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Abstract

In this thesis we study the symplectic and pseudo-Riemannian geometry of the PSLp3,Rq-
Hitchin component associated with a closed orientable surface, using an approach coming
from the theory of symplectic reduction in an infinite-dimensional context.
In the case where the closed surface is homeomorphic to a torus, for each choice of a
smooth real function with certain properties, we prove the existence of a pseudo-Kähler
metric on the deformation space of properly convex projective structures. Moreover, we
define a circle action and a SLp2,Rq-action on the aforementioned space, which turn out to
be Hamiltonian with respect to our symplectic form, and we give an explicit description of
the moment maps. Then, we study the symplectic geometry of the deformation space as a
completely integrable Hamiltonian system, and we find a geometric global Darboux frame
for the symplectic form using the theory of complete Lagrangian fibrations.
In the case of genus g ě 2 we define a mapping class group invariant pseudo-Kähler metric
on the Hitchin component, by using a general construction of Donaldson. The complex
structure is exactly the one coming from the identification with the holomorphic bundle of
cubic differentials over Teichmüller space. In particular, we prove that Wang’s equation for
hyperbolic affine spheres in R3 has an interpretation as moment map for the action of an
infinite-dimensional Lie group.
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Introduction

This thesis tries to enlarge the current knowledge regarding the global geometry of higher
rank Teichmüller spaces. In recent years, people have been interested in the study of the
geometric and dynamical properties of surface group representations into Lie groups of rank
at least two, with the aim of generalizing the classical Teichmüller theory that concerns rep-
resentations into PSLp2,Rq ([Wie18]). Various connected components in the corresponding
higher rank character varieties have been found to share many similarities with the classi-
cal Teichmüller space. Some of these components are the Hitchin components, defined for
semi-simple real split Lie groups ([Hit92]). In particular, any of these connected compo-
nents contains a copy of Teichmüller space, to which one refers as the Fuchsian locus. The
main motivation for this thesis comes from the study of the PSLp3,Rq-Hitchin component
from a pseudo-Riemannian and symplectic point of view, with the aim of giving a natural
generalization of the Weil-Petersson Kähler metric defined on Teichmüller space ([Wei58],
[Ahl61a], [Ahl61b]).

Given a smooth closed surface Σ of genus g ě 2, discrete and faithful surface group rep-
resentations in PSLp2,Rq are known to be holonomies of hyperbolic structures, and the
corresponding connected component in the character variety recovers the Teichmüller space
T pΣq. Similarly, every representation in the Hitchin component Hit3pΣq for PSLp3,Rq is
discrete and faithful, and they can be viewed as holonomies of convex projective structures
on the surface ([Gol90a],[CG93]). There is a natural symplectic form ωG on the Hitchin
component (and also defined on much more general spaces), found by Goldman using the
explicit description of the Zariski tangent space to a point, and the correspondence between
surface group representations and flat bundles ([Gol84]). In particular, it is shown that ωG

restricts to a multiple of the Weil-Petersson symplectic form on the Fuchsian locus. In the
early 2000s, Labourie ([Lab07]) and Loftin ([Lof01]) proved independently, using the theory
of hyperbolic affine spheres and harmonic maps in symmetric spaces, that the PSLp3,Rq-
Hitchin component can be endowed with a mapping class group invariant complex structure
I. Such a complex structure comes from the identification of the aforementioned component

ix
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with the holomorphic bundle of cubic differentials over Teichmüller space.

Conjecture. The symplectic form ωG is compatible with Labourie and Loftin’s complex
structure, so that they define a mapping class group invariant Kähler metric on the PSLp3,Rq-
Hitchin component extending the Weil-Petersson metric on Teichmüller space.

Goldman’s symplectic form is defined using the algebraic description of the Hitchin com-
ponent, but the mapping class group invariant complex structure I comes from the param-
eterization with holomorphic cubic differentials. Because of the different way in which the
symplectic form and the complex structure are defined, it is still unclear whether ωGpI¨, ¨q
defines a Riemannian metric.

Later on, three more Riemannian metrics on the PSLp3,Rq-Hitchin component were de-
fined: one by Darvishzadeh and Goldman ([DW96]), one by Li ([Li16]) and another by
Bridgeman-Canary-Labourie-Sambarino ([Bri+15]) called pressure metric (defined also on
much more general spaces). Regarding the first two it has been shown that they restrict
to a multiple of the Weil-Petersson metric on Teichmüller space, which is totally geodesic
in Hit3pΣq with respect to the metric found by Li. As far as pressure metric is concerned,
very little is known and this is partly due to its complicated expression ([LW18],[Dai19]).
In all three cases the relation with Labourie and Loftin’s complex structure is unknown.

Recently, Kim and Zhang ([KZ17]), using various notions of positivity for holomorphic
bundles on Kähler manifolds, have succeeded in showing the existence of a Kähler metric
on Hit3pΣq, which restricts to a multiple of the Weil-Petersson one on the Fuchsian lo-
cus. Even if this metric is natural, namely invariant under the action of the mapping class
group, the relation of its complex structure with the one found by Labourie and Loftin is
still mysterious ([Lab17, §1.2 and §1.3]).

It is therefore unknown whether there is a symplectic form (or Riemannian metric) on
the PSLp3,Rq-Hitchin component that gives rise to a Kähler metric when matched with the
complex structure I. This thesis attempts to answer this question by proving the following
result:

Theorem A. There exists a closed 2-form ω on Hit3pΣq such that gp¨, ¨q :“ ωpI¨, ¨q defines a
pseudo-Riemannian metric of signature p6g´6, 10g´10q. Moreover, the triple pg,ω, Iq gives
rise to a mapping class group invariant pseudo-Kähler structure on a neighborhood of the
Fuchsian locus in the Hitchin component, and it restricts to a multiple of the Weil-Petersson
Kähler metric on Teichmüller space, which embeds as a totally geodesic submanifold.

The above statement seems to suggest that the right structure to be sought is a pseudo-
Kähler one, namely the metric is no longer required to be positive-definite. The tensor ω
and g are explict and defined on the whole Hit3pΣq but, because we cannot exclude that
ω might be degenerate outside the Fuchsian locus, the triple pω,g, Iq defines a-priori a
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pseudo-Kähler structure only on a neighborhood of it. In particular, one can recognise the
dimension of Teichmüller space with regard to the positive part of g, and the real dimension
of the space of holomorphic cubic differentials with regard to the negative one.

There is a well-defined action of the mapping class group on Hit3pΣq, whose quotient CpΣq

results in a complex orbifold smooth at generic points ([Lof01, Proposition 4.1.2]), which
fibres over the moduli space of Riemann surfaces Mg.

Corollary B. There exists an orbifold neighborhood of the moduli space of Riemann sur-
faces of genus g ě 2 inside CpΣq endowed with a pseudo-Kähler orbifold structure. Such a
structure restricts to a multiple of the Weil-Petersson orbifold Kähler structure on Mg.

According to Labourie and Loftin’s parameterization of Hit3pΣq as the holomorphic bundle
of cubic differentials over T pΣq, one can induce a circle action on the Hitchin component,
which corresponds to rotation of the fibres in the vector bundle description.

Theorem C. The aforementioned circle action on Hit3pΣq is Hamiltonian with respect to
ω and it acts by preserving the pseudo-Riemannian metric g.

The proof of the above theorems relies on various techniques: symplectic reduction theory;
elliptic operators on compact manifolds, and a general construction of moment maps in an
infinite-dimensional context given by Donaldson ([Don03]). In what follows we will give a
rough idea of the proof strategy, while also stating other fundamental and non-immediate
results related to the main theorem.

The main theorem of this thesis is inspired by a similar result obtained in the case of
maximal globally hyperbolic anti-de Sitter three-manifolds ([MST21]), where the authors
developed part of the techniques the we used in our work. On the one hand the overall
strategy follows the lines of the anti-de Sitter setting ([MST21, §1.7]), but on the other
we encountered more difficulties during some steps of the proof that will be explained on
a case-by-case basis (see also the last paragraph of the introduction for a more general
discussion).

The genus one case:

The very first step is to prove similar statements when the smooth closed surface is a torus
T 2, following the lines of [MST21, §3.2 and §3.3]. In this case, the natural space to study
is the deformation space of properly convex RP2-structures on the torus. In this regard,
let us introduce J pR2q to be the space of (almost) complex structures on R2 compatible
with the standard area form ρ0 “ dx ^ dy, namely all the endomorphisms J : R2 Ñ R2

such that J2 “ ´1 and for which tv, Jvu is a positive basis, whenever v ‰ 0. For any such
J , let g0Jp¨, ¨q :“ ρ0p¨, J ¨q be the associated scalar product on R2. There is an identification
between this space and the hyperbolic plane H2, so that the action of SLp2,Rq on H2 by



INTRODUCTION xii

Möbius transformations results in an action by conjugation on J pR2q. Let us denote with
D3pJ pR2qq the real vector bundle over J pR2q whose fibre over a point J is given by all
1-forms A with values in the bundle of g0J -symmetric and trace-less endomorphisms of R2

such that ApJ ¨q “ Ap¨qJ and ApXqY “ ApY qX for all X,Y P R2. Under the identification
J pR2q – H2 – T pT 2q the vector bundle D3pJ pR2qq can be identified with Q3

`

T pT 2q
˘

,
namely the bundle of holomorphic cubic differentials over T pT 2q. By using the theory of
hyperbolic affine spheres in R3, the complement of the zero section in Q3

`

T pT 2q
˘

can be
identified with the deformation space of properly convex RP2-structures on the torus, de-
noted with B0pT 2q. Then, for any choice of a smooth function f : r0,`8q Ñ p´8, 0s such
that fp0q “ 0, f 1ptq ă 0 @t ą 0 and lim

tÑ`8
fptq “ ´8, we prove the following:

Theorem D. For any function f as above, there exists an SLp2,Rq-invariant pseudo-
Kähler structure ppωf ,pI, pgf q on D3pJ pR2qq which restricts to a mapping class group invari-
ant pseudo-Kähler metric on B0pT 2q.

By exploiting the isomorphism D3pJ pR2qq – Q3
`

T pT 2q
˘

, we can induce a circle action on
D3pJ pR2qq corresponding to a rotation of the fibre in the holomorphic bundle description.
Together with the SLp2,Rq-action, we get two further results:

Theorem E. For any function f as above, the circle action on D3pJ pR2qq is Hamilto-
nian with respect to pωf and it preserves the psuedo-metric pgf . Moreover, the Hamiltonian
function can be explicitly expressed in terms of f .

Theorem F. The SLp2,Rq-action on D3pJ pΣqq is Hamiltonian with respect to pωf and the
moment map pµ : D3pJ pR2qq Ñ slp2,Rq˚ can be explicitly expressed in terms of f .

In particular, by taking the action of the subgroup R˚ ă SLp2,Rq generated by the diagonal
matrices, it is possible to explicitly compute the Hamiltonian function H2 with respect to
this restricted action. Together with the Hamiltonian function H1 of the circular action,
we get the existence of two commuting Hamiltonian vector fields XH1 ,XH2 on B0pT 2q. In
other terms, the space pB0pT 2q, pωf q has the structure of a complete Hamiltonian integrable
system. The main issue is that each fiber of the associated Lagrangian fibration H :“
pH1, H2q :

`

B0pT 2q, pωf
˘

Ñ B Ă R2 is diffeomorphic to R ˆ S1. However, since the base
space B is contractible and the Hamiltonian vector fields XH1 ,XH2 are complete, we can
apply the theory of complete Lagrangian fibration to obtain the following:

Theorem G. The collection tθ,H1, s,H2u is a global Darboux frame for pωf , where ps, θq P

R ˆ S1 – H´1pbq for each b P B, and correspond to the angle coordinates of the completely
integrable Hamiltonian system pB0pT 2q, pωf , H1, H2q.

The general case:

Now let Σ be a smooth closed connected and oriented surface of genus g ě 2. The crucial
step in moving from the genus one case to the higher genus case, consists in the following



xiii INTRODUCTION

construction. Let ρ be a fixed area form on Σ, then for any (almost) complex structure J on
Σ, let gJ :“ ρp¨, J ¨q be the associated Riemannian metric. Now consider the space formed
by pairs pJ,Aq, where J is an (almost) complex structure on Σ, compatible with the given
orientation, and A is a 1-form with values in the bundle of trace-less and gJ -symmetric
endomorphisms of TΣ such that ApJ ¨q “ Ap¨qJ and ApXqY “ ApY qX, @X,Y P ΓpTΣq.
This space, denoted by D3pJ pΣqq, is of infinite dimension and it carries a pseudo-Kähler
structure as its analogue D3pJ pR2qq. In fact, one can choose an area-preserving linear
isomorphism from R2 to TxΣ, which induces an identification between D3pJ pR2qq and
D3

`

J pTxΣq
˘

. Since the pseudo-Kähler metric on D3pJ pR2qq is SLp2,Rq-invariant, the
induced structure does not depend on the chosen area-preserving linear isomorphism. Then,
one can (formally) integrate each element of the pseudo-Kähler structure on Σ, evaluated
on first-order deformations p 9J, 9Aq. Slightly more in detail, let P be the SLp2,Rq-frame
bundle over Σ whose fibres over a point x P Σ are linear maps F : R2 Ñ TxΣ such that
F ˚ρx is the standard area form on R2. Let us define the fibre bundle

P
`

D3pJ pR2qq
˘

:“ P ˆD3pJ pR2qq
M

SLp2,Rq

where SLp2,Rq acts diagonally on the two factors. The space D3pJ pΣqq can be identified
with the space of smooth sections of such fibre bundle. Hence, as explained above, one
can introduce a symplectic form ωf and a pseudo-Riemannian metric gf on D3pJ pΣqq by
formally integrating the ones induced on each fibre of T vertP

`

D3pJ pR2qq
˘

, denoted with
pωf and pgf . Here T vertP

`

D3pJ pR2qq
˘

stands for the vertical sub-bundle of TP
`

D3pJ pR2qq
˘

with respect to the projection map P
`

D3pJ pR2qq
˘

Ñ Σ. Similarly, a complex structure
I is obtained on the infinite-dimensional space D3pJ pΣqq of smooth sections, by applying
point-wise Î, which is defined on D3pJ pR2qq. It should be noted that the symplectic form
ω̂f and the pseudo-Riemannian metric ĝf both depend on the choice of a smooth function
f , as they arise from the construction on D3pJ pR2qq. In particular, the expression for
ωf and gf combined with I effectively gives us a (formal) family of pseudo-Kahler met-
rics on the space of smooth sections D3pJ pΣqq. Instead, we are interested in inducing
such structures on a certain submanifold, whose elements pJ,Aq will be identified with the
set of embedding data of hyperbolic affine spheres in R3. In order to do so, a particular
choice of the function f appearing in the expression of ωf and gf has to be made. Let
F : r0,`8q Ñ R be the unique smooth function such that ce´F ptq ´ 2te´3F ptq ` 1 “ 0,
where c is a constant depending only on the topology and the area of pΣ, ρq. Let us define
a new metric in the same conformal class of gJ by the formula h :“ eF ptqgJ , where the
function F is computed in ||A||2gJ (the norm of the tensor A with respect to gJ) divided by
8. Then, imposing the equations governing the embedding data of hyperbolic affine spheres
on the pair ph,Aq, we get a HampΣ, ρq-invariant submanifold ĄHS0pΣ, ρq of the space of
smooth sections pJ,Aq, whose quotient rBpΣq by HampΣ, ρq, is a smooth manifold of dimen-
sion 16g ´ 16 ` 2g. This will be a consequence of a simple application of Moser’s trick in
symplectic geometry, of the particular choice of the function f in terms of F , and finally of
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the existence and uniqueness of hyperbolic affine sphere immersions in R3. It turns out that
such a manifold is not diffeomorphic to the Hitchin component, as its dimension exceeds
that of Hit3pΣq by 2g. As we shall see later, the tangent space to this manifold splits as
the gf -orthogonal direct sum of the tangent space to Hit3pΣq and the tangent to the orbit
of harmonic vector fields. For this reason, the further (finite-dimensional) quotient of rBpΣq

by Symp0pΣ, ρq{HampΣ, ρq – H1
dRpΣ,Rq gives us the desired Hitchin component.

The candidate for the tangent space to the Hitchin component :

As explained in the previous paragraph, in order to actually obtain the Hitchin compo-
nent from the space ĄHS0pΣ, ρq, and thus induce a pseudo-Kähler structure pgf , I,ωf q

on it, we need to perform two quotients: the first by HampΣ, ρq and the second by
Symp0pΣ, ρq{HampΣ, ρq. The idea is to define a distribution tWpJ,AqupJ,Aq of HampΣ, ρq-
invariant subspaces inside the tangent space to ĄHS0pΣ, ρq. Each vector space WpJ,Aq of
this distribution will be defined by a system of partial differential equations and will be
point-wise isomorphic to the tangent space of rBpΣq. In analogy with the anti-de Sitter
case ([MST21, Lemma 4.18]), the first result that conceals a number of technical difficulties
shows, using an argument from the theory of elliptic operators on compact manifolds, that
the dimension of each WpJ,Aq is bounded below by the expected dimension of the quotient
manifold.

Theorem H. Let pJ,Aq be a point in the infinite-dimensional space ĄHS0pΣ, ρq. Let WpJ,Aq

be the vector space of solutions of the following system:
$

’

&

’

%

d
`

div
`

pf ´ 1q 9J
˘

` d 9f ˝ J ´
f 1

6 β
˘

“ 0

d
`

div
`

pf ´ 1q 9J
˘

˝ J ` d 9f0 ˝ J ´
f 1

6 β ˝ J
˘

“ 0

d∇ 9A0p‚, ‚q ´ Jpdiv 9J ^Aqp‚, ‚q “ 0

where 9A0 is the trace-less part of the first order variation of A, ∇ is the Levi-Civita con-
nection with respect to gJ , βp‚q :“ xp∇‚AqJ, 9A0y is a 1-form and 9f0 “ ´

f 1

4 xA, 9A0Jy is a
smooth function on Σ. Then, dimWpJ,Aq ě 16g ´ 16 ` 2g.

The second difficult statement, which will be consequence of the above theorem, also in-
volves a large number of technical details. It allows us to identify each subspace WpJ,Aq

with the tangent space to the first quotient space rBpΣq at the point pJ,Aq, as it happens
in [MST21, §4.5] with the appropriate differences.

Theorem J. For every element pJ,Aq P ĄHS0pΣ, ρq, the vector space WpJ,Aq is contained
inside TpJ,Aq

ĄHS0pΣ, ρq and it is invariant by the complex structure I. Moreover, the collec-
tion tWpJ,AqupJ,Aq defines a HampΣ, ρq-invariant distribution on ĄHS0pΣ, ρq and the natural
projection π : ĄHS0pΣ, ρq Ñ rBpΣq induces a linear isomorphism

dpJ,Aqπ :WpJ,Aq ÝÑ TrJ,As
rBpΣq
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In particular, we can restrict the pseudo-Kähler structure pgf , I,ωf q from the ambient space
to the finite dimensional manifold rBpΣq. Since the pseudo-metric gf is not positive-definite,
it is not immediate that it is still non-degenerate when restricted to the subspaces WpJ,Aq.
This is indeed the biggest issue to be addressed, and it will be discussed in a subsequent
paragraph of the following introduction. At this point, one can proceed by performing the
finite-dimensional quotient rBpΣq{H, where H :“ Symp0pΣ, ρq{HampΣ, ρq – H1

dRpΣ,Rq.
Such a quotient is isomorphic to the Hitchin component, and there is a gf -orthogonal
decomposition WpJ,Aq “ VpJ,Aq ‘ SpJ,Aq, where VpJ,Aq is the tangent to Hit3pΣq and SpJ,Aq

is a copy of H.

Theorem K. The H-action on rBpΣq is free and proper, with complex and symplectic H-
orbits. Moreover, the pseudo-Kähler structure pgf , I,ωf q descends to the quotient which is
identified with Hit3pΣq. Finally, the complex structure I induced on the PSLp3,Rq-Hitchin
component coincides with the one found by Labourie and Loftin.

The relation with moment maps and symplectic reduction

While Theorem H and Theorem J can be proven with self-contained arguments, it is not
clear how to obtain the differential equations defining the subspace WpJ,Aq. In fact, their
origin must be sought in the context of moment maps and symplectic reductions, but in an
infinite-dimensional context. For this reason, we will briefly explain how to characterize the
subspaces WpJ,Aq in these terms and how the presence of isotropic vectors for gf generates
further difficulties. In the torus case we showed that the action of SLp2,Rq on D3pJ pR2qq is
Hamiltonian with respect to the symplectic form ω̂f and we computed explicitly the moment
map pµ : D3pJ pR2qq Ñ slp2,Rq˚. A general theorem of Donaldson ([Don03]), allows us to
promote the previous result to a Hamiltonian action of HampΣ, ρq on D3pJ pΣqq, with
respect to the symplectic form ωf . In this case, the moment map µ associates to each
pair pJ,Aq P D3pJ pΣqq an element in the dual Lie algebra of Hamiltonian vector fields
on the surface. It turns out that to obtain an honest moment map rµ for the action of
the group of Hamiltonian diffeomorphisms, one has to add a scalar multiple of the area
form ρ. At this point, it can be shown that the submanifold rµ´1

p0q intersected with the
set MC “ tpJ,Aq P D3pJ pΣqq | d∇A “ 0u is equal to ĄHS0pΣ, ρq. Inspired by classical
symplectic reduction theory, one is tempted to induce the pseudo-Riemannian metric gf
and the symplectic form ωf on the quotient

`

rµ´1
p0q X MC

˘

{HampΣ, ρq. The issue is
that, in our case, the tangent space TpJ,AqD

3pJ pΣqq is a Krein space ([AI81]). Roughly
speaking, a Krein space is a (real or complex) infinite-dimensional vector space endowed
with an indefinite inner product which admits an orthogonal direct sum decomposition in
positive and negative part. Moreover, the pseudo-metric restricted to both the positive
and negative part induces a complete norm. The presence of the indefinite metric does not
allow us, like in the Hilbert case ([Tro12, Theorem 1.3.2]), to identify the gf -orthogonal to
the HampΣ, ρq-orbit inside ĄHS0pΣ, ρq with the I-invariant distribution tangent to the finite
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dimensional manifold rBpΣq. Despite that, by imitating the reduction in the positive-definite
case, we are able to give a characterization of the subspace WpJ,Aq as follows:

Theorem L. For any pJ,Aq P ĄHS0pΣ, ρq, the vector space WpJ,Aq is the largest subspace
in TpJ,Aq

ĄHS0pΣ, ρq that is:

‚ invariant under the complex structure I;

‚ gf -orthogonal to the orbit TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

.

The proof of this theorem is independent of the other results, but it serves as a motivation
for defining the subspace WpJ,Aq as the solution of a system of partial differential equations.

The pseudo-metric is non-degenerate.

Theorem J together with Theorem K allows us to induce the pseudo-Kähler structure
pgf , I,ωf q from the infinite-dimensional manifold D3pJ pΣqq to the Hitchin component,
but, a-priori, it may be degenerate. However, exploiting the explicit expression of gf , we
can prove that, at least on the Fuchsian locus, there are no non-zero degenerate vectors.
As for the tangent directions to points away from the Fuchsian locus, the analysis becomes
very complicated. On the one hand, we know the exact expression of gf , but on the other
hand, the model VpJ,Aq of the tangent space to the Hitchin component is described by
very complicated PDEs, whose solution is far from being explicit. The idea, is to look
for a subspace of TpJ,AqD

3pJ pΣqq (possibly of infinite dimension) whose elements have a
treatable description for our purpose. This is the tangent space TpJ,AqMC to the set of
pairs pJ,Aq P D3pJ pΣqq satisfying the Codazzi-like equation d∇A “ 0 for hyperbolic affine
spheres. We will show that the set TpJ,AqMC contains the tangent space to the DiffpΣq-
orbit, which in turn splits as a direct sum of three subspaces. Then, using the relation
between the PDEs describing VpJ,Aq and the theory of symplectic reduction, the following
gf -orthogonal decomposition of TpJ,AqMC can be obtained:

VpJ,Aq

Kgf

‘ SpJ,Aq

Kgf

‘ TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

Kgf

‘ I
´

TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

¯

.

The existence of the moment map rµ for the action of HampΣ, ρq on D3pJ pΣqq and an
explicit calculation allow us to conclude that gf restricted to the Hamiltonian orbit is non-
degenerate. Moreover, using a highly non-trivial integration by parts we prove that gf
is non-degenerate even when restricted to the subspace SpJ,Aq. Finally, using the relation
gf pI¨, I¨q “ gf p¨, ¨q one gets the following further result

Theorem M. The pseudo-Riemannian metric gf is non-degenerate on TpJ,AqMC if and
only if it is non-degenerate on VpJ,Aq, namely on the Hitchin component.
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In this regard, we introduce the notion of Krein space and some useful results that may lead
to a better understanding of (possible) degenerate vectors for gf away from the Fuchsian
locus.

Comparison with the anti-de Sitter case

As mentioned earlier, part of the techniques we use to construct the PSLp3,Rq-Hitchin com-
ponent as a symplectic quotient and the definition of the pseudo-Kähler metric are based
on a previous work ([MST21]), where the authors defined a para-hyperkähler structure on
the deformation space of maximal globally hyperbolic anti-de Sitter 3-manifolds, denoted
with MGHpΣq. Such a deformation space can be identified with a maximal component in
the PSLp2,Rq ˆ PSLp2,Rq character variety, which consists entirely of discrete and faithful
representations. In particular, such a space is parameterized by two copies of Teichmüller
space ([Mes07],[KS07]) and it is isomorphic to the cotangent bundle T ˚T pΣq ([KS07]).
As can be seen, the first major difference lies in the fact that Hit3pΣq cannot be isomorphic
to T pΣq ˆ T pΣq, since its real dimension is equal to 16g ´ 16. This does not allow, unlike
the anti-de Sitter case, to define a natural para-complex structure J that together with
I gives rise to another para-complex structure K :“ IJ. Moreover, the parameterization
MGHpΣq – T ˚T pΣq as a holomorphic vector bundle, gives rise to a complex symplectic
structure on MGHpΣq, which is missing for the Hitchin component. This is the reason why
with our construction we only obtain a pseudo-Kähler metric.
The different descriptions as holomorphic vector bundles over T pΣq lead to different com-
putations along the way. In fact, in the PSLp2,Rq ˆ PSLp2,Rq setting one has to work
with a pair given by a complex structure and a holomorphic quadratic differential on Σ,
the real part of which corresponds to the second fundamental form of the immersion as a
maximal surface in AdS 3-manifolds, namely it is an endomorphism of TΣ. In our case, the
real part of a holomorphic cubic differential is, up to the contraction with the metric, an
EndpTΣq-valued 1-form. On the one hand, the additional 1-form part makes the analysis
more difficult, but on the other we still succeed in obtaining similar results in regard to
some key steps in the construction (Proposition 3.39 and Proposition 3.41).
The presence of other two moment maps in the AdS seeting ([MST21, Theorem 6.5]), al-
lowed the authors to obtain MGHpΣq as the quotient of an infinite-dimensional space by
the group of all symplectomorphisms of the surface isotopic to the identity. In our case,
not knowing whether the equation d∇A “ 0 can be interpreted as a moment map, we had
to resort to the use of two quotients, which led to further difficulties developed in Section
3.4.1. It is also worth mentioning that since the PDE’s defining the distribution tangent
to the deformation space are much more complicated in our setting, it was necessary to
employ a deep analysis of the associated differential operators (Section 3.2.4).
Finally, the most relevant part: the pseudo-metric is non-degenerate on the deformation
space. In [MST21], the authors were able to identify the three symplectic forms they defined
on MGHpΣq with already known symplectic forms (thus non-degenerate), in terms of the
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various parameterizations given above. In our setting, we do not know what the relation
between our symplectic form ω and Goldman’s one is, because of the particular choice of
function f that must be made and on which ω depends. This led us to a careful analysis
of the involved infinite-dimensional spaces and to obtain some partial results towards the
non-existence of degenerate vectors for g away from the Fuchsian locus (Section 3.4.2 and
3.4.4).

Outline of the thesis
The thesis is structured as follows. Chapter 1 introduces the Hitchin component for the
Lie group PSLp3,Rq and it explains the classical relation with convex projective structures
and hyperbolic affine sphere immersions. In Chapter 2 we study the deformation space of
properly convex projective structures on the torus, and we introduce an explicit family of
pseudo-Kähler metrics which are invariant by the action of the mapping class group. The
material of this chapter can be found in:

[RT21] Rungi N., Tamburelli A., Pseudo-Kähler geometry of properly convex projective
structures on the torus.

Chapter 3 deals with the construction of a pseudo-Kähler metric pg, I,ωq on the PSLp3,Rq-
Hitchin component associated with a genus g ě 2 surface, so that I is exactly the complex
structure found by Labourie and Loftin. We prove that such a component, and pseudo-
Kähler metric, can be obtained by means of symplectic reduction theory in an infinite-
dimensioanl context. In particular, we find an interpretation of Wang’s equation for hy-
perbolic affine spheres in R3 as a moment map for the action of an infinite-dimensional Lie
group. The material covered here has appeared in the preprint:

[RT23] Rungi N., Tamburelli A., The PSLp3,Rq-Hitchin component as an infinite-dimensional
pseudo-Kähler reduction.

