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Abstract

In this thesis we study the symplectic and pseudo-Riemannian geometry of the PSL(3,R)-
Hitchin component associated with a closed orientable surface, using an approach coming
from the theory of symplectic reduction in an infinite-dimensional context.

In the case where the closed surface is homeomorphic to a torus, for each choice of a
smooth real function with certain properties, we prove the existence of a pseudo-Kéhler
metric on the deformation space of properly convex projective structures. Moreover, we
define a circle action and a SL(2,R)-action on the aforementioned space, which turn out to
be Hamiltonian with respect to our symplectic form, and we give an explicit description of
the moment maps. Then, we study the symplectic geometry of the deformation space as a
completely integrable Hamiltonian system, and we find a geometric global Darboux frame
for the symplectic form using the theory of complete Lagrangian fibrations.

In the case of genus g = 2 we define a mapping class group invariant pseudo-Kéhler metric
on the Hitchin component, by using a general construction of Donaldson. The complex
structure is exactly the one coming from the identification with the holomorphic bundle of
cubic differentials over Teichmiiller space. In particular, we prove that Wang’s equation for
hyperbolic affine spheres in R? has an interpretation as moment map for the action of an
infinite-dimensional Lie group.
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Introduction

This thesis tries to enlarge the current knowledge regarding the global geometry of higher
rank Teichmiiller spaces. In recent years, people have been interested in the study of the
geometric and dynamical properties of surface group representations into Lie groups of rank
at least two, with the aim of generalizing the classical Teichmiiller theory that concerns rep-
resentations into PSL(2,R) (|[Wiel§|). Various connected components in the corresponding
higher rank character varieties have been found to share many similarities with the classi-
cal Teichmiiller space. Some of these components are the Hitchin components, defined for
semi-simple real split Lie groups (|Hit92]). In particular, any of these connected compo-
nents contains a copy of Teichmiiller space, to which one refers as the Fuchsian locus. The
main motivation for this thesis comes from the study of the PSL(3, R)-Hitchin component
from a pseudo-Riemannian and symplectic point of view, with the aim of giving a natural
generalization of the Weil-Petersson Kéahler metric defined on Teichmiiller space (|Wei5§],
[Ahl61a], [Ahl61D)]).

Given a smooth closed surface ¥ of genus ¢ > 2, discrete and faithful surface group rep-
resentations in PSL(2,R) are known to be holonomies of hyperbolic structures, and the
corresponding connected component in the character variety recovers the Teichmiiller space
T(X). Similarly, every representation in the Hitchin component Hitz(3) for PSL(3,R) is
discrete and faithful, and they can be viewed as holonomies of convex projective structures
on the surface (|Gol90a],|[CG93|). There is a natural symplectic form wg on the Hitchin
component (and also defined on much more general spaces), found by Goldman using the
explicit description of the Zariski tangent space to a point, and the correspondence between
surface group representations and flat bundles (|Gol84]). In particular, it is shown that wg
restricts to a multiple of the Weil-Petersson symplectic form on the Fuchsian locus. In the
early 2000s, Labourie (|Lab07]) and Loftin (|Lof01]) proved independently, using the theory
of hyperbolic affine spheres and harmonic maps in symmetric spaces, that the PSL(3, R)-
Hitchin component can be endowed with a mapping class group invariant complex structure
I. Such a complex structure comes from the identification of the aforementioned component

X



INTRODUCTION X

with the holomorphic bundle of cubic differentials over Teichmiiller space.

Conjecture. The symplectic form wg is compatible with Labourie and Loftin’s complex
structure, so that they define a mapping class group invariant Kdhler metric on the PSL(3,R)-
Hitchin component extending the Weil-Petersson metric on Teichmiiller space.

Goldman’s symplectic form is defined using the algebraic description of the Hitchin com-
ponent, but the mapping class group invariant complex structure I comes from the param-
eterization with holomorphic cubic differentials. Because of the different way in which the
symplectic form and the complex structure are defined, it is still unclear whether wg (I, -)
defines a Riemannian metric.

Later on, three more Riemannian metrics on the PSL(3,R)-Hitchin component were de-
fined: one by Darvishzadeh and Goldman ([DW96|), one by Li (|Lil6]) and another by
Bridgeman-Canary-Labourie-Sambarino (|Bri+15|) called pressure metric (defined also on
much more general spaces). Regarding the first two it has been shown that they restrict
to a multiple of the Weil-Petersson metric on Teichmiiller space, which is totally geodesic
in Hitg(X) with respect to the metric found by Li. As far as pressure metric is concerned,
very little is known and this is partly due to its complicated expression ([LW18|,|[Dail9]).
In all three cases the relation with Labourie and Loftin’s complex structure is unknown.

Recently, Kim and Zhang (JKZ17]), using various notions of positivity for holomorphic
bundles on Kéhler manifolds, have succeeded in showing the existence of a Kéahler metric
on Hits(X), which restricts to a multiple of the Weil-Petersson one on the Fuchsian lo-
cus. Even if this metric is natural, namely invariant under the action of the mapping class
group, the relation of its complex structure with the one found by Labourie and Loftin is
still mysterious (|Lab17, §1.2 and §1.3]).

It is therefore unknown whether there is a symplectic form (or Riemannian metric) on
the PSL(3, R)-Hitchin component that gives rise to a Kéhler metric when matched with the
complex structure I. This thesis attempts to answer this question by proving the following
result:

Theorem A. There ezists a closed 2-form w on Hit3(X) such that g(-,-) := w(I-,-) defines a
pseudo-Riemannian metric of signature (6g—6,10g—10). Moreover, the triple (g, w,I) gives
rise to a mapping class group invariant pseudo-Kdihler structure on a neighborhood of the
Fuchsian locus in the Hitchin component, and it restricts to a multiple of the Weil-Petersson
Kihler metric on Teichmiiller space, which embeds as a totally geodesic submanifold.

The above statement seems to suggest that the right structure to be sought is a pseudo-
Ka&hler one, namely the metric is no longer required to be positive-definite. The tensor w
and g are explict and defined on the whole Hitg(X) but, because we cannot exclude that
w might be degenerate outside the Fuchsian locus, the triple (w,g,I) defines a-priori a
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pseudo-Kaéhler structure only on a neighborhood of it. In particular, one can recognise the
dimension of Teichmiiller space with regard to the positive part of g, and the real dimension
of the space of holomorphic cubic differentials with regard to the negative one.

There is a well-defined action of the mapping class group on Hit3(X), whose quotient C(X)
results in a complex orbifold smooth at generic points (|Lof01, Proposition 4.1.2]), which
fibres over the moduli space of Riemann surfaces M,.

Corollary B. There exists an orbifold neighborhood of the moduli space of Riemann sur-
faces of genus g = 2 inside C(X) endowed with a pseudo-Kdhler orbifold structure. Such a
structure restricts to a multiple of the Weil-Petersson orbifold Kdhler structure on M.

According to Labourie and Loftin’s parameterization of Hits(X) as the holomorphic bundle
of cubic differentials over 7 (X), one can induce a circle action on the Hitchin component,
which corresponds to rotation of the fibres in the vector bundle description.

Theorem C. The aforementioned circle action on Hitg(X) is Hamiltonian with respect to
w and it acts by preserving the pseudo-Riemannian metric g.

The proof of the above theorems relies on various techniques: symplectic reduction theory;
elliptic operators on compact manifolds, and a general construction of moment maps in an
infinite-dimensional context given by Donaldson (|Don03|). In what follows we will give a
rough idea of the proof strategy, while also stating other fundamental and non-immediate
results related to the main theorem.

The main theorem of this thesis is inspired by a similar result obtained in the case of
maximal globally hyperbolic anti-de Sitter three-manifolds (|MST21|), where the authors
developed part of the techniques the we used in our work. On the one hand the overall
strategy follows the lines of the anti-de Sitter setting (|JMST21, §1.7]), but on the other
we encountered more difficulties during some steps of the proof that will be explained on
a case-by-case basis (see also the last paragraph of the introduction for a more general
discussion).

The genus one case:

The very first step is to prove similar statements when the smooth closed surface is a torus
T2, following the lines of [MST21, §3.2 and §3.3]. In this case, the natural space to study
is the deformation space of properly convex RP2-structures on the torus. In this regard,
let us introduce J(R?) to be the space of (almost) complex structures on R? compatible
with the standard area form py = dz A dy, namely all the endomorphisms J : R? — R?
such that J? = —1 and for which {v, Juv} is a positive basis, whenever v # 0. For any such
J, let g9(-,+) :== po(-, J-) be the associated scalar product on R%. There is an identification
between this space and the hyperbolic plane H?, so that the action of SL(2,R) on H? by
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Mgbius transformations results in an action by conjugation on J(R?). Let us denote with
D3(J(R?)) the real vector bundle over J(R?) whose fibre over a point J is given by all
1-forms A with values in the bundle of gf}—symmetric and trace-less endomorphisms of R?
such that A(J-) = A(-)J and A(X)Y = A(Y)X for all X,Y € R2. Under the identification
J(R?*) =~ H? = T(T?) the vector bundle D?(7(R?)) can be identified with Q*(7(1?)),
namely the bundle of holomorphic cubic differentials over 7(72). By using the theory of
hyperbolic affine spheres in R3, the complement of the zero section in Q3 (’T(Tz)) can be
identified with the deformation space of properly convex RP?-structures on the torus, de-
noted with By(T?). Then, for any choice of a smooth function f : [0, +c0) — (—o0, 0] such
that f(0) =0, f'(t) <0Vt > 0 and tET@O f(t) = —o0, we prove the following:

Theorem D. For any function f as above, there exists an SL(2,R)-invariant pseudo-
Kihler structure (@¢,1,8¢) on D3(J (R?)) which restricts to a mapping class group invari-
ant pseudo-Kdihler metric on By(T?).

By exploiting the isomorphism D?*(7(R?)) = Q3(7T(T?)), we can induce a circle action on
D3(J (R?)) corresponding to a rotation of the fibre in the holomorphic bundle description.
Together with the SL(2, R)-action, we get two further results:

Theorem E. For any function f as above, the circle action on D3(J(R?)) is Hamilto-
nian with respect to Wy and it preserves the psuedo-metric g¢. Moreover, the Hamiltonian
function can be explicitly expressed in terms of f.

Theorem F. The SL(2,R)-action on D3(J (X)) is Hamiltonian with respect to @ and the
moment map [i : D3(J(R?)) — sl(2,R)* can be explicitly expressed in terms of f.

In particular, by taking the action of the subgroup R* < SL(2,R) generated by the diagonal
matrices, it is possible to explicitly compute the Hamiltonian function Ho with respect to
this restricted action. Together with the Hamiltonian function H; of the circular action,
we get the existence of two commuting Hamiltonian vector fields Xg,, Xy, on By(T?). In
other terms, the space (Bo(T?), @) has the structure of a complete Hamiltonian integrable
system. The main issue is that each fiber of the associated Lagrangian fibration H :=
(Hi, Hs) : (Bo(T?),05) — B < R? is diffeomorphic to R x S'. However, since the base
space B is contractible and the Hamiltonian vector fields Xp,, Xy, are complete, we can
apply the theory of complete Lagrangian fibration to obtain the following:

Theorem G. The collection {6, Hi, s, Ha} is a global Darboux frame for &y, where (s, ) €
R x S' =~ H=1(b) for each be B, and correspond to the angle coordinates of the completely
integrable Hamiltonian system (Bo(T?),& ¢, Hy, Ha).

The general case:

Now let 3 be a smooth closed connected and oriented surface of genus g > 2. The crucial
step in moving from the genus one case to the higher genus case, consists in the following



xiii INTRODUCTION

construction. Let p be a fixed area form on X, then for any (almost) complex structure J on
Y, let gy := p(-, J-) be the associated Riemannian metric. Now consider the space formed
by pairs (J, A), where J is an (almost) complex structure on X, compatible with the given
orientation, and A is a 1-form with values in the bundle of trace-less and gj-symmetric
endomorphisms of T'Y such that A(J-) = A(-)J and A(X)Y = A(Y)X, VX,Y e T'(TY).
This space, denoted by D3(J (X)), is of infinite dimension and it carries a pseudo-Kihler
structure as its analogue D3(J(R?)). In fact, one can choose an area-preserving linear
isomorphism from R? to 7Y, which induces an identification between D3(J(R?)) and
D3(J(1,%)). Since the pseudo-Kéhler metric on D3(J(R?)) is SL(2, R)-invariant, the
induced structure does not depend on the chosen area-preserving linear isomorphism. Then,
one can (formally) integrate each element of the pseudo-Kéhler structure on X, evaluated
on first-order deformations (.J, A). Slightly more in detail, let P be the SL(2,R)-frame
bundle over ¥ whose fibres over a point x € X are linear maps F : R? — T, % such that
F*p, is the standard area form on R2. Let us define the fibre bundle

P(DYI () = P x DT ) [si(2,R)

where SL(2,R) acts diagonally on the two factors. The space D3(J (X)) can be identified
with the space of smooth sections of such fibre bundle. Hence, as explained above, one
can introduce a symplectic form w; and a pseudo-Riemannian metric g¢ on D3(J (X)) by
formally integrating the ones induced on each fibre of TV"*P(D3(J(R?))), denoted with
@ and gy. Here TV P(D3(J(R?))) stands for the vertical sub-bundle of TP (D?*(7 (R?)))
with respect to the projection map P (D3 (J (RQ))) — 3. Similarly, a complex structure
I is obtained on the infinite-dimensional space D3(7 (X)) of smooth sections, by applying
point-wise I, which is defined on D3(7(R?)). It should be noted that the symplectic form
w and the pseudo-Riemannian metric gy both depend on the choice of a smooth function
f, as they arise from the construction on D3(J(R?)). In particular, the expression for
wys and gy combined with I effectively gives us a (formal) family of pseudo-Kahler met-
rics on the space of smooth sections D3(J(X)). Instead, we are interested in inducing
such structures on a certain submanifold, whose elements (.J, A) will be identified with the
set of embedding data of hyperbolic affine spheres in R3. In order to do so, a particular
choice of the function f appearing in the expression of w; and gy has to be made. Let
F : [0,+%) — R be the unique smooth function such that ce=*) — 2te=3F(®) 4 1 = 0,
where c is a constant depending only on the topology and the area of (3, p). Let us define
a new metric in the same conformal class of g; by the formula h := ef®g;, where the
function F is computed in ||A] |§ , (the norm of the tensor A with respect to gs) divided by
8. Then, imposing the equations governing the embedding data of hyperbolic affine spheres
on the pair (h, A), we get a Ham(X, p)-invariant submanifold %O(E,p) of the space of
smooth sections (J, A), whose quotient B(X) by Ham(Y, p), is a smooth manifold of dimen-
sion 16g — 16 + 2g. This will be a consequence of a simple application of Moser’s trick in
symplectic geometry, of the particular choice of the function f in terms of F', and finally of
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the existence and uniqueness of hyperbolic affine sphere immersions in R?. It turns out that
such a manifold is not diffeomorphic to the Hitchin component, as its dimension exceeds
that of Hits(X) by 2g. As we shall see later, the tangent space to this manifold splits as
the gr-orthogonal direct sum of the tangent space to Hit3(X) and the tangent to the orbit
of harmonic vector fields. For this reason, the further (finite-dimensional) quotient of B(X)
by Symp(Z, p)/ Ham(E, p) = Hlg (X, R) gives us the desired Hitchin component.

The candidate for the tangent space to the Hitchin component:

As explained in the previous paragraph, in order to actually obtain the Hitchin compo-
nent from the space 7730(2,/)), and thus induce a pseudo-Kahler structure (g¢,I,wy)
on it, we need to perform two quotients: the first by Ham(X, p) and the second by
Sympg (2, p)/ Ham(X, p). The idea is to define a distribution {W(J7A)}(L]’A) of Ham(X, p)-
invariant subspaces inside the tangent space to 7/-[\6/‘0(2, p). Each vector space W(; 4) of
this distribution will be defined by a system of partial differential equations and will be
point-wise isomorphic to the tangent space of g(E) In analogy with the anti-de Sitter
case (]MST21}, Lemma 4.18]), the first result that conceals a number of technical difficulties
shows, using an argument from the theory of elliptic operators on compact manifolds, that
the dimension of each W(; 4y is bounded below by the expected dimension of the quotient
manifold.

Theorem H. Let (J, A) be a point in the infinite-dimensional space 7/-1\30(27 p). Let Wi a)
be the vector space of solutions of the following system:

d(div ((f —1)J) +df o —L£B8) =0

d(div ((f = 1)J) o J +dfoo ] —FpoT) =0

dVAg(e,e) — J(divJ A A)(e,e) =0
where Ag is the trace-less part of the first order variation of A, V is the L(/fvi—Ci.vita con-
nection with respect to gy, () := ((VeA)J, Ag) is a 1-form and fo = —fZ<A, ApJ) is a
smooth function on X. Then, dim W 4y = 16g — 16 + 2g.
The second difficult statement, which will be consequence of the above theorem, also in-
volves a large number of technical details. It allows us to identify each subspace W(; 4
with the tangent space to the first quotient space g(E) at the point (J, A), as it happens
in [MST21}, §4.5] with the appropriate differences.
Theorem J. For every element (J, A) € 7730(2,/)), the vector space W(; 4y is contained
inside T(J,A)’E?O(z, p) and it is invariant by the complex structure I. Moreover, the collec-
tion {W(j.4)}(s,4) defines a Ham(3, p)-invariant distribution on 7/-[\30(2, p) and the natural
projection m : HSo(, p) — B(X) induces a linear isomorphism

~

deaym: Wiga — Tig4B(%)
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In particular, we can restrict the pseudo-Kéhler structure (g, I, wy) from the ambient space
to the finite dimensional manifold B (X). Since the pseudo-metric g¢ is not positive-definite,
it is not immediate that it is still non-degenerate when restricted to the subspaces W 4).
This is indeed the biggest issue to be addressed, and it will be discussed in a subsequent
paragraph of the following introduction. At this point, one can proceed by performing the
finite-dimensional quotient B(X)/H, where H := Symp(Z, p)/ Ham(Z, p) = Hl: (S,R).
Such a quotient is isomorphic to the Hitchin component, and there is a g-orthogonal
decomposition W 4y = V(j4) ® S(s.4), where V| 4) is the tangent to Hit3(X) and S 4)
is a copy of H.

Theorem K. The H-action on g(Z) is free and proper, with complex and symplectic H -
orbits. Moreover, the pseudo-Kdhler structure (gf,I,wy) descends to the quotient which is
identified with Hit3(X). Finally, the complex structure I induced on the PSL(3,R)-Hitchin
component coincides with the one found by Labourie and Loftin.

The relation with moment maps and symplectic reduction

While Theorem [H] and Theorem [J] can be proven with self-contained arguments, it is not
clear how to obtain the differential equations defining the subspace W 4). In fact, their
origin must be sought in the context of moment maps and symplectic reductions, but in an
infinite-dimensional context. For this reason, we will briefly explain how to characterize the
subspaces W 4) in these terms and how the presence of isotropic vectors for gy generates
further difficulties. In the torus case we showed that the action of SL(2,R) on D3(J(R?)) is
Hamiltonian with respect to the symplectic form w and we computed explicitly the moment
map /i : D3(J(R?)) — sl(2,R)*. A general theorem of Donaldson (|[Don03|), allows us to
promote the previous result to a Hamiltonian action of Ham(X, p) on D3(J (%)), with
respect to the symplectic form wy. In this case, the moment map p associates to each
pair (J,A) € D3(J(X)) an element in the dual Lie algebra of Hamiltonian vector fields
on the surface. It turns out that to obtain an honest moment map gt for the action of
the group of Hamiltonian diffeomorphisms, one has to add a scalar multiple of the area
form p. At this point, it can be shown that the submanifold i~ *(0) intersected with the
set Mg = {(J,A) € D3(J(X)) | dVA = 0} is equal to HSo(%, p). Inspired by classical
symplectic reduction theory, one is tempted to induce the pseudo-Riemannian metric gy
and the symplectic form w; on the quotient (ﬁ_l(O) N Mc)/Ham(%, p). The issue is
that, in our case, the tangent space T(J7A)D3(\7(Z)) is a Krein space (JAI81]). Roughly
speaking, a Krein space is a (real or complex) infinite-dimensional vector space endowed
with an indefinite inner product which admits an orthogonal direct sum decomposition in
positive and negative part. Moreover, the pseudo-metric restricted to both the positive
and negative part induces a complete norm. The presence of the indefinite metric does not
allow us, like in the Hilbert case (|Trol2, Theorem 1.3.2]), to identify the gs-orthogonal to

the Ham(X, p)-orbit inside ?730(2, p) with the I-invariant distribution tangent to the finite
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dimensional manifold B (X). Despite that, by imitating the reduction in the positive-definite
case, we are able to give a characterization of the subspace W 4) as follows:

Theorem L. For any (J, A) € ’7—[\30(2,;)), the vector space W(; 4y is the largest subspace
in T(JA)?,-[\SO(E, p) that is:

e invariant under the complex structure 1;
e gg-orthogonal to the orbit T ; 4)( Ham(X, p) - (J, A)).

The proof of this theorem is independent of the other results, but it serves as a motivation
for defining the subspace W 4y as the solution of a system of partial differential equations.

The pseudo-metric is non-degenerate.

Theorem [J] together with Theorem [K] allows us to induce the pseudo-Kéhler structure
(g7, L,wy) from the infinite-dimensional manifold D3(J(X)) to the Hitchin component,
but, a-priori, it may be degenerate. However, exploiting the explicit expression of gy, we
can prove that, at least on the Fuchsian locus, there are no non-zero degenerate vectors.
As for the tangent directions to points away from the Fuchsian locus, the analysis becomes
very complicated. On the one hand, we know the exact expression of g, but on the other
hand, the model V| 4) of the tangent space to the Hitchin component is described by
very complicated PDEs, whose solution is far from being explicit. The idea, is to look
for a subspace of T(; 4)D?*(J (X)) (possibly of infinite dimension) whose elements have a
treatable description for our purpose. This is the tangent space T(; 4)Mc to the set of
pairs (J, A) € D3(J (X)) satisfying the Codazzi-like equation dV A = 0 for hyperbolic affine
spheres. We will show that the set T{;4)Mc contains the tangent space to the Diff (X)-
orbit, which in turn splits as a direct sum of three subspaces. Then, using the relation
between the PDEs describing V| s 4) and the theory of symplectic reduction, the following
gs-orthogonal decomposition of T{; 4)Mc can be obtained:

J-gf J-gf J'gf
Via) @ Sua @ Ty (Ham(E, p) - (J,4)) @ I<T(J,A)(Ham(27,0) - (J, A))) :

The existence of the moment map fi for the action of Ham(X, p) on D3(J (X)) and an
explicit calculation allow us to conclude that gy restricted to the Hamiltonian orbit is non-
degenerate. Moreover, using a highly non-trivial integration by parts we prove that gy
is non-degenerate even when restricted to the subspace S 4). Finally, using the relation
gr(I,I.) = g¢(-,-) one gets the following further result

Theorem M. The pseudo-Riemannian metric gy is non-degenerate on T( j 5y Mc if and
only if it is non-degenerate on V| j ay, namely on the Hitchin component.
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In this regard, we introduce the notion of Krein space and some useful results that may lead
to a better understanding of (possible) degenerate vectors for gy away from the Fuchsian
locus.

Comparison with the anti-de Sitter case

As mentioned earlier, part of the techniques we use to construct the PSL(3, R)-Hitchin com-
ponent as a symplectic quotient and the definition of the pseudo-Kéhler metric are based
on a previous work (|[MST21|), where the authors defined a para-hyperkéihler structure on
the deformation space of maximal globally hyperbolic anti-de Sitter 3-manifolds, denoted
with MGH(X). Such a deformation space can be identified with a maximal component in
the PSL(2,R) x PSL(2,R) character variety, which consists entirely of discrete and faithful
representations. In particular, such a space is parameterized by two copies of Teichmiiller
space (|Mes07],|KS07]) and it is isomorphic to the cotangent bundle T*7 (X) (JKS07]).

As can be seen, the first major difference lies in the fact that Hit3(X) cannot be isomorphic
to T(X) x T (%), since its real dimension is equal to 16g — 16. This does not allow, unlike
the anti-de Sitter case, to define a natural para-complex structure J that together with
I gives rise to another para-complex structure K := IJ. Moreover, the parameterization
MGH(E) = T*T(X) as a holomorphic vector bundle, gives rise to a complex symplectic
structure on MGH (X)), which is missing for the Hitchin component. This is the reason why
with our construction we only obtain a pseudo-Kéahler metric.

The different descriptions as holomorphic vector bundles over T (X) lead to different com-
putations along the way. In fact, in the PSL(2,R) x PSL(2,R) setting one has to work
with a pair given by a complex structure and a holomorphic quadratic differential on 3,
the real part of which corresponds to the second fundamental form of the immersion as a
maximal surface in AdS 3-manifolds, namely it is an endomorphism of T'3. In our case, the
real part of a holomorphic cubic differential is, up to the contraction with the metric, an
End(TX)-valued 1-form. On the one hand, the additional 1-form part makes the analysis
more difficult, but on the other we still succeed in obtaining similar results in regard to
some key steps in the construction (Proposition and Proposition .

The presence of other two moment maps in the AdS seeting ([MST21, Theorem 6.5]), al-
lowed the authors to obtain MGH(X) as the quotient of an infinite-dimensional space by
the group of all symplectomorphisms of the surface isotopic to the identity. In our case,
not knowing whether the equation d¥A = 0 can be interpreted as a moment map, we had
to resort to the use of two quotients, which led to further difficulties developed in Section
[B:4.1] It is also worth mentioning that since the PDE’s defining the distribution tangent
to the deformation space are much more complicated in our setting, it was necessary to
employ a deep analysis of the associated differential operators (Section [3.2.4]).

Finally, the most relevant part: the pseudo-metric is non-degenerate on the deformation
space. In [MST21|, the authors were able to identify the three symplectic forms they defined
on MGH(X) with already known symplectic forms (thus non-degenerate), in terms of the
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various parameterizations given above. In our setting, we do not know what the relation
between our symplectic form w and Goldman’s one is, because of the particular choice of
function f that must be made and on which w depends. This led us to a careful analysis
of the involved infinite-dimensional spaces and to obtain some partial results towards the
non-existence of degenerate vectors for g away from the Fuchsian locus (Section and
3.4.4).

Outline of the thesis

The thesis is structured as follows. Chapter [I] introduces the Hitchin component for the
Lie group PSL(3,R) and it explains the classical relation with convex projective structures
and hyperbolic affine sphere immersions. In Chapter [2] we study the deformation space of
properly convex projective structures on the torus, and we introduce an explicit family of
pseudo-Kéahler metrics which are invariant by the action of the mapping class group. The
material of this chapter can be found in:

[RT21] Rungi N., Tamburelli A., Pseudo-Kdihler geometry of properly convex projective
structures on the torus.

Chapter [3| deals with the construction of a pseudo-Kéahler metric (g, I, w) on the PSL(3, R)-
Hitchin component associated with a genus g > 2 surface, so that I is exactly the complex
structure found by Labourie and Loftin. We prove that such a component, and pseudo-
Kahler metric, can be obtained by means of symplectic reduction theory in an infinite-
dimensioanl context. In particular, we find an interpretation of Wang’s equation for hy-
perbolic affine spheres in R? as a moment map for the action of an infinite-dimensional Lie
group. The material covered here has appeared in the preprint:

[RT23| Rungi N., Tamburelli A., The PSL(3, R)-Hitchin component as an infinite-dimensional
pseudo-Kdhler reduction.

In Chapter (4] we use the explicit description of the family of pseudo-Kéhler structures
introduced in the torus case to study some metric and symplectic properties. In particular,
using the theory of complete Lagrangian fibrations, we prove the existence of a geometric
global Darboux frame for the symplectic form. In addition, we succeed in describing the
explicit form of an arbitrary isometry of the space, for a particular choice of the pseudo-
Kahler metric among those introduced. The material covered here is presented in:

[RT22] Rungi N., Tamburelli A., Global Darboux coordinates for complete Lagrangian fi-
brations and an application to the deformation space of projective structures in genus one
(to appear in Journal of Symplectic Geometry, Volume 22 - Issue 2).



Chapter

Background materials

In the first chapter we introduce the PSL(3,R)-Hitchin component of a smooth closed
oriented surface ¥ of genus ¢ > 2, and we explain its relation with convex RP?-structures
and hyperbolic affine sphere immersion. The material covered here is classical, and the
main purpose is to fix notation and recall fundamental results on the topic.

1.1 The PSL(3,R)-Hitchin component

Let X be a closed, connected smooth and oriented surface of genus g > 2 and consider the
space Hom(71(X), PSL(3,R)) of all representations from (%) to PSL(3,R). This set has
a topology induced by the inclusion

Hom(r (£), PSL(3,R)) < PSL(3,R)*
p— (plar), .., p(by))

where ay,...,b, are generators of 71(X) subject to the relation [[Y_, [ai, bi] = 1. There
is a natural action of PSL(3,R) on this space given by conjugation: for v € m(X) and
P e PSL(3,R)

(P-p)(7) = P p(7)P . (1.1.1)

In order to get a Hausdorff quotient space, one needs to restrict to the completely reducible
representations, i.e. those p: m(X) — PSL(3,R) which split as a direct sum of irreducible
representations. If we denote by Hom™ (71 (X), PSL(3, R)) the space of such representations,
the quotient space

R(3,PSL(3,R)) := H0m+(771(2)7PSL(37R))/IP’SL(?),]R)

is called the PSL(3,R)-character variety. It is a real algebraic variety (possibly singular),
whose real dimension at a smooth point is equal to —8y(X).

1
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Theorem 1.1 (Hitchin [Hit92]). The real algebraic variety R (X, PSL(3,R)) has three con-
nected components: the one containing the class of the trivial representation, the one consist-
ing of representations whose associated flat R3-bundles have non-zero second Stiefel- Whitney
class and the one consisting of representations connected to those arising as uniformization.
Moreover, the third one is contained in the smooth locus of %(E,PSL(&R)) and it is dif-
feomorphic to R—8X(2)

It must be noted that the there is no topological invariant which distinguishes the first
component to the third one, as they are both formed by representations whose associated
flat R3-bundles have zero second Stiefel-Whitney class. The most interesting component in
the above list is the last one, which will be denoted by Hit3(X) throughout the discussion.
In Hitchin’s original paper (|Hit92|) it was called the "Teichmiiller component" since it
seemed to be a natural generalization of the Teichmiiller component 7" (%) for PSL(2,R),
which is actually contained in Hit3(X). Nowadays it is known as the Hitchin component
and for our particular case (also for PSL(n,R)) there is a quite explicit description of its
construction and of the inclusion 7*(X) < Hit3(X). Let us identify R? with the space
of homogeneous polynomials in two variables z,y of degree 2, i.e. R® = Spang{z?, zy, 3}
There is an action of SL(2,R) on such space:

<CCL Z) = (ax + cy) i bz + dy)’, 1=0,1,2

which induces a (unique up to conjugation) representation 73 : SL(2,R) — SL(3,R) given
by:
ab b?

a2
a b
7'3( (c d)) = | 2ac ad+ bc 2bd
c? cd d?
It is immediate to see that one gets an induced representation PSL(2,R) — PSL(3,R)
still denoted by 73. For any discrete and faithful representation j : m(X) — PSL(2,R),
the composition 73 0 j : m(X) — PSL(3,R) is discrete and faithful as well. The Hitchin
component can be defined as the connected component of %(E, PSL(3, ]R)) containing 7307,
i.e. it is formed by all the representations obtained as deformations of the Fuchsian ones.

In particular, the composition 730 j induces an inclusion of 7 (X) in Hits(X), whose image
is called the Fuchsian locus and it will be denoted by F(X).

1.2 Deformation space of convex RP?-structures

An RP?-structure on a smooth connected surface S is a maximal RP2?-atlas, namely an
atlas in which the local charts take value in the real projective plane and the transition
functions restrict to projective transformations on each connected component of the subset
where defined. Once a maximal RP?-atlas is given, we say that S is an RP2?-surface. By
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unravelling the definition it is easy to see that if S is an RP?-surface and p : S — S is its
universal cover, then S inherits an RP2-structure from the one of S.

A domain (open and connected) < RP? is said to be conver if there exists a projective
line [ disjoint from © such that  c RP?\] = A? is convex in the usual sense. By definition
R? is convex but RP? is not. It is not difficult to show that this notion of convexity in the
real projective plane does not add new convex sets with respect to those usual in affine

spaces ([APS04, §1]) .

Definition 1.2. An RP?-surface S is convez if it is projectively isomorphic to a quotient
Q/r, where Q = RP? is a convex domain and I' = Proj(2) = SL(3,R) is a discrete group
of projective transformations preserving €2 acting freely and properly discontinuously on €.
The surface S is properly convez if € is bounded in some affine space.

There is a well-known equivalent way of defining a convex RP?-surface in terms of the
existence of a pair of maps with special properties. This is the following:

Theorem 1.3 (Development Theorem). Let S be an RP%-surface, then the following are
equivalent:

(1) S is convex

(2) There exists a pair (dev,h), where dev : § — RP? is a diffeomorphism onto a con-
vexr domain in RP? called the developing map and h : 71 (S) — SL(3,R) is a group
homomorphism called the holonomy representation, such that the following diagram
commutes:

S —dev, pp2
”i J’“‘(’” (1.2.1)
S _dev, pp2

Moreover, if (d%, }NL) is another such pair, then 3g € SL(3,R) such that:

dev =godev,  h(y)=goh(y)og!, Yyem(S).

It is clear from the statement that if S is convex, then its universal cover S can be
identified with a convex domain € < RP? via the developing map and the discrete subgroup
I' can be identified with 71 (S) via the holonomy homomorphism. From this point on we
will focus only on the case in which the surface is closed and orientable, hence it will be
denoted with X.

Definition 1.4. Let X be a smooth, closed and orientable surface. A (properly) convex
RP2-structure on ¥ is a pair (¢, M), where ¢ : ¥ — M is a diffeomorphism (called the
marking) and M = Q/r is a (properly) convex RP%-surface.
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One can define an equivalence relation on such pairs, namely (¢1, M1) ~ (2, My) if
and only if there exists a projective isomorphism W : M; — M> such that the new marking
U o ¢ is isotopic to ¢o. Now we are ready to introduce the main space that we are going
to study in this article: the deformation space of (properly) convex RP?-structures

B(%) := {(f, M) convex RP? — structure on X} [~

By(%) := {(f, M) properly convex RP? — structure on ¥} [~ .

The behavior of this space depends highly on the genus of the surface and, as one can
imagine, there are notable differences between the flat case (genus one) and the hyperbolic
one (g = 2).

Proposition 1.5 ([Kui53|,|Ben60]). If ¥ is a convex RP?-surface with g > 2, then it must
be properly convex. Moreover, the boundary 0 is always strictly convex and C', and it
must be either and ellipse or a Jordan curve which is nowhere C?. In particular, there is

an identification B(X) = By(X).

In the case of the torus this is no longer true, for instance there are many convex RP?-

structures which are not properly convex: affine and Euclidean ones. They can not be
properly convex since the developing map identifies the universal cover of T2 with a copy
of R? inside RPP?, which is convex but not bounded (see [Gol22, §8.5]).
To any equivalence class of convex RP?-structures on ¥ there is an associated class of
representations [p], with p : m(¥) — PSL(3,R), by Theorem In particular, this
association defines the so-called monodromy map bhol : B(X) — %(Z,IF’SL(?),R)) whose
image is contained in the space of discrete and faithful representations.

Theorem 1.6 (|Gol90a|, [CG93|). The map hol : B(X) — R(X,PSL(3,R)) induces an
isomorphism between B(X) and Hit3(X). In particular, any deformation of a Fuchsian
representation T o j : m(X) — PSL(3,R) can be realized as the holonomy of a convex
RP?-structure on 3.

1.3 Hyperbolic affine spheres

Let ¥ be a closed surface of genus g > 2 with universal cover ¥ and let I ¥ — R3 be an
immersion with £: £ — R3 a transverse vector field to f (i) This means that for all z € 3
we have a splitting: R 3

Ty R® = £ T,X + RE, .

Let D be the standard flat connection on R? and suppose the structure equations of the
immersed surface are given by:

DxY = VxY + h(X,Y)¢

Dt = —S(X) (1.3.1)
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where V is a torsion-free connection on % called the Blaschke connection, § is the affine
normal of the immersion (see [Lof01, §3.1] for example), h is a metric on X called the
Blaschke metric and S is an endomorphism of T called the affine shape operator.

Definition 1.7. Let N be an immersed hypersurface in R? with structure equations given

by (1.3.1). Then N is called a hyperbolic affine sphere if S = —Idrn.

The properties of the global geometry of hyperbolic affine spheres were conjectured by
Calabi (|Cal72]) and proved by Cheng-Yau (JCY77], |CY86|) and Calabi-Nirenberg (with
clarifications by Gigena (|Gig81|) and Li (|Li90], |[L192])). The most important result (stated
only in R3 but true in arbitrary R") is the following:

Theorem 1.8 (Cheng-Yau-Calabi-Nirenberg). Given a constant X < 0 and a convez,
bounded domain Q < R?, there is a unique properly embedded hyperbolic affine sphere
N < R? with affine shape operator S = \-Idrn and center O asymptotic to the boundary of
the cone C(Q2) := {(tz,t) | x € Q,t > 0} = R3. For any immersed hyperbolic affine sphere
f: N — R3, properness of the immersion is equivalent to the completeness of the Blaschke
metric, and any such N is a properly embedded hypersurface asymptotic to the boundary of
the cone given by the convexr hull of N and its center.

We can use the above theorem to describe a Diff (X)-equivariant one-to-one correspon-
dence between convex RP2-structures and hyperbolic affine spheres. In fact, given a convex
RP2-structure ¢ : ¥ — M =~ Q/T, where Q < R? is bounded, there exists a unique hyper-
bolic affine sphere H < R3 asymptotic to the boundary of the cone C(2) = R? (Theorem
. Such a hyperbolic affine sphere H is invariant under automorphisms of C(£2), seen
as a subgroup of PSL(3,R). The restriction of the projection m : C(©2) — € induces a
diffeomorphism of H onto €. By equivariance, the tensor h and the connection V descend
to the quotient Q/I' @ M. Viceversa, given an embedding of the universal cover 3 < R3
as a I- equivariant hyperbolic affine sphere, with [ ~ 7m1(X), one gets an identification of
3 with a domain Q < RP?, via the developlng map. Then, Theorem [1.8] implies that 5
is asymptotic to a cone over {2. The action of Fond cR3 corresponds to an action of a
group I' < PSL(3,R), isomorphic to m1(X), on the domain €2 so that ¥ =~ Q/T.

Let f: (i, h,V) — R3 be an immersed hyperbolic affine sphere, where h is the Blaschke
metric and V is the Blaschke connection. If V/ denotes the Levi-Civita connection with
respect to h, then V = V" + A, where A is a section of T%(¥) ® End(T'Y) called the Pick
form. In particular, for every X € I'(T'Y) the quantity A(X) is an endomorphism of T'3.

Definition 1.9. The Pick tensor is the (0, 3)-tensor defined by

C(X,Y,Z):= h(AX)Y,Z), VX,Y,ZeI(TY). (1.3.2)
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Corollary 1.10. If f :(f],h, V) < R3 is an immersed hyperbolic affine sphere, then the
Pick tensor is totally symmetric, namely in index notation Cj;, we have

Cijk = Ca(ijk)7 Vo e 63 .

In particular, this is equivalent to the requirement that the endomorphism A(X) is h-
symmetric for all X € T'(TX) and

AX)Y = AY)X, VX,YeI(TY). (1.3.3)

Theorem 1.11 (|[BH13, Lemma 4.8]). Let ¥ be a closed oriented surface of genus g = 1.
Let h be a Riemannian metric on ¥ and J be the induced (almost) complex structure.
Suppose that a (1,2) tensor A and a (0,3) tensor C are related by A = h='C. Assume
further that the tensor C' is totally symmetric. Then, A(X) is trace-free for all X € T'(T)
if and only if C is the real part of a complex cubic differential, which can be expressed as
q=C(--)—1iC(J-,-,-). If this holds, then the following are equivalent:

o dV"A = 0;

e C is the real part of a holomorphic cubic differential ¢ = C(-,-,-) —iC(J+,-,-);

o (Vi3 A)() = (Vi A)(J), VX € D(TT).

