qaij−1)
∑

|m|≤−qaij−1

(
ηija,m iD

+
t η

ij
a,m+

∣∣f ija,m∣∣2−∣∣Eija,m∣∣2−ηija,mQEija,m−QEija,m ηija,m
−f ija,mJ

ji
a,−m−J

ji
a,−m f ija,m−ηija,mQJ

ji
a,−m−QJ

ji
a,−m ηija,m

)}
,

where i, j = 1, . . . , N whereas a = 1, 2, 3. Note that both bosons and fermions have
1-derivative kinetic terms. The Lagrangian can be more compactly written in superspace:

LQM =
∫
dθdθ̄

{
k
∑
i

miV
i +

∑
ij

[
Θ(qij − 1)

∑
|m|≤qij−1

Ξji1̄,m Ξji1̄,m + Θ(qij−1
2)

∑
|m|≤qij

Cijm C
ij
m

]

+
∑
ij, a

[
Θ(qaij)

∑
|m|≤qaij

Φij
a,m Φij

a,m + Θ(−qaij − 1)
∑

|m|≤−qaij−1
Y ija,m Y ija,m

]}

+
∑
ij, a

Θ(−qaij − 1)
∑
|m|≤qaij

{∫
dθ Y ija,m J

ji
a,−m(Φ) +

∫
dθ̄ Y ija,m J jia,−m(Φ)

}
. (4.7)

Here we promoted the scalar fields in J to be chiral superfields.
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The observables of the 3d theory include the gauge-invariant operators. After gauge
fixing by sΨgf, they are the BRST-closed operators, invariant under the residual gauge
symmetry, and with ghost number ng = 0. The further addition of QΨgf to the Lagrangian
does not modify their correlators, see (3.39). When we go to the effective 1d description (4.6),
the ghost field c is completely integrated out. Any operator containing c̃ ijm should not be
regarded as a physical observable, because it will have ng < 0. For instance, one might have
noticed that the Lagrangian (4.6) has a large number of additional global U(1) symmetries
that rotate each c̃ ijm independently. However, their currents are not physical observables
(because they are constructed with c̃ ijm ), and indeed the symmetries act trivially on the
sector of physical observables.19 They should not be regarded as emergent symmetries of
the physical theory. On the other hand, all U(1)N -invariant operators constructed from
fields of the low-energy 1d description other than c̃ ijm are physical observables. This is
because the BRST transformations of the physical fields X are sX = δgauge(c)X, but c is
massive and set to zero in the low-energy description.

4.1 1-loop determinants and the Witten index

A simple check that we can perform of the proposed 1d quantum mechanics (4.7) is that its
Witten index matches the TT index of the 3d theory, at leading order at large N . Indeed,
since the Witten index is invariant under RG flow, it must be the same in the UV 3d
theory and in the IR 1d effective description. Matching of the indices also ensures that
the ground-state degeneracy of the quantum mechanics reproduces the entropy of BPS
black holes.

The Witten index of an N = 2 supersymmetric quantum mechanics is defined in exactly
the same way as the TT index in (2.15). In the Lagrangian formulation, the chemical
potentials ∆a are introduced as twisted boundary conditions on the fields. For a class of
these models, the Witten index has been computed in [46] (see also [52, 53]), and it takes a
Jeffrey-Kirwan contour integral form as in (2.16). We want to make sure that the quantum
mechanics (4.7) reproduces the integrand in (2.16) for the value of mi singled out by the
saddle-point approximation.

After fixing the 1d gauge ∂t
(
Ait + σi

)
= 0, the Wilson line gives a classical contribution

exp
(
i
∑
i kmiui

)
, where u is the constant mode of the Wick-rotated At + σ. The chirals Ξ1̄

and Fermi’s C coming from the 3d vector multiplet contribute to the 1-loop determinant as

ZΞ1̄ =
∏
i 6=j

(
ei uij/2

1− eiuij

)Θ(−qij−1) (−2qij−1)
, ZC =

∏
i 6=j

(
eiuij − 1
ei uij/2

)Θ(qij) (2qij+1)
, (4.8)

where uij = ui − uj . The exponents come from the 2l + 1 degeneracy in each SU(2)
representation of highest weight l, and the Θ functions ensure that nontrivial contributions
only enter when the multiplets exist. Recalling that qij 6= 0 for i 6= j, their product
simplifies:

ZΞ1̄ ZC = (−1)
N(N−1)

2
∏
i 6=j

(
1− zi

zj

)
, (4.9)

19In view of holographic applications of the low-energy quantum mechanics, one should not expect the
extra symmetries to appear as gauge fields in AdS2.
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where zi = eiui . The result above matches (up to an inconsequential sign) the 1-loop
determinant of a 3d vector multiplet given in [20] and appearing in (2.16).20 As opposed to
the indirect Higgsing argument which was used in [20], the result here provides an explicit
derivation based on a careful gauge-fixing procedure. This computation shows that the
ghost multiplet Cij appearing in the quantum mechanics is needed to reproduce the correct
degeneracy of BPS states. Lastly, the chirals Φa and Fermis Ya coming from the 3d chiral
multiplets contribute to the 1-loop determinant as

ZΦa =
∏
i,j

(
ei(uij+∆a)/2

1− ei(uij+∆a)

)Θ(qaij) (2qaij+1)
, ZYa =

∏
i,j

(1− ei(uij+∆a)

ei(uij+∆a)/2

)Θ(−qaij−1) (−2qaij−1)
.

(4.10)
Their product is

ZΦaZYa =
∏
i,j

(
ei(uij+∆a)/2

1−ei(uij+∆a)

)2qaij+1
= y

N2(na+1)/2
a

(1−ya)N(na+1)

∏
i 6=j

(
zi−yazj
zj−yazi

)mi(
1−ya

zi
zj

)−na−1
.

(4.11)
The complete integrand is thus

Ztot = eik
∑

i
miui ZΞZC

∏
a

ZΦa ZYa , (4.12)

matching the integrand in (2.16).
Assuming that the JK contour integral formula for the 1d index gets contribution from

the same saddle point as in 3d, equality of (4.12) with the integrand in (2.16) guarantees that
a large N saddle-point computation of the 3d TT index matches a saddle-point computation
of the 1d Witten index, at leading order in N (see section 2.1).

5 Stability under quantum corrections

The gauge-fixing action δΨgf preserves the real supercharge δ, U(1)2
F , and SU(2). We

first use the δ invariance of the full action to show that the fermion c̃ ijm only has gauge
interactions. This allows us to focus on fields other than c̃ ijm . Although the gauge fixing
breaks Q, Q, and U(1)R, we will then give arguments for why they should be preserved in the
effective action. The key observation will be (3.39). Finally, we will use all the symmetries
Q, Q, U(1)2

F , U(1)R and SU(2) to discuss which classical and quantum corrections to the
quantum mechanics computed in section 4 one could expect.

5.1 Interactions involving c̃

Using the fermionic symmetry δ, we can argue that the part of the Lagrangian involving
the fermions c̃ ijm cannot be anything other than (4.6) at low energies. Let 〈·〉δ denote the

20The 1-loop determinant of a Fermi multiplet has a sign ambiguity coming from the assignment of fermion
number to states in the fermionic Fock space. We have fixed this ambiguity in a specific way to get (4.9),
but different conventions are possible. Notice, for example, the different choice made in (4.10).
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gauge-fixed path integral, as in (3.39). For i, j such that qij > 0, we consider the quantity

〈
c̃ ijm (t)D+

t c̃
ij
m (t′)

〉
δ

=
〈
c̃ ijm (t) δbijm(t′)

〉
δ
−
〈
c̃ ijm (t) δgauge(R) c̃ ijm (t′)

〉
δ
≈
〈
c̃ ijm (t) δbijm(t′)

〉
δ
.

(5.1)
Here bijm is the l = qij mode of the auxiliary field b in the gauge-fixing complex. In the first
equality we used (3.27) and (3.34). The approximate equality ≈ only holds in the IR limit
because the term that was discarded is a correlation function involving massive ghosts c
in R = −1

2{c, c}r, which is exponentially suppressed at large t− t′. We continue using the
Leibniz rule on δ and the fact that δ-exact correlators vanish, to write〈

c̃ ijm (t) δbijm(t′)
〉
δ

= −
〈
δc̃ ijm (t) bijm(t′)

〉
δ

= i
〈
bijm(t) bijm(t′)

〉
δ
. (5.2)

The path integral over bijm is quadratic and can be done exactly, yielding

〈
c̃ ijm (t)D+

t c̃
ij
m(t′)

〉
δ
≈ i
〈
bijm(t) bijm(t′)

〉
δ

= −δ(t− t′) + i
〈
OH(t)OH(t′)

〉
δ
≈ −δ(t− t′) , (5.3)

where
OH =

√
qij
ξR2 A

ij
1,qij ,m −

e3d
R
{c̃, c}ijl=qij ,m . (5.4)

The expression {c̃, c}ijl=qij ,m stands for the
(
l = qij ,m

)
mode of {c̃, c}ij . Both terms inside

OH contain massive fields only, therefore
〈
OH(t)OH(t′)

〉
δ
is exponentially suppressed at

large distances and the approximation holds to increasing accuracy in the IR. Using only
symmetry arguments for δ, we have shown that c̃ ijm must satisfy the Schwinger-Dyson
equation derived from (4.6) in the IR limit. Any modification of (4.6) containing c̃ ijm would
change the Schwinger-Dyson equation, and can thus be excluded.

5.2 Presence of N = 2 supersymmetry and R-symmetry

Having taken care of c̃ ijm , we want to constrain the effective Lagrangian for the remaining
fields. Here we show that in the IR it must preserve 1d N = 2 supersymmetry and U(1)R,
even though these symmetries are broken by the gauge-fixing term δΨgf.