In Chapter 4 we use the explicit description of the family of pseudo-Kähler structures
introduced in the torus case to study some metric and symplectic properties. In particular,
using the theory of complete Lagrangian fibrations, we prove the existence of a geometric
global Darboux frame for the symplectic form. In addition, we succeed in describing the
explicit form of an arbitrary isometry of the space, for a particular choice of the pseudo-
Kähler metric among those introduced. The material covered here is presented in:

[RT22] Rungi N., Tamburelli A., Global Darboux coordinates for complete Lagrangian fi-
brations and an application to the deformation space of projective structures in genus one
(to appear in Journal of Symplectic Geometry, Volume 22 - Issue 2).



Chapter 1
Background materials

In the first chapter we introduce the PSLp3,Rq-Hitchin component of a smooth closed
oriented surface Σ of genus g ě 2, and we explain its relation with convex RP2-structures
and hyperbolic affine sphere immersion. The material covered here is classical, and the
main purpose is to fix notation and recall fundamental results on the topic.

1.1 The PSLp3,Rq-Hitchin component

Let Σ be a closed, connected smooth and oriented surface of genus g ě 2 and consider the
space Hompπ1pΣq,PSLp3,Rqq of all representations from π1pΣq to PSLp3,Rq. This set has
a topology induced by the inclusion

Hompπ1pΣq, PSLp3,Rqq ãÑ PSLp3,Rq2g

ρ ÞÝÑ
`

ρpa1q, . . . , ρpbgq
˘

where a1, . . . , bg are generators of π1pΣq subject to the relation
śg
i“1

“

ai, bi
‰

“ 1. There
is a natural action of PSLp3,Rq on this space given by conjugation: for γ P π1pΣq and
P P PSLp3,Rq

pP ¨ ρqpγq :“ P´1ρpγqP . (1.1.1)

In order to get a Hausdorff quotient space, one needs to restrict to the completely reducible
representations, i.e. those ρ : π1pΣq Ñ PSLp3,Rq which split as a direct sum of irreducible
representations. If we denote by Hom`pπ1pΣq,PSLp3,Rqq the space of such representations,
the quotient space

R
`

Σ,PSLp3,Rq
˘

:“ Hom`pπ1pΣq,PSLp3,Rqq
M

PSLp3,Rq

is called the PSLp3,Rq-character variety. It is a real algebraic variety (possibly singular),
whose real dimension at a smooth point is equal to ´8χpΣq.

1
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Theorem 1.1 (Hitchin [Hit92]). The real algebraic variety R
`

Σ,PSLp3,Rq
˘

has three con-
nected components: the one containing the class of the trivial representation, the one consist-
ing of representations whose associated flat R3-bundles have non-zero second Stiefel-Whitney
class and the one consisting of representations connected to those arising as uniformization.
Moreover, the third one is contained in the smooth locus of R

`

Σ,PSLp3,Rq
˘

and it is dif-
feomorphic to R´8χpΣq.

It must be noted that the there is no topological invariant which distinguishes the first
component to the third one, as they are both formed by representations whose associated
flat R3-bundles have zero second Stiefel-Whitney class. The most interesting component in
the above list is the last one, which will be denoted by Hit3pΣq throughout the discussion.
In Hitchin’s original paper ([Hit92]) it was called the "Teichmüller component" since it
seemed to be a natural generalization of the Teichmüller component T reppΣq for PSLp2,Rq,
which is actually contained in Hit3pΣq. Nowadays it is known as the Hitchin component
and for our particular case (also for PSLpn,Rq) there is a quite explicit description of its
construction and of the inclusion T reppΣq ãÑ Hit3pΣq. Let us identify R3 with the space
of homogeneous polynomials in two variables x, y of degree 2, i.e. R3 – SpanRtx2, xy, y2u.
There is an action of SLp2,Rq on such space:

ˆ

a b
c d

˙

¨ x2´iyi :“ pax` cyq2´ipbx` dyqi, i “ 0, 1, 2

which induces a (unique up to conjugation) representation τ3 : SLp2,Rq Ñ SLp3,Rq given
by:

τ3

ˆˆ

a b
c d

˙˙

“

¨

˝

a2 ab b2

2ac ad` bc 2bd
c2 cd d2

˛

‚ .

It is immediate to see that one gets an induced representation PSLp2,Rq Ñ PSLp3,Rq

still denoted by τ3. For any discrete and faithful representation j : π1pΣq Ñ PSLp2,Rq,
the composition τ3 ˝ j : π1pΣq Ñ PSLp3,Rq is discrete and faithful as well. The Hitchin
component can be defined as the connected component of R

`

Σ,PSLp3,Rq
˘

containing τ3˝j,
i.e. it is formed by all the representations obtained as deformations of the Fuchsian ones.
In particular, the composition τ3˝j induces an inclusion of T reppΣq in Hit3pΣq, whose image
is called the Fuchsian locus and it will be denoted by FpΣq.

1.2 Deformation space of convex RP2-structures

An RP2-structure on a smooth connected surface S is a maximal RP2-atlas, namely an
atlas in which the local charts take value in the real projective plane and the transition
functions restrict to projective transformations on each connected component of the subset
where defined. Once a maximal RP2-atlas is given, we say that S is an RP2-surface. By
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unravelling the definition it is easy to see that if S is an RP2-surface and p : rS Ñ S is its
universal cover, then rS inherits an RP2-structure from the one of S.
A domain (open and connected) Ω Ă RP2 is said to be convex if there exists a projective
line l disjoint from Ω such that Ω Ă RP2zl – A2 is convex in the usual sense. By definition
R2 is convex but RP2 is not. It is not difficult to show that this notion of convexity in the
real projective plane does not add new convex sets with respect to those usual in affine
spaces ([APS04, §1]) .

Definition 1.2. An RP2-surface S is convex if it is projectively isomorphic to a quotient
Ω{Γ, where Ω Ă RP2 is a convex domain and Γ Ă ProjpΩq Ă SLp3,Rq is a discrete group
of projective transformations preserving Ω acting freely and properly discontinuously on Ω.
The surface S is properly convex if Ω is bounded in some affine space.

There is a well-known equivalent way of defining a convex RP2-surface in terms of the
existence of a pair of maps with special properties. This is the following:

Theorem 1.3 (Development Theorem). Let S be an RP2-surface, then the following are
equivalent:

(1) S is convex

(2) There exists a pair pdev, hq, where dev : rS Ñ RP2 is a diffeomorphism onto a con-
vex domain in RP2 called the developing map and h : π1pSq Ñ SLp3,Rq is a group
homomorphism called the holonomy representation, such that the following diagram
commutes:

rS RP2

rS RP2

dev

γ hpγq

dev

(1.2.1)

Moreover, if pĄdev,rhq is another such pair, then Dg P SLp3,Rq such that:

Ądev “ g ˝ dev, rhpγq “ g ˝ hpγq ˝ g´1, @γ P π1pSq .

It is clear from the statement that if S is convex, then its universal cover rS can be
identified with a convex domain Ω Ă RP2 via the developing map and the discrete subgroup
Γ can be identified with π1pSq via the holonomy homomorphism. From this point on we
will focus only on the case in which the surface is closed and orientable, hence it will be
denoted with Σ.

Definition 1.4. Let Σ be a smooth, closed and orientable surface. A (properly) convex
RP2-structure on Σ is a pair pϕ,Mq, where ϕ : Σ Ñ M is a diffeomorphism (called the
marking) and M – Ω{Γ is a (properly) convex RP2-surface.
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One can define an equivalence relation on such pairs, namely pϕ1,M1q „ pϕ2,M2q if
and only if there exists a projective isomorphism Ψ :M1 Ñ M2 such that the new marking
Ψ ˝ ϕ1 is isotopic to ϕ2. Now we are ready to introduce the main space that we are going
to study in this article: the deformation space of (properly) convex RP2-structures

BpΣq :“ tpf,Mq convex RP2 ´ structure on Σu {„ ,

B0pΣq :“ tpf,Mq properly convex RP2 ´ structure on Σu {„ .

The behavior of this space depends highly on the genus of the surface and, as one can
imagine, there are notable differences between the flat case (genus one) and the hyperbolic
one (g ě 2).

Proposition 1.5 ([Kui53],[Ben60]). If Σ is a convex RP2-surface with g ě 2, then it must
be properly convex. Moreover, the boundary BΩ is always strictly convex and C1, and it
must be either and ellipse or a Jordan curve which is nowhere C2. In particular, there is
an identification BpΣq ” B0pΣq.

In the case of the torus this is no longer true, for instance there are many convex RP2-
structures which are not properly convex: affine and Euclidean ones. They can not be
properly convex since the developing map identifies the universal cover of T 2 with a copy
of R2 inside RP2, which is convex but not bounded (see [Gol22, §8.5]).
To any equivalence class of convex RP2-structures on Σ there is an associated class of
representations rρs, with ρ : π1pΣq Ñ PSLp3,Rq, by Theorem 1.3. In particular, this
association defines the so-called monodromy map hol : BpΣq Ñ R

`

Σ,PSLp3,Rq
˘

whose
image is contained in the space of discrete and faithful representations.

Theorem 1.6 ([Gol90a], [CG93]). The map hol : BpΣq Ñ R
`

Σ,PSLp3,Rq
˘

induces an
isomorphism between BpΣq and Hit3pΣq. In particular, any deformation of a Fuchsian
representation τ ˝ j : π1pΣq Ñ PSLp3,Rq can be realized as the holonomy of a convex
RP2-structure on Σ.

1.3 Hyperbolic affine spheres

Let Σ be a closed surface of genus g ě 2 with universal cover rΣ and let f : rΣ Ñ R3 be an
immersion with ξ̃ : rΣ Ñ R3 a transverse vector field to fprΣq. This means that for all x P rΣ
we have a splitting:

TfpxqR3 “ f˚TxrΣ ` Rξ̃x .

Let D be the standard flat connection on R3 and suppose the structure equations of the
immersed surface are given by:

DXY “ ∇XY ` hpX,Y qξ

DXξ “ ´SpXq
(1.3.1)
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where ∇ is a torsion-free connection on rΣ called the Blaschke connection, ξ is the affine
normal of the immersion (see [Lof01, §3.1] for example), h is a metric on rΣ called the
Blaschke metric and S is an endomorphism of T rΣ called the affine shape operator.

Definition 1.7. Let N be an immersed hypersurface in R3 with structure equations given
by (1.3.1). Then N is called a hyperbolic affine sphere if S “ ´IdTN .

The properties of the global geometry of hyperbolic affine spheres were conjectured by
Calabi ([Cal72]) and proved by Cheng-Yau ([CY77], [CY86]) and Calabi-Nirenberg (with
clarifications by Gigena ([Gig81]) and Li ([Li90], [Li92])). The most important result (stated
only in R3 but true in arbitrary Rn) is the following:

Theorem 1.8 (Cheng-Yau-Calabi-Nirenberg). Given a constant λ ă 0 and a convex,
bounded domain Ω Ă R2, there is a unique properly embedded hyperbolic affine sphere
N Ă R3 with affine shape operator S “ λ ¨ IdTN and center 0 asymptotic to the boundary of
the cone CpΩq :“ tptx, tq | x P Ω, t ą 0u Ă R3. For any immersed hyperbolic affine sphere
f : N Ñ R3, properness of the immersion is equivalent to the completeness of the Blaschke
metric, and any such N is a properly embedded hypersurface asymptotic to the boundary of
the cone given by the convex hull of N and its center.

We can use the above theorem to describe a DiffpΣq-equivariant one-to-one correspon-
dence between convex RP2-structures and hyperbolic affine spheres. In fact, given a convex
RP2-structure ϕ : Σ Ñ M – Ω{Γ, where Ω Ă R2 is bounded, there exists a unique hyper-
bolic affine sphere H Ă R3 asymptotic to the boundary of the cone CpΩq Ă R3 (Theorem
1.8). Such a hyperbolic affine sphere H is invariant under automorphisms of CpΩq, seen
as a subgroup of PSLp3,Rq. The restriction of the projection π : CpΩq Ñ Ω induces a
diffeomorphism of H onto Ω. By equivariance, the tensor h and the connection ∇ descend
to the quotient Ω{Γ – M . Viceversa, given an embedding of the universal cover rΣ ãÑ R3

as a rΓ-equivariant hyperbolic affine sphere, with rΓ – π1pΣq, one gets an identification of
rΣ with a domain Ω Ă RP2, via the developing map. Then, Theorem 1.8 implies that rΣ
is asymptotic to a cone over Ω. The action of rΓ on rΣ Ă R3 corresponds to an action of a
group Γ ă PSLp3,Rq, isomorphic to π1pΣq, on the domain Ω so that Σ – Ω{Γ.

Let f : prΣ, h,∇q Ñ R3 be an immersed hyperbolic affine sphere, where h is the Blaschke
metric and ∇ is the Blaschke connection. If ∇h denotes the Levi-Civita connection with
respect to h, then ∇ “ ∇h ` A, where A is a section of T ˚pΣq b EndpTΣq called the Pick
form. In particular, for every X P ΓpTΣq the quantity ApXq is an endomorphism of TΣ.

Definition 1.9. The Pick tensor is the p0, 3q-tensor defined by

CpX,Y, Zq :“ hpApXqY,Zq, @X,Y, Z P ΓpTΣq . (1.3.2)
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Corollary 1.10. If f : prΣ, h,∇q ãÑ R3 is an immersed hyperbolic affine sphere, then the
Pick tensor is totally symmetric, namely in index notation Cijk we have

Cijk “ Cσpijkq, @σ P S3 .

In particular, this is equivalent to the requirement that the endomorphism ApXq is h-
symmetric for all X P ΓpTΣq and

ApXqY “ ApY qX, @X,Y P ΓpTΣq . (1.3.3)

Theorem 1.11 ([BH13, Lemma 4.8]). Let Σ be a closed oriented surface of genus g ě 1.
Let h be a Riemannian metric on Σ and J be the induced (almost) complex structure.
Suppose that a p1, 2q tensor A and a p0, 3q tensor C are related by A “ h´1C. Assume
further that the tensor C is totally symmetric. Then, ApXq is trace-free for all X P ΓpTΣq

if and only if C is the real part of a complex cubic differential, which can be expressed as
q “ Cp¨, ¨, ¨q ´ iCpJ ¨, ¨, ¨q. If this holds, then the following are equivalent:
‚ d∇

h
A “ 0;

‚ C is the real part of a holomorphic cubic differential q “ Cp¨, ¨, ¨q ´ iCpJ ¨, ¨, ¨q;
‚ p∇h

JXAqp¨q “ p∇h
XAqpJ ¨q,@X P ΓpTΣq.

The embedding data of hyperbolic affine spheres in R3 can be described in terms of the
Blaschke metric h and the Pick form A satisfying the following equations:

#

Kh ´ ||q||2h “ ´1

d∇
h
A “ 0 ,

(HS)

where q “ Cp¨, ¨, ¨q´ iCpJ ¨, ¨, ¨q is the holomorphic cubic differential determined by the Pick
tensor C, Kh is the Gaussian curvature of the Blaschke metric h and A “ h´1C is the
associated End0pTΣ, hq-valued 1-form. Moreover, for any tangent vector fields X,Y, Z on
Σ the exterior-derivative d∇

h
A is the End0pTΣ, hq-valued 2-form

`

d∇
h
A
˘

pX,Y qZ “
`

∇h
XA

˘

pY qZ ´
`

∇h
YA

˘

pXqZ , (1.3.4)

where End0pTΣ, hq denotes the vector bundle of h-symmetric and trace-less endomorphisms
of the tangent bundle.

Remark 1.12. Notice that the second equation in (HS) is invariant under conformal change
of metric. In fact, it is equivalent to require that the cubic differential q “ Cp¨, ¨, ¨q ´

iCpJ ¨, ¨, ¨q is holomorphic with respect to the complex structure defined by the conformal
class of h. For this reason, in the following discussion, we will use either the tensor A or C
according to which is more convenient.
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Viceversa, every pair ph,Cq satisfying (HS), with h a Riemannian metric and C a
totally symmetric p0, 3q-tensor equal to the real part of a h-cubic differential, i.e. a cubic
differential that is holomorphic for the conformal class of h, represents the embedding
data of a hyperbolic affine sphere in R3 ([Wan90],[Lof01],[BH13]). Considering that such a
correspondence is natural by the action of DiffpΣq, we introduce the space parameterizing
the embedding data of π1pΣq-equivariant hyperbolic affine spheres in R3 as:

HSpΣq :“

$

&

%

ph,Cq

ˇ

ˇ

ˇ

ˇ

ˇ

h is a Riemannian metric
C is the real part of a h-cubic differential
equations (HS) are satisfied

,

.

-

M

Diff0pΣq (1.3.5)

Thus, according to the above discussion, we obtain the following result:

Proposition 1.13. Let Σ be a closed surface of genus g ě 2, then there exists a MCGpΣq-
invariant homeomorphism between BpΣq and HSpΣq, given by the embedding data of the
unique equivariant hyperbolic affine sphere.

Because of this identification, for the rest of the discussion we will equivalently use one
of the two pieces of notation in Proposition 1.13 to denote the deformation space of convex
RP2-structures, hence the PSLp3,Rq-Hitchin component.

1.4 Wang’s equation

Here we discuss the relation between the hyperbolic affine sphere immersion f : rΣ Ñ R3

and the conformal geometry of the surface. In particular, it is possible to rewrite the
structure equations (1.3.1) in terms of a local holomorphic coordinate on the surface. Since
we are interested in equivariant hyperbolic affine spheres, we can pick a parameterization
f : ∆ Ñ R3, where ∆ is a simply-connected domain in C biholomorphic to the open unit
disk. Let z “ x` iy be a local conformal coordinate with respect to the Blaschke metric h,
so that h “ eψ|dz|2, where |dz|2 is defined as the symmetric product between dz and dz̄.
Since te´ 1

2
ψfx, e

´ 1
2
ψfyu is a h-orthonormal basis of the tangent space, the affine normal

satisfies
det

´

e´ 1
2
ψfx, e

´ 1
2
ψfy, ξ

¯

“ 1

which implies
detpfx, fy, ξq “ eψ .

By rewriting all in terms of

Bf

Bz
“

1

2
pfx ´ ifyq and

Bf

Bz̄
“

1

2
pfx ` ifyq

we get
detpfz, fz̄, ξq “ ieψ .
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The affine structure equations are

DXY “ ∇XY ` hpX,Y qξ

DXξ “ ´λ ¨X .
(1.4.1)

Now consider the coordinate frame te1 :“ fz :“ f˚p B
Bz q, e1̄ :“ fz̄ :“ f˚p B

Bz̄ qu. Hence,

hpfz, fzq “ hpfz̄, fz̄q “ 0, hpfz, fz̄q “
1

2
eψ.

Let θ be the matrix of connection one-forms for ∇, i.e.

∇ei “ θji ej , i, j P t1, 1̄u.

If θ̂ is the matrix of connection one-forms of the Levi-Civita connection, then

θ̂11̄ “ θ̂1̄1 “ 0, θ̂11 “ Bψ, θ̂1̄1̄ “ B̄ψ .

The difference ∇´∇h is equal to the so-called Pick form, namely the section of End0pTΣ, hqb

T ˚Σ satisfying (1.3.2). In local coordinates

θji ´ θ̂ji “ Ajikρ
k, i, j P t1, 1̄u

where tρ1 “ dz, ρ1̄ “ dz̄u is the dual frame of one-forms. By lowering an index we get the
Pick tensor

Cijk “ hilA
l
jk, i, j, k P t1, 1̄u

which is totally symmetric, as one can see from the last equation. In particular, all the
components of C must vanish except for C111 and C111 “ C1̄1̄1̄. This discussion completely
determines θ, indeed

θ “

ˆ

θ11 θ1
1̄

θ1̄1 θ1̄
1̄

˙

“

ˆ

Bψ e´ψQ̄dz̄
e´ψQdz B̄ψ

˙

where Q :“ 2C111 is a smooth function on the affine sphere.
Since D is the standard (flat) connection on R3, by using the structure equations (1.4.1)
we have

fzz :“ Dfzfz “ ∇ B
Bz

B

Bz
“ ψzfz ` e´ψQfz̄

fz̄z̄ :“ Dfz̄fz̄ “ ∇ B
Bz̄

B

Bz̄
“ ψz̄fz̄ ` e´ψQ̄fz

fzz̄ :“ Dfzfz̄ “ ∇ B
Bz

B

Bz̄
` hpfz, fz̄qξ “

1

2
eψξ .

(1.4.2)
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We can translate our affine sphere so that ξ “ f , hence by combining (1.4.2) with this last
equation we get a 1st-order linear system in Ft :“ pfz, fz̄.ξq, given by

B

Bz

¨

˝

fz
fz̄
ξ

˛

‚“

¨

˝

ψz Qe´ψ 0
0 0 1

2e
ψ

1 0 0

˛

‚

¨

˝

fz
fz̄
ξ

˛

‚

B

Bz̄

¨

˝

fz
fz̄
ξ

˛

‚“

¨

˝

0 0 1
2e
ψ

Q̄e´ψ ψz̄ 0
0 1 0

˛

‚

¨

˝

fz
fz̄
ξ

˛

‚ .

(1.4.3)

Given an initial condition for Ft at z0 P ∆, there exists a unique solution to this system as
long as the following integrability conditions are satisfied

ψzz̄ ` |Q|2e´2ψ ´
1

2
eψ “ 0

Qz̄ “ 0 .
(1.4.4)

The second equation and the definition of Q implies that q :“ Qdz3 is a holomorphic cubic
differential over ∆.

Remark 1.14. From now on, we rescale the cubic differential q “ Qdz3 ÞÑ q1 “ Q1dz3 :“?
2Qdz3, so that equations (1.4.4) become:

ψzz̄ `
1

2
|Q1|2e´2ψ ´

1

2
eψ “ 0

Q1
z̄ “ 0 .

(1.4.5)

Moreover, we will denote, by abuse of notation, the rescaled cubic differential with q “

Qdz3. For this reason, some of the formulae that will follow in the torus case will differ by
a multiplicative factor from those presented in [RT21]. This rescaling is done to be then
consistent with what will be explained in the genus g ě 2 case.

Now let pΣ, Jq be a closed Riemann surface with genus g ě 2. By the well-known
Poincaré-Koebe Uniformization Theorem we can pick a Riemannian metric g0 of constant
curvature k0 on Σ which is compatible with the initial complex structure J . Let H0pΣ,K3q

be the holomorphic sections of the tri-canonical bundle over pΣ, Jq, namely the C-vector
space of holomorphic cubic differentials. It is easy to see, using the Riemann-Roch Theorem,
that this space has complex dimension equal to 5g´ 5. If z “ x` iy is a local holomorphic
coordinate on pΣ, Jq, then we can define a norm on H0pΣ,K3q, given by:

||q||2g0 :“ |Q|2e´3ϕ ,

where q “ Qdz3 and g0 “ eϕ|dz|2 in this local coordinate.
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Theorem 1.15 ([Wan90]). Pick the metric g0 so that its Gaussian curvature is equal to ´1.
Let h “ eug0 be a Riemannian metric in the same conformal class as g0 and q P H0pΣ,K3q,
then ψ “ u` ϕ satisfies the first equation of (1.4.5) if and only if the metric h satisfies:

Kh ´ ||q||2h “ ´1 , (1.4.6)

where Kh is the Gaussian curvature of h and ||q||2h “ ||q||2g0e
´3u.

Lemma 1.16. In the setting of the previous theorem, the metric h satisfies equation (1.4.6)
if and only if the function u : Σ Ñ R satisfies the following semi-linear elliptic equation

∆g0u` 2||q||2g0e
´2u ´ 2eu ` 2 “ 0 (1.4.7)

Proof. This is an easy application of the formula for the curvature Kh “ e´upk0 ´ 1
2∆g0uq

under conformal change of metric h “ eug0. In fact, since g0 can be chosen so that k0 “ ´1,
we get

Kh ´ ||q||2h ` 1 “ ´e´u ´
1

2
e´u∆g0u´ e´3u||q||2g0 ` 1 .

Multiplying the right-hand side of the equation above by the factor ´2eu, we have the
following equivalence

´e´u ´
1

2
e´u∆g0u´ e´3u||q||2g0 ` 1 “ 0 ðñ ∆g0u` 2||q||2g0e

´2u ´ 2eu ` 2 “ 0 .

The original approach used by Wang to study existence and uniqueness of the solution
to (1.4.7) (and thus to (1.4.6)) was the theory of elliptic operators between Sobolev spaces
([Wan90, §4]). About ten years later, Loftin simplified a lot the original argument by using
the theory of sub and sup-solutions.

Lemma 1.17 ([SY94, Proposition V.1.1]). Let pM, g̃q be a smooth compact Riemannian
manifold. Consider the following differential equation:

∆g̃u` fpp, uq “ 0 , (1.4.8)

where f is a smooth function on M ˆ R. Suppose there exist ϕ, ψ P C2pMq satisfying:

∆ϕ` fpp, ϕq ě 0 , ∆ψ ` fpp, ψq ď 0 , ϕ ď ψ .

Then, Equation (1.4.8) has a smooth solution u such that ϕ ď u ď ψ. The functions ϕ and
ψ are called respectively a sub-solution and a sup-solution for (1.4.8).

Proposition 1.18 ([Lof01]). Let pM, g̃q be a smooth compact Riemannian manifold and
let φ̃ be a smooth non-negative function on M . Then, the equation

∆g̃u` φ̃ppqe´2u ´ 2eu ` 2 “ 0 (1.4.9)

has a unique smooth solution.
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Proof. For the existence part, we need to find a sub and sup-solution to (1.4.9) and then
appeal to Lemma 1.17 with fpp, uq :“ φ̃ppqe´2u ´ 2eu ` 2. The sub-solution is given by
ϕ :“ 0 since φ̃ppq is non-negative by hypothesis. To find the sup-solution ψ we look for a
non-negative constant c ” ψ such that fpp, cq ď 0, which is equivalent, after multiplying
by e2c, to φ̃ppq ´ 2e3c ` 2e2c ď 0. In order to do so, let us first define H :“ maxqPM φ̃pqq,
which is strictly positive since φ̃ is non-negative and non-constant, and set m to be the
positive root of the equation 2x3 ´ 2x2 ´ H “ 0, so that H “ 2m3 ´ 2m2. By definition,
m ą 1 and the sup-solution is given by c ” ψ :“ logm ą 0. In fact,

φ̃ppq ´ 2e3c ` 2e2c “ φ̃ppq ´ 2m3 ` 2m2 “ φ̃ppq ´H ď 0 .

The smoothness of the solution follows from standard arguments of elliptic theory.
For the uniqueness part we need to apply the maximum principle. Suppose u1, u2 are two
solutions of (1.4.9) and let x P M be a maximum of u1 ´ u2, then ∆g̃pu1 ´ u2qpxq ď 0.
Since u1, u2 both satisfy (1.4.9), we get:

φ̃ppqe´2u2pxq ´ 2eu2pxq ` 2 ď φ̃ppqe´2u1pxq ´ 2eu1pxq ` 2

but, the function φ̃ppqe´2u´2eu`2 is strictly decreasing in u, so it implies: pu1´u2qpxq ď 0.
In particular, since x is a maximum of u1 ´ u2 we get

pu1 ´ u2qpyq ď 0, @y P M .

Arguing with a minimum point it follows that the reverse inequality holds on the whole M ,
hence u1 ” u2.

Let π : rΣ Ñ Σ be the conformal universal covering, namely rΣ is biholomorphic to the
open unit disk in C. Given a holomorphic cubic differential q on Σ, we get by Proposi-
tion 1.18 a unique pair ph, qq satisfying (1.4.7) on Σ. Then, by Proposition 1.15 the pair
pπ˚h, π˚qq satisfies (1.4.5), where π˚h “ eψ|dz|2 on rΣ. In particular, pπ˚h, π˚qq determines
a hyperbolic affine sphere f : rΣ Ñ R3 with π˚h as its Blaschke metric and it is complete
since π :prΣ, π˚hq Ñ pΣ, hq is a local isometry and Σ is compact. Moreover, it can be proved
that the deck transformation group of Σ can be regarded as a discrete subgroup of the uni-
modular affine group acting on the affine sphere f : rΣ Ñ R3. This holds because given any
γ P π1pΣq we have pγ˚ ˝π˚qh “ π˚h and pγ˚ ˝π˚qq “ π˚q, but the Blaschke metric and the
Pick form completely determine the affine sphere up to unimodular affine transformations.
Hence, the map which sends the point fppq to fpγppqq, with p P Σ, must be the restriction
of an unimodular affine transformation in R3. By the standard theory of affine differential
geometry it follows that the given construction yields all complete hyperbolic affine spheres
which admit the action of a discrete subgroup of the unimodular affine group in R3 with
compact quotient.