The embedding data of hyperbolic affine spheres in R? can be described in terms of the
Blaschke metric h and the Pick form A satisfying the following equations:

Kp —llallz = -1
HS
{dth:O’ ( )

where ¢ = C(+,-,-) —iC(J-, -, -) is the holomorphic cubic differential determined by the Pick
tensor C, K}, is the Gaussian curvature of the Blaschke metric h and A = h~!C is the
associated Endg (7%, h)-valued 1-form. Moreover, for any tangent vector fields X, Y, Z on
S the exterior-derivative dV" A is the Endy (7%, h)-valued 2-form

@V"A)(X,Y)Z = (VEA)(Y)Z — (VEA)(X)Z (1.3.4)

where Endg (73, h) denotes the vector bundle of h-symmetric and trace-less endomorphisms
of the tangent bundle.

Remark 1.12. Notice that the second equation in is invariant under conformal change
of metric. In fact, it is equivalent to require that the cubic differential ¢ = C(-,-,-) —
1C(J-,-,-) is holomorphic with respect to the complex structure defined by the conformal
class of h. For this reason, in the following discussion, we will use either the tensor A or C
according to which is more convenient.
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Viceversa, every pair (h,C) satisfying , with h a Riemannian metric and C a
totally symmetric (0, 3)-tensor equal to the real part of a h-cubic differential, i.e. a cubic
differential that is holomorphic for the conformal class of h, represents the embedding
data of a hyperbolic affine sphere in R? ([Wan90|,|Lof01],[BH13|). Considering that such a
correspondence is natural by the action of Diff(X), we introduce the space parameterizing
the embedding data of 7 (X)-equivariant hyperbolic affine spheres in R? as:

h is a Riemannian metric
HS() := { (h,C) | Cis the real part of a h-cubic differential /Diffo(Z) (1.3.5)
equations (HS|) are satisfied

Thus, according to the above discussion, we obtain the following result:

Proposition 1.13. Let X be a closed surface of genus g = 2, then there exists a MCG(X)-
invariant homeomorphism between B(X) and HS(X), given by the embedding data of the
unique equivariant hyperbolic affine sphere.

Because of this identification, for the rest of the discussion we will equivalently use one
of the two pieces of notation in Proposition to denote the deformation space of convex
RP2-structures, hence the PSL(3, R)-Hitchin component.

1.4 Wang’s equation

Here we discuss the relation between the hyperbolic affine sphere immersion f : Y > R3
and the conformal geometry of the surface. In particular, it is possible to rewrite the
structure equations in terms of a local holomorphic coordinate on the surface. Since
we are interested in equivariant hyperbolic affine spheres, we can pick a parameterization
f: A — R3, where A is a simply-connected domain in C biholomorphic to the open unit
disk. Let z = x + iy be a local conformal coordinate with respect to the Blaschke metric h,
so that h = e¥|dz|?, where |dz|? is defined as the symmetric product between dz and dz.
Since {eféw fx,ef%w fy} is a h-orthonormal basis of the tangent space, the affine normal
satisfies

det(e*%¢fx,e*%wfy,§) —1
which implies

det(fu, fy, &) = €¥ .

By rewriting all in terms of

of 1 , of _1 :
ézi(fzfzfy) and %Zi(ferlfy)
we get

det(f, fz,€) = ie? .
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The affine structure equations are

DxY = VxY + h(X,Y)¢

D —x-X . (1.4.1)

Now consider the coordinate frame {e; := f, := f*(a%), ei = fz:= f*(%)} Hence,

1
W(For f2) = h(fz, f2) = 0, h(fz, f2) = 5e¥.
Let 6 be the matrix of connection one-forms for V, i.e.
Ve =0lej, ije{l1).

If 6 is the matrix of connection one-forms of the Levi-Civita connection, then

0} =0l =0, 6=0p, 01=0y.

The difference V—V" is equal to the so-called Pick form, namely the section of Endo(T%, h)®
T*% satisfying (1.3.2)). In local coordinates

60 = A, e L)

where {p! = dz, pi = dz} is the dual frame of one-forms. By lowering an index we get the
Pick tensor

C’ij = hilAé'kv iv.jv ke {17 i}

which is totally symmetric, as one can see from the last equation. In particular, all the
components of C' must vanish except for C111 and C11; = C777. This discussion completely

determines 6, indeed
g — 91 0% B oY e_zdeZ
ot 0l) \evQdz oy

where @ := 2C111 is a smooth function on the affine sphere.
Since D is the standard (flat) connection on R3, by using the structure equations (1.4.1))
we have

0
fzz = szfz = viai = Q;Z)zfz + e_defZ
oz OZ
foo = Dpfe =V 2 o =i fo + Q. (1.42)
._ _y. 0 e Low
fzf = szfz = Vé 0z + h(fz’fz)é - 26 5 .
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We can translate our affine sphere so that £ = f, hence by combining (|1.4.2) with this last
equation we get a 1%%-order linear system in F! := (f,, fz.£), given by

a fZ wz Qe_¢ 0 fZ
& fg = 0 0 %Cw z
¢ 1 0 0/ \¢

1w (1.4.3)
0 fz _ 0 0 3¢ fz
FE; fo]=1Qe™ v: 0 z
“\¢ 0 1 0 ¢

Given an initial condition for F! at zp € A, there exists a unique solution to this system as
long as the following integrability conditions are satisfied

1
bz + Qe — §€w =0
Q:=0.

(1.4.4)

The second equation and the definition of @@ implies that ¢ := Qdz? is a holomorphic cubic
differential over A.

Remark 1.14. From now on, we rescale the cubic differential ¢ = Qdz3 — ¢ = Q'dz3 :=
v2Qdz3, so that equations ((1.4.4) become:

1 1
Yzt 5|Q P — et =0
Qz=0.

(1.4.5)

Moreover, we will denote, by abuse of notation, the rescaled cubic differential with ¢ =
Qdz3. For this reason, some of the formulae that will follow in the torus case will differ by
a multiplicative factor from those presented in |[RT21|. This rescaling is done to be then
consistent with what will be explained in the genus g > 2 case.

Now let (X,J) be a closed Riemann surface with genus g > 2. By the well-known
Poincaré-Koebe Uniformization Theorem we can pick a Riemannian metric gy of constant
curvature ko on ¥ which is compatible with the initial complex structure J. Let H(X, K3)
be the holomorphic sections of the tri-canonical bundle over (3, .J), namely the C-vector
space of holomorphic cubic differentials. It is easy to see, using the Riemann-Roch Theorem,
that this space has complex dimension equal to 5g — 5. If z = x + ¢y is a local holomorphic
coordinate on (X, J), then we can define a norm on H(3, K3), given by:

lallg, = Q%™

where ¢ = Qdz? and gy = e®|dz|? in this local coordinate.
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Theorem 1.15 (|Wan90|). Pick the metric go so that its Gaussian curvature is equal to —1.
Let h = e“gy be a Riemannian metric in the same conformal class as go and ¢ € HY(X, K3),

then ¥ = u + ¢ satisfies the first equation of if and only if the metric h satisfies:
K —lallf = -1, (1.4.6)

where Ky, is the Gaussian curvature of h and ||q||? = ||q||£2706_3“.

Lemma 1.16. In the setting of the previous theorem, the metric h satisfies equation
if and only if the function u : ¥ — R satisfies the following semi-linear elliptic equation

Agou + 2]|q||§06_2“ —2e"+2=0 (1.4.7)
Proof. This is an easy application of the formula for the curvature K; = e "(ko — %Agou)
under conformal change of metric h = e%gg. In fact, since gg can be chosen so that kg = —1,
we get

_ 1 _ _
K= llalff + 1= =7 = S Agu— e lgl3, + 1.

Multiplying the right-hand side of the equation above by the factor —2e", we have the
following equivalence

1
—e ¥ — ie*"AgOu — 673“Hq]|§0 +1=0 < Agu+ 2Hq|]30672u —2e"+2=0.

O

The original approach used by Wang to study existence and uniqueness of the solution
to (and thus to ((1.4.6))) was the theory of elliptic operators between Sobolev spaces
([Wan90, §4]). About ten years later, Loftin simplified a lot the original argument by using
the theory of sub and sup-solutions.

Lemma 1.17 (|SY94, Proposition V.1.1]). Let (M, g) be a smooth compact Riemannian
manifold. Consider the following differential equation:

Agu+ f(p,u) =0, (1.4.8)
where f is a smooth function on M x R. Suppose there exist ¢, € C?(M) satisfying:
Ao+ f(p.¢) 20, AP+ flp,y)<0, o<1.

Then, Equation has a smooth solution u such that ¢ < u < . The functions ¢ and
1 are called respectively a sub-solution and a sup-solution for .

Proposition 1.18 ([Lof01]|). Let (M,g) be a smooth compact Riemannian manifold and
let @ be a smooth non-negative function on M. Then, the equation

Agu + @(p)e™ " — 2" +2 =0 (1.4.9)

has a unique smooth solution.
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Proof. For the existence part, we need to find a sub and sup-solution to and then
appeal to Lemma with f(p,u) := @(p)e 2% — 2e* 4+ 2. The sub-solution is given by
¢ := 0 since ¢(p) is non-negative by hypothesis. To find the sup-solution ¢ we look for a
non-negative constant ¢ = ¢ such that f(p,c¢) < 0, which is equivalent, after multiplying
by €%, to ¢(p) — 2€3 + 2¢** < 0. In order to do so, let us first define H := maxgen $(q),
which is strictly positive since ¢ is non-negative and non-constant, and set m to be the
positive root of the equation 22® — 222 — H = 0, so that H = 2m? — 2m?. By definition,
m > 1 and the sup-solution is given by ¢ = 1 := logm > 0. In fact,

3(p) — 26° + 2¢* = G(p) — 2m® + 2m? = $(p) — H <0 .

The smoothness of the solution follows from standard arguments of elliptic theory.
For the uniqueness part we need to apply the maximum principle. Suppose u1, us are two
solutions of (1.4.9) and let z € M be a maximum of u; — ug, then Az(u; — ug)(z) < 0.

Since ug, ug both satisfy (1.4.9)), we get:
P(p)e212(®) _ 9¢u2(@) 4 9 < H(p)e~2n(@) _2em(®) 4 9

but, the function @(p)e=2%—2¢e%+2 is strictly decreasing in u, so it implies: (u;—uz)(z) < 0.
In particular, since x is a maximum of u; — uy we get

(up —u9)(y) <0, Vye M.

Arguing with a minimum point it follows that the reverse inequality holds on the whole M,
hence u; = usg. O

Let 7 : % — ¥ be the conformal universal covering, namely Y is biholomorphic to the
open unit disk in C. Given a holomorphic cubic differential ¢ on 3, we get by Proposi-
tion a unique pair (h,q) satisfying on Y. Then, by Proposition the pair
(m*h, m*q) satisfies , where 7*h = ¢”|dz|? on ¥. In particular, (7*h, 7*q) determines
a hyperbolic affine sphere f .3 — R3 with 7*h as its Blaschke metric and it is complete
since 7 : (3, 7*h) — (3, h) is a local isometry and ¥ is compact. Moreover, it can be proved
that the deck transformation group of ¥ can be regarded as a discrete subgroup of the uni-
modular affine group acting on the affine sphere f : > — R3. This holds because given any
v € m(X) we have (y* on*)h = 7*h and (y* o 7*)q = 7*¢, but the Blaschke metric and the
Pick form completely determine the affine sphere up to unimodular affine transformations.
Hence, the map which sends the point f(p) to f(v(p)), with p € X, must be the restriction
of an unimodular affine transformation in R3. By the standard theory of affine differential
geometry it follows that the given construction yields all complete hyperbolic affine spheres
which admit the action of a discrete subgroup of the unimodular affine group in R? with
compact quotient.

Corollary 1.19 (|[Wan90; [Lof01]). A hyperbolic affine sphere in R® with center 0 which
admits a properly discontinuous action of a discrete group I' < SL(3,R), so that the quotient
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1s a closed oriented surface X of genus g = 2, is completely determined by a conformal
structure on ¥ and a section g € HO(X, K3). Moreover, all such hyperbolic affine spheres
are determined in this way.

1.5 Labourie and Loftin’s parameterization

Let m : Q*(T°(X)) — T(X) be the holomorphic vector bundle of cubic differentials over
Teichmiiller space. The fibre over an equivalence class [J] € T¢(X) is the C-vector space of
holomorphic sections of the tri-canonical bundle. Given any pair ([J],q) € Q*(T*(X)), we
have an embedding > R3 as a (equivariant) hyperbolic affine sphere whose Pick tensor
and Blaschke metric are completely determined by [J] and ¢ (Corollary. In particular,
by the argument in Section we get a family of convex RP2-structures on X in the same
Diffo(2)-orbit. Conversely, if we start with an equivalence class of convex RP2-structures,
by Theorem we get an (equivariant) embedding Y > R3asa hyperbolic affine sphere,
which is equivalent to a pair ([.J],q) as above. In the end, the main result is the following:

Theorem 1.20 (|Lof01],[Lab07]). Let ® : B(X) — Q*(T(X)) be the map which associates
to each equivalence class of conver RP?-structures the pair ([J],q) described above. Then,
® is an homeomorphism.

There is a pull-back action of MCG(X) on Q*(T°(X)) given by:

[W]- (7], 0) :== ([¥* ], 9%q) -

It is well defined as it does not depend on the chosen representative in [¢] € MCG(X).
Moreover, the pair ([¢)*J],%*q) still defines a point in Q*(7°(X)) as 1*q is holomorphic
with respect to ¥*J if and only if ¢ is J-holomorphic. In particular, the mapping class
group MCG(X) acts on B(X) and Hits(X) by:

[]-[f, M]:=[foy, M}, [4]-[p] = [p o] (1.5.1)

for [¢] € MCG(Y), [f, M] € B(X) and [p] € Hit3(X), so that the monodromy map hol
induces a MCG(X)-equivariant isomorphism between B(X) and Hit3(X) (see Theorem [1.6)).
We get the following remarkable consequence:

Corollary 1.21 ([Lof01],|[Lab07]). The space Hits(X) carries a mapping class group in-
variant complex structure, denoted with 1.



Chapter

The torus case

In this chapter we first study Wang’s equation when ¥ is a torus and we look at the associ-
ated flat hyperbolic affine sphere in R3. In particular, we get a correspondence between the
deformation space of properly convex RP?-structures on 72 and the complement of the zero
section of the holomorphic bundle of cubic differentials over Teichmiiller space. Using such
a correspondence we define an explicit family of pseudo-Ké&hler structures on the afore-
mentioned deformation space, which is invariant by the action of MCG(T?) =~ SL(2,7Z).
Finally, we prove that a circle action and a SL(2,R)-action on the deformation space are
both Hamiltonian and we compute the associated moment maps.

2.1 The parameterization in genus one

Let us consider the case when the Riemann surface (3, J) = (T2, J) has genus one. Then,
we can always pick a flat metric gg so that go = |dz|? in coordinates. A holomorphic cubic
differential ¢ on T2 is given (globally) by ¢ = cdz?, with ¢ € C, hence in this case equation
s

Aou + 2|c|?e " —2e* =0, (2.1.1)

where u is the conformal parameter of the new metric ¢ = e%gg and Ay = 40,05 is the
standard Laplacian. Notice that if the holomorphic cubic differential is zero, namely if
¢ = 0, then we get Agu = 2e* and by integrating with respect to the volume form of gq it
follows that

AQU dNO = QJ e du() ,
2

T2 T

which is not possible since the left hand side of the equation is zero and the right one is
strictly positive.

13
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Proposition 2.1. Provided ¢ # 0, Equation has a unique constant solution given
by u =log<|c\%)

Proof. 1t is straightforward to see that log(!c|§)satisﬁes 2.1.1). Suppose u is any other

solution and let p € T? be a maximum point for u. This implies that (Agu)(p) < 0, hence
2¢"P) < 2/c)Pe?P)  —  wu(p) < log(|c|§)
Since p is a point of maximum, we get

u(z) <u(p) < 10g<|0|%>, Vo e T?

Arguing in the same way with a point of minimum, we get u(z) > log(|c]§)v;v e T2, thus

u= log(]c|%> .

the only possibility is that

O

We can already notice a first difference with the case genus g > 2, in which the solution
to the semi-linear elliptic equation ([1.4.7]) could always be found. On the torus, if on the
one hand we have to place restrictions on the possible values of the cubic holomorphic
differential, on the other hand the treatment is considerably simplified. In this case, since
the metric gg can be chosen to be flat, the function ¢ of equations coincides with the
unique solution of . In particular, following the argument explained at the beginning
of Section we can rewrite the first order system of ODEs E| in the following way

5 f2 0 %ce‘zﬁ 0 f2
)= 10 0 e ]|

f 1 0 0 f 212)
o (1 0 0 e\ [f. 2
FT; == %Eeﬂp 0 0 Iz

f 0 1 0 !

In a more compact form if Ft = (f,, fz, f) and A, B are the 3 x 3 matrices in the first and
second equation respectively, we get

ZF=AF
z
LZF=B-F.
z

!The factor % in front of the cubic differential part appears because of the rescaling explained in

Remark @
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As one can easily check, since A and B commute, a solution of this system is given by
F(z,2) = B2 C | (2.1.3)

where C'is a constant matrix determined by the initial data. Now we are going to compute
an explicit solution of , that is we will find a formula for the parameterization f :
C — R3 of the hyperbolic affine 2-sphere. Then, using Theorem we will get that this
affine sphere is asymptotic to a cone over a bounded domain €2, which will turn out to be
projectively equivalent to a triangle. The main result of this section is the following:

Theorem 2.2. Let Q/r be a properly convex RP?-structure on T2, then § is projectively
equivalent to a triangle in R with vertices {(1,0,0); (0,1,0); (0,0,1)}.

Proof. Recall that the holomorphic cubic differential is given by ¢ = ¢dz3, with ¢ # 0 and
¢ = pe’? with p > 0 and # € R. Since to find the solution F of we have to compute
the exponential of a sum of matrices and Az and BZ commute, we can find a common basis
of eigenvectors that diagonalizes them simultaneously, namely we can find an invertible
matrix P such that

Az = PDs, Pt and Bz = PDp:P!

with D 4., Dps diagonal matrices. From this it follows that

Az+ Bz =PDp.ip:P! = eVTP7 = pePasenspl

where Da,yps = Da, + Dps.
A common basis of eigenvectors is given by

BEL <2€z‘§6 Cei%&
Ty = 1 A 0 = 1 At Ty = 1 .
_P_)T3ply _P_\T3,i5 2( p \—3 48
(2\/5) €3 C(gﬁ) €’s C (2\/5) €3

with eigenvalues {\gz, ( Aoz, (2 Aoz} for Az and eigenvalues {\oZ, (?\gZ, (\oZ} for BZ, where
¢ = i is a 31 primitive root of unity and A\g := (ﬁ) P Hence, the matrix P is given
by (g | ¥ | 72) and the eigenvalues of Az + Bz are {2Re(A\gz),2Re(Moz(), 2Re(Aoz(?)}.
At this point, it is easy to compute the matrix e4**5% and find the parameterization f,
being it the third row of the solution of the system F. The vector f = (f1, f2, f3)! we obtain
takes values in C? and not in R? as one might expect. This happens because we still have

to make a choice of the initial data. Then, by choosing the following constant matrix C' in
(12.1.3))

1 . 1 . 1
(325)7€'  C(3%5)%€ s C2(3%5) e
— 1,8 1,0 L 8 1.
O G&)Pe™ Alhp) e () e (2.14)
1 1 1
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we get
eQ'Re()\oz)

f(z,2) = [ e2Re(Co2) | e R, (2.1.5)
62726((2)\0,2)

It is a straightforward computation to see that
Re(Moz) + Re(Choz) + Re((Phoz) = 0,

hence showing that f is a parameterization of the hypersurface {(z,y,w) € R? | zyw =
1, z,y,w > 0}. In particular, the hyperbolic affine sphere we get is asymptotic to the
three coordinate planes in the first octant, which are nothing but the boundary of the
cone over the triangle T’ contained in the plane {(z,y,w) € R® | z + y + w = 1} and with
vertices {(1,0,0);(0,1,0);(0,0,1)}. By Theorem this triangle has to be projectively
equivalent to the convex bounded domain € of the initial properly convex RP?-structure,
where p : R3\{0} — RP? is the standard projection. O

Remark 2.3. It must be noted that in the case of genus one, the problem of classifying
convex bounded domains €2, as in Definition [1.4], up to projective transformations and
preserved by the action of a discrete subgroup I' < SL(3,R) contained in Proj(£2) and
isomorphic to Z x Z, is equivalent to the problem of classifying flat hyperbolic affine spheres
in R? up to unimodular affine transformations. The latter was the problem studied in
[MRI0] which we now recovered in terms of properly convex RP2-structures over the torus.

Corollary 2.4. There exists a bijection between Bo(T?) and the complement of the zero
section in Q*(T(T?)).

Proof. The above bijection follows from Theorem In fact, by the discussion in Section
to any [Q/p] € By(T?) we have an associated equivariant hyperbolic affine sphere
M < R3 which is determined by its Blaschke metric and its Pick tensor (see Corollary
. Hence, let x : Bo(T?) — Q3(T(T?)) be the map that associates to each [€/r] the
pair (J,q), where J is the complex structure induced by the Blaschke metric and ¢ = cdz?
is a non-zero cubic holomorphic differential whose real part coincides with the Pick tensor
of M. Since, by Lemma and Proposition for any such (J, q) we can find a unique
(up to unimodular affine transformations) hyperbolic affine sphere in R? that is invariant
under a subgroup I' < PSL(3,R) isomorphic to 71 (7?), the map x is a bijection. O

2.2 The pseudo-Kahler metric on the deformation space

2.2.1 Definition of the pseudo-Kihler structure

Let po := dxg A dyg be the standard area form on R? and let us introduce the following
space
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Definition 2.5. The set J(R?) of pg-compatible linear-complex structures on R? is defined

as
J(R?) := {J € End(R?) | J* = —1, po(v,Jv) > 0 for some v € R*\{0}} .

This space is a 2-dimensional manifold and it is easy to see that V.J € J(IR?), the pairing
g%(,+) :== po(-,J-) is a scalar product on R?, with respect to which J is an orthogonal
endomorphism. By differentiating the identity J2 = —1, it follows that

T7J(R?) = {J € End(R?) | JJ + JJ =0} .

Equivalently, the space T;7(R?) can be identified with the trace-less and gg—symmetric
endomorphisms of R2. It carries a natural (almost) complex structure given by:

7:T;7(R?) - T;7(R?)
J e —JJ.
There is a natural scalar product defined on each tangent space
.. 1 ..
Gt i= 5 tr(JJ’)
for each j, JeJ (R?). It is easy to check that 7 preserves this scalar product.

Lemma 2.6. There is a diffeomorphism between J(R?) and T (T?), which is equivariant
with respect to the action of MCG(T?) =~ SL(2,Z).

Proof. A linear (almost) complex structure J can be thought of as a constant tensor on
R?, which therefore induces an almost-complex structure on the torus T2 =~ R?/Z2. This
gives a well-defined map from J(R?) to 7 (T?), which is a bijection since any element in
T (T?), namely an isotopy class of almost-complex structures on 72, can be represented as
the conformal structure Jy (multiplication by i) on R?/A, with A =~ Z2. In fact, one can
assume, up to homothety of A, that the torus R?/A has area 1, and such representation is
unique up to conjugation in SO(2). Then, conjugating Jy by the unique element in SL(2, R)
that maps A to Z? (as marked lattices), one can find the unique J € J(R?) that is sent to
the given class in 7 (T?). After identifying MCG(T?) with SL(2,Z), the bijection is clearly
equivariant by construction. O

Proposition 2.7. The holomorphic vector bundle Q3 (T(T2)) can be identified with the
following

D3(J(R?)) := {(J,C) e T(R?) x S3(R?) | C(J-, J-, J) = —=C(J-,-,-)} (2.2.1)

where S3(R?) is the space of totally-symmetric tri-linear forms on R?. Moreover if (J,C) €
D3(J(R?)), then
C(J - )=C(G,J,)=C(,J) . (2.2.2)
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Proof. 1f J € J(R?) and ¢ is a cubic J-holomorphic differential, then C = Re(q) is a
totally-symmetric tri-linear form on R? by Theorem In particular,

C(X,Y,Z) = g5(A(X)Y, Z), VXY, ZeR*,

where A € End(R?) ® T*R? and its endomorphism part is gY-symmetric and trace-less.
Hence, for all X,Y, Z € R?, we have

C(JX,JY,JZ) = —gY(JA(JX)Y,JZ) (A(JX) e T; 7 (R?))
= —gy(A(JX)Y, Z) (J is ¢4 — orthogonal)
=-C(JX,Y,Z) .

We conclude that (J,C = Re(q)) € D3(J(R?)). Conversely, if (J,C) € D3(J(R?)), then
qg=C(,--)—iC(J,,-) defines a cubic holomorphic differential by Theorem Finally,

C(JX,Y,Z) = ¢5(A(JX)Y, Z)

= —g5(A(JX)JY, ] Z) (A(JX) € T;T (R?))
= —g5(A(JY)J X, JZ) (rel. (T.3.3))
= % (JA(JY)X, JZ) (A(JY) e T;J(R?))
= 93(A(X)JY, Z)
— C(X,JY, Z)

for all X,Y, Z € R%. A similar computation shows that C(-,J-,-) = C(, -, J-). O

Remark 2.8. Notice that, thanks to Relation (1.3.2), the space D3(J(R?)) can be in-
terpreted in terms of the tensor A, namely it is formed by all possible pairs (J, A) with
J € J(R?) and A € End(R?) ® T*R? such that:

o« AX)Y = A(Y)X, A(JX)Y = A(X)JY, VYX,Y eR?

e the endomorphism A(X) is gf}—symmetric and trace-less for all vectors X. In partic-
ular, A(X) € T;7(R?)

We will make repetitive use of this correspondence, using the tensor C' or the tensor A,
whichever is more convenient.

Because of the identification J(R?) = T (T?), the space D3(J(R?)) has the structure
of a vector bundle over J(R?), whose fiber at a point J € J(R?) is a two dimensional real
vector space, denoted with D3(7(R?)),. Let {e1,e2} be a g9-orthonormal basis of R? and
{e¥, es} be its dual, then any element A in D3(J(R?)), can be written as A = Ajef + Ages,
where Ay := A(ey) for k = 1,2. Hence, we can introduce a scalar product on D3(7(R?));
by

(A,B)y:=tr(A A x;B)(e1,e2) , (2.2.3)



19 2.2. THE PSEUDO-KAHLER METRIC ON THE DEFORMATION SPACE

or, more explicitly after expanding the wedge product and evaluating the 2-form,
<A,B>J = tl“(AlBl + Ang)@T A 63(61, 62) = tl”(AlBl + AQBQ) . (2.2.4)

Remark 2.9. We will be assuming that the area of the torus for the flat metric 99 is equal
to 1. In fact, there is an equivalent description of 7 (72) as the space of isotopy classes of
unit-area flat metrics on 72. This can be seen thanks to the isomorphism 7 (7?) =~ J(R?)
presented in Lemma The set J(R?) can be interpreted as the space of all orientation
preserving linear maps R? — R? up to rotation and /or dilation. This is equivalent to classify
all possible marked lattices in R? up to Euclidean isometries and homotheties. Since we can
always, up to homotheties, choose a marked lattice of unit area, it follows we can always
find a J € J(R?) with the above property (see [FM11} §10.2]). Moreover, it is easy to check
that Relation does not depend on the choice of the basis.

By exploiting the definition in ([2.2.4]), the following relation can be deduced:
(AJ,BJy; = (A, By , (2:2.5)

which is equivalent to
(AJ,B); =—(A,BJ); . (2.2.6)

Lemma 2.10. Let (J, A) € D3(j(]R2)) and let A := (g )_IC' denote the unique (1,2)-
tensor such that gJ(A(X) Z) = C(X,Y,Z) for all X,Y,Z € R2. Then, an element (J, A)
belongs to T(j a) D3(._7(]R2)) if and only if

JeT;T(R?), trA(X) = tr<JA(X)j> VX eR2, Ag=Ag+T(LAJ)  (2.2.7)

where Ag is the Jull trace-free part of A, while the tensor Ao is the trace-free part of A
independent of J and T(J,A,J) = AyJJEe* + 2AyJJEe% in a local basis dual to a q9-
orthonormal frame {e1, es}, with E = diag(1,—1).

Proof. First notice that
3 =p(, J) = —p(, 20 = —g5(-, ") . (2.2.8)

Then, since A(X) = ((¢9)7*C)(X) and the endomorphisms A(X) are trace-free for each
vector X, we get

0 = tr(A(X)) = tr(((99) 7€) (X)) = = tr((g)) ' 6H T C(X)) + e (A(X)) -
In particular, using equation 1-) we obtain (gg)_lgg = —JJ and hence
tr(A(X)) — tr((g))"14%(g%) L C(X)) = —tr(JjA(X)) - tr(JA(X)J) .

We defer the third decomposition in (2.2.7)) to Section where a computation in local

coordinates is performed. O
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The group SL(2,R) acts on J(R?) by conjugation and more generally on its tangent
space by ' . '
(J,J) e TT(R?), P-(J,J):=(PJP L, PP}

with P e SL(2, R).
Lemma 2.11. There is an SL(2,R) action on D3(J(R?)) given by:
P.(J,A):= (PJP~Y, PA(P1 )P (2.2.9)

where P € SL(2,R) and A(P~!-) has to be interpreted as the action of P! by pull-back on
the one-form part of A.

Proof. Let us first consider the action of SL(2,R) on Q*(7(T?)) given by:
P-(J.q) = (PJP™!, (P™1)*q)

with P € SL(2,R) and (J,q) € Q*(T(T?)). We need to understand how the above action
transforms under the bijection of Proposition The new cubic holomorphic differential
(P~')*q corresponds to the new tensor C' = Re((P~!)*q) = C(P~'., P~!., P~1) which is
given by:
C(X,Y,Z) =C(P~'X,P'Y,P~'2)

9yAPIX)PY,PT1Z)

p(PA(P~'X)P'Y,PJP'Z) (P € SL(2,R))
9%, (PA(PT'X)P7Y, Z) .

Hence, the corresponding A defined by

C(X,Y,7) = g (A(X)Y, 2) |
is exactly A = PA(P~L)P~1 | O
Lemma 2.12. For every P € SL(2,R) and J € J(R?), we have

(P-J,P-J%py={J,JY;
<P AP B>P-J = <A7 B>J

where J, J' € Ty T (R2) and A, B € D3(J(R2));.

Proof. For the action on 777 (R?), we have

) . 1 ..
(PJP-Jypy =3 tr<PJJ’P*1>
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1 ..

=35 tr<J J /) (trace symmetry)
=T

For the action on D3(7(R?));, we have

(P-A,P-Byp.y=tr(PABIP" + PABP~ ) (P71)*(ef A €3))(er,e2)

= tr(P(A1B1 + AsB2) P 1) (e} A €5)(e1, e2) (P € SL(2,R))
=(A,B); . (trace symmetry)
U

The SL(2,R)-action on D3(J(R?)) can be differentiated, hence we get a linear isomor-
phism between T(J7A)D3(j(R2)) and TP,(J7A)D3(‘_7(R2)), which is given explicitly by

P.(J,A) = (PP~ PA(P~LYPY

where (J, A) € T4 D*(J(R?)) and P € SL(2,R). Moreover, all the conditions in Lemma
are SL(2, R)-invariant.

We can define a similar scalar product on pairs A B by
A By = tr(ABi+ AsBy)

which is SL(2, R)-invariant as well.

In the following we will denote with || - ||; = || - || the norm induced by the scalar product
()5 = ) and it will be clear from the context which one we are using. In order
to simplify the notation we define ||A|[Z := %[|A[|%. Finally, since A is an element of

End(R?) ® T*R? whose endomorphism part is ¢%-symmetric, let us consider its trace and
trace-free part as in Lemma namely if A = Aje] + Agej, then:

. . . . 1 . 1 :
Ay = (Al)()eil< + (AQ)()@;, Ay = B tr(A1>]le’f + 3 tr <A2)]le§ .

Let f : [0,+0) — (—0,0] be a smooth function such that f(0) = 0, f/(t) < 0 for each

t > 0 and tlig-noo f(t) = —oo. Then, we define the following symmetric bi-linear form on
T5,4)D* (T (R?))
5 JA J‘/ A/ — (1 — All2 JJ/ f/(HAH%) A A/
(gf)(J,A)(( 5 )a( 5 )) = ( f(” HO))< 5 >+ 6 < 05 0> (22 10)
fl A 2 . . o
. (|:|L2||0)<Atr7A{;r>

and the endomorphism I of T4 D*(T (R?))

L) (J, A) i= (=JJ, —AJ — AJ) (2.2.11)
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where the products AJ and AJ have to be interpreted as a matrix multiplication. Matching
these two objects together we get the following 2-form:

which is given by:

oA 7 " . . / 2
(@) (2 A); (', AN) = (FIAIR) = 1)< 7T = f<”é”o>

/ 2 . .

Remark 2.13. The symmetric tensor g¢ and the form &¢ are defined only in terms of
the various scalar products (-, -» and ||A[|3, hence by Lemma they are both SL(2,R)-
invariant. In particular, the complex structure Iis uniquely determined by the relation
@ys(-,-) = gf(-, 1) once the form @ and the tensor gy are given. In our case, this implies
that T is SL(2, R)-invariant as well.

<Atr’ *JAfcr>
(2.2.12)

Lemma 2.14. For every J,J' € T;7(R2) we have
JJ' =T 0N = (JJ, 0T (2.2.13)

Proof. Notice that . o .

JJJ =—-JJJ =JJ'J
Therefore, the matrix JJ' commutes with J , but it is straightforward to see that this is
equivalent to JJ' € Spang{1, J}, hence the thesis. O

Lemma 2.15. Let {e1,ea} be a gg—orthonormal basis of R2 such that Je; = es and Jeg =
—eq, and let {e},e5} be its dual basis. Then, writing A = Ajef + Ase and A = Ajef + Agel
we get

(1) JAs = A,

. . . . 1 . 1 :
(2) —AJ — AJ = —(Al)ojeik — (AQ)OJ@; —5 tr(Ag)]le’f + §tr<A1>lle; .

trace-less part

trace part

Proof. (1) By definition A; = A(e;) for i = 1,2 and the vector A; - e; can be written as
a linear combination of ej,es. Then, it is sufficient to prove that A; - e; = JAs - ¢;, for
i = 1,2. Hence, if

Ay - e = arrer + Brieg, Ay - e1 = agrer + Baren
we get JAg-e1 = agres — Po1e1, but since the basis {e1, ea} is gg—orthonormal we can write

Bi1 = g9(A1 - e1,e2) = Cler, e1, Jer)
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and

az = g% (JAz - e1,e1)

= 99(14(6’2) -e1,e1) (J is gg — orthogonal)
= C(Jey,e1,e1)
= On (C(-,-,-) is totally-symmetric)

With the same argument one can prove that —fs1 = g1 and that Ay - es = JAs - €9,
obtaining the claim. . . .
(2) By using the decomposition A = Ay + (A)y, we get
. . . 1 . 1 .
—AJ = —(Ai)oJet — (Az)oJes — S tr (A1>Je’{ -t (Ag)Je’z" . (2.2.14)

The same happens for the tensor A, hence, using Equation (2.2.13) on A;J and AsJ, we
get

—AJ = —ltr<A1J')]le’f — %tr(Agj)]leg + %tr(thJ.) Jel + %tr(JAgj)Jeg‘

2
1 . . 1 : | . . 1 : N
=—— tr<A2> Tej + - tr (Al) Te; + - tr<A1> Jel + = tr(A2> Jes
2 2 2 2
where in the last equality we used (2.2.7) and JAy = A;. It is now clear that adding the
two terms —AJ and —AJ we get the desired formula in the statement. O

Theorem 2.16. The triple (Qf,i, Wy) defines an SL(2,R)-invariant pseudo-Kdhler struc-
ture on D3(J(R?)).

Proof. In order not to overload the following proof too much, the closedness of & and the
non-degeneracy of g are postponed to Lemma at the end of the chapter, as it requires
a computation in local coordinates.

o 12 = —1 and it is integrable.

The first claim is a calculation:

T%J,A)(ja A) =Ty (— JJ,—AJ — AJ)

= (—J,—A) . (JJ =—=JJ)

For the second one, it is sufficient to prove that, under the bijection in Proposition
the almost-complex structure I on D3(J(R?)) corresponds to the multiplication by —i on
Q3 (T(Tz)). Since the latter is integrable, the former is integrable as well. To show this, we
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need to compute the tensor C' associated with the variation —iq of the holomorphic cubic
differential ¢ in the fibre over J. Thanks to Proposition this is given by

C(,- ) = Re(—ig) = —=C(-,J-,) = C(-, J-,-) .
If A denotes the corresponding associated tensor as in , we get:
JY(AX)Y,Z) = C(X,Y, Z)
=-C(X,JY,Z2)-C(X,JY,Z)
= g5 ((-A(X)J — A(X)J)Y, Z)
for all X,Y, Z € I'(TR?), hence the claim.

o The metric g5 and the complex structure I are compatible.

We need to prove that
&1)(. A) (T(ga)(J, A); Tyay(, A)) = (1) (.0 (. A); (J', A)) .
By definition of T we have

&1) () Tga)(J, A); Tgay (', AN) = (1= f(IAIR))(=T T, —TJ")
N S (IA115)

6
~FAIAlR)

12

(—(AJ + AJ)o, —(A'J + AJ")o)
(—(AJ + Ad)ge, —(A'T + AT ) .
Since the argument of the functions f, f’ depends only on the norm of A (up to a constant)

and remains unchanged when we apply I(; 4), we can focus only on the scalar products
part. The first term is

(—JJ,—JJ" = tr(JJJJ’)

1

2

1 . : .

= tr(JJ) (JJ =—JJ)
=T

Applying part (2) of Lemma and observing that (4;)o, (A})o € Ty T (R?), i = 1,2, the

second term is
(AT + Adyo, ~(A'T + AT Yoy = (Ao (410 ) + tr((42)o T (45)oT )
= tr((A1)o(AL)o + (A2)o(Ab)o)
= <A0a E)> :
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Applying, again, part (2) of Lemma the third term is:

(—(AT + Ad)er, —(A'J + AJ')) = itr(tr (Al) tr(A’1>]l tr (Ag) tr<A’2>n)
= <Atra A2r> .
Hence, we have the claim. O

Remark 2.17. The complex structure 1 preserves the O-section of T{ A)D3(j (R2)) since
f( J70)(j, 0)=(—J j, 0). In particular, 1 still defines a complex structure on the complement
of the 0-section on D3(7 (R?)), which is identified with Q3 (7 (T?)) by Proposition which
is further identified with By(T?) by Corollary . Hence, we get a well-defined complex
structure on By(7T?) which will be denoted with I by abuse of notation. The same argument
holds for the pseudo-Riemannian metric gy and the symplectic form &y.

Theorem D. The deformation space By (T?) admits a MCG(T?)-equivariant pseudo-Kdhler
structure (8¢, I, 0f).

Proof. By Theorem and Remark the deformation space By(T?) has a well-defined
pseudo-Kahler structure (gy, i, @y). Since all the identifications are equivariant with respect
to SL(2,Z) =~ MCG(T?) and the triple (gf,/I\,&}f) is SL(2, R)-invariant, it follows that the
induced pseudo-Kéhler structure is MCG (7?)-invariant. O

2.2.2 The pseudo-metric and the symplectic form in coordinates

As we explained in the previous section, it only remains to prove that the symmetric tensor
gy and the 2-form @y on D3(J(IR?)) are non-degenerate and closed, respectively. In order
to do so, we need to write their expression in local coordinates. First of all, it is necessary to
find the analogue in coordinates of the two spaces, J (RQ) and D3(J(R?)), which we have
studied so far. Let G and € be the restriction of g g and @y to the O-section of D3(J(R?)),
which is identified with J(R?). Then,

Gy(J,J) = J, J"y, Q(J,J") = —=(J, JJ";
with J,.J' € T;7(R?). In this case G is a scalar product for all J € J(R?), hence

(CA;, Q) is an SL(2, R)-invariant Kihler structure on J(R?). Moreover, the SL(2, R)-action
is transitive with stabilizer SO(2) at the standard linear complex structure

0 —1
J0=<1 0).

Therefore, J(R?) =~ SL(2,R)/SO(2) =~ H2.
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Lemma 2.18 (|Tral8, Lemma 4.3.2]). Let H? be the hyperbolic plane with complex coordi-
nate z = x + iy and with Kdhler structure

da? + dy? dz A dy
gz = ——5——, Wiz = — T -
Yy Yy

Then, there exists a unique SL(2,R)-invariant Kdhler isometry j : H? — J(R?) such that
j(i) = Jo. It is given by the formula

iz + i) ;:( _x;) . (2.2.15)
Yy

Q@ = |8

Remark 2.19. The minus sign in front of the area form on H? shows up since we are
considering the relation @¢(-,-) = g¢(-,I:) on D3(J(R?)), hence on J(R?).