First, we show that the Ward identities for the supercharges Q and Q are satisfied
on correlators O constructed from 1d fields excluding c̃ ijm , which are modes of physical
fields in 3d. More precisely, we show that 〈QO〉δ ≈ 0 (and analogously for Q). As before,
approximate equalities ≈ hold in the IR limit. Firstly, since O is constructed from modes
of physical fields, it has ng = 0, and the same goes for QO. Then (3.39) tells us that
〈QO〉δ = 〈QO〉s. It remains to show that 〈QO〉s ≈ 0.

We then follow the standard procedure to derive a Ward identity. In the path integral
〈O〉s we perform a field redefinition X ′ = X + εQX on physical fields X in the form of
a supersymmetry transformation, while keeping the fields Y in the gauge-fixing complex
unchanged. Let Sph be the original action before gauge fixing. At first order in ε we get

〈O〉s =
∫
Dφ O ei(Sph+sΨgf) =

∫
Dφ

(
O + εQO

)
ei(Sph+sΨgf)−iε sQΨgf

= 〈O〉s + ε
(
〈QO〉s − i〈O sQΨgf〉s

)
+ . . .

(5.5)
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Suppose that O is fermionic so that 〈QO〉s ≈ 0 is a non-trivial statement. At order ε, that
equality implies

〈QO〉s = i〈O sQΨgf〉s = i
〈
(sO) (QΨgf)

〉
s

= i
〈(
δgauge(c)O

)
(QΨgf)

〉
s
≈ 0 . (5.6)

We used that
〈
s(OQΨgf)

〉
s

= 0 because the action Sph + sΨgf is s-closed. In the last step, c
is massive and therefore its correlators vanish in the IR. We can now use (3.39) to conclude
that 〈QO〉δ = 〈QO〉s ≈ 0.

The Ward identity for U(1)R can be derived with much less work. Any O built out of
1d fields excluding c̃ ijm has ng = 0, and 〈O〉δ = 〈O〉s by (3.39). Since sΨgf is U(1)R invariant,
〈O〉s = 0 if O has nonzero R-charge. Therefore 〈O〉δ = 0 if O has nonzero R-charge.

Given the above Ward identities, any effective action in the IR should have 1d N = 2
supersymmetry and U(1)R symmetry. For U(1)R, we can see this in the following way (the
argument for supersymmetry is analogous). Formally, the exact effective action for the
fields in the quantum mechanics is given by

e
i

(
S0+

∑
r 6=0 Sr

)
=
∫
DφH ei(Sph+δΨgf) , (5.7)

where Sr, r ∈ Z are pieces of the effective action with R-charge r, and φH are the massive
fields which are integrated out. Note that the U(1)R violating pieces Sr 6=0 can in principle
be generated21 because δΨgf breaks U(1)R. However, the presence of any Sr 6=0 would
generically violate the U(1)R Ward identity. Indeed, consider an operator O with R-charge
−r∗ which is constructed out of the fields φL in the quantum mechanics excluding c̃ ijm . The
Ward identity tells us that 〈O〉δ = 0. However, computing 〈O〉δ directly gives:

〈O〉δ =
∫
DφL O e

i

(
S0+

∑
r 6=0 Sr

)
=
∞∑
n=0

in

n!

∫
DφL O

(∑
r 6=0

Sr

)n
eiS0

=
∞∑
n=0

in

n!

∫
DφL O

[(∑
r 6=0

Sr

)n]
r=r∗

eiS0 6= 0 .
(5.8)

Here
[
. . .
]
r=r∗ means the sum of the terms with R-charge r∗, which, at least for n = 1, is

non-empty if Sr∗ is present in the effective action. It follows that, in the latter case, the
expectation value of O would generically be non-zero, violating the Ward identity.

5.3 Symmetry constraints

We can use U(1)R, Q, and Q, together with the other symmetries, to constrain the interac-
tions that could appear in the effective action. We work within the framework of [46] (see
also [54]), where the interactions in an N = 2 supersymmetric quantum mechanics are spec-
ified by E and J functions, i.e., holomorphic functions of chiral superfields satisfying (4.5).
The argument in section 5.1 tells us that the E and J functions corresponding to C must
vanish in the IR:

EijC,m = 0 , J jiC,−m = 0 . (5.9)
21What happens instead, as indicated by the argument below, is that all the generated symmetry-violating

pieces involve fields at the scale of the massive ghosts c or higher.
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Besides, C cannot appear in the E- and J-terms of the other Fermi multiplets Ya. Since it
is already true classically that DYa 6= 0 for every Ya, one expects that Ya’s cannot appear
in E or J functions, because quantum corrections would need to be finely tuned to make
them chiral. Therefore, E and J functions can only be holomorphic functions of Φa and Ξ1̄.

Let us neglect gauge charges and SU(2) invariance momentarily, and suppress the
corresponding indices. To have the same U(1)2

F charges as Ya and R-charge R(Ya) + 1, the
E function corresponding to Ya must have the simple form

Ea ∼ Φa hE(Ξ1̄) , (5.10)

where hE is a holomorphic function. Fleshing out the gauge and SU(2) indices, we enforce
that Eija,m have the same gauge charges and be in the same SU(2) representation as Y ija,m.
Imposing those conditions on the constant term in hE , we get Eija,m ∼ Φij

a,m. However, such
a term is impossible because Y ija,m (and therefore Eija,m) exists when qaij ≤ −1, while Φij

a,m

exists when qaij ≥ 0. The two conditions are mutually exclusive.22 We remain with terms in
hE which are at least linear in Ξ1̄. Writing the first term explicitly, we find:

Eija,m =
∑
k

eija,k Θ(qakj)
∑

|m′|≤qa
kj

C
( |qik|−1 qakj |q

a
ij |−1

m−m′ m′ m

)
Ξik1̄,m−m′ Φ

kj
a,m′

+
∑
k

ẽ ija,k Θ(qaik)
∑

|m′|≤qa
ik

C
( |qkj |−1 qaik |q

a
ij |−1

m−m′ m′ m

)
Φik
a,m′ Ξ

kj
1̄,m−m′ + . . .

(5.11)

The Θ functions are necessary to ensure that the fields Φa and Ξ1̄ exist with their corre-
sponding gauge charges. The Clebsch-Gordan coefficients project the product of Ξ1̄ and Φa

to the same SU(2) representation carried by Eija,m, i.e., l = |qaij | − 1. Finally, eija,k and ẽ ija,k
are free coefficients. Analogously, terms of the form Φa(Ξ1)n≥2 should contain a product of
n Clebsch-Gordan coefficients and balanced gauge indices.

When constraining the functions Ja corresponding to Ya, we again start with U(1)2
F

and U(1)R. Now, Ja must have the opposite U(1)2
F charges to Ya, and R-charge −R(Ya)+1.

Thus Ja must have the form
Ja ∼ Φb Φc hJ(Ξ1̄) , (5.12)

where b and c are different flavor indices complementary to a. Again, hJ is a holomorphic
function. We should impose gauge and SU(2) invariance. Expanding hJ as a polynomial in
Ξ1̄ and writing the first (constant) term explicitly, we have

J jia,−m =
∑
k

[
λjia,k√
2|qaij |−1

Θ(qbjk)Θ(qcki)
∑

|m′|≤qbjk
|m+m′|≤qcki

(−1)−q
a
ij
−1−mC

( qbjk qcki |qaij |−1
m′ −m−m′ −m

)
Φjk
b,m′Φ

ki
c,−m−m′

+
λ̃jia,k√
2|qaij |−1

Θ(qcjk)Θ(qbki)
∑

|m′|≤qcjk
|m+m′|≤qbki

(−1)−q
a
ij
−1−mC

( qcjk qbki |qaij |−1
m′ −m−m′ −m

)
Φjk
c,m′Φ

ki
b,−m−m′

]
+. . .

(5.13)
22Because of this, the chirals and Fermi’s in the quantum mechanics cannot gap each other out through a

dynamically generated E-term.
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The indices b and c above are chosen such that εabc = 1, and the factor 1/
√

2|qija | − 1
was added for later convenience. Similarly to the E function, there are two unfixed
coefficients λjia,k and λ̃jia,k. Terms of the form ΦbΦc(Ξ1̄)n≥1 should contain a product of n+ 1
Clebsch-Gordan coefficients and gauge indices should be balanced.

Lastly, supersymmetry requires (4.5). If we restrict Eija,m and J jia,−m to the terms
written explicitly in (5.11) and (5.13), this condition implies

eija,k λ
ji
a,l + ẽ lkc,i λ

kl
c,j = 0 if εabc = 1 and Θ(qakj) Θ(qbjl) Θ(qcli) = 1

eija,k λ̃
ji
a,l + ẽ lkb,i λ̃

kl
b,j = 0 if εabc = 1 and Θ(qakj) Θ(qcjl) Θ(qbli) = 1 .

(5.14)

Note that none of the indices above are summed over. The coefficients in (4.2) and (4.3)
that we found from the reduction satisfy these equations, but they might not be the unique
choice. The constraint (4.5) would also have to be enforced on terms with higher powers of
Ξ1̄, strongly constraining their coefficients.