Corollary 1.19 ([Wan90; Lof01]). A hyperbolic affine sphere in R3 with center 0 which
admits a properly discontinuous action of a discrete group Γ ă SLp3,Rq, so that the quotient
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is a closed oriented surface Σ of genus g ě 2, is completely determined by a conformal
structure on Σ and a section q P H0pΣ,K3q. Moreover, all such hyperbolic affine spheres
are determined in this way.

1.5 Labourie and Loftin’s parameterization

Let π : Q3
`

T cpΣq
˘

Ñ T cpΣq be the holomorphic vector bundle of cubic differentials over
Teichmüller space. The fibre over an equivalence class rJs P T cpΣq is the C-vector space of
holomorphic sections of the tri-canonical bundle. Given any pair prJs, qq P Q3

`

T cpΣq
˘

, we
have an embedding rΣ Ñ R3 as a (equivariant) hyperbolic affine sphere whose Pick tensor
and Blaschke metric are completely determined by rJs and q (Corollary 1.19). In particular,
by the argument in Section 1.2, we get a family of convex RP2-structures on Σ in the same
Diff0pΣq-orbit. Conversely, if we start with an equivalence class of convex RP2-structures,
by Theorem 1.8 we get an (equivariant) embedding rΣ Ñ R3 as a hyperbolic affine sphere,
which is equivalent to a pair prJs, qq as above. In the end, the main result is the following:

Theorem 1.20 ([Lof01],[Lab07]). Let Φ : BpΣq Ñ Q3
`

T cpΣq
˘

be the map which associates
to each equivalence class of convex RP2-structures the pair prJs, qq described above. Then,
Φ is an homeomorphism.

There is a pull-back action of MCGpΣq on Q3
`

T cpΣq
˘

given by:

rψs ¨ prJs, qq :“ prψ˚Js, ψ˚qq .

It is well defined as it does not depend on the chosen representative in rψs P MCGpΣq.
Moreover, the pair prψ˚Js, ψ˚qq still defines a point in Q3

`

T cpΣq
˘

as ψ˚q is holomorphic
with respect to ψ˚J if and only if q is J-holomorphic. In particular, the mapping class
group MCGpΣq acts on BpΣq and Hit3pΣq by:

rψs ¨ rf,M s :“ rf ˝ ψ,M s, rψs ¨ rρs :“ rρ ˝ ψ˚s (1.5.1)

for rψs P MCGpΣq, rf,M s P BpΣq and rρs P Hit3pΣq, so that the monodromy map hol
induces a MCGpΣq-equivariant isomorphism between BpΣq and Hit3pΣq (see Theorem 1.6).
We get the following remarkable consequence:

Corollary 1.21 ([Lof01],[Lab07]). The space Hit3pΣq carries a mapping class group in-
variant complex structure, denoted with I.



Chapter 2
The torus case

In this chapter we first study Wang’s equation when Σ is a torus and we look at the associ-
ated flat hyperbolic affine sphere in R3. In particular, we get a correspondence between the
deformation space of properly convex RP2-structures on T 2 and the complement of the zero
section of the holomorphic bundle of cubic differentials over Teichmüller space. Using such
a correspondence we define an explicit family of pseudo-Kähler structures on the afore-
mentioned deformation space, which is invariant by the action of MCGpT 2q – SLp2,Zq.
Finally, we prove that a circle action and a SLp2,Rq-action on the deformation space are
both Hamiltonian and we compute the associated moment maps.

2.1 The parameterization in genus one

Let us consider the case when the Riemann surface pΣ, Jq “ pT 2, Jq has genus one. Then,
we can always pick a flat metric g0 so that g0 “ |dz|2 in coordinates. A holomorphic cubic
differential q on T 2 is given (globally) by q “ cdz3, with c P C, hence in this case equation
(1.4.7) is

∆0u` 2|c|2e´2u ´ 2eu “ 0 , (2.1.1)

where u is the conformal parameter of the new metric g “ eug0 and ∆0 “ 4BzBz̄ is the
standard Laplacian. Notice that if the holomorphic cubic differential is zero, namely if
c “ 0, then we get ∆0u “ 2eu and by integrating with respect to the volume form of g0 it
follows that

ż

T 2

∆0u dµ0 “ 2

ż

T 2

eu dµ0 ,

which is not possible since the left hand side of the equation is zero and the right one is
strictly positive.

13
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Proposition 2.1. Provided c ‰ 0, Equation (2.1.1) has a unique constant solution given
by u “log

´

|c|
2
3

¯

Proof. It is straightforward to see that log
´

|c|
2
3

¯

satisfies (2.1.1). Suppose u is any other
solution and let p P T 2 be a maximum point for u. This implies that p∆0uqppq ď 0, hence

2euppq ď 2|c|2e´2uppq ùñ uppq ď log
´

|c|
2
3

¯

Since p is a point of maximum, we get

upxq ď uppq ď log
´

|c|
2
3

¯

, @x P T 2

Arguing in the same way with a point of minimum, we get upxq ě log
´

|c|
2
3

¯

@x P T 2, thus
the only possibility is that

u ” log
´

|c|
2
3

¯

.

We can already notice a first difference with the case genus g ě 2, in which the solution
to the semi-linear elliptic equation (1.4.7) could always be found. On the torus, if on the
one hand we have to place restrictions on the possible values of the cubic holomorphic
differential, on the other hand the treatment is considerably simplified. In this case, since
the metric g0 can be chosen to be flat, the function ψ of equations (1.4.5) coincides with the
unique solution of (2.1.1). In particular, following the argument explained at the beginning
of Section 1.4, we can rewrite the first order system of ODEs (1.4.3)1 in the following way

B

Bz

¨

˝

fz
fz̄
f

˛

‚“

¨

˝

0 1?
2
ce´ψ 0

0 0 1
2e
ψ

1 0 0

˛

‚

¨

˝

fz
fz̄
f

˛

‚

B

Bz̄

¨

˝

fz
fz̄
f

˛

‚“

¨

˝

0 0 1
2e
ψ

1?
2
c̄e´ψ 0 0

0 1 0

˛

‚

¨

˝

fz
fz̄
f

˛

‚ .

(2.1.2)

In a more compact form if Ft “ pfz, fz̄, fq and A,B are the 3 ˆ 3 matrices in the first and
second equation respectively, we get

#

B
BzF “ A ¨ F
B

Bz̄F “ B ¨ F .

1The factor 1?
2

in front of the cubic differential part appears because of the rescaling explained in
Remark 1.14
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As one can easily check, since A and B commute, a solution of this system is given by

Fpz, z̄q “ eAz`Bz̄ ¨ C , (2.1.3)

where C is a constant matrix determined by the initial data. Now we are going to compute
an explicit solution of (2.1.2), that is we will find a formula for the parameterization f :
C Ñ R3 of the hyperbolic affine 2-sphere. Then, using Theorem 1.8 we will get that this
affine sphere is asymptotic to a cone over a bounded domain Ω, which will turn out to be
projectively equivalent to a triangle. The main result of this section is the following:

Theorem 2.2. Let Ω{Γ be a properly convex RP2-structure on T 2, then Ω is projectively
equivalent to a triangle in R3 with vertices tp1, 0, 0q; p0, 1, 0q; p0, 0, 1qu.

Proof. Recall that the holomorphic cubic differential is given by q “ cdz3, with c ‰ 0 and
c “ ρeiθ with ρ ą 0 and θ P R. Since to find the solution F of (2.1.2) we have to compute
the exponential of a sum of matrices and Az and Bz̄ commute, we can find a common basis
of eigenvectors that diagonalizes them simultaneously, namely we can find an invertible
matrix P such that

Az “ PDAzP
´1 and Bz̄ “ PDBz̄P

´1

with DAz, DBz̄ diagonal matrices. From this it follows that

Az `Bz̄ “ PDAz`Bz̄P
´1 ùñ eAz`Bz̄ “ PeDAz`Bz̄P´1 ,

where DAz`Bz̄ “ DAz `DBz̄.
A common basis of eigenvectors is given by

v⃗0 “

¨

˚

˝

ei
2
3
θ

1
`

ρ

2
?
2

˘´ 1
3 ei

θ
3

˛

‹

‚

, v⃗1 “

¨

˚

˝

ζ2ei
2
3
θ

1

ζ
`

ρ

2
?
2

˘´ 1
3 ei

θ
3

˛

‹

‚

, v⃗2 “

¨

˚

˝

ζei
2
3
θ

1

ζ2
`

ρ

2
?
2

˘´ 1
3 ei

θ
3

˛

‹

‚

with eigenvalues tλ0z, ζλ0z, ζ
2λ0zu for Az and eigenvalues tλ̄0z̄, ζ

2λ̄0z̄, ζλ̄0z̄u for Bz̄, where
ζ “ ei

2π
3 is a 3rd primitive root of unity and λ0 :“

`

ρ

2
?
2

˘
1
3 ei

θ
3 . Hence, the matrix P is given

by pv⃗0 | v⃗1 | v⃗2q and the eigenvalues of Az ` Bz̄ are t2Repλ0zq, 2Repλ0zζq, 2Repλ0zζ2qu.
At this point, it is easy to compute the matrix eAz`Bz̄ and find the parameterization f ,
being it the third row of the solution of the system F. The vector f “ pf1, f2, f3qt we obtain
takes values in C3 and not in R3 as one might expect. This happens because we still have
to make a choice of the initial data. Then, by choosing the following constant matrix C in
(2.1.3)

C “

¨

˚

˚

˝

`

ρ

2
?
2

˘
1
3 ei

θ
3 ζ

`

ρ

2
?
2

˘
1
3 ei

θ
3 ζ2

`

ρ

2
?
2

˘
1
3 ei

θ
3

`

ρ

2
?
2

˘
1
3 e´i θ

3 ζ2
`

ρ

2
?
2

˘
1
3 e´i θ

3 ζ
`

ρ

2
?
2

˘
1
3 e´i θ

3

1 1 1

˛

‹

‹

‚

(2.1.4)
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we get

fpz, z̄q “

¨

˝

e2Repλ0zq

e2Repζλ0zq

e2Repζ2λ0zq

˛

‚P R3 . (2.1.5)

It is a straightforward computation to see that

Repλ0zq ` Repζλ0zq ` Repζ2λ0zq “ 0,

hence showing that f is a parameterization of the hypersurface tpx, y, wq P R3 | xyw “

1, x, y, w ą 0u. In particular, the hyperbolic affine sphere we get is asymptotic to the
three coordinate planes in the first octant, which are nothing but the boundary of the
cone over the triangle T contained in the plane tpx, y, wq P R3 | x ` y ` w “ 1u and with
vertices tp1, 0, 0q; p0, 1, 0q; p0, 0, 1qu. By Theorem 1.8, this triangle has to be projectively
equivalent to the convex bounded domain Ω of the initial properly convex RP2-structure,
where p : R3zt0u Ñ RP2 is the standard projection.

Remark 2.3. It must be noted that in the case of genus one, the problem of classifying
convex bounded domains Ω, as in Definition 1.4, up to projective transformations and
preserved by the action of a discrete subgroup Γ ă SLp3,Rq contained in ProjpΩq and
isomorphic to ZˆZ, is equivalent to the problem of classifying flat hyperbolic affine spheres
in R3 up to unimodular affine transformations. The latter was the problem studied in
[MR90] which we now recovered in terms of properly convex RP2-structures over the torus.

Corollary 2.4. There exists a bijection between B0pT 2q and the complement of the zero
section in Q3

`

T pT 2q
˘

.

Proof. The above bijection follows from Theorem 1.8. In fact, by the discussion in Section
1.3 to any

“

Ω{Γ
‰

P B0pT 2q we have an associated equivariant hyperbolic affine sphere
M ãÑ R3 which is determined by its Blaschke metric and its Pick tensor (see Corollary
1.19). Hence, let χ : B0pT 2q Ñ Q3

0pT pT 2qq be the map that associates to each
“

Ω{Γ
‰

the
pair pJ, qq, where J is the complex structure induced by the Blaschke metric and q “ cdz3

is a non-zero cubic holomorphic differential whose real part coincides with the Pick tensor
of M . Since, by Lemma 1.16 and Proposition 2.1, for any such pJ, qq we can find a unique
(up to unimodular affine transformations) hyperbolic affine sphere in R3 that is invariant
under a subgroup Γ ă PSLp3,Rq isomorphic to π1pT 2q, the map χ is a bijection.

2.2 The pseudo-Kähler metric on the deformation space

2.2.1 Definition of the pseudo-Kähler structure

Let ρ0 :“ dx0 ^ dy0 be the standard area form on R2 and let us introduce the following
space
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Definition 2.5. The set J pR2q of ρ0-compatible linear-complex structures on R2 is defined
as

J pR2q :“ tJ P EndpR2q | J2 “ ´1, ρ0pv, Jvq ą 0 for some v P R2zt0uu .

This space is a 2-dimensional manifold and it is easy to see that @J P J pR2q, the pairing
g0Jp¨, ¨q :“ ρ0p¨, J ¨q is a scalar product on R2, with respect to which J is an orthogonal
endomorphism. By differentiating the identity J2 “ ´1, it follows that

TJJ pR2q “ t 9J P EndpR2q | J 9J ` 9JJ “ 0u .

Equivalently, the space TJJ pR2q can be identified with the trace-less and g0J -symmetric
endomorphisms of R2. It carries a natural (almost) complex structure given by:

pI : TJJ pR2q Ñ TJJ pR2q

9J ÞÑ ´J 9J .

There is a natural scalar product defined on each tangent space

x 9J, 9J 1yJ :“
1

2
tr
´

9J 9J 1
¯

for each 9J, 9J 1 P J pR2q. It is easy to check that pI preserves this scalar product.

Lemma 2.6. There is a diffeomorphism between J pR2q and T pT 2q, which is equivariant
with respect to the action of MCGpT 2q – SLp2,Zq.

Proof. A linear (almost) complex structure J can be thought of as a constant tensor on
R2, which therefore induces an almost-complex structure on the torus T 2 – R2{Z2. This
gives a well-defined map from J pR2q to T pT 2q, which is a bijection since any element in
T pT 2q, namely an isotopy class of almost-complex structures on T 2, can be represented as
the conformal structure J0 (multiplication by i) on R2{Λ, with Λ – Z2. In fact, one can
assume, up to homothety of Λ, that the torus R2{Λ has area 1, and such representation is
unique up to conjugation in SOp2q. Then, conjugating J0 by the unique element in SLp2,Rq

that maps Λ to Z2 (as marked lattices), one can find the unique J P J pR2q that is sent to
the given class in T pT 2q. After identifying MCGpT 2q with SLp2,Zq, the bijection is clearly
equivariant by construction.

Proposition 2.7. The holomorphic vector bundle Q3
`

T pT 2q
˘

can be identified with the
following

D3pJ pR2qq :“ tpJ,Cq P J pR2q ˆ S3pR2q | CpJ ¨, J ¨, J ¨q “ ´CpJ ¨, ¨, ¨qu (2.2.1)

where S3pR2q is the space of totally-symmetric tri-linear forms on R2. Moreover if pJ,Cq P

D3pJ pR2qq, then
CpJ ¨, ¨, ¨q “ Cp¨, J ¨, ¨q “ Cp¨, ¨, J ¨q . (2.2.2)
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Proof. If J P J pR2q and q is a cubic J-holomorphic differential, then C “ Repqq is a
totally-symmetric tri-linear form on R2 by Theorem 1.11. In particular,

CpX,Y, Zq “ g0JpApXqY,Zq, @X,Y, Z P R2 ,

where A P EndpR2q b T ˚R2 and its endomorphism part is g0J -symmetric and trace-less.
Hence, for all X,Y, Z P R2, we have

CpJX, JY, JZq “ ´g0JpJApJXqY, JZq (ApJXq P TJJ pR2q)

“ ´g0JpApJXqY, Zq (J is g0J ´ orthogonal)
“ ´CpJX, Y, Zq .

We conclude that pJ,C “ Repqqq P D3pJ pR2qq. Conversely, if pJ,Cq P D3pJ pR2qq, then
q “ Cp¨, ¨, ¨q ´ iCpJ ¨, ¨, ¨q defines a cubic holomorphic differential by Theorem 1.11. Finally,

CpJX, Y, Zq “ g0JpApJXqY,Zq

“ ´g0JpApJXqJY, JZq (ApJXq P TJJ pR2q)

“ ´g0JpApJY qJX, JZq (rel. (1.3.3))

“ g0JpJApJY qX, JZq (ApJY q P TJJ pR2q)

“ g0JpApXqJY, Zq

“ CpX, JY, Zq

for all X,Y, Z P R2. A similar computation shows that Cp¨, J ¨, ¨q “ Cp¨, ¨, J ¨q.

Remark 2.8. Notice that, thanks to Relation (1.3.2), the space D3pJ pR2qq can be in-
terpreted in terms of the tensor A, namely it is formed by all possible pairs pJ,Aq with
J P J pR2q and A P EndpR2q b T ˚R2 such that:

‚ ApXqY “ ApY qX, ApJXqY “ ApXqJY, @X,Y P R2;

‚ the endomorphism ApXq is g0J -symmetric and trace-less for all vectors X. In partic-
ular, ApXq P TJJ pR2q

We will make repetitive use of this correspondence, using the tensor C or the tensor A,
whichever is more convenient.

Because of the identification J pR2q – T pT 2q, the space D3pJ pR2qq has the structure
of a vector bundle over J pR2q, whose fiber at a point J P J pR2q is a two dimensional real
vector space, denoted with D3pJ pR2qqJ . Let te1, e2u be a g0J -orthonormal basis of R2 and
te˚

1 , e
˚
2u be its dual, then any element A in D3pJ pR2qqJ can be written as A “ A1e

˚
1 `A2e

˚
2 ,

where Ak :“ Apekq for k “ 1, 2. Hence, we can introduce a scalar product on D3pJ pR2qqJ

by
xA,ByJ :“ trpA^ ˚JBqpe1, e2q , (2.2.3)
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or, more explicitly after expanding the wedge product and evaluating the 2-form,

xA,ByJ “ trpA1B1 `A2B2qe˚
1 ^ e˚

2pe1, e2q “ trpA1B1 `A2B2q . (2.2.4)

Remark 2.9. We will be assuming that the area of the torus for the flat metric g0J is equal
to 1. In fact, there is an equivalent description of T pT 2q as the space of isotopy classes of
unit-area flat metrics on T 2. This can be seen thanks to the isomorphism T pT 2q – J pR2q

presented in Lemma 2.6. The set J pR2q can be interpreted as the space of all orientation
preserving linear maps R2 Ñ R2 up to rotation and/or dilation. This is equivalent to classify
all possible marked lattices in R2 up to Euclidean isometries and homotheties. Since we can
always, up to homotheties, choose a marked lattice of unit area, it follows we can always
find a J P J pR2q with the above property (see [FM11, §10.2]). Moreover, it is easy to check
that Relation (2.2.4) does not depend on the choice of the basis.

By exploiting the definition in (2.2.4), the following relation can be deduced:

xAJ,BJyJ “ xA,ByJ , (2.2.5)

which is equivalent to
xAJ,ByJ “ ´xA,BJyJ . (2.2.6)

Lemma 2.10. Let pJ,Aq P D3pJ pR2qq and let 9A :“ pg0Jq´1 9C denote the unique p1, 2q-
tensor such that g0Jp 9ApXqY,Zq “ 9CpX,Y, Zq for all X,Y, Z P R2. Then, an element p 9J, 9Aq

belongs to TpJ,AqD
3pJ pR2qq if and only if

9J P TJJ pR2q, tr 9ApXq “ tr
´

JApXq 9J
¯

@X P R2, 9A0 “
9̃A0 ` T pJ,A, 9Jq (2.2.7)

where 9A0 is the full trace-free part of 9A, while the tensor 9̃A0 is the trace-free part of 9A
independent of 9J and T pJ,A, 9Jq “ A1J 9JEe˚

1 ` 2A2J 9JEe˚
2 in a local basis dual to a g0J -

orthonormal frame te1, e2u, with E “ diagp1,´1q.

Proof. First notice that

9g0J “ ρp¨, 9J ¨q “ ´ρp¨, J2 9J ¨q “ ´g0Jp¨, J 9J ¨q . (2.2.8)

Then, since ApXq “
`

pg0Jq´1C
˘

pXq and the endomorphisms ApXq are trace-free for each
vector X, we get

0 “ trpApXqq
1

“ tr
``

pg0Jq´1C
˘

pXq
˘1

“ ´ tr
`

pg0Jq´1 9g0Jpg0Jq´1CpXq
˘

` tr
´

9ApXq

¯

.

In particular, using equation (2.2.8) we obtain pg0Jq´1 9g0J “ ´J 9J and hence

tr
´

9ApXq

¯

“ tr
`

pg0Jq´1 9g0Jpg0Jq´1CpXq
˘

“ ´ tr
´

J 9JApXq

¯

“ tr
´

JApXq 9J
¯

.

We defer the third decomposition in (2.2.7) to Section 2.2.2, where a computation in local
coordinates is performed.
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The group SLp2,Rq acts on J pR2q by conjugation and more generally on its tangent
space by

pJ, 9Jq P TJ pR2q, P ¨ pJ, 9Jq :“ pPJP´1, P 9JP´1q

with P P SLp2,Rq.

Lemma 2.11. There is an SLp2,Rq action on D3pJ pR2qq given by:

P ¨ pJ,Aq :“ pPJP´1, PApP´1¨qP´1q (2.2.9)

where P P SLp2,Rq and ApP´1¨q has to be interpreted as the action of P´1 by pull-back on
the one-form part of A.

Proof. Let us first consider the action of SLp2,Rq on Q3
`

T pT 2q
˘

given by:

P ¨ pJ, qq “ pPJP´1, pP´1q˚qq

with P P SLp2,Rq and pJ, qq P Q3
`

T pT 2q
˘

. We need to understand how the above action
transforms under the bijection of Proposition 2.7. The new cubic holomorphic differential
pP´1q˚q corresponds to the new tensor rC “ Re

`

pP´1q˚q
˘

“ CpP´1¨, P´1¨, P´1¨q which is
given by:

rCpX,Y, Zq “ CpP´1X,P´1Y, P´1Zq

“ g0JpA
`

P´1X
˘

P´1Y, P´1Zq

“ ρpPA
`

P´1X
˘

P´1Y, PJP´1Zq (P P SLp2,Rq)

“ g0P ¨JpPA
`

P´1X
˘

P´1Y,Zq .

Hence, the corresponding rA defined by

rCpX,Y, Zq “ g0P ¨Jp rApXqY, Zq ,

is exactly rA “ PApP´1¨qP´1 .

Lemma 2.12. For every P P SLp2,Rq and J P J pR2q, we have

xP ¨ 9J, P ¨ 9J 1yP ¨J “ x 9J, 9J 1yJ

xP ¨A,P ¨ByP ¨J “ xA,ByJ

where 9J, 9J 1 P TJJ pR2q and A,B P D3pJ pR2qqJ .

Proof. For the action on TJJ pR2q, we have

xP ¨ 9J, P ¨ 9J 1yP ¨J “
1

2
tr
´

P 9J 9J 1P´1
¯
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“
1

2
tr
´

9J 9J 1
¯

(trace symmetry)

“ x 9J, 9J 1yJ .

For the action on D3pJ pR2qqJ , we have

xP ¨A,P ¨ByP ¨J “ tr
`

PA1B1P
´1 ` PA2B2P

´1
˘`

pP´1q˚pe˚
1 ^ e˚

2q
˘

pe1, e2q

“ tr
`

P pA1B1 `A2B2qP´1
˘

pe˚
1 ^ e˚

2qpe1, e2q (P P SLp2,Rq)
“ xA,ByJ . (trace symmetry)

The SLp2,Rq-action on D3pJ pR2qq can be differentiated, hence we get a linear isomor-
phism between TpJ,AqD

3pJ pR2qq and TP ¨pJ,AqD
3pJ pR2qq, which is given explicitly by

P ¨ p 9J, 9Aq “ pP 9JP´1, P 9ApP´1¨qP´1q

where p 9J, 9Aq P TpJ,AqD
3pJ pR2qq and P P SLp2,Rq. Moreover, all the conditions in Lemma

2.10 are SLp2,Rq-invariant.
We can define a similar scalar product on pairs 9A, 9B by

x 9A, 9ByJ :“ tr
´

9A1
9B1 ` 9A2

9B2

¯

,

which is SLp2,Rq-invariant as well.
In the following we will denote with || ¨ ||J “ || ¨ || the norm induced by the scalar product
x¨, ¨yJ “ x¨, ¨y and it will be clear from the context which one we are using. In order
to simplify the notation we define ||A||20 :“ 1

8 ||A||2J . Finally, since 9A is an element of
EndpR2q b T ˚R2 whose endomorphism part is g0J -symmetric, let us consider its trace and
trace-free part as in Lemma 2.10, namely if 9A “ 9A1e

˚
1 `A2e

˚
2 , then:

9A0 “ p 9A1q0e
˚
1 ` p 9A2q0e

˚
2 ,

9Atr “
1

2
tr
´

9A1

¯

1e˚
1 `

1

2
tr
´

9A2

¯

1e˚
2 .

Let f : r0,`8q Ñ p´8, 0s be a smooth function such that fp0q “ 0, f 1ptq ă 0 for each
t ą 0 and lim

tÑ`8
fptq “ ´8. Then, we define the following symmetric bi-linear form on

TpJ,AqD
3pJ pR2qq

ppgf qpJ,Aq

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

:“
`

1 ´ fp||A||20q
˘

x 9J, 9J 1y `
f 1p||A||20q

6
x 9A0, 9A1

0y

´
f 1p||A||20q

12
x 9Atr, 9A1

try

(2.2.10)

and the endomorphism pI of TpJ,AqD
3pJ pR2qq

pIpJ,Aqp
9J, 9Aq :“ p´J 9J,´ 9AJ ´A 9Jq (2.2.11)
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where the products 9AJ and A 9J have to be interpreted as a matrix multiplication. Matching
these two objects together we get the following 2-form:

pωf p¨, ¨q “ pgf p¨,pI¨q

which is given by:

ppωf qpJ,Aq

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

“
`

fp||A||20q ´ 1
˘

x 9J, J 9J 1y ´
f 1p||A||20q

12
x 9Atr, ˚J 9A1

try

´
f 1p||A||20q

6
x 9A0, 9A1

0Jy .

(2.2.12)

Remark 2.13. The symmetric tensor pgf and the form pωf are defined only in terms of
the various scalar products x¨, ¨y and ||A||20, hence by Lemma 2.12 they are both SLp2,Rq-
invariant. In particular, the complex structure pI is uniquely determined by the relation
pωf p¨, ¨q “ pgf p¨, I¨q once the form pωf and the tensor pgf are given. In our case, this implies
that pI is SLp2,Rq-invariant as well.

Lemma 2.14. For every 9J, 9J 1 P TJJ pR2q we have

9J 9J 1 “ x 9J, 9J 1yJ1 ´ xJ 9J, 9J 1yJJ . (2.2.13)

Proof. Notice that
J 9J 9J 1 “ ´ 9JJ 9J 1 “ 9J 9J 1J

Therefore, the matrix 9J 9J 1 commutes with J , but it is straightforward to see that this is
equivalent to 9J 9J 1 P SpanRt1, Ju, hence the thesis.

Lemma 2.15. Let te1, e2u be a g0J -orthonormal basis of R2 such that Je1 “ e2 and Je2 “

´e1, and let te˚
1 , e

˚
2u be its dual basis. Then, writing A “ A1e

˚
1 `A2e

˚
2 and 9A “ 9A1e

˚
1 ` 9A2e

˚
2

we get

(1) JA2 “ A1

(2) ´ 9AJ ´A 9J “ ´p 9A1q0Je
˚
1 ´ p 9A2q0Je

˚
2

loooooooooooooomoooooooooooooon

trace-less part

´
1

2
tr
´

9A2

¯

1e˚
1 `

1

2
tr
´

9A1

¯

1e˚
2

looooooooooooooooooomooooooooooooooooooon

trace part

.

Proof. (1) By definition Ai “ Apeiq for i “ 1, 2 and the vector Ai ¨ ej can be written as
a linear combination of e1, e2. Then, it is sufficient to prove that A1 ¨ ei “ JA2 ¨ ei, for
i “ 1, 2. Hence, if

A1 ¨ e1 “ α11e1 ` β11e2, A2 ¨ e1 “ α21e1 ` β21e2

we get JA2 ¨ e1 “ α21e2 ´β21e1, but since the basis te1, e2u is g0J -orthonormal we can write

β11 “ g0JpA1 ¨ e1, e2q “ Cpe1, e1, Je1q
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and

α21 “ g0JpJA2 ¨ e1, e1q

“ g0JpApe2q ¨ e1, e1q (J is g0J ´ orthogonal)
“ CpJe1, e1, e1q

“ β11 (Cp¨, ¨, ¨q is totally-symmetric)

With the same argument one can prove that ´β21 “ α11 and that A1 ¨ e2 “ JA2 ¨ e2,
obtaining the claim.
(2) By using the decomposition 9A “ 9A0 ` p 9Aqtr, we get

´ 9AJ “ ´p 9A1q0Je
˚
1 ´ p 9A2q0Je

˚
2 ´

1

2
tr
´

9A1

¯

Je˚
1 ´

1

2
tr
´

9A2

¯

Je˚
2 . (2.2.14)

The same happens for the tensor A, hence, using Equation (2.2.13) on A1
9J and A2

9J , we
get

´A 9J “ ´
1

2
tr
´

A1
9J
¯

1e˚
1 ´

1

2
tr
´

A2
9J
¯

1e˚
2 `

1

2
tr
´

JA1
9J
¯

Je˚
1 `

1

2
tr
´

JA2
9J
¯

Je˚
2

“ ´
1

2
tr
´

9A2

¯

1e˚
1 `

1

2
tr
´

9A1

¯

1e˚
2 `

1

2
tr
´

9A1

¯

Je˚
1 `

1

2
tr
´

9A2

¯

Je˚
2

where in the last equality we used (2.2.7) and JA2 “ A1. It is now clear that adding the
two terms ´ 9AJ and ´A 9J we get the desired formula in the statement.