In particular, thanks to this last lemma and the isomorphism 7(7?) =~ J(R?), we
can identify the Teichmiiller space of the torus with H?. Whenever we are thinking of
Teichmiiller space of the torus as H?, we will denote the total space of Q3 (T(T2)) as
Q3(H?). In particular, we can identify Q3(H?) with H? x C, where C is a copy of the fiber
Q3(H?), over a point z € H2. We can define an SL(2, R)-action on H? x C by

b
(Z 2) (z,w) = (Zid (CZ+d)3W>, with (z,w) e H2xC, ad—bc=1. (2.2.16)
Moreover, the metric on the fiber is the one induced by the norm

lw|? = Tm(2)3|w|? for z e H?, w e Q3(H?), .

Given J € J(R?), let us define the space of J-complex symmetric tri-linear forms by

S3(R%,J): = {y:RZQR?®R? — C | v is symmetric and (J,7) — tri-linear}
~ {7:R? - C | for all o, 3 € R and v € R? it holds 7(aw + BJv) = (o + i8)37(v)} .

This space can be seen as the fiber of a complex line bundle £3(R?) — J(R?) endowed
with a natural SL(2,R)-action given by

P-(J,7):= (PJP™  (P7Y*y), for P e SL(2,R) .

It is not difficult to see that the line bundle £3(R?) can be identified with D3(7(R?)).
In particular, each fiber S3(R2,.J) is endowed with a scalar product from the one on

D3(J(R?)) ;s defined in (2.2.3).
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Lemma 2.20 (|Tral8, Lemma 5.2.1]). Let us consider the map ¢ : Q3(H?) — Hom(R? ®
R2®R2,C) given by
o(z,w): R — C
v — (v — Zvg)>
and let j : H? — J(R?) be the map defined by . Then, the following holds:
o oz w) € SR, §(2)), for all (= w) € QA(H).

e The fibre map ¢(z,-) : Q3(H?), =~ C — S3(R?, j(2)) is a compler anti-linear isometry
for every z € H2.

e The bundle map (j,¢) : Q3(H?) — L3(R?) is a SL(2,R)-equivariant bijection.

At this point it easy to compute in coordinates the Pick tensor C € D3(j (R?))s, the
Pick form A € End(R?)® T*R? and their respective variations: Cand A = g7 7 1O, by using
this last two lemmas and the isomorphism Q*(7(T?)) =~ D3*(J(R?)). Let z = z + iy and
w = u + v be the complex coordinates on H? and C respectively, then the bundle map

(7,¢) in Lemma is given by
H? x C 5 (z,w) — (j(z Clow)) € D3(J(R%))

where C, ) = Re(q(zw)) With gz ) = w(dxo - zdy0)3 (see Proposition . Hence, the
Pick form A, ., will be recovered by 1} Since SL(2,R) acts trans1t1vely on H?, it is
enough to compute the tensors at the point (i,w) = (0,1, u,v) for a generic w € C. The
components of the Pick tensor C, ., are given by

Cri(z,w) = u, Chi2(z,w) = —zu + yv, Chaz(z, w) = uz® — uy® — 2xyv,

Cooa(z,w) = —ux® — vy + 3(uy’z + 2%yv) .

The remaining components are determined by the four above since C' is totally-symmetric.
Its variation C(; .,y at (i,w) is

Olll(i, w) = ’ll, Cllg(i, w) = —ux +0+ Uy, O122(i, w) = - — 2(uy + ’Ui’),
CQQQ(i, w) = —0 + 3(uz —vy) .
The Pick form computed in (i, w) is then

u v v —U
Aliw) = (U _u> dzo + <_u _v> dyo - (2.2.17)

Its variation A will be given in terms of its trace-free and trace part at the point (i, w)

iy _ [ utuytv —uz 40+ vy 0+ 2y —ux)  —u—2(uy + vx)
(Ao)iw) = (ux YO+ vy —i— ug — U:i:> dzo+ (u o+ vi) — + 2(ui — vg) ) W
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: —uy — vx 0 uT — vy 0
(Atr)(i,w) = < 0 _Uy _ 'UJ:) dxo + ( 0 U/IE _ Uy) dyO .

Remark 2.21. Recall that by Remark[I.14] the cubic differential ¢, hence the tensor A and
its first order variation, has to be rescaled by a factor % For this reason, all calculations

made from here on will include the rescaling factor and their values may vary from the one
in [RT21].

Thanks to this expression in coordinates and together with the action of SL(2,R) on
H? x C, we are now able to write the metric g¢ and the symplectic form &y at the point
(z,w). Let {%, 5 au, av} be a real basis of the tangent space of H? x C with its dual basis
{dz, dy, du, dv}, then the expressions (2.2.10) and (2.2.12)) become respectively

(1= f+ 3+ 0% f) 0 floy? —fluy?
&) om) = 0 s =+ 3+ f) fluy® floy?
zZ,w f/vy2 f/qu %f/yii 0
_f/qu f/va 0 %f’yS

2
("/‘}f)(z,w) =<—1+f Sy + v )) dxy/;dy —gf'ygdu/\dv

— 2 f <u(dx Adu+dy A dv) +o(du A dy — dv A da:))
where the functions f, f are evaluated in:
1 ? 1 2 L 3. 2 2
4o, = s14emllo = sl = 590+

The matrix associated with the complex structure i(z,w) 2T ) (]I-]I2 X (C) — T2 w) (H2 X C)
in the basis {%, = 76 ) B 23 is
y? ou’ Ov

0 -1 0 0
§ _(Jo 02\ _ |1 0 0 0
@w) =\ Ogny  Jo 0 0 0 —1
0 0 1 0

We will explain how to obtain the expressions above for gf and &y later in the section.
We first show that these formulae define a non-degenerate pseudo-Riemannian metric and
a closed 2-form on H? x C, thus concluding the proof of Theorem

Lemma 2.22. The tensor (8f)(»w) is non-degenerate and the form (&) (. .w) is closed, for
each (z,w) € H? x C.
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Proof. The tensor gy can be written as:

A~ e =
&) w) = <F A)
where ©,Z,I', A are 2 x 2 matrices with
1 3 30,9 2\ 2 5,
92?(1_f+§y (u +'U)f)]12><2, Azgy flaxs .

Hence, = and I' both commute with © and A. In this case there is an easy formula for the
determinant of the 4 x 4 matrix, namely det ((Qf)(z’w)) = det(OA — ET'), where

2 3 -
OA = gy(f’ — [+ Sy () (e + v2))112x2 BT = ¢ (1) (u? + v*)laxs
which gives

et ((€1)(e) = gy (F)201— )7

The right hand side of the last equation is always non-zero thanks to the property of the
function f, hence (gf)(,) is non-degenerate at each point (z,w) € H? x C.

It only remains to prove that (d@y)(,.) = 0 for each (z,w) € H? x C. By using directly
the expression in coordinate, we get:

e Coefficient dy A du A dv:

— 22 f'dy A du A dv — 37 f7 (u? + v?)dy A du A dv — 1 fudu A dy A do
— 2 fldu ndy A dv— P f"0?dv A du A dy — y? f'do Aduady =0

o Coefficient dx A du A dv:
—1° f"uvdv A dz A du + 3P ffuvdu A dv A dz =0
e Coefficient dz A dy A dv:
yf'vdv A dz A dy — ;y4f"uzvdv Adz A dy —3yfvdv A dz A dy
— gy4f’/v3dv Adx A dy +2yfody A dv A de + gy4f”v(u2 +03)dy A dv Adz =0
e Coefficient dx A dy A du:
yf'udu A dz A dy — 3y f'udu A do A dy — gy4f"u3du Adx A dy

— gy4f"uv2du Adx A dy — 2yf'udy A dz A du — ;1/4f”(u2 + v2)dy Adx Adu=0
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O

Thanks to the expression in coordinates, it is easy to see that g is indeed a pseudo-
Riemannian metric on H? x C (hence on By(T?)) since it is negative-definite when restricted
to {0} x C and it coincides with g2 on H? x {0}.

In the following we will give an idea on how to compute (gf) ;) by using and
the expression of the tensors in coordinates. Finally, by using the SL(2,R)-invariance we
briefly sketch how to compute the tensor g¢ at an arbitrary point of H? x C.

In order to simplify the computation we will give the expression of the associated quadratic

form. The first part of the quadratic form in the tensor formalism is %(1 —f) tr(j 2), hence

at the point (i, w) we have:

. (0 -1 T B AR
J=Jy= <1 0 ) and J=d;j(z,9) = (—3'/ —at) .
Thus, %(1 — f)tr <J2> =(1-f) (:'BQ + yg) Moreover, using the expression in coordinates
of (AO)(i,w) and (A.tr)(i,w) we get:

—ut + 0 +vy —u—uy— vt - —2(uy +vz) —0+ 2(uk — vy)

. —uy — vE 0 ut — vy 0

Hence,

(*AO)(i,w) _ < U+ uy + vt —ux + 0 —i—’uy) dyo — < 0+ 2wy —uz)  —i—2(uy —I—U:ic)> dxo,

1 . . 2 )

s tr(Ao A *Ao) = S0 +0) o+ S (0 +0?) (@ 4 P) + 2(ulig — 39) + v(go + i)

1 . . 1 . .

Etr(Atr A *Atr) = E(UQ +0?2) (2% + 7?) .

The final expression for the quadratic form associated with g; and computed at (i, w) is
thus

(1—f+ %f/@ﬁ +02) (22 + 9% + %f’({f +9%) + 2 (u(iy — £0) + v(go + ud)) (2.2.18)

Similarly, we can recover the coordinate expression of (g f)(i,w) from (2.2.18). In order to
give the precise expression of g; at an arbitrary point (z, @) € H? x C we need to use the
SL(2, R)-invariance of g7 and the fact that the SL(2, R)-action on H? is transitive. In fact,
we can find a P € SL(2,R) such that P -z = i for z € H?, where P - z is the action via
Mobius transformations. This matrix P is explicitly given by

1 =z
P=(v8 V.
0 Vi
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In particular, the point @ = @ + iv € C is determined by P - (z,w) = (i, w). In fact,

2

u? + v?

=3 (W + 7). (2.2.19)
By using the SL(2, R)-invariance we get
&) ) () = (P*8f) 2w (5 ) = (8) (6,0) (d(z,a) P Az P,

where the differential of P at (z,w) is given by

0 10
wen(5) - ya

0 3 0 0 30
d(z,a)P<au> = 928* d(z,ﬁ)P<av> = ?JQ% :

Now we have all the tools to compute gy at a point (z,®w). For instance,

A~ 0 0 ~ 0 o
(gf)(z,@) (ax’ ax> = (gf)(l,w) (d(z,@)P ((393) , d(zﬂg)P (&p))
L (22
7y2 81)(iw) oz’ ox
= y12<1 — f 4 3f(u? —1—1;2))
= % <1 — fH3°f (@ + 52)> (Equation
Yy

With a similar computation one can recover all the entries of the tensor g at every (z,w) €
H2 x C.

2.3 The circle action

In this section we study the behavior of the circle action on By(T?) given by rotation of
the fibres, according to the isomorphism presented in Corollary [2.4] The main result claims
that the aforementioned action is Hamiltonian with respect to the symplectic form &y and
that it acts by isometries with respect to the pseudo-Riemannian metric gy. Finally, we
explicitly compute the associated Hamiltonian function.

The first step is to understand how the circle action ¢ — e ¢ on Q3(7(T?)) changes
under the bijection with D3(J(R?)) (see Proposition . In other words, if C' is the Pick
tensor associated with the J-holomorphic cubic differential ¢, namely C' = Re(q), then



CHAPTER 2. THE TORUS CASE 32

we need to find the expression of the new Pick form A associated with C' = Re(e™%g).

According to Theorem we have ¢ = C(-,+,-) —iC(-, J+,-). In particular, the expression
e g = cosOC(-,-,-) +sin0C(-,J-,-) + i(cosQC(-, Je, ) —sinC(-, -, ))

implies that C(-,-,-) = cos0C(,-,-) + sin0C(-, J-,-) and the new Pick form is
A() = (¢9)7'C = cosHA(-) —sinhA(-)J .
The last equation gives an induced action on D3(J(R?)) by setting
By : DUI(RY) — DI (R)
(J,A) — (J,cosOA(-) —sinbA(-)J) .

It is clear from the definition that Wy preserves the O-section in D3(J(R?)) (seen as a
vector bundle over J(R?)), hence it induces an S'-action on By(7T?) which will still be
denoted with \f/g by abuse of notation. Before stating and proving the main result, we need
a technical lemma regarding the derivative of the norm of the Pick form.

Lemma 2.23. Let (J, A) € D3(J(R?)), then
(I1AI15)" = 2¢4, Ap) . (2.3.1)

Proof. During the proof of this lemma we use the notation of the previous section, namely
A = Ajef + Agzes and A= A161 + A2€2, with {61,62} a gJ -orthonormal basis of R? and
{e*, e} its dual basis, with A; := A(e;) and A; := A(e;) for i = 1,2. Recall that the
relation between the Pick form A and the Pick tensor C is A = (gg)_lC , hence

A= ((gp~to)
= —(g) g IC + (e
= JJA+A. (99(+7) = =g5( 1)
In particular, (4;)" = JJA; + A;, for each i = 1,2. Thus,

(11413)" = tr ((41)? + (4)%)
fr (A1A1 + AQAQ) + tr(Jj((Al)Q +(A2)2) + AyJJA; + A2JJA2>
= 2tr(A1d; + Ax45)
where in the second line we used the fact that, since both .JJ A; A; and A;.J.J A; anticommute

with J for each ¢ = 1,2, the terms tr(JinAi) = tr(AiJin) vanish for each i = 1,2.

Thus, we get
, .
(I1A115)" = 2¢A, 4) .
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Finally, by writing A = Ay + Ay where
. 1 . L, 1 . .
Atr = 5 tr(Al)ﬂel + 5 tr(A2)]l€2 s
we obtain )
<A, Atr> = 5 tr (tI‘ <A1> Ay +tr <A2) A2>
and this last term is equal to zero since the A;’s are trace-less endomorphisms. O

Theorem E. The S'-action on By(T?) is Hamiltonian with respect to @ and it satisfies

Vigr = 8f -

2 . /|1Al3
The Hamiltonian function is given by H(J, A) = 3f<| 8|J)'

Proof. The infinitesimal generator of the action is

d
X(J7A) = @’ \IIQ(J? A) = (07 _AJ)

Hence,

(LX‘:‘}f)(J,A)(ja A) = ([‘\Jf)(J,A) ((‘L A)? (03 AJ))
= (gf>(J,A) ((Ju A)? I<07 A‘]))
= (gf)(J,A) ((Jv A)v (07 _AJZ))

/ .
= E<A0,A>J . (A is ¢J — traceless)

2
Now we compute the differential of H(J, A) := gf(HAHg), where || A||3 is defined as ||A|[%
divided by 8. This is given by

/

daH(J, A) = E(HI‘U\?}Y

/ .
= %<A»A0>J : (Lemma

Thus, the S'-action is Hamiltonian. It only remains to prove that \i!g is an isometry for g¢.
First of all we compute the differential of the action:

Ay Pe(J, A) = (J,cos 9A() —sinO(A()J + A(-)J)) .
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Then, we notice that the circle action preserves the norm of the Pick form, namely || cos § A—
sin6AJ|[} = [|A[13. Tn fact,

||cosOA — sinOAJT||% = cos? 0||Al|% +sin? 0 ||AJ||3 —2cosOsinO (A, AT)y . (2.3.2)
— —
(a) (6)
The term (a) is

]|AJ||3 =tr(A1JA1J + Ay JAoJ)
= tI‘(AlAl + AQAQ) (Az € TJJ(R2) and J? = —]l)
=[14[17 -
The term (b) is
<A, AJ>J = tr(AlAlj + AQAQJ)
but tr(A4;JA;) = tr(JA;A;) = tr(A4;A;J) = —tr(A;JA;) for ¢ = 1,2, hence the term (b) is
zero. In the first two equalities we used the trace symmetry and in the third one the fact

that A; € T;J(R?). The circle action Wy preserves the pseudo-Riemannian metric gy if
and only if the following holds

&) ) ((JA); (J, A)) = (81)d,(s.0) (d(g.ayTo(J, A); d (g ayTo(J', A))) .
Let us define 1y to be the second component of the differential of the circle action, namely
Yo(J, A) := cos0A —sinO(AJ + AJ).
Then, in order to conclude the proof, we need to show
(1) (o(J, A)o,ba(J", A)o) = (Ag, Ap);
(2) ol A)ir (S, A)r) = (Au, Afp).
The left hand side term of (1) can be written as

cos? 0 Ag, A) + sin? (AT + AJ)o, (AT + AJ")o)
+ cos 6 sin 9(<A0, —(A'T + AJo) + (—(AJ + AJ)o, 6}) .

The coeflicient of sin? @ has already been computed (see proof of Theorem [2.16]) and it is
equal to (Ap, Aj). The coefficient of cos@sin 6 is equal to

tr(—(An)o(A)oT — (A)o(A5)oT — (A1)oJ (41)o — (Az)oJ (Ab)o )
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and it vanishes since (A;)o, (4})o € Ty 7 (R?) for each i = 1,2.
The left hand side term of (2) can be written as

cos? 0 Agy, ALS + sin? 0{(AT + AJ ), (A'T + AJ")ir)
+ cos@sin0(<Atr, —(A'T + AT ) + (—(AT + AJ)r, Aér>) )

The coefficient of sin? § has already been calculated (see proof of Theorem [2.16)) and it is
equal to (A, Af,). By using Lemma the coefficient of cos @ sinf can be written as

5 tr(—(Al)tr tr (Ag)n + (o) tr (A’l)]l — (A tr <A2)11 + (A))er tr<A1>]l> .

Since (Az')tr = %tr(Ai)]l and (A;)tr = %tr(Ag)]l for each 7 = 1,2, the first term of the
above expression cancels out with the last one and the same happens for the second and
third one. Finally, the term with cos 6 sin 6 vanishes and we obtain the claim. O

2.4 The moment map for the SL(2, R)-action

Now we will study the SL(2,R)-action on By(T?) and its moment map. Recall that if
P e SL(2,R) and (J, A) € D3(J(R?)), then

P-(J,A) = (PJP', PAP L )PY) .

In particular, this action preserves the O-section in D3(7(R?)) (seen as a vector bundle
over J(R?)), hence it induces an SL(2,R)-action on By(7?), which will be denoted by
®p : Bo(T?) — Bo(T?). Thanks to Lemma m, it is clear that ®pw s = Wy, i.e. SL(2,R)
acts by symplectomorphisms on Bo(72). Thus, it makes sense to ask whether the action is
Hamiltonian and, if this is the case, to find the expression of the moment map. The Lie
algebra of SL(2,R) is given by s[(2,R) = {X € End(R?) | tr(X) = 0} with Lie bracket
[X,Y] = XY — YX. In particular any X € sl(2,R) can be decomposed as X = X* + X*
where X?® is a trace-less gg—symmetric matrix and X® is a trace-less gg—skew—symmetric
matrix. In particular, X* € T;(J(R?)) and X = —3 tr(JX)J, since it commutes with .J.

Theorem F. The SL(2,R)-action on By(T?) is Hamiltonian with respect to &y with mo-
ment map fi : Bo(T?) — sl(2,R)* given by

A (X) = <1 - f(HASH?’)) tr(JX) (2.4.1)

for all X € sl(2,R).
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Proof. Let X € sl(2,R) and let
d o ix ;X [ —tX s
Vx(J,A) = a(e Je (€7 CO) =0

be its infinitesimal generator. The first component is equal to XJ — JX = [X, J]. For the
second component define P, := X, then

%C((Pt)*% (Pt)fl-, (Pt)fl-)!t=o =C(X-,)=C-, X)) =C(-,, X) .

If CN'(-,N-, -) is defined as the right hand side term of the equation above, then the new Pick
form A satisfies

9)(AY)ZW) = C(Y, 2,W)
=-CX - Y, ZW)-CY, X -ZW)-C(Y,Z, X -W)
= —gy(A(X - Y)Z,W) = g5(AY)X - Z,W) = g5(A(Y)Z, X - W)
= —YAX - VVZ+AY)X - Z+X* AY)Z,W)
for all Y, Z, W e R?, where X* denotes the adjoint of X with respect to gf}. Hence, we have

A() = —A(X)—AX — X*A.

By using the decomposition X = X?* + X in its symmetric and skew-symmetric part, we
can write the second component of Vx(J, A) as:

—A(X®) — A(X") + [X9 A - (AX° + X°A) . (2.4.2)

_

v~ v~
trace-less part trace part

e /i is equivariant:

Let P e SL(2,R) and X € s[(2,R), then

fp.74)(X) =

I
B/~
—
|
~
fa—
=
S
L
o+
=
<
Y
L
P
&)

where in the second equality we used Lemma [2.12| and the trace symmetry.

e [i satisfies property (ii) in Definition [B.3}
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Let us define ||A[|2 as the norm squared of A divided by 8, and let i : By(T?) — R be
the map

7X(J, 4) = (1 - f(HAH%)) w(JX) |

then
o™ (3. A) = =5 (141 ) 71418 )+ (1= 1118) ) r ()
_ _%<A,A0>f/(\|AH%) r(JX) + (1 _ f(|A\|§)) (%)

where we used Lemmal[2.23]in the second equality. Now let Vx be the infinitesimal generator
of X, then

Wy @p(J, A) = 8r(Vx (J, A),1(J, A))

_ f ; 1 tr([X, J]JJ) 4 6/<[XG’A] — A(X), (—AJ — AJ)0> (2.4.3)

/ . .
— AKX+ XA (AT + Ad)u)

where we used the decomposition in 1} The first term of vy, @ f(j, A) is
1-f
2

tr(jX + JXJJ') —(1-f) tr(jX)

by trace symmetry and JJ+JJ =0. It only remains to show that the sum of the second
and third term of 1) is equal to —1 f'(A, Agytr(JX). The coefficient of % in 1)

can be written as

CA(X), (AT + Ad)o) +{[X, A] = A(X™), (A = AJ)o) .

(a) (

=

Moreover, by using Lemma the term with [ X%, A] in (b) becomes
1 . : , .
5 tr(JX) tr<JA1(A1)0J + JAy(As)od — AvJ(Ay)od — A2J(A2)0J> .

Using that A;, (4;) € TyJ (R2) for each i = 1,2, the above term reduces to — tr(JX)(A, Ag).
Notice that —A(X®) = £ tr(JX)A(-)J, since C(J-,-,-) = C(-,J-,-). Hence, the term with
—A(X*) in (b) becomes

—% tr(TX) tr( AT (Ao + AxJ(Ao)oT ) = —% tr(JX)A, Ao)
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Finally, the term (b) multiplied by %/ is equal to

—% Fr(JX)A, Ay .

Hence, it only remains to show that

, . . / . .
G AKX, (AT + AT)o) — 15 (AX° + X°A, (AT + AJ)ur) = 0. (2.4.4)
(@) (©)

To do so, we will use a basis of s[(2,R), namely we can write s[(2,R) = Spang (&1, £2,&3}

where
1 0 0 1

The only Symmetric matrices of this basis are & and &3, hence it is sufficient to prove
Equation (2.4.4) when X* = & and X*® = 3, since all the elements are linear in X € s[(2, R).
In both cases we use the description in coordinates z = 2 + iy for H? and w = u + v for
C, of the Pick form A and its variation A as we did in Section [2.2.2] “ In particular we can
do the computation in (z,w) = (i, w) by SL( R)-invariance.

v In thlf 2case if { Jo0 ayo} is a gj,-orthonormal basis of R?, then X* To - % and
X3 % = ay , hence A(X?-) = Ajdxy — Aadyp. In particular,
tr (Al(A1)0J0> = 2(—|w|?E — vit + uD)
tr (AQ(AQ)OJO) — 2(—2fw|%d + uv — vid) .
Hence,

6/<A(X5-), (AJ + AJ)o) = Jgtr (Al(Al)OJ . A2(A2)0J>

/!
f |’LU|2
On the other hand, since
tr<A1> = —2(uy + vt) tr(A1X°%) =2u
tr<A2> = 2(ux — vy) tr(A2X?) = 2v,
we get
/ . . f’ . .
— AKX+ XA (AT + Ay = — 45 (tr(AlX ) tr (AQ) (A X tr (A1)>
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= —Z|w|*i
3
and Equation (2.4.4) is clearly satisfied.
(i) X* = &.
With the same notation as in case (i) we have X* - % = % and X*¢ - % = %,

hence A(X?®-) = Aadxg + A1dyp. Using that

(A1)o + (A2)oJ = <—uy — UL U — U@)

ur — vy  uy +vx

tr(Al((Al)o + (Ag)oJ)) = —2|w]2y ,
the term (a) multiplied by %’ is
/ . . f/ . .
GCAKX™), (AT + Adyo) = T tr(Ar((An)o + (A2)o))
_ Ji| 2y
=73 wl|®y .
On the other hand, since
tr<A1> = —2(uy + vt) tr(A1 X°%) = 2v
tr<A2> = 2(uz — vy) tr(A2X?®) = —2u,

the term (¢) multiplied by —{—; is

/

—ﬂ(tr(AlXS)tr(Ag) —tr(Ang)tr(A1>> = ];/|w|2y .

Thus, Equation (2.4.4)) is proved and the theorem as well. O






Chapter

The general case

In this chapter we state and prove the main result of the thesis, namely the existence and
the explicit expression of the pseudo-Kéhler metric on the Hitchin component. Because of
the way it has been constructed, the pseudo-metric, a-priori, could be degenerate. Later
on, we show that it is non-degenerate on the Fuchsian locus, and in the last part of the
chapter, we present partial results suggesting that the same is true for points away from it.

3.1 The Weil-Petersson Kahler metric on Teichmiiller space

In this section we briefly recall the definition of the group of (Hamiltonian) symplectomor-
phisms of a closed oriented surface of genus g > 2 and their corresponding Lie algebras.
Next, we briefly describe the construction of the Weil-Petersson Kéhler metric on Teich-
miiller space using the theory of symplectic reduction, which inspires our construction for
Hitg(X).

3.1.1 The Lie algebra of the group of (Hamiltonian) symplectomorphisms

Let p be a fixed area form on a closed surface ¥ of genus g = 2. The group Sympy (X, p) is
given by those diffeomorphisms ¢ isotopic to the identity and such that ¢*p = p. Thanks
to Cartan’s magic formula:

Lxp=1xdp+d(txp)

and the fact that dp = 0, we obtain the following identification for the Lie algebra of
Sympy (X, p):
S(5,p) = (X eT(TS) | d(uxp) = 0} =, Z1(%) ,

where the last isomorphism is given by the identification of I'(T'Y) with the space of 1-
forms Q(X), and Z'(X) denotes the space of closed 1-forms. A symplectomorphism ¢ is

41
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called Hamiltonian if there is an isotopy ¢ : [0,1] — Sympy(X,p), with ¢9 = Id and
¢1 = ¢, and a smooth family of functions H; : ¥ — R such that tx,p = dH;, where X,
is the infinitesimal generator of the symplectomorphism ¢;. Let us denote by Ham(X, p)
the group of Hamiltonian symplectomorphisms, which is a normal subgroup of Symp(3, p)
(IMS17, §3.1]). The Lie algebra of Ham(X, p) can be characterized as:

H(Z,p) = {X e(T) | txp is exact} =, BY(Z),
where B!(X) is the space of exact 1-forms on X.

Lemma 3.1. Let p be a fized area form and J be a complex structure on 3, then any
X e I'(TX) has a unique decomposition

X=V+W+JW, (3.1.1)
where W, W' € $(3, p) and d(vyp) = d(tyvp) = 0.
Proof. Let p be a fixed area form on Y and consider the induced isomorphism

0(TY) = Q%)
X*—>pr.

For any (almost) complex structure J on ¥ we get a Riemannian metric g5 := p(-, J-).
Hodge theory for compact Riemannian surfaces implies the existence of a decomposition

QL) = d(C*(5)) B (@) @ HL(D)

where d* is the L2-adjoint of the exterior differential and H!(X) = {a € Q1(2) | da = d*a =
0} is the space of harmonic 1-forms. In particular, for any X € I'(T¥) we have a unique
decomposition txp = df +d*w+a, with f € C®?(X),w € Q3(X) and a € H(X). Since each
element of the decomposition is a 1-form, there must exist three vector fields V, W, W such
that df = twp,d*w = j3p and o = vy p, which implies that X =V + W + W. Now notice
that tyyp is exact, hence W e (%, p). Since « is harmonic we have d(typ) = d*(vyp) = 0,
but the term in between can be written as d(typ o J), which implies that d(tyvp) = 0.
Finally, in order to end the proof, we only need to show that W = JW’ for some W’ €
$(%, p). This follows from the fact that 1530 = d*w = 4, odoxg,w = (doxy,w) o J, where
*,, denotes the Hodge-star operator with respect to g;. Since d o #4,w is an exact 1-form,

there exists a vector field W' € $(X, p) such that typ o J = 15:p, hence W =JwW'. O]

Because of the close connection with harmonic 1-forms, the vector fields V on (X, J) for
which d(typ) = d(eyjvp) = 0 will be called harmonic. The space of harmonic vector fields
on ¥ will be denoted with h; and it is a Lie subalgebra of &(3, p). Moreover, there is a
splitting

(% p) = H(5.p) Dby (3.1.2)
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as infinite-dimensional vector spaces. Let 1 € Symp (X, p), then there exists a family of
symplectomorphisms {t;} with 11 = ¢ and 19 = Id. Denote with X; the vector field which
generates the isotopy, namely 0y = X; o ¢;. Then one has a well-defined map called the

Fluz homomorphism
Flux : Sympy (%, p) — Hg (%, R)

1
W@HLMMa

Lemma 3.2 (|]MS17|). The Fluz homomorphism is surjective and it induces an isomorphism

(3.1.3)

Sympy(%, p) /Ham(g,p) ~ H1.(S,R) . (3.1.4)

We end the discussion in this section by introducing two non-degenerate pairings:
(s : V) [pi(s) x 2'(%) — R

(3.1.5)
[ﬂﬁ>-LaA5

(s s N ®) [ 71(5) x BU(D) —
1.8 HefaAﬁ

Thanks to the identifications Z1(¥) =, &(%, p), BL(Z) =, H(, p) and the isomorphism
between BQ(Z) and Q1(3)/Z1(¥) induce by the differential d, we get

/Bl c&(%,p)*, BYZ /Zl cH(Z,p)* .

Remark 3.3. Observe that, since the above pairings are defined on infinite dimensional
vector spaces V x W, the notion of non-degeneracy we are referring to is the one that
sometimes in the literature is called weakly non-degenerate, namely the induced map V —
W* is injective.

Using the standard property of the contraction operator ¢ with respect to the wedge
product, for any vector field V and any 1-form a on ¥, one has

yap =a ALyp . (3.1.6)
Moreover, if V' is Hamiltonian, namely ¢ty p = dH for some smooth function H, we get
{a,dH ) = J andH = f a(V)p, (3.1.7)
b b

where [a] € QY(X2)/Z1(D).
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3.1.2 Teichmiiller space as a symplectic reduction

Let us briefly recall the construction of 7 (R?) and its tangent space carrying an SL(2, R)-

invariant Kéahler structure (Section and [2.2.2)).

Let po := dz A dy be the standard area form on R? and consider the space
J(R?) := {J e End(R?) | J? = —1, po(v, Jv) > 0 for some v € R*\{0}} .

Such a space is a 2-dimensional manifold and it is easy to see that V.J € J(R?), the tensor
g%(-,+) == po(-,J+) is a scalar product on R?, with respect to which J is an orthogonal
endomorphism. The tangent space 777 (R?) can be identified with the set of trace-less and
gg—symmetric endomorphisms of R2. Tt carries a natural (almost) complex structure given
by

7:T;7(R?) - T,7(R?)
J > —JJ
Moreover, there is a natural scalar product defined on each tangent space
.. 1 ..
(S = 5ur(JJ’) ,

for every J, J' € J(R?). The group SL(2, R) acts by conjugation on 7 (R?): for P € SL(2,R)
and J € J(R?) one defines P - J := PJP~!. The same formula can be used to define the
SL(2,R)-action on T;J (R?) as well.

Lemma 3.4. The pairing given by
~ 1 .
Oy (J, J) = —itr(JJJ’)

defines a symplectic form on J(R?), compatible with 7 and (y>g. In particular, the triple
(¢, 55, Z,8) is an SL(2, R)-invariant Kdhler structure on J(R?).

Now let P be the SL(2,R) frame bundle over (X, p), namely the fibre over a point
x € X is given by those linear maps F : R?> — T,% such that F*p, = py. The frame
bundle P inherits the structure of an SL(2,R)-principal bundle with the following action:
B-(z,F) := (x, FoB™1), for B € SL(2,R). Notice that any symplectomorphism v of (X, p)

A~

naturally lifts to a diffeomorphism v of the total space P, by setting

U(x, F) = (¢(x),dspo F) € P,
for every (x, F') € P. Let us define the bundle

P(J(R?) := P x ~7<R2>/SL(2,R),
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where SL(2,R) acts diagonally on the two factors. Notice that a section of P(J(R?))
induces an almost complex structure J on ¥ which is compatible with p, i.e. gs(-,-) :=
p(-,J-) defines a Riemannian metric on ¥. The induced almost complex structure on X
is fibre-wise defined on T, as: F, o J, o Fx_l. It is easy to see that the section J is
well-defined as if two pairs ((z,F),J,) and ((z, F',J})) differ by the diagonal action of
SL(2,R), then they induce the same almost complex structure on 7,3. According to the
above construction, let us introduce the space of almost complex structures on X:

J(8) =T (L, P(T(R?)) .

Given any J € J(X), a tangent vector J € 7.7 (2) identifies with a section of the pull-back
vector bundle J*(TV"*P(J(R?))) — %, where TV P(J (R?)) stands for the vertical sub-
bundle of TP (j(RQ)) with respect to the projection 7 : P(j(RQ)) — 3. Equivalently, J
is a section of End(7T'Y) that satisfies JJ + JJ =0. One can formally define a symplectic
form on the infinite-dimensional manifold J(X) by integrating fibre-wise that on J(R?).
In other words,

Qy(J, J) = —;L tr<jJJ")p. (3.1.8)

Furthermore, one obtains a complex structure Z on J(X), by applying point-wise 7 which
is defined on J(R?). At this point, the main goal is to explain that such a symplectic form
and complex structure can be induced from the ambient 7 (%) to Teichmiiller space, using
the theory of symplectic reduction. In the end, one succeeds in doing more, namely, €
and Z will be part of a Kadhler metric on 7¢(X) which turns out to be a multiple of the
Weil-Petersson metric. The first result in this direction was provided by Donaldson:

Theorem 3.5 (|[Don03|,[Tral8|). Let ¢ := ‘2/2;(‘;23), then the function

pe J(E) — 5, p)"
J — =2(Kj—c)p

(3.1.9)

is a moment map for the action of Ham(X, p) on (J(X),2), where Kj € C*(X) is the
Gaussian curvature of g;.

Observe that, by the Gauss-Bonnet Theorem, the 2-form —2(K ;—c)p is exact, according
to the inclusion B2(X) < H(X, p)* introduced in Section Because of property (i) in
Definition , the subset u~1(0) = J(X) is preserved by the action of Ham(X, p). In
particular, any variation J = Lx.J, with X an Hamiltonian vector field and J € J (%), lies
inside Kerd yu, which is identified with 7;12~%(0). In other words, the tangent space to the
Ham(X, p)-orbit is entirely contained in the Kernel of d sy, for any J € J(¥). Furthermore,
by property (ii) in Definition for any J € 4 ~1(0) the space Ker(dypu) is identified with
the Q-orthogonal to T ( Ham(X, p) - J), namely the tangent space to the Ham(X, p)-orbit.
By using a geometric characterization of the elements in the €2j-orthogonal to the orbit
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([Don03|) one can induce a symplectic form on the quotient T(Z) := p~1(0)/Ham(, p).
However, the space T(X) is not isomorphic to Teichmiiller space of the surface as it is a
manifold of real dimension 6g — 6 + 2g. The further quotient of the space 7 (X) by the
group

H := Sympy(%, p) /Ham(E,p) ~ Hiz(Z,R) , (see Lemma [3.2)

can be identified with 7¢() (see [Don03, §2.2]). The H-orbits in 7 (X) are complex and
symplectic submanifolds (see [Don03| §2.2] and [Tral8, Lemma 4.4.8]), hence one gets an
induced symplectic form on 7¢(X) given by:

Q1,10 = Qi (n, Jj)

where the vectors Jj, J,’l e Ker(dypu) are lifts of .J, J' that are Q s-orthogonal to the Symp, (%, p)-
orbit. If one further re-normalizes the lift Jj, so that it is L?-orthogonal to the tangent space

to the orbit, one recovers the classical description of the tangent space to Teichmiiller space

as the space of traceless Codazzi tensors (|Trol2]). In that case, the formula of Weil-
Petersson metric is also recovered by choosing an area form p with Vol(X, p) = —2mx (%),
which means ¢ = —1 in Theorem

Proposition 3.6 (|[BMS15, §2.1]). Let J,J’ be elements in TinT(X), then the Weil-
Petersson symplectic form and metric are respectively given by:

(QWP)[J](j? Jl) = —;fztr(jjj/)dv, (GWP)[J](j, J/) = ;J tr(jj'>dV , (3.1.10)

P

where AV is the area form of the unique hyperbolic metric with conformal structure J.

Remark 3.7. One of the key facts of this construction is that any choice of a supplement
V of Ty (Sympy(%, p) - J) inside the Kernel of dp and Q-orthogonal to Ty ( Sympg (%, p) -
J), provides a well-defined model for the tangent space to 7(X), such that (V,Q,|y) is
symplectomorphic to (77 (%), 4Qwp).

3.1.3 A formula for the differential of the curvature

Here we briefly explain how to derive a formula for the first variation of the curvature Ky,
using the theory introduced in the previous section. That expression will be useful later,
when we explain how the pseudo-metric is induced on the Hitchin component by a sym-
plectic reduction argument. We will follow closely the approach in [MST21, §4.2].

Given any B € End(7TY) and given a Riemannian metric g on 3, we define the divergence
of the endomorphism B as the 1-form:

(divyB)(X) := Z 9((V¢B)X,e;) , (3.1.11)
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where (e;); is a g-orthonormal frame of T, V9 is the Levi-Civita connection with respect
to g and X is a smooth vector field on the surface. We will denote, likewise, the divergence
of a vector field V' by divyV. Moreover, whenever there is a fixed almost complex structure
J on the surface, the divergence will be taken with respect to g5 = p(-, J-) = g. Given that
J is V9-parallel, namely (V%J)Y = 0 for all X,Y € I'(T'S), one can deduce the following
useful formula:

divy(JB) = —(divgB) o J (3.1.12)

for any trace-less and g-symmetric endomorphism B. Another relation we will be using
later is the following:

divg(X) = d(exp)(v, Jv) (3.1.13)
for any unit vector v.

Lemma 3.8 ([MST21|). Let X be a vector field on X, then
1 . o :
§tr (JJEXJ> = (divgJ)(X) — divg(JX) , (3.1.14)

where (LxJ)(Y):= [X,JY] = J([X,Y]) for any Y e T(T).

Proof. First notice that
(divg)(X) = D1 9((VE, )X, e:)
- Z 9(VE (V) = IV V. e:)
- dlivg(jV) — > 9(JViV,e)
= div, (JV) — tr( 0y )

where My, stands for the endomorphism My X = Vg(V. The Lie derivative LxJ can be
expressed as JMy — My J (proof of Lemma [3.26]), hence we have

tr(jMV> —tr(JJJMV> (J? = 1)

_% (tr<jJJMv) _ tr(JjJMV)) (JeTyT(%))

—% (tr<JJJMV) — tr(JJMVJ>)
—%tr <J'J[,XJ) ,

and relation (|3.1.14)) follows. O
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Proposition 3.9 (|MST21]). Let J be any almost complex structure on ¥ and p a fized
area form, then

: 1. .
dK;(J)p = §d(d1VgJ) ,
where Ky is the Gaussian curvature of g5 = g.