From classical scaling arguments, we are not able to rule out the presence in (5.11)
and (5.13) of terms which have higher powers of Ξ1̄. They could be generated both at tree
and at loop level. It would be consistent to neglect those terms if Ξ1̄, which is classically
dimensionless, gained a positive anomalous dimension. This is indeed the case for classically
dimensionless fermions in SYK models such as [31, 32], but it remains to be checked in the
theory discussed here.
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A Large N limit computations

Let us start by studying the first line of (2.18), and in particular the terms involving the Li1
function, whose definition and properties can be found in appendix A.2. We first perform
the sum over j (that becomes an integral over t′), leaving the sum over i (that becomes an
integral over t) untouched.
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The integral in t′ has to be broken in two parts, above and below t±∆ ≡ t±N−α Im ∆.
When Im(uji ∓∆) > 0 (for one of the two signs), we can use the series expansion (A.27).
This allows us to treat the integral above t±∆:∑

j

Θ
(
Im(uji ∓∆)

)
Li1
(
ei(uji∓∆)

)
→ N

∫
t±∆

dt′ρ(t′)
∞∑
`=1

1
`
ei`(u(t′)−u(t)∓∆)

≡ N
∞∑
`=1

e∓i`∆

`
IL,`[ρ](t,∆) . (A.1)

In appendix A.3 we define and manipulate these integrals. Using (A.38), we write (A.1) as

(A.1)=N1−αLi2
(
e∓i(Re∆−v̇ Im∆)

) ρ

1−iv̇ (A.2)

+N1−2α
[
Li3
(
e∓i(Re∆−v̇ Im∆)

)
±(Im∆)(1−iv̇)Li2

(
e∓i(Re∆−v̇ Im∆)

)][ ρ̇

(1−iv̇)2 + iρ v̈

(1−iv̇)3

]
+ i

2N
1−2α(Im∆)2(1−iv̇)2 Li1

(
e∓i(Re∆−v̇ Im∆)

) ρv̈

(1−iv̇)3 +O(N1−3α) .

When Im(uji ∓∆) < 0, the steps above are not applicable because the series expansion for
Li1 does not converge, but we can use (A.31) so that

Li1
(
ei(uji∓∆)

)
= Li1

(
ei(uij±∆)

)
− i
(
uji ∓∆− π

)
. (A.3)

Now the Li1 terms on the r.h.s. can be analyzed in the same way as before using (A.39):

∑
j

Θ
(
Im(uij±∆)

)
Li1
(
ei(uij±∆)

)
→N

∫ t±∆
dt′ ρ(t′)

∞∑
`=1

ei`(u(t)−u(t′)±∆)
`

=N
∞∑
`=1

e±i`∆

`
IU,`[ρ]

=N1−αLi2
(
e±i(Re∆−v̇ Im∆)

) ρ

1−iv̇

−N1−2α
[
Li3
(
e±i(Re∆−v̇ Im∆)

)
∓(Im∆)(1−iv̇)Li2

(
e±i(Re∆−v̇ Im∆)

)][ ρ̇

(1−iv̇)2 + iρ v̈

(1−iv̇)3

]
− i2N

1−2α(Im∆)2(1−iv̇)2 Li1
(
e±i(Re∆−v̇ Im∆)

) ρv̈

(1−iv̇)3 +O(N−3α) . (A.4)

To obtain the full integral over t′, the contributions (A.2) and (A.4) with upper sign
must be summed with minus the ones with lower sign, and the result can be simplified
using (A.31). As in (2.18), we then integrate over t together with m(t), and sum over
a = 1, 2, 3. We obtain:

iN2−2α
∫
dt

im ρ2 v̈

(1− iv̇)3

3∑
a=1

(Im ∆a)2(1− iv̇)2 g′′+
(
Re ∆a − v̇ Im ∆a

)
(A.5)

− iN2−2α
∫
dt m

d

dt

[
ρ2

(1− iv̇)2

] 3∑
a=1

[
g+
(
Re ∆a − v̇ Im ∆a

)
+ i (Im ∆a) (1− iv̇) g′+

(
Re ∆a − v̇ Im ∆a

)]
.
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The function g+(u) is defined in (A.32). It remains to add the contribution from the second
term on the r.h.s. of (A.3). We choose the integer ambiguities ni in (2.18) such that

π(N−2ni) = −
3∑

a=1

N∑
j=1

[
2π
(
Θ
(
Im(uij +∆a)

)
−Θ

(
Im uij

))
+2∆aΘ(Im uij)

]
+O(1) . (A.6)

The subleading O(1) term accounts for the possibility that N might be odd and we would
not be able to cancel it completely. The contributions from the second term on the r.h.s.
of (A.3) and from (A.6) sum up to

i
∑
a,i,j

mi

[(
Θ
(
Im(uij + ∆a)

)
−Θ(Im uij)

)(
−uji + ∆a − π

)
(A.7)

+
(
Θ
(
Im(uij −∆a)

)
−Θ(Im uij)

)(
uji + ∆a − π

)]

= iN2
3∑

a=1

∑
+,−

∫
dtm(t) ρ(t)

∫ t±∆a

t
dt′ ρ(t′)

[
±Nα(it− it′ + v(t)− v(t′)

)
+ ∆a − π

]
.

In each integral we perform the change of variables t′ = t±N−α(Im ∆a)ε, obtaining:

(A.7) = iN2−α
3∑

a=1

∑
+,−

Im∆a

∫
dtm(t)ρ(t)

∫ 1

0
dε (A.8)

×
{
±ρ
(
t±N−α(Im∆a)ε

)[
−i(Im∆a)ε∓Nα v

(
t±N−α(Im∆a)ε

)
±Nαv(t)+∆a−π

]}
.

We expand ρ and v in Taylor series and keep only the terms at leading order. Then we
integrate in ε and use that g′′+(∆) = ∆− π. We obtain the expression:

(A.7) = iN2−2α
3∑

a=1
(Im ∆a)2

∫
dtm

{
ρ ρ̇ g′′+

(
Re ∆a − v̇ Im ∆a

)
+ (A.9)

+ i
Im ∆a

6
d

dt

[
ρ2

(1− iv̇)2

]
(1− iv̇)3

}
+O(mN2−3α) .

We sum (A.5) and (A.9). We notice that the various terms can be organized into the Taylor
series of g+(∆a) around the point Re(∆a)− v̇ Im(∆a), which has four terms because g+ is
a cubic polynomial. We obtain the compact expression

(A.5) + (A.9) = −iN2−2αG(∆)
∫
dtm

d

dt

[
ρ2

(1− iv̇)2

]
+O

(
mN2−3α, 1

)
, (A.10)

where G(∆) is the function defined in (2.23). It remains to add the first term on the r.h.s.
of the first line of (2.18). We obtain the final expression:∫

dtmV ′ = ikN

∫
dt ρmu+ iN2−2αG(∆)

∫
dt

ṁ ρ2

(1− iv̇)2 +O
(
mN2−3α) . (A.11)

We apply the same steps to obtain the large N limit of Ω in (2.18). To avoid repetition,
we only present the result. We set the integer ambiguity M to N/2 +O(1). We obtain:

Ω = −N2−α f+(n,∆)
∫
dt

ρ2

1− iv̇ +O
(
N2−2α) , (A.12)

where the function f+(n,∆) is defined in (2.23).
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A.1 Solutions to the saddle-point equations

In this appendix we solve the saddle-point equations (2.26)–(2.28), in the original
parametrization in which v(t) is a real function. Let us first solve (2.28). After inte-
grating to

k (it+ v)2 + 4Gρ
i+ v̇

= A ∈ C , (A.13)

its real and imaginary parts give

4ρ = −
(
1 + v̇2) Im[G−1 (A− k (it+ v)2)] , v̇ = −

Re
[
G−1(A− k(it+ v)2)]

Im
[
G−1(A− k(it+ v)2)] . (A.14)

We impose that ρ is integrable. This necessarily implies that ρ → 0 as t → ±∞, or that
ρ is defined on compact intervals where ρ is zero at the endpoints. At infinity, or at an
endpoint, ρ = 0 implies A− k (it+ v)2 = 0. By considering real and imaginary parts, we
see that this equation cannot be satisfied as t→ ±∞, and ρ must have compact support.
In order for ρ to have two endpoints t± and be defined on the interval [t−, t+], A cannot be
on the positive real axis. Let A

1
2 be the square root whose imaginary part is positive. The

boundary conditions are

t± = ± k−
1
2 Im

(
A

1
2
)
, v(t±) = ± k−

1
2 Re

(
A

1
2
)
. (A.15)

We then solve the equation for v̇ in (A.14) using (A.15) as boundary conditions. The
equation can be rewritten and integrated to

Im
[
G−1 (it+ v)

(
A− k

3 (it+ v)2
)]

= D , (A.16)

where D ∈ R is an integration constant. The boundary conditions (A.15) imply D = 0 and
Im
(
G−1A

3
2
)

= 0. Using a real constant B to parametrize the real part of G−1A
3
2 , we write

A = k (BG)
2
3 , B ∈ R , (A.17)

where k is included for convenience. It is important to keep in mind that there are 3
branches for G

1
3 and the same branch is to be used in every expression. There is a triplet

of solutions at this point. The equation (A.16) can be written as

0 = Im
(
G−

1
3 (it+ v)

) [
3B

2
3 +

(
Im
(
G−

1
3 (it+ v)

))2
− 3

(
Re
(
G−

1
3 (it+ v)

))2
]
. (A.18)

The solutions obtained by setting to zero the square bracket lead to profiles for ρ with a
single zero, and so they have to be discarded. We remain with

Im
(
G−

1
3 (it+ v)

)
= 0 ⇒ v(t) = ReG

1
3

ImG
1
3
t , (A.19)

which through (A.14) gives the following profile for ρ:

ρ(t) = k

4
(
ImG

1
3
)3

[
B

2
3
(
ImG

1
3
)2
− t2

]
. (A.20)
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Requiring that ρ > 0 within (t−, t+) imposes

ImG
1
3 > 0 , (A.21)

which restricts the branches we can take for G
1
3 . Requiring that

∫
dt ρ = 1 fixes B = 3/k

and the final result for u and ρ is:

u(t) = N
1
3

G
1
3

ImG
1
3
t , ρ(t) = (9k)

1
3

4 ImG
1
3
− k

4
(
ImG

1
3
)3 t

2 , t± = ±
(3
k

) 1
3
ImG

1
3 . (A.22)

Notice that if ∆a are real and G > 0, (A.21) fixes the branch of the cube root such that
G

1
3 has phase e

2πi
3 , and the solutions for u, ρ reduce to those found in [28]. We can now

solve for m using (2.27). Inserting (A.22) for u and ρ, the former reduces to:

(
t2 − t2+

) ¨̂m + 4t ˙̂m + 2m̂ = d2

dt2

[(
t2 − t2+

)
m̂
]

= −2 f+
G

(it+ v) , (A.23)

whose general solution is

m̂(t) = − 1(
t2 − t2+

) f+
3G

G
1
3

ImG
1
3

(
t3 + Ct+D

)
, (A.24)

where C and D are integration constants. The requirement that m has compact image,
namely that it does not diverge at t = t±, fixes C = −t2+ and D = 0. This leads to the
simple solution

m(t) = − f+
3G u(t) . (A.25)

One can then verify that (2.26) is automatically solved, with the following value for the
Lagrange multiplier:

µ = if+

(
k

3G

) 1
3
. (A.26)

The solution can be expressed more neatly by making use of the reparameterization
symmetry (2.29), performing the transformation t = (3/k)1/3(ImG1/3) t′. This brings the
solution to the form (2.30), in which primes have been omitted.