Theorem 2.16. The triple ppgf ,pI, pωf q defines an SLp2,Rq-invariant pseudo-Kähler struc-
ture on D3pJ pR2qq.

Proof. In order not to overload the following proof too much, the closedness of pωf and the
non-degeneracy of pgf are postponed to Lemma 2.22 at the end of the chapter, as it requires
a computation in local coordinates.

‚ pI2 “ ´1 and it is integrable.
The first claim is a calculation:

pI2pJ,Aqp
9J, 9Aq “ pIpJ,Aq

`

´ J 9J,´ 9AJ ´A 9J
˘

“ pJ2 9J,´p´ 9AJ ´A 9JqJ `AJ 9Jq

“ p´ 9J,´ 9A`A 9JJ `AJ 9Jq

“ p´ 9J,´ 9Aq . ( 9JJ “ ´J 9J)

For the second one, it is sufficient to prove that, under the bijection in Proposition 2.7,
the almost-complex structure pI on D3pJ pR2qq corresponds to the multiplication by ´i on
Q3

`

T pT 2q
˘

. Since the latter is integrable, the former is integrable as well. To show this, we
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need to compute the tensor rC associated with the variation ´i 9q of the holomorphic cubic
differential q in the fibre over J . Thanks to Proposition 2.7 this is given by

rCp¨, ¨, ¨q “ Rep´i 9qq “ ´ 9Cp¨, J ¨, ¨q ´ Cp¨, 9J ¨, ¨q .

If rA denotes the corresponding associated tensor as in (1.3.2), we get:

g0Jp rApXqY,Z
˘

“ rCpX,Y, Zq

“ ´ 9CpX, JY, Zq ´ CpX, 9JY, Zq

“ g0J
`

p´ 9ApXqJ ´ApXq 9JqY,Z
˘

for all X,Y, Z P ΓpTR2q, hence the claim.

‚ The metric pgf and the complex structure pI are compatible.
We need to prove that

ppgf qpJ,Aq
`

pIpJ,Aqp
9J, 9Aq; pIpJ,Aqp

9J 1, 9A1q
˘

“ ppgf qpJ,Aq

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

.

By definition of pI we have

ppgf qpJ,Aq

`

pIpJ,Aqp
9J, 9Aq; pIpJ,Aqp

9J 1, 9A1q
˘

“
`

1 ´ fp||A||20q
˘

x´J 9J,´J 9J 1y

`
f 1p||A||20q

6
x´p 9AJ `A 9Jq0,´p 9A1J `A 9J 1q0y

´
f 1p||A||20q

12
x´p 9AJ `A 9Jqtr,´p 9A1J `A 9J 1qtry .

Since the argument of the functions f, f 1 depends only on the norm of A (up to a constant)
and remains unchanged when we apply pIpJ,Aq, we can focus only on the scalar products
part. The first term is

x´J 9J,´J 9J 1y “
1

2
tr
´

J 9JJ 9J 1
¯

“
1

2
tr
´

9J 9J 1
¯

(J 9J “ ´ 9JJ)

“ x 9J, 9J 1y .

Applying part (2) of Lemma 2.15 and observing that p 9Aiq0, p 9A1
iq0 P TJJ pR2q, i “ 1, 2, the

second term is

x´p 9AJ `A 9Jq0,´p 9A1J `A 9J 1q0y “ tr
´

p 9A1q0Jp 9A1
1q0J

¯

` tr
´

p 9A2q0Jp 9A1
2q0J

¯

“ tr
´

p 9A1q0p 9A1
1q0 ` p 9A2q0p 9A1

2q0

¯

“ x 9A0, 9A1
0y .
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Applying, again, part (2) of Lemma 2.15 the third term is:

x´p 9AJ `A 9Jqtr,´p 9A1J `A 9J 1qtry “
1

4
tr
´

tr
´

9A1

¯

tr
´

9A1
1

¯

1 ` tr
´

9A2

¯

tr
´

9A1
2

¯

1
¯

“ x 9Atr, 9A1
try .

Hence, we have the claim.

Remark 2.17. The complex structure pI preserves the 0-section of TpJ,AqD
3pJ pR2qq since

pIpJ,0qp
9J, 0q “ p´J 9J, 0q. In particular, pI still defines a complex structure on the complement

of the 0-section onD3pJ pR2qq, which is identified withQ3
0pT pT 2qq by Proposition 2.7, which

is further identified with B0pT 2q by Corollary 2.4. Hence, we get a well-defined complex
structure on B0pT 2q which will be denoted with pI by abuse of notation. The same argument
holds for the pseudo-Riemannian metric pgf and the symplectic form pωf .

Theorem D. The deformation space B0pT 2q admits a MCGpT 2q-equivariant pseudo-Kähler
structure ppgf ,pI, pωf q.

Proof. By Theorem 2.16 and Remark 2.17 the deformation space B0pT 2q has a well-defined
pseudo-Kähler structure ppgf ,pI, pωf q. Since all the identifications are equivariant with respect
to SLp2,Zq – MCGpT 2q and the triple ppgf ,pI, pωf q is SLp2,Rq-invariant, it follows that the
induced pseudo-Kähler structure is MCGpT 2q-invariant.

2.2.2 The pseudo-metric and the symplectic form in coordinates

As we explained in the previous section, it only remains to prove that the symmetric tensor
pgf and the 2-form pωf on D3pJ pR2qq are non-degenerate and closed, respectively. In order
to do so, we need to write their expression in local coordinates. First of all, it is necessary to
find the analogue in coordinates of the two spaces, J pR2q and D3pJ pR2qq, which we have
studied so far. Let pG and pΩ be the restriction of pgf and pωf to the 0-section of D3pJ pR2qq,
which is identified with J pR2q. Then,

pGJp 9J, 9J 1q “ x 9J, 9J 1yJ , pΩJp 9J, 9J 1q “ ´x 9J, J 9J 1yJ

with 9J, 9J 1 P TJJ pR2q. In this case pGJ is a scalar product for all J P J pR2q, hence
p pG, pΩq is an SLp2,Rq-invariant Kähler structure on J pR2q. Moreover, the SLp2,Rq-action
is transitive with stabilizer SOp2q at the standard linear complex structure

J0 “

ˆ

0 ´1
1 0

˙

.

Therefore, J pR2q – SLp2,Rq{SOp2q – H2.
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Lemma 2.18 ([Tra18, Lemma 4.3.2]). Let H2 be the hyperbolic plane with complex coordi-
nate z “ x` iy and with Kähler structure

gH2 “
dx2 ` dy2

y2
, ωH2 “ ´

dx^ dy

y2
.

Then, there exists a unique SLp2,Rq-invariant Kähler isometry j : H2 Ñ J pR2q such that
jpiq “ J0. It is given by the formula

jpx` iyq :“

˜

x
y ´

x2`y2

y
1
y ´x

y

¸

. (2.2.15)

Remark 2.19. The minus sign in front of the area form on H2 shows up since we are
considering the relation pωf p¨, ¨q “ pgf p¨,pI¨q on D3pJ pR2qq, hence on J pR2q.

In particular, thanks to this last lemma and the isomorphism T pT 2q – J pR2q, we
can identify the Teichmüller space of the torus with H2. Whenever we are thinking of
Teichmüller space of the torus as H2, we will denote the total space of Q3

`

T pT 2q
˘

as
Q3pH2q. In particular, we can identify Q3pH2q with H2 ˆ C, where C is a copy of the fiber
Q3pH2qz over a point z P H2. We can define an SLp2,Rq-action on H2 ˆ C by

ˆ

a b
c d

˙

¨pz, wq :“

ˆ

az ` b

cz ` d
, pcz`dq3w

˙

, with pz, wq P H2ˆC, ad´bc “ 1 . (2.2.16)

Moreover, the metric on the fiber is the one induced by the norm

|w|2z “ Impzq3|w|2 for z P H2, w P Q3pH2qz .

Given J P J pR2q, let us define the space of J-complex symmetric tri-linear forms by

S3pR2, Jq : “ tγ : R2 b R2 b R2 ÝÑ C | γ is symmetric and pJ, iq ´ tri-linearu

– tτ : R2 Ñ C | for all α, β P R and v P R2 it holds τpαv ` βJvq “ pα ` iβq3τpvqu .

This space can be seen as the fiber of a complex line bundle L3pR2q Ñ J pR2q endowed
with a natural SLp2,Rq-action given by

P ¨ pJ, γq :“ pPJP´1, pP´1q˚γq, for P P SLp2,Rq .

It is not difficult to see that the line bundle L3pR2q can be identified with D3pJ pR2qq.
In particular, each fiber S3pR2, Jq is endowed with a scalar product from the one on
D3pJ pR2qqJ defined in (2.2.3).
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Lemma 2.20 ([Tra18, Lemma 5.2.1]). Let us consider the map φ : Q3pH2q Ñ HompR2 b

R2 b R2,Cq given by

φpz, wq : R2 ÝÑ C
v ÞÑ w̄pv1 ´ z̄v2q3

and let j : H2 Ñ J pR2q be the map defined by (2.2.15). Then, the following holds:

‚ φpz, wq P S3pR2, jpzqq, for all pz, wq P Q3pH2q.

‚ The fibre map φpz, ¨q : Q3pH2qz – C Ñ S3pR2, jpzqq is a complex anti-linear isometry
for every z P H2.

‚ The bundle map pj, φq : Q3pH2q Ñ L3pR2q is a SLp2,Rq-equivariant bijection.

At this point it easy to compute in coordinates the Pick tensor C P D3pJ pR2qqJ , the
Pick form A P EndpR2q bT ˚R2 and their respective variations: 9C and 9A “ g´1

J
9C, by using

this last two lemmas and the isomorphism Q3
`

T pT 2q
˘

– D3pJ pR2qq. Let z “ x ` iy and
w “ u ` iv be the complex coordinates on H2 and C respectively, then the bundle map
pj, φq in Lemma 2.20 is given by

H2 ˆ C Q pz, wq ÞÝÑ
`

jpzq, Cpz,wq

˘

P D3pJ pR2qq

where Cpz,wq “ Repqpz,wqq with qpz,wq “ swpdx0 ´ szdy0q3 (see Proposition 2.7). Hence, the
Pick form Apz,wq will be recovered by (1.3.2). Since SLp2,Rq acts transitively on H2, it is
enough to compute the tensors at the point pi, wq ” p0, 1, u, vq for a generic w P C. The
components of the Pick tensor Cpz,wq are given by

C111pz, wq “ u, C112pz, wq “ ´xu` yv, C122pz, wq “ ux2 ´ uy2 ´ 2xyv,

C222pz, wq “ ´ux3 ´ vy3 ` 3puy2x` x2yvq .

The remaining components are determined by the four above since C is totally-symmetric.
Its variation 9Cpi,wq at pi, wq is

9C111pi, wq “ 9u, 9C112pi, wq “ ´u 9x` 9v ` v 9y, 9C122pi, wq “ ´ 9u´ 2pu 9y ` v 9xq,

9C222pi, wq “ ´ 9v ` 3pu 9x´ v 9yq .

The Pick form computed in pi, wq is then

Api,wq “

ˆ

u v
v ´u

˙

dx0 `

ˆ

v ´u
´u ´v

˙

dy0 . (2.2.17)

Its variation 9A will be given in terms of its trace-free and trace part at the point pi, wq

p 9A0qpi,wq “

ˆ

9u` u 9y ` v 9x ´u 9x` 9v ` v 9y
´u 9x` 9v ` v 9y ´ 9u´ u 9y ´ v 9x

˙

dx0`

ˆ

9v ` 2pv 9y ´ u 9xq ´ 9u´ 2pu 9y ` v 9xq

´ 9u´ 2pu 9y ` v 9xq ´ 9v ` 2pu 9x´ v 9yq

˙

dy0
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p 9Atrqpi,wq “

ˆ

´u 9y ´ v 9x 0
0 ´u 9y ´ v 9x

˙

dx0 `

ˆ

u 9x´ v 9y 0
0 u 9x´ v 9y

˙

dy0 .

Remark 2.21. Recall that by Remark 1.14, the cubic differential q, hence the tensor A and
its first order variation, has to be rescaled by a factor 1?

2
. For this reason, all calculations

made from here on will include the rescaling factor and their values may vary from the one
in [RT21].

Thanks to this expression in coordinates and together with the action of SLp2,Rq on
H2 ˆ C, we are now able to write the metric pgf and the symplectic form pωf at the point
pz, wq. Let t B

Bx ,
B

By ,
B

Bu ,
B

Bv u be a real basis of the tangent space of H2 ˆC with its dual basis
tdx,dy,du,dvu, then the expressions (2.2.10) and (2.2.12) become respectively

ppgf qpz,wq “

¨

˚

˚

˝

1
y2

`

1 ´ f ` 3
2pu2 ` v2qy3f 1

˘

0 f 1vy2 ´f 1uy2

0 1
y2

`

1 ´ f ` 3
2pu2 ` v2qy3f 1

˘

f 1uy2 f 1vy2

f 1vy2 f 1uy2 2
3f

1y3 0
´f 1uy2 f 1vy2 0 2

3f
1y3

˛

‹

‹

‚

ppωf qpz,wq “

ˆ

´ 1 ` f ´
3

2
f 1y3pu2 ` v2q

˙

dx^ dy

y2
´

2

3
f 1y3du^ dv

´ y2f 1

ˆ

updx^ du` dy ^ dvq ` vpdu^ dy ´ dv ^ dxq

˙

where the functions f, f 1 are evaluated in:

1

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
2
Apz,wq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

jpzq
“

1

8
||Apz,wq||

2
jpzq “

1

2
||qpz,wq||

2
jpzq “

1

2
y3pu2 ` v2q .

The matrix associated with the complex structure pIpz,wq : Tpz,wq

`

H2 ˆC
˘

Ñ Tpz,wq

`

H2 ˆC
˘

in the basis t B
Bx ,

B
By ,

B
Bu ,

B
Bv u is

pIpi,wq “

ˆ

J0 02ˆ2

02ˆ2 J0

˙

“

¨

˚

˚

˝

0 ´1 0 0
1 0 0 0
0 0 0 ´1
0 0 1 0

˛

‹

‹

‚

.

We will explain how to obtain the expressions above for pgf and pωf later in the section.
We first show that these formulae define a non-degenerate pseudo-Riemannian metric and
a closed 2-form on H2 ˆ C, thus concluding the proof of Theorem 2.16.

Lemma 2.22. The tensor ppgf qpz,wq is non-degenerate and the form ppωf qpz,wq is closed, for
each pz, wq P H2 ˆ C.
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Proof. The tensor pgf can be written as:

ppgf qpz,wq “

ˆ

Θ Ξ
Γ ∆

˙

where Θ,Ξ,Γ,∆ are 2 ˆ 2 matrices with

Θ “
1

y2
`

1 ´ f `
3

2
y3pu2 ` v2qf 1

˘

12ˆ2, ∆ “
2

3
y3f 112ˆ2 .

Hence, Ξ and Γ both commute with Θ and ∆. In this case there is an easy formula for the
determinant of the 4 ˆ 4 matrix, namely det

´

ppgf qpz,wq

¯

“ detpΘ∆ ´ ΞΓq, where

Θ∆ “
2

3
y
´

f 1 ´ ff 1 `
3

2
y3pf 1q2pu2 ` v2q

¯

12ˆ2 ΞΓ “ y4pf 1q2pu2 ` v2q12ˆ2

which gives

det
´

ppgf qpz,wq

¯

“
4

9
y2pf 1q2p1 ´ fq2 .

The right hand side of the last equation is always non-zero thanks to the property of the
function f , hence ppgf qpz,wq is non-degenerate at each point pz, wq P H2 ˆ C.
It only remains to prove that pdpωf qpz,wq “ 0 for each pz, wq P H2 ˆ C. By using directly
the expression in coordinate, we get:

• Coefficient dy ^ du^ dv:

´ 2y2f 1dy ^ du^ dv ´ y5f2pu2 ` v2qdy ^ du^ dv ´ y5f2u2du^ dy ^ dv

´ y2f 1du^ dy ^ dv ´ y5f2v2dv ^ du^ dy ´ y2f 1dv ^ du^ dy “ 0

• Coefficient dx^ du^ dv:

´y5f2uvdv ^ dx^ du` y5f2uvdu^ dv ^ dx “ 0

• Coefficient dx^ dy ^ dv:

yf 1vdv ^ dx^ dy ´
3

2
y4f2u2vdv ^ dx^ dy ´ 3yf 1vdv ^ dx^ dy

´
3

2
y4f2v3dv ^ dx^ dy ` 2yf 1vdy ^ dv ^ dx`

3

2
y4f2vpu2 ` v2qdy ^ dv ^ dx “ 0

• Coefficient dx^ dy ^ du:

yf 1udu^ dx^ dy ´ 3yf 1udu^ dx^ dy ´
3

2
y4f2u3du^ dx^ dy

´
3

2
y4f2uv2du^ dx^ dy ´ 2yf 1udy ^ dx^ du´

3

2
y4f2pu2 ` v2qdy ^ dx^ du “ 0
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Thanks to the expression in coordinates, it is easy to see that pgf is indeed a pseudo-
Riemannian metric on H2ˆC (hence on B0pT 2q) since it is negative-definite when restricted
to t0u ˆ C and it coincides with gH2 on H2 ˆ t0u.

In the following we will give an idea on how to compute ppgf qpi,wq by using (2.2.10) and
the expression of the tensors in coordinates. Finally, by using the SLp2,Rq-invariance we
briefly sketch how to compute the tensor pgf at an arbitrary point of H2 ˆ C.
In order to simplify the computation we will give the expression of the associated quadratic
form. The first part of the quadratic form in the tensor formalism is 1

2p1´fq tr
´

9J2
¯

, hence
at the point pi, wq we have:

J “ J0 “

ˆ

0 ´1
1 0

˙

and 9J “ dijp 9x, 9yq “

ˆ

9x ´ 9y
´ 9y ´ 9x

˙

.

Thus, 1
2p1 ´ fq tr

´

9J2
¯

“ p1 ´ fq
`

9x2 ` 9y2
˘

. Moreover, using the expression in coordinates

of p 9A0qpi,wq and p 9Atrqpi,wq we get:

p˚ 9A0qpi,wq “

ˆ

9u` u 9y ` v 9x ´u 9x` 9v ` v 9y
´u 9x` 9v ` v 9y ´ 9u´ u 9y ´ v 9x

˙

dy0 ´

ˆ

9v ` 2pv 9y ´ u 9xq ´ 9u´ 2pu 9y ` v 9xq

´ 9u´ 2pu 9y ` v 9xq ´ 9v ` 2pu 9x´ v 9yq

˙

dx0,

p˚ 9Atrqpi,wq “

ˆ

´u 9y ´ v 9x 0
0 ´u 9y ´ v 9x

˙

dy0 ´

ˆ

u 9x´ v 9y 0
0 u 9x´ v 9y

˙

dx0 .

Hence,

1

6
tr
´

9A0 ^ ˚ 9A0

¯

“
2

3
p 9u2 ` 9v2q `

5

3
pu2 ` v2qp 9x2 ` 9y2q ` 2

`

up 9u 9y ´ 9x 9vq ` vp 9y 9v ` 9u 9xq
˘

1

12
tr
´

9Atr ^ ˚ 9Atr

¯

“
1

6
pu2 ` v2qp 9x2 ` 9y2q .

The final expression for the quadratic form associated with pgf and computed at pi, wq is
thus
`

1 ´ f `
3

2
f 1pu2 ` v2q

˘`

9x2 ` 9y2
˘

`
2

3
f 1p 9u2 ` 9v2q ` 2f 1

`

up 9u 9y ´ 9x 9vq ` vp 9y 9v ` 9u 9xq
˘

(2.2.18)

Similarly, we can recover the coordinate expression of ppgf qpi,wq from (2.2.18). In order to
give the precise expression of pgf at an arbitrary point pz, rwq P H2 ˆ C we need to use the
SLp2,Rq-invariance of pgf and the fact that the SLp2,Rq-action on H2 is transitive. In fact,
we can find a P P SLp2,Rq such that P ¨ z “ i for z P H2, where P ¨ z is the action via
Möbius transformations. This matrix P is explicitly given by

P “

˜

1?
y ´ x?

y

0
?
y

¸

.
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In particular, the point rw “ ru` irv P C is determined by P ¨ pz, rwq “ pi, wq. In fact,

u2 ` v2 “ y3pru2 ` rv2q . (2.2.19)

By using the SLp2,Rq-invariance we get

ppgf qpz, rwqp¨, ¨q “ pP ˚
pgf qpz, rwqp¨, ¨q “ ppgf qpi,wqpdpz, rwqP ¨, dpz, rwqP ¨q,

where the differential of P at pz, rwq is given by

dpz, rwqP

ˆ

B

Bx

˙

“
1

y

B

Bx
dpz, rwqP

ˆ

B

By

˙

“
1

y

B

By

dpz, rwqP

ˆ

B

Bu

˙

“ y
3
2

B

Bu
dpz, rwqP

ˆ

B

Bv

˙

“ y
3
2

B

Bv
.

Now we have all the tools to compute pgf at a point pz, rwq. For instance,

ppgf qpz, rwq

ˆ

B

Bx
,

B

Bx

˙

“ ppgf qpi,wq

ˆ

dpz, rwqP

ˆ

B

Bx

˙

, dpz, rwqP

ˆ

B

Bx

˙˙

“
1

y2
ppgf qpi,wq

ˆ

B

Bx
,

B

Bx

˙

“
1

y2

ˆ

1 ´ f ` 3f 1pu2 ` v2q

˙

“
1

y2

ˆ

1 ´ f ` 3y3f 1pru2 ` rv2q

˙

(Equation 2.2.19)

With a similar computation one can recover all the entries of the tensor pgf at every pz, wq P

H2 ˆ C.

2.3 The circle action

In this section we study the behavior of the circle action on B0pT 2q given by rotation of
the fibres, according to the isomorphism presented in Corollary 2.4. The main result claims
that the aforementioned action is Hamiltonian with respect to the symplectic form pωf and
that it acts by isometries with respect to the pseudo-Riemannian metric pgf . Finally, we
explicitly compute the associated Hamiltonian function.

The first step is to understand how the circle action q ÞÑ e´iθq on Q3pT pT 2qq changes
under the bijection with D3pJ pR2qq (see Proposition 2.7). In other words, if C is the Pick
tensor associated with the J-holomorphic cubic differential q, namely C “ Repqq, then
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we need to find the expression of the new Pick form rA associated with rC “ Repe´iθqq.
According to Theorem 1.11, we have q “ Cp¨, ¨, ¨q ´ iCp¨, J ¨, ¨q. In particular, the expression

e´iθq “ cos θCp¨, ¨, ¨q ` sin θCp¨, J ¨, ¨q ` i

ˆ

cos θCp¨, J ¨, ¨q ´ sin θCp¨, ¨, ¨q

˙

implies that rCp¨, ¨, ¨q “ cos θCp¨, ¨, ¨q ` sin θCp¨, J ¨, ¨q and the new Pick form is

rAp¨q “ pg0Jq´1
rC “ cos θAp¨q ´ sin θAp¨qJ .

The last equation gives an induced action on D3pJ pR2qq by setting

pΨθ : D3pJ pR2qq ÝÑ D3pJ pR2qq

pJ,Aq ÞÑ pJ, cos θAp¨q ´ sin θAp¨qJq .

It is clear from the definition that pΨθ preserves the 0-section in D3pJ pR2qq (seen as a
vector bundle over J pR2q), hence it induces an S1-action on B0pT 2q which will still be
denoted with pΨθ by abuse of notation. Before stating and proving the main result, we need
a technical lemma regarding the derivative of the norm of the Pick form.

Lemma 2.23. Let pJ,Aq P D3pJ pR2qq, then
`

||A||2J

˘1
“ 2xA, 9A0y . (2.3.1)

Proof. During the proof of this lemma we use the notation of the previous section, namely
A “ A1e

˚
1 ` A2e

˚
2 and 9A “ 9A1e

˚
1 ` 9A2e

˚
2 , with te1, e2u a g0J -orthonormal basis of R2 and

te˚
1 , e

˚
2u its dual basis, with Ai :“ Apeiq and 9Ai :“ 9Apeiq for i “ 1, 2. Recall that the

relation between the Pick form A and the Pick tensor C is A “ pg0Jq´1C, hence

A1 “
`

pg0Jq´1C
˘1

“ ´pg0Jq´1 9g0Jpg0Jq´1C ` pg0Jq´1 9C

“ J 9JA` 9A . ( 9g0Jp¨, ¨q “ ´g0Jp¨, J 9J ¨q)

In particular, pAiq
1 “ J 9JAi ` 9Ai, for each i “ 1, 2. Thus,

`

||A||2J

˘1
“ tr

´

pA1q2 ` pA2q2
¯1

“ 2 tr
´

A1
9A1 `A2

9A2

¯

` tr
´

J 9J
`

pA1q2 ` pA2q2
˘

`A1J 9JA1 `A2J 9JA2

¯

“ 2 tr
´

A1
9A1 `A2

9A2

¯

,

where in the second line we used the fact that, since both J 9JAiAi and AiJ 9JAi anticommute
with J for each i “ 1, 2, the terms tr

´

J 9JAiAi

¯

“ tr
´

AiJ 9JAi

¯

vanish for each i “ 1, 2.
Thus, we get

`

||A||2J

˘1
“ 2xA, 9Ay .



33 2.3. THE CIRCLE ACTION

Finally, by writing 9A “ 9A0 ` 9Atr where

9Atr “
1

2
tr
´

9A1

¯

1e˚
1 `

1

2
tr
´

9A2

¯

1e˚
2 ,

we obtain
xA, 9Atry “

1

2
tr
´

tr
´

9A1

¯

A1 ` tr
´

9A2

¯

A2

¯

and this last term is equal to zero since the Ai’s are trace-less endomorphisms.

Theorem E. The S1-action on B0pT 2q is Hamiltonian with respect to pωf and it satisfies

pΨ˚
θpgf “ pgf .

The Hamiltonian function is given by HpJ,Aq “
2

3
f
´

||A||2J

8

¯

.

Proof. The infinitesimal generator of the action is

XpJ,Aq “
d

dθ
ˇ

ˇ

θ“0

ΨθpJ,Aq “ p0,´AJq.

Hence,

pιX pωf qpJ,Aqp
9J, 9Aq “ ppωf qpJ,Aq

`

p 9J, 9Aq, p0, AJq
˘

“ ppgf qpJ,Aq

`

p 9J, 9Aq, Ip0, AJq
˘

“ ppgf qpJ,Aq

`

p 9J, 9Aq, p0,´AJ2q
˘

“
f 1

6
x 9A0, AyJ . (A is g0J ´ traceless)

Now we compute the differential of HpJ,Aq :“
2

3
f
`

||A||20

˘

, where ||A||20 is defined as ||A||2J

divided by 8. This is given by

dpJ,AqHp 9J, 9Aq “
f 1

12

`

||A||2J

˘1

“
f 1

6
xA, 9A0yJ . (Lemma 2.23)

Thus, the S1-action is Hamiltonian. It only remains to prove that pΨθ is an isometry for pgf .
First of all we compute the differential of the action:

dpJ,Aq
pΨθp 9J, 9Aq “

`

9J, cos θ 9Ap¨q ´ sin θp 9Ap¨qJ `Ap¨q 9Jq
˘

.
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Then, we notice that the circle action preserves the norm of the Pick form, namely || cos θA´

sin θAJ ||2J “ ||A||2J . In fact,

|| cos θA´ sin θAJ ||2J “ cos2 θ||A||2J ` sin2 θ ||AJ ||2J
loomoon

paq

´2 cos θ sin θ xA,AJyJ
loooomoooon

pbq

. (2.3.2)

The term paq is

||AJ ||2J “ trpA1JA1J `A2JA2Jq

“ trpA1A1 `A2A2q (Ai P TJJ pR2q and J2 “ ´1)

“ ||A||2J .

The term pbq is

xA,AJyJ “ trpA1A1J `A2A2Jq

but trpAiJAiq “ trpJAiAiq “ trpAiAiJq “ ´ trpAiJAiq for i “ 1, 2, hence the term pbq is
zero. In the first two equalities we used the trace symmetry and in the third one the fact
that Ai P TJJ pR2q. The circle action pΨθ preserves the pseudo-Riemannian metric pgf if
and only if the following holds

ppgf qpJ,Aq

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

“ ppgf q
pΨθpJ,Aq

`

dpJ,Aq
pΨθp 9J, 9Aq; dpJ,Aq

pΨθp 9J 1, 9A1q
˘

.