Proof. For any Hamiltonian vector field V', with Hamiltonian function H, we have

O(J, Ly J) = —;J tr(JJL’VJ>p
by

_ L (% tr(JJEVJ> + divg(jV)>P

- | vy (xelation (B1.1))

= —f (divgJ) A typ
P
= —J (divyJ) A dHp .
b
According to Theorem the map p satisfies
@u( ) | Vg = =2 L HAK(J)p .
On the other hand, p being a moment map for the action of Ham(X, p), we get

Au(J) | Vyg = Qu(J, Ly J)

— f (divyJ) A dH
by

—_ L Hd (divgj) ,

again for any Hamiltonian vector field V| with Hamiltonian function H. Combining the
relations above, we find that

2 L HAK (J)p = — L Hd (divgj> :

and by letting the Hamiltonian function vary, we obtain the desired formula. O

3.2 The pseudo-Kéahler metric on the Hitchin component

This is the core part of the thesis, where the main result will be proved (Section [3.2.3)). In
particular, after defining an infinite-dimensional space D3(7(X)) starting from a general
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construction of Donaldson (Section , we want to realize the Hitchin component as a
subset of D3(J7(X)). This is done in Section by using a "special" conformal change of
metric on the surface and a standard application of Moser’s trick in symplectic geometry.
Then, we look for a specific distribution inside the tangent to a set 775’0(2, p) sitting inside
D*(J(%)). Each vector space W 4y of this distribution is defined as the space of solutions
to a system of PDEs. After studying in detail the above system of equations (Section,
we show that the distribution {W(; 4)}(s.4) is integrable, with integral manifold (up to a
further finite dimensional decomposition) the PSL(3, R)-Hitchin component (Section [3.2.5)).
Finally, in Section [3.2.6] we generalize the result on the circle action in the case where the
surface is of genus g > 2.

3.2.1 Construction of D*(J (%))

Here we use the notations introduced in Section [3.1.2 Recall that J(R?) is the space of
(almost) complex structures on R? compatible with the standard orientation. We introduced
a real vector bundle over 7 (R?) defined as

D3(J(R?)) := {(J,C) e T(R?) x S3(R?) | C(J-, J-,J-) = =C(J-,-,-)}, (3.2.1)

where S3(R?) is the space of totally symmetric (0, 3)-tensors. Any pair (J,C) € D3(J(R?))
defines a unique pair (J, q), where ¢ is a J-holomorphic cubic differential on R2. In partic-
ular, there is a SL(2, R)-equivariant isomorphism between D3(7(R?)) and the holomorphic
vector bundle of cubic differentials Q@3 (’T(TQ)) over Teichmiiller space of the torus (Corollary
2.4). For any choice of a smooth function f : [0, +00) — (—0,0] with f(0) = 0, f'(t) <0
for any ¢ > 0, and limy_, o f(t) = —oo we showed the existence of a SL(2,R)-invariant
pseudo-Kéhler metric (gf,i,@f) on D3(J(R?)), which restricts to a MCG(T?)-invariant
pseudo-Kihler structure on By(7T?) (Theorem and [D)).

Now let ¥ be a closed smooth surface of genus g = 2. The next step is to perform a construc-
tion similar to that done for 7(X) in Section [3.1.2] so as to obtain an infinite-dimensional
space, associated with 3, and endowed with a (formal) pseudo-Kéahler structure. Let P be
the SL(2,R)-frame bundle over (3, p) introduced in Section and consider the bundle

P(D¥(J(R?))) := P x D3(‘7(R2))/SL(2,R) ,

where SL(2,R) acts diagonally on the two factors. The fibre of P(D3(J(R?))) over a point
z € ¥ identifies with D3(J (T, X)), namely the space of pairs (J;, A;) where J, is an almost
complex structure on 7,% compatible with p,, and A, is an Endo(7,%, (g7, ))-valued 1-
form such that A,(Jy) = Az()Jy and AL(X)Y = A, (YV)X, VXY € I'(T,X). Since
the pseudo-Kéhler metric on D3(J(R?)) is SL(2,R)-invariant, each fibre D*(J(T3,Y)) is

~

naturally endowed with a pseudo-Kéhler structure, still denoted with ((8¢)z, L, (@f)z),
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obtained by identifying 7,3 with R? using an area-preserving isomorphism Fj, : 7,3 — R2.
The space of smooth sections

D*(J(%)) :=T(3, P(D*(J(R%)))
is identified with the set of pairs (J, A), where J is a complex structure on 3, and A is
an Endg(T'Y, g5)-valued 1-form such that A(J-) = A(-)J and A(X)Y = A(Y)X, VX,Y €
I'(TY). Moreover, there is an identification between the tangent space to D3(J (X)) at

(J, A) and the space of sections of the vector bundle (J, A)*(T¥"*P(D3*(J(R?)))) — %,
where TV"* P(D3(J (R?))) stands for the vertical sub-bundle of TP(D3(J(R?))) with re-

spect to the projection map P(D?*(J(R?))) — . We can consider tangent vectors (J, A)
at (J, A) as the data of (see Lemma [2.10)):

e a section J of End(TY) such that JJ + JJ = 0, namely J is a gj-symmetric and
trace-less endomorphism of 7'%;

e an End(T'%, g;)-valued 1-form A such that

. ;3 . 1 .
A=A+ T(JAJ)+3 tr(JAJ)]l , (3.2.2)

~~

completely determined by J

where 1 is the 2 x 2 identity matrix and Ay = fio +T(J, A, J ) is the trace-less part of

A. Moreover, the trace-part Ay and the tensor Ag — Ay is uniquely determined by J.
If {e1, e2} denotes a local g;j-orthonomal frame of 7Y and {ef, e3} is the dual frame,
then T'(J, A, J) = A1 JJEe} + 2AsJJEes with E = diag(1, —1).

The infinite-dimensional space D3(7 (X)) inherits a (formal) family of pseudo-K&hler struc-

tures, where the symplectic form is defined as

(Wp) ) (1, A), (', A)) = L & ((J, A), (J), A))p (3.2.3)

and the pseudo-Riemannian metric is given by

(&) (7, A), (7', &) = L &/ ((J, A), (J', A))p . (3.2.4)

where @y and g denote, respectively, the symplectic form and pseudo-Riemannian metric
induced on the pull-back of the vertical sub-bundle inside TP (D3(J(R?))) as described
above. Likewise we get a linear endomorphism

L) Ty ay DT (X)) = TiyaD* (T ()

obtained by applying pointwisely the endomorphism 1 to a smooth section (J, A) (see [Koi90,
§2]).
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Remark 3.10. It is important to point out that the definition of each element of the
pseudo-Kihler structure on D3(J (X)) is identical to that given in (2.2.10), (2.2.11) and
, the only change is that now the elements J, A, g7, J, A are all tensors and f(| |A| |(2))
is a smooth function on ¥. Because of this similarity, in the remainder of the discussion
we will make use of some relations proved in the previous work [RT21] and which we will
recall when necessary. The general idea to keep in mind is that the identities for elements
in D3(J(R?)) can be interpreted as point-wise identities at the level of smooth sections
inside D3(J7(X)). In both our setting and anti-de Sitter one the definition of the infinite-
dimensional space follows the lines of a much more general construction given by Donaldson
(|Don03}, §2.1]), and for this reason the same phenomenon described above happens in either
situation ([MST21, Remark 4.9]).

3.2.2 A conformal change of metric

The next step now is to introduce a conformal change of metrics on the surface that allows
us to find an equivalent description of HS(X) =~ Hit3(X) which will be crucial for the
symplectic reduction. In order to do this, we need to fix an area form p on the surface.
Then, using the so-called Moser’s trick in symplectic geometry we will obtain a different
model of Hitz(X) as the quotient of an infinite dimensional space by Sympg (%, p).

First, we introduce the function that will allow us to make the conformal change of metric.

Lemma 3.11. There ezists a unique smooth function F : [0,4+00) — R such that

ce*F(t) _ 2t673F(t) +1=0, F(O) = log ‘c’, (325)

where ¢ 1= %gg) 1 a strictly negative constant depending only on the topology and the

area of the surface. Moreover, if the function f :[0,+00) — (—0,0] is defined as

then it is smooth and it satisfies the following properties:
(1) f(0) =0;
(2) f'(t) <0 for all t > 0;
(3) Jim (1) =~

Proof. The existence and uniqueness of the smooth function F' follows from a standard
application of the implicit function theorem to G(t,y) := ce™¥ — 2te=3¥ + 1. In particular,
G(0,F(0)) = 0 implies that F(0) = log|c|. Using the formulae for the derivative of the
function y = F'(t) in terms of the derivatives of G(t,y), we obtain that:

Jt F/(s)s_éds>té (3.2.6)

0

F'(t) >0Vt =0, F'(t) <0Vvt=0, lim F(t) = 4+ .

t—+00
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From the definition it is clear that f is smooth, f(0) = 0 and it only attains non-positive
values. The fundamental theorem of calculus implies that

F(t) = —(F/(t) + tf L t F'(s)s—%ds> :

hence f'(t) < 0 for all ¢ > 0. The behavior of f at infinity can be obtained by using the
explicit expression

1
3

F(t) =1In (4) ,t
§/1+4/1+§+</1—4/1+§

that can be derived from the functional equation in the statement, which is a cubic equation
F® and where ¢ = Z|c|. O

#0

in e~

Lemma 3.12. Let f : [0,+0) — (—0,0] and F : [0, +0) — R be the functions defined
above. Then,

()
(1) 1) = -Fo)+ 52

(2) 1— f(t)+3tf'(t) >0, for all t = 0;

, for all t > 0;

(3) f'(t) is monotonically increasing for any t > 0.

Proof. The first identity can be obtained by computing the derivative of the function f(t).
In fact,

F(t) = —(F’(t) + % Ot F'(s)s—%ds) - —F'(t) + f?f? Vt >0 (3.2.7)

Regarding the second identity, we need to use the explicit expression of F'(t) found in the
proof of Lemma Hence, for any t > 0, we have

P(t) _1n((;12;’), o(t) = «3/1+H+ \3/1—\@, ¢ = 237\4 .

This implies,

1 "(t
3t g(t)
In the end, combining (1) with the explicit expression for F’(t), we get

1— f(t) +3tF' () =1 f(t) + 3t( ~Ft) + "’;E?)
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By using the classical theory of the study of a real function of one variable, we deduce that
g(t) is strictly positive and monotonically increasing for every ¢ > 0. Moreover, at t = 0,
we have 1 — f(0) +3-0- f/(0) =1>0.

Using equation (1) in the statement, we have

: (f't)E—f@) - (3.2.8)

fr(t) = =F"(t) + 32

Using the definition of f(t), the new function G(t) := f’(t)t% - f(t)t_% is equal to zero
when ¢ = 0 and its derivative is given by

G'(t) = (F' (65 — f)t )
= ( - tgF’(t) - %f(t)t_%y (Equation (3.2.7)
_ Pyt - %F’(t)t_% _ ; PO + g O (Equation (3:Z7))

— —F'(t)t5 >0, Vt>0.

This implies that G(¢) > 0 for any ¢ > 0, hence, by using (3.2.8), f’(¢) is monotonically
increasing for any ¢t > 0. O

Recall that, in general, given a (0,3)-tensor C' and a Riemannian metric g on 3, one
can define A := g~'C to be the associated (1,2)-tensor, namely a 1-form with values in
End(7T%). Suppose also that C' is totally symmetric, then according to Theorem the
tensor C' is the real part of a cubic differential if and only if the endomorphism part of A
is trace-less. Let us introduce the following space:

g is a Riemannian metric on X
) C is the real part of a g-cubic differential

2
llallg

HSy(Z) := 3 (9. C
(h = eF( 2 >g,A = g_lC) satisfy

/ Diffo()

2
llall2

Notice that the map sending the pair (g,C) to (h, A), where h = eF( 2 )g and A =
g~1C, induces a MCG(X)-equivariant map from HSo(3) to HS(X). There exists an inverse
map constructed by sending the pair (h, A) satisfying (HS|) to the pair (g,C) where g =

2
llqll2

eiF( 2 )h and C := gA. Since all the process is invariant by the action of Diff (X)), we get
the following:
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Lemma 3.13. The correspondence described above induces a MCG(X)-equivariant isomor-

phism between HSp(X) and HS(X).

Let p be the area form fixed at the beginning of the discussion, then for any (almost)
complex structure J the pairing gy := p(-, J-) defines a Riemannian metric on the surface.
Let us introduce the space

J is an (almost) complex structure on X
C is the real part of a J-cubic differential

HSO(Z"O) = (J’ C) F(HQII;‘;J) /SympO(Z)
(h =e 2 /gy, A= g;lc) satisfy (HS))

2
llallZ,

Proposition 3.14. The map sending the pair (J,C) to (h = eF( 2 )gJ,A = g;lC)
induces a MCG(X)-equivariant homeomorphism between HSo (2, p) and HS(X).

Proof. The proof is based on the so-called Moser’s trick in symplectic geometry. Since this
argument is standard in contexts similar to ours, we will only give an idea of how it is
applied (for more details see [Hod05, §3.2.3]). Moser’s stability theorem (|MS17, Theorem
3.2.4]) claims that given a family of cohomologous symplectic forms w; on a closed manifold,
there exists a family of diffeomorphisms ¢; such that ¢g = Id and ¢fw; = wp. For a closed
surface X of genus g > 2, given two area forms p, p’ of the same total area, one can apply
Moser’s stability theorem to the family p; := (1 — t)p + tp’ and deduce that there exists
¢ € Diff(X) such that ¢*p’ = p. In particular, for any Diffy(X)-equivalence class [g, C]
in HS(X), there exists a representative of the form (g7, C). Finally, if one has a family
of diffeomorphisms v, with ¢y = Id and ¢fp = p, by applying Moser’s stability again to
pt = 1y p one can deform 1y to a family of symplectomorphisms ¢; such that ¢g = Id and
¢1 = ¥1. Combining it all together, it has been shown that

Sympy (%, p) = Diffg(X) n Symp(%, p) .

3.2.3 Proof of Theorem A

The aim of this section is to summarize the strategy of the proof of the main result. We will
present preliminary results, proved later in the thesis, which will allow us to give a quite
immediate proof of the main theorem. The same approach was used in [MST21|, §4.4] with
the appropriate differences.

Recall that HSy(X, p) is the quotient of the infinite-dimensional space

J is an (almost) complex structure on X
7_730(2’ p) =1 (J,C) C' is the real part of a J-cubic differential

2
llall

(hi= e (557 ) gy, A 1= g71C) satisty
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by the action of Sympg(3, p), where F' is the smooth function defined in Lemma . The
main idea is to define an Ham (%, p)-invariant distribution {W; 4) }( 7,4) inside THSo(%, p),

whose integral manifold B(X) is the finite-dimensional quotient HSO(Z p)/ Ham(X, p). Be-
cause of the very specific choice of the subspaces W(; 4, the further finite-dimensional

quotient B(X)/H, with H := Symp(, p)/ Ham(X, p), is isomorphic to Hits(%).

Definition 3.15. Given (J, A) € ”;7-[\30(2, p), define W ; 4y to be the subspace of T(J7A)D3(\7(E>>
formed by those elements (J, A) satisfying the following system of equations:

d(div ((f = 1)J) +dfoJ - £8) =0
d(div ((f =1)J) o J +dfgoJ —LBoJ) =0 (3.2.9)

AV Ag(e,e) — J(div.J A A)(e,e) =0

where (o) := ((V,A)J, Ag) is a 1-form, fo = —fZ/<A, AgJ)Y is a smooth function on ¥ and f

is the function given by 1} Moreover, all the expressions for f, f/ and f are evaluated
Al

at [|4J13 = 14L.

Remark 3.16. The third equation in the above system can be re-written as dvAo(O, o)J =
(divgJ A A)(e,e), which is equivalent to the following:

AV Ag(e, Je) = divyJ(e)A(Je) — divyJ(Je)A(e) . (3.2.10)

In fact, by C®(X)-linearity, it is sufficient to perform the computation on a pair {X, JX},
for X € I'(T'Y). Therefore, we have

AV Ag(X, JX)J = (divgJ A A)(X, JX)
= (divyJ)(X) - A(JX) — (divyJ)(JX) - A(X)

which is exactly the right-hand side of (3.2.10) computed on X (as an Endy (7%, g)-valued
1-form). This new form of the equation will be crucial to some key steps in our argument.

Theorem H. Let (J, A) be a point in HSo(X, p), then
dimW; 4) = 16g — 16 + 29 .
The latter result will be a consequence of a detailed study of the system of equations
defining W 4). The difficult part lies in computing the principal symbols of the matrix

operator associated with the three equations in (3.2.9). It is then possible to conclude,
using standard results from the theory of elliptic operators on compact manifolds.



CHAPTER 3. THE GENERAL CASE 56

Theorem J. For every element (J, A) € %O(E,p), the vector space W(; 4y is contained
inside T(J7A)HSO(E7 p) and it is invariant by the complex structure I. Moreover, the collec-
tion {W (1.4} (s.4) defines a Ham(X, p)-invariant distribution on HSo(%, p) and the natural
projection m : HSo(X, p) — B(X) induces a linear isomorphism
dgaym: Wiga) — TigaB(E)

R Combining together Theorem [H] and Theorem [J| we observe that the integral manifold
B(X) has dimension equal to 16g — 16 4+ 2¢g and, for this reason, cannot be isomorphic to
the PSL(3, R)-Hitchin component. In fact, it is necessary to perform an additional (finite-
dimensional) quotient of B(X) by the group H := Symp (%, p)/ Ham(X, p) isomorphic to
H: (Z,R) (see Lemma .

Theorem K. The H-action on g(E) is free and proper, with complex and symplectic H -
orbits. Moreover, the pseudo-Kdihler structure (gg,I,wy¢) descend to the quotient which is
identified with Hit3(X). Finally, the complex structure I induced on the PSL(3,R)-Hitchin
component coincides with the one found by Labourie and Loftin.

Remark 3.17. The tangent space to the integral manifold 5(2), i.e. the subspace W 4),
decomposes as a direct sum V{ ; )@ S 1), where V{ 4) is the tangent space to the Hitchin
component and S; 4y := {(LxJ, gjlﬁxC) | X e IN(TY), d(txp) = d(tsxp) = 0}, namely
the tangent space to the harmonic orbit (see Section . Using the definition of W 4)
in terms of the system of equations , we get a similar description of the tangent

space to the Hitchin component. In particular, V(s 4) can be characterized as the subspace
of W(;.4) (see Section [3.4.1) defined by the following system:

div ((f = 1)J) +dfoJ = L8 =dm
div ((f =1)J) o J +dfgoJ —LBoJ =dy (3.2.11)
AV Ag(e,e) — J(divJ A A)(e,e) =0

for some 71,72 € C*(X). In a more concise form:

o1 + i is exact } (3.2.12)

V(J,A) = {(Ja A) € T(J,A)HSO(EaP) dVAO(.’ 0)—J(divj/\A)(0, .) =0
where a7 and ag are the 1-forms in (3.2.11)) defined by the LHS of the first two equations.

At this point, we have all the ingredients to present a concise proof of the main result
of the thesis.

Theorem A. Let Y be a closed oriented surface of genus g = 2. Then, there exists a neigh-
borhood N]—‘(E) of the Fuchsian locus in Hitg(X), which admits a mapping class group in-
variant pseudo-Kdihler metric (g¢,I,w¢). Moreover, the Fuchsian locus embeds as a totally
geodesic submanifold and the triple (g5, 1, wy) restricts to a (multiple of ) the Weil-Petersson
Kahler metric of Teichmdiller space.
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~

Proof. The tangent space T[; 4)B(%) can be identified with W 4) (Theorem , hence
we can define a complex structure I, and a pseudo-Riemannian metric gy by restriction
from the infinite-dimensional space D3(7(X)). This definition does not depend on the
representative in the Ham(3, p)-orbit by the invariance statement in Theorem [J[ and the
Symp(X, p)-invariance of I and gy. It is immediate that I is still compatible with g; and
that the pairing gy(-,I-) coincides with the 2-form wy restricted to W 4). Moreover,

Theorem |[K| allows us to induce the triple (g¢,I,wy) on the quotient B(X)/H =~ Hit3(X), in
such a way that the induced complex structure is equivalent to the one found by Labourie
and Loftin. Thanks to the Symp(X, p)-invariance of g; and I, it follows that the induced
structure on Hitg(X) is invariant under the action of the mapping class group, since it is
isomorphic to Symp(X, p)/ Symp, (2, p).

Notice that the Fuchsian locus F(X) (see Section and inside Hit3(X) = HS(X)
corresponds to pairs (J, A) with A = 0. According to Remark the tangent space to
HS(X) along the Fuchsian locus is isomorphic to V), and thus consists of pairs (J, A)

such that divgj =0 and dVAO(-, -) = 0. The pseudo-metric restricted to V(70 1s equal to
(&) (A (7, A4) = | o+ | can Ao

since the trace-part of A is equal to zero according to relation 1) Notice that gy on
Vi) coincides with 4Gwp along horizontal directions (A = 0) and it is negative-definite

along vertical directions (J = 0). Because of the explicit description of gy, this is sufficient
to conclude that the pseudo-metric is non-degenerate on arbitrary directions inside V() as
well. In particular, there must exist an open neighborhood N5 of F(X) inside Hit3(X)
in which gy is non-degenerate.

Finally, the Fuchsian locus is the set of fixed points of the circle action, that consists of
isometries for gy by Theorem |C| (which is proved in Section . Using a standard
argument in (pseudo)-Riemannian geometry, this implies that the Fuchsian locus is totally
geodesic. O

Remark 3.18. It is important to emphasize again that the triple (gf,I,wy) is defined over
the entire Hitchin component Hitg(X), but it may be degenerate away from the Fuchsian
locus. The main problem lies in the fact that the restriction of an indefinite metric on a
subspace is not necessarily non-degenerate (as in the positive-definite case). Partial results
have been obtained concerning the non-existence of degenerate vectors outside N F(x), Which

will be explained in detail in Section [3:4:2] and [3:4.4]

3.2.4 The system of equations

This section is devoted to the study of the system of equations defined by (3.2.9)) and to the
proof of Theorem [H] More precisely, in Lemma and Lemma [3.20| we study the induced
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connection on the endomorphism bundle and the associated exterior covariant derivative.
Then, Lemma allows us to compute the terms involving derivatives of order two of
(j, A) in the first and second equation appearing in the system defining W(; 4). Further
on, we explain how the space W(; 4y can be seen as the kernel of a matrix of mixed-order
smooth differential operators, which is proven to be elliptic (Lemma . Finally, using
the homotopy invariance of the Fredholm index for elliptic operators, we deduce the lower
bound on the dimension of W 4).

Lemma 3.19. Let V be the Levi-Civita connection with respect to gy, then the induced
connection
V: QY% Endo(TX, g7)) — QYZ,Endo(TX, g7))

does not admit any non-zero parallel section, where Endg(TX, gy) denotes the real vector
bundle of gj-symmetric and trace-less endomorphisms of TX.

Proof. Let B € Q°(X,Endo(TY, gs)) such that VB = 0. Let 2y € ¥ be a fixed point and
x € ¥ be arbitrary. Consider a path «y : [0,1] — X with v(0) = z¢ and (1) = x. Let {e1, e2}
be a basis of T;,,% and denote with {e1(t),ea(t)} the basis of T,;)¥ obtained by parallel
transport {e1, ez} along the path . Then, if b;;(t) denotes the (i,7)-th entry of B, for
i,j = 1,2, we have b;j(t) = gs (B (e;j(t)), ei(t)). By differentiating the last identity with
respect to the parameter ¢, we get:

%bij(t) = 91 ((V5B) (¢j(1) + By) (V4€5), (1)) + 6. (B (¢5 (1), Vses) -
=0

Since the basis {e1(t),e2(t)} has been obtained by parallel transport, we have Vye; = 0
for any j = 1,2. In particular, we deduce that each entry of B is constant along -, hence
By = By1) = By(g) = B, Since z € X was arbitrary, it follows that the endomorphism
B is actually constant on the whole surface. At this point, it is enough to show that every
section of E := Endy(T%, g5) admits at least one zero to conclude the proof. Since the real
rank of E is equal to the real dimension of the surface, any section B is nowhere zero if
and only if the Euler class e(E) is trivial in H?*(X,R). In our case, it can be shown (see
for example [Trol2, §2.4]) that E is the realization of the holomorphic line bundle K ® K
defined on (X, J). In particular, e(E) =1 (K XK ), where ¢; denotes the first Chern class
of a complex vector bundle. Therefore,

f e(E) =J a(K®K)=deg(K®K) =2(29—2) #0.
P ¥

The last chain of equalities implies that e(E) is not trivial in cohomology by Poincaré
duality, and thus any such section B admits at least one zero. O
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Lemma 3.20. Let V be the Levi-Civita connection with respect to gy, then the exterior
covariant derivative

dV : QY2 Endo(T%, g5)) — Q*(2,Endo(T%, g5))
1s surjective and its kernel has real dimension equal to 10g — 10.

Proof. Recall that for A € Q' (3, Endo(T%, gs)) and for any X,Y,Z € I'(T'S) we have
(dVA)(X,Y)Z = (VxA)(Y)Z — (VyA)(X)Z .

In particular, if we define the (0, 3)-tensor C(X,Y, Z) := g;(A(X)Y, Z), then A € Ker(dV)
if and only if C is the real part of a gj-holomorphic cubic differential (Theorem . The
space of holomorphic cubic differentials on (X, gs) coincides with the space H°(X, K ®3)
of holomorphic sections of the tri-canonical bundle, which is isomorphic (as a real vector
space) to R'09~10 by an easy application of Riemann-Roch Theorem for curves.
Concerning the surjectivity of dV, we will prove that its Co-kernel is trivial. Let us denote
with # 7 the Hodge-star operator defined on differential forms with respect to gz, which can
be extended to an isomorphism #; : Q%(2, Endy(T'S, g7)) — Q2~%(2, Endo(TS, g7)). Let
(dv)* be the formal adjoint of the exterior covariant derivative with respect to the L2-
inner product on Q?(%, Endo(7T%, gs)) induced by #; and integration over ¥. A standard
computation shows that

(dV)* = —x50dY oy : Q*(5,Endo(TE, g)) — QY(Z,Endo(TE, g)) -

Since Range(dY) is a closed subspace of Q%(3, Endo(T%, gs)), we get that CoKer(dY) =
Ker((dv)*). In particular, if a € Q?(3, Endo(T%, g;)) then

(V) a=0 < (%7 is an isomorphism)
AV (xja) =0 < (dV =V on Q°(X,Endo(T%, g)))
?(*Ja) =0 s

where V in the last equation is the induced connection on Q°(X, Endo(T'Y, gs)). According
to Lemma the induced connection V does not admit any non-zero parallel section,
hence *jya = 0, which implies o = 0. O

Lemma 3.21. Let (J,A) € D3(J (X)) and consider the following 2-forms on the surface
. , .
o= d<divg((f —1)J) +dfoJ— E«V'A)J’ A0>> ,

Ny i= d<divg((f — 1)J) oJ + dfb oJ+ §<V°A’A0>>



CHAPTER 3. THE GENERAL CASE 60

where (J, Ag) € T(JA)DS(j( )), the function f is the one defined by , fo= —fZI<A, Ay,
and f, f', f, fo are computed in || A3 = %
tives of (J, Ao) inm and 1y is, respectwely

. Then, the part involving second order deriva-

(f—l)d(divgj)+‘id<A, Viedoy  (f—1)d(divyd o J)——d<A (Vsedo) )

Proof. By using (3.1.11]), we get the following equation involving the divergence of a smooth
section of Endy (7%, g7) multiplied by a smooth function ¢

divy (pJ)(X) = dp(JX) + p(divgJ)(X), VX eD(TD). (3.2.13)

Therefore,
d(divg((f —~ 1)J)> = d(df o J) +df adivg] + (f — 1)d(divyJ) ,

and it is clear that (f — 1)d(divgj ) is the only part involving second order derivatives of J

in the expression above. Regarding the other two terms in 71, let us first define 7y :=d f oJ
and 79 1= —%ﬁ, where 5 = ((Vl.A)J, Ao).

The differential of 11

Notice that the first order variation of f(||A]3) is
/

f (<A A+ (A, A>) (Lemma

= Z<A’ Ag)y .
Therefore,
o
dr1 = d(d(Z¢A, Ao)) 0 7)
- ja(¢Adoaro s+ facadoyo )

_ (f " AV S AXAL Agy £ 1 (V1A Ay + (A, vJ.Ao>>)

where in the last step we used that df’ = %(A, VeA). The only interesting part, for our
purpose, is the term containing f'{A,V jsAg). In particular,

f

id( f'<A,vJ.AO>) ”<A VoA A A,V 0 do) + d<A Ve Ao)
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Again, the only part involving second order derivatives is the term de<A, VieAo).

The differential of 1o

To conclude the proof it must be proven that drz does not involve second derivatives of J
or Ag. In fact, by carrying out calculations similar to those made above

an = a( - Lav.a o)

1/ " . . :
- 5 (G AT A + 1 (TeFeAV A0y + (Vo)) )
Because of the very similar expression of the 2-forms 7,72 it is easy to see, by going over
the calculations already done, that the part involving second derivatives of (J, Ag) in 7 is

exactly
/

(f — 1)d(divgJ o J) — T, (Vyedo)J) .
0

The next step is to write down in coordinates the expressions found in Lemma [3.21]
so that, later, we will be able to explicitly deduce the principal symbol of the matrix of
operators associated with the PDEs defining the subspace W(; 4). In order to do this, we
need to recall the construction in coordinates for D3(J(R?)) (see Section , and then
use the particular definition of D3(J (X)) to infer that the same can be done, point-wise,
in the genus g > 2 case (see Remark . Let po := dxg A dyp be the standard area
form on R? and ¢ := po(-,J-) be the associated scalar product, for some J € J(R?).
According to Proposition the space D3(J(R?)) is SL(2, R)-equivariantly isomorphic to
the holomorphic vector bundle of cubic differentials over Teichmiiller space of the torus,
denoted with @3 (T(TQ)). The latter can be identified with H? x C, where H? is a copy
of T(T?) and C is isomorphic to the fibre over an oriented (almost) complex structure
J:R? - R% Let 2 = x + iy and w = u + v be the complex coordinates on H? and C,
respectively. Then, we have the following correspondence

H? x C 3 (z,w) —> (j(Z),C(z,w)) e D*(J(R?))

where C(; ) = Re(q(z,w)) With q(. ) = w(dzo — zdyg)? (see Lemma . Because of the
SL(2, R)-invariance, one can compute the pair (j(z), C(;)) at points (i,w) = (0,1, u,v),
for some w € C. Using the relation 4 = (¢%)~'C, one can deduce:

- . T —Y u v v —u
J=d;j(z,9) = (_y _i) , AGw) = <v —u) dzo + (—u —v) dyo .

i _ [ utuytvr —uz 40+ vy 0+ 2wy —uz)  —u—2(uy + vx)
(Ao)iw) = (ux FO4vy —i— ug — U:i:> dzo+ (u o+ vi) — + 2(ui — vg) ) WO
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: —uy — vx 0 uT — vy 0
(Atr)(i,w) = ( 0 _Uy _ 'UJ:) dxo + ( 0 U:E _ Uy) dyO .

Now, let us define the following matrix of smooth differential operators

ATy D (T(2) — QZ(Z) @ Q* (%, Endo(T%, g))

o . . (3.2.14)
(J, Ao) — ((Ll + iLQ)(J, AQ),S(J, Ao))

where
Li(J, Ag) := d<divg((f ~1)J) +dfoJ— 6/<(V.A)J, AU>> eQ?(%),

Lo(J, Ag) := d<divg((f ~1)J)oJ +dfgoJ + ‘§<V.A,AO>> e Q*(%),
S(J, Ag) = AV Ag(:,-) — J(divJ A A)(,-) € Q*(2, Endo(TE, g7)) -

It is possible to define the principal symbol of a matrix of mixed-order differential opera-
tors as the matrix obtained by taking the principal symbols of each differential operator.
The corresponding system of PDEs is called elliptic, if the symbol matrix has non-zero
determinant (see [ADN64| and |Gru77| for more details).

Lemma 3.22. Let (J, A) be an arbitrary point in D3(J(X)). Then, for any pe ¥ and for
any 0 # £ € T*Y, the symbol matriz U(A)p(f) has non-zero determinant.

Proof. Let {e1,e2} be a gj-orthonormal basis and let {ef,e5} be the dual basis, so that
& = &ief + &ae5. We first note that o(A),(§) is a 4 x 4 matrix as any term in A, involving
the tensors (J, Ao), can be written in the coordinates (&, y, @, 0), for what explained above.
Moreover, we have the following decomposition:

a(A),(€) = (? i) : (3.2.15)

where each block is a 2 x 2 matrix, and each entry in the first and second block-row is a
homogeneous polynomial in &1, &y of degree two and one, respectively. After a fairly long
computation in coordinates the final expression for o(A),(&) is

—2(f = 1&&2 (f = 1)(&F = &) + 5lwPfIEP —ful&fe) —fulg)
(f = 1)(&3 — &) — 5wl e —2(f = D&ée —flgl? frulgl?
—3ué; —3v&1 —&2 &1 ’
—3v&y 3uéy =1 —&2
where [£]2 := &2 + €2 and the second column corresponds to the coefficient of —y. We

only show how to get block O, as with a similar calculation one can obtain the remaining
ones. To write down explicitly each entry of ©, we need to compute the principal symbol
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of Ly and Ly, along directions (&, —y,%,0) with @ = v = 0. According to Lemma
oa2(Ly1) and o9(Ly) depend, respectively, on (f — 1)d(div,.J) + fZ/d<A, V7eAg) and on (f —
1)d(divyJ o J) — led<A, (V7eAg)J). In particular,

d(divgJ)(§,6) = #(=261&) —§(& - €) . d({A, Viedo) (€,6) = —6lw* (& + &)y,
d(divg 0 J)(€,€) = i(63 — &) = 9(=201&) . d((A, (Ve Ao)D))(&,€) = Blw* (€] + )i

where all the above equality are to be intended up to lower order terms in £. In the end,
the upper left block in o(A),(§) is given by:

o _ ( —2(f —1)&ié2 (f = 1)(&f = &) + 3wl f’|£|2)
(f —1)(&3 — &) — 5wl f'Ie —2(f =161

If £ # 0, then the matrix A is invertible as its determinant is equal to |¢|2. This allows us
to use the determinant formula of block matrices to obtain

det(o(A)p(€)) = |¢[det(© — EAT'T)
= 6P (1B~ F + 2 F ) + (& ~BP(1 -7+ 5 f )

Since 1— f +% f'|w|? is strictly positive (Lemma , requiring that last expression vanishes
is equivalent to the conditions £1&s = 0 and & = &, which clearly is possible if and only if
& =86=0. O

Theorem H. Let (J, A) be a point in HSo(X, p), then
dimW; 4) = 16g — 16 + 2g .

Proof. Notice that, the space W 4) can be seen as the kernel of A, namely the matrix of
smooth differential operators defined in . Let us consider the deformation tA, for
some t € [0,1], and look at the corresponding smooth 1-parameter family of matrices of
differential operators:

{At} o) T DX (T (D) — QE(D) @ Q*(Z, Endo(TE, 95))
(j7 AO) — (Dt(‘]a AO)? St(jv AO)) )
Dy(J, A ( — _h '
0) :=d | divy ((f; — 1)J) +dfy o 6 {(VetA)J, Ao)
+id <divg((ft —1)JoJ)+d(fo)eoJ + ng.m, AO>) ,

Si(J, Ag) := AV Ag(-,-) — tJ(divgJ A A)(-,-) ,
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where f; == f(2[|A|2), fr = tL(Ag, A), and (fo); = —tLt(AgJ, A). Observe that the
matrix A; is elliptic for any ¢ € [0, 1] (in the sense explained above) as Lemma holds
for any (J, A) € D3(J(X)). In particular, since X is closed the operator matrix A; has a
well-defined index for any ¢ € [0,1] (Lemma [A.12). By definition, Ag associates (up to a
sign), to each (J, Ag), the element

(d(divgJ) +id(dived o J),dV Ag) .

The homotopy invariance of the Fredholm index (see Theorem [A.13]) implies the following
chain of equalities:
ind(A) = ind(Al) = ind(At) = ind(Ao) .
Since the differential equations obtained from the kernel of the matrix Ag are decoupled in
J and Ag, we have the following index decomposition:
ind(Ao) = ind(d(divy) + id(divg o J)) +ind(dY)
= ind(d(divy) + id(divg 0 J)) 4+ 10g — 10 .

where in the last step we used Lemma It is well-known (see [Trol2] for example)
that the divergence operator div, : 7,7 (%) — QL(X) is surjective and its kernel has real
dimension equal to 6g — 6. In particular, for any a € Q(X) there exists J € T;J(¥) such
that divyJ = . Any such real 1-form has a decomposition o = a0 4% with a0t = o0,

Thus,
a+icod =a? + % + z'(iocl’o — z'ao’l) =201 .

According to this last identity and the surjectivity of the divergence operator, it follows
that the cokernel of d((divg-) + i(divg o J)) is isomorphic to

Coker (0 : Q%1(2) — QV(%)) = (D) /Im(a) = Hy'(Z) = R?,

as there are no (0,2)-forms on (3, J). In addition, the kernel of d((divy-) + i(divg 0 J)) is
given by

{(TeT;T(2) | 0((divy) +i(divg o J)) = 0} = H3'(X) x Ker(div,-) = R%6 x R%
using again the surjectivity of the divergence operator. Therefore, we have

ind(Ao) = ind(d(divg-) + id(divg o J)) + 10g — 10
=6g—6+29—2+10g — 10 = 16g — 16 + 2g — 2.

To conclude, we notice that all operators D; take value into the subspace of complex exact
2-forms, hence the dimension of the cokernel of A; is at least equal to the dimension of
HZ(¥) ~ R% Thus

dimW s 4y = dim(Ker(A1))
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= ind(A1) + dim(Coker(Ay))
> ind(Aog) + 2
—16g—16+2g—2+2 =169 — 16 + 2g .

3.2.5 The preferred subspace inside the tangent to ’;T{\S’O(E, p)

In this section we prove Theorem [J] by using the theory developed so far. In particular,
in Lemma and Lemma we prove the Symp(%, p) and I invariance of W 4y,
respectively. Then, we find a formula for the action of the almost-complex structure I on
tangent vectors to the Symp(3, p)-orbit Lemma and we study the operator associated
with the first equation in (HS) (Lemma. Finally, if 7 : 7730(2, p) — B(%) denotes the
quotient projection, where B(X) is the quotient of 7730(2, p) by Ham(X, p), the injectivity
of the map dj 47 : W(4) — 1] 1,4 g(E) is proven in Lemmaby using all the previous
results. The only part of Theorem |J| that is left is the inclusion Wy 4y < T(;, A)ﬁfso(z, 0),
as it is necessary to explain first the connection between the system of differential equations
and the theory of symplectic reduction. For this reason its discussion is postponed
to Section The results presented in this section follow closely the ones given for the
anti-de Sitter case ([MST21|, §4.5]), even though one of the two tensors we work with is of
a different type.

Lemma 3.23. For every symplectomorphism ¢ of (X,p) and for every (J A) € Wi a4,
we have (¢*J, ¢p*A) e Wig# gpxa)- In other words, the distribution {W ;4 }(
invariant under the action of Symp(%, p).

JA)EHS0(3,p) '

Proof. The assumption that ¢ is a symplectomorphism (¢*p = p) is crucial in order to
prove that g+, the metric associated with the area form p and complex structure ¢*J,
is equal to the pull-back metric ¢p*g; = ¢* (,0(-, J)) In other words, we are saying that
¢: (2, 9¢%7) = (£,97), is an isometry. In particular, for any endomorphism of the tangent
bundle B we get

" (divgB> = divgrg(¢*B) .

Moreover, the parts involving the scalar product between tangent vectors j, J e T;7(%)
and A, A’ are preserved by ¢ (see Section and Section . As for the rest of
the terms in the equations defining W; 4), we see that they are preserved by ¢ using the
naturality of the action and the functoriality of the involved operators, such as the induced
connection V and the exterior covariant derivative dV on Endg (X, g)-valued 1-form. O

Remark 3.24. Notice that the above lemma holds for any symplectomorphism ¢ not
necessarily Hamiltonian. This is a stronger result than what we need in Theorem [J] In
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particular, with the same argument it is possible to prove the Symp(3, p)-invariance of I
and gy.

Lemma 3.25. For any (J,A) € 7730(2,;)), the subspace W 4y is preserved by 1.