A.2 Polylogarithms

The polylogarithms are defined through their Taylor series around z = 0:

Lik(z) =
∑∞

`=1
z`

`k
, (A.27)

which is absolutely convergent for |z| < 1. This definition can be analytically continued
to the whole complex plane, with a branch cut on the real axis from z = 1 to z = ∞.
In particular Li1(z) = − log(1 − z), where the principal sheet defined by (A.27) is such
that Im log ∈ (−π, π). The functions Lik≥2 have an absolutely convergent series (A.27) on
the unit circle and are thus continuous at z = 1, while the functions Lik≤0 have a pole at
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z = 1 but no branch cut (in particular Li0(z) = z
1−z ). One can define the single-valued

analytic functions
Fk(u) = Lik

(
1− e−iu

)
(A.28)

defined by (A.27) in the domain
∣∣1−e−iu∣∣ < 1 with Reu ∈

(
−π

2 ,
π
2
)
(implying that Fk(0) = 0)

and by analytic continuation elsewhere. For instance F0(u) = eiu − 1 whereas F1(u) = iu.
Whenever the function is differentiable, we have

z ∂zLik(z) = Lik−1(z) (A.29)

or alternatively

− i ∂uLik(eiu) = Lik−1(eiu) or ∂uFk(u) = i

eiu − 1 Fk−1(u) . (A.30)

The last relation allows one to define Fk(u) =
∫ u

0
i

eiw−1 Fk−1(w) which is single-valued
because the integrand is analytic with no poles. The polylogarithms satisfy the following
identities:

Li0(eiu) + Li0(e−iu) = −g′′′+(u) = −1
Li1(eiu)− Li1(e−iu) = −ig′′+(u)
Li2(eiu) + Li2(e−iu) = g′+(u)
Li3(eiu)− Li3(e−iu) = ig+(u) ,

(A.31)

where
g+(u) = 1

6u
3 − π

2u
2 + π2

3 u (A.32)

is the same function defined in (2.24). These relations are valid for Reu ∈ (0, 2π) and
the polylogarithms in their principal determination, and can then be extended to the
whole complex plane by analytic continuation (notice that the functions on the r.h.s. are
polynomials with no branch cuts).

A.3 Large N integrals

Let us evaluate, at large N , the following integrals:

IL,`[ρ](t,∆) ≡
∫
t±∆

dt′ ρ(t′) ei`(u(t′)−u(t)) ,

IU,`[ρ](t,∆) ≡
∫ t±∆

dt′ ρ(t′) ei`(u(t)−u(t′)) ,
(A.33)

where u(t) = Nα
(
it + v(t)

)
and t±∆ ≡ t ± N−α Im ∆ (the subscripts L and U stand for

lower and upper, respectively). We Taylor expand part of the integrand around t±∆:

IL,`[ρ](t,∆) = e−i`u(t)
∞∑
m=0

1
m! ∂

m
x

[
ρ(x) ei`Nαv(x)

]
x=t±∆

∫
t±∆

dt′ e−`N
αt′ (t′ − t±∆

)m
. (A.34)

The integral on the r.h.s. can be evaluated integrating by parts:∫
t±∆

dt′ e−`N
αt′ (t′−t±∆

)m = −
m∑
k=0

m! (t+ − t±∆)k

k! (Nα`)m−k+1 e
−`Nαt+ + m!

(Nα`)m+1 e
−`Nαt±∆ , (A.35)
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where t+ is the upper limit of integration. The boundary terms at t+ can be neglected
because of an overall factor e−`Nα(t+−t±∆), which is exponentially suppressed, with respect
to the last term. This gives

∫
t±∆

dt′ e−`N
αt′ (t′ − t±∆

)m ' m!
(Nαl)m+1 e

−`Nαt±∆ . (A.36)

For the derivatives in (A.34), the terms up to NLO in the large N expansion are

∂m
[
ρ ei`N

αv
]
x=t±∆

(A.37)

= ei`N
αv (i`Nα)m−1

(
i`Nα ρ v̇m +mρ̇ v̇m−1 + m(m−1)

2 ρ v̇m−2 v̈ + . . .

)∣∣∣∣
x=t±∆

= ei`(Nαv± Im(∆)v̇)(i`Nα)m−1
[
i`Nα ρ v̇m +mρ̇ v̇m−1 + m(m−1)

2 ρ v̇m−2 v̈

± i` Im(∆)
(
ρ̇ v̇m +mρ v̇m−1 v̈ ± 1

2 i` Im(∆) ρ v̇m v̈
)

+ . . .

]
.

In the last expression ρ and v are functions of t. Other contributions are subleading by
powers of N−α. Plugging this back in (A.34), we get

IL,`[ρ](t,∆) = e∓` Im(∆) (1−iv̇)
[ 1
`Nα

ρ

1− iv̇ (A.38)

+ 1
`2N2α

(
1± ` Im(∆) (1− iv̇)

)( ρ̇

(1− iv̇)2 + i ρ v̈

(1− iv̇)3

)
+ 1

2N2α (Im ∆)2 i ρ v̈

1− iv̇

]
.

Repeating the same steps for the other integral we find

IU,`[ρ](t,∆) = e±` Im(∆) (1−iv̇)
[ 1
`Nα

ρ

1− iv̇ (A.39)

− 1
`2N2α

(
1∓ ` Im(∆) (1− iv̇)

)( ρ̇

(1− iv̇)2 + i ρ v̈

(1− iv̇)3

)
− 1

2N2α (Im ∆)2 i ρ v̈

1− iv̇

]
.

B 3d SUSY variations

In terms of a single Dirac spinor ε, the 3d supersymmetry transformations under which the
Lagrangians in (2.13) are invariant, for chiral and vector multiplets, respectively, are:

QΦ = 0 QΨ =
(
iγµDµΦ− iσΦ

)
ε Q̃Ψ = εcF

Q̃Φ = −εΨ Q̃Ψ = −ε
(
iγµDµΦ† + iΦ†σ

)
QΨ = −εcF †

QΦ† = Ψ ε QF = −εc
(
iγµDµΨ + iσΨ− iλΦ

)
Q̃F = 0

Q̃Φ† = 0 Q̃F † =
(
iDµΨγµ − iΨσ + iΦ†λ

)
εc QF † = 0

(B.1)
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and

QAµ = − i2 λγµε Qλ =
(1

2γ
µνFµν + iD − iγµDµσ

)
ε Q̃λ = 0

Q̃Aµ = i

2 εγµλ Q̃λ = ε

(1
2γ

µνFµν + iD + iγµDµσ

)
Qλ = 0

Qσ = −1
2 λε QD = −1

2
(
Dµλγ

µ − σλ
)
ε

Q̃σ = 1
2 ελ Q̃D = −1

2ε
(
γµDµλ− σλ

)
.

(B.2)

C Monopole spherical harmonics on S2

We use complex coordinates on S2 to perform the reduction. We define stereographic
coordinates

z = eiϕ tan θ2 for θ < π , v = e−iϕ cot θ2 for θ > 0 , (C.1)

related by v = 1/z, which exhibit S2 as CP1. The round metric with radius R is proportional
to the Fubini-Study metric, and the Lorentzian metric on S2 × R is

ds2 = 4R2

(1 + zz̄)2 dz dz̄ − dt
2 ≡ g

1
2dz dz̄ − dt2 = e1e1̄ − (e3)2 , (C.2)

where we defined the vielbein

e3 = dt , e1 = g
1
4dz , e1̄ = g

1
4dz̄ . (C.3)

Here e1 and e1̄ are complex conjugates of each other and therefore any real p-form expressed
in this basis has components satisfying the reality property X∗1··· = X1̄···. Flat indices are
lowered and raised by the flat metric ηab with η11̄ = η1̄1 = 1

2 . The volume form has flat
components ε011̄ = i/2.

Let us now move to spinors. We choose the set of gamma matrices

γt =
(
i 0
0 −i

)
, γ1 =

(
0 0
1 0

)
, γ1̄ =

(
0 1
0 0

)
, (C.4)

satisfying {γa, γb} = 2ηab1. The generators of the Dirac representation are γab = 1
2 [γa, γb].

On S2×R the 3d Lorentz group SO(2, 1) is broken to the U(1) generated by γ11̄, and fields
are characterized by a spin that is the charge under this U(1). The spin connection, defined
by (ωab)µ = eaν

(
∂µe

ν
b + Γνµρeρb

)
, has non-zero components

(ω1
1)z = −(ω1̄

1̄)z = − z̄

1 + zz̄
, (ω1

1)z̄ = −(ω1̄
1̄)z̄ = z

1 + zz̄
. (C.5)

The spinor covariant derivative (without gauge connections) Dµ
( ψ+
ψ−

)
≡ (Dµψ+, Dµψ−)T

can be written as

D = d− isω with ω = i
z̄ dz − z dz̄

1 + zz̄
= (cos θ − 1) dϕ (C.6)
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and s = ±1
2 is the spin. Note that 1

2π
∫
S2 dω = −2. The components ψ± are sections of

the U(1) bundles associated to the line bundles K±
1
2 ∼= O(∓1), where K is the canonical

bundle. A generic U(1) bundle is labeled by a half-integer monopole charge q, and has
covariant derivative D = d− iqa. To conform with the conventions of [55] for the monopole
harmonics, we write the connection as a half-integer multiple of a = −ω.