Let us define ψθ to be the second component of the differential of the circle action, namely

ψθp 9J, 9Aq :“ cos θ 9A´ sin θp 9AJ `A 9Jq.

Then, in order to conclude the proof, we need to show

(1) xψθp 9J, 9Aq0, ψθp 9J 1, 9A1q0y “ x 9A0, 9A1
0y;

(2) xψθp 9J, 9Aqtr, ψθp 9J 1, 9A1qtry “ x 9Atr, 9A1
try.

The left hand side term of p1q can be written as

cos2 θx 9A0, 9A1
0y ` sin2 θxp 9AJ `A 9Jq0, p 9A1J `A 9J 1q0y

` cos θ sin θ
`

x 9A0,´p 9A1J `A 9J 1q0y ` x´p 9AJ `A 9Jq0, 9A1
0y
˘

.

The coefficient of sin2 θ has already been computed (see proof of Theorem 2.16) and it is
equal to x 9A0, 9A1

0y. The coefficient of cos θ sin θ is equal to

tr
´

´p 9A1q0p 9A1
1q0J ´ p 9A2q0p 9A1

2q0J ´ p 9A1q0Jp 9A1
1q0 ´ p 9A2q0Jp 9A1

2q0

¯
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and it vanishes since p 9Aiq0, p 9A1
iq0 P TJJ pR2q for each i “ 1, 2.

The left hand side term of p2q can be written as

cos2 θx 9Atr, 9A1
try ` sin2 θxp 9AJ `A 9Jqtr, p 9A1J `A 9J 1qtry

` cos θ sin θ
`

x 9Atr,´p 9A1J `A 9J 1qtry ` x´p 9AJ `A 9Jqtr, 9A1
try

˘

.

The coefficient of sin2 θ has already been calculated (see proof of Theorem 2.16) and it is
equal to x 9Atr, 9A1

try. By using Lemma 2.15, the coefficient of cos θ sin θ can be written as

1

2
tr
´

´p 9A1qtr tr
´

9A1
2

¯

1 ` p 9A2qtr tr
´

9A1
1

¯

1 ´ p 9A1
1qtr tr

´

9A2

¯

1 ` p 9A1
2qtr tr

´

9A1

¯

1
¯

.

Since p 9Aiqtr “ 1
2 tr

´

9Ai

¯

1 and p 9A1
iqtr “ 1

2 tr
´

9A1
i

¯

1 for each i “ 1, 2, the first term of the
above expression cancels out with the last one and the same happens for the second and
third one. Finally, the term with cos θ sin θ vanishes and we obtain the claim.

2.4 The moment map for the SLp2,Rq-action

Now we will study the SLp2,Rq-action on B0pT 2q and its moment map. Recall that if
P P SLp2,Rq and pJ,Aq P D3pJ pR2qq, then

P ¨ pJ,Aq “ pPJP´1, PApP´1¨qP´1q .

In particular, this action preserves the 0-section in D3pJ pR2qq (seen as a vector bundle
over J pR2q), hence it induces an SLp2,Rq-action on B0pT 2q, which will be denoted by
ΦP : B0pT 2q Ñ B0pT 2q. Thanks to Lemma 2.12, it is clear that Φ˚

P pωf “ pωf , i.e. SLp2,Rq

acts by symplectomorphisms on B0pT 2q. Thus, it makes sense to ask whether the action is
Hamiltonian and, if this is the case, to find the expression of the moment map. The Lie
algebra of SLp2,Rq is given by slp2,Rq “ tX P EndpR2q | trpXq “ 0u with Lie bracket
rX,Y s “ XY ´ Y X. In particular any X P slp2,Rq can be decomposed as X “ Xa ` Xs,
where Xs is a trace-less g0J -symmetric matrix and Xa is a trace-less g0J -skew-symmetric
matrix. In particular, Xs P TJpJ pR2qq and Xa “ ´1

2 trpJXqJ , since it commutes with J .

Theorem F. The SLp2,Rq-action on B0pT 2q is Hamiltonian with respect to pωf with mo-
ment map pµ : B0pT 2q Ñ slp2,Rq˚ given by

pµpJ,AqpXq “

ˆ

1 ´ f
´

||A||2J

8

¯

˙

trpJXq (2.4.1)

for all X P slp2,Rq.
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Proof. Let X P slp2,Rq and let

VXpJ,Aq “
d

dt
petXJe´tX , pe´tXq˚Cq|t“0

be its infinitesimal generator. The first component is equal to XJ ´ JX “ rX,Js. For the
second component define Pt :“ etX , then

d

dt
CppPtq

´1¨, pPtq
´1¨, pPtq

´1¨q|t“0 “ ´CpX¨, ¨, ¨q ´ Cp¨, X¨, ¨q ´ Cp¨, ¨, X¨q .

If rCp¨, ¨, ¨q is defined as the right hand side term of the equation above, then the new Pick
form rA satisfies

g0Jp rApY qZ,W q “ rCpY, Z,W q

“ ´CpX ¨ Y,Z,W q ´ CpY,X ¨ Z,W q ´ CpY, Z,X ¨W q

“ ´g0JpApX ¨ Y qZ,W q ´ g0JpApY qX ¨ Z,W q ´ g0JpApY qZ,X ¨W q

“ ´g0JpApX ¨ Y qZ `ApY qX ¨ Z `X˚ ¨ApY qZ,W q

for all Y, Z,W P R2, where X˚ denotes the adjoint of X with respect to g0J . Hence, we have

rAp¨q “ ´ApX¨q ´AX ´X˚A .

By using the decomposition X “ Xs ` Xa in its symmetric and skew-symmetric part, we
can write the second component of VXpJ,Aq as:

´ApXa¨q ´ApXs¨q ` rXa, As
loooooooooooooooooomoooooooooooooooooon

trace-less part

´ pAXs `XsAq
looooooomooooooon

trace part

. (2.4.2)

‚ pµ is equivariant :

Let P P SLp2,Rq and X P slp2,Rq, then

pµP ¨pJ,AqpXq “

ˆ

1 ´ f

ˆ

1

8
||P ¨A||2P ¨J

˙˙

tr
`

PJP´1X
˘

“

ˆ

1 ´ f
`

||A||20

˘

˙

tr
`

JP´1XP
˘

“ pµpJ,Aq ˝ AdpP´1qpXq

“ Ad˚pP qppµpJ,AqqpXq

where in the second equality we used Lemma 2.12 and the trace symmetry.

‚ pµ satisfies property (ii) in Definition B.3:
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Let us define ||A||20 as the norm squared of A divided by 8, and let pµX : B0pT 2q Ñ R be
the map

pµXpJ,Aq “

ˆ

1 ´ f
`

||A||20

˘

˙

trpJXq ,

then

dpJ,Aqpµ
Xp 9J, 9Aq “ ´

1

8

ˆ

||A||2J

˙1

f 1
`

||A||20

˘

trpJXq `

ˆ

1 ´ f
`

||A||20

˘

˙

tr
´

9JX
¯

“ ´
1

4
xA, 9A0yf 1

`

||A||20

˘

trpJXq `

ˆ

1 ´ f
`

||A||20

˘

˙

tr
´

9JX
¯

where we used Lemma 2.23 in the second equality. Now let VX be the infinitesimal generator
of X, then

ιVX pωf p 9J, 9Aq “ pgf pVXpJ,Aq,pIp 9J, 9Aqq

“
f ´ 1

2
tr
´

rX, JsJ 9J
¯

`
f 1

6
xrXa, As ´ApX¨q, p´ 9AJ ´A 9Jq0y

´
f 1

12
xAXs `XsA, p 9AJ `A 9Jqtry ,

(2.4.3)

where we used the decomposition in (2.4.2). The first term of ιVX pωf p 9J, 9Aq is

1 ´ f

2
tr
´

9JX ` JXJ 9J
¯

“ p1 ´ fq tr
´

9JX
¯

by trace symmetry and 9JJ ` J 9J “ 0. It only remains to show that the sum of the second
and third term of (2.4.3) is equal to ´1

4f
1xA, 9A0y trpJXq. The coefficient of f 1

6 in (2.4.3)
can be written as

xApXs¨q, p 9AJ `A 9Jq0y
looooooooooooomooooooooooooon

paq

` xrXa, As ´ApXa¨q, p´ 9AJ ´A 9Jq0y
loooooooooooooooooooooomoooooooooooooooooooooon

pbq

.

Moreover, by using Lemma 2.15 the term with rXa, As in pbq becomes

1

2
trpJXq tr

´

JA1p 9A1q0J ` JA2p 9A2q0J ´A1Jp 9A1q0J ´A2Jp 9A2q0J
¯

.

Using that Ai, p 9Aiq P TJJ pR2q for each i “ 1, 2, the above term reduces to ´ trpJXqxA, 9A0y.
Notice that ´ApXa¨q “ 1

2 trpJXqAp¨qJ , since CpJ ¨, ¨, ¨q “ Cp¨, J ¨, ¨q. Hence, the term with
´ApXa¨q in pbq becomes

´
1

2
trpJXq tr

´

A1Jp 9A1q0J `A2Jp 9A2q0J
¯

“ ´
1

2
trpJXqxA, 9A0y .
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Finally, the term pbq multiplied by f 1

6 is equal to

´
1

4
f 1 trpJXqxA, 9A0y .

Hence, it only remains to show that

f 1

6
xApXs¨q, p 9AJ `A 9Jq0y
looooooooooooomooooooooooooon

paq

´
f 1

12
xAXs `XsA, p 9AJ `A 9Jqtry
looooooooooooooooomooooooooooooooooon

pcq

“ 0 . (2.4.4)

To do so, we will use a basis of slp2,Rq, namely we can write slp2,Rq “ SpanRpξ1, ξ2, ξ3u

where

ξ1 “ J0, ξ2 “

ˆ

1 0
0 ´1

˙

, ξ3 “

ˆ

0 1
1 0

˙

.

The only symmetric matrices of this basis are ξ2 and ξ3, hence it is sufficient to prove
Equation (2.4.4) whenXs “ ξ2 andXs “ ξ3, since all the elements are linear inX P slp2,Rq.
In both cases we use the description in coordinates z “ x ` iy for H2 and w “ u ` iv for
C, of the Pick form A and its variation 9A, as we did in Section 2.2.2. In particular we can
do the computation in pz, wq “ pi, wq by SLp2,Rq-invariance.

(i) Xs “ ξ2.
In this case if t B

Bx0
, B

By0
u is a gJ0-orthonormal basis of R2, then Xs ¨ B

Bx0
“ B

Bx0
and

Xs ¨ B
By0

“ ´ B
By0

, hence ApXs¨q “ A1dx0 ´A2dy0. In particular,

tr
´

A1p 9A1q0J0

¯

“ 2p´|w|2 9x´ v 9u` u 9vq

tr
´

A2p 9A2q0J0

¯

“ 2p´2|w|2 9x` u 9v ´ v 9uq .

Hence,

f 1

6
xApXs¨q, p 9AJ `A 9Jq0y “

f 1

6
tr
´

A1p 9A1q0J ´A2p 9A2q0J
¯

“
f 1

3
|w|2 9x .

On the other hand, since

tr
´

9A1

¯

“ ´2pu 9y ` v 9xq trpA1X
sq “ 2u

tr
´

9A2

¯

“ 2pu 9x´ v 9yq trpA2X
sq “ 2v,

we get

´
f 1

12
xAXs `XsA, p 9AJ `A 9Jqtry “ ´

f 1

12

ˆ

trpA1X
sq tr

´

9A2

¯

´ trpA2X
sq tr

´

9A1

¯

˙
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“ ´
f 1

3
|w|2 9x

and Equation (2.4.4) is clearly satisfied.

(ii) Xs “ ξ3.
With the same notation as in case piq we have Xs ¨ B

Bx0
“ B

By0
and Xs ¨ B

By0
“ B

Bx0
,

hence ApXs¨q “ A2dx0 `A1dy0. Using that

p 9A1q0 ` p 9A2q0J “

ˆ

´u 9y ´ v 9x u 9x´ v 9y
u 9x´ v 9y u 9y ` v 9x

˙

tr
´

A1

`

p 9A1q0 ` p 9A2q0J
˘

¯

“ ´2|w|2 9y ,

the term paq multiplied by f 1

6 is

f 1

6
xApXs¨q, p 9AJ `A 9Jq0y “

f 1

6
tr
´

A1

`

p 9A1q0 ` p 9A2q0J
˘

¯

“ ´
f 1

3
|w|2 9y .

On the other hand, since

tr
´

9A1

¯

“ ´2pu 9y ` v 9xq trpA1X
sq “ 2v

tr
´

9A2

¯

“ 2pu 9x´ v 9yq trpA2X
sq “ ´2u,

the term pcq multiplied by ´
f 1

12 is

´
f 1

12

ˆ

trpA1X
sq tr

´

9A2

¯

´ trpA2X
sq tr

´

9A1

¯

˙

“
f 1

3
|w|2 9y .

Thus, Equation (2.4.4) is proved and the theorem as well.





Chapter 3
The general case

In this chapter we state and prove the main result of the thesis, namely the existence and
the explicit expression of the pseudo-Kähler metric on the Hitchin component. Because of
the way it has been constructed, the pseudo-metric, a-priori, could be degenerate. Later
on, we show that it is non-degenerate on the Fuchsian locus, and in the last part of the
chapter, we present partial results suggesting that the same is true for points away from it.

3.1 The Weil-Petersson Kähler metric on Teichmüller space

In this section we briefly recall the definition of the group of (Hamiltonian) symplectomor-
phisms of a closed oriented surface of genus g ě 2 and their corresponding Lie algebras.
Next, we briefly describe the construction of the Weil-Petersson Kähler metric on Teich-
müller space using the theory of symplectic reduction, which inspires our construction for
Hit3pΣq.

3.1.1 The Lie algebra of the group of (Hamiltonian) symplectomorphisms

Let ρ be a fixed area form on a closed surface Σ of genus g ě 2. The group Symp0pΣ, ρq is
given by those diffeomorphisms ϕ isotopic to the identity and such that ϕ˚ρ “ ρ. Thanks
to Cartan’s magic formula:

LXρ “ ιXdρ` dpιXρq

and the fact that dρ “ 0, we obtain the following identification for the Lie algebra of
Symp0pΣ, ρq:

SpΣ, ρq “ tX P ΓpTΣq | dpιXρq “ 0u –ρ Z
1pΣq ,

where the last isomorphism is given by the identification of ΓpTΣq with the space of 1-
forms Ω1pΣq, and Z1pΣq denotes the space of closed 1-forms. A symplectomorphism ϕ is

41



CHAPTER 3. THE GENERAL CASE 42

called Hamiltonian if there is an isotopy ϕ‚ : r0, 1s Ñ Symp0pΣ, ρq, with ϕ0 “ Id and
ϕ1 “ ϕ, and a smooth family of functions Ht : Σ Ñ R such that ιXtρ “ dHt, where Xt

is the infinitesimal generator of the symplectomorphism ϕt. Let us denote by HampΣ, ρq

the group of Hamiltonian symplectomorphisms, which is a normal subgroup of SymppΣ, ρq

([MS17, §3.1]). The Lie algebra of HampΣ, ρq can be characterized as:

HpΣ, ρq “ tX P ΓpTΣq | ιXρ is exactu –ρ B
1pΣq ,

where B1pΣq is the space of exact 1-forms on Σ.

Lemma 3.1. Let ρ be a fixed area form and J be a complex structure on Σ, then any
X P ΓpTΣq has a unique decomposition

X “ V `W ` JW 1 , (3.1.1)

where W,W 1 P HpΣ, ρq and dpιV ρq “ dpιJV ρq “ 0.

Proof. Let ρ be a fixed area form on Σ and consider the induced isomorphism

ΓpTΣq
–

ÝÑ Ω1pΣq

X ÞÑ ιXρ .

For any (almost) complex structure J on Σ we get a Riemannian metric gJ :“ ρp¨, J ¨q.
Hodge theory for compact Riemannian surfaces implies the existence of a decomposition

Ω1pΣq “ d
`

C8pΣq
˘

‘ d˚
`

Ω2pΣq
˘

‘ H1pΣq ,

where d˚ is the L2-adjoint of the exterior differential and H1pΣq “ tα P Ω1pΣq | dα “ d˚α “

0u is the space of harmonic 1-forms. In particular, for any X P ΓpTΣq we have a unique
decomposition ιXρ “ df `d˚ω`α, with f P C8pΣq, ω P Ω2pΣq and α P H1pΣq. Since each
element of the decomposition is a 1-form, there must exist three vector fields V,W,ĂW such
that df “ ιWρ, d

˚ω “ ι
ĂW
ρ and α “ ιV ρ, which implies that X “ V `W ` ĂW . Now notice

that ιWρ is exact, hence W P HpΣ, ρq. Since α is harmonic we have dpιV ρq “ d˚pιV ρq “ 0,
but the term in between can be written as dpιV ρ ˝ Jq, which implies that dpιJV ρq “ 0.
Finally, in order to end the proof, we only need to show that ĂW “ JW 1 for some W 1 P

HpΣ, ρq. This follows from the fact that ι
ĂW
ρ “ d˚ω “ ˚gJ ˝d ˝ ˚gJω “ pd ˝ ˚gJωq ˝J , where

˚gJ denotes the Hodge-star operator with respect to gJ . Since d ˝ ˚gJω is an exact 1-form,
there exists a vector field W 1 P HpΣ, ρq such that ιW 1ρ ˝ J “ ι

ĂW
ρ, hence ĂW “ JW 1.

Because of the close connection with harmonic 1-forms, the vector fields V on pΣ, Jq for
which dpιV ρq “ dpιJV ρq “ 0 will be called harmonic. The space of harmonic vector fields
on Σ will be denoted with hJ and it is a Lie subalgebra of SpΣ, ρq. Moreover, there is a
splitting

SpΣ, ρq “ HpΣ, ρq ‘ hJ (3.1.2)
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as infinite-dimensional vector spaces. Let ψ P Symp0pΣ, ρq, then there exists a family of
symplectomorphisms tψtu with ψ1 “ ψ and ψ0 “ Id. Denote with Xt the vector field which
generates the isotopy, namely Btψt “ Xt ˝ ψt. Then one has a well-defined map called the
Flux homomorphism

Flux : Symp0pΣ, ρq ÝÑ H1
dRpΣ,Rq

tψtu ÞÑ

ż 1

0
rιXtρsdt

(3.1.3)

Lemma 3.2 ([MS17]). The Flux homomorphism is surjective and it induces an isomorphism

Symp0pΣ, ρq
M

HampΣ, ρq – H1
dRpΣ,Rq . (3.1.4)

We end the discussion in this section by introducing two non-degenerate pairings:

x¨|¨yS : Ω
1pΣq

M

B1pΣq ˆ Z1pΣq ÝÑ R

prαs, βq ÞÝÑ

ż

Σ
α ^ β

(3.1.5)

x¨|¨yH : Ω
1pΣq

M

Z1pΣq ˆB1pΣq ÝÑ R

prαs, βq ÞÝÑ

ż

Σ
α ^ β .

Thanks to the identifications Z1pΣq –ρ SpΣ, ρq, B1pΣq –ρ HpΣ, ρq and the isomorphism
between B2pΣq and Ω1pΣq{Z1pΣq induce by the differential d, we get

Ω1pΣq
M

B1pΣq Ă SpΣ, ρq˚, B2pΣq –d Ω1pΣq
M

Z1pΣq Ă HpΣ, ρq˚ .

Remark 3.3. Observe that, since the above pairings are defined on infinite dimensional
vector spaces V ˆ W, the notion of non-degeneracy we are referring to is the one that
sometimes in the literature is called weakly non-degenerate, namely the induced map V Ñ

W˚ is injective.

Using the standard property of the contraction operator ι with respect to the wedge
product, for any vector field V and any 1-form α on Σ, one has

ιV αρ “ α ^ ιV ρ . (3.1.6)

Moreover, if V is Hamiltonian, namely ιV ρ “ dH for some smooth function H, we get

xα,dHyH “

ż

Σ
α ^ dH “

ż

Σ
αpV qρ , (3.1.7)

where rαs P Ω1pΣq{Z1pΣq.



CHAPTER 3. THE GENERAL CASE 44

3.1.2 Teichmüller space as a symplectic reduction

Let us briefly recall the construction of J pR2q and its tangent space carrying an SLp2,Rq-
invariant Kähler structure (Section 2.2.1 and 2.2.2).

Let ρ0 :“ dx^ dy be the standard area form on R2 and consider the space

J pR2q :“ tJ P EndpR2q | J2 “ ´1, ρ0pv, Jvq ą 0 for some v P R2zt0uu .

Such a space is a 2-dimensional manifold and it is easy to see that @J P J pR2q, the tensor
g0Jp¨, ¨q :“ ρ0p¨, J ¨q is a scalar product on R2, with respect to which J is an orthogonal
endomorphism. The tangent space TJJ pR2q can be identified with the set of trace-less and
g0J -symmetric endomorphisms of R2. It carries a natural (almost) complex structure given
by

pI : TJJ pR2q Ñ TJJ pR2q

9J ÞÑ ´J 9J

Moreover, there is a natural scalar product defined on each tangent space

x 9J, 9J 1yJ :“
1

2
tr
´

9J 9J 1
¯

,

for every 9J, 9J 1 P J pR2q. The group SLp2,Rq acts by conjugation on J pR2q: for P P SLp2,Rq

and J P J pR2q one defines P ¨ J :“ PJP´1. The same formula can be used to define the
SLp2,Rq-action on TJJ pR2q as well.

Lemma 3.4. The pairing given by

pΩJp 9J, 9Jq :“ ´
1

2
tr
´

9JJ 9J 1
¯

defines a symplectic form on J pR2q, compatible with pI and x¨, ¨yJ . In particular, the triple
px¨, ¨yJ , pI, pΩJq is an SLp2,Rq-invariant Kähler structure on J pR2q.

Now let P be the SLp2,Rq frame bundle over pΣ, ρq, namely the fibre over a point
x P Σ is given by those linear maps F : R2 Ñ TxΣ such that F ˚ρx “ ρ0. The frame
bundle P inherits the structure of an SLp2,Rq-principal bundle with the following action:
B ¨ px, F q :“ px, F ˝B´1q, for B P SLp2,Rq. Notice that any symplectomorphism ψ of pΣ, ρq

naturally lifts to a diffeomorphism ψ̂ of the total space P , by setting

ψ̂px, F q :“ pψpxq, dxψ ˝ F q P P ,

for every px, F q P P . Let us define the bundle

P
`

J pR2q
˘

:“ P ˆ J pR2q
M

SLp2,Rq ,
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where SLp2,Rq acts diagonally on the two factors. Notice that a section of P
`

J pR2q
˘

induces an almost complex structure J on Σ which is compatible with ρ, i.e. gJp¨, ¨q :“
ρp¨, J ¨q defines a Riemannian metric on Σ. The induced almost complex structure on Σ
is fibre-wise defined on TxΣ as: Fx ˝ Jx ˝ F´1

x . It is easy to see that the section J is
well-defined as if two pairs

`

px, F q, Jx
˘

and
`

px, F 1, J 1
xq
˘

differ by the diagonal action of
SLp2,Rq, then they induce the same almost complex structure on TxΣ. According to the
above construction, let us introduce the space of almost complex structures on Σ:

J pΣq :“ Γ
`

Σ, P
`

J pR2q
˘˘

.

Given any J P J pΣq, a tangent vector 9J P TJJ pΣq identifies with a section of the pull-back
vector bundle J˚

`

T vertP
`

J pR2q
˘˘

Ñ Σ, where T vertP
`

J pR2q
˘

stands for the vertical sub-
bundle of TP

`

J pR2q
˘

with respect to the projection π : P
`

J pR2q
˘

Ñ Σ. Equivalently, 9J

is a section of EndpTΣq that satisfies 9JJ ` J 9J “ 0. One can formally define a symplectic
form on the infinite-dimensional manifold J pΣq by integrating fibre-wise that on J pR2q.
In other words,

ΩJp 9J, 9J 1q :“ ´
1

2

ż

Σ
tr
´

9JJ 9J 1
¯

ρ . (3.1.8)

Furthermore, one obtains a complex structure I on J pΣq, by applying point-wise pI which
is defined on J pR2q. At this point, the main goal is to explain that such a symplectic form
and complex structure can be induced from the ambient J pΣq to Teichmüller space, using
the theory of symplectic reduction. In the end, one succeeds in doing more, namely, ΩJ
and I will be part of a Kähler metric on T cpΣq which turns out to be a multiple of the
Weil-Petersson metric. The first result in this direction was provided by Donaldson:

Theorem 3.5 ([Don03],[Tra18]). Let c :“ 2πχpΣq

VolpΣ,ρq
, then the function

µ : J pΣq ÝÑ HpΣ, ρq˚

J ÞÝÑ ´2pKJ ´ cqρ
(3.1.9)

is a moment map for the action of HampΣ, ρq on pJ pΣq,Ωq, where KJ P C8pΣq is the
Gaussian curvature of gJ .

Observe that, by the Gauss-Bonnet Theorem, the 2-form ´2pKJ´cqρ is exact, according
to the inclusion B2pΣq Ă HpΣ, ρq˚ introduced in Section 3.1.1. Because of property (i) in
Definition (B.3), the subset µ´1p0q Ă J pΣq is preserved by the action of HampΣ, ρq. In
particular, any variation 9J “ LXJ , with X an Hamiltonian vector field and J P J pΣq, lies
inside KerdJµ, which is identified with TJµ´1p0q. In other words, the tangent space to the
HampΣ, ρq-orbit is entirely contained in the Kernel of dJµ, for any J P J pΣq. Furthermore,
by property (ii) in Definition B.3, for any J P µ´1p0q the space KerpdJµq is identified with
the ΩJ -orthogonal to TJ

`

HampΣ, ρq ¨J
˘

, namely the tangent space to the HampΣ, ρq-orbit.
By using a geometric characterization of the elements in the ΩJ -orthogonal to the orbit
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([Don03]) one can induce a symplectic form on the quotient rT pΣq :“ µ´1p0q{HampΣ, ρq.
However, the space rT pΣq is not isomorphic to Teichmüller space of the surface as it is a
manifold of real dimension 6g ´ 6 ` 2g. The further quotient of the space rT pΣq by the
group

H :“ Symp0pΣ, ρq
M

HampΣ, ρq – H1
dRpΣ,Rq , (see Lemma 3.2)

can be identified with T cpΣq (see [Don03, §2.2]). The H-orbits in rT pΣq are complex and
symplectic submanifolds (see [Don03, §2.2] and [Tra18, Lemma 4.4.8]), hence one gets an
induced symplectic form on T cpΣq given by:

ΩrJspr 9Js, r 9J 1sq “ ΩJp 9Jh, 9J 1
hq ,

where the vectors 9Jh, 9J 1
h P KerpdJµq are lifts of 9J, 9J 1 that are ΩJ -orthogonal to the Symp0pΣ, ρq-

orbit. If one further re-normalizes the lift 9Jh so that it is L2-orthogonal to the tangent space
to the orbit, one recovers the classical description of the tangent space to Teichmüller space
as the space of traceless Codazzi tensors ([Tro12]). In that case, the formula of Weil-
Petersson metric is also recovered by choosing an area form ρ with VolpΣ, ρq “ ´2πχpΣq,
which means c “ ´1 in Theorem 3.5.

Proposition 3.6 ([BMS15, §2.1]). Let 9J, 9J 1 be elements in TrJsT cpΣq, then the Weil-
Petersson symplectic form and metric are respectively given by:

`

ΩWP
˘

rJs
p 9J, 9J 1q “ ´

1

8

ż

Σ
tr
´

9JJ 9J 1
¯

dV,
`

GWP
˘

rJs
p 9J, 9J 1q “

1

8

ż

Σ
tr
´

9J 9J 1
¯

dV , (3.1.10)

where dV is the area form of the unique hyperbolic metric with conformal structure J .

Remark 3.7. One of the key facts of this construction is that any choice of a supplement
V of TJ

`

Symp0pΣ, ρq ¨ J
˘

inside the Kernel of dµ and ΩJ -orthogonal to TJ
`

Symp0pΣ, ρq ¨

J
˘

, provides a well-defined model for the tangent space to T cpΣq, such that pV,ΩJ |V q is
symplectomorphic to pTrJsT cpΣq, 4ΩWPq.

3.1.3 A formula for the differential of the curvature

Here we briefly explain how to derive a formula for the first variation of the curvature KJ ,
using the theory introduced in the previous section. That expression will be useful later,
when we explain how the pseudo-metric is induced on the Hitchin component by a sym-
plectic reduction argument. We will follow closely the approach in [MST21, §4.2].