Proof. Recall that by definition I(J,A) = (=JJ,—AJ — AJ) =: (J', A’). We only need to
show that the pair (J', A’) still satisfies the equations defining W ; 4y. In fact,

(f = Ddivg(J') = (f = 1)divy( = JJ) (rel. (B-1.12))
= (f = DdivgJ o J .
Moreover,
f/ A/ _ f/ A
d<—<A ,A>) oJ = d(Z<—A0J, A>) oJ
f’ . f/ .
~Liwans iy = ~Liwiayg —don = Levaa Aoy
where in the last step we used relation using I? = —1, it follows that the
element I(J A) satisfies the second equatlon in 1 } as well. Regardlng the last equation,

notice that, according to Remark [3.16} it is equlvalent to AV Ag(e, Je) = dlvgJ (e)A(Je) —
legJ(JO)A( ). Therefore, for any X e I(TY), we get

AV (Ap) (X, JX) = —dV (AeJ) (X, JX)
= —(aVAo) (X, JX)J (Ve =0)
= —(divy J)(X)AJX)T + (divg ) (JX)AX)T  (A(J) = A()J)
= (divyJ)(X)A(X) + divyJ (JX)A(X)J .

On the other hand,

(divyJ)(X)A(JX) — (divyJ)(JX)A(X) = —(div,JJ)(X)A(JX) + (divyJJ)(JX)A(X)
= (divg /) (JX)A(JX) + (divyJ)(X)A(X)
= (divgJ)(JX)A(X)J + (divy ) (X)A(X)

where we used relation (3.1.12]) on the first step and A(J-) = A(-)J on the second one. [

)
X)

_l’_
_l’_

Lemma 3.26. For every symplectic vector field X on (X, p) and for every (J, A) € D3(J (X)),
with C(+,+,) = gJ(A(')~,'P equal to the real part of a holomorphic cubic differential on
(2,J), we have I(EXJ, I EXC) = (— Lixd, —QEIEJXC).
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Proof. For any vector field V' on the surface, let use define the operator My : I'(T%) —
[(TY) as My (Y) := ViV, where V¥ is the Levi-Civita connection with respect to g =
g7 = p(+,J+). Then, for any Y € I'(T'Y), we have

(Lv )Y = [V, JY] = J([V,Y])
=V (JY) = V9,V —J(V{Y)+ J(V]V) (V9 is torsion-free)
= J(VLY) = My(JY) — J(VLY) + JMy(Y) (V4] = 0)
= (JMy — My J)(Y) .

The above computation implies that
LyJ=JMy — MyJ . (3.2.16)

Now since C(-,-,-) is a (0, 3)-tensor, for any Y, Z,U € I'(TY), its Lie derivative can be
computed as follows

(LyC)Y,Z,U) =V -C(Y,Z,U) - C([V,Y], Z,U) — C(Y,[V, Z],U) — C(Y, Z,[V,U]) .
Moreover, using the relation
V-C(Y,Z,U) = (V$C) Y, Z,U)+ C(VLY,Z,U) + C(Y,VL.Z,U) + C(Y, ZV4U) ,
we obtain that
(LvC)(y) = (VEO) () + C(My-, ) + C(-, My, ) + C(-, -, My-) . (3.2.17)

In particular, by re-writing the last relation using the associated (1,2)-tensor defined as
A = ¢g7'C and using the compatibility between V9 and the metric g, we get

(97 LvO)() = (VEA)() + A(My+) + A()My + MPA() (3.2.18)

where My, denotes the g-adjoint operator of My . Now let us apply the almost-complex
structure I to the pair (Lx.J, g 'LxC) with X a p-symplectic vector field. Therefore,

I(LxJ, g7 LxC) = (= JLxJ,—(g ' LxC)()J — A()LxJ) .

Since J is V9-parallel then Mjx = JMx, so that the first component of I(,CXJ, g_IEXC)
is given by

—JLxJ =—J(JMx — MxJ) (rel. (3.2.16) for V = X))
=—(JMyx — M;xJ)
=—LyxJ. (rel. (3.2.16) for V = JX)
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Regarding the second component of I(EXJ, g_IEXC), using relation (3.2.16)) and (3.2.18))
for V = X, we have

(97 LxO) () = A()LxT = (VA ()] — A(Mx-)J — MXA()J — A()MxJ
— A()JMX + A()ij
= —(V&A) () — A(Mx-)J — A(-)TMx + MY JA()

where in the last equality we used A(-)J = —JA(-). On the other hand, using relation

(13.2.18) with V = JX, we get

—(g7 ' LixC)() = =(V9xA)(-) — A(Myx-) — A(-)Myx — Mjx A(")
= (V93 A)() — A(JMx-) = A()IMx — (JMx)*A() (Myx = JMy)
= —(V%A)(J) — A(JMx-) — A(-)JMx — (JMx)*A(-) (Theorem [1.11))
= —(VXA)(J) — A(Mx-)J — A(-)IMx + MXJA() ,
where in the last step we used A(J-) = A(-)J and J* = —J. Finally, we conclude by
observing that
(VA JIY)Z = V% (AIY)Z) — A(V%(IY)) Z — A(JY )V Z
= V% (AY)JZ) - A(JVLY)Z — A(Y) IV Z
= V4 (A(Y)JZ) = A(V%Y)JZ — A(Y)V%(JZ)
)

— (VA (Y)JZ, VXY, ZeD(TY).
O
Lemma 3.27. Let G : D3(J (X)) — C®(X) be the operator defined as G(J,A) := K}, +

1 —||q||?, where h is the metric in the conformal class of g; with conformal factor et (see
), and q is a cubic differential whose real part is equal to C = gjA. Suppose that
(J, A) satisfies equations (HS|) and let U be a vector field on ¥. Then,

- 1
dg.4)G (Lot g5 LuC) = =58 + (1 + 2lql[{)A

2
where A 1= divgJU(gﬂq|\3JF’(Hq!‘”) - 1). In particular, if the element (LyJ, g5 LyC)
belongs to the kernel of d 5 4)G, then U is symplectic.

Proof. Let us denote with {t};e[0 1] the flow of U, and let (J,C) be a point in D*(J(X)).
Consider the path {(Ji, Ct)}iefo,1] < D3(J (%)) given by (J;,Cy) = (¢fJ,fC) so that
(Jo,Co) = (J,C). In particular,

_ d * —1 _ —1d —
‘CUJ_ dtwt‘]tzoa g ‘CUC_g % 07 9g=4J -
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The final goal will be to compute ﬁG(Jt, Ct)|t=o0. Let us first determine the Riemannian
metric g := p(+, Jy+), where J; = d¢t o J o duy.

ge = p(- (A, o Jodyy) ) = p((dgy ' o dehy)-, (dgy ' o J o) -)
= (det(dy;™) o v) p(dey-, (J o depy) - ) = (det(dey;) o ) g (depy-, day - )
(det d¢t ¢t)¢: g .

In particular, g is conformal to ;g with conformal factor given by wu; := (det(d%‘ Do wt).
Now let F': [0, +00) — R be the function defined in Lemma and consider the conformal
change of metric h = e'g, where F is evaluated at ||q||2 divided by 2. The next step is to
determine the Riemannian metric

F(Hqtugt) F(um@)
hp=e N ? Jgi=e \ 7 Ju-ig,
where ¢; is the Ji-holomorphic cubic differential whose real part is equal to C;. Therefore,
||qt\\§t> (nqtuf,t) (qu@owt)
F F o —-F
hy =e ( P u g =e > Jug-e 2 Jfh
llge|I3 llal|3owe
() (252)
=e : 2 g pfh = v - bfh

Again, the metric h; is conformal to ¢} h with conformal factor v; (notice that vy = ug = 1).
Using the formula of curvature by conformal change of metric, we get

Kny = Ky
1
_ 1 _
=0 I(Kh oYy — §(Ahln(vt o P, 1)) O¢t) )

where in the last equality we used the functoriality of the Gaussian curvature and of the
Laplacian, namely

Kw;kh =¢:(Kh), Aw;khlnvt =¢;k<Ah1n(Uto¢;1)) .

The last term we need to determine in G(J¢, Cy) is the one involving the norm of the cubic
differential ¢;.

laelli, = ael 3,5, = v N7 alley, = v °llall7 o e - (3.2.19)
o ¥y

We can finally deduce an expression for the term

_ 1 _ _
K, = llael 3, = v (Kn o e = 5 (Bnln(vr 0 w7Y)) o — v 2llal o 0t)



CHAPTER 3. THE GENERAL CASE 70

and compute the first order variation of operator G along the path ¢ — (J;, C;), obtaining

d

. .. .
(K =Nl +1)|_ = —o(Kn = llall2) + U Kn) = 5200 + 20llgll2 — U (Il

: ..
— (1 +2ljal}) - 34n0

where in the last line we used that (J,C) satisfies G(J,C) = 0. At this point, it only
remains to compute v, i.e. the first order variation of v,

dv vy o bt
B dtt‘t 0 s tdtwt )‘t=0 (vo=1)
d F(uqtngé w;1>_F(\\q2\|§) B
T U Py ‘t:O
_ F,(HQ|’2>d(HQtH52;tOwt_l)‘ .
2 dt t=0

By imitating the steps performed for relation (3.2.19)), we deduce that

llaell, = uz *llallg o -

Since () represents the flow of U, the first order variation of the conformal factor w; is

given by
d

i = = (det(dyt) own)| = —divyU .

To conclude, we have

P _F,(IIQII ) lall

— v (2r (M) 1)

hence the first order variation of operator G along the path t — (J;, Ct) is

_ 1 llall;
A G(Lud g7 £uC) = —sAA+ (4 2gl )N, A= divg (3P (T2 lgls 1)
Regarding the second part of the statement, observe that the following inequality holds
T(A) := —fAhA + (1 +2||g|[})A —fAh/\ +A=5).

Since the linear operator S is known to be self-adjoint and positive, hence injective, over
L?(%,day,), so is the linear operator T'. Therefore, if (L], g~ LC) lies inside the kernel of
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2
d(s.4)G, then the function A = ding(%F’(%) ||q||3 - 1) is send to 0 by the operator T'.
At this point, we would conclude by saying that the divergence of the vector field U is zero
(see (3.1.13)), which is obviously true if A = 0, i.e. ¢ = 0. As for the first order variation

2
of the operator G at points where ¢ # 0, using Lemma |3.12[ with ¢ = %7 we get that the
2
function 3F’(Hqu)HqH2 1 is strictly negative. In particular, ding<%F’<%> ||q||3 - 1)
is zero if and only if div,U = 0.

Remark 3.28. In order to conclude the proof of the Theorem [J| one of the remaining
results to show is the inclusion of the subspace W(; 4 inside the tangent space to the

infinite-dimensional space 7:[\30(2, p). In order to show this inclusion, it is necessary to
explain how the differential equations defining W; 4y are related to the process of infinite-
dimensional symplectic reduction. In view not to overextending the discussion too much,
during the proof of the last lemma that follows, we will use a result presented and proved

in Section [3.3.3l
Lemma 3.29. For every (J, A) € HSo(%, p), we have

Wisa) 0 Tp.a) (Ham(S, p) - (J, 4)) = {0} .

In particular, the natural quotient projection m : 7/-[\30(2,/)) — g(E) induces a linear iso-
morphism N
dpaym: Wia) — TpaB(E) -

Proof. Let X be a Hamiltonian vector field on ¥ with Hamiltonian function H, and sup-
pose that (Lx.J, g 'LxC) belongs to Ws.a). Thus, according to Lemma and the
L-invariance of W(; 4y, the same has to hold for I(LxJ, g LxO) = (—LyxJ,—g ' L;xO).
Since W 4) is contained in T{ ;4 7/-[\30(2, p) (see Proposition , the differential of op-
erator GG considered in Lemma has to send the pair (—L;xJ, —g 1L;xC) to zero. By
the second part of Lemma we deduce that JX is p-symplectic, namely d(¢;x) = 0.
This implies that the 1-form —dH o J = —(txp) o J = tyxp is closed, and therefore the
function H is g-harmonic (since d(dH o J) = —AgHp). The only harmonic functions on
a closed manifold are the constants, hence we deduce that the vector field X is equal to
zero, which proves the first part of the statement. Regarding the second one, let E( Y)
be the quotient of the infinite-dimensional space ’HSO(E p) by the group Ham(X, p) and
consider the quotient projection 7 : ’HSO(Z p) — B(E) By definition, the kernel of d(; 4y

coincides with T(JyA)(Ham(E,p) (J,A)). Hence, by the first part of the statement, the
map d(j4)7 is injective. Moreover, since dim W 4y = 16g — 16 + 2g (Theorem and
dim g(Z) = 16g — 16 + 2g, this is actually an isomorphism. O

Remark 3.30. The above lemma shows a major difference with the PSL(2,R) x PSL(2, R)
case (JMST21}, Lemma 4.21]), where the authors were able to obtain a similar result for the
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group of symplectomorphisms of the surface not necessarily Hamiltonian. This forces us to
perform an additional (finite-dimensional) quotient to obtain the Hitchin component, and
thus produces additional analytical difficulties carried out in Section

3.2.6 The circle action on HS(X)

Recall that the space D3(J(R?)) consists of pairs (J, A), where J is an almost-complex
structure on R? and A is a 1-form with values in the trace-less and gg—symmetric endomor-
phisms bundle of R? such that A(J:) = A(-)J and A(X)Y = A(Y)X, VX,Y € TR?. In
particular, there is MCG(T?) =~ SL(2, Z)-equivariant isomorphism between D3(7(R?))and
the holomorphic vector bundle Q3 (T(TQ)) of cubic differentials over Teichmiiller space
of the torus (Proposition . In fact, if (J,A) € D3(J(R?)) then the (0,3)-tensor
C(-,- ) = g5(A(-)-,-) is the real part of a J-holomorphic cubic differential ¢ on (72, J). The
natural S'-action on Q3 (7 (1?)) given by (J,q) — (J,e~?q), can be induced on D3(J (R?))
and results in the following formula

Uy : D*(J(R%) — D*(J(R?))
(J,A) — (J,cosOA(-) —sinOA(-)J) .

It is clear from the definition that Wy preserves the O-section in D3(7(R?)) (seen as a vector
bundle over J(R?) =~ T(T?)), hence it induces an S'-action on By(T?) which will still be
denoted by \/I\’g by abuse of notation. In particular, we proved that \/I\fg preserves Wy and it
acts by isomotries on By(T?) with respect to g¢. Moreover, such action is Hamiltonian and
we computed explicitly the Hamiltonian function (Theorem [Ef .

Moving on to the case of genus g > 2, we still have an S'-action on Q3 (7"( )) given by
([7],q) = ([J],e""*q), which can be induced on the PSL(3, R)-Hitchin component using
the parameterization

d : Hit3(2) — Q*(T°())

found by Labourie and Loftin (see Section [L.5]). Thanks to Proposition and to the con-
struction explained in Section we know that Hits(X) is diffeomorphic to the following
space

J is an (almost) complex structure on X
C is the real part of a J-cubic differential
llali2,

Sympo )’
(h::eF( 2 )gJ,A:ng satlsfy

where F' : [0,400) — R is the smooth function defined in Lemma [3.11} In particular, we
can then describe the induced S'-action by the following formula:

HS()(E,K)) = (‘]7 C)

\Ifg : H1t3(2) —_— Hltg(Z)
(J,A) — (J,cosOA(-) —sinbA(-)J) .



73 3.3. THE INFINITE DIMENSIONAL SYMPLECTIC REDUCTION

Theorem C. Let p be a fized area form on X, then the circle action on Hit3(X) is Hamil-
tonian with respect to wy and it satisfies:

\I’ggf =8 VoeR.

The Hamiltonian function is given by:

H(J,q) := g L f(”q!g"ﬁ,

where f:[0,4+0) — (—00,0] is the smooth function defined by ,

The proof of the above theorem is simply an adaptation of the proof made in the
torus case. In fact, as already explained in Remark identities valid for elements in
D3(J (R?)) can be interpreted as point-wise identities for smooth sections in D3(J (X)), and,
according to the construction explained in Section the Hitchin component Hit3(X)
can be seen a subset of D3(J(%)).

3.3 The infinite dimensional symplectic reduction

In this section we present the process that led us to the definition of the pseudo-Kéahler
structure on the PSL(3, R)-Hitchin component and the characterization of its tangent space
as described in Remark [3.17] The main tool is a general theorem proved by Donaldson,
which will be adapted to our case of interest. In particular, it allows us to give an interpre-
taton of Wang’s equation for hyperbolic affine sphere in R? as a moment map for a
Hamiltonian action in an infinite-dimensional context.

3.3.1 Donaldson’s construction

Since we will be using a lot of notation from Section let us briefly recall the con-
struction of the infinite-dimensional space D3(7(X)). It has been defined as the space of
smooth sections of the bundle

P(D*(J(R?))) := P % D3(7(R2))/SL(2,R) — %,

where SL(2,R) acts diagonally on two factors. In particular, each element in D3(J (X))
can be described as a pair (J, A), with J an almost-complex structure on ¥, and A a
1-form with values in the trace-less and gj-symmetric endomorphisms of 7' such that
A(J) = A(-)J and A(X)Y = A(Y)X, VX,Y € ['(TS). Moreover, a tangent vector (.J, A),
where A := g;lo, at (J, A) can be considered as the data of:

e a section J of End(7%) such that JJ+JJ =0, namely Jis a gj-symmetric and
trace-less endomorphism of T'Y;
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e an End(T'Y, g;)-valued 1-form A such that
L1 :
A=Ay + §tr<JAJ)]1 ,

where 1 is the 2 x 2 identity matrix and Ao is the trace-less part of A. In particular,
the trace-part At of A is uniquely determined by J.

Let us denote with s = (J, A) an element in D3(J(X)), and with § the corresponding
tangent vector. Suppose there is a SL(2,R)-action on D3(J(R?)). Given an SL(2,R)-
invariant symplectic form & on D3(J(R?)), there is an induced symplectic structure on
each vertical subspace of P(D3 (J (RQ))), denoted with &,(,) for € ¥. In particular, given
two tangent vectors 3,5’ € T, D3(J (X)), we can define

wy(s,8) = J; Qs(8,8)p . (3.3.1)

This gives rise to a formal symplectic structure on D3(J (X)) which is invariant by the
action of Sympy(%,p). Now, if the SL(2,R)-action on D3(J(R?)) is Hamiltonian with
respect to the symplectic form @, and with moment map 7i : D3(J(R?)) — sl(2,R)*, given
any section s € D3(J(X)), we get an induced section fis of the bundle Endo(7'%)*. Then,
the following result holds

Theorem 3.31 (|Don03, Theorem 9|). Let p be an area form on ¥ and let V be any
torsion-free connection on TY. satisfying Vp = 0. Define the map pu : D3(J (X)) — Q2(X)
as follows:

p(s) = 5(Ves,Vas) + (s | RY) — d(c(Vafis)) -
Then,
(1) w(s) is a closed 2-form for any s € D3(J(X));

(2) p is equivariant with respect to the action of Ham(X%, p);

(3) Given a vector field V € (3, p), and vy a primitive of vy p, the differential of the
map

D(J(%)) — R
5= J W - p(s)
by

equals

ws(s, Lys) = J Ws(8, Ly s)p .
by
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Before moving on, the meaning of each term in the definition of the moment map must
be explained. First notice that V,s is a section of T*Y @ s* (TV"*P(D?(J(R?)))), hence
we set @(V.s, V.s) to be the 2-form on ¥ given by:

&}(V.s, V.s)(U, V)= @(VUS, Vvs), for U,V eT(TY) ,

where in the RHS of last equality we apply the symplectic form & on TV P(D3( 7 (R?)))
and the wedge product on the 1-form part. Moreover, the covariant derivative V,jis is a
section of T*¥ ® Endo(7%X)* and we get a 1-form by performing the following contraction:

2
c(Vefis) (v) := > Ve, fis | (v®e€})o), for ve I(TT)
j=1

where {e1, ea} is a local orthonormal frame of 7' and {e7, €3} is the associated orthonormal
dual frame. Finally, the curvature tensor RV of the torsion-free connection V is defined as:

RV (U V)W :=VyVyW = VyVyW = VW,

for any U, V,W e I'(TY). Because of the anti-symmetry in the first two entries of RV, it
can be considered as a section of Q?(X) ® Endg(T'Y). For this reason we can contract the
endomorphism part of RV with iy and obtain the 2-form on ¥ denoted with (fis | RV).
Let us recall the following technical result that will be useful later in the construction of
our moment map.

Lemma 3.32 (|Don03, Lemma 13]). There exists a closed 2-form &p(p3(7w2))) on P(D3(J(R%)))
such that, for any section s € D3(J (X)), the following holds:

~

s* Op(3(7(r2))) = B(Ves, Vas) + (is | RY) .

In particular, since D3(J(R?)) is contractible, the de-Rham cohomology class of u(s) in
H2%.(3,R) does not depend on the chosen section.

3.3.2 The moment map on D3(7 (X))

In Section we introduced an SL(2,R)-action on elements (J, A) € D3(J(R?)), given
by

P-(J,A) = (PJP7', PAP)PY,
where A(P~!.) has to be interpreted as the action of P € SL(2,R) via pull-back on the

1-form part of A. Moreover, we proved that for any choice of a smooth function f :
[0, +00) — (—00,0] such that: f(0) =0, f(¢) < 0 for any ¢ > 0 and tlirf f(t) = —oo, the
—+400

SL(2,R)-action is Hamiltonian with respect to &y and with moment map

figg,4)(X) = <1 - f(”é”‘z’)) tr(JX) .



CHAPTER 3. THE GENERAL CASE 76

On the infinite-dimensional space D3(J (X)) we defined a (formal) family of pseudo-Kéhler
structures (gf,I,wy), depending on the choice of a smooth function f as above (Section
3.2.1). We still denote by &y the symplectic form induced on each fibre by an area-

preserving isomorphism between 7,3 and R?, then

(@p) ) ((,4), (], A)) = L ©r((J,A), (7, AD)p
is obtained from relation (3.3.1)) by integrating fibre-wise the family of symplectic forms
introduced in the torus case. Moreover, according to Donaldson’s construction of Section
3.3.1} the group Sympy(Z, p) acts on D3(J (X)) preserving w s and the action of Ham(X, p)
is Hamiltonian.

Theorem 3.33. The moment map found by Donaldson for the action of Ham(3, p) on
(D3(J(E)),wy) can be expressed as:

[l

() = =2 (LY ori? = ori )+ 265 (1 (102) — 1)+ iz (110

where T is the complex cubic differential whose real part is equal to C = gyjA and where

0=05,0=20y.

Proof. We will determine the expression for p using Theorem [3:31] hence starting from the
explicit description of /i given in Theorem [F| As a torsion-free connection V we can choose
the Levi-Civita connection with respect to g; = p(-,J-), which clearly satisfies Vp = 0.
Similar computations can be found in [Tral8|, where the functions f and F' are chosen to
have different properties.

The term @(V,s, Ves):

Since V is the Levi-Civita connection for gy, we have VyJ = 0, and the element Vi A
is still an Endo(T'%, gs)-valued 1-form for any V € I'(T'Y). Now let {e1,e2} be a local
gs-orthonormal frame of 'Y and let {e},e3} be the dual frame. Then, we get

~ LIl
(wf)(J,A) ((0, Ve1 A)a (07 vezA)) = _éf/ (’2‘)<V61A, (VGQA)J> :
According to the above observation, the tensors V., A and V., A can be written as

Ve, A= (A el + (Ag)tes, Ve, A = (A))?ef + (Ag)%el

where A; := A(ej) for j = 1,2 and

k1 k1l k2 k2
a a a a
(Al)k = (allc% 1%1) ’ (AQ)k = ( ]{é 61L%2> s for k = 1,2 .

12 a1y aia —agy
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Using the relation Ay = A1J and V,J = 0, we get

Moreover, by ([2.2.4)), we have

(Ve A, (Ve A)T) = tr (A1) (A1) + (42)'(42)%)
= 4(ajjaly — ajzaiy) -

Recalling that A = g;lC, last formula can be written in terms of C(-,-,-) by using the
following relation:

a)? = g7(Ver A)(ej) - ety em) = (Ver O)(ejy €1y em) = (Ver,C)jim -

In the end, we obtain

; P )
@1)(,4) (0, Ver 4), (0, Ve, 4)) = 3f< 5 ><(velc>1ll(v€20)112 (velc>112(v620)111)
= _gf/<‘|72"3> ((v€10)222(v620)111 — (v610>111(ve20)222) ,

where in the last step we used C'(J-, J-, J.) = =C(J-,-,-) = =C(-,J+,-) = =C(-,-,J-). The
action of the operators @ and ¢ on 7 are defined as follows:

1<v”7_iv‘]7}7>? (37—)@"7"') = %(VUT—F’L'VJUT) .

(57')(?}, ERE ) = 2

With a fairly long calculation in local coordinates we deduce
(@) (ex, - P = [1(07) (1, )P = (Vey C)222(Ve, C)111 = (Ve C)111(Vey C222 -

Finally, we get

/|3 =
BV (1, 4), V(. 4)) = @) (0. Vs 4), 0.V, ) = (L) e 21012

where ||07|? = ||07(v, -, -, -)||? and ||07||* = ||07(v, -, -, -)||? for some unit vector v (the norm
is independent of such vector).
The term (ji, | RV):

Since V is the Levi-Civita connection for g, the tensor RV coincides with the Riemann
tensor of g;. A classical computation using a local orthonormal frame shows that RY =
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KjpJ, where K is the Gaussian curvature of g;. From Theorem [F| we have fi(j4)(-) =

<1 - f(“T“J)) tr(J-), therefore

~ P 7115y _
(is | R >—2KJ<f( 1) —1)e.
The term d(c(Vafis)):
Notice that, for any B € sl[(T'Y, p) = Endo(TX) and for any v € T'(T'Y), we have
2
. T
Vi (8) = ~af (T09) ) w(sB)

where we used again V.J = 0. If {e1, e2} denotes a local gj-orthonormal frame for 73 and
{eF,e4} denotes its dual frame, we obtain

c(Veli(g,a))(v) = (Verfig,a) | (0@ e1)5) + Veali(sa) | (v®ea)p)
( 5 ) tr (J(v®er)s) —d (@)(eg)tr(J(v@)eg)S)

(T (er)e? f<||T||2>(2)e§(Jv)

< ( EHTW

In other words c(Vefi(s4)) = —d <f<”72”2>> o J. It is not difficult to show that, for any
1 € C*(X), the following relation holds:

d(dy o J) = =Ag,1b = —2id 059 = 2i0;0,¢ .

In the end, we get

d((Vefigsa))) = —d<d<f(HT2HZ>) oJ) —2i aaf(”T”z) .

O

2mx(2)

Corollary 3.34. Let p be a fixed area form on 3, and let ¢ : = RrealSp)”

Then, the map

B DHI (D) — BX(E) < 9(5, p)°
(J,A) — pu(J, A) + 2¢p

is a moment map for the action of Ham(X, p) on (D3(J (X)), wy).



79 3.3. THE INFINITE DIMENSIONAL SYMPLECTIC REDUCTION

Proof. According to Lemma [3.32] the de-Rham cohomology class of the closed 2-form
wp(J, A) does not depend on the choice of the section, and the same is true for its inte-
gral over the surface. Hence, if A = 0, by Gauss-Bonnet Theorem we get

| n20) = =2 | Ksp = —am(sy

In particular, the integral of the 2-form p(J, A) + 2¢p is equal to zero. This implies that
fi takes values in the space of exact 2-forms B?(X), which is contained in (X, p)* (see
Section [3.1.1)). Finally, the properties (i) and (ii) in Definition continue to hold for f
since the additional term 2cp does not depend on the chosen section. O

In the remaining part of this section we show how, if we assume the additional hypothesis
0;7 = 0, the moment map fi we found is directly related to Wang’s equation for hyperbolic
affine spheres in R? (see Section . The idea of proof of the following result is similar to
that used in |Tral8| for a slightly different moment map.

Theorem 3.35. Let (J,A) € D3(J (X)) and suppose that A = g;'Re(r) with 0,7 = 0,
then

2
[klls?

n(J,A) = f2eF( 2 ) (Kh — |72 + 1),0 , where h = 6F<|T2l?]>gj .

Proof. If A = 0, the statement is immediate. Suppose that A # 0 and define A to be the

2
function % Then, outside the zeroes of A it is easy to show that:

—%5‘)\ AOXN=|lo7])3p Kjp= —%3010g()\) .
Let us assume for a moment that the following identity holds:
2i8<(f’()\) . f?fi))ax) - —%\f’(/\)é/\ AN+ 2F (N K gp + 2i00F () . (3.3.2)

According to Theorem we can write fi(J, A) as follows:
ji(J, A) = —%f’()\)é)\ N %(1 — F(N)a0log(A) + 2000£(N) + 2¢p
In particular, we obtain the following sequence of identities:
Ji(J, A) — —%f’()\)é)\ A ON+ %(1 — F(V)ddlog(N) + 2id0f(A) + 2ep
- —%f’o\)én AN+ %(1 —FO)) (- %ij) 1 2i00f(\) + 2¢p  (rel. (B32)

- 21'?9(("0;;) - f’(A))&A) — 2Ky —&)p (Lemma [3.12)
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= —2i0F'(\) A OX —2(K7 —¢c)p
= —2i00F(\) — 2(K; — c)p

_ _2<KJ - %AQJF(A) - c)p .

Now, if h denotes the Riemannian metric on 3 conformal to gy with conformal factor equal
to eF()‘), we get

1
K = e FO (KJ - iAgl,F()\)> .
On the other hand, using the functional equation (3.2.5) satisfied by F', we have

(7, 4) = ~2(Ky — 520, () — )

—Q(GF(A)K;L — c)p
—2eFV (K, — ||7|[3e3FN 1)
= —2e"V (K, — |I7]]7 + 1)p .

In order to finish the proof, it only remains to show that relation (3.3.2)) holds, which stems
from the following identities:

_% l_ 7 -3 _o: g7 /A
ZfKJp—g)\f()\a/\a)\ aaA), 2168]"—2@(]‘ amaxwa&x).

This ends the proof outside the zeroes of A, which is a finite set in 3. Thus, the statement
follows by continuity of the expression. O

Corollary 3.36. Let (J,A) € D3(J(X)). Then fi(J,A) = 0 and dVA = 0 if and only if
(J,A) e HSo(%, p).

Proof. Recall from Section that 7/-[\30(2, p) is the space of pairs (J, A) such that (h =
ef'g J,A) satisfies li (see also Remark . By Theorem E we know that, up to
contraction with the metric, A is the real part of a J-holomorphic cubic differential 7.
Finally, the above theorem implies that fi(J, 4) = 0 if and only if K, — ||7]|7 = —1. O

3.3.3 The symplectic quotient

Here we explain how the use of symplectic reduction allows us to determine (in part)
the system of differential equations defining W 4y, hence those characterizing the
tangent space to the PSL(3, R)-Hitchin component (see Remark . Following in parallel
the construction done for Teichmiiller space in Section the idea is to induce our
symplectic form wy from the ambient space D3(J (X)) to the quotient of 271(0) by the
group Ham(X, p). On the other hand, there are two major differences with the case of
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T(X): the first is that the infinite-dimensional space HSo(E, p) is cut by two equations
(see Corollary and, only one of them, has an interpretation as a moment map. In
particular, we have to look at the space ﬁ_l(O) N Mc modulo Ham(X, p); the second is
that once we induce the symplectic form on the quotient, the pairing ws(I-,-) = gs gives
rise to a pseudo-Riemannian metric, and this generates additional difficulties since one is
intent to identify the space W 4y with the gy-orthogonal to the Ham(X, p)-orbit.

Our moment map £t has values in the space of exact 2-forms on the surface, which is
contained in the dual Lie algebra of the Hamiltonian group (see Corollary . After
recalling two technical lemmas, in Proposition[3.39|we compute a primitive of the differential
of the moment map (still with values in the exact 2-forms). This will allow us, in Proposition
to perform a highly non-trivial integration by parts, which will be useful later in
discussing the (possible) presence of degenerate vectors for the pseudo-metric away from
the Fuchsian locus. Then, with Proposition we prove the inclusion of W, 4y inside

the tangent to 7730(2, p), the discussion of which had been left hanging by Section
Finally, inspired by the Kéhler reduction of Teichmiiller space, we are able to characterize
W) as the largest subspace in T{;, A)%O(E, p) that is both gs-orthogonal to the orbit
and invariant under the action of the complex structure I.

The statements and the proofs of Proposition [3.39 and Proposition [3.41] are inspired by
the analogous counterparts in the anti-de Sitter case ([MST21, Proposition 6.10 and 6.12]).
Despite that, the presence of the 1-form part in the tensor A created additional problems
during the development of the proofs, which will be highlighted throughout. We first recall
two technical lemmas that will be useful further on.

Lemma 3.37 ([MST21, Lemma 4.16]). Let B be a trace-less endomorphism of TS, then
(VxB)Y — (VyB)X = (divyB)(Y)X — (div,B)(X)Y .

Lemma 3.38 (|[MST21, Lemma 4.15]). Let J € T;J (%) be an infinitesimal variation of a
complex structure on 3. If V denotes the first order variation of the Levi-Civita connection
of g7 = p(+,J-) along J, then the following holds:

VxY = —%((divj)(X)JY +J(VxJ)Y), (3.3.3)

for every tangent vector fields X,Y on X.

Proposition 3.39. For every (J, A) € D3(J(X)) such that A = g;'Re(r) with d;7 = 0,
and for every tangent vector (J, A) € T(; 4yD*(J (X)) we have

!/

di(J, A) =d<(f—1)divgj+dfoj+df’oj—Eﬁ) : (3.3.4)

where f, f', f are evaluated at % and 8 is the 1-form defined as B(V) := (Ao, (Vv A)J).
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Proof. The most intricate part of the proof is encompassed in showing the following identity:

( ~ 2 (ol - HaTH?)p) = —d(L8) ~2fKupralf 1) mdivgd , (335)

where the derivative is taken with respect to (J, A) along tangent directions (J, A). Let us
assume for a moment that ((3.3.5)) holds and let us prove the formula stated in the theorem.
In fact, the other terms in i (see Theorem [3.33)) are easier to handle

(2(f - ].)KJ[))I —2fK p+2(f — 1)AK (J)p (Proposition

=2fKyp+ (f — 1)d(divyJ) .

Moreover, . .

(2i00f) = —(Ag, f) p=d((df o)) =d(df o J +df o J) .
Combining these formulae, we get the desired expression for the moment map

/ . . . . . .
dfi(J, A) = —d(‘%ﬁ) —2fKyp+df adivgd +d(df o J +df o J) + 2fKyp+ (f — 1)d(divyJ)
. . . /
:d((f—1)divgJ+dfoJ+dfoJ—EB> .

Now let us focus on proving relation (3.3.5)). As was shown in Theorem we know that:

—;f’(HéTHZ - HaTHQ) = (('Df)(J,A)((O>Ve1A)a (OavezA)) ) (3'3'6)

for any choice of a local frame {ej, es} such that p(ej,e2) = 1. Therefore, we can compute
the following derivative:

(— gf'(llafll2 - |ar||2)>, = ((@f)(J,A) (0, Ve, 4), (0, V@A)))/
_ ( - 6/<v61A, (VEQA)J>>/ :

where in the second step we used that, for any ¢ = 1,2, the endomorphism part of V., A
is trace-less and gj-symmetric. In order to simplify the computation of the derivative, let
us make some preliminary observations. Since equation is true for any unit volume
local frame {e1, ea}, we can further assume that it is gj-orthonormal and does not change
as J varies along tangent directions. Moreover, the terms corresponding to variations J
make no contributions as tr (VelAV@AJ) =0 (see (2.2.4)). This allows us to reduce the

study of the derivative to only the following terms:

(= 3BrI = 10r1P) ) = = £1A AuXVor 4, (Vs )4

_f f
6 6

(3.3.7)

(ve1A)/v (VGQA)J> - <v61A7 (vezA)/J> ’
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and we expressed the first order variation of f’ as %<A, A0> (Lemma . At this point,
using Lemma we can obtain an expression for (VxA)'. In fact,

(V)(A)/ = va + VxA,
and we can compute

(VxA)(Y)Z = Vx(A(Y)Z) — A(VxY)Z — A(Y)VxZ

_ %( — (div)(X)JANY)Z — J(Vx J)A(Y)Z + (div) (X)A(JY) Z+

+ A(J(Vx DY) Z + (div)(X)A(Y)JZ + A(Y)J(VXJ)Z)
1 . . . .
=3 (3(divJ)(X)A(Y)JZ + A(J(Vx DY) Z + AY)I(VxJ)Z — J(VXJ)A(Y)Z)
where we used A(JY)Z = A(Y)JZ and A(Y)JZ = —JA(Y)Z. As for the term involving
the derivative of A, we first notice that A’ = JJA + A, hence
(VxA) = JVxJA+ JIVxA+VxAg+ VxA,
. . .1 . :

= IVxJA+ JIVx A+ Vicho+ 5 (tr(VxdiA) + 6 (J79xA)) .

Now, choosing X = e; and observing that the two trace terms in (V¢, A’) and the four

elements AJV,J, Ve, JA, JVe, JA, JJV,, A are zero once they pair with (V,,A)J using
the scalar product (2.2.4), we get

4
, .
— 15 CA(Ve T )1V, AT)

T2 (Ter ) = L (@i )AL (T, 007 £ 09, o, (9,407

Moreover, since (V, A, (Ve, A)' J) = —=((Ve, A)J, (Ve, A)), performing a similar computa-
tion as above, we obtain

/!

L (e ) (Vs )1y = E @) eayas, (v )1y +

E<V62A07 (VelA) J>

/ .
+ E<A(V62J ), Ve, ATy .



CHAPTER 3. THE GENERAL CASE 84

Combining everything together in (3.3.7]), we have
/

(- %f’(HéTHQ ~llorlP) = f”<A A0X(Ver A, (Ve AVT) + 1 ((div ) (e2)(V ey A, A)
~ (divd)(e)(A, (Vey A)T)) L = ((Ver Ao, (Vea 4) 1)
+ (Vo A, (Ve o)) + {2 ((Ver A, A(Verd )

—(A(Ve,d - ),V62A>) :
(3.3.8)

where we used, again, the symmetry and the compatibility of the scalar product with J (see
(2.2.5))). Regarding the divergence term found in (3.3.8]), it can be elaborated as follows:

f - (@iv)(e2)(Ter A, 4) = (divi)(e1)(A, Ve 4)) = =(div]  df)(er,e2)
=(d(f—-1) A divj)(el,eg) ,

where we used df = fZ/<A,V.A>. Comparing relation li with 1) the proof is

complete if we show that

/

(i) — d(%ﬂ) (e1,e9) = — f—”<A, AoV e, A, (Vey A)T) + 27 K+
i (e Ao, (Ve A1) + (Vo 4, (Ve, )T

(#5) (Ve A, A(Veyd - )) —(A(Veyd ), Ve, A = 0.

Proof of relation ()
First notice that if A = 0 then the relation is clearly satisfied. Suppose A is not identically
zero, then

/ / " !/
a(Lp) = —zarap-Lag=-Liaviaynp-Las.

Regarding the differential of 8(e) = (Ag, (V. A)J) we get
dB(ela 62) =e1- (<A07 (VBQA)J>) — €2 (<A07 (Vel A)J>) - <A07 ( [e1,e2] )J>

= <V61 Ao, ( >J> <V62A0, )J> + <A0, (VeIV@A V32V61A V[el eg]A) J>

= (Ve, Ao, (VEQA)J> —(Ve, Ao, (VEIA)J> — 3K (A, Ap) ,
where the last equality follows from RY (e1,e2)A = 3K AJ since RY (e1,e2) = Ve, Ve, —
Ve, Ve, = Ve e,]- Thus,

—Jgdﬁ(el,eg) = —€(<v81A0, (Ve, A)J) — Ve, Ay, (VelA)J>) +2fK; . (3.3.9)
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Concerning the other therm, we need to prove that
((A, VoA A B)(e1,e2) = (A, AV, A, (Ve, A)T)

Notice that, for any p € ¥ outside the zeroes of A, the elements (A;), := (A(el))p and
(A1J)p = (A(el)J) form a basis for the space of gj-symmetric and trace-less endomor-
phisms of T,3. In particular, using the scalar product (-,-) we can write

L
Al

1

AO = W <<A, A0>A + <AJ, A0>AJ> ) v61‘4' =

(<A, Ve, ASA + (AJ, V€1A>AJ) .

Replacing these identities in the previous equation, we obtain

((A,VeA) A B)(e1,e2) = (A, Ve, AXAg, (Ve A) ) — (A, Ve, AX(Ag, (Ve, A)JT)

_ W (CAo, AXA, (Vey )Ty + (Ao, ATXAT, (Ve A) )

- W (CAo, XA, (Ve )Ty + (Ao, ATXAT, Ve, A)))
- ﬁi’ﬁ? (€A, Ve AXA, (Ve A)T) = (A, Ve AXA, (Ve A) )
B ﬁfﬁ{uj? AV DA+ (AT Ve, HAT; (Ve A)T)

= (A, AgX(Ve, A, (Ve, A)JY .