Similarly, the Levi-Civita connection on 1-forms is a U(1) connection when projected
onto the frame fields:

ez1∇µAz = (∂µ − iωµ)ez1Az ≡ DµA1 , ez̄1̄∇µAz̄ = (∂µ + iωµ)ez̄1̄Az̄ ≡ DµA1̄ . (C.7)

Thus A1 = ez1Az and A1̄ = ez̄1̄Az̄ are sections with q = −1 and q = +1, respectively. On
the other hand, DµA3 = ∂µA3 and thus A3 is a section of the trivial bundle, like a scalar.
Defining Da = eµaDµ, one finds (dA)ab = eµae

ν
b (∇µAν − ∇νAµ) = DaAb − DbAa. If, in

addition, the fields are in the adjoint representation of the gauge group and there is a
background gauge field with fluxes,

A = 1
2miH

i a ⇒ 1
2π

∫
S2
dA = miH

i , (C.8)

then including this background in the covariant derivatives Dµ shifts the spin s→ s− α(m)
2 ,

or equivalently q → q + α(m)
2 , where α are the roots.

The derivatives D1 and D1̄ raise and lower the spin by 1, respectively. This is opposite
in terms of the charge q. Their explicit expressions are

D
(q)
1 = 1

2R
(
(1 + zz̄) ∂z − qz̄

)
, D

(q)
1̄ = 1

2R
(
(1 + zz̄) ∂z̄ + qz

)
, (C.9)

where the superscript indicates the charge of the section they act on, whereas under complex
conjugation D(q) ∗

1 = D
(−q)
1̄ and D(q) ∗

1̄ = D
(−q)
1 . We define the operators

L+ = z2∂z + ∂z̄ − qz , L− = −z̄2∂z̄ − ∂z − qz̄ , Lz = z∂z − z̄∂z̄ − q , (C.10)

satisfying the su(2) algebra [Lz, L±] = ±L± and [L+, L−] = 2Lz. The covariant Laplacian
is

−D2 ≡ L2 − q2 = 1
2{L+, L−}+ L2

z − q2 = −
(
1 + zz̄

)2
∂z∂z̄ − q(1 + zz̄)Lz − q2

= − 1
sin θ∂θ

(
sin θ ∂θ

)
+ 1

sin2 θ

(
−i∂ϕ − q + q cos θ

)2
,

(C.11)

which can be diagonalized simultaneously with L2 and Lz. Its eigenfunctions are the
monopole spherical harmonics Yq,l,m with |m| ≤ l, that we choose to be orthonormal on an
S2 of radius 1: ∫

S2

√
g Yq,l,m Yq,l′,m′ = δl,l′ δm,m′ . (C.12)

The highest harmonic with m = l, annihilated by L+, is

Yq,l,l(z, z̄) ∝ zl+q

(1 + zz̄)l . (C.13)

Regularity at the poles implies l + q ∈ Z≥0 and l ≥ |q|.
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The Laplacian can be written in terms of the derivatives as

−D2 = −4R2D1D1̄ + q = −4R2D1̄D1 − q = −2R2{D1, D1̄} . (C.14)

Besides, one can verify that

[D1, Lz] = [D1, L±] = [D1̄, Lz] = [D1̄, L±] = 0 . (C.15)

Therefore the derivatives act as bundle-changing operators mapping Yq,m,l to Yq±1,m,l. The
exact relations can be derived integrating by parts the orthonormality conditions. For a
suitable choice of phases one finds [55, 56]:

D
(q)
1 Yq,l,m = −s−(q, l)

2R Yq−1,l,m with s−(q, l) =
[
l(l + 1)− q(q − 1)

] 1
2 ,

D
(q)
1̄ Yq,l,m = s+(q, l)

2R Yq+1,l,m with s+(q, l) =
[
l(l + 1)− q(q + 1)

] 1
2 .

(C.16)

Following the same conventions as in [56], the monopole harmonics satisfy

Yq,l,m = (−1)q+m Y−q,l,−m (C.17)

under complex conjugation.
Finally, the triple overlap of harmonics is given in terms of Wigner 3j-symbols:∫
dΩ Yq,l,mYq′,l′,m′Yq′′,l′′,m′′

= (−1)l+l′+l′′
[(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

] 1
2
(
l l′ l′′

q q′ q′′

)(
l l′ l′′

m m′ m′′

)
, (C.18)

or equivalently

Yq,l,m Yq′,l′,m′ = (C.19)∑
l′′

(−1)l+l′+l′′+q′′+m′′
[(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

] 1
2
(
l l′ l′′

q q′ q′′

)(
l l′ l′′

m m′ m′′

)
Y−q′′,l′′,−m′′

The 3j-symbols are directly related to Clebsch-Gordan coefficients that decompose the
angular momentum state |l′′m′′〉 in terms of |l m l′m′〉 = |l m〉 ⊗ |l′m′〉:

C
(
l l′ l′′

m m′ m′′
)
≡ 〈l m l′m′| l′′m′′〉 = (−1)l−l′+m′′

√
2l′′ + 1

(
l l′ l′′

m m′ −m′′

)
. (C.20)

In particular, the Clebsch-Gordan coefficients are zero unless m + m′ = m′′,
∣∣m(i)∣∣ ≤ l(i)

with m(i) = l(i) mod 1, and l(i) ≤ l(j) + l(k). The 3j-symbol is symmetric under even
permutations of its columns, and gains a sign (−1)l+l′+l′′ under odd permutations. It also
gains a sign (−1)l+l′+l′′ when one changes sign to m, m′ and m′′ simultaneously. This
implies the following relations among Clebsch-Gordan coefficients:

C
(
l′ l′′ l
m′ −m′′ −m

)
= (−1)l−l′′+m′

[ 2l + 1
2l′′ + 1

]1/2
C
(
l l′ l′′

m m′ m′′
)
,

C
(

l′′ l l′

−m′′ m −m′
)

= (−1)l′′−l′+m
[ 2l′ + 1

2l′′ + 1

]1/2
C
(
l l′ l′′

m m′ m′′
)
,

C
(
l′ l l′′

m′ m m′′
)

= (−1)l+l′−l′′C
(
l l′ l′′

m m′ m′′
)
.

(C.21)
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In the special case that l′′ = l + l′ ≡ L (and m+m′ = −m′′ ≡M as in the general case):

(
l l′ L

m m′ −M

)
= (−1)l−l′+M

[ 1
2L+ 1

(
2L

L+M

)−1( 2l
l +m

)(
2l′

l′ +m′

)] 1
2
,

C
(
l l′ L
m m′ M

)
=
[( 2L
L+M

)−1( 2l
l +m

)(
2l′

l′ +m′

)] 1
2
.

(C.22)

D 1d N = 2 superspace

We review here the 1d N = 2 superspace formalism, drawing from appendix A of [46].
The N = 2 superspace in quantum mechanics, which we denote as R1|2, has coordinates
(t, θ, θ̄), where θ is a complex fermionic coordinate. A supersymmetry transformation is
δ = −εQ+ εQ, where ε, ε are anticommuting parameters, and Q, Q are anticommuting
generators so that δ is commuting. Here Q and Q are defined as differential operators
acting on superfields:

Q ≡ ∂θ + i

2 θ̄ ∂t , Q ≡ −∂θ̄ −
i

2 θ ∂t . (D.1)

They satisfy the algebra Q2 = Q
2 = 0 and {Q,Q} = −i∂t. Moreover, Q and Q anticommute

with another set of differential operators

D ≡ ∂θ −
i

2 θ̄ ∂t , D ≡ −∂θ̄ + i

2 θ ∂t , (D.2)

which satisfy the algebra D2 = D
2 = 0 and {D,D} = i∂t. One has (DX) = (−1)FDX and

(DX) = (−1)FDX.

D.1 Matter multiplets

A chiral superfield Φh is defined by DΦh = 0. Gauge transformations act as

Φh → hΦh , h = eχ , χ : R1|2 → C⊗ r , Dχ = 0 , (D.3)

where r is some representation of the gauge group. DΦh = 0 implies that Φh and its
complex conjugate anti-chiral superfield Φh have expansion:

Φh = φ+ θψ − i

2θθ̄ ∂tφ , Φh = φ− θ̄ ψ + i

2θθ̄ ∂tφ . (D.4)

Acting with (D.1) on Φh and Φh, we find the following supersymmetry variations:

Qφ = ψ , Qψ = 0 , Qφ = 0 , Qψ = i∂tφ . (D.5)

Suppose that Φa,h are a collection of bosonic chiral superfields. We can also have fermionic
Fermi superfields Yh, satisfying DYh = E(Φh) for some holomorphic function E(Φh), and
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transforming as Yh → hYh under some representation of the gauge group. DYh = E(Φh)
implies that Yh and its conjugate Yh have expansion:

Yh = η − θf − θ̄E(φ) + θθ̄
(
∂aE(φ)ψa − i

2∂tη
)

= η − θf − θ̄E(Φ)− i
2θθ̄∂tη ,

Yh = η − θ̄ f − θE(φ) + θθ̄
(
ψa∂aE(φ) + i

2∂tη
)

= η − θ̄ f − θE(Φ) + i
2θθ̄∂tη .