Given any B P EndpTΣq and given a Riemannian metric g on Σ, we define the divergence
of the endomorphism B as the 1-form:

pdivgBqpXq :“
ÿ

i

g
`

p∇g
eiBqX, ei

˘

, (3.1.11)
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where peiqi is a g-orthonormal frame of TΣ, ∇g is the Levi-Civita connection with respect
to g and X is a smooth vector field on the surface. We will denote, likewise, the divergence
of a vector field V by divgV . Moreover, whenever there is a fixed almost complex structure
J on the surface, the divergence will be taken with respect to gJ “ ρp¨, J ¨q ” g. Given that
J is ∇g-parallel, namely p∇g

XJqY “ 0 for all X,Y P ΓpTΣq, one can deduce the following
useful formula:

divgpJBq “ ´pdivgBq ˝ J (3.1.12)

for any trace-less and g-symmetric endomorphism B. Another relation we will be using
later is the following:

divgpXq “ dpιXρqpv, Jvq (3.1.13)

for any unit vector v.

Lemma 3.8 ([MST21]). Let X be a vector field on Σ, then

1

2
tr

ˆ

9JJLXJ
˙

“ pdivg 9JqpXq ´ divgpJXq , (3.1.14)

where
`

LXJ
˘

pY q :“ rX, JY s ´ JprX,Y sq for any Y P ΓpTΣq.

Proof. First notice that

pdivg 9JqpXq “
ÿ

i

g
`

p∇g
ei

9JqX, ei
˘

“
ÿ

i

g
`

∇g
eip

9JV q ´ 9J∇g
eiV, ei

˘

“ divgp 9JV q ´
ÿ

i

g
`

9J∇g
eiV, ei

˘

“ divgp 9JV q ´ tr
´

9JMV

¯

,

where MV stands for the endomorphism MVX :“ ∇g
XV . The Lie derivative LXJ can be

expressed as JMV ´MV J (proof of Lemma 3.26), hence we have

tr
´

9JMV

¯

“ ´ tr
´

9JJJMV

¯

(J2 “ ´1)

“ ´
1

2

´

tr
´

9JJJMV

¯

´ tr
´

J 9JJMV

¯¯

( 9J P TJJ pΣq)

“ ´
1

2

´

tr
´

9JJJMV

¯

´ tr
´

9JJMV J
¯¯

“ ´
1

2
tr

ˆ

9JJLXJ
˙

,

and relation (3.1.14) follows.



CHAPTER 3. THE GENERAL CASE 48

Proposition 3.9 ([MST21]). Let J be any almost complex structure on Σ and ρ a fixed
area form, then

dKJp 9Jqρ “
1

2
d
`

divg 9J
˘

,

where KJ is the Gaussian curvature of gJ ” g.

Proof. For any Hamiltonian vector field V , with Hamiltonian function H, we have

Ωp 9J,LV Jq “ ´
1

2

ż

Σ
tr
´

9JJLV J
¯

ρ

“ ´

ż

Σ

´1

2
tr
´

9JJLV J
¯

` divgp 9JV q

¯

ρ

“ ´

ż

Σ
pdivg 9JqpV qρ (relation p3.1.14q)

“ ´

ż

Σ
pdivg 9Jq ^ ιV ρ

“ ´

ż

Σ
pdivg 9Jq ^ dHρ .

According to Theorem 3.5, the map µ satisfies

xdµp 9Jq | V yH “ ´2

ż

Σ
HdKJp 9Jqρ .

On the other hand, µ being a moment map for the action of HampΣ, ρq, we get

xdµp 9Jq | V yH “ ΩJp 9J,LV Jq

“ ´

ż

Σ
pdivg 9Jq ^ dH

“ ´

ż

Σ
Hd

´

divg 9J
¯

,

again for any Hamiltonian vector field V , with Hamiltonian function H. Combining the
relations above, we find that

´2

ż

Σ
HdKJp 9Jqρ “ ´

ż

Σ
Hd

´

divg 9J
¯

,

and by letting the Hamiltonian function vary, we obtain the desired formula.

3.2 The pseudo-Kähler metric on the Hitchin component

This is the core part of the thesis, where the main result will be proved (Section 3.2.3). In
particular, after defining an infinite-dimensional space D3pJ pΣqq starting from a general
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construction of Donaldson (Section 3.2.1), we want to realize the Hitchin component as a
subset of D3pJ pΣqq. This is done in Section 3.2.2 by using a "special" conformal change of
metric on the surface and a standard application of Moser’s trick in symplectic geometry.
Then, we look for a specific distribution inside the tangent to a set ĄHS0pΣ, ρq sitting inside
D3pJ pΣqq. Each vector space WpJ,Aq of this distribution is defined as the space of solutions
to a system of PDEs. After studying in detail the above system of equations (Section 3.2.4),
we show that the distribution tWpJ,AqupJ,Aq is integrable, with integral manifold (up to a
further finite dimensional decomposition) the PSLp3,Rq-Hitchin component (Section 3.2.5).
Finally, in Section 3.2.6 we generalize the result on the circle action in the case where the
surface is of genus g ě 2.

3.2.1 Construction of D3pJ pΣqq

Here we use the notations introduced in Section 3.1.2. Recall that J pR2q is the space of
(almost) complex structures on R2 compatible with the standard orientation. We introduced
a real vector bundle over J pR2q defined as

D3pJ pR2qq :“ tpJ,Cq P J pR2q ˆ S3pR2q | CpJ ¨, J ¨, J ¨q “ ´CpJ ¨, ¨, ¨qu , (3.2.1)

where S3pR2q is the space of totally symmetric p0, 3q-tensors. Any pair pJ,Cq P D3pJ pR2qq

defines a unique pair pJ, qq, where q is a J-holomorphic cubic differential on R2. In partic-
ular, there is a SLp2,Rq-equivariant isomorphism between D3pJ pR2qq and the holomorphic
vector bundle of cubic differentialsQ3

`

T pT 2q
˘

over Teichmüller space of the torus (Corollary
2.4). For any choice of a smooth function f : r0,`8q Ñ p´8, 0s with fp0q “ 0, f 1ptq ă 0
for any t ą 0, and limtÑ`8 fptq “ ´8 we showed the existence of a SLp2,Rq-invariant
pseudo-Kähler metric ppgf ,pI, pωf q on D3pJ pR2qq, which restricts to a MCGpT 2q-invariant
pseudo-Kähler structure on B0pT 2q (Theorem 2.16 and D).

Now let Σ be a closed smooth surface of genus g ě 2. The next step is to perform a construc-
tion similar to that done for J pΣq in Section 3.1.2, so as to obtain an infinite-dimensional
space, associated with Σ, and endowed with a (formal) pseudo-Kähler structure. Let P be
the SLp2,Rq-frame bundle over pΣ, ρq introduced in Section 3.1.2 and consider the bundle

P
`

D3pJ pR2qq
˘

:“ P ˆD3pJ pR2qq
M

SLp2,Rq ,

where SLp2,Rq acts diagonally on the two factors. The fibre of P
`

D3pJ pR2qq
˘

over a point
x P Σ identifies with D3

`

J pTxΣq
˘

, namely the space of pairs pJx, Axq where Jx is an almost
complex structure on TxΣ compatible with ρx, and Ax is an End0pTxΣ, pgJxqxq-valued 1-
form such that AxpJx¨q “ Axp¨qJx and AxpXqY “ AxpY qX, @X,Y P ΓpTxΣq. Since
the pseudo-Kähler metric on D3pJ pR2qq is SLp2,Rq-invariant, each fibre D3

`

J pTxΣq
˘

is
naturally endowed with a pseudo-Kähler structure, still denoted with pppgf qx,pIx, ppωf qxq,
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obtained by identifying TxΣ with R2 using an area-preserving isomorphism Fx : TxΣ Ñ R2.
The space of smooth sections

D3pJ pΣqq :“ Γ
`

Σ, P pD3pJ pR2qqq
˘

is identified with the set of pairs pJ,Aq, where J is a complex structure on Σ, and A is
an End0pTΣ, gJq-valued 1-form such that ApJ ¨q “ Ap¨qJ and ApXqY “ ApY qX, @X,Y P

ΓpTΣq. Moreover, there is an identification between the tangent space to D3pJ pΣqq at
pJ,Aq and the space of sections of the vector bundle pJ,Aq˚

`

T vertP
`

D3pJ pR2qq
˘˘

Ñ Σ,
where T vertP

`

D3pJ pR2qq
˘

stands for the vertical sub-bundle of TP
`

D3pJ pR2qq
˘

with re-
spect to the projection map P

`

D3pJ pR2qq
˘

Ñ Σ. We can consider tangent vectors p 9J, 9Aq

at pJ,Aq as the data of (see Lemma 2.10):

• a section 9J of EndpTΣq such that 9JJ ` J 9J “ 0, namely 9J is a gJ -symmetric and
trace-less endomorphism of TΣ;

• an EndpTΣ, gJq-valued 1-form 9A such that

9A “
9̃A0 ` T pJ,A, 9Jq `

1

2
tr
´

JA 9J
¯

1
loooooooooooooooomoooooooooooooooon

completely determined by 9J

, (3.2.2)

where 1 is the 2ˆ 2 identity matrix and 9A0 “
9̃A0 `T pJ,A, 9Jq is the trace-less part of

9A. Moreover, the trace-part 9Atr and the tensor 9A0 ´
9̃A0 is uniquely determined by 9J .

If te1, e2u denotes a local gJ -orthonomal frame of TΣ and te˚
1 , e

˚
2u is the dual frame,

then T pJ,A, 9Jq “ A1J 9JEe˚
1 ` 2A2J 9JEe˚

2 with E “ diagp1,´1q.

The infinite-dimensional space D3pJ pΣqq inherits a (formal) family of pseudo-Kähler struc-
tures, where the symplectic form is defined as

pωf qpJ,Aq

`

p 9J, 9Aq, p 9J 1, 9A1q
˘

:“

ż

Σ

pωf
`

p 9J, 9Aq, p 9J 1, 9A1q
˘

ρ (3.2.3)

and the pseudo-Riemannian metric is given by

pgf qpJ,Aq

`

p 9J, 9Aq, p 9J 1, 9A1q
˘

:“

ż

Σ

pgf
`

p 9J, 9Aq, p 9J 1, 9A1q
˘

ρ , (3.2.4)

where pωf and pgf denote, respectively, the symplectic form and pseudo-Riemannian metric
induced on the pull-back of the vertical sub-bundle inside TP

`

D3pJ pR2qq
˘

as described
above. Likewise we get a linear endomorphism

IpJ,Aq : TpJ,AqD
3pJ pΣqq Ñ TpJ,AqD

3pJ pΣqq

obtained by applying pointwisely the endomorphismpI to a smooth section p 9J, 9Aq (see [Koi90,
§2]).
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Remark 3.10. It is important to point out that the definition of each element of the
pseudo-Kähler structure on D3pJ pΣqq is identical to that given in (2.2.10), (2.2.11) and
(2.2.12), the only change is that now the elements J,A, gJ , 9J, 9A are all tensors and f

`

||A||20

˘

is a smooth function on Σ. Because of this similarity, in the remainder of the discussion
we will make use of some relations proved in the previous work [RT21] and which we will
recall when necessary. The general idea to keep in mind is that the identities for elements
in D3pJ pR2qq can be interpreted as point-wise identities at the level of smooth sections
inside D3pJ pΣqq. In both our setting and anti-de Sitter one the definition of the infinite-
dimensional space follows the lines of a much more general construction given by Donaldson
([Don03, §2.1]), and for this reason the same phenomenon described above happens in either
situation ([MST21, Remark 4.9]).

3.2.2 A conformal change of metric

The next step now is to introduce a conformal change of metrics on the surface that allows
us to find an equivalent description of HSpΣq – Hit3pΣq which will be crucial for the
symplectic reduction. In order to do this, we need to fix an area form ρ on the surface.
Then, using the so-called Moser’s trick in symplectic geometry we will obtain a different
model of Hit3pΣq as the quotient of an infinite dimensional space by Symp0pΣ, ρq.
First, we introduce the function that will allow us to make the conformal change of metric.

Lemma 3.11. There exists a unique smooth function F : r0,`8q Ñ R such that

ce´F ptq ´ 2te´3F ptq ` 1 “ 0, F p0q “ log |c|, (3.2.5)

where c :“ 2πχpΣq

VolpΣ,ρq
is a strictly negative constant depending only on the topology and the

area of the surface. Moreover, if the function f : r0,`8q Ñ p´8, 0s is defined as

fptq :“ ´

˜

ż t

0
F 1psqs´ 1

3ds

¸

t
1
3 (3.2.6)

then it is smooth and it satisfies the following properties:

(1) fp0q “ 0;

(2) f 1ptq ă 0 for all t ą 0;

(3) lim
tÑ`8

fptq “ ´8 .

Proof. The existence and uniqueness of the smooth function F follows from a standard
application of the implicit function theorem to Gpt, yq :“ ce´y ´ 2te´3y ` 1. In particular,
G
`

0, F p0q
˘

“ 0 implies that F p0q “ log |c|. Using the formulae for the derivative of the
function y “ F ptq in terms of the derivatives of Gpt, yq, we obtain that:

F 1ptq ą 0 @t ě 0, F 2ptq ă 0 @t ě 0, lim
tÑ`8

F ptq “ `8 .
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From the definition it is clear that f is smooth, fp0q “ 0 and it only attains non-positive
values. The fundamental theorem of calculus implies that

f 1ptq “ ´

´

F 1ptq `
t´

2
3

3

ż t

0
F 1psqs´ 1

3ds
¯

,

hence f 1ptq ă 0 for all t ą 0. The behavior of f at infinity can be obtained by using the
explicit expression

F ptq “ ln

¨

˚

˚

˝

p4tq
1
3

3

c

1 `

b

1 `
ζ
t `

3

c

1 ´

b

1 `
ζ
t

˛

‹

‹

‚

, t ‰ 0

that can be derived from the functional equation in the statement, which is a cubic equation
in e´F ptq, and where ζ “ 2

27 |c|.

Lemma 3.12. Let f : r0,`8q Ñ p´8, 0s and F : r0,`8q Ñ R be the functions defined
above. Then,

(1) f 1ptq “ ´F 1ptq `
fptq

3t
, for all t ą 0;

(2) 1 ´ fptq ` 3tf 1ptq ą 0, for all t ě 0;

(3) f 1ptq is monotonically increasing for any t ą 0.

Proof. The first identity can be obtained by computing the derivative of the function fptq.
In fact,

f 1ptq “ ´

´

F 1ptq `
t´

2
3

3

ż t

0
F 1psqs´ 1

3ds
¯

“ ´F 1ptq `
fptq

3t
, @t ą 0 (3.2.7)

Regarding the second identity, we need to use the explicit expression of F ptq found in the
proof of Lemma 3.11. Hence, for any t ą 0, we have

F ptq “ ln

ˆ

p4tq
1
3

gptq

˙

, gptq :“
3

d

1 `

c

1 `
ζ

t
`

3

d

1 ´

c

1 `
ζ

t
, ζ “

2

27
|c| .

This implies,

F 1ptq “
1

3t
´
g1ptq

gptq
.

In the end, combining p1q with the explicit expression for F 1ptq, we get

1 ´ fptq ` 3tf 1ptq “ 1 ´ fptq ` 3t
´

´ F 1ptq `
fptq

3t

¯
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“ 1 ´ fptq ` 3t
´

´
1

3t
`
g1ptq

gptq
`
fptq

3t

¯

“ 3t
g1ptq

gptq
.

By using the classical theory of the study of a real function of one variable, we deduce that
gptq is strictly positive and monotonically increasing for every t ą 0. Moreover, at t “ 0,
we have 1 ´ fp0q ` 3 ¨ 0 ¨ f 1p0q “ 1 ą 0.
Using equation p1q in the statement, we have

f2ptq “ ´F 2ptq `
1

3t2
`

f 1ptqt´ fptq
˘

. (3.2.8)

Using the definition of fptq, the new function Gptq :“ f 1ptqt
2
3 ´ fptqt´

1
3 is equal to zero

when t “ 0 and its derivative is given by

G1ptq “
`

f 1ptqt
2
3 ´ fptqt´

1
3

˘1

“

´

´ t
2
3F 1ptq ´

2

3
fptqt´

1
3

¯1

(Equation (3.2.7))

“ ´F 2ptqt
2
3 ´

2

3
F 1ptqt´

1
3 ´

2

3
f 1ptqt´

1
3 `

2

9
fptqt´

4
3 (Equation (3.2.7))

“ ´F 2ptqt
2
3 ą 0, @t ą 0 .

This implies that Gptq ě 0 for any t ě 0, hence, by using (3.2.8), f 1ptq is monotonically
increasing for any t ą 0.

Recall that, in general, given a (0,3)-tensor C and a Riemannian metric g on Σ, one
can define A :“ g´1C to be the associated (1,2)-tensor, namely a 1-form with values in
EndpTΣq. Suppose also that C is totally symmetric, then according to Theorem 1.11 the
tensor C is the real part of a cubic differential if and only if the endomorphism part of A
is trace-less. Let us introduce the following space:

HS0pΣq :“

$

’

&

’

%

pg, Cq

ˇ

ˇ

ˇ

ˇ

ˇ

g is a Riemannian metric on Σ
C is the real part of a g-cubic differential
`

h :“ eF
`

||q||2g
2

˘

g,A :“ g´1C
˘

satisfy (HS)

,

/

.

/

-

M

Diff0pΣq

Notice that the map sending the pair pg, Cq to ph,Aq, where h “ eF
`

||q||2g
2

˘

g and A “

g´1C, induces a MCGpΣq-equivariant map from HS0pΣq to HSpΣq. There exists an inverse
map constructed by sending the pair ph,Aq satisfying (HS) to the pair pg, Cq where g “

e´F
`

||q||2g
2

˘

h and C :“ gA. Since all the process is invariant by the action of DiffpΣq, we get
the following:
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Lemma 3.13. The correspondence described above induces a MCGpΣq-equivariant isomor-
phism between HS0pΣq and HSpΣq.

Let ρ be the area form fixed at the beginning of the discussion, then for any (almost)
complex structure J the pairing gJ :“ ρp¨, J ¨q defines a Riemannian metric on the surface.
Let us introduce the space

HS0pΣ, ρq :“

$

’

&

’

%

pJ,Cq

ˇ

ˇ

ˇ

ˇ

ˇ

J is an (almost) complex structure on Σ
C is the real part of a J-cubic differential
`

h :“ eF
` ||q||2gJ

2

˘

gJ , A :“ g´1
J C

˘

satisfy (HS)

,

/

.

/

-

M

Symp0pΣq

Proposition 3.14. The map sending the pair pJ,Cq to ph “ eF
` ||q||2gJ

2

˘

gJ , A “ g´1
J Cq

induces a MCGpΣq-equivariant homeomorphism between HS0pΣ, ρq and HSpΣq.

Proof. The proof is based on the so-called Moser’s trick in symplectic geometry. Since this
argument is standard in contexts similar to ours, we will only give an idea of how it is
applied (for more details see [Hod05, §3.2.3]). Moser’s stability theorem ([MS17, Theorem
3.2.4]) claims that given a family of cohomologous symplectic forms ωt on a closed manifold,
there exists a family of diffeomorphisms ϕt such that ϕ0 “ Id and ϕ˚

t ωt “ ω0. For a closed
surface Σ of genus g ě 2, given two area forms ρ, ρ1 of the same total area, one can apply
Moser’s stability theorem to the family ρt :“ p1 ´ tqρ ` tρ1 and deduce that there exists
ϕ P Diff0pΣq such that ϕ˚ρ1 “ ρ. In particular, for any Diff0pΣq-equivalence class rg, Cs

in HSpΣq, there exists a representative of the form pgJ , Cq. Finally, if one has a family
of diffeomorphisms ψt with ψ0 “ Id and ψ˚

1ρ “ ρ, by applying Moser’s stability again to
ρt :“ ψ˚

t ρ one can deform ψt to a family of symplectomorphisms ϕt such that ϕ0 “ Id and
ϕ1 “ ψ1. Combining it all together, it has been shown that

Symp0pΣ, ρq “ Diff0pΣq X SymppΣ, ρq .

3.2.3 Proof of Theorem A

The aim of this section is to summarize the strategy of the proof of the main result. We will
present preliminary results, proved later in the thesis, which will allow us to give a quite
immediate proof of the main theorem. The same approach was used in [MST21, §4.4] with
the appropriate differences.

Recall that HS0pΣ, ρq is the quotient of the infinite-dimensional space

ĄHS0pΣ, ρq :“

$

’

&

’

%

pJ,Cq

ˇ

ˇ

ˇ

ˇ

ˇ

J is an (almost) complex structure on Σ
C is the real part of a J-cubic differential
`

h :“ eF
` ||q||2gJ

2

˘

gJ , A :“ g´1
J C

˘

satisfy (HS)

,

/

.

/

-
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by the action of Symp0pΣ, ρq, where F is the smooth function defined in Lemma 3.11. The
main idea is to define an HampΣ, ρq-invariant distribution tWpJ,AqupJ,Aq inside TĄHS0pΣ, ρq,
whose integral manifold rBpΣq is the finite-dimensional quotient ĄHS0pΣ, ρq{HampΣ, ρq. Be-
cause of the very specific choice of the subspaces WpJ,Aq, the further finite-dimensional
quotient rBpΣq{H, with H :“ SymppΣ, ρq{HampΣ, ρq, is isomorphic to Hit3pΣq.

Definition 3.15. Given pJ,Aq P ĄHS0pΣ, ρq, defineWpJ,Aq to be the subspace of TpJ,AqD
3pJ pΣqq

formed by those elements p 9J, 9Aq satisfying the following system of equations:

$

’

&

’

%

d
`

div
`

pf ´ 1q 9J
˘

` d 9f ˝ J ´
f 1

6 β
˘

“ 0

d
`

div
`

pf ´ 1q 9J
˘

˝ J ` d 9f0 ˝ J ´
f 1

6 β ˝ J
˘

“ 0

d∇ 9A0p‚, ‚q ´ Jpdiv 9J ^Aqp‚, ‚q “ 0

(3.2.9)

where βp‚q :“ xp∇‚AqJ, 9A0y is a 1-form, 9f0 “ ´
f 1

4 xA, 9A0Jy is a smooth function on Σ and f
is the function given by (3.2.6). Moreover, all the expressions for f, f 1 and 9f are evaluated
at ||A||20 “

||A||2J
8 .

Remark 3.16. The third equation in the above system can be re-written as d∇ 9A0p‚, ‚qJ “

pdivg 9J ^Aqp‚, ‚q, which is equivalent to the following:

d∇ 9A0p‚, J‚q “ divg 9Jp‚qApJ‚q ´ divg 9JpJ‚qAp‚q . (3.2.10)

In fact, by C8pΣq-linearity, it is sufficient to perform the computation on a pair tX, JXu,
for X P ΓpTΣq. Therefore, we have

d∇ 9A0pX, JXqJ “ pdivg 9J ^AqpX,JXq

“ pdivg 9JqpXq ¨ApJXq ´ pdivg 9JqpJXq ¨ApXq

which is exactly the right-hand side of (3.2.10) computed on X (as an End0pTΣ, gq-valued
1-form). This new form of the equation will be crucial to some key steps in our argument.

Theorem H. Let pJ,Aq be a point in ĄHS0pΣ, ρq, then

dimWpJ,Aq ě 16g ´ 16 ` 2g .

The latter result will be a consequence of a detailed study of the system of equations
defining WpJ,Aq. The difficult part lies in computing the principal symbols of the matrix
operator associated with the three equations in (3.2.9). It is then possible to conclude,
using standard results from the theory of elliptic operators on compact manifolds.
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Theorem J. For every element pJ,Aq P ĄHS0pΣ, ρq, the vector space WpJ,Aq is contained
inside TpJ,Aq

ĄHS0pΣ, ρq and it is invariant by the complex structure I. Moreover, the collec-
tion tWpJ,AqupJ,Aq defines a HampΣ, ρq-invariant distribution on ĄHS0pΣ, ρq and the natural
projection π : ĄHS0pΣ, ρq Ñ rBpΣq induces a linear isomorphism

dpJ,Aqπ :WpJ,Aq ÝÑ TrJ,As
rBpΣq

Combining together Theorem H and Theorem J, we observe that the integral manifold
rBpΣq has dimension equal to 16g ´ 16 ` 2g and, for this reason, cannot be isomorphic to
the PSLp3,Rq-Hitchin component. In fact, it is necessary to perform an additional (finite-
dimensional) quotient of rBpΣq by the group H :“ Symp0pΣ, ρq{HampΣ, ρq isomorphic to
H1

dRpΣ,Rq (see Lemma 3.2).

Theorem K. The H-action on rBpΣq is free and proper, with complex and symplectic H-
orbits. Moreover, the pseudo-Kähler structure pgf , I,ωf q descend to the quotient which is
identified with Hit3pΣq. Finally, the complex structure I induced on the PSLp3,Rq-Hitchin
component coincides with the one found by Labourie and Loftin.

Remark 3.17. The tangent space to the integral manifold rBpΣq, i.e. the subspace WpJ,Aq,
decomposes as a direct sum VpJ,Aq ‘SpJ,Aq, where VpJ,Aq is the tangent space to the Hitchin
component and SpJ,Aq :“ t

`

LXJ, g´1
J LXC

˘

| X P ΓpTΣq, dpιXρq “ dpιJXρq “ 0u, namely
the tangent space to the harmonic orbit (see Section 3.1.1). Using the definition of WpJ,Aq

in terms of the system of equations (3.2.9), we get a similar description of the tangent
space to the Hitchin component. In particular, VpJ,Aq can be characterized as the subspace
of WpJ,Aq (see Section 3.4.1) defined by the following system:

$

’

&

’

%

div
`

pf ´ 1q 9J
˘

` d 9f ˝ J ´
f 1

6 β “ dγ1

div
`

pf ´ 1q 9J
˘

˝ J ` d 9f0 ˝ J ´
f 1

6 β ˝ J “ dγ2

d∇ 9A0p‚, ‚q ´ Jpdiv 9J ^Aqp‚, ‚q “ 0

(3.2.11)

for some γ1, γ2 P C8pΣq. In a more concise form:

VpJ,Aq “

"

p 9J, 9Aq P TpJ,Aq
ĄHS0pΣ, ρq

ˇ

ˇ

ˇ

ˇ

α1 ` iα2 is exact
d∇ 9A0p‚, ‚q´Jpdiv 9J^Aqp‚, ‚q “ 0

*

(3.2.12)

where α1 and α2 are the 1-forms in (3.2.11) defined by the LHS of the first two equations.

At this point, we have all the ingredients to present a concise proof of the main result
of the thesis.

Theorem A. Let Σ be a closed oriented surface of genus g ě 2. Then, there exists a neigh-
borhood NFpΣq of the Fuchsian locus in Hit3pΣq, which admits a mapping class group in-
variant pseudo-Kähler metric pgf , I,ωf q. Moreover, the Fuchsian locus embeds as a totally
geodesic submanifold and the triple pgf , I,ωf q restricts to a (multiple of) the Weil-Petersson
Kähler metric of Teichmüller space.
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Proof. The tangent space TrJ,As
rBpΣq can be identified with WpJ,Aq (Theorem J), hence

we can define a complex structure I, and a pseudo-Riemannian metric gf by restriction
from the infinite-dimensional space D3pJ pΣqq. This definition does not depend on the
representative in the HampΣ, ρq-orbit by the invariance statement in Theorem J and the
SymppΣ, ρq-invariance of I and gf . It is immediate that I is still compatible with gf and
that the pairing gf p¨, I¨q coincides with the 2-form ωf restricted to WpJ,Aq. Moreover,
Theorem K allows us to induce the triple pgf , I,ωf q on the quotient rBpΣq{H – Hit3pΣq, in
such a way that the induced complex structure is equivalent to the one found by Labourie
and Loftin. Thanks to the SymppΣ, ρq-invariance of gf and I, it follows that the induced
structure on Hit3pΣq is invariant under the action of the mapping class group, since it is
isomorphic to SymppΣ, ρq{Symp0pΣ, ρq.
Notice that the Fuchsian locus FpΣq (see Section 1.1 and 1.3) inside Hit3pΣq – HSpΣq

corresponds to pairs pJ,Aq with A “ 0. According to Remark 3.17, the tangent space to
HSpΣq along the Fuchsian locus is isomorphic to VpJ,0q, and thus consists of pairs p 9J, 9Aq

such that divg 9J “ 0 and d∇ 9A0p¨, ¨q “ 0. The pseudo-metric restricted to VpJ,0q is equal to

pgf qpJ,0q

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

“

ż

Σ
x 9J, 9J 1yρ`

ż

Σ

f 1

6
x 9A0, 9A1

0yρ

since the trace-part of 9A is equal to zero according to relation (2.2.7). Notice that gf on
VpJ,0q coincides with 4GWP along horizontal directions ( 9A “ 0) and it is negative-definite
along vertical directions ( 9J “ 0). Because of the explicit description of gf , this is sufficient
to conclude that the pseudo-metric is non-degenerate on arbitrary directions inside VpJ,0q as
well. In particular, there must exist an open neighborhood NFpΣq of FpΣq inside Hit3pΣq

in which gf is non-degenerate.
Finally, the Fuchsian locus is the set of fixed points of the circle action, that consists of
isometries for gf by Theorem C (which is proved in Section 3.2.6). Using a standard
argument in (pseudo)-Riemannian geometry, this implies that the Fuchsian locus is totally
geodesic.