Since the relation is true on the complement of a finite set in ¥ (the zeroes of A), it extends
on the whole surface by continuity of the expression.

Proof of relation (i)

As explained at the beginning of the section, the presence of the 1-form part in the tensor
A generates further difficulties. In fact, one has to deal with terms of the form A(Veij )
which do not appear in the anti-de Sitter case. First of all notice that if A is identically
zero, then the relation is clearly satisfied. Hence, let us assume that this is not the case. In
the following, we will use the notations introduced in the proof of Theorem Namely,

Ve, A = (A))red + (Ag)tes, Ve, A = (A1)?%e} + (As)%eh

where Aj := A(e;) for j = 1,2 and since A = g;'C, we have
Ci1 Chz > ( Chiz —0111>
Ay = . Ay = ,
! <0112 —Cin 2 —Ci1n —Cha2

(V€)1 (VO o ViQ12 — (VO 3
(A" = ((VkC')llz (VkC)lﬂ) . (A2) = ((VkC')nl (VkC)112> » k=1,2
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(ViC)jim = (Ve, O)(ej,e1,em) = gJ((VekA)(ej) . el,em) )

By assumption, C is the real part of a holomorphic cubic differential and, this is equivalent
(see Theorem [1.11)), to require that (V xA)(:) = (VxA)(J-) for any vector field X on the
surface. In particular, we obtain the following additional relations

(V2C)111 = (V10)112, (VaC)i12 = =(V1iC)in - (3.3.10)
The next step is to write explicitly, in a similar way, the tensors
A(Verd ) = (A) et + (Aa)tel,  A(Ve,J ) = (A%} + (A2)%e} .

For any p € ¥ outside the zeroes of A, the elements Ay and As = A;J form a basis for the
space of g;-symmetric and trace-less endomorphisms of 7),%. In particular, both Ve, J and
Ve,J can be written in this basis as

Ve, J = U(f@)(tr(velel)Al + tr(AlJVel j) Ag)
1
V@j = @(tr(V@jAl)Al +tr(A1JV62j>A2> .

This new form of the endomorphisms allows us to compute their values on the g j-orthonormal
basis of the tangent to the surface

Velj ce] = ‘w(}42)<tr(vel jAl)Cln + tr(AlJVelj) 0112)61
1
1

+ m (tr(Vel jAl)CHg —tr (AlJVelj> 0111)62
1

1
tr (A%)
1

— m (tr(Vel JA1)0111 + tr (Al!]velj> 0112)62
1

Velj -eg = (tr(Velel)Cllg - tr(AlJVelj) C111)€1

and the same calculation can be done for VeQJ . In particular, we obtain

~ 1 . .

(Al)k - tr(T%) (tr(Vek JA1> (0111A1 + 0112142) + tl“(AljvekJ) (0112A1 — ClllAQ)),
~ 1 . .

(AQ)k = tr(A%) <tr<VekJA1> (0112141 - 0111142) - tr(AlJvekJ> (0111141 + 0112A2)> .
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To conclude, we notice that tr(A?}) = 2(C%; + C%,), hence

(Ver A A(Veyd )y = (A(Vey T - ), Vep Ay = tr ((Al)l(ﬁl)2 + (Az)l(ﬁgﬁ)

—tr ((A)2(A)! - (42)2(A2)")
=0.

Since the relation is true on the complement of a finite set in ¥ (the zeroes of A), it extends
on the whole surface by continuity of the expression. O

Remark 3.40. In analogy with what happens for the PSL(2,R) x PSL(2,R) case (see
[MST21, Remark 6.11]), we fix a primitive of dgi found in Proposition and we consider
the linear map L ) : T(s4)D*(J (X)) — QY(X)/BY(E) < &(Z, p)* which associates to

each tangent vector (.J, A) the above primitive (modulo exact 1-forms). With an abuse of
notation we will denote this primitive by dgi(J, A) = L5 4)(J; A).

Proposition 3.41. Let (J, A) € HSo(S, p), then for every (J,A) € T;4D*(JT () and
for every symplectic vector field V', we have

wy((Lyd, g5 Ly C); (], A)) = —(di(J, A) | V)e (3.3.11)

Proof. Before we begin the proof of the formula stated in the proposition, let us make some
preliminary remarks. For any vector field X on the surface, let use define the operator
Mx : T(TY) — I'(TX) as Mx(Y) := V{. X, where VY is the Levi-Civita connection with
respect to g = g5 = p(+,J-). The endomorphism Mx can be decomposed as
tr(M tr(JM
My = r(2x)]l_ r( . x)

J+ M%

where the first term is the trace part, the second one is the g-skew-symmetric part, and the
third one is the g-symmetric and trace-less part. If X = V is a p-symplectic vector field,
then the trace part of My vanishes. Since J is V9-parallel, we have My = JMy and its
decomposition is given by

tI‘(JMv)
2

My, = JMy = ]1+0+JM‘S/ (3312)

In particular, the g-skew-symmetric part of My vanishes and JM5, = MY,,. Recall that
(see (3.2.18))) we found the following formula for the Lie derivative of C' expressed in terms
of the tensor A

(97 LvO)() = (VvA)() + A(My+) + A()My + MPA()
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which can be re-written using the decomposition of My found above

(07 LvC)() = (Vv A) () — S tr(IMy)AT + A(M )+ AM + My A . (3.3.13)
N 2 . ,
e trace part

trace-less

At this point, we can compute the symplectic form

(wp)((LvJ, g7 Ly C), (J,A)) = L (( F=1){LyJ, JJ)— Jg((g_lﬁvC)o, (AJ + AJ)o)

/

+ 45Ug7 Ly O, (AT + Ad)r))p
- L ((f — 1Ly, Ty = Ty A= ;tr(JMV)AJ, AoJ>
i 5 ((AQM -), AgJ) — %<AM; + My A, (AT + Aj)tr>)>p

In order to simplify the third and fourth term in the integral, we make us of the following
identity which will be proven at the end

CAM -, Aoy — %<AM‘S/ M A, (AT + Ad)d = 0. (3.3.14)
Regarding the first term in the symplectic form, we use Lemma and we obtain
|7 = 0ieva g = | (= DidivyHV) + (¢ = vy (V)
% %
- L (11— P@ivg)(V) = dFCIV) +divg((F ~1IV) )
- |, (7 = v, hv) + ariv))o

Moving on to the second term in the symplectic form
/ .
- [ LwvaSutnam)asdone = - [ (= £80) - faiy (7))o
/ . .
| (=50 + V) —divy ()
/ .
= | (- £ 8+ afm))e
b
In the end, combining the above two relations with (3.3.14]), we obtain

(W) ((Lv ] g~ LyC), (] A)) = — L ((f = V)(divg ) (V) +df (V) = GIB(V) +df(Iv))p
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=LLV((f—1)divgj+dfoj—‘3/6+dfOJ)p

:J ((f—1)divgj+dfoj——/5+dfoJ> ALvp
E 6
= ~(dp(J, A) | Vs

where in the third step we used equation (3.1.6)).

Proof of relation (3.3.14))

Once again, the presence of the 1-form part in A makes the analysis more difficult. In fact,
there is an additional term which does not appear in the anti-de Sitter case. If A = 0 the
identity is clearly satisfied. Suppose A # 0, then for any p € ¥ outside the zeroes of A
the elements Ay and As = A1J form a basis for the space of gj-symmetric and trace-less
endomorphisms of T,3. Let {e1,e2} be a gj-orthonormal basis and let {e},e5} be its dual.
Following the approach used to prove Proposition [3.39] we have

1
A(M‘S/ ) = tr(A%)<tr(M‘S/Al)(CnlAl + 0112142) + tr(Ale\S/)(anAl — C111A2))6T

1
+ AT <tr(M‘S/A1) (C112A1 — 0111142) + tI‘(Ale‘S/) (C111A1 + C112A2))6; ,
tr(Al)

AN, + My A = tr(My Ar)lel + tr(A JJMy)1es,
. ) 1 . 1 ) . . .
(AT + Ay = 5 tr(AQ)]le’f -t <A1>]le§‘, AoJ = (A1)oJet + (Ag)o et
In particular, we can write the two terms in (3.3.14)) as follows:

- %<AM‘S/ CMEA, (AT + Ad)e) = —%(tr<A2> (A M) — tr( A ) (4 05)),

(AWM - ), Agd) = W (Cuntr(A1(A)oT ) + Crrz o Aa(Ar)o )
W (an tr (A1(A2)0J) — G tr<A2<A2)OJ))
tr(;l(li\gv) (0112 tr <A1 (A1>0J> —Citr (A2(A1)0J)>

. tI‘(AlMLS]V)

r(A2) (C’111 tr<A1(A2)oJ> + Chia tr(AQ(AQ)OJ» .
1
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Finally, writing A in term of the variations of the tensor C, namely

i Cin1 C112> ' (C112 sz)
A = (¢ az) 4 (€ ;
! < 27 \Cizz o

and using that tr <Ai(Ak)0J> = tr (AiAkJ> for any 7,7 = 1,2, a direct computation shows

the desired equality. Since (3.3.14) holds on the complement of a finite set in X, it holds
everywhere by continuity of the expression. O

Remark 3.42. It is crucial to emphasize the importance of the result just proved. From
the general theory of moment maps (see Definition we know that follows from
Corollary if dpt is paired with Hamiltonian vector fields. The point is that g can
not be promoted to a moment map for the action of Symp(3, p), which still preserves wy.
In particular, the formula showed above is far from being obvious when computed for a
symplectic vector field, which decomposes as the sum of a harmonic and a Hamiltonian
vector field (see (3.1.2))).

Lemma 3.43. Let (J, A) € D3(J (X)), then the kernel of the linearized Codazzi-like equation
dVA =0 is given by

{(J,A) e Ty 4 D*(T(E)) | d¥ Ag(s,e) — J(divgJ A A)(e, ) =0} .
Proof. Recall that, for any vector fields X,Y, Z € T'(T%), we have
(AVA)(X,Y)Z = (VxA)(Y)Z — (VyA)(X)Z . (3.3.15)

Therefore, we need to compute the derivative of (3.3.15) with respect to variations of (J, A).
For instance,

((Vx)()Z = (Vv A)(X)Z) = (VxA)(V)Z ~ (Fy A)(X)Z + AV 4)(X,Y)Z,

where A’ = JJA+ A. The part involving the variation of the connection has already been
computed in the proof of Proposition

(VxA)(Y)Z = %(3(divj)(X)A(Y)JZ + A(J(Vx DY) Z + AY)I(VxJ)Z — J(VXJ)A(Y)Z>.

Subtracting the term (VyA)(X)Z from the last expression and using Lemma on
A((VxJ)Y — (VyJ)X), we get

(VxA)Y)Z — (VyA)(X)Z = J((divj)(Y)A(X) — (divj)(X)A(Y)>Z + %JA(X)(VYJ)Z

+ 3 ((Vy DA — AWV ) — (Vx))A(Y)) 2
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. 1 .
= —J(divJ A A)(X,Y)Z + §JA(X)(VyJ)Z
1 . . .
+ 57 (VrDAKX) = AV (V) = (VxD)AY) ) 2
Regarding the term with the exterior covariant derivative of A’, we have

(dYAN(X,Y)Z = @V (JTA))X,Y)Z + AV Au)(X,Y)Z +(dV Ag)(X,Y)Z . (3.3.16)

term (a) term (b)

The term (a) is easy to handle since VoJ = 0 and dVA = 0,
(AV(JJANX,Y)Z = Vx(JTJA(Y)Z = Vy(JJA)(X)Z
— J((vXj)A(Y) - (VYJ)A(X)>Z .
As for the term (b), recall that Ay, = Str (jJA)]l, hence
(a¥Au) (X, Y)Z = (Vx Au)(Y)Z — (Vy Au) (X)Z

= %tr(VX(JJA(Y)DZ - %tr<vy(jJA(X))>Z

_ %tr((vXJ)JA(Y) — (VyJ)JAX))Z .

We conclude if we show that

%tr((VXJ)JA(Y) — (Vy)TAX))Z = —I(VxDAY)Z + J(Vy D) A(X)Z

_ %JA(X)(Vyj)Z - %J(VYJ)A(X)Z

+ %JA(Y)(VXJ)Z + %J(VXJ)A(Y)Z )

which follows from the fact that the elements JA(X)Vy J—J(VyJ)A(X) and J(VxJ)A(Y)—
JA(Y)V xJ are both trace-term, and they can be written as

JAX)Vyd — J(VyJ)AX) = — tr(J(Vyj)A(X)>]l,

J(Vx)AY) — JAY)VxJ = — tr(JA(Y)VXj)]l .
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Proposition 3.44. Let (J,A) € %Q(E,p) and consider the space Wy a) defined by the
system of equations . Then,

Wisa) < TigayHSo(E, p) -

Proof. According to Corollary [3.36] the infinite-dimensional space 7730(2, p) can be seen
as the intersection of i~ *(0) with M¢ := {(J, A) € D3(J(%)) | dVA = 0}. In particular,
the tangent space to the pre-image of the zero locus of the moment map is identified with
Ker (dﬁ) On the other hand, Proposition and Lemma together implies that

d((f —)divgd +df o J +dfoJ — LAy, (V.A)J>) —0

(J, A) € Ty HSo(S, p) — . .
A ¥ Ag(e, #) — J(divyd A A)(s,e) = 0

Looking again at the equations (3.2.9) defining the space W/ 4), it is clear that
Wiga) < Ti5,0HSo(Z, p) -
0

At this point, it must be noted that the subspace we are interested in can be described
as

_ )i (J, A),1(J, A) € Ker(dfr)
W(J,A) = {(J, A)e T(J,A)D3(L7(Z)) dvA0<.7 0)—J(divnglj1)(o, 0= 0} (3.3.17)

which clarifies the connection of the first two equations in (3.2.9)) with symplectic reduction
theory.

Theorem G. For any (J, A) € 3'730(2,/)), the vector space W 4y is the largest subspace
in T(J’A)?-[\SO(E, p) that is:

e nvariant under the complex structure 1;
e gr-orthogonal to the orbit T(JVA)(Ham(E,p) - (J, A))

Proof. Recall from Corollary that the space 7/-[\30(2, p) can be identified with 2~ *(0) N
Mc, where M¢ := {(J,A) € D3(J(X)) | dVA = 0}. Let us denote with W the largest
subspace in T(J7A)7—730(Z,p) that is gs-orthogonal to T(; 4)(Ham(X,p) - (J,A)) and I-
invariant. Suppose that (J,A) € iV[V/,. hence the same is true for I(J, A) by I-invariance.
In particular, both (J,A) and I(J, A) lie in Ker(dgt). We now note that (J, A) is gy-
orthogonal to the Ham(X, p)-orbit if and only if I(J, A) lies in Ker(dfi) thanks to the
following computation

gr(Lv g7 Ly C), (J,A)) = —g((Lv ], g5 Ly C),T2(J, A))
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= —w((Lv d, g5 Ly C), 1(J, A))
= R, A) | V)5, VVeN(Sp).

by definition of moment map. This implies that an element (J, A) belongs to W if and only
if

dp(J,A) =0

da(1(J, 4)) =0

AV Ag(e,e) — J(divgJ A A)(s,8) =0,

which is equivalent to the system of partial differential equations (3.2.9)) defining the sub-
space W(; 4y (see Proposition (3.39). O

3.4 The pseudo-metric is non-degenerate

Here we discuss the possible presence of degenerate vectors for gy away from the Fuchsian
locus and we present the results obtained suggesting the non-degeneracy of the pseudo-
metric over the entire PSL(3, R)-Hitchin component.

3.4.1 The finite-dimensional quotient

Although the main part of the results have been shown, it still remains to prove Theo-
rem [K| namely the identification of Hits(X) with the finite dimensional quotient B(X)/H,
where g(E) is the smooth manifold of real dimension 16g — 16 4+ 2g isomorphic to the
quotient of the space 7730(2,/)) by the group Ham(X,p) (see Theorem , and H :=
Sympy(Z, p)/ Ham(Z, p) is isomorphic to Hiz (I, R) (see Lemma . The tangent space

~

T} 5,4)B(%) is identified with the vector space W(; 4y which is defined as the space of solutions
to the following system of differential equations

d(div ((f = 1)J) +df o —£8) =0
d(div ((f —1)J) o J +dfood =L Bod) =0
AV Ag(e,e) — J(divJ A A)(e,e) =0

Let us denote with a1 and as the 1-forms in the above system whose differential is zero
and let us introduce the vector space

o + tas is exact } (3.4.1)

V(J,A) = {(J’ A)e T(J,A)HSO(E’P) dVAO(.’ 0)—J(diVj/\A)(0, o)=0

It is not difficult to see, following the lines of the proof of Lemma [3.23] and Lemma [3.25
that V(s 4) is invariant under the action of Symp(%, p) and the complex structure I. In
what follows, although we will use the term "symplectic form" to denote w ¢, we do not yet
know whether on the spaces we are considering wy is actually non-degenerate. In any case,
with abuse of terminology, the results we are about to present still apply.
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Proposition 3.45. There is a wf-orthogonal decomposition

1
“f
Wiga)=Via @ Sua)

where Sy ) = {(LxJ, 95 LxC) | X e D(TX), d(uxp) = d(vyxp) = 0} = Tya)(H-(J, A))
1s the tangent space to the harmonic orbit.

Proof. Recall that, according to m for any symplectic vector field X on the surface
and for any (J, A) e T4 D*(J (%)), we have

wf((EXja QJIEXC); (‘]’ A)) = _<dl~1'(‘]7 A) | X>G >
where dp(J A) denotes the primitive found in Proposition @ (see also Remark |3 n

particular, if (J A) € V(s.4) such a primitive equals the 1- form Oq considered in 1 ,
hence it is exact. Using the non-degenerate symplectic pairing , we get

wf((‘CXJa QEILXC); (‘]v A)) = *<dﬁ'(‘]v A)7X>G =0,

for any symplectic vector field X and for any (J, A) € V(4. In other words, V{; ) is
w-orthogonal to the symplectic orbit and it coincides with the ws-orthogonal to S(; )
inside W 4y. For this reason, we can conclude if we show that

Vig,a)y 0 Suay = {0} .

Suppose there exists a harmonic vector field X such that (LxJ, gjlﬁ xC) € V4. By
definition of V| ), the 1-form

ay = div ((f — l)ﬁxj> + df oJ — €<(931£XC)0, (V.A)J>

is exact. Therefore,

f 81 A wp = —(dR(Lx], g7 LxC), Ue (rel. B15))
¥

=0, YUe&(X,p).
Since X is harmonic, we can choose U = JX and obtain

OZJE(diV((f—l)EXJ)+dfoJ—f/5)/\LJXp (rel. (3.1.6))
:L(div((f—1)£XJ)+dfoJ )(7X)p

= L (div ((f - 1)£XJ) 5 5)(JX)p— L X)p
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- L (div ((f - 1)£XJ> - ]gﬁ)(JX)p - L (div(fX) — f div(X))p

_ L (aiv ((7 - 1)) - {;5) (JX)p . (X is harmonic)
Now let us compute the term

BUIX) ={(97'LxC), (Vix A)J) (Theorem [L.T1)
= (97" £xC), Vx &) (xel. (B313))
= (VxA— %tr(JMX)AJ + A(M% ), VxA) (JX is symplectic)

= (VxA+A(M% -),VxA)
= —[|VxA||* —(A(M% - ),VxA) (Theorem [L.11))
= —||[VxA[]? + (A(M% - ), (VuxA)J) (VoJ = 0)

—|IVxAl]> + (A(M% - ), (VyxA)J + AV xJ) .

Applying equation to the last term with Ag = VyxA and J = VxJ, we get
BIX) = —||VxA|? +(AM% ), (VixA)J + AV ;x )

= (VX AIP + SCAMS + MR A, (Vs A) + AV T ) )

= —[|Vx A,

where we used that the endomorphism part of (V;xA)J is trace-less. In order to study
the divergence term, let us first make some preliminary observations. Let L : I'(TY) —
Endo (TS, gs) be the Lie derivative operator. It can be shown that its L2-adjoint is L*(J) =
—J(divg, D)# (|Tro12]), where # : Q1(X) — D(T'S) is the musical isomorphism induced by
the metric gy. Therefore,

L (div ((f - 1)LXJ))(JX)p - L<div ((f - 1)£XJ>#, TX5p
— - L<J(div ((f - 1)£XJ)>#,X>p
- [« =nerexn
~ [ 7= vliexaipe.
b
Referring back to the term we are interested in, we conclude

1
| = vliexaiPo+ g [ FI9cairo =0
% %
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and, since f, f’ are both strictly negative, this is possible if and only if LxJ = VxA = 0.
Given that on a Riemann surface (X, J) of genus g > 2 there are no non-zero biholomor-
phism isotopic to the identity, it follows that X = 0. 0

Lemma 3.46. The vector space S(; 4) is a complez-symplectic subspace of (W(JVA), I,wf)
isomorphic to Hi (2, R).

Proof. Requiring S(j 4y to be a complex subspace of (W( JA)s I) is equivalent to say that it is
preserved by the action of the complex structure. For instance, if (LxJ, g}lﬁ xC) € Sy
then I(EXJ, gjlﬁxC) = (—EJXJ, —gjlﬁJX) (see Lemma. Since X is harmonic, i.e.
X and JX are symplectic vector field, the element ( —LixdJ, —g;lﬁJX) belongs to Sz a)
as d(LJsz) = —d(LXp) = 0. Moreover, according to Proposition @l, we have

S(ga) 0 (S(J,A))J_wf = {0},

which implies that S 4) is a symplectic subspace of (W( JA) @ f) endowed with the re-
stricted symplectic form.
Now if (LxJ,9;'LxC) € S(7,4), then d(txp) = d(¢yxp) = 0. In particular,

0= d(LJXp) = —d(prO J)

and since txp o J = #;(1xp), we conclude that txp is a harmonic 1-form. This gives
a well-defined map from S 4y to the space of harmonic 1-forms on the surface, which
is isomorphic to H éR(E,R) by Hodge theory. The map is an isomorphism since for any
cohomology class [7] € Hiz (2, R) there exists a unique harmonic representative, which is
of the form ¢xp, for some harmonic vector field X on the surface (see Lemma . O

Remark 3.47. It should be noted that the decomposition of Proposition [3.45| is also or-
thogonal with respect to gy. In fact, gy(-,-) = ws(I',-) and using the I-invariance of S(; 4)

it follows that

Vi) = () = (Sua) ™ < Wi -

In Section we discussed how to obtain Teichmiiller space by means of symplectic
reduction theory and we argued how the symplectic form is actually part of a Kéhler metric.
If 4 denotes the moment map of Theorem the quotient space 7 (%) = p~1(0)/ Ham(X, p)
is a smooth manifold of dimension 6g — 6 + 2g with a natural H-action. In particular, since
the action is free and proper, the quotient map p : %(E) — T (%) is an H-principal bundle.
On the other hand, there is a MCG(X)-equivariant projection map 7 : B(X) — 7 () which
allows us to lift the H-action from 7 (2) to B(X). By a standard argument, the H-action
on B(X) is free and proper as well (see |[Lab08, Proposition 6.3.3]). In the end, the quotient
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B(X)/H results in an identification with B(X) so that the following diagram commutes

O,

T(D)

I
(2

X)) —

/

S|

B(X) — T(%)
where 7 : B(X) — T(X) is the MCG(X)-equivariant holomorphic vector bundle map given
by Theorem |1.20, and p’ : g(E) — B(X) is the quotient projection. According to Propo-
sition |3.45| and Lemma w the H-orbits in g(E) are complex-symplectic submanifolds,
therefore there is a well-defined complex structure I and symplectic form w on the quotient
(see |Tral8 Lemma 4.4.9]), giving rise to a pseudo-Kéhler metric on the PSL(3, R)-Hitchin
component. In other words, we proved the following

Theorem F. The H-action on g(E) 1s free and proper, with complexr and symplectic H -
orbits. Moreover, the pseudo-Kdihler structure (g¢,1,wy) descend to the quotient which is
identified with Hit3(X). Finally, the complex structure I induced on the PSL(3,R)-Hitchin
component coincides with the one found by Labourie and Loftin.

3.4.2 The pseudo-metric is non-degenerate on the orbit

Here we want to study the set Mg = {(J, A) € D3(J (X)) | dVA = 0}, namely the subspace
of D3(J (X)) where the Codazzi-like equation for hyperbolic affine spheres (see (HS))) is
satisfied.

Lemma 3.48. Let (J, A) be a point in Mc, then
T(J,A) ( DIE(E) . (J, A)) c T(J7A)MC .
Moreover, the tangent space T j ) Mc admits the following decomposition:

J_gf J_gf J—gf
Via @ Sua @ Ty (Ham(, p) - (J,A)) & I(T(J,A)(Ham(zvp) - (J, A))) :

Proof. If (J, A) € Mc, then dV A = 0 where V is the Levi-Civita connection with respect to
g7 = p(-, J+). In particular, A = g;lC = g;lRe(q) where ¢ is a J-complex cubic differential
on (¥, J) so that equation dVA = 0 is equivalent to d;q = 0 (see Theorem [1.11). Now let
X e I(TY) and consider its flow {¢,} = Diff(X), namely X = & ¢,—9 and ¢y = Id. Let us
define

Jp :=d¢; ' o J o déy, Ci:= C(dg¢,dgr, dgy), q = ¢rq -

It is not difficult to show that ¢ is holomorphic with respect to J if and only if ¢; is
holomorphic with respect to J;. Therefore, to conclude the proof of the first part of the
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statement, we only need to show that Re(C;) = ¢;. This last identity can be proven with
a computation in coordinates. In fact, let {x,y} be isothermal coordinates on the surface,
so that g5 = e%(dz? + dy?) and ¢ = (P +iQ)dz?, with P + iQ a J-holomorphic function.
Then, we get

C = Pdz?® — 3Pdz © dy? — 3Qdz? © dy + Qdy?® ,

where ©® denotes the symmetric product. Plugging in the action of the flow (¢;) on the
expressions above for ¢ and C gives the claim. Regarding the decomposition, we already
know by Lemma (3.1 that T{; 4 ( Diff () - (J, A)) splits as a direct sum

Tiga)(H - (1, 4)) @ Ty ) (Ham(E, p) - (J, A) @1(T(0) (Ham(E, p) - (J, 4)))

where H := Sympy(2 p)/ Ham(X, p). In particular, by Lemma the tangent to the
harmonic orbit is identified with S 4). Let U be a Hamiltonian vector field on the surface.
The g-orthogonality follows from the following computation:

gr((Lud, g ' LuC); MLy d, g7 Ly CO)) = wi((Lud, g LuC); (Lud, g LuC)) =0,

and by I-invariance of S(j 4), which is contained in the largest subspace in T{, A)%O(E, )
that is gs-orthogonal to the Hamiltonian orbit (see Theorem . Finally, V(;4) is gy-

orthogonal to the symplectic orbit by Proposition|3.41|and to the space I (T( J,A) ( Ham(X, p)-
(J, A))) by I-invariance. O

Proposition 3.49. Let (J,A) be a point in Mc. Then, the pseudo-metric g¢ is non-
degenerate when restricted to the following subspaces:

Sy Ty (Ham(S, p) - (1, 4)), 1(T( 0 (Ham(S, p) - (7, 4))).

Proof. The pseudo-metric gy is non-degenerate on the Hamiltonian orbit as a consequence
of Lemma [3:29) and Theorem [G] indeed they imply together the following condition

T,y (Ham(3, p) - (J, A)) A <T(J7A)(Ham(2,p) -, A)))Lgf = {0} .

Moreover, the same is true on the Hamiltonian orbit after applying the complex structure
I since gy(I',I-) = gy(-,-). Regarding the subspace S(; 4), we get the thesis directly from
the proof of Lemma (see also Remark [3.47)). O

Theorem M. Let (J, A) be a point in Mc. Then, the following are equivalent:
e g7 is non-degenerate on T(; 4y Mc;
e g is non-degenerate when restricted to Vi j 4y, hence on the Hitchin component.

Proof. The tangent space T(; 4)Mc decomposes in the gr-ortoghonal direct sum of four
subspaces (Lemma . Thanks to Proposition we know that the metric g is non-
degenerate on three out of four spaces, and the one not counted is exactly V(; 4). Using
that the decomposition is g¢-orthogonal, the thesis follows directly.
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3.4.3 Krein spaces

Using the construction of Section we can define a (formal) pseudo-Kéhler structure
(gf,I,wy) on the infinite-dimensional manifold D3(J(X)). In particular, the pseudo-metric,
and hence the symplectic form, is known to be non-degenerate. Unlike the positive definite
case, the tangent space T(J,A)D3(j(§])) will no longer have a Hilbert space structure, but
rather will be a so-called Krein space. The aim of this section is to introduce such spaces
by following the theory developed in |AI81]. Then, in Section we explain how this
approach can actually lead to the proof of the absence of degenerate vectors for gy when
restricted on the PSL(3, R)-Hitchin component.

In what follows we are going to consider a real vector space JF, possibly of infinite di-
mension, endowed with a symmetric bi-linear form {-|-).

Remark 3.50. Given a space (F, {:|-)) as above, we do not require the value (v|v) to always
be strictly positive whenever v is non-zero, but rather consider more general situations in
which (v|v) can be positive, negative or null. In particular, if not specified, there could be
degenerate vectors for the form (:|-) among those that are isotropic, i.e. (v|v) = 0.

Definition 3.51. Let F be a real vector space with a symmetric bi-linear form (:|-), then
(i) (F,(|)) is non-degenerate if there are no non-zero vectors orthogonal to the whole

space JF;

(ii) let £ < F be a linear subspace, then it is non-degenerate with respect to the restricted
symmetric bi-linear form if

LA (L) =0},
In the following, let us denote with F, and F_ the set of vectors v € F such that
{v|vy > 0 and {v|v) < 0, respectively.

Lemma 3.52. Let L < F be a linear subspace. If there exists a decomposition L =
L @®L_ in positive and negative part, then the linear subspace L endowed with the restricted
symmetric bi-linear form is non-degenerate.

Proof. Suppose, by contrary, there exists a non-zero vector v € £ such that (v|w) = 0 for
any w € L. By hypothesis, we can decompose v = vy + v_ in its positive and negative part
to get

0 = (ufvy) = v lvg) + (v-|vg)
0 = (o) = {vifo-) +v-fv-) .

Therefore, using the symmetry of the bi-linear form, we have the following contradiction

0 < —(o_fo) = (osloo) = —(uaoy) < 0.
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Remark 3.53. It must be pointed out that the decomposition of Lemma [3.52] is not
required to be orthogonal and the symmetric bi-linear form {:|-) is not required to be non-
degenerate on the ambient space. Moreover, the converse of the above statement is not
true (see |AI81, Example 1.33|)

Definition 3.54. Let F be a real vector space endowed with a symmetric bi-linear form
{:|-) and a decomposition

1
F=F,®&F_, (3.4.2)

where the symbol L denotes the orthogonal with respect to {(-|-). Suppose also that the
linear subspace Fi (resp. F_) endowed with (:|-) (resp. —(:|-)) is a Hilbert space, then
(F,{]-)) is called a Krein space.

Notice that if (F,(:|-)) is a Krein space, the symmetric bi-linear form {:|-) is non-
degenerate by Lemma [3.52] In particular, we can define an inner product by using the
decomposition . In fact, if v = vy + v_ and w = w4 + w_ is such a decomposition
for some v, w € F, then

(v, w) r= vy wy) —(v-|w-) , (3.4.3)

is positive-definite. In particular, the subspaces F; and F_ are orthogonal with respect to
(+,-) as well. In other words, we can think of F, endowed with (-,-), as a Hilbert space H
with an orthogonal decomposition

1
H=H, DH_ .

At first glance, the definition of the scalar product (-,-) might give the impression that it
depends on the chosen orthogonal decomposition (3.4.2)) (which is not unique if F admits
isotropic vectors). However, it can be shown (see |AI81, Remark 2.5 and Theorem 7.19])
that the norms induced by different orthogonal decompositions are equivalent, and thus
they induce the same topology on F. This allows us to consider continuous operators on
Krein spaces and to state a result that is fundamental for our purposes.

From now on, we will denote a Krein space as a Hilbert space H = H.y é H_ with re-
spect to the scalar product (-, -), since as explained above, there is no issue with the choice
of a decomposition. Such a splitting, generates two mutually complementary projectors P
and P_ mapping H on to H, and H_, respectively. In particular, P, + P_ = Idy and
(Pi)2 = P;. The projectors Py are called canonical projectors and they are orthogonal
(self-adjoint) with respect to the scalar product (-,-):

1 1
H=H,®H_ =P, HOP H_ .

We can also define another linear operator J : H — H given by J := Py — P_, which is
called the canonical symmetry of the Krein space H.
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Lemma 3.55 (JAI81|). The canonical symmetry J is a bounded linear operator and it has
the following properties:

(1) 3" =73;
(iii) 371 = J*%;

where the adjoint J* is taken with respect to (-,-). Moreover, Hy is an eigen-subspace of J
with eigenvalue A = +1.

The introduction of the canonical symmetry allows us to find a close relationship be-
tween the indefinite symmetric bi-linear form {:|-) and the scalar product (-,-), indeed we
see from their definition that:

wlw) = (Jv, w), Vo,weH . (3.4.4)

Lemma 3.56. Let L be a linear subspace of a Krein space (F,{:|-)), then

(0 - (a0)

Proof. This is simply a consequence of relation (3.4.4) and Lemma since given v € F
we have
(v,w) =0 < (v|Jw) =0, Ywe L .

3.4.4 Conclusion

In this final paragraph of the chapter we want to explain how, the approach of Krein
spaces, can actually shed some light on the non-existence of degenerate vectors for the
pseudo-metric when restricted to V(; 4). We will also discuss the reason why, in our case,
knowing that g is non-degenerate on the symplectic orbit is not sufficient to conclude.

In what follows, we will recall the construction of the set D3(7 (X)) that was explained
in Section [3.2.1] The final goal is to study its tangent space as an infinite-dimensional
vector space and thus its structure as a Banach space with respect to a norm that we will
introduce shortly. We recall the construction made for smooth sections, but the same holds
for sections of L? regularity with respect to a fixed area form, so that the corresponding
space will be denoted with D3(7(X)) 2. In particular, any tangent vector to D3(J (X)) 2
will be a L?-section as well.
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The infinite dimensional manifold D3(7 (X)) has been defined as the space of smooth sec-
tions of the bundle

P(D¥(J(R)) i= P x D*(T(R?) [s1,0,R) — %,

where SL(2, R) acts diagonally on two factors. In particular, each element in D3(J (%)) can
be described as a pair (J, A), with J an almost-complex structure on ¥, and A a 1-form
with values in the trace-less and gj-symmetric endomorphisms of TY. Moreover, a tangent
vector (J, A), where A := 9310, at (J, A) can be considered as the data of:

e a section J of End(TY) such that JJ + JJ = 0, namely J is a gj-symmetric and
trace-less endomorphism of T3;

e an End(T'Y, g;)-valued 1-form A such that

. - . 1 .
A=Ag+T(JAJ)+3 tr(JAJ)]l , (3.4.5)

~~

completely determined by J

where 1 is the 2 x 2 identity matrix and AO = Ay + T(J, A, J ) is the trace-less part
of A. Moreover, the trace-part Ay, and the tensor Ag — Ag is uniquely determined by

J (see Lemma .

In Section we also defined a (formal) pseudo-Kéhler metric (g¢,I,wy) on the infinite-
dimensional manifold D3(7(X)). In particular, for any (J, A) € D3(J(X)), the tensor

L .. o 1 . .
(gf)(J,A) ((‘L A)v (J/7 A/)) = fE(l - f)<J7 J/>p + fE g (<A07 6> - §<Atr; A/tr>)p
defines a symmetric bi-linear form on each tangent space T(; 4)D*(J (%)), which is known

to be non-degenerate.

Theorem 3.57. For any (J,A) € D3(J(X))1z2, the tangent space T(j 4)D*(J (X)) 12 en-
dowed with (gy)(s.4) is a Krein space.

Proof. During the proof of the theorem we will denote by Fr2 the tangent space T(J7A)D3 (T(2)) 2.
Let (J, A) € D3(J (X)) 2, then for any (J, A) € Fy2 there is a g s-orthogonal decomposition
in positive and negative part, given by:

Lg
Fro = (Fr2), @ (Fr2)_, (3.4.6)

where (F2), := {(J,A) € Fpz | Ap = 0} and (Fr2)_ = {(J,A) e Fp» | J = 0}. In fact,
using relation (3.2.2)), we have

/ . .
(81 l(r,,) = L fg@“o’ Ao)p <0 (Lemma [3.11)
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3 S . 2
&), = L (1= 7+ 513 ) I >0 (Lemma12fwith t = 19

In particular, (gy)(s4) and —(gy)(s,4) are positive-definite scalar products on (.7-' Lz) . and
(Frz2)_, respectively. Let us denote with || - ||g, the norm induced by gy on (Fyz2) ., then
—|| - |lg; induces a norm on (Frz2)_. To conclude the proof of the theorem, we show that
the above norms are equivalent to the standard L?-norms:

1 =5 [ (#)o= [ 1B AR = [ er(dned) = [ 114130
Y Y Y by

defined for (1,1)-tensors J and (1,2)-tensors A (see (2.2.3) and - Since the latter
are complete norms, the former are complete as well. The functions f and f’ appearing

2
in the definition of (gy)(s.4) are computed in %, which is a smooth function on . Let

us denote with mg = 0 (resp. M,) the minimum (resp. the maximum) of ||q||3. Then, we
have

f/ .
A2, - fHAoHJp
1 M, z
> _ = 1 q 2
>—5 |7 (G

= (Ll Aollz2,  @(J.q) eRT

as the function — f’ is strictly decreasing. Moreover,

Aol = - [ Litolis
<_1 / A 2
<—5 [ ronilze

by

<&(J,q)|| Aol 22, &(J,q) e R .

Regarding the norm induced on the positive part, first recall that 1— f(¢) 4+ 3tf'(t) = Bt%

with ¢(t), ¢'(t) both strictly positive for any ¢ > 0, and it is equal to 1 when ¢ = 0 (Lemma

2 2
3.12). Then, notice that 1 — f<%> + %||q||{2]f’<@> is a smooth function on ¥ with non

negative values, hence its minimum m is positive and different from zero according to what
we observed above. Therefore, we have

. 3 .
2 _ . e 2 gt 2
113, = | (1= £+ S1al3£) 19150
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>f ml| 7|3
>

(gl IF2s  elJq) e RT

1912, = |_(
<] (- f)HJHJp (7 <0)

Moreover,

— £+ SlalB ) 1130

Y

( > 17150 (f decreasing)
J.

LN, d(Jq) eRT.
O
In what follows, we keep using the notation introduced in the proof of Theorem
namely F7» denotes the space of tangent vectors with L2- regularity and F denotes the
space of smooth tangent vectors. According to - let (J,A) = (Jy +J_, A, +A_ ) be
the decomposition for a vector in Fj2, then we can 1ntroduce the canonical symmetry of
the Krein space:
J(JA) = (Jy, Ay) — (J_,AL) = (J,T(J, A, J) + A) — (0, Ap)

where T'(J, A, J) is the tensor defined in Lemma In particular,

(&) . ((J, A); (J', A) 1= (g7) (5,4)(3(J, A); (J', A)) (rel. (3:4.4))
3 .. flox oz
= (= B ) e = [ £ A

ff’(@(JA J), g>—<flo,T’(J,A,J’)>)P
>

defines a positive-definite scalar product on Fr2 (see Lemma [3.12)). Such a g induces the
norm ||(J, A)||§f = ||J| lg; — |\f~10| |§f on Fr2 which is complete by using the same argument
as in the proof of Theorem In the end, the pair (FLz,gf) defines a Hilbert space
and the decomposition 1-) is orthogonal with respect to g 2f as well. Now let us consider
the linear subspace L2 < Fp2 given by L2 := T(y, A)Mc , namely it is formed by the
L?-tensors tangent to the space of pairs (.J, A) such that dVA = 0. By using the scalar
product gy, we get an Hilbert space decomposition
La; N
Fro=Lp @ (Lp2)7#,
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where the gs-orthogonal to L2 can be identified with the range of the linearized g¢-adjoint
of AV, denoted with (dV)*#r.