(D.6)

Acting with (D.1) gives the supersymmetry variations:

Qη = −f , Qf = 0 , Qη = E(φ) , Qf = −i∂tη + ∂aE(φ)ψa . (D.7)

D.2 Vector multiplet

We assume that the gauge group G is semi-simple (inclusion of U(1) factors is trivial) with
Lie algebra g. Denote the complexified algebra as gC = g⊗ C = g⊕R ig, with Killing form
given by the trace operation Tr. It admits a root space decomposition gC = hC ⊕α∈Φ Lα,
where hC is a Cartan subalgebra and Φ is the set of all roots. We can use the Chevalley
basis gC = spanC{H i=1,...,rkG, Eα | α ∈ Φ}, where i indexes a set of simple roots αi and H i

is defined in the following way:

∃! H i ∈ hC
∣∣ αi(h) = Tr(H ih) , ∀ h ∈ hC . (D.8)

The element Eα is also normalized so that TrEαE−α = 1. The compact real form is

g = spanR
{
iH i, Eα − E−α, i(Eα + E−α)

∣∣ α ∈ Φ+} , (D.9)

where Φ+ is the set of positive roots. Using the fact that Tr splits between each summand
in hC⊕α∈Φ+ (Lα⊕L−α), and that Tr is positive definite on H i, it quickly follows that Tr is
negative (positive) definite on g (ig). Any Λ ∈ ig can be expressed with Λi, Λα1 , Λα2 ∈ R as

Λ =
∑

i
ΛiH i +

∑
α∈Φ+

[
Λα1 (Eα + E−α) + Λα2 i(Eα − E−α)

]
=
∑

i
ΛiH i +

∑
α∈Φ+

(
ΛαEα + ΛαE−α

)
, Λα ≡ Λα1 + iΛα2 .

(D.10)

Therefore, defining a formal Hermitian conjugation on elements of gC asH i ≡ H i, Eα ≡ E−α,
we can alternatively define ig as ig =

{
Λ ∈ gC

∣∣Λ = Λ
}
. A generic group element k = eiΛ

then satisfies k = e−iΛ = k−1. If G = U(N), this formal Hermitian conjugation becomes
the actual conjugate transpose on N ×N matrices.

To build gauge interactions, we introduce the independent superfields Ω and V −. Ω is
valued in gC, while V − is valued in ig, i.e., V − = V −. One can either use Ω alone, or include
both Ω and V − in the theory. The crucial role played by Ω is to allow for gauge-covariant
chiral and Fermi conditions. Under gauge transformations, they transform as:

eΩ → k eΩ h−1 , V − → kV −k−1 + ik(∂tk−1) ,

h = eχ , χ : R1|2 → gC , Dχ = 0 ,

k = eiΛ , Λ : R1|2 → ig , Λ = Λ .

(D.11)
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Without loss of generality, V − can be expanded as

V − = At − σ − iθλ− iθ̄λ+ θθ̄D , (D.12)

where (At − σ, D) are valued in ig and λ is valued in gC. We now define the various
ingredients used to construct supersymmetric actions. The gauge-covariant superspace
derivatives are defined as

D ≡ e−ΩD eΩ , D ≡ eΩD e−Ω , D−t ≡ ∂t − iV − , (D.13)

which, according to (D.11) and using Dh = Dh = 0, transform as

D → kDk−1 , D → kDk−1 , D−t → kD−t k−1 . (D.14)

They satisfy the algebra

D2 = D2 = 0 , {D,D} = i(∂t − iV +) ≡ iD+
t , (D.15)

where V + is an ig-valued superfield constructed out of Ω only:

V + ≡ D
[
eΩ(De−Ω)]+D

[
e−Ω(DeΩ)]+

{
eΩ(De−Ω), e−Ω(DeΩ)} . (D.16)

If the gauge group is Abelian this simplifies to V + = −[D,D] Ω. As it was for D and
D, one has (DX) = (−1)F DX and (DX) = (−1)F DX. One can check that the gauge
transformation of V + is identical to that of V −:

V + → kV +k−1 + ik(∂tk−1) , (D.17)

which is consistent with (D.14) and (D.15). We will also have occasion to use the field
strength superfield

Υ ≡ [D,D−t ] = −iDV − − ∂t
[
eΩ(De−Ω)]− i[eΩ(De−Ω), V −] , (D.18)

which also transforms covariantly as Υ→ kΥk−1. From the definition, it follows directly
that DΥ = 0.

Instead of Ω and V −, we can equivalently use two other superfields V and V −h defined as

eV ≡ eΩeΩ , V −h ≡ e
Ω V −eΩ + i

2e
Ω∂te

Ω − i

2
(
∂te

Ω )eΩ , V −h = V −h , (D.19)

which only transform under the complexified gauge transformations as:

eV → h
−1
eV h−1 , V −h → h

−1
V −h h

−1 + i

2h
−1
eV ∂th

−1 − i

2
(
∂th
−1)

eV h−1 . (D.20)

Note that V is constructed solely out of Ω, while V −h is built out of both V − and Ω. In
this formulation, the theory might contain V only, or both V −h and V . Analogously to the
above, out of V and V −h we can construct

V +
h ≡

1
2e

VD
(
e−VDeV

)
+ 1

2D
(
eVDe−V

)
eV = eΩV +eΩ + i

2e
Ω∂te

Ω − i

2
(
∂te

Ω )eΩ ,

Υh ≡ −i eVD
[
e−V

(
V −h + i

2∂te
V
)]

= eΩΥeΩ .
(D.21)
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One can check that V +
h transforms in the same way as V −h , and Υh transforms in the same

way as eV . In an Abelian theory,

V +
h = 1

2e
V (DD −DD)V . (D.22)

When writing matter Lagrangians in terms of Φh and Yh which transform with chiral gauge
transformations h, it will be convenient to use V and V −h .

Given any chiral or Fermi superfield, one can define covariantly-chiral counterparts

Φk ≡ eΩ Φh , Yk ≡ eΩYh , DΦk = 0 , DYk = E(Φk) , (D.23)

which transform under the gauge group as Φk → kΦk and Yk → kYk. These fields are
useful when one is using Ω and V − to describe the vector multiplet.

D.3 Wess-Zumino gauge

We can expand Ω and the gauge transformation parameters χ, Λ as:

Ω = Ω0 +θΩθ+ θ̄Ωθ̄+θθ̄Ωθθ̄ , χ = χ0 +θχθ−
i

2θθ̄∂tχ0 , Λ = Λ0 +θΛθ− θ̄Λθ+θθ̄Λθθ̄ .
(D.24)

We show that, using gauge transformations, every component of Ω can be canceled except
for Ωθθ̄, and we can further set Ωθθ̄ = Ωθθ̄, i.e., Ωθθ̄ is valued in ig. We shall call this
component −1

2(At + σ), where both At and σ are valued in ig. Due to the relative sign,
this is independent of (At − σ) in V −. In other words, we can bring Ω to the form

Ω = −1
2 θθ̄ (At + σ) , (D.25)

that we dub the Wess-Zumino gauge. First, we use the transformation χ = Ω0 − i
2θθ̄∂tΩ0,

Λ = 0 to set Ω0 → 0, after which only transformations with χ0 = iΛ0 preserve Ω0 = 0
and are allowed. Next, performing the transformation χ = θ(Ωθ + Ωθ̄), Λ = iθΩθ̄ + iθ̄Ωθ̄

sets Ωθ, Ωθ̄ → 0. Further transformation parameters cannot have θ or θ̄ components since
otherwise a nonzero Ωθ̄ would be generated. Lastly, we perform χ = 0, Λ = i

2θθ̄(Ωθθ̄ −Ωθθ̄),
after which Ωθθ̄ →

1
2(Ωθθ̄ + Ωθθ̄) is valued in ig. The residual gauge transformations are

χ = iΛ0 + 1
2θθ̄∂tΛ0, Λ = Λ0, under which

At + σ → eiΛ0(At + σ)e−iΛ0 + i eiΛ0∂te
−iΛ0 . (D.26)

These are purely time-dependent gauge transformations, as expected. In this gauge, the
gauge-covariant superspace derivatives simplify to

D+
t = D+

t = ∂t − i(At + σ) , D = ∂θ −
i

2 θ̄D
+
t , D = −∂θ̄ + i

2θD
+
t , (D.27)

and
V + = At + σ , Υ = λ− θ

(
Dtσ + iD

)
− i

2θθ̄D
+
t λ . (D.28)
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The action of supersymmetry on Ω, using (D.1), is δΩ = 1
2εθ̄(At + σ) − 1

2 ε̄θ(At + σ)
and the Wess-Zumino gauge is not preserved. This can be compensated by an infinitesimal
gauge transformation with parameters

Λ = i

2 εθ̄(At + σ) + i

2 ε̄θ(At + σ) +O(ε2) , χ = −ε̄θ(At + σ) +O(ε2) . (D.29)

The supersymmetry transformations that preserve Wess-Zumino gauge are computed using δ
with the addition of the compensating gauge transformation above. For Ω, its variation under
the combined supersymmetry and gauge transformation is δΩ + iΛ− χ = 0 by construction.
The superfields Φk, Yk are only sensitive to the gauge transformations generated by Λ,
and not to those generated by χ. The addition of the Λ-transformation (D.29) to δ can be
directly absorbed into the supercharges:

QWZ ≡ ∂θ + i

2 θ̄
[
∂t − δgauge(At + σ)

]
, QWZ ≡ −∂θ̄ −

i

2 θ
[
∂t − δgauge(At + σ)

]
. (D.30)

Note that δgauge(Λ) acts according to the gauge representation of each superfield, except for
V ±, on which δgauge(Λ)V ± = ∂tΛ− i[V ±,Λ]. The modified supercharges satisfy the algebra

Q2
WZ = Q

2
WZ = 0 , {QWZ, QWZ} = −i

[
∂t − δgauge(At + σ)

]
. (D.31)

D.4 Transformations in Wess-Zumino gauge

Acting with (D.30) on V ± and reading off the variations of each component, we find the
following supersymmetry variations (and their complex conjugate) for the vector multiplet:

QWZAt = −QWZ σ = − i2 λ , QWZ λ = −Dtσ − iD ,

QWZD = −1
2D

+
t λ , QWZ λ = 0 .