Remark 3.18. It is important to emphasize again that the triple pgf , I,ωf q is defined over
the entire Hitchin component Hit3pΣq, but it may be degenerate away from the Fuchsian
locus. The main problem lies in the fact that the restriction of an indefinite metric on a
subspace is not necessarily non-degenerate (as in the positive-definite case). Partial results
have been obtained concerning the non-existence of degenerate vectors outside NFpΣq, which
will be explained in detail in Section 3.4.2 and 3.4.4.

3.2.4 The system of equations

This section is devoted to the study of the system of equations defined by (3.2.9) and to the
proof of Theorem H. More precisely, in Lemma 3.19 and Lemma 3.20 we study the induced
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connection on the endomorphism bundle and the associated exterior covariant derivative.
Then, Lemma 3.21 allows us to compute the terms involving derivatives of order two of
p 9J, 9Aq in the first and second equation appearing in the system defining WpJ,Aq. Further
on, we explain how the space WpJ,Aq can be seen as the kernel of a matrix of mixed-order
smooth differential operators, which is proven to be elliptic (Lemma 3.22). Finally, using
the homotopy invariance of the Fredholm index for elliptic operators, we deduce the lower
bound on the dimension of WpJ,Aq.

Lemma 3.19. Let ∇ be the Levi-Civita connection with respect to gJ , then the induced
connection

s∇ : Ω0pΣ,End0pTΣ, gJqq ÝÑ Ω1pΣ,End0pTΣ, gJqq

does not admit any non-zero parallel section, where End0pTΣ, gJq denotes the real vector
bundle of gJ -symmetric and trace-less endomorphisms of TΣ.

Proof. Let B P Ω0pΣ,End0pTΣ, gJqq such that s∇B “ 0. Let x0 P Σ be a fixed point and
x P Σ be arbitrary. Consider a path γ : r0, 1s Ñ Σ with γp0q “ x0 and γp1q “ x. Let te1, e2u

be a basis of Tx0Σ and denote with te1ptq, e2ptqu the basis of TγptqΣ obtained by parallel
transport te1, e2u along the path γ. Then, if bijptq denotes the pi, jq-th entry of Bγptq for
i, j “ 1, 2, we have bijptq “ gJ

`

Bγptqpejptqq, eiptq
˘

. By differentiating the last identity with
respect to the parameter t, we get:

d

dt
bijptq “ gJ

` `

s∇ 9γB
˘

loomoon

“0

`

ejptq
˘

`Bγptq

`

∇ 9γej
˘

, eiptq
˘

` gJ
`

Bγptq

`

ejptq
˘

,∇ 9γei
˘

.

Since the basis te1ptq, e2ptqu has been obtained by parallel transport, we have ∇ 9γej “ 0
for any j “ 1, 2. In particular, we deduce that each entry of B is constant along γ, hence
Bx “ Bγp1q “ Bγp0q “ Bx0 . Since x P Σ was arbitrary, it follows that the endomorphism
B is actually constant on the whole surface. At this point, it is enough to show that every
section of E :“ End0pTΣ, gJq admits at least one zero to conclude the proof. Since the real
rank of E is equal to the real dimension of the surface, any section B is nowhere zero if
and only if the Euler class e

`

E
˘

is trivial in H2pΣ,Rq. In our case, it can be shown (see
for example [Tro12, §2.4]) that E is the realization of the holomorphic line bundle K b K
defined on pΣ, Jq. In particular, e

`

E
˘

“ c1
`

K bK
˘

, where c1 denotes the first Chern class
of a complex vector bundle. Therefore,

ż

Σ
e
`

E
˘

“

ż

Σ
c1
`

K bK
˘

“ degpK bKq “ 2p2g ´ 2q ‰ 0 .

The last chain of equalities implies that e
`

E
˘

is not trivial in cohomology by Poincaré
duality, and thus any such section B admits at least one zero.
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Lemma 3.20. Let ∇ be the Levi-Civita connection with respect to gJ , then the exterior
covariant derivative

d∇ : Ω1pΣ,End0pTΣ, gJqq ÝÑ Ω2pΣ,End0pTΣ, gJqq

is surjective and its kernel has real dimension equal to 10g ´ 10.

Proof. Recall that for A P Ω1
`

Σ,End0pTΣ, gJq
˘

and for any X,Y, Z P ΓpTΣq we have
`

d∇A
˘

pX,Y qZ “
`

∇XA
˘

pY qZ ´
`

∇YA
˘

pXqZ .

In particular, if we define the p0, 3q-tensor CpX,Y, Zq :“ gJpApXqY,Zq, then A P Kerpd∇q

if and only if C is the real part of a gJ -holomorphic cubic differential (Theorem 1.11). The
space of holomorphic cubic differentials on pΣ, gJq coincides with the space H0pΣ,Kb3

q

of holomorphic sections of the tri-canonical bundle, which is isomorphic (as a real vector
space) to R10g´10 by an easy application of Riemann-Roch Theorem for curves.
Concerning the surjectivity of d∇, we will prove that its Co-kernel is trivial. Let us denote
with ˚J the Hodge-star operator defined on differential forms with respect to gJ , which can
be extended to an isomorphism ˚J : ΩkpΣ,End0pTΣ, gJqq

–
ÝÑ Ω2´kpΣ,End0pTΣ, gJqq. Let

`

d∇
˘˚ be the formal adjoint of the exterior covariant derivative with respect to the L2-

inner product on Ω2pΣ,End0pTΣ, gJqq induced by ˚J and integration over Σ. A standard
computation shows that

`

d∇
˘˚

“ ´ ˚J ˝ d∇ ˝ ˚J : Ω2pΣ,End0pTΣ, gJqq ÝÑ Ω1pΣ,End0pTΣ, gJqq .

Since Rangepd∇q is a closed subspace of Ω2pΣ,End0pTΣ, gJqq, we get that CoKerpd∇q “

Ker
´

`

d∇
˘˚
¯

. In particular, if α P Ω2pΣ,End0pTΣ, gJqq then

`

d∇
˘˚
α “ 0 ðñ (˚J is an isomorphism)

d∇p˚Jαq “ 0 ðñ (d∇ ” s∇ on Ω0pΣ,End0pTΣ, gJqq)
s∇p˚Jαq “ 0 ,

where s∇ in the last equation is the induced connection on Ω0pΣ,End0pTΣ, gJqq. According
to Lemma 3.19, the induced connection s∇ does not admit any non-zero parallel section,
hence ˚Jα “ 0, which implies α “ 0.

Lemma 3.21. Let pJ,Aq P D3pJ pΣqq and consider the following 2-forms on the surface

η1 :“ d

ˆ

divg
`

pf ´ 1q 9J
˘

` d 9f ˝ J ´
f 1

6
xp∇‚AqJ, 9A0y

˙

,

η2 :“ d

ˆ

divg
`

pf ´ 1q 9J
˘

˝ J ` d 9f0 ˝ J `
f 1

6
x∇‚A, 9A0y

˙
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where p 9J, 9A0q P TpJ,AqD
3pJ pΣqq, the function f is the one defined by (3.2.6), 9f0 “ ´

f 1

4 xA, 9A0Jy,

and f, f 1, 9f, 9f0 are computed in ||A||20 “
||A||2J

8 . Then, the part involving second order deriva-
tives of p 9J, 9A0q in η1 and η2 is, respectively

pf ´ 1qd
`

divg 9J
˘

`
f 1

4
dxA,∇J‚

9A0y, pf ´ 1qd
`

divg 9J ˝ J
˘

´
f 1

4
dxA,

`

∇J‚
9A0

˘

Jy .

Proof. By using (3.1.11), we get the following equation involving the divergence of a smooth
section of End0pTΣ, gJq multiplied by a smooth function φ

divg
`

φ 9J
˘

pXq “ dφp 9JXq ` φ
`

divg 9J
˘

pXq, @X P ΓpTΣq . (3.2.13)

Therefore,

d

ˆ

divg
`

pf ´ 1q 9J
˘

˙

“ d
`

df ˝ 9J
˘

` df ^ divg 9J ` pf ´ 1qd
`

divg 9J
˘

,

and it is clear that pf ´ 1qd
`

divg 9J
˘

is the only part involving second order derivatives of 9J

in the expression above. Regarding the other two terms in η1, let us first define τ1 :“ d 9f ˝J
and τ2 :“ ´

f 1

6 β, where β “ xp∇‚AqJ, 9A0y.

The differential of τ1

Notice that the first order variation of f
`

||A||20

˘

is

9f “
f 1

8
px 9A,Ay ` xA, 9Ayq (Lemma 2.23)

“
f 1

4
xA, 9A0y .

Therefore,

dτ1 “ d
´

d
`f 1

4
xA, 9A0y

˘

˝ J
¯

“
1

4
d

ˆ

xA, 9A0ydf 1 ˝ J ` f 1dxA, 9A0y ˝ J

˙

“
1

4
d

ˆ

f2

4
xA,∇J‚AyxA, 9A0y ` f 1

`

x∇J‚A, 9A0y ` xA,∇J‚
9A0y

˘

˙

,

where in the last step we used that df 1 “
f2

4 xA,∇‚Ay. The only interesting part, for our
purpose, is the term containing f 1xA,∇J‚

9A0y. In particular,

1

4
d

ˆ

f 1xA,∇J‚
9A0y

˙

“
f2

16
xA,∇‚Ay ^ xA,∇J‚

9A0y `
f 1

4
dxA,∇J‚

9A0y .
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Again, the only part involving second order derivatives is the term f 1

4 dxA,∇J‚
9A0y.

The differential of τ2

To conclude the proof it must be proven that dτ2 does not involve second derivatives of 9J
or 9A0. In fact, by carrying out calculations similar to those made above

dγ2 “ d

ˆ

´
f 1

6
xp∇‚AqJ, 9A0y

˙

“ ´
1

6

ˆ

f2

4
xA,∇‚Ayxp∇‚AqJ, 9A0y ` f 1

`

xp∇‚∇‚AqJ, 9A0y ` xp∇‚AqJ,∇‚
9A0y

˘

˙

.

Because of the very similar expression of the 2-forms η1, η2 it is easy to see, by going over
the calculations already done, that the part involving second derivatives of p 9J, 9A0q in η2 is
exactly

pf ´ 1qd
`

divg 9J ˝ J
˘

´
f 1

4
dxA,

`

∇J‚
9A0

˘

Jy .

The next step is to write down in coordinates the expressions found in Lemma 3.21,
so that, later, we will be able to explicitly deduce the principal symbol of the matrix of
operators associated with the PDEs defining the subspace WpJ,Aq. In order to do this, we
need to recall the construction in coordinates for D3pJ pR2qq (see Section 2.2.2), and then
use the particular definition of D3pJ pΣqq to infer that the same can be done, point-wise,
in the genus g ě 2 case (see Remark 3.10). Let ρ0 :“ dx0 ^ dy0 be the standard area
form on R2 and g0J :“ ρ0p¨, J ¨q be the associated scalar product, for some J P J pR2q.
According to Proposition 2.7, the space D3pJ pR2qq is SLp2,Rq-equivariantly isomorphic to
the holomorphic vector bundle of cubic differentials over Teichmüller space of the torus,
denoted with Q3

`

T pT 2q
˘

. The latter can be identified with H2 ˆ C, where H2 is a copy
of T pT 2q and C is isomorphic to the fibre over an oriented (almost) complex structure
J : R2 Ñ R2. Let z “ x ` iy and w “ u ` iv be the complex coordinates on H2 and C,
respectively. Then, we have the following correspondence

H2 ˆ C Q pz, wq ÞÝÑ
`

jpzq, Cpz,wq

˘

P D3pJ pR2qq

where Cpz,wq “ Repqpz,wqq with qpz,wq “ swpdx0 ´ szdy0q3 (see Lemma 2.20). Because of the
SLp2,Rq-invariance, one can compute the pair pjpzq, Cpz,wqq at points pi, wq ” p0, 1, u, vq,
for some w P C. Using the relation A “ pg0Jq´1C, one can deduce:

9J “ dijp 9x, 9yq “

ˆ

9x ´ 9y
´ 9y ´ 9x

˙

, Api,wq “

ˆ

u v
v ´u

˙

dx0 `

ˆ

v ´u
´u ´v

˙

dy0 .

p 9A0qpi,wq “

ˆ

9u` u 9y ` v 9x ´u 9x` 9v ` v 9y
´u 9x` 9v ` v 9y ´ 9u´ u 9y ´ v 9x

˙

dx0`

ˆ

9v ` 2pv 9y ´ u 9xq ´ 9u´ 2pu 9y ` v 9xq

´ 9u´ 2pu 9y ` v 9xq ´ 9v ` 2pu 9x´ v 9yq

˙

dy0
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p 9Atrqpi,wq “

ˆ

´u 9y ´ v 9x 0
0 ´u 9y ´ v 9x

˙

dx0 `

ˆ

u 9x´ v 9y 0
0 u 9x´ v 9y

˙

dy0 .

Now, let us define the following matrix of smooth differential operators

Λ : TpJ,AqD
3pJ pΣqq ÝÑ Ω2

CpΣq ‘ Ω2
`

Σ,End0pTΣ, gJq
˘

p 9J, 9A0q ÞÝÑ
`

pL1 ` iL2qp 9J, 9A0q, Sp 9J, 9A0q
˘

(3.2.14)

where

L1p 9J, 9A0q :“ d

ˆ

divg
`

pf ´ 1q 9J
˘

` d 9f ˝ J ´
f 1

6
xp∇‚AqJ, 9A0y

˙

P Ω2pΣq ,

L2p 9J, 9A0q :“ d

ˆ

divg
`

pf ´ 1q 9J
˘

˝ J ` d 9f0 ˝ J `
f 1

6
x∇‚A, 9A0y

˙

P Ω2pΣq ,

Sp 9J, 9A0q “ d∇ 9A0p¨, ¨q ´ Jpdiv 9J ^Aqp¨, ¨q P Ω2
`

Σ,End0pTΣ, gJq
˘

.

It is possible to define the principal symbol of a matrix of mixed-order differential opera-
tors as the matrix obtained by taking the principal symbols of each differential operator.
The corresponding system of PDEs is called elliptic, if the symbol matrix has non-zero
determinant (see [ADN64] and [Gru77] for more details).

Lemma 3.22. Let pJ,Aq be an arbitrary point in D3pJ pΣqq. Then, for any p P Σ and for
any 0 ‰ ξ P T ˚Σ, the symbol matrix σ

`

Λ
˘

p
pξq has non-zero determinant.

Proof. Let te1, e2u be a gJ -orthonormal basis and let te˚
1 , e

˚
2u be the dual basis, so that

ξ “ ξ1e
˚
1 ` ξ2e

˚
2 . We first note that σpΛqppξq is a 4 ˆ 4 matrix as any term in Λ, involving

the tensors p 9J, 9A0q, can be written in the coordinates p 9x, 9y, 9u, 9vq, for what explained above.
Moreover, we have the following decomposition:

σ
`

Λ
˘

p
pξq “

ˆ

Θ Ξ
Γ ∆

˙

, (3.2.15)

where each block is a 2 ˆ 2 matrix, and each entry in the first and second block-row is a
homogeneous polynomial in ξ1, ξ2 of degree two and one, respectively. After a fairly long
computation in coordinates the final expression for σpΛqppξq is
¨

˚

˚

˝

´2pf ´ 1qξ1ξ2 pf ´ 1qpξ21 ´ ξ22q ` 3
2 |w|2f 1|ξ|2 ´f 1upξ21ξ

2
2q ´f 1v|ξ|2

pf ´ 1qpξ22 ´ ξ21q ´ 3
2 |w|2f 1|ξ|2 ´2pf ´ 1qξ1ξ2 ´f 1v|ξ|2 f 1u|ξ|2

´3uξ1 ´3vξ1 ´ξ2 ξ1
´3vξ1 3uξ1 ´ξ1 ´ξ2

˛

‹

‹

‚

,

where |ξ|2 :“ ξ21 ` ξ22 and the second column corresponds to the coefficient of ´ 9y. We
only show how to get block Θ, as with a similar calculation one can obtain the remaining
ones. To write down explicitly each entry of Θ, we need to compute the principal symbol
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of L1 and L2, along directions p 9x,´ 9y, 9u, 9vq with 9u “ 9v “ 0. According to Lemma 3.21,
σ2pL1q and σ2pL2q depend, respectively, on pf ´ 1qdpdivg 9Jq `

f 1

4 dxA,∇J‚
9A0y and on pf ´

1qdpdivg 9J ˝ Jq ´
f 1

4 dxA, p∇J‚
9A0qJy. In particular,

dpdivg 9Jqpξ, ξq “ 9xp´2ξ1ξ2q ´ 9ypξ21 ´ ξ22q , d
`

xA,∇J‚
9A0y

˘

pξ, ξq “ ´6|w|2pξ21 ` ξ22q 9y ,

dpdivg 9J ˝ Jqpξ, ξq “ 9xpξ22 ´ ξ21q ´ 9yp´2ξ1ξ2q , d
`

xA, p∇J‚
9A0qJy

˘

pξ, ξq “ 6|w|2pξ21 ` ξ22q 9x ,

where all the above equality are to be intended up to lower order terms in ξ. In the end,
the upper left block in σpΛqppξq is given by:

Θ “

ˆ

´2pf ´ 1qξ1ξ2 pf ´ 1qpξ21 ´ ξ22q ` 3
2 |w|2f 1|ξ|2

pf ´ 1qpξ22 ´ ξ21q ´ 3
2 |w|2f 1|ξ|2 ´2pf ´ 1qξ1ξ2

˙

.

If ξ ‰ 0, then the matrix ∆ is invertible as its determinant is equal to |ξ|2. This allows us
to use the determinant formula of block matrices to obtain

det
`

σpΛqppξq
˘

“ |ξ|2det
`

Θ ´ Ξ∆´1Γ
˘

“ |ξ|2
´

4ξ21ξ
2
2

`

1 ´ f `
3

2
f 1|w|2

˘2
` pξ21 ´ ξ22q2

`

1 ´ f `
3

2
f 1|w|2

˘2
¯

.

Since 1´f` 3
2f

1|w|2 is strictly positive (Lemma 3.12), requiring that last expression vanishes
is equivalent to the conditions ξ1ξ2 “ 0 and ξ1 “ ξ2, which clearly is possible if and only if
ξ1 “ ξ2 “ 0.

Theorem H. Let pJ,Aq be a point in ĄHS0pΣ, ρq, then

dimWpJ,Aq ě 16g ´ 16 ` 2g .

Proof. Notice that, the space WpJ,Aq can be seen as the kernel of Λ, namely the matrix of
smooth differential operators defined in (3.2.14). Let us consider the deformation tA, for
some t P r0, 1s, and look at the corresponding smooth 1-parameter family of matrices of
differential operators:

␣

Λt
(

tPr0,1s
: TpJ,AqD

3pJ pΣqq Ñ Ω2
CpΣq ‘ Ω2pΣ,End0pTΣ, gJqq

p 9J, 9A0q ÞÝÑ pDtp 9J, 9A0q, Stp 9J, 9A0qq ,

Dtp 9J, 9A0q :“d

ˆ

divg
`

pft ´ 1q 9J
˘

` d 9ft ˝ J ´
f 1
t

6
xp∇‚tAqJ, 9A0y

˙

` id

ˆ

divg
`

pft ´ 1q 9J ˝ J
˘

` dp 9f0qt ˝ J `
f 1
t

6
x∇‚tA, 9A0y

˙

,

Stp 9J, 9A0q :“ d∇ 9A0p¨, ¨q ´ tJpdivg 9J ^Aqp¨, ¨q ,
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where ft :“ f
`

t2||A||20

˘

, 9ft “ t
f 1
t
4 x 9A0, Ay, and p 9f0qt “ ´t

f 1
t
4 x 9A0J,Ay. Observe that the

matrix Λt is elliptic for any t P r0, 1s (in the sense explained above) as Lemma 3.22 holds
for any pJ,Aq P D3pJ pΣqq. In particular, since Σ is closed the operator matrix Λt has a
well-defined index for any t P r0, 1s (Lemma A.12). By definition, Λ0 associates (up to a
sign), to each p 9J, 9A0q, the element

`

d
`

divg 9J
˘

` id
`

divg 9J ˝ J
˘

,d∇ 9A0

˘

.

The homotopy invariance of the Fredholm index (see Theorem A.13) implies the following
chain of equalities:

ind
`

Λ
˘

“ ind
`

Λ1

˘

“ ind
`

Λt
˘

“ ind
`

Λ0

˘

.

Since the differential equations obtained from the kernel of the matrix Λ0 are decoupled in
9J and 9A0, we have the following index decomposition:

ind
`

Λ0

˘

“ ind
`

dpdivg¨q ` idpdivg ˝ Jq
˘

` ind
`

d∇
˘

“ ind
`

dpdivg¨q ` idpdivg ˝ Jq
˘

` 10g ´ 10 .

where in the last step we used Lemma 3.20. It is well-known (see [Tro12] for example)
that the divergence operator divg : TJJ pΣq Ñ Ω1pΣq is surjective and its kernel has real
dimension equal to 6g ´ 6. In particular, for any α P Ω1pΣq there exists 9J P TJJ pΣq such
that divg 9J “ α. Any such real 1-form has a decomposition α “ α1,0`α0,1, with Ěα0,1 “ α1,0.
Thus,

α ` iα ˝ J “ α1,0 ` α0,1 ` i
`

iα1,0 ´ iα0,1
˘

“ 2α0,1 .

According to this last identity and the surjectivity of the divergence operator, it follows
that the cokernel of d

`

pdivg¨q ` ipdivg ˝ Jq
˘

is isomorphic to

Coker
`

B : Ω0,1pΣq ÝÑ Ω1,1pΣq
˘

– Ω1,1pΣq
M

ImpBq “ H1,1
B

pΣq – R2 ,

as there are no p0, 2q-forms on pΣ, Jq. In addition, the kernel of d
`

pdivg¨q ` ipdivg ˝ Jq
˘

is
given by

t 9J P TJJ pΣq | B
`

pdivg¨q ` ipdivg ˝ Jq
˘

“ 0u – H0,1
B

pΣq ˆ Kerpdivg¨q – R6g´6 ˆ R2g

using again the surjectivity of the divergence operator. Therefore, we have

indpΛ0q “ ind
`

dpdivg¨q ` idpdivg ˝ Jq
˘

` 10g ´ 10

“ 6g ´ 6 ` 2g ´ 2 ` 10g ´ 10 “ 16g ´ 16 ` 2g ´ 2.

To conclude, we notice that all operators Dt take value into the subspace of complex exact
2-forms, hence the dimension of the cokernel of Λt is at least equal to the dimension of
H2

CpΣq – R2. Thus

dimWpJ,Aq “ dimpKerpΛ1qq



65 3.2. THE PSEUDO-KÄHLER METRIC ON THE HITCHIN COMPONENT

“ indpΛ1q ` dimpCokerpΛ1qq

ě indpΛ0q ` 2

“ 16g ´ 16 ` 2g ´ 2 ` 2 “ 16g ´ 16 ` 2g .

3.2.5 The preferred subspace inside the tangent to ĄHS0pΣ, ρq

In this section we prove Theorem J by using the theory developed so far. In particular,
in Lemma 3.23 and Lemma 3.25 we prove the SymppΣ, ρq and I invariance of WpJ,Aq,
respectively. Then, we find a formula for the action of the almost-complex structure I on
tangent vectors to the SymppΣ, ρq-orbit (Lemma 3.26) and we study the operator associated
with the first equation in (HS) (Lemma 3.27). Finally, if π : ĄHS0pΣ, ρq Ñ rBpΣq denotes the
quotient projection, where rBpΣq is the quotient of ĄHS0pΣ, ρq by HampΣ, ρq, the injectivity
of the map dpJ,Aqπ :WpJ,Aq Ñ TrJ,As

rBpΣq is proven in Lemma 3.29 by using all the previous
results. The only part of Theorem J that is left is the inclusion WpJ,Aq Ă TpJ,Aq

ĄHS0pΣ, ρq,
as it is necessary to explain first the connection between the system of differential equations
(3.2.9) and the theory of symplectic reduction. For this reason its discussion is postponed
to Section 3.3.3. The results presented in this section follow closely the ones given for the
anti-de Sitter case ([MST21, §4.5]), even though one of the two tensors we work with is of
a different type.

Lemma 3.23. For every symplectomorphism ϕ of pΣ, ρq and for every p 9J, 9Aq P WpJ,Aq,
we have pϕ˚ 9J, ϕ˚ 9Aq P Wpϕ˚J,ϕ˚Aq. In other words, the distribution tWpJ,AqupJ,AqPĄHS0pΣ,ρq

is
invariant under the action of SymppΣ, ρq.

Proof. The assumption that ϕ is a symplectomorphism (ϕ˚ρ “ ρ) is crucial in order to
prove that gϕ˚J , the metric associated with the area form ρ and complex structure ϕ˚J ,
is equal to the pull-back metric ϕ˚gJ “ ϕ˚

`

ρp¨, J ¨q
˘

. In other words, we are saying that
ϕ : pΣ, gϕ˚Jq Ñ pΣ, gJq, is an isometry. In particular, for any endomorphism of the tangent
bundle B we get

ϕ˚
´

divgB
¯

“ divϕ˚gpϕ˚Bq .

Moreover, the parts involving the scalar product between tangent vectors 9J, 9J 1 P TJJ pΣq

and 9A, 9A1 are preserved by ϕ (see Section 2.2.1 and Section 3.2.1). As for the rest of
the terms in the equations defining WpJ,Aq, we see that they are preserved by ϕ using the
naturality of the action and the functoriality of the involved operators, such as the induced
connection ∇ and the exterior covariant derivative d∇ on End0pΣ, gq-valued 1-form.

Remark 3.24. Notice that the above lemma holds for any symplectomorphism ϕ not
necessarily Hamiltonian. This is a stronger result than what we need in Theorem J. In
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particular, with the same argument it is possible to prove the SymppΣ, ρq-invariance of I
and gf .

Lemma 3.25. For any pJ,Aq P ĄHS0pΣ, ρq, the subspace WpJ,Aq is preserved by I.

Proof. Recall that by definition Ip 9J, 9Aq “ p´J 9J,´ 9AJ ´ A 9Jq “: p 9J 1, 9A1q. We only need to
show that the pair p 9J 1, 9A1q still satisfies the equations defining WpJ,Aq. In fact,

pf ´ 1qdivgp 9J 1q “ pf ´ 1qdivg
`

´ J 9J
˘

(rel. (3.1.12))

“ pf ´ 1qdivg 9J ˝ J .

Moreover,

d
´f 1

4
x 9A1

0, Ay

¯

˝ J “ d
´f 1

4
x´ 9A0J,Ay

¯

˝ J ,

´
f 1

6
xp∇‚AqJ, 9A1

0y “ ´
f 1

6
xp∇‚AqJ,´ 9A0Jy “

f 1

6
x∇‚A, 9A0y ,

where in the last step we used relation (2.2.5). By using I2 “ ´1, it follows that the
element Ip 9J, 9Aq satisfies the second equation in (3.2.9) as well. Regarding the last equation,
notice that, according to Remark 3.16, it is equivalent to d∇ 9A0p‚, J‚q “ divg 9Jp‚qApJ‚q ´

divg 9JpJ‚qAp‚q. Therefore, for any X P ΓpTΣq, we get

d∇
`

9A1
0

˘

pX, JXq “ ´d∇
`

9A0J
˘

pX,JXq

“ ´
`

d∇ 9A0

˘

pX, JXqJ (∇‚J “ 0)

“ ´pdivg 9JqpXqApJXqJ ` pdivg 9JqpJXqApXqJ (ApJ ¨q “ Ap¨qJ)

“ pdivg 9JqpXqApXq ` divg 9JpJXqApXqJ .

On the other hand,

pdivg 9J 1qpXqApJXq ´ pdivg 9J 1qpJXqApXq “ ´pdivgJ 9JqpXqApJXq ` pdivgJ 9JqpJXqApXq

“ pdivg 9JqpJXqApJXq ` pdivg 9JqpXqApXq

“ pdivg 9JqpJXqApXqJ ` pdivg 9JqpXqApXq ,

where we used relation (3.1.12) on the first step and ApJ ¨q “ Ap¨qJ on the second one.

Lemma 3.26. For every symplectic vector field X on pΣ, ρq and for every pJ,Aq P D3pJ pΣqq,
with Cp¨, ¨, ¨q “ gJ

`

Ap¨q¨, ¨
˘

equal to the real part of a holomorphic cubic differential on
pΣ, Jq, we have I

`

LXJ, g´1
J LXC

˘

“
`

´ LJXJ,´g´1
J LJXC

˘

.
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Proof. For any vector field V on the surface, let use define the operator MV : ΓpTΣq Ñ

ΓpTΣq as MV pY q :“ ∇g
Y V , where ∇g is the Levi-Civita connection with respect to g ”

gJ “ ρp¨, J ¨q. Then, for any Y P ΓpTΣq, we have

pLV JqY “ rV, JY s ´ JprV, Y sq

“ ∇g
V pJY q ´ ∇g

JY V ´ Jp∇g
V Y q ` Jp∇g

Y V q (∇g is torsion-free)
“ Jp∇g

V Y q ´MV pJY q ´ Jp∇g
V Y q ` JMV pY q (∇g

‚J “ 0)
“ pJMV ´MV JqpY q .