Lemma 3.58. In the setting explained above, the following properties hold:
. (dV)*gf ZJ(dv)*gfﬁ;

o there are two further Hilbert space decompositions for Fr2 as:

_ o~ ey V\#g, A
Fra J(L’Lz) ® Range((d ) f‘j)

——
Fro=(Lr2+£,7) @ 3(Lo) |

where Lo denotes the space of degenerate vectors in L2 with respect to gy, namely

J_gf
ﬁ() = ,CLZ M £L2 .

Proof. The relation between the g-adjoint of dV and its gr-adjoint follows directly from
gf(-,-) = g#(J-,-) and the properties of the canonical symmetry stated in Lemma
Regarding the Hilbert space decompositions of Fp2, the first one is obtained by applying J
on (3.4.6) and using that J is orthogonal with respect to the scalar product g¢. The second
one follows from a general argument on Krein spaces ([AI81] §7]). O

Remark 3.59. In Theorem [M] we proved that the pseudo-metric is non-degenerate on
Vis,4) if and only if it is so on £ = T{; 4)Mc. The same correspondence holds for tensors
with L?-regularity, but because of a standard elliptic argument applied on Vi1,4), one gets
the following further equivalence: gy is non-degenerate on V| 4y (smooth sections) if and
only if it is non-degenerate on L;2.

The bottom line is that V(s 4y is described by a system of PDEs, whose solution is far
from being explicit. On the other hand, in light of Lemma [3.48] every element inside L2
can be written explicitly as

(J,A) = (LxJ + g7 ' Re(q2), 97" LxC + g7 ' Re(gs)) (3.4.7)

where X is a vector field on the surface and ¢o, g3 are J-holomorphic quadratic and cubic
differentials, respectively.

Conjecture 3.60. The pseudo-metric gy restricted on Ly2 is non-degenerate, which is

€L
equivalent to fj(ﬁo) = {0} or, in other words, L2 + ﬁngf is dense in Frq.



CHAPTER 3. THE GENERAL CASE 106

We conclude the discussion by explaining why the results presented in Section [3.4.2]
namely the absence of degenerate vectors on the orbit, are not sufficient to conclude in
our case. The PSL(3,R)-Hitchin component can be described (see Proposition and
Proposition as the following quotient space:

J is an (almost) complex structure on X
(J,0) C is the real part of a J-cubic differential ¢

HSo(%,p) := (Hq\lgl]) /Sympo(z) ’
(h =ef'\T2 g, A= g;lC) satisfy (HS)

where (HS) is the system formed by: Kp, — ||q||? = —1, i.e. Wang’s equation for hyperbolic
affine spheres in R3 and dVA = 0. Throughout the paper, we explained that the first
equation in the above system has an interpretation as a moment map with respect to the
action of the group of Hamiltonian symplectomorphisms of the surface. This allowed us, in
part, to find the PDEs with which we were able to describe the space V| 4). It is not clear

to us whether equation dV A = 0, which we have seen to be equivalent to requiring ¢ to be
J-holomorphic, also has an interpretation as a moment map. There are contexts in which
this happens: the first one is that of self-duality equations for Higgs bundles over Riemann
surfaces, provided that the complex structure on ¥ is fixed at the beginning (|Hit87]); the
second one is that of almost-Fuchsian hyperbolic 3-manifolds (|[Don03|,[Tral8|), and the last
one is that of maximal globally hyperbolic Anti-de Sitter 3-manifolds ([MST21]). In the for-
mer case, the cubic differential is replaced by the Higgs field of the holomorphic bundle and
the corresponding moduli space results in a hyperKdhler reduction; in the remaining two
cases ¢ is replaced by a quadratic differential on the surface and the corresponding deforma-
tion space is constructed as a hyperKdhler reduction for almost-Fuchsian manifolds and a
para-hyperKdahler reduction (also called hypersymplectic reduction) for Anti-de Sitter mani-
folds. The context studied by Hitchin (|Hit87]) and Donaldson-Trautwein (|[Don03|,|Tral8])
is quite different from ours, as in their case the metric is positive-definite on an open subset
of the quotient, and the non-degeneracy on this subspace follows by a standard argument.
Instead, in the case of hypersymplectic reduction (|[DS08|), if the pseudo-metric is non-
degenerate on the orbit then it is so on the quotient. Unfortunately, even though we know
gs to be non-degenerate on the symplectic orbit (Proposition , the absence of an
interpretation of d¥A = 0 as a moment map for does not allow us to conclude.



Chapter

Symplectic and metric properties

In this chapter we return to the study of the deformation space of properly convex RP?-
structures on the torus. In fact, we introduced a family of pseudo-Kéhler metrics (gy, i, wr)
on By(T?) invariant by the action of SL(2,R). Any element of the aforementioned structure
can be written in coordinates according to the isomorphism By(T?) =~ H? x C*, therefore it
comes naturally to ask what might be some metric and symplectic properties of (gf,i, @r)
and how they might depend on the choice of the smooth function f. After briefly recall-
ing the Arnold-Liouville theorem in Hamiltonian mechanics, we introduce the theory of
complete Lagrangian fibrations, and we show how they are connected with a large class of
completely integrable Hamiltonian systems into which By(T?) falls.

4.1 The Arnold-Liouville Theorem

Definition 4.1. A Hamiltonian system is a triple (M,w, H), where (M, w) is a symplectic
manifold and H € C*(M,R) is a function, called the Hamiltonian function.

If (M,w) is a symplectic manifold and f € C*(M,R), then the Hamiltonian vector field
Xy e (T M) associated with f is defined by the following property

w(Xp,Y) =df(Y), YYeDl(TM). (4.1.1)

Definition 4.2. Let (M,w,H) be a Hamiltonian system. A function f € C®(M,R) is
called an integral of motion if
w(Xs,Xg)=0.

In other words, any integral of motion f is constant along the integral curves of Xg.

Definition 4.3. A Hamiltonian system (M,w, H) is completely integrable if it possesses
n = %dim(M) integrals of motion f1 = H, fo,..., f, such that:

107
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o The differentials (df1)p, ..., (dfy), are linearly independent for each p € M;
e they are pairwise in involution, i.e. w(Xy,,Xy,) =0 for each 4,5 = 1,...,n.

The first condition in the previous definition is called independence and the second one
is called inwvolutivity. Notice that one of the integral of motion can always be taken to be
the Hamiltonian function of the system. Furthermore, at each p € M, the Hamiltonian
vector fields associated with the integrals of motion span an isotropic subspace of T),M.
One of the most relevant results of this theory is the following

Theorem 4.4 (Arnold-Liouville, [Arn13|). Let (M,w, H) be a completely integrable Hamil-
tonian system of dimension 2n and with integrals of motion f1 = H, fa,..., f. Let ce R™
be a regular value of the map f = (f1,..., fn) : M — R™. Then,

e The level set f~1(c) is a Lagrangian submanifold of M ;

e if the Hamiltonian vector fields Xy, ,...Xy, are complete on the level set f~1(c), then
each connected component of f~1(c) is diffeomorphic to R¥ x T"* for some 0 < k <
n. Moreover, that component has coordinates 61,...,0, called angle coordinates, in
which the flows of Xy, ... Xy are linear;

e there are coordinates 1,...,%n, called action coordinates such that the manifold
n
(M, w) is symplectomorphic to (R"TF x T"* wyq), where wy = Z 0; A ;.
i=1

Remark 4.5. From a geometric point of view, regular level sets f~!(c) being Lagrangian
submanifolds implies that, in a neighborhood of a regular value, the map f : M — R" is
a Lagrangian fibration, i.e. it is locally trivial and its fibers are Lagrangian submanifolds
(IDDOS]).

On the other hand, one of the main limitation of this result is that the action coordi-
nates 11,...,1, are, in general, not the given integrals of motion, since 04, fi,...,0n, fn
may not form a global Darboux chart for w.

It is worth mentioning that a first general strategy to overcome this problem was pre-
sented in [Dui80], in the case in which the Lagrangian fibration 7 : (M,w) — B < R" has
fiber diffeomorphic to an n-dimensional torus. The crucial point is the existence of a global
Lagrangian section o : B — (M,w), which is guaranteed as long as H?(B,R) =~ {0}. Re-
cently, Choi-Jung-Kim have presented an adapted version of this result, in the case where
each fibre of 7 : (M,w) — B is diffeomorphic to R™ (see Theorem 3.4.5 in [CJK20]). Their
main application was the existence of a global Darboux frame for Goldman symplectic form
wg on the PSL(3, R)-Hitchin component of a surface of genus at least two.
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As for our case, we are going to study Lagrangian fibrations, associated with Hamilto-
nian systems, whose fibre is neither compact nor simply connected. We will give a criterion
on the fibration that allows the action variables to be used as part of the global Darboux
frame, and we show that By(7?) is among the Hamiltonian systems that give rise to this
type of Lagrangian fibrations.

4.2 Complete Lagrangian fibrations

Here we briefly review and recall the fundamental results of the theory of complete La-
grangian fibrations, and we show how they are directly related to a large class of completely
integrable Hamiltonian systems. Since we could not find references with all the necessary
details, we also include the proofs of the most important steps.

Definition 4.6. A Lagrangian fibration is a triple (7, M, B), where (M, w) is a symplectic
manifold, B is an open subset of R™ contained in the set of regular values of w, the map
7w (M,w) — B is a smooth surjective submersion and for each b € B the submanifold
771(b) is Lagrangian in (M, w).

Let 7 : (M,w) — B be a Lagrangian fibration and let o : B — T B be a 1-form. Define
a vector field X x, € I'(T'M) by setting

w(Xp#a,) =7 (4.2.1)
Proposition 4.7. For all o, € T(T*B) and for all f € C*(B) we have:
(i) Xpx(a+p) = Xaxa + Xaug
(1) Xrx(fa) = (7% ) Xpxa
(i1i) Xpxq € Kerm,

(i’l)) [XW*Q,XW*B] =0
Proof. Properties (i) and (ii) follow directly form the defining equation (4.2.1)). Let ¢',...,q"
n

be local coordinates on V' < B such that a = Z ozidqi for some functions a; : V — R,i =
i=1

1,...,n. Then, by properties (i) and (ii)

n

Xﬂ-*a = Z(ﬂ'*ai)Xﬂ.*dqi .

i=1
Since condition (iii) is pointwise, it suffices to prove that for all functions f € C* (V) we
get Xrxqr € Kermy. Let f be such a function and Y € Kerm,. Since 7* f is constant along
the fibre of 7 : M — B, it follows Y (7* f) = 0. On the other hand,

0=Y(x*f) = (7*(df)) (V) = w(Xr#as,Y)



CHAPTER 4. SYMPLECTIC AND METRIC PROPERTIES 110

by definition of X xq¢. Since the last equality holds for all vertical fields Y, we have X xqs €
(Kermy)*”. The map 7 defines a Lagrangian fibration, which implies that (Kerm,)~" =
Kerm, and property (iii) follows.

For the last property, let o, 8 € T'(T*B) and locally write

n n
a=>Y adg,  B=)] Bidg
i=1 Jj=1
for smooth functions o, 3;. Then

n

[Xﬂ'*aaXﬂ*,B] = Z [(ﬂ-*ai)XTr*dqia (W*Bj)Xw*dqj] = Z <(7r*ai)(7r*5j)[Xﬂ'*dqiaXﬂ*dqj]
ig=1

1,j=1

+ (W*ai)(Xﬁ*dqi (W*ﬁj))Xw*dqj - (W*ﬁj)(Xﬂ'*dqj (ﬂ-*ai))Xﬂ'*dqi)
= Z (Tr*ai)(ﬂ-*/@j)[XTr*dqiaXw*dqj]

where the first equality follows from properties (i)-(ii) and the the third one from property
(iii). Thus, it suffices to show that for any f,g € C*(B) one has [ X #qf, Xrxqq] = 0.
Notice that the homomorphism

O (M) — T(TM)
f— Xar

is a Lie algebra homomorphism with respect to the Poisson bracket {-,-}, and the Lie
bracket [-,-], where {f, g}. := w(Xaf, Xqg). In particular, for each f,ge C°(B)

[XTI'*df7X7T*dg] = Xd{ﬂ'*fvﬂ'*g}“’ =0.

The second equality follows from the fact that = : (M, {-,-},) — (B,0) is a Poisson mor-
phism (see |Vai94)). O

Definition 4.8. A Lagrangian fibration 7 : (M,w) — B is complete if for each compactly
supported 1-form a on B, the vector field X, defined by (4.2.1)) is complete.

Recall that a Lagrangian fibration is naturally associated with a completely integrable
Hamiltonian system (see Remark . The next Proposition explains why the previous
hypothesis of completeness on a Lagrangian fibration is on the one hand interesting from
the point of view of geometry and on the other not too restrictive.

Proposition 4.9. Let 7 : (M,w) — B be a Lagrangian fibration associated with a com-
pletely integrable Hamiltonian system (M, H,w) with integrals of motion given by f1 =
H, fa,..., fn. If the Hamiltonian vector fields Xy, , ..., Xy, are complete on 7=1(b) for each
b€ B, then the Lagrangian fibration 7w : (M,w) — B is complete.
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Proof. Since the Hamiltonian vector fields are vertical and linearly independent, they point-
wise generate the tangent space to each fibre 7=!(b). Moreover, there exist 1-forms a; :
B — T*B such that

w(Xy,, ) = oy, i=1,...,n

where w(Xy,,-) = df; by (4.1.1). The 1-forms «; are point-wise linearly independent on B,
indeed if

ajoq + - -+ + apay = 0, for some ay,...,a, € C*(B)

then the above sum is still equal to zero after taking the pullback via w. By using the defining
property of the «;’s and the independence property of fi,..., f, we get (7*aj)(m) =--- =
(m*an)(m) = 0, Ym € M, i.e. the functions ay,...,a, are zero on the whole set B. Let
a: U c B — T*U be a locally defined compactly supported 1-form. We need to prove
that the vector field X, #,, defined by , is complete. By the above argument, there
exist n functions gy, ..., g, on U such that

n
o = Z gioy .
i=1

Since « has compact support on U, the functions g; have compact support on the same set
as well. In particular, they are bounded on U. By properties (i) an (ii) of Proposition
it follows that

n

n
KXo = Z(W*gi)Xﬁ*ai = Z(ﬂ'*gi)Xfi .
i=1 i=1

The vector field Xy x(y.q,) = (m*g;)Xy, is complete for all j = 1,...,n by an application
of the so-called "Escape Lemma" (see |[Leel3|, Lemma 9.19), indeed the function 7*g; is
bounded and Xy, is complete. Moreover, since [X,r*(giai),X,r*(gjaj)] = 0 for all 4,j =
1,...,n by property (iv) of Proposition it follows that X« (ga,) + Xr#(g;a;) defines
a new complete vector field as it is the sum of two commuting complete vector fields.
Applying in an iterative way the previous observation, we deduce that X, is complete,
as well. O

From now on, all Lagrangian fibrations will be complete. Let o : U — T*U be a
compactly supported locally defined 1-form on the base and let ¢!, : 7= 1(U) — 7~ 1(U) be
the flow of the vector field X, defined for all ¢ € R. Since X,x, is vertical, its flow ¢!,
lies along the fibres of 7w : (M,w) — B for all ¢ € R. Furthermore, for each oy € T*B there
exists a compactly supported locally defined 1-form « : U — T*U such that a(b) = ap
and the value of X x, at a point m € M only depends on o4 and not on the choice of a.
Therefore, for each oy € T*B there is a well-defined diffeomorphism

Doy, = Oalmr(py : T (b) = 7 (b)
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where o € I'(T*U) is a compactly supported form such that a(b) = ap. In particular, for
each b € B the map
Ty B — Diff (71 (b
b f ®) (4.2.2)
ap = Gg,

is a Lie group homomorphism, where 7;* B has the structure of an abelian Lie group with
respect to the sum of covectors. In other words, for each b € B, the map in defines
a transitive action of Ty B on 7~ 1(b). In general, this action is not free and for instance
one can consider the associated isotropy group, namely

Ay :={a, e T} B | ¢éb(m) =m, ¥Yme ' (b)}

known as the period lattice. It can be proved that it is a discrete subgroup of T;* B isomorphic
to ZF, with k = 1,...,n (see [Dui80] for the case k = n or [FGS03| in general).

Remark 4.10. In the case M = T*B and w = Qcan, the transitive action is simply given
by the sum of covectors and Ay = 0 for each b € B.

Definition 4.11 (|Vai94]). The subset

A= U Ay« T*B
beB

is called the period net associated with the complete Lagrangian fibration 7 : (M,w) — B.

Lemma 4.12. Let 7 : (M,w) — B be a complete Lagrangian fibration and let o : U — T*U
be a locally defined 1-form. Then,

(¢8) w—w = m*da (4.2.3)

Proof. The proof relies on the following computation

(0h) 7w —w = | 5 (60 et

0
- [0t (e e
= Ll (¢%)*d(w(Xrsq,-))dt (Cartan’s magic formula)
- L ' (r o ) dadt (Equation (Z2.1))
— Ll r*dadt = 7*da . (o ¢t =, for all )

O
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Theorem 4.13. Let w : (M,w) — B be a complete Lagrangian fibration and let A be the
associated period net. Then,

e A is a closed Lagrangian submanifold of T*B;
e the quotient T* B/, is a smooth manifold.

Proof. Since 7 : (M,w) — B is a surjective submersion, then for each b € B there exists a
local section o : U — 7~ 1(U) defined in an open neighborhood U containing b (|GM+97],
Proposition 1.2.4). Fix such a section and consider the map

Ve : T*U — 7 1(U)
a— ¢p (00 p(a)) (4.2.4)

where p : (T*B,Qcan) — B. We first want to prove that 1, is a local diffeomorphism.
Since dimT*U=dim7~(U) it suffices to prove that Kerd,, = {0} for all « € T*U. Fix
an element ag € T*U and notice that if X € T,,,7*U is tangent to the fibres of p, then
day¥o(X) = 0if and only if X = 0. Therefore, if do,s(Y) = 0 and Y # 0, then do p(Y) #
0. Any such vector Y € T,,T7*U is mapped to a non-zero vector Y e T%(ao)w_l(U) such

~

that dmy, () (Y) # 0, since the action in preserves the fibre of 7 : (M,w) — B
and o is an immersion. This is not possible as the vector field Y is vertical with respect
to m. Hence, 1), is a local diffeomorphism. Now let bg € U and ag € Ap,. By definition
Yo () = (0 op)(ap). The map 1, is a local diffeomorphism, hence there exists an inverse
¢ defined on an open neighbourhood V' < 7~ 1(U) of (o o p)(ap). By shrinking U if
needed, we may assume that U = 7(V'). The composition

=Y oo U —T*U
is a locally defined 1-form, since p = 7w o0 ¢,. In particular, for all b€ U we get
o(b) =y 00s(b) = ¢(lxa(b) (U(b))

which means that for all b € U, a,(b) € Ay|y. Define W := 1 1(V) and since ;! is an open
map, W is an open neighbourhood (diffeomorphic to V') of a,(b). In the end, the above
argument shows that a,(U) € W n A. In order to show that A is a smooth submanifold
of T*B it suffices to prove that W n A < a,(U), since that would mean that A is locally
given by the graph of the 1-form «a,. Let 8 € W n A, then there exists m € V = ¢,(W)
such that

m = e(8) = ¢5(o0p(B)) -
On the other hand, § € A, implies that for all m e 7~ (p(3)), q%(ﬁl) = m. Therefore,

¢5(0 0p(B)) = g op(B) .
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Putting all together we get
Yo (B) = o op(B)
and applying ;! to both sides of the equality

B =1, ooop(B)=asop(B) .

Thus proving that 5 € a,(U). This completes the proof that A is a smooth submanifold of
T*B. In order to show A is also closed, let { Brn} < A be a sequence converging to 5 € T*B.
By taking a small enough neighbourhood W of B in T*B, it is possible to ensure that all
but finitely many S, lie in W and that there exists a local section o : U := p(W) c B— M.
Again, for all but finitely many n, we have

wa(ﬁn) =0 Op(ﬁn)

since 3, € Ay, for all n € N. By continuity of ¢, the left hand side of the above equation
converges to ¥,(f) and by continuity of o o p the right hand side to o o p(3). Therefore,
Yy (B) = o op(B) which means that § € A. It only remains to show that A is Lagrangian in
(T*B,Qcan). Notice that any locally defined section o : U — Aly of p|p : A T*B — B
is a closed 1-form. In fact, for any such o we get ¢ = Id, which implies (gba)*w = w. By
Lemma it follows that 7*da = 0. Since 7 is a submersion, we get da = 0 as required.
In the end, the closed submanifold A is locally given by the image of closed 1-forms, hence
it is Lagrangian in (T*B, Qcan). The proof of the first claim is completed.
The proof of the second one relies on the following standard result (|Vai94]): if N is a
smooth manifold and R is an equivalence relation on N whose graph in N x N is a closed
submanifold, then the quotient N/z is a smooth manifold.
In our case, two elements «, 5 € T*B are equivalent if and only if « — 8 € A. The proof
that

Q:={(,B)eT*BxT*B|a—pBel}
is a closed submanifold of T*B x T*B can be done in the same way as before. Indeed
by repeating the construction above it follows that @ n (W1 x Wa) = s, (U) x Bs, (U),
where 01,09 : U € B — 7 1(U) © M are local sections of w and W; := ¢, (V) are the
corresponding open neighbourhood of a,, (b) and B,,(b), for some be U = (V). O

Corollary 4.14. A choice of a local section o : U = B — = Y(U) € M induces a diffeo-
morphism N

By : T*U/aly — 7 1(U)
which commutes with the projections onto U.

Remark 4.15. The diffeomorphism 1;0 can be thought of as a local trivialization for the
Lagrangian fibration 7 : (M,w) — B. In particular, it sends the zero section of T7*U — U to
the image of . The main issue of this construction is that a complete Lagrangian fibration
7 : (M,w) — B may not admit a globally defined section and, therefore, there is no natural
choice of locally defined sections o : U — 7~ (U) to construct the "trivialization" @Zg.
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By Theorem [4.13] the vertical action of A (sum of covectors) on the fibres of T*B
induced by a section o : U — Aly is by symplectomorphisms with respect to Qcan. In
particular, this implies that the quotient space 7% B/j inherits a symplectic form @ which
makes the induced projection

p: (T*B/a,@) > B
a complete Lagrangian fibration.

Definition 4.16. Given a complete Lagrangian fibration 7 : (M,w) — B with period net
A < T*B, the complete Lagrangian fibration given by

p: (T*B/x,&) - B
is called the symplectic reference fibration associated to 7 : (M,w) — B.

Remark 4.17. Any symplectic reference Lagrangian fibration admits a globally defined
Lagrangian section, obtained as the image of the zero section 0 : B <— T*B inside T*B/4.
In fact, if ¢ : (T*B,Qcan) — (T*B/A,w) is the quotient projection such that ¢*@ = Qcan
and s := g o0, then

= 0%(¢*@) = 0" Qcan = 0

hence s: B — (T*B/j,) is a globally defined Lagrangian section.

4.2.1 The existence of global Lagrangian sections

Let 7 : (M,w) — B be a complete Lagrangian fibration as in the previous sections and let
U, Uj © B be open subsets such that U; n Uj # . Pick sections oy : Ui — 7r*1(U) gj:
Uj - 1(Uj) and construct local trivializations 1%171/107 as in Corollary |4 Consider
the diffeomorphism

Vo, © oy : TH(Us 0 Uj) /alvinw, = T* (Ui 0 Uj)/alviaw,

which leaves the projection onto B invariant and it sends the zero section to 120_7_1 (0:) (see

Remark . It can be proved ([Dui80],|DD87|) that 1;;]_1(02-) is the unique section s;;
of T* (Ui o) Uj)/A|UmUj — U; n Uj satisfying ws_j}(aj) = 0;. Fixing a good open cover
U = {U;}ier in the sense of Leary, i.e. all subsets U; and all finite intersections of these
subsets are contractible, the above construction yields locally defined smooth sections sj;
for each pair i,j whose respective open sets in U/ intersect non-trivially. By definition,
the family s;; defines a Cech 1-cocyle for the cohomology of B with coefficients in the
sheaf C® (T*B/ A) of smooth sections of T*B/, — B and, therefore, a cohomology class
ne H! (B, Cc™® (T*B/A)). Let FA be the sheaf of smooth sections of p|p : A — B. There is
a short exact sequence of sheaves (|[Dui80],|DD87|)

0— Fr — C*(T*B) - C*(T*B/)) — 0 (4.2.5)
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where the first map is induced by the inclusion A — T*B and C*(T*B) is the sheaf of
1-forms of B. It is a standard result that the sheaf C*(T*B) is fine, in particular it is
acyclic since B is a paracompact Hausdorff space (|[Gunlb|). Then, for all £ > 1 we have

H*(B,C*(T*B)) ~ {0} .

The long exact sequence in cohomology induced by the short exact sequence in (4.2.5)
induces an isomorphism

®: H'(B,C*(T*B/x)) — H%(B, F))

Theorem 4.18 (|Dui80|,|[DD87]). The image ®(n) =: cp € H*(B,Fy) is called the Chern
class associated with the Lagrangian fibration m : (M,w) — B and cpn = 0 if and only if
there exists a globally defined section o : B — M.

Remark 4.19. The topological (indeed smooth) structure of a complete Lagrangian fi-
bration 7 : (M,w) — B is completely determined by its period net A and its Chern class
ca € H?(B, Fp). More precisely, two complete Lagrangian fibrations are fiber-wise diffeo-
morphic if and only if they have diffeomorphic period nets and equal (up to diffeomorphism
relating the period nets) Chern classes.

In light of the results of the previous section it makes sense to ask for a symplectic
classification of complete Lagrangian fibrations. In particular, one might be interested
in understanding when the diffeomorphism JU of Corollary can be chosen to be a
symplectomorphism between (T* U/alu, G)) and (7['_1 (U), w). The first step in this direction
is the existence of local Lagrangian sections.

Theorem 4.20 (|[FGS03|). Let 7 : (M,w) — B be a complete Lagrangian fibration. Then,
for each b € B there exists a neighborhood U < B of b and a local Lagrangian section

o:U—a Y(U).

Corollary 4.21. The diffeomorphism 1;0 s a symplectomorphism from (T*U/A|U,u~)) to
(W_l(U),w) if and only if the local section o is Lagrangian.

Proof. Let o € T'(T*U) be a locally defined 1-form on B and let ¢ : T*U — T*U/x|u
be the restricted quotient map. Then, go«a : U — T*U/p|y is a local section of the
symplectic reference Lagrangian fibration associated with = : (M,w) — B (see Definition

4.16). Applying Lemma we get
(P *w = w + m*da
=w + 7"'*Oé*Qcan (dOé = @*Qcan)

=w+ 7 (qoa)*® . (¢*@ = Qcan)
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Applying o* to both sides of the equation and using w o 0 = Idy we have
(¢ 00)*w = o*w + (goa)*® .

Moreover, since by definition ¢l oo = 1;0 ogoa and pogoa = Idy (see (4.2.4) and
Definition [4.16)), the last equality can be written as

(g0 a)* (o) w + P*o*w —d) = 0.

Claim: There exists a locally defined 2-form 8 on U < B such that (JU)*w —w = p*p.
Assuming the claim we can conclude the proof of the theorem. In fact, if such 8 exists we
get

(qoa)*(ﬁ*,@-l-ffka*w) =0.

Using again that pogoa = Idy we obtain 8 = o*w, hence
(o) w —& = p*o*w .

At this point it is clear that o is Lagrangian (i.e. o*w = 0) if and only if zza is a sym-
plectomorphism. Finally, the proof of the claim above can be found in |Gro01, Proposition
2.3]. O

Let 7w : (M,w) — B be a complete Lagrangian fibration and choose a good open cover
U = {Ui}ier of B such that there exists a local Lagrangian section o; : U; — 7 Y(U)
for each ¢ € I (Theorem . Using Corollary we can apply verbatim the con-
struction made at the beginning of the section replacing "diffeomorphism" with "sym-
plectomorphism". In particular, we get the existence of local Lagrangian sections s;; for
p: (T*(Us 0 Uj)/Aluiav,, @) — Ui 0 Uj. Let us denote this sheaf of Lagrangian sec-
tions by Z1(T*B/A). As before, the family {sji}i e defines a Cech cohomology class
¢ € HY(B,ZY(T*B/4)), called the Lagrangian Chern class associated with the complete

Lagrangian fibration 7 : (M,w) — B.
Proposition 4.22. The map p|p : A — B is a covering space.

Proof. Notice that the smooth submanifold ¢ : A < T™*B intersects T;* B, for each b € B,
at the period lattice A, =~ Z* 1 < k < n (see Definiton . Hence, the fibre (p|p)~!(b) =
ANTyB = Ay = ZF is discrete. Since p : T*B — B is a vector bundle, for each b € B there
exists an open neighborhood U such that p~(Up) = Uy, x Ty B. In particular,

(pla) M (U) =« (p™ ' (Wy))
p(Up) N A

~ U % (Tb*B N A)
~ U, x /.

lle
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Theorem 4.23 ([Dui80|,|[DD87|). Let w : (M,w) — B be a complete Lagrangian fibration
with period net A and vanishing Chern class cx = 0. Then, it admits a global Lagrangian
section if and only if £ = 0.

Corollary 4.24. Let 7 : (M,w) — B be a complete Lagrangian fibration over a contractible
open connected subset B in R™. Then, it admits a global Lagrangian section o : B — (M, w).

Proof. Let A be the period net of the complete Lagrangian fibration. There exists a short
exact sequence of sheaves

0— Fr — ZY(T*B) - ZY(T*B/s) — 0,

where Z1(T*B) denotes the sheaf of closed 1-forms on B and F, is the sheaf of sections
of the covering p|y : A — B. The sheaf Z'(T*B) can be equivalently described as the
sheaf of Lagrangian sections of p : (T*B,Qcan) — B. The long exact sequence induced in
cohomology gives

.. > HY(B, ZX(T*B)) —» H (B, ZX(T*B/x)) > H%(B,F)) —
— H*(B, ZY(T*B)) —» H*(B,Z (T*B/A)) — ... .
Using the following isomorphism
H*B,Z2YT*B)) =~ H{{Y(B,R), ifk>1 (see [Gun1b| and [BT+82))
and the hypothesis that B is contractible we get
HY(B,ZY(T*B/))) =~ H*(B, Fa) . (4.2.6)
On the other hand, the sheaf Fj is the sheaf of sections of a covering space over B (Propo-
sition [4.22)), hence it is locally constant on Bﬂ It is a standard result that over a smooth
manifold X, locally constant sheaves of abelian groups F¢g (also known as local systems)
correspond to representations p : (X, z9) — Aut(G) (see [Dim04] Proposition 2.5.1). In

our case X = B is contractible, thus any representation as above is trivial and the local sys-
tem Fy is actually isomorphic to the constant sheaf Z¥, for some 1 < k <n (see Definition

. In the end,
HY(B,ZY(T*B/,)) =~ H*(B, F»)
~ H*(B,Z*) (sheaf cohomology)
~ H%(B,Z*) (singular cohomology)

=~ (HQ(B, Z))k ~ {0}

In particular, both the Chern class and the Lagrangian Chern class of the fibration vanish.
As a consequence of Theorem and Theorem we get the existence of a global
Lagrangian section o : B — (M, w). O

1A sheaf of abelian groups F on X is locally constant if for each = € X there exists a neighborhood U
containing x such that F|y is a constant sheaf on U.
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4.3 The Hamiltonian actions

Here we recall the existence of the circle and SL(2, R) actions we defined on By(T?). Then,
we compute the Hamiltonian function of the associated restricted R* < SL(2,R) action.

Lemma 4.25. Let (M,w) be a symplectic manifold endowed with a Hamiltonian G-action
and moment map pug : M — g*. If H < G is any closed subgroup, then the restricted
H-action is Hamiltonian with moment map pg : M — b* given by pg := |y © pg, where
ly : g% — b* is the map which associates to each functional on g its restriction on b.

From Lemma and Corollary the deformation space By(T?) is diffeomorphic to
H? x C*. Let us denote with (z,w) the coordinates on H? x C. Since the circle action

(z,w) — (z,e Pw), OeR

preserves H? x {0}, we can consider \flg to be the induced S 1-/2\1Ct10n on By(T?). We proved
that such an action is Hamiltonian with respect to @y and Wjg; = g¢. In particular the
Hamiltonian function is given by

The SL(2, R)-action defined in (2.2.16]) preserves H? x {0} as well, and we proved that it is
Hamiltonian on By(T?) =~ H? x C with associated moment map

25 (2, w) — (1—f(m(z>;|“"2)>tr(j(z)X), X e sl(2,R) .

Notice that inside SL(2,R) there is the subgroup of diagonal matrices with determinant

equal to one, namely
{ (g\ ?) ‘ e R*} < SL(2,R) . (4.3.1)

A

In particular, such a subgroup can be identified with a copy of R* which still acts in a
Hamiltonian fashion (Lemma [4.25)) on the space Bo(T?).

Lemma 4.26. Let R* be a copy of the subgroup of diagonal matrices in SL(2,R) and
consider its restricted Hamiltonian action on Bo(T?), then the Hamiltonian function is

given by
3 2
oy (v vl
Hg(z,w)2y<1 f( 5 ))

Proof. The Lie algebra of R* can be identified with

h:={(g‘ Oa) aeR}.
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By Lemma the the associated moment map for the restricted R*-action fiy, : Bo(1?) —
h* is
‘2

i G = (1- f(yg';”)> w(j()X),

1 0
0 -1
Hy(z,w) := ug(z,w), given that dug = wy¢(Ve,-), where

where X € h. Let & := ( > € b, then the Hamiltonian function Hj : Bo(T?) — R is

0 0

is the infinitesimal generator of the action. Finally, since

t(j(2)6) = tr ( (ﬁ/ _> | <(1) —01> > =2

31,2
we get Ho(z,w) = 2% (1 - f<y|;u\)> O

4.3.1 Global Darboux coordinates

In this section we prove the main result regarding the symplectic geometry of (BO(TQ), w f).

Proposition 4.27. The Hamiltonian system (Bo(T?), & ¢, Hy) is completely integrable. The
integrals of motion are given by

e =), e 22150,

Proof. Let Xp,,Xpg, be the Hamiltonian vector fields associated with H;, Ha. An explicit
expression is given by

0 0 0 0 0 0

It is clear that they are point-wise linearly independent on By(7?), hence to end the proof
we only need to show that they are involutive. The symplectic form is

~ 3 d d 2
Wf= (—1~|—f—2f'y3(u2+v2)> xy/; y—gf’y‘gdzu\dv

- yzf'<u(d:c Adu+dy A dv) +o(du A dy —do A dx)) .
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Moreover,
. (o @ [ 8 YR
o ) =2y (5. 5 ) s (525 ) = o (5.7 )-

N2 (0 N .. (0 0
UyCUf %,@ -3 UL&Jf %,% — U UJf %,% .

It is easy to see that the term at the right hand side of the last equality is equal to zero,
hence we get the claim. O

Let H := (Hy, Hs) : (Bo(T?),&s) — B be the Lagrangian fibration associated with the
above completely integrable Hamiltonian system (see Remark , where B := H (Bo (T2)) c
R?2. Using the explicit expression of the integrals of motion and the properties of the func-
tion f, it is clear that B is homeomorphic to U := {(u1,u2) € R? | u; < 0}, hence it is
contractible. Moreover, any b = (b1, bs) € B is a regular value for H and each fiber

H(b) = {(z,w) € By(T?) ’ §f<y3|2wl2> = by, zg <1 _f(y3|2w|2)> _ b2}

is diffeomorphic to R x S1.

Remark 4.28. The fact that each fiber is diffeomorphic to R x S! can be seen directly
from Theorem since the vector fields Xy, , Xy, are complete on H~1(b), for each b € B.
Indeed X, is the generator of the counter clock-wise rotation in the plane and the integral
curve of Xp, passing through the point (z,w) is (,,)(t) = (€*'z, e w), which is defined

for all t e R.

Theorem G. Let (s,0) € R x S be the angle coordinates of (Bo(T?), H1, &) given by the
Arnold-Liouville theorem. Then, {9, Hy, s,Hg} is a global Darbouz frame for &y.

Proof. The Lagrangian fibration H : (By(T?),&f) — B is the one arising from the com-
pletely integrable Hamiltonian system (Bo(T?),&¢, Hy). Since the vector fields Xp,, Xp,
are complete on each fiber H~1(b), by Proposition the associated Lagrangian fibra-
tion H : (Bo(T?),&f) — B is complete (see Definition . Moreover, the base B is
a contractible open subset of R?. Using Corollary we get the existence of a global
Lagrangian section o : B — By(T?). In particular, o(B) is a Lagrangian submanifold of
(Bo(T?),&¢), o(b) € H-1(b) for each be B and H oo = Idg. Let b = (b1, b2) € B, then the

vector fields 5 5
oH. = da(&ly)’ 1=1,2

are tangent to o(B) and they generate a Lagrangian subspace of Ta(b)Bg(TQ). In fact,

~ 0 0 ~ 0 0
(wf)a(b) (8Hl’ (3H2> = (wf)a(b) <da<6bl>’da<é’bg>>
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_ (0*@) 0
- 7o\ Bby Oby

=0. (The section o is Lagrangian)

Let (s,0) € R x S! be the angle coordinates given by the Arnlod-Liouville Theorem, then

the vector fields 97 25 e point-wise tangent to the fiber of H : (Bo(T?), &) — B. In
s
particular, they correspond to Xpg, and Xpg, respectively. Hence,
~ (0 0 ~ .
@il 252 ) = O (Xp,, Xp,) =0 (Involution)

Let us denote the coordinate s with g; and 6 with gs. In order to conclude the proof of the
theorem, we need to show that

~ 0 0 ;
(@f)e (aga 0H> =0;, Vwe Bo(T?) . (4.3.2)
i J

Suppose first x € o(B), hence (1, x2) = o(b1,bs) for some (by,bs) € B. Then,

~ J0 0 ~ 0
0

= dy(Hioo) (;)) (Chain rule)
J

=5;~. (Hioo =b;)

Now let = be an arbitrary point of By(T?) and let W! be the Hamiltonian flow associated
with H;. Since the flow action on the fiber H~1(b) is transitive, we can always assume

0
that z = W!(o(H(z))), where b = H(z). In particular, we have that the vector field 3
J
0

computed at © = W!(o(H(x))) is equal to d¥} <6H>’ where now the vector field inside
J
the differential of ¥! is computed at o(H (z)). Hence,

@s (s ) = @ (vt (577 )

- (wiyer) (rman(5)) e preserves &)

= (@) o(H () <(d‘1’§>1 (XHl) ’ ZTZ>

D
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= (Of)o(H(x)) <XHZ-7 8;) (V! is the flow associated with H;)

~ 5 (o(H(2)) € o(B))

(2

O

4.4 The Ricci tensor and the scalar curvature

In this section we show that the copy of the hyperbolic plane H? x {0} < H? x C =
D3(J(R?)) is the only embedded submanifold with scalar curvature equal to 2, whenever

f(t) = —kt for k > 0. The formulae given for the scalar curvature of g differ by a rescaling
factor with respect the ones in |[RT22| (see Remark and Remark [2.21)).

A Kaihler manifold is a particular case of a pseudo-Kéahler one, namely when the pseudo-
Riemannian metric has index equal to zero. For this very reason it is natural to ask
whether some properties of Kédhler manifolds still holds in this more general setting. Now
we briefly recall the definition of some curvature tensors defined on Kéhler manifolds and
we will explain how their formulae still hold in the pseudo-Riemannian setting as long as
the pseudo-metric is of neutral signature.

Let (M, g,I) be a Kahler manifold of complex dimension n. The tensor I can be extended
by C-linearity on the complexified tangent bundle TcM := TM ®g C. Since I? = —1 there
is an eigenbundle decomposition TcM = T @ TP M, where

TYOM = {XeTecM | I(X)=i-X}, TYM:={XeTcM|I(X)=—i-X}.

The bundle T1OM is called the holomorphic tangent bundle and T%' M the anti-holomorphic

tangent bundle of M, in particular they are the conjugate of each other. If (z1,...,z,) are
local holomorphic coordinates on M, the n-dimensional complex vector space TTOM is
generated by {a—‘zl, . %}. Since zp = xp + iy for each kK =1,...,n we have

o a0 oy o (e oy ...
6zk_2 oxk Oy ’ 82k_2 oxk Oy ’ IR

If we denote with g€ the C-linear extension of g to Te M, then locally it can be written as

g(c = Zg;% (dZ] ® dzk + dfk ® dzj)

j?k
c._ C(0 o\ _ 1 0 0 0 0 ; 0 0 . 0 0 :
where g7 1= 9" (35, 55) = 1(9(ﬁj= aen) +9(ag a) — 19 (a5 7)) Hg(axjv@)): since
the Hermitian condition implies that gg-:k = g% = 0 and the symmetry that g;% = g% for
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each j,k=1,...,n.