(D.32)

Note that QWZ(At + σ) = QWZ(At + σ) = 0, consistently with (D.31). In Wess-Zumino
gauge, Φk and its conjugate Φk have expansion:

Φk = φ+ θψ − i

2θθ̄D
+
t φ , Φk = φ− θ̄ ψ + i

2θθ̄D
+
t φ . (D.33)

Acting with (D.30) on Φk we find the following supersymmetry variations:

QWZ φ = ψ , QWZ ψ = 0 , QWZ φ = 0 , QWZ ψ = iD+
t φ . (D.34)

Alternatively, we can obtain the same variations by acting with δ + χ = −εQWZ + ε̄ QWZ
on Φh, with χ given in (D.29). Analogously, Yk and its conjugate Yk have the expansions

Yk = η − θf − θ̄E(φ) + θθ̄
(
∂aE(φ)ψa − i

2D
+
t η
)

= η − θf − θ̄E(Φ)− i
2θθ̄D

+
t η

Yk = η − θ̄ f − θE(φ) + θθ̄
(
ψa∂aE(φ) + i

2D
+
t η
)

= η − θ̄ f − θE(Φ) + i
2θθ̄D

+
t η ,

(D.35)

and acting with (D.30) gives the supersymmetry variations:

QWZ η = −f , QWZ f = 0 , QWZ η = E(φ) , QWZ f = −iD+
t η + ∂aE(φ)ψa .

(D.36)
Again, we can obtain the same variations by acting with δ + χ on Yh.
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D.5 Supersymmetric Lagrangians

As with the prototypical 4d N = 1 supersymmetry, there are two broad classes of super-
symmetric terms: D-terms and F-terms. Let X be a bosonic, gauge-invariant, real-valued
superfield with expansion

X = X0 + θXθ − θ̄ Xθ + θθ̄Xθθ̄ . (D.37)

Acting with Q and Q, we find that QXθθ̄ = − i
2∂tXθ and QXθθ̄ = i

2∂tXθ are total derivatives.
Moreover, QQX0 = Xθθ̄ up to a total derivative. Therefore,∫

dθdθ̄ X = −Xθθ̄ = QQ (−X0) (D.38)

is supersymmetric, and we call such terms D-terms. They are always Q and Q exact.
Conversely, suppose there is a term in the Lagrangian of the form QQ(−X0) where X0 is
real and gauge invariant. If there is a real-valued superfield X with bottom component
X0, it must have the same expansion (D.37). Therefore (D.38) holds and this term can be
written as a D-term in superspace.

Let Y be a fermionic, gauge-invariant, complex-valued chiral superfield, DY = DY = 0.
Its complex conjugate Y is anti-chiral and satisfies DY = 0. They have expansion:

Y = Y0 + θYθ −
i

2 θθ̄ ∂tY0 , Y = Y0 + θ̄ Yθ + i

2 θθ̄ ∂tY0 . (D.39)

Acting with Q and Q on Y and Y , one finds that Yθ and Yθ are separately supersymmetric
up to total derivatives. Moreover, Yθ = QY0 and Yθ = −QY0. Therefore:∫

dθ Y +
∫
dθ̄ Y = Yθ + Yθ = QY0 −QY0 = (Q+Q)(Y0 − Y0) (D.40)

is supersymmetric, and we call such terms F-terms. They are always (Q+Q) exact.
We can now write the following supersymmetric Lagrangians, with component ex-

pressions in Wess-Zumino gauge. In the gauge sector, if the theory only contains Ω or
equivalently V , the only term we can think of is a Wilson line in At + σ. For a U(1) gauge
group, the supersymmetric Wilson loop of charge q can be written as

exp
(
iq

∮
dt

∫
dθdθ̄ V

)
WZ= exp

(
iq

∮
dt (At + σ)

)
. (D.41)

If both V − and Ω are present, we can write the following terms. The conventional gauge
kinetic term is

1
2e2

1d

∫
dθdθ̄ Tr ΥΥ = 1

2e2
1d

∫
dθdθ̄ Tr Υhe

−V Υhe
−V WZ= 1

2e2
1d

Tr
[
(Dtσ)2 +D2 + iλD+

t λ
]
.

(D.42)
Note that the superfield V − − V + transforms covariantly, V − − V + → k (V − − V +) k−1,
under gauge transformations. For an adjoint-invariant form ζ : ig→ R, the Fayet-Iliopoulos
term is: ∫

dθdθ̄ ζ
(
V − − V +) =

∫
dθdθ̄ ζ

((
V −h − V

+
h

)
e−V

) WZ= −ζ(D) . (D.43)
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If the gauge group is Abelian, V +
h e
−V = 1

2(DD −DD)V becomes a total derivative under
the superspace integral. Therefore, FI terms for Abelian gauge groups can be written as∫

dθdθ̄ ζ
(
V −h e

−V ) . (D.44)

We can also write a mass term that gaps V − (or equivalently the gaugino and σ):

− 1
2

∫
dθdθ̄ Tr

(
V −−V +)2 = −1

2

∫
dθdθ̄ Tr

((
V −h −V

+
h

)
e−V

)2 WZ= Tr
(
λλ−2σD

)
. (D.45)

Moving on to the matter sector, the conventional kinetic term for a chiral multiplet is:

i

∫
dθdθ̄ ΦkD−t Φk =

∫
dθdθ̄

(
i

2 Φh e
V ∂tΦh −

i

2 ∂tΦh e
V Φh + Φh V

−
h Φh

WZ= −φ
(
D2
t + σ2 +D

)
φ+ iψD−t ψ + iφλψ − iψ λφ ,

(D.46)

where D−t ≡ ∂t − i(At − σ). It requires the presence of both V − and Ω. Alternatively, we
can write a kinetic term that couples to V + in place of V −, in which case only Ω (or V ) is
required:

i

∫
dθdθ̄ ΦkD+

t Φk =
∫
dθdθ̄

(
i

2 Φh e
V ∂tΦh −

i

2 ∂tΦh e
V Φh + Φh V

+
h Φh

)
WZ= D+

t φD
+
t φ+ iψD+

t ψ .

(D.47)

We can also write a term with a first-order action for φ, and it only requires Ω:∫
dθdθ̄ ΦkΦk =

∫
dθdθ̄ Φh e

V Φh
WZ= i φD+

t φ+ ψψ . (D.48)

The conventional kinetic term for a Fermi multiplet is∫
dθdθ̄ YkYk =

∫
dθdθ̄ YheV Yh

WZ= iηD+
t η + ff −

∣∣E(φ)
∣∣2 − η ∂aE(φ)ψa − ψa ∂aE(φ) η ,

(D.49)
and it only requires Ω. If present, terms in E(Φ) that are linear in the chiral superfields Φa

give rise to mass terms which gap out the chiral and Fermi multiplets together. Quadratic
or higher-order terms in E(Φ) produce cubic or higher-order interactions. We shall call
them E-interactions. Suppose now that we have a collection of Fermi superfields Yi with
DYi = Ei(Φ). In addition to Ei, we associate another holomorphic function Ji(Φ) of the
chiral superfields to each Fermi such that EiJi (with repeated indices summed) is gauge
invariant and EiJi = 0. Then Yi Ji(Φ) is a gauge-invariant fermionic chiral superfield. We
can therefore write the F-terms:∫

dθ Yi Ji(Φ)+
∫
dθ̄ Yi J i(Φ) = −fiJi(φ)−ηi ∂aJi(φ)ψa−f i J i(φ)−ψa ∂aJ i(φ) ηi . (D.50)

Note that because YiJi is gauge invariant, Yi,hJi(Φh) = Yi,kJi(Φk). We will call interactions
that are constructed in this way J-interactions.
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D.6 Twisted 3d Yang-Mills and Chern-Simons terms

In this subsection, we show how the parts of the topologically twisted 3d Yang-Mills and
Chern-Simons Lagrangians containing Ξ1̄ can be written in 1d superspace. The terms lie
slightly beyond the scope of the exposition above, because Ξ1̄ transforms as a connection
on S2 under gauge transformations, as reported in (3.7).

Yang-Mills. The first line in (3.8) can be written in superspace as:

Tr
[
4|Ft1̄|2 + 4iDF11̄ − 4|D1̄σ|2 + iΛ1(Dt + iσΛ1̄ + 2ΛtD1Λ1̄ − 2Λ1D1̄Λt

]
WZ= 4i

∫
dθdθ̄ Tr

(
Ξ1,k ∂tΞ1̄,k −F11̄,k V

−
)
,

(D.51)

where we defined the superfield

F11̄,k ≡ ∂1Ξ1̄,k − ∂1̄Ξ1,k − i
[
Ξ1,k,Ξ1̄,k

]
. (D.52)

Here F11̄,k transforms covariantly under super-gauge transformations as F11̄,k 7→ kF11̄,kk
−1.

Note that the superspace expression has the same form as a Chern-Simons term for
superfields, with V − playing the role of the connection along t. Therefore, under finite
gauge transformations:

δgauge 4i
∫
dθdθ̄ Tr

(
Ξ1,k ∂tΞ1̄,k −F11̄,k V

−
)

= 2i
∫
dθdθ̄ Tr k−1∂tk

[
k−1∂1k, k

−1∂1̄k] ,

= 2iTr ∂t∂θ
(
k−1∂θ̄k

[
k−1∂1k, k

−1∂1̄k
])

+ cyclic . (D.53)

The omitted terms contain cyclic permutations of (t, 1, 1̄). This gauge variation looks like a
winding number for super-gauge transformations. Since we are taking derivatives of the
winding number density (albeit with respect to fermionic variables), a total derivative is
expected because the winding number is homotopy invariant.

Alternatively, we can use superfields which are only sensitive to complexified gauge
transformations. The superspace expression in (D.51) can then be written as

(D.51) = 4i
∫
dθdθ̄ Tr

(
Ξ1,h ∂tΞ1̄,h −F11̄,h e

−V V −h

)
, (D.54)

where total derivatives of the kind (D.53) have been neglected. One can check that (D.54)
is real and gauge invariant up to total derivatives.