In the following, by abuse of notation, we will denote with g the metric extended by C-
linearity on Tc M. If V denotes the Levi-Civita connection of g, then the only non vanishing
Christoffel symbols are

4 0.7 . :
i .l kl 1 ._ T
Ll = —azj , i ij
where gﬂ_C denotes the inverse metric computed on a%j, %. The Riemann curvature tensor
ReD(T¢M ® TcM @ End(TeM)) of V is given by
. ,
k
Ry =— (%Zv Roprs = Ranggjg :

As a consequence of the Bianchi identity, the Riemann tensor enjoys the following symme-
tries
R = Ry = Ryt = Rygig -
Finally, the Ricci tensor and the scalar curvature are given, respectively, by:
ki =
Rz = 9" R, scal(g) = g“ R;j .

Remark 4.29. All the properties listed so far hold in the case of pseudo-Kéhler manifolds,
indeed they are only a consequence of the fact that the metric is non-degenerate and that
Vg = VI =0 (see [ZheO1]).

Lemma 4.30. Let (M,g,I) be a pseudo-Kdhler manifold of real dimension 4n and of
neutral signature (2n,2n), then

2

&Ziagj

Rz = — log (det(g)) .

Proof. First, notice that log (det(g)) is well-defined since the pseudo-metric g is of neutral
signature, hence det(g) > 0. Then, by using the formulae above, we get

R; = i Rypi; (symmetry of Rﬁklf)
=Ry’ (Byziz = 9pifti i)
D
B él“ip
82]'
0 ~0Gpa
(P12 7P4
553' (g 0%; )
2

0 )
- 0207 log (det(g)) - (Jacobi’s formula)

O
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Before computing the Ricci tensor and the scalar curvature of the new metrics, it should
be noted that it is sufficient to do the computation at points (i,u) € H? x C. In fact, the
SL(2, R)-action introduced in Section allows us to reduce to the points (7, w) and the
natural S'-action on C introduced in Section to the points (i, u), since both actions are
isometric (Theorem and Theorem [E]). Furthermore, we need to write det(gy) and the
inverse of the metric g, extended by C-linearity on Tc(H? x C), in terms of the coordinates
(z,w). We have:

- 3(1— f +3f'u?

~SZW - u ~ 4 !/
(gf )(z‘,u) = 2@7 det(gf)(zw) = *Im('z)Q(f )2(1 - f)2 .

~2Z 1
(gf )(i,u) = ﬁ’
3

9

Proposition 4.31. The Ricci tensor and the scalar curvature of the pseudo-Kdhler metrics
(g7, I, 05) are given by:

1 f/ fll 9
(Rz2>(z,u) = 5 + 3U2<1 — f — 7 + §U4Gf

Y e,

) f// f/
(sz)(i,u) = z<3u<f/ — 1_ f — 3u3Gf
. 2 3 f 3u? 9 1/ f f Gi(1-f)

1 L= -2 = _ 4 Jr )
scal(gy) (i,u) =7 2(f’)2+1—f<6u Gr+ S\T—F F + o
ffA=-H+u? =3

(1—1)? VL
Proof. Using the formulae above and the symmetries RizE = Rj;, the Ricci tensor is given
by

where Gy :=

Ricg, = R.zd2 ® dz + Rygpdw ® dw + 2Re(R,p)dz ® dw .
According to Lemma [£:30] the components can be computed as

2 N 02 N 2
_8282 lOg (det(gf))7 Rwﬂ) = a _ log (det(gf))7 RZﬂ} = _82811)

 Owow
Using the expression of det(gy) found above we get

Rz = log (det(gy)) -

log (det(gf)) = log <3> + 2log (Im(z)) + log ((f')Q) + 2log (1 — f) )

Finally, recalling that the functions f, f/, f”, f are all evaluated at Im(z)3|w|? and using

0 l
the formula F Im(z)! = — Im(2)!~! we obtain the desired expression for the components
z

(24)!
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of the Ricci tensor.
The scalar curvature is given, by definition, by

Scal(gf) = gjszzZ + g?wa@ + g?ﬂ}Rzm + Q?ZRU)Z .
Since @?Eng = @jcu_’sz, the final expression is
scal(gy) = @;ERzg + @”}”mew + 2Re(§jcme) .

Now, we can directly compute the scalar curvature at the points (i,u). By a simple, but
long enough, direct calculation, one gets the desired formula. O

As one can see, these expressions are too complicated to be able to make any estimates
on the scalar curvature. On the other hand, on H? x {0} < H? x C the expression is
considerably simplified, indeed given that f(0) = 0, it follows that
- 3 f"(0)

1 i) =2—— .
sca. (gf)(l,()) 92 f’(O)Q
In particular, if we pick the function f to be of the form f(¢) = —kt, with k& > 0, it becomes
clear that the scalar curvature on H? x {0} is constant and equal to 2.

(4.4.1)

Corollary 4.32. For any (i,u) € H? x C* and for f(t) = —kt, with k > 0, the scalar
curvature scal(gy) ;) is strictly less then 2.

Proof. For this choice of f, at the point (i,u) we have

k‘2

flt)y=~k f"=f"=0,

Thanks to Proposition [£:31] it follows that

scal(8¢) (s.u) = 2 1+ 3t 6th? _ Ok
8w = 1T ke (1+kt)2 1+kt))"

< 1forall k>0 and ¢ > 0, we obtain

~ tk tk
scal(gy)(iu) < 2+ 36 ( 1> )

1
Using that
S A T e

1+ E\1+kt
The last quantity is strictly less then 2 since

36tk =0 tk
1+ kt o1+ kt

—-1<0, Vt,k>0.
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4.4.1 The isometry group

It is clear from Theorem and Theorem [E| that any matrix in PSL(2,R) and any
rotation of the fiber generated by S, is an isometry of H? x C with respect to gs. Plus,
the two actions commute. We will show that, whenever f(t) = —kt, with & > 0, any other
isometry h, isotopic to the identity, can be written as composition h = P o e’ for some
(P,e%) € PSL(2,R) x S'. Finally, we deduce the expression for an arbitrary isometry of
the space.

Lemma 4.33. Let hy, hy : (My,91) — (Ma, g2) be two isometries between smooth connected
pseudo-Riemannian manifolds. If there is a point p € My such that hi(p) = ha(p) and
dphl = dphg, then h1 = hg.

Proof. Let C := {q € My | dgh1 = dghe}. Then, by continuity C is a closed subset in M;.
Since p € C by hypothesis, it is non-empty. Therefore, it only remains to show that C is

open in M;. We infer that if ¢ € C, then any normal neighborhood U of ¢ is contained in
C. In fact, if 7 € U there exists a v € T, M such that v,(1) = exp,(v) = r. Thus,

hi(r) = h1(%(1)) = Yany (@) (1) = Yana(o)(1) = h2 (1w (1)) = ha(r) .

In other words, the functions hqy and hs coincide when restricted on U, hence d,h; = d,-ho
for all » € U, which implies U < C. O

Theorem 4.34. Let Isomg (H2 x C, §f) be the connected component of the identity of the
isometry group Isom(H? x C,gs). If f(t) = —kt, with k > 0, then Isomo(H? x C,g;) =
PSL(2,R) x S*.

Proof. First notice that each isometry h € Isomg (]HI2 X (C,gf) preserves the copy of the
hyperbolic plane H? x {0}. In fact, if there was an isometry  with %(z, 0) = (¢/,w) for
some (2/,w) € H? x C*, then we would get the following contradiction

2= scal(gf)(z,o)
= (%*scal(gf))(zyo) (h is an isometry)

= scal(gf)(zl’w)
<2. (Corollary [4.32))

Pick any h € Isomg(H? x C,gy) such that h(z,0) = (2/,0) for some z,z’ € H?. We can
always assume that h(i,0) = (4,0), indeed there exist two matrices P, P’ € SL(2,R) such
that (z,0) = P (i,0), (2/,0) = P’ (4,0), hence the isometry (P')~! o ho P would fix the
point (i,0). If we consider the linear map d; o)h : T;H? x ToC — T;H? x TyC restricted to
horizontal directions, we can again assume, up to pre- and post-composition with elements
in PSL(2, R) as before, that d; g)h(Z,0) = (Z,0), for all Z € T;H?. This implies that

d(i70)h|TiH2 = IdTin .
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Now if (0,U) € TiH? x TyC* is a real vertical direction, then d(; 0)h(0,U) = (0, W) for some
W e TyC*. In particular, since h is an isometry we get

2 2

1012, = W1, ,

which implies that W = €U for some # € R. Furthermore, since the circular action is an

isometry for g¢ that is trivial on the base H?2, up to pre- and post-composing with rotations

in the complex plane we have
d(i,O)h’(Z7 U) = (Z) U)

for all Z € T;H?. Since h is orientation preserving, we deduce that diioyh = 1d, since h
should also fix an imaginary vertical tangent vector. In the end, using Lemma [£.33] we
obtain that h = Id on the whole H? x C after possibly pre- and post-composing h by
elements of PSL(2,R) and rotations. Therefore, h was of the form h = P o ¢ for some
(P,e') e PSL(2,R) x St O

During the proof of the theorem we used that each isometry isotopic to the identity
preserves the orientations on both H? and C. There are other three possibilities for an
arbitrary isometry h € Isom(H? x C,gy):

e h reverses the orientation on H? and preserves the orientation on C. Then, by com-
posing with hi(z,w) := (—Z,w) we get an isometry preserving both orientations.

Hence, the proof of Theorem holds for h o hy.

e h preserves the orientation on H? and reverses the orientation on C. Then, by com-
posing with ha(z,w) = (2, w) we get an isometry preserving both orientations. Hence,
we have the same conclusion as above for h o hg.

e Finally, h reverses both the orientations. Then, the same argument applies to hohyo

ho.
In the end, we proved the following

Corollary 4.35. If f(t) = —kt, with k > 0, then any isometry h : (H?> x C,gf) —
(H? x C,gy) can be written as

h=Poei9, thoewohl, thoewohz, h=Poewohloh2

for some P € PSL(2,R) and ¢ € S?.



Chapter

Further developments

While this thesis answers, at least partially, some questions that have long remained unan-
swered, it also introduces new ones that deserve to be analyzed and hopefully answered in
the near future.

5.1 Relation with Goldman’s symplectic form

In Chapter |3| we proved the existence of a (possibly new) symplectic form w; on the
PSL(3, R)-Hitchin component (Theorem [A)), which is known to be non-degenerate in a
neighborhood of the Fuchsian locus. It is thus natural to ask about the relation between
wys and Goldman’s symplectic form wg. According to our construction (Section
we need first to understand what happens in the torus case, where we have a family of
symplectic forms parameterized by smooth functions.

Question 5.1. Does there exist a smooth function f : [0,4+00) — (—00,0] with f(0) = 0,
f'(t) <0Vt>0 and tlirf f(t) = —o0 such that @ = kwg, for some ke R?
—+00

If this were true for the torus, then one could try to prove something similar in the genus
g = 2 case using Donaldson’s construction. In particular, an affirmative answer would
imply that our symplectic form w; is non-degenerate on the entire Hitchin component and
would show that Goldman’s symplectic wg form is compatible with Labourie and Loftin’s
complex structure, giving rise to a pseudo-Kéhler metric.

Another possible approach comes from an equivalent expression for wg found by Gold-
man. He showed that the space of projective equivalence classes of affine connections on
can be realized as a symplectic quotient using the theory of infinite-dimensional symplectic
reduction (|Gol90b]). Because of the equivalence with the deformation space of convex
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RP2-structures on ¥, he showed that Goldman’s symplectic form can be expressed as:

. 1 . . ) .
wg(o1,02) = f trop A troo —J tr(oy A 02),
3Js b

where 71,09 are tangent vectors to the space of connections, namely End(7'3)-valued 1-
forms. In particular, they are deformations of the canonical projectively flat connection (the
Blaschke connection) coming from the hyperbolic affine sphere formulation. Given that we
were able to write Labourie and Loftin’s complex structure I in terms of pairs (J A) with
J a variation of an almost complex structure on ¥ and A a variation of the Pick form of the
corresponding hyperbolic affine sphere, it would be interesting to understand the action of
I on tangent vectors o1, 0.

Question 5.2. Using the above expression for wg, s it true that

wa (I(O’l),O'Q) = —wg (d’l,I(d'g)),

or, in other words, that wg is compatible with 17

5.2 A new geometric transition

In this thesis we proved that
Kp =gl = 1,

namely Wang’s equation for hyperbolic affine spheres in R3, has an interpretation as a
moment map for the action of an infinite-dimensional Lie group. It is interesting to note
that (JLM16]), by changing the sign in front of the cubic differential part, one obtains the
equation governing minimal Lagrangian immersions in the complex hyperbolic plane CH?.
In particular, using Trautwein’s result (|Tral8|), it can be shown that an open subset of
the moduli space of such minimal Lagrangian immersions inherits a mapping class group
invariant Kahler metric, and there is an analogous moment map interpretation for the
corresponding equation. The aforementioned open subset correspond to an open subset
in the SU(2,1)-character variety of the surface ¥ ([HLL13|,|[LM13|,[LM19]), so that the
Kahler metric is defined on a neighborhood of the "Fuchsian locus". Moreover, by letting
q tends to zero both equations degenerate to the constant curvature equation defining the
Teichmiiller space. At the level of Lie algebras sl(3,R) and su(2,1) are the 8-dimensional
real split and real quasi-split forms of s[(3,C) of rank 2 and 1, respectively.

Question 5.3. Is there a geometric transition from a hyperbolic affine sphere in R? to a
mianimal Lagrangian in CH? ? If so, what is the intermediate geometry and the corresponding
immersion?

Question 5.4. How is the pseudo-Kdhler metric we introduced on Hitg(3) related to the
Kihler one introduced by Trautwein? How do they interact under the above geometric
transition?



131 5.3. WHAT ABOUT OTHER RANK 2 SPLIT LIE GROUPS?

5.3 What about other rank 2 split Lie groups?

One of the key results we used for our construction was the natural isomorphism between
the PSL(3, R)-Hitchin component and a holomorphic bundle over 7(X). In fact, according
to this parameterization, Hitz(3) inherits a complex structure invariant under the action of
the mapping class group. Recently, Labourie (|[Lab17]) has shown a similar result regarding
the Hitchin component for a general real simple split Lie group of rank 2, which up to
isomorphism is PSL(3,R), PSp(4,R) or the real split form G5 of the exceptional Go. In
the PSp(4,R) case, the Hitchin component is parameterized by the bundle of holomorphic
quartic differentials, and in the case of G¥ by the bundle of holomorphic sextic differentials.
In particular, both connected components inherit a natural complex structure.

Question 5.5. Does there exist a symplectic form w on the PSp(4,R) and G5 Hitchin
component compatible with the aforementioned complex structure? Do they give rise to a
natural pseudo-Kahler structure which restrics to (a multiple of ) the Weil-Petersson metric
on Teichmiiller space?

The first major difference in these two cases, is that Hitchin equations of the associated
cyclic Higgs bundle over (X, J) € T(X) (the equivalent of Wang’s equation for PSL(3,R)),
form a coupled system of PDE’s. Assuming that Donaldson’s construction can also be
applied in these cases, there remains the problem of understanding how the two coupled
equations can be interpreted as the intersection of the zero locus of two moment maps. In
fact, as explained several times throughout Section [3.3.1} Donaldson’s theorem provides us
with only one. In particular, such a moment map depends on a particular choice of smooth
function f. So it is natural to ask the following:

Question 5.6. Is it possible to find two smooth functions f,g : R — R satisfying some
functional equation, so that Donaldson’s theorem provides two moment maps whose zero
locus can be identified with the above system of PDE’s?

One possible approach, when G = PSp(4,R), comes from the exceptional isomorphism
PSp(4,R) = SOp(2, 3). In fact, in this case, thanks to the work in [CTT19), for any Hitchin
representation (actually maximal) p : m1(2) — SOg(2, 3) there exists a unique p-equivariant
embedding Y < H22 as a mazimal space-like surface. The equations governing the embed-
ding data of such surfaces are quite similar to the one governing hyperbolic affine spheres in
R3. Tt turns out that, at least when X = T2, there is an explicit (actually constant) solution
to the self-duality equations for the corresponding SOg(2, 3)-Higgs bundle, and this allows
us to write the induced metric on the normal tangent bundle of the embedded surface in
terms of the metric induced on the tangent bundle. Then, combining the work in |[LT23]
and the very recent one in [Nie22|, we expect to define a pseudo-Kéhler structure on the
SO(2, 3)-Hitchin component of the torus using the same approach as the one presented in
this thesis.






Appendix

Elliptic operators on compact
manifolds

In this appendix we recall the fundamental results about elliptic differential operators de-
fined on smooth compact manifolds that we used during the proof of the main result of the
thesis. The material covered here is classical ([Dem97],[War83|,|Gil18],|Nic20]).

A.1 Sobolev space of sections

Let M be a smooth compact n-manifold equipped with a Riemannian metric g and let dVj
be its volume form, normalized to unit volume, i.e.

f dv, = 1.
M

Definition A.1. Let p > 1, define the p-Lebesgue space as

LP(M) := {f:M—»R‘ <fM|f|pdVg>;<oo}.

This is a Banach space for p > 1 with norm given by || f||, := <f |f|PdVg> P , and it
M

is a Hilbert space when p = 2 with the following scalar product

(f.9) = fo g dVy . (A.1.1)

Definition A.2. Let p > 1 and k be a non negative integer. Define the (k,p)-Sobolev
space WFP(M) to be the set of f € LP(M) such that f is k-times weakly differentiable and
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|Df| € LP(M) for || < k, where in a local coordinate = = (z1,...,z,) we have
a a1 5 Qn
e S
0x1 0xy, a=(m an)
Then W#P(M) is a Banach space with the Sobolev norm

1
p

o = (3 [ 10%57av;) (A12)

lal<k v M

and W"?2(M) is a Hilbert space (with scalar product similar to (A.1.1])).

Let m: E— M be a real (or complex) vector bundle and let {-,-)r be a scalar product on
E. We define, for p > 1, the space LP(M, E) to be the set of locally integrable sections of
E over M, namely it is formed by the smooth sections s € I'(M, E) for which the norm

1
P
Isllp = <JM ISIPdV_q>

is finite, where |s|” = (s, s)g. Let V be a connection on E compatible with {-,-), we define
the space W*P(M, E) as the completion of I'(M, E) with respect to the norm

1
. P
lsller = (Z ||ws||pdvg) -

j<k M

‘ 2

In particular when p = 2 we obtain that W"2(M, E) is the completion of I'(M, E) with
respect to

Isllfy.2 = ZJ V75>V, (A.1.3)
j<kvM
where
Hv08||2 = <873>E

HVSHQ = (Vs, V5>T*(M)®E
IV25]|* = (V2s, V)1 (aner+ (@ F -
and W%2(M,E) = L*(M,E). The scalar product on W*2(M, E) is simply given by

(s,8) := (HSHWk,2)2 and it can be proved that

ﬁ WkEA(M,E) =T'(M,E) .
k=1
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Proposition A.3. Let M be a compact smooth n-dimensional manifold, then the Sobolev
norms associated with two different choices of Riemannian metrics on M, scalar
products on E and connections, are equivalent. Furthermore each of these norms is in turn
equivalent to the norm associated with the scalar product

<8a3/>k = Z<(¢J5) j a 77/)] 1>k )

where (Uj,gbj) is an atlas for M which is trivializing for F and with the property that
the image of ¢; is all contained in a foundamental domain for 7" = R"/Z", and {¢;} is a
partition of unity subordinate to {U;}.

A.2 Differential operators over compact manifolds

Definition A.4. Let E and F be real (or complex) vector bundles over a smooth compact
n-manifold M. Let L : T'(M; E) — T'(M; F') be a K-linear map, where K = R or K = C.
We say that L is a differential operator if for any trivializing chart U for E and F we have

x:U— AcCR"?
¢:E|, — AxK
¢ F|, — AxK™

and the following diagram is commutative:

ryoLoiy

MWEM) Naﬂw

| |

To(A, Ax K — 2 T(A4, A x K™

where iy : To(U, E | U) — T'(M, E) is the immersion of compact support functions, ry :
I'M,F)— I'(U, F|U) is the restriction and Ly is a matrix of differential operators.

The operator L is of order k if in any trivialization Ly involves no derivatives of order
bigger than k, hence locally (Ly)i; = Z aaD.
la|<k

We denote the space of differential operators of order k over M as Diff*(M; E; F).

Theorem A.5. Let L : I'(M; E) — T'(M; F') be a differential operator of order k. Then
there is a K-linear extension L : Wk+L2(M; E) — WH2(M; F), for every non negative
integer [ > 0, such that L‘CW(M.E) =L.



APPENDIX A. ELLIPTIC OPERATORS ON COMPACT MANIFOLDS 136

Let L eDiff*(M; E; F), it is possible to define the principal symbol of L
or(L) e T(T*(M); Hom(7* E, 7* F))
as follows. Let (x,£) € T*(M) and e, € E, be given; find f € C*(M) and e € T'(M; E)
such that df|, = £ and e(z) = e,. Define o (L), (¢) € Hom(FE,, F}) (|JDem97]) to be:
oL (€)(ex) = L((f = f(w))e) (@) (A21)

It can be checked that o (L), (§) does not depend on the choices made and that it is a
linear map from E, to F,. In a local trivialization if ¢ = &da! + - - - + &,da™, using the
construction above, one has

ok( D, aal@f)D¥) (€)= D) aalif) (€)™ ... (€)™ .

|| <k || =k

Definition A.6. A differential operator L : T'(M; E) — T'(M; F) of order k is elliptic if
for all (z,&) € T*(M)\{0} the principal symbol of L evaluated on (z,¢) is an isomorphism.

Lemma A.7 (Weyl Lemma). Let L : I'(M; E) — T'(M; F) be an elliptic operator of
order k and let s € WK2(M, E), then if Ls = 0 holds weakly in L>(M, E) it follows that
se (M, E).

Example A.8. Let A : C°(R") — C*(R") be the Euclidean Laplacian, namely

naQ
A(f)i= =2 5l [eCPRY).

i=1
Let 0 # £ € T)R™ be such that d, f = £. Then,

= —|d.fI?#0.

Thus the Euclidean Laplacian A on R™ is an elliptic operator of order 2. The same proof
applies to the Laplace-Beltrami operator Ay : C*(M) — C®(M) defined on a smooth
compact Riemannian manifold (M, g) of dimension n as the divergence of the gradient. In
fact, in a local coordinate x = (1, ...,x,) we have

o P
Ap :Z (gjéa:i&a;j _Zl:nglij(?xl)’

1,J
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where (g%/);; is the matrix associated with the inverse metric and the Féj’s denote the
Christoffel symbols.

Given (M, g) a smooth compact Riemannian n-manifold and given F, F' two smooth real
(or complex) vector bundles over M, let us consider (-, )p and (-, -)p scalar products on E
and F, respectively. Define the following inner product on the space of smooth sections of
E

(s,t)g := f (s,typdVy Vs,teI'(M;E) (A.2.2)
M
and similarly on I'(M, F).

Definition A.9. Let L : I'(M,E) — I'(M, F) be a smooth differential operator of order
k, then its adjoint L* : T'(M,F) — I'(M, E) is the smooth differential operator of order k
uniquely determined by the following property:

(L(s),t) p = (s, L*(t)) s sel(M;E), tel(M;F).

Theorem A.10. If L :T'(M,E) — I'(M, F) is an elliptic differential operator between the
space of smooth sections of two real (or complex) vector bundles of the same rank, then one
has the following decomposition:

['(M,E) = Ker(L) ® Range(L*)

and the space Ker(L) is finite dimensional. Moreover, the direct sum decomposition is
orthogonal with respect to (-, ).

Definition A.11. Given a bounded linear operator T' : X — Y between Banach spaces,
we say it is Fredholm if Ker(T') and Coker(T') := Y /Range(T') are both finite dimensional
and Range(T') is closed. The number:

ind(7) := dim Ker(T") — dim Coker(T) € Z
is called the Fredholm index of T.

Lemma A.12. Any elliptic operator L : T'(M, E) — T'(M, F) between the space of smooth
sections of K-vector bundles over a compact smooth manifold M is Fredholm.

Theorem A.13 (Homotopy invariance of the index). Suppose that we have a continuous
path
L,:T(M,E) —T(M,F), tel0,1]

of elliptic differential operators of order k between the space of smooth sections of two K-
vector bundles over a smooth compact manifold M. Then,

ind(L¢) = ind(Lo), Vte[0,1].






Appendix

Symplectic reduction theory

In this appendix we recall the notion of Hamiltonian action on a symplectic manifold with
associated moment map. We briefly explain the construction of symplectic reduction when
the manifold is of finite dimension, as it inspires the infinite-dimensional case. We will
not go into details since the material covered here is classical and can be found in many
books and papers ([MS17; DDO08|). Finally, after recalling the definition of pseudo-Kéhler
manifold, we state and prove the Marsden-Meyer-Weinstein theorem in the pseudo-Kéahler
setting, since it is not easily found in the literature.

B.1 The Marsden-Meyer-Weinstein theorem

Definition B.1. A symplectic manifold is a pair (M, w), where M is a real smooth manifold
and w is a closed non-degenerate 2-form on M, called the symplectic form.

One can think of the closed 2-form w as a family of skew-symmetric non-degenerate bi-
linear forms wy, : T,M x T,M — R, for any p € M. In particular, the non-degeneracy of w
implies that dim M is even and there is an induced isomorphism T7M =~ T, M by wp, for
any pe M.

Definition B.2. Let (M,w) be a symplectic manifold and let G be a Lie group acting
on M. Let ¢y : M — M be the map ¢4(p) := g - p, then we say the group G acts by
symplectomorphisms on (M,w) if Yjw = w for all g € G.

Definition B.3. Let G be a Lie group, with Lie algebra g, acting on a symplectic manifold
(M,w) by symplectomorphisms. We say the action is Hamiltonian if there exists a smooth
function p : M — g* satisfying the following properties:

(i) The function p is equivariant with respect to the G-action on M and the co-adjoint

139



APPENDIX B. SYMPLECTIC REDUCTION THEORY 140

action on g*, namely
pgp = Ad*(9)(np) := ppo Ad(g™") € g* . (B.1.1)

(ii) Given £ € g, let X¢ be the vector field on M generating the action of the 1-parameter
subgroup generated by &, i.e. X¢ = %exp(tf) - pli=o. Then, for every £ € g we have

dpt = txw = w(Xe, ), (B.1.2)
where p¢ : M — R is the function ué(p) := ,(€).

A map p satisfying the two properties above is called a moment map for the Hamiltonian
action.

Given a symplectic action of a Lie group G on a symplectic manifold (M,w), one can
ask whether a quotient exists in the category of symplectic manifolds. It is clear that the
topological quotient always exists, but it is not necessarily a smooth manifold, for example
when the G-action is not proper or free. Although the action is required to be free and
proper, the resulting quotient manifold may have odd dimension and so it will not admit
a symplectic form. All in all, the topological quotient M /G does not in general provide a
suitable quotient in symplectic geometry. Nevertheless, the existence of a moment map for
a Hamiltonian action allows us to induce a symplectic structure on the quotient of a level
set of the moment map. In fact, since 0 € g* is fixed by the co-adjoint action, equivariance
of y implies that the preimage u~'(0) = M is preserved by the action of G.

Theorem B.4 (Marsden-Weinstein-Meyer [MW74; |Wei80|). Let G be a Lie group acting on
a symplectic manifold (M,w) by symplectomorphisms. Suppose the action is Hamiltonian
with moment map p: M — g*. Let v : p=1(0) < M be the inclusion map, and suppose the
restricted G-action on p~'(0) is free and proper. Then, the following holds:

e The topological quotient ~1(0)/G is a smooth manifold of dimension dim M — 2dim G
and the quotient map 7 : = 1(0) — p=1(0)/G is a principal G-bundle;

e there exists a unique symplectic form wyeq on = 1(0)/G such that T*wseq = 1*w.

The pair (1 1(0),wreq) is called the symplectic quotient or Marsden- Weinstein-Meyer
quotient of (M,w). The main steps of the proof can be summarized as follows:
Step 1:
If g, denotes the Lie algebra of the stabilizer of p € M, then d,u : T,M — g* satisfies:

Ker(dpu) = (Tp(G‘p)>lwp7 Im(dppu) = 92 ={{eg | X)=0,VXe gp} .

In other words, the kernel of the differential of the moment map can be identified with the
symplectic orthogonal of the tangent space to the G-orbit, and the image of the differential
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is identified with the annihilator of g,. In particular, it can be proven that 7}, (G : p) is an
isotropic subspace of (T, M,wp), namely (w)p|7,(G.p) = 0.

Step 2:

The G-action on = 1(0) is free, then 0 is a regular value of y. In particular, p=1(0) is a
closed submanifold of M of codimension equal to the dimension of G. Finally, using an

"equivariant" version of tubular neighborhood theorem (sometimes called slice theorem),
one gets that the quotient projection 7 : p=(0) — ©~1(0)/G is a principal G-bundle.
Step 3:

The symplectic form w is induced on the quotient ~1(0)/G by using a standard argument
in symplectic geometry, namely if (V,w) denotes a symplectic vector space which admits
an isotropic subspace U (i.e. w|y = 0), then there is a natural induced symplectic form on
the quotient U+~ /U. In our case, we can pick V = T,M and U = Tp(G . p) which is an
isotropic subspace of (T,M,w,) by Step 1. In the end, at the level of tangent spaces, we
get the following identifications:

Ut U = Ker(d,u) /Tp(G-p) = Ty (M_l(o) /G) '

In other words, the tangent space to the quotient is identified with the symplectic orthogonal
to T, (G - p) inside Ker(d,p).

B.2 Pseudo-Kahler reduction

A pseudo-Riemannian metric g on a smooth n-manifold M is an everywhere non-degenerate,
smooth, symmetric (0,2)-tensor. The index of g is the maximal rank k of the smooth
distribution where it is negative-definite. For instance, if K = 0 then ¢ is a Riemannian
metric. Now let J be a complex structure on M, then (g, J) is a pseudo-Hermitian structure
if

g(JX,JY) =g(X,Y), VX, YeT,M,pe M. (B.2.1)
Notice that, due to this last condition, the index of g in this case is always even k = 2s,
where s is called the complex index and it satisfies 1 < s < m = dimg M. The fundamental
2-form w of a pseudo-Hermitian manifold (M, g, J) is defined by:

w(X,Y):=g(X,JY), VX,YeT,M,peM . (B.2.2)

Definition B.5. A pseudo-Hermitian manifold (M, g, J,w) is called pseudo-Kdihler if the
fundamental 2-form is closed, namely if dw = 0. In this case the corresponding metric is
called pseudo-Kdihler. Moreover, if g is positive-definite then (M, g, J,w) is called a Kdhler
manifold.

Let (M, g, J,w) be a pseudo-Ké&hler manifold and suppose there is an action of a Lie group
G on M which preserves the symplectic form w and the pseudo-Riemannian metric g. Let
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us also assume that the action is Hamiltonian with moment map p : M — g*. Then, one
is tempted to mimic the symplectic reduction case and try to induce the pseudo-Kéahler
structure on the quotient x~!(0)/G. Indeed, the same can be done with the appropriate
adjustements:

Theorem B.6 (Pseudo-Kéhler reduction). Let G be a Lie group acting on a pseudo-
Kahler manifold (M,w, J, g) by isometries and by symplectomorphisms. Suppose the action
is Hamiltonian with moment map pu : M — g*. Let v : p=*(0) < M be the inclusion map.
Suppose that the restricted G-action on =1 (0) is free and proper and that the pseudo-metric
g restricted to the orbit T, (G -p) < T,p1(0) is non-degenerate. Then, the following holds:
e The topological quotient u~1(0)/G is a smooth manifold of dimension dim M — 2dim G
and the quotient map 7 : u=1(0) — p~1(0)/G is a principal G-bundle;
o there exists a unique pseudo-Riemannian metric greq and complex structure Jyeq on =1 (0)/G
such that

7T*g?"ed = [/*ga W*Jred ="J

and the pairing wred = Gred(-, Jreq+) 1S a symplectic form on the quotient.

Proof. During the proof we will assume the first claim of the theorem to be true, namely
the existence of the G-principal bundle 7 : £ ~1(0) — ©~1(0)/G, and we will explain, step by
step, how to induce the pseudo-Riemannian metric and complex structure on the quotient.
Let V' be the vertical bundle of the above G-principal bundle, namely V,, = Ker(d,n) for
all p e u~1(0), and let N denotes the normal bundle of the inclusion ¢ : 4 ~1(0) — M.

Step 1: The pseudo-metric is non-degenerate when restricted to V, and V.

Let £ € g and let X¢ be its infinitesimal generator, then we have
glgradp®,Y) = dpt (V) = w(Xe,Y) = —g(JX¢,Y) , VY € I(TM)

which implies that gradut = —JX¢. Now, let &1, ..., & be a basis for g and nt,...,n"eg*
its dual basis. Then, the moment map j can be seen as a smooth map from M to RF >~ g*,
as follows

w(p) = pS (p)n* + -+ pSF (p)n* Vpe M,

where ;& is a C® function from M to R, for any j = 1,..., k. A standard argument shows
that a global frame for the normal bundle N is given by

{gradp®, ... gradu®*} = {JX¢,, ..., JXe, } -

Moreover, since the restricted action of G on p~1(0) is free, for all p € u~1(0) each stabilizer
G)p is trivial, and the differential of the orbit map ®,(h) = h-pe G -p, for h € G, induces
a linear isomorphism

Ty(G-p)=g.
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In particular, from the above discussion, we deduce that {X¢ ..., X¢, } is a global frame
for the vertical bundle V. In other words, for any p € u~1(0), we showed that the set

{(Xes oo Xepn JXey, o0, J X,
is a basis for
V@ N, = Ty(Gp) ®J(Ty(Gp)) -

By hypothesis, the pseudo-metric g is non-degenerate when restricted to 7),(G-p) = V,, and
together with the pseudo-hermitian condition (B.2.1), we deduce that g is non-degenerate

when restricted to J(Tp(G : p)) ~ N, as well. Finally, by using (B.2.2), we get a g-

orthogonal decomposition
1 1L
V&N, = T,(Gp)®J(T,(G-p)) |
1

which implies that the restricted pseudo-metric is non-degenerate on the direct sum V,, ® N,
for any p e u=1(0).
Step 2: The space N, is the g-orthogonal to Ker(dyu).
Notice that for any ¢ € g and for any w € Ker(dppu) = T,u~1(0), we get

g(w, JX¢) = w(w, X¢) = dppé(w) =0 .
According to what has been shown in Step 1, we know that N, = J <Tp(G - p)), and we can
deduce the following g-orthogonal decomposition:

1
T,M = Tou " (0) ® Ny, Vpep '(0),

which implies that the pseudo-metric is non-degenerate when restricted to T,u=1(0) =
Ker(dpp).
Step 3: The choice of the supplement to the orbit.

Let us define the following space:
H, := {v e Ker(dpp) | J(v) € Ker(dyp)}, VYpep 1(0).

Notice that H), is J-invariant by definition. We want to prove that there is a g-orthogonal
decomposition
1
Tpﬂil(o) =H,®V),, Vpe Mfl(o) .

Regarding the direct sum decomposition, suppose by contrary there exists 0 # v € H, n
T,(G - p), then by definition of H, the element J(v) still belongs to Ker(dpu) = Tpu~'(0).
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Moreover, since by hypothesis v € T,,(G - p) = V,, we deduce that J(v) € N, by Step 1.
In particular, the element J(v) is g-orthogonal to Ker(d,u) by Step 2. This is possible if
and only if J(v) = 0 as the pseudo-metric is non-degenerate on Ker(d,u). Since J is an
isomorphism and we assumed v to be non-zero, we get a contradiction. Finally, notice that
an element v is g-orthogonal to T,,(G - p) if and only if J(v) € Ker(dyp) as shown by the
following computation:

g(Xg,U) = _g(X§7 J2(U)) = _W(va J(’U)) = dp:u5 (J(’U)), Vf €9.
Hence, by definition of H,, we can conclude that H, L V.

Before going on with the proof, let us give a brief summary of what has been deduced
so far. For any p € 1~ !(0) we proved the existence of the following g-orthogonal decompo-
sition:

1 1
T,M = H, ®Tp(G‘p) S J<Tp(G p)) )

where H,, can be identified with the tangent to the quotient space p~1(0)/G. Moreover,
the pseudo-metric g is non-degenerate whenever is restricted to one of the above spaces.
In particular, we will denote with g..q the pseudo-metric induced on the quotient, so that

7T*gred = L*g-
Step 4: The induced almost complex structure on p~1(0)/G.

We first observe that, if Y is a vector field on x~1(0)/G, its horizontal lift ¥ is not a vector
field on M, but only on p~1(0). Thus, it’s not clear a-priori how to apply the complex
structure to such lifts. Nevertheless, the map

pH0) — H
p— Jp(Yp)

defines a smooth G-invariant section of H, since the complex structure preserves H, Y
is G-invariant and G preserves J. We will denote such a section by JY. Since JY is
a G-invariant horizontal section, it is the lift of a unique smooth vector field dn(J 17) on
p~1(0)/G. In other words, we have a way of applying the induced complex structure Jyeq
to vector fields on 1 ~1(0)/G, by the following formula:

Jeed(Y) = dn(JV), VY € F(T(;fl(o) /G)) .
It is easy to see that Jyeq is a (1,1)-tensor and C™ linear. In fact,

Jrea(fY) = dn(J(fY)) = dr((f o m)JY) = fdn(JY) = flrea(Y) ,
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for any C® function f on u~1(0 ) /G. Finally, to show that J2, = —1 we only need to notice
that the horizontal lift of d7(JY) coincides with JY . Hence,

Jred (Jrea(Y)) = Jrea (dn(JY)) = drr (Jdm)) — dr (V) = —dn(V) =~V .

Step 5: %Jred = 0, where ¥V is the Levi-Civita connection with respect t0 gred-

Let V be the Levi-Civita connection of g and let Py : TM — H be the orthogonal
projection. We claim that for any Y, Z smooth vector fields on 1 ~1(0)/G, we have

VY = dﬂ(PH(VZ*Y*)) :

where Y*, Z* are arbitrary smooth extension to a neighborhood of ;~1(0). In fact, if \Y
denotes the Levi-Civita connection of t*g on p~1(0) = M, then it is standard to prove that

VY = (vz*y*)L,

where L is the orthogonal projection onto 71~ 1(0) with respect to the pseudo-metric g on
M. The Levi-Civita connection V is obtained by first projecting Vz+Y™* onto Tu=1(0),
and then projecting onto H and using the correspondence between G-invariant sections of
H and vector fields on p~1(0)/G. This procedure gives exactly the formula written above.
Finally, we need to prove that for any smooth vector fields Y, Z on u ~1(0)/G we have
(VZJred) = 0, which is equivalent to (VZJred)Y Jred (VZY) By taking the horizontal
lift of the terms we are interested in, we get

(@ ZJredY> " _ py (v 2 (JeeaY) *)

= Py (Vz+JY™) (VJ =0on M)
= Py (JV 2+ Y™) (J preserves H)
= JPy(Vz+Y™)

~ hor
— (Jrea(V2Y))

Step 6: The pair (gred, Jrea) defines a pseudo-Kihler metric on p~1(0)/G.

We first observe that the pseudo-metric grq satisfies Equation (B.2.1), indeed for any
smooth vector fields Y, Z on u~1(0)/G we have

gred(JreaYs JeeaZ) = Grea (An(JY),dn(J Z)) = (7% grea) (JY, JZ) = (t*g) (JY, T Z)
= (L*g)(?v 2) = gred(K Z) .
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Then, let us denote with w,oq the tensor obtained as follows:
wred(}/a Z) = gred(Ya JredZ) ) VY, Z € F(T(M_I(O)/G)) .

It follows easily, by using , that weq defines a 2-form on p~!(0)/G. Finally, in
the setting of Kéhler geometry, the integrability of the almost complex structure and the
closedness of the fundamental 2-form are equivalent to the requirement that the almost
complex structure is parallel with respect to the Levi-Civita connection (|Voi02]). It turns
out that the same proof can be adapted to the pseudo-Kihler case, hence V.Jeq = 0 if and
only if Jyeq is integrable and dwieq = 0. This directly implies that (gred, Jred, Wred) defines
a pseudo-Kiihler structure on ~1(0)/G. O
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