Chern-Simons. We now want to write the first piece of (3.9) in superspace. To do this,
we follow a similar procedure as in [57]. First, the fields X are extended to be functions
X̂ of an auxiliary coordinate y ∈ (0, 1) in an arbitrary way, except that they must fulfil
boundary conditions

X̂(θ, ϕ, t, y = 0) = 0 , X̂(θ, ϕ, t, y = 1) = X(θ, ϕ, t) . (D.55)

Extended quantities will be denoted with a hat. Given (D.55), we have:

LCS,Ξ
∣∣∣
WZ

= L̂CS,Ξ(y = 1)
∣∣∣
WZ

=
∫ 1

0
dy ∂yL̂CS,Ξ

∣∣∣
WZ

. (D.56)
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Now, ∂yL̂CS,Ξ can be written in superspace as:

∂yL̂CS,Ξ
∣∣∣
WZ

= Tr
[
−4i∂y(Ât + σ̂)F̂11̄ + 4∂yÂ1

(
i∂tÂ1̄ − iD̂1̄(Ât + σ̂)

)
+ ∂yΛ̂1Λ̂1̄

+ 4∂yÂ1̄
(
−i∂tÂ1 + iD̂1(Ât + σ̂)

)
− ∂yΛ̂1̄Λ̂1

]
= 4∂y

∫
dθdθ̄ Tr

[
Ξ̂1,h Ξ̂1̄,h − iV̂

(
∂1Ξ̂1̄,h − ∂1̄Ξ̂1,h − i

[
Ξ̂1,h, Ξ̂1̄,h

])]
. (D.57)

This superspace expression is only valid in Wess-Zumino gauge where V = −θθ̄(At+σ), and
it is not invariant under super-gauge transformations. Even so, we can take it as a starting
point for constructing the gauge-invariant completion. A gauge-invariant expression that
reduces to the above in Wess-Zumino gauge is

∂yL̂CS,Ξ = 4
∫
dθdθ̄ Tr

[
−i e−V̂ ∂y

(
eV̂
)
F̂11̄,h + Ξ̂1,h ∂yΞ̂1̄,h + ∂yΞ̂1,h Ξ̂1̄,h

]
. (D.58)

One can check that the first term is Hermitian, while the second and third terms are
Hermitian conjugates of each other. Therefore

LCS,Ξ = Tr
[
4iA1∂tA1̄ − 4i(At + σ)F11̄ + Λ1Λ1̄

]
WZ= 4

∫ 1

0
dy dθdθ̄ Tr

[
−i e−V̂ ∂y

(
eV̂
)
F̂11̄,h + Ξ̂1,h ∂yΞ̂1̄,h + ∂yΞ̂1,h Ξ̂1̄,h

]
.

(D.59)

If the gauge group is Abelian, (D.58) is a total derivative in y and the auxiliary coordinate
y can be eliminated to give

LCS,Ξ = 4
∫
dθdθ̄

[
Ξ1,h Ξ1̄,h − iV

(
∂1Ξ1̄,h − ∂1̄Ξ1,h

)
+ 1

2∂1V ∂1̄V

]
. (D.60)

For non-Abelian gauge groups there is no compact expression for the integral in y, but we
can expand in powers of V . Choosing

Ξ̂1̄,h = y Ξ1̄,h , V̂ = y V , (D.61)

one obtains the following expression up to quadratic terms in V :

LCS,Ξ = 4
∫
dθdθ̄ Tr

[
Ξ1,h Ξ1̄,h − iV

(
∂1Ξ1̄,h − ∂1̄Ξ1,h − i

[
Ξ1,h, Ξ1̄,h

])
+ 1

2
(
∂1V − i

[
Ξ1,h, V

])(
∂1̄V − i

[
Ξ1̄,h, V

])
+O(V 3)

]
. (D.62)

E Partial gauge fixing

In this appendix we follow [48] and review the general procedure for partial gauge fixing.
Let G be the infinite-dimensional group of gauge transformations, and {eA} a Hermitian
basis for its algebra g. Denote the structure constants of g as [eA, eB] = ifABC eC . The
basis {eA} is also chosen such that it is orthonormal under the inner product∫

Tr (eA eB) = δAB . (E.1)

– 48 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
0

Let R ⊂ G be a subgroup, which will be the group of residual gauge transformations after
partial gauge fixing. We call its algebra r ⊂ g (r stands for residual). We split the basis
as {eA} = {ei, ea}, where {ei} is a basis for r whereas {ea} is a basis for f ∼= g/r (f stands
for gauge fixed). Since R is a subgroup, r is a subalgebra and [r, r] ⊂ r, or fija = 0. By
anti-symmetry of the structure constants this implies fiaj = 0, or [r, f] ⊂ f. In summary,
the algebra of g decomposes as

[ei, ej ] = ifijk ek , [ei, ea] = ifiab eb , [ea, eb] = ifabi ei + ifabc ec . (E.2)

In particular, this implies that the ea’s transform under the adjoint action in a real orthogonal
representation of R, which we call Rf .

In order to fix G to R, we need to choose as many gauge-fixing conditions as there are
generators in f. In other words, we need to choose gauge-fixing functions Gagf(X), where X
collectively denotes the physical fields in chiral and vector multiplets. Notice that Gagf(X)
should transform in Rf under R. This is true for all the gauge-fixing functions we can think
of. The first step in the gauge-fixing procedure is to integrate in an adjoint scalar Λ ∈ g,
and add

∫ 1
2 Tr Λ2 to the action. Notice that Λ will have mass dimension [Λ] = 3/2. Since

Λ is completely decoupled from everything else, introducing it does not change the path
integral. We then insert 1 in the path integral, written as

1 = ∆(X,Λ)
∫
G
Dg

∏
a

δ
(
Gagf(Xg)− (Λg)a

)
, (E.3)

where superscripts (·)g denote a finite gauge transformation by g. Suppose that gX,Λ ∈ G
satisfies Gagf(XgX,Λ)− (ΛgX,Λ)a = 0, then so does rgX,Λ for any r ∈ R, due to the covariant
transformations of Gagf and Λa under R. Therefore, R remains as the residual gauge group.
Notice that it is necessary for Λ to transform under gauge transformations. This is different
from the standard Faddeev-Popov procedure, in which Λ is only integrated over at the
very last step. That would have been sufficient if the gauge were completely fixed (R = 0).
The slightly different procedure described here will produce extra interaction terms in the
ghost action. Now, as usual, the invariance of Dg ensures that the determinant ∆ is gauge
invariant, and

∆(X,Λ)−1 = ∆(XgX,Λ ,ΛgX,Λ)−1 =
∫
G
Dg

∏
a

δ
(
Gagf(Xg·gX,Λ)− (Λg·gX,Λ)a

)
. (E.4)

Assuming no Gribov copies and writing g = 1 + εAeA, δA ≡ δgauge(eA), one can expand the
argument of the delta function to linear order in εA and obtain εb δb

[
Ggf(XgX,Λ)− ΛgX,Λ

]a.
The fact that the terms with εi disappear ensures that Vol(R) is factorized as an overall
factor in the Faddeev-Popov determinant:

∆(X,Λ) = det δb
[
Gagf(XgX,Λ)− (ΛgX,Λ)a

]
/Vol(R) . (E.5)

The determinant can be shown to be well-defined on the coset RgX,Λ. Having determined
∆(X,Λ), inserting 1 in the path integral gives∫

DX DΛDg eiS(X)− i
2

∫
Tr Λ2

∆(X,Λ)
∏
a

δ
(
Gagf(Xg)− (Λg)a

)
. (E.6)
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Undoing the gauge transformation in the delta function, the integral over the gauge group
factorizes and one gets∫

DX DΛ eiS(X)− i
2

∫
Tr Λ2

det
(
δbG

a
gf(X)− δbΛa

) ∏
a

δ
(
Gagf(X)− Λa

)
. (E.7)

By means of δbΛa = iΛA[eb, eA]a = −ΛAfbAa = −fabiΛi − fabcΛc we can explicitly write:

det
(
δbG

a
gf(X)− δbΛa

)
=
∫ (∏

a

Dc̃ aDca
)

exp
[
−c̃ a

(
δbG

a
gf(X) + fabiΛi + fabcΛc

)
cb
]
,

(E.8)
where we have introduced the Grassmann scalars ca, c̃ a. Note that they are valued in f and
not in g: modes corresponding to residual gauge transformations are not present. Also note
that by dimensional analysis, [ c̃ ] + [c] = [Ggf] = 3/2. Without loss of generality, we can
take [c] = 0, [ c̃ ] = 3/2. Integrating out Λi and imposing the delta functions for Λa, one
gets the action:

S(X) +
∫

Tr
[
−
G2

gf
2 +Ggf

{
c̃, c
}

+ i c̃ δgauge(c)Ggf + 1
2{c̃, c}r{c̃, c}r

]
. (E.9)

This is equivalent to the following action with extra scalars ba integrated in:

S(X) +
∫

Tr
[
b2

2 + b
(
Ggf − {c̃, c}

)
+ i c̃ δgauge(c)Ggf + 1

2{c̃, c}
2
]
. (E.10)

Notice that ba have dimension [b] = 3/2. One should keep in mind that c, c̃, b only contain
modes in f. We will now rescale

Ggf → e−1
3d Ggf b → e−1

3d b , c → e−1
3d c , (E.11)

after which [Ggf] = 2, [c] = 1
2 , and [b] = 2. The gauge-fixing action gains an overall factor

of 1/e2
3d. This is useful because the background Coulomb gauge Ggf = DB

i A
i/
√
ξ (with ξ a

positive dimensionless parameter) that we choose in the main text has dimension [Ggf] = 2.
This is true for many other standard gauge-fixing functions, such as the Lorenz gauge
∂µA

µ/
√
ξ and the background Lorenz gauge DB

µ A
µ/
√
ξ.
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