The above computation implies that

LV J “ JMV ´MV J . (3.2.16)

Now since Cp¨, ¨, ¨q is a p0, 3q-tensor, for any Y, Z, U P ΓpTΣq, its Lie derivative can be
computed as follows

pLV CqpY,Z, Uq “ V ¨ CpY,Z, Uq ´ CprV, Y s, Z, Uq ´ CpY, rV,Zs, Uq ´ CpY,Z, rV,U sq .

Moreover, using the relation

V ¨ CpY, Z, Uq “ p∇g
V CqpY, Z, Uq ` Cp∇g

V Y, Z, Uq ` CpY,∇g
V Z,Uq ` CpY,Z∇g

V Uq ,

we obtain that

pLV Cqp¨, ¨, ¨q “ p∇g
V Cqp¨, ¨, ¨q ` CpMV ¨, ¨, ¨q ` Cp¨,MV ¨, ¨q ` Cp¨, ¨,MV ¨q . (3.2.17)

In particular, by re-writing the last relation using the associated p1, 2q-tensor defined as
A “ g´1C and using the compatibility between ∇g and the metric g, we get

pg´1LV Cqp¨q “ p∇g
VAqp¨q `ApMV ¨q `Ap¨qMV `M˚

VAp¨q , (3.2.18)

where M˚
V denotes the g-adjoint operator of MV . Now let us apply the almost-complex

structure I to the pair pLXJ, g´1LXCq with X a ρ-symplectic vector field. Therefore,

I
`

LXJ, g´1LXC
˘

“
`

´ JLXJ,´pg´1LXCqp¨qJ ´Ap¨qLXJ
˘

.

Since J is ∇g-parallel then MJX “ JMX , so that the first component of I
`

LXJ, g´1LXC
˘

is given by

´JLXJ “ ´JpJMX ´MXJq (rel. (3.2.16) for V “ X)
“ ´pJMJX ´MJXJq

“ ´LJXJ . (rel. (3.2.16) for V “ JX)
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Regarding the second component of I
`

LXJ, g´1LXC
˘

, using relation (3.2.16) and (3.2.18)
for V “ X, we have

´pg´1LXCqp¨qJ ´Ap¨qLXJ “ ´p∇g
XAqp¨qJ ´ApMX ¨qJ ´M˚

XAp¨qJ ´Ap¨qMXJ

´Ap¨qJMX `Ap¨qMXJ

“ ´p∇g
XAqp¨qJ ´ApMX ¨qJ ´Ap¨qJMX `M˚

XJAp¨q ,

where in the last equality we used Ap¨qJ “ ´JAp¨q. On the other hand, using relation
(3.2.18) with V “ JX, we get

´pg´1LJXCqp¨q “ ´p∇g
JXAqp¨q ´ApMJX ¨q ´Ap¨qMJX ´M˚

JXAp¨q

“ ´p∇g
JXAqp¨q ´ApJMX ¨q ´Ap¨qJMX ´ pJMXq˚Ap¨q (MJX “ JMX)

“ ´p∇g
XAqpJ ¨q ´ApJMX ¨q ´Ap¨qJMX ´ pJMXq˚Ap¨q (Theorem 1.11)

“ ´p∇g
XAqpJ ¨q ´ApMX ¨qJ ´Ap¨qJMX `M˚

XJAp¨q ,

where in the last step we used ApJ ¨q “ Ap¨qJ and J˚ “ ´J . Finally, we conclude by
observing that

p∇g
XAqpJY qZ “ ∇g

X

`

ApJY qZ
˘

´A
`

∇g
XpJY q

˘

Z ´ApJY q∇g
XZ

“ ∇g
X

`

ApY qJZ
˘

´A
`

J∇g
XY

˘

Z ´ApY qJ∇g
XZ

“ ∇g
X

`

ApY qJZ
˘

´A
`

∇g
XY

˘

JZ ´ApY q∇g
XpJZq

“ p∇g
XAqpY qJZ, @X,Y, Z P ΓpTΣq .

Lemma 3.27. Let G : D3pJ pΣqq Ñ C8pΣq be the operator defined as GpJ,Aq :“ Kh `

1 ´ ||q||2h, where h is the metric in the conformal class of gJ with conformal factor eF (see
(3.2.5)), and q is a cubic differential whose real part is equal to C “ gJA. Suppose that
pJ,Aq satisfies equations pHSq and let U be a vector field on Σ. Then,

dpJ,AqG
`

LUJ, g´1
J LUC

˘

“ ´
1

2
∆hλ` p1 ` 2||q||2hqλ ,

where λ :“ divgJU

ˆ

3
2 ||q||2gJF

1
´

||q||2gJ
2

¯

´ 1

˙

. In particular, if the element
`

LUJ, g´1
J LUC

˘

belongs to the kernel of dpJ,AqG, then U is symplectic.

Proof. Let us denote with tψtutPr0,1s the flow of U , and let pJ,Cq be a point in D3pJ pΣqq.
Consider the path tpJt, CtqutPr0,1s Ă D3pJ pΣqq given by pJt, Ctq “ pψ˚

t J, ψ
˚
t Cq so that

pJ0, C0q “ pJ,Cq. In particular,

LUJ “
d

dt
ψ˚
t J

ˇ

ˇ

ˇ

t“0
, g´1LUC “ g´1 d

dt
ψ˚
t C

ˇ

ˇ

ˇ

t“0
, g ” gJ .
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The final goal will be to compute d
dtGpJt, Ctq|t“0. Let us first determine the Riemannian

metric gt :“ ρp¨, Jt¨q, where Jt “ dψ´1
t ˝ J ˝ dψt.

gt “ ρ
`

¨, pdψ´1
t ˝ J ˝ dψtq ¨

˘

“ ρ
`

pdψ´1
t ˝ dψtq¨, pdψ´1

t ˝ J ˝ dψtq ¨
˘

“
`

detpdψ´1
t q ˝ ψt

˘

ρ
`

dψt¨, pJ ˝ dψtq ¨
˘

“
`

detpdψ´1
t q ˝ ψt

˘

g
`

dψt¨,dψt ¨
˘

“
`

detpdψ´1
t q ˝ ψt

˘

ψ˚
t g .

In particular, gt is conformal to ψ˚
t g with conformal factor given by ut :“

`

detpdψ´1
t q ˝ψt

˘

.
Now let F : r0,`8q Ñ R be the function defined in Lemma 3.11 and consider the conformal
change of metric h “ eF g, where F is evaluated at ||q||2g divided by 2. The next step is to
determine the Riemannian metric

ht :“ e
F

´

||qt||2gt
2

¯

gt “ e
F

´

||qt||2gt
2

¯

ut ¨ ψ˚
t g ,

where qt is the Jt-holomorphic cubic differential whose real part is equal to Ct. Therefore,

ht “ e
F

´

||qt||2gt
2

¯

ut ¨ ψ˚
t g “ e

F

´

||qt||2gt
2

¯

ut ¨ e
´F

´

||q||2g˝ψt
2

¯

ψ˚
t h

“ e
F

´

||qt||2gt
2

¯

´F

´

||q||2g˝ψt
2

¯

ut ¨ ψ˚
t h “ vt ¨ ψ˚

t h .

Again, the metric ht is conformal to ψ˚
t h with conformal factor vt (notice that v0 “ u0 ” 1).

Using the formula of curvature by conformal change of metric, we get

Kht “ Kvtψ
˚
t h

“ v´1
t

´

Kψ˚
t h

´
1

2
∆ψ˚

t h
ln vt

¯

“ v´1
t

´

Kh ˝ ψt ´
1

2

`

∆h ln
`

vt ˝ ψ´1
t

˘˘

˝ ψt

¯

,

where in the last equality we used the functoriality of the Gaussian curvature and of the
Laplacian, namely

Kψ˚
t h

“ ψ˚
t pKhq, ∆ψ˚

t h
ln vt “ ψ˚

t

´

∆h ln
`

vt ˝ ψ´1
t

˘

¯

.

The last term we need to determine in GpJt, Ctq is the one involving the norm of the cubic
differential qt.

||qt||
2
ht “ ||qt||

2
vtψ

˚
t h

“ v´3
t ||ψ˚

t q||2ψ˚
t h

“ v´3
t ||q||2h ˝ ψt . (3.2.19)

We can finally deduce an expression for the term

Kht ´ ||qt||
2
ht “ v´1

t

´

Kh ˝ ψt ´
1

2

`

∆h ln
`

vt ˝ ψ´1
t

˘˘

˝ ψt ´ v´2
t ||q||2h ˝ ψt

¯

,
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and compute the first order variation of operator G along the path t ÞÑ pJt, Ctq, obtaining

d

dt

`

Kht ´ ||q||2ht ` 1
˘

ˇ

ˇ

ˇ

t“0
“ ´ 9v

`

Kh ´ ||q||2h

˘

` UpKhq ´
1

2
∆h 9v ` 2 9v||q||2h ´ U

`

||q||2h

˘

“ 9v
`

1 ` 2||q||2h

˘

´
1

2
∆h 9v ,

where in the last line we used that pJ,Cq satisfies GpJ,Cq “ 0. At this point, it only
remains to compute 9v, i.e. the first order variation of vt

9v “
dvt
dt

ˇ

ˇ

ˇ

t“0
“

dpvt ˝ ψ´1
t q

dt

ˇ

ˇ

ˇ

t“0
(v0 ” 1)

“
d

dt
e
F

´

||qt||2gt
˝ψ´1
t

2

¯

´F

´

||q||2g
2

¯

ut ˝ ψ´1
t

ˇ

ˇ

ˇ

t“0

“ 9u`
1

2
F 1
´ ||q||2g

2

¯d
`

||qt||
2
gt ˝ ψ´1

t

˘

dt

ˇ

ˇ

ˇ

t“0
.

By imitating the steps performed for relation (3.2.19), we deduce that

||qt||
2
gt “ u´3

t ||q||2g ˝ ψt .

Since pψtq represents the flow of U , the first order variation of the conformal factor ut is
given by

9u “
d

dt

´

det
`

dψ´1
t

˘

˝ ψt

¯
ˇ

ˇ

ˇ

t“0
“ ´divgU .

To conclude, we have

9v “ 9u´
3

2
F 1
´ ||q||2g

2

¯

9u||q||2g

“ divgU
´3

2
F 1
´ ||q||2g

2

¯

||q||2g ´ 1
¯

,

hence the first order variation of operator G along the path t ÞÑ pJt, Ctq is

dpJ,AqG
`

LUJ, g´1LUC
˘

“ ´
1

2
∆hλ` p1 ` 2||q||2hqλ, λ :“ divgU

´3

2
F 1
´ ||q||2g

2

¯

||q||2g ´ 1
¯

.

Regarding the second part of the statement, observe that the following inequality holds

T pλq :“ ´
1

2
∆hλ` p1 ` 2||q||2hqλ ě ´

1

2
∆hλ` λ “: Spλq .

Since the linear operator S is known to be self-adjoint and positive, hence injective, over
L2pΣ,dahq, so is the linear operator T . Therefore, if pLUJ, g´1LUCq lies inside the kernel of
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dpJ,AqG, then the function λ “ divgU
´

3
2F

1
´

||q||2g
2

¯

||q||2g ´ 1
¯

is send to 0 by the operator T .
At this point, we would conclude by saying that the divergence of the vector field U is zero
(see (3.1.13)), which is obviously true if A “ 0, i.e. q “ 0. As for the first order variation
of the operator G at points where q ‰ 0, using Lemma 3.12 with t “

||q||2J
2 , we get that the

function 3
2F

1
´

||q||2g
2

¯

||q||2g ´ 1 is strictly negative. In particular, divgU
´

3
2F

1
´

||q||2g
2

¯

||q||2g ´ 1
¯

is zero if and only if divgU “ 0.

Remark 3.28. In order to conclude the proof of the Theorem J, one of the remaining
results to show is the inclusion of the subspace WpJ,Aq inside the tangent space to the
infinite-dimensional space ĄHS0pΣ, ρq. In order to show this inclusion, it is necessary to
explain how the differential equations defining WpJ,Aq are related to the process of infinite-
dimensional symplectic reduction. In view not to overextending the discussion too much,
during the proof of the last lemma that follows, we will use a result presented and proved
in Section 3.3.3.

Lemma 3.29. For every pJ,Aq P ĄHS0pΣ, ρq, we have

WpJ,Aq X TpJ,Aq

´

HampΣ, ρq ¨ pJ,Aq

¯

“ t0u .

In particular, the natural quotient projection π : ĄHS0pΣ, ρq Ñ rBpΣq induces a linear iso-
morphism

dpJ,Aqπ :WpJ,Aq
–

ÝÑ TrJ,As
rBpΣq .

Proof. Let X be a Hamiltonian vector field on Σ with Hamiltonian function H, and sup-
pose that pLXJ, g´1LXCq belongs to WpJ,Aq. Thus, according to Lemma 3.26 and the
I-invariance of WpJ,Aq, the same has to hold for IpLXJ, g´1LXCq “ p´LJXJ,´g´1LJXCq.
Since WpJ,Aq is contained in TpJ,Aq

ĄHS0pΣ, ρq (see Proposition 3.44), the differential of op-
erator G considered in Lemma 3.27 has to send the pair p´LJXJ,´g´1LJXCq to zero. By
the second part of Lemma 3.27, we deduce that JX is ρ-symplectic, namely dpιJXq “ 0.
This implies that the 1-form ´dH ˝ J “ ´pιXρq ˝ J “ ιJXρ is closed, and therefore the
function H is g-harmonic (since d

`

dH ˝ J
˘

“ ´∆gHρ). The only harmonic functions on
a closed manifold are the constants, hence we deduce that the vector field X is equal to
zero, which proves the first part of the statement. Regarding the second one, let rBpΣq

be the quotient of the infinite-dimensional space ĄHS0pΣ, ρq by the group HampΣ, ρq and
consider the quotient projection π : ĄHS0pΣ, ρq Ñ rBpΣq. By definition, the kernel of dpJ,Aqπ
coincides with TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

. Hence, by the first part of the statement, the
map dpJ,Aqπ is injective. Moreover, since dimWpJ,Aq ě 16g ´ 16 ` 2g (Theorem H) and
dim rBpΣq “ 16g ´ 16 ` 2g, this is actually an isomorphism.

Remark 3.30. The above lemma shows a major difference with the PSLp2,Rq ˆPSLp2,Rq

case ([MST21, Lemma 4.21]), where the authors were able to obtain a similar result for the



CHAPTER 3. THE GENERAL CASE 72

group of symplectomorphisms of the surface not necessarily Hamiltonian. This forces us to
perform an additional (finite-dimensional) quotient to obtain the Hitchin component, and
thus produces additional analytical difficulties carried out in Section 3.4.1.

3.2.6 The circle action on HSpΣq

Recall that the space D3pJ pR2qq consists of pairs pJ,Aq, where J is an almost-complex
structure on R2 and A is a 1-form with values in the trace-less and g0J -symmetric endomor-
phisms bundle of R2 such that ApJ ¨q “ Ap¨qJ and ApXqY “ ApY qX, @X,Y P TR2. In
particular, there is MCGpT 2q – SLp2,Zq-equivariant isomorphism between D3pJ pR2qqand
the holomorphic vector bundle Q3

`

T pT 2q
˘

of cubic differentials over Teichmüller space
of the torus (Proposition 2.7). In fact, if pJ,Aq P D3pJ pR2qq then the p0, 3q-tensor
Cp¨, ¨, ¨q “ g0J

`

Ap¨q¨, ¨
˘

is the real part of a J-holomorphic cubic differential q on pT 2, Jq. The
natural S1-action on Q3

`

T pT 2q
˘

given by pJ, qq ÞÑ pJ, e´iθqq, can be induced on D3pJ pR2qq

and results in the following formula

pΨθ : D3pJ pR2qq ÝÑ D3pJ pR2qq

pJ,Aq ÞÑ pJ, cos θAp¨q ´ sin θAp¨qJq .

It is clear from the definition that pΨθ preserves the 0-section in D3pJ pR2qq (seen as a vector
bundle over J pR2q – T pT 2q), hence it induces an S1-action on B0pT 2q which will still be
denoted by pΨθ by abuse of notation. In particular, we proved that pΨθ preserves pωf and it
acts by isomotries on B0pT 2q with respect to pgf . Moreover, such action is Hamiltonian and
we computed explicitly the Hamiltonian function (Theorem E).
Moving on to the case of genus g ě 2, we still have an S1-action on Q3

`

T cpΣq
˘

given by
prJs, qq ÞÑ prJs, e´iθqq, which can be induced on the PSLp3,Rq-Hitchin component using
the parameterization

Φ : Hit3pΣq
–

ÝÑ Q3
`

T cpΣq
˘

found by Labourie and Loftin (see Section 1.5). Thanks to Proposition 1.13 and to the con-
struction explained in Section 3.2.2, we know that Hit3pΣq is diffeomorphic to the following
space

HS0pΣ, ρq :“

$

’

&

’

%

pJ,Cq

ˇ

ˇ

ˇ

ˇ

ˇ

J is an (almost) complex structure on Σ
C is the real part of a J-cubic differential
`

h :“ eF
` ||q||2gJ

2

˘

gJ , A :“ g´1
J C

˘

satisfy (HS)

,

/

.

/

-

M

Symp0pΣq ,

where F : r0,`8q Ñ R is the smooth function defined in Lemma 3.11. In particular, we
can then describe the induced S1-action by the following formula:

Ψθ : Hit3pΣq ÝÑ Hit3pΣq

pJ,Aq ÞÑ pJ, cos θAp¨q ´ sin θAp¨qJq .
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Theorem C. Let ρ be a fixed area form on Σ, then the circle action on Hit3pΣq is Hamil-
tonian with respect to ωf and it satisfies:

Ψ˚
θgf “ gf , @θ P R .

The Hamiltonian function is given by:

HpJ, qq :“
2

3

ż

Σ
f
´ ||q||2gJ

2

¯

ρ,

where f : r0,`8q Ñ p´8, 0s is the smooth function defined by (3.2.6).

The proof of the above theorem is simply an adaptation of the proof made in the
torus case. In fact, as already explained in Remark 3.10, identities valid for elements in
D3pJ pR2qq can be interpreted as point-wise identities for smooth sections inD3pJ pΣqq, and,
according to the construction explained in Section 3.2.2, the Hitchin component Hit3pΣq

can be seen a subset of D3pJ pΣqq.

3.3 The infinite dimensional symplectic reduction

In this section we present the process that led us to the definition of the pseudo-Kähler
structure on the PSLp3,Rq-Hitchin component and the characterization of its tangent space
as described in Remark 3.17. The main tool is a general theorem proved by Donaldson,
which will be adapted to our case of interest. In particular, it allows us to give an interpre-
taton of Wang’s equation for hyperbolic affine sphere in R3 (1.4.6) as a moment map for a
Hamiltonian action in an infinite-dimensional context.

3.3.1 Donaldson’s construction

Since we will be using a lot of notation from Section 3.2.1, let us briefly recall the con-
struction of the infinite-dimensional space D3pJ pΣqq. It has been defined as the space of
smooth sections of the bundle

P
`

D3pJ pR2qq
˘

:“ P ˆD3pJ pR2qq
M

SLp2,Rq ÝÑ Σ ,

where SLp2,Rq acts diagonally on two factors. In particular, each element in D3pJ pΣqq

can be described as a pair pJ,Aq, with J an almost-complex structure on Σ, and A a
1-form with values in the trace-less and gJ -symmetric endomorphisms of TΣ such that
ApJ ¨q “ Ap¨qJ and ApXqY “ ApY qX, @X,Y P ΓpTΣq. Moreover, a tangent vector p 9J, 9Aq,
where 9A :“ g´1

J
9C, at pJ,Aq can be considered as the data of:

• a section 9J of EndpTΣq such that 9JJ ` J 9J “ 0, namely 9J is a gJ -symmetric and
trace-less endomorphism of TΣ;
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• an EndpTΣ, gJq-valued 1-form 9A such that

9A “ 9A0 `
1

2
tr
´

JA 9J
¯

1 ,

where 1 is the 2 ˆ 2 identity matrix and 9A0 is the trace-less part of 9A. In particular,
the trace-part 9Atr of 9A is uniquely determined by 9J .

Let us denote with s “ pJ,Aq an element in D3pJ pΣqq, and with 9s the corresponding
tangent vector. Suppose there is a SLp2,Rq-action on D3pJ pR2qq. Given an SLp2,Rq-
invariant symplectic form pω on D3pJ pR2qq, there is an induced symplectic structure on
each vertical subspace of P

`

D3pJ pR2qq
˘

, denoted with pωspxq for x P Σ. In particular, given
two tangent vectors 9s, 9s1 P TsD

3pJ pΣqq, we can define

ωsp 9s, 9s1q :“

ż

Σ
pωsp 9s, 9s1qρ . (3.3.1)

This gives rise to a formal symplectic structure on D3pJ pΣqq which is invariant by the
action of Symp0pΣ, ρq. Now, if the SLp2,Rq-action on D3pJ pR2qq is Hamiltonian with
respect to the symplectic form pω, and with moment map pµ : D3pJ pR2qq Ñ slp2,Rq˚, given
any section s P D3pJ pΣqq, we get an induced section pµs of the bundle End0pTΣq˚. Then,
the following result holds

Theorem 3.31 ([Don03, Theorem 9]). Let ρ be an area form on Σ and let ∇ be any
torsion-free connection on TΣ satisfying ∇ρ “ 0. Define the map µ : D3pJ pΣqq Ñ Ω2pΣq

as follows:
µpsq :“ pω

`

∇‚s,∇‚s
˘

` xpµs | R∇y ´ d
`

cp∇‚pµsq
˘

.

Then,

(1) µpsq is a closed 2-form for any s P D3pJ pΣqq;

(2) µ is equivariant with respect to the action of HampΣ, ρq;

(3) Given a vector field V P HpΣ, ρq, and γV a primitive of ιV ρ, the differential of the
map

D3pJ pΣqq ÝÑ R

s ÞÑ

ż

Σ
γV ¨ µpsq

equals

ωsp 9s,LV sq “

ż

Σ
pωsp 9s,LV sqρ .
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Before moving on, the meaning of each term in the definition of the moment map must
be explained. First notice that ∇‚s is a section of T ˚Σ b s˚

`

T vertP
`

D3pJ pR2qq
˘˘

, hence
we set pω

`

∇‚s,∇‚s
˘

to be the 2-form on Σ given by:

pω
`

∇‚s,∇‚s
˘

pU, V q :“ pω
`

∇Us,∇V s
˘

, for U, V P ΓpTΣq ,

where in the RHS of last equality we apply the symplectic form pω on T vertP
`

D3pJ pR2qq
˘

and the wedge product on the 1-form part. Moreover, the covariant derivative ∇‚pµs is a
section of T ˚Σ b End0pTΣq˚ and we get a 1-form by performing the following contraction:

c
`

∇‚pµs
˘

pvq :“
2
ÿ

j“1

x∇ej pµs | pv b e˚
j q0y, for v P ΓpTΣq ,

where te1, e2u is a local orthonormal frame of TΣ and te˚
1 , e

˚
2u is the associated orthonormal

dual frame. Finally, the curvature tensor R∇ of the torsion-free connection ∇ is defined as:

R∇`U, V
˘

W :“ ∇V∇UW ´ ∇U∇VW ´ ∇rV,UsW ,

for any U, V,W P ΓpTΣq. Because of the anti-symmetry in the first two entries of R∇, it
can be considered as a section of Ω2pΣq b End0pTΣq. For this reason we can contract the
endomorphism part of R∇ with pµs and obtain the 2-form on Σ denoted with xpµs | R∇y.
Let us recall the following technical result that will be useful later in the construction of
our moment map.

Lemma 3.32 ([Don03, Lemma 13]). There exists a closed 2-form pωP pD3pJ pR2qqq on P
`

D3pJ pR2qq
˘

such that, for any section s P D3pJ pΣqq, the following holds:

s˚
pωP pD3pJ pR2qqq “ pω

`

∇‚s,∇‚s
˘

` xpµs | R∇y .

In particular, since D3pJ pR2qq is contractible, the de-Rham cohomology class of µpsq in
H2

dRpΣ,Rq does not depend on the chosen section.

3.3.2 The moment map on D3pJ pΣqq

In Section 2.2.1 we introduced an SLp2,Rq-action on elements pJ,Aq P D3pJ pR2qq, given
by

P ¨ pJ,Aq “ pPJP´1, PApP´1¨qP´1q ,

where ApP´1¨q has to be interpreted as the action of P P SLp2,Rq via pull-back on the
1-form part of A. Moreover, we proved that for any choice of a smooth function f :
r0,`8q Ñ p´8, 0s such that: fp0q “ 0, f 1ptq ă 0 for any t ą 0 and lim

tÑ`8
fptq “ ´8, the

SLp2,Rq-action is Hamiltonian with respect to pωf and with moment map

pµpJ,AqpXq “

ˆ

1 ´ f
´

||q||2J

2

¯

˙

trpJXq .
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On the infinite-dimensional space D3pJ pΣqq we defined a (formal) family of pseudo-Kähler
structures pgf , I,ωf q, depending on the choice of a smooth function f as above (Section
3.2.1). We still denote by pωf the symplectic form induced on each fibre by an area-
preserving isomorphism between TxΣ and R2, then

pωf qpJ,Aq

`

p 9J, 9Aq, p 9J 1, 9A1q
˘

“

ż

Σ

pωf
`

p 9J, 9Aq, p 9J 1, 9A1q
˘

ρ

is obtained from relation (3.3.1) by integrating fibre-wise the family of symplectic forms
introduced in the torus case. Moreover, according to Donaldson’s construction of Section
3.3.1, the group Symp0pΣ, ρq acts on D3pJ pΣqq preserving ωf and the action of HampΣ, ρq

is Hamiltonian.

Theorem 3.33. The moment map found by Donaldson for the action of HampΣ, ρq on
`

D3pJ pΣqq,ωf
˘

can be expressed as:

µpJ,Aq “ ´
2

3
f 1
´

||τ ||2

2

¯

`

||B̄τ ||2 ´ ||Bτ ||2
˘

ρ` 2KJ

ˆ

f
´

||τ ||2J

2

¯

´ 1

˙

ρ` 2iB̄Bf
´

||τ ||2

2

¯

,

where τ is the complex cubic differential whose real part is equal to C “ gJA and where
B̄ “ B̄J , B “ BJ .

Proof. We will determine the expression for µ using Theorem 3.31, hence starting from the
explicit description of pµ given in Theorem F. As a torsion-free connection ∇ we can choose
the Levi-Civita connection with respect to gJ “ ρp¨, J ¨q, which clearly satisfies ∇ρ “ 0.
Similar computations can be found in [Tra18], where the functions f and F are chosen to
have different properties.

The term pωp∇‚s,∇‚sq:
Since ∇ is the Levi-Civita connection for gJ , we have ∇V J “ 0, and the element ∇VA
is still an End0pTΣ, gJq-valued 1-form for any V P ΓpTΣq. Now let te1, e2u be a local
gJ -orthonormal frame of TΣ and let te˚

1 , e
˚
2u be the dual frame. Then, we get

ppωf qpJ,Aq

`

p0,∇e1Aq, p0,∇e2Aq
˘

“ ´
1

6
f 1
´

||τ ||2

2

¯

x∇e1A, p∇e2AqJy .

According to the above observation, the tensors ∇e1A and ∇e2A can be written as

∇e1A “ pA1q1e˚
1 ` pA2q1e˚

2 , ∇e2A “ pA1q2e˚
1 ` pA2q2e˚

2 ,

where Aj :“ Apejq for j “ 1, 2 and

pA1qk :“

ˆ

ak111 ak112
ak112 ´ak111

˙

, pA2qk :“

ˆ

ak211 ak212
ak212 ´ak211

˙

, for k “ 1, 2 .
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Using the relation A2 “ A1J and ∇‚J “ 0, we get

pA2qk :“

ˆ

ak112 ´ak111
´ak111 ´ak112

˙

.

Moreover, by (2.2.4), we have

x∇e1A, p∇e2AqJy “ tr
´

pA1q1pA1q2J ` pA2q1pA2q2J
¯

“ 4pa1111a
21
12 ´ a1112a

21
11q .

Recalling that A “ g´1
J C, last formula can be written in terms of Cp¨, ¨, ¨q by using the

following relation:

akjlm “ gJ
`

p∇ekAqpejq ¨ el, em
˘

“ p∇ekCqpej , el, emq “: p∇ekCqjlm .

In the end, we obtain

ppωf qpJ,Aq

`

p0,∇e1Aq, p0,∇e2Aq
˘

“ ´
2

3
f 1
´

||τ ||2J

2

¯´

p∇e1Cq111p∇e2Cq112 ´ p∇e1Cq112p∇e2Cq111

¯

“ ´
2

3
f 1
´

||τ ||2J

2

¯´

p∇e1Cq222p∇e2Cq111 ´ p∇e1Cq111p∇e2Cq222

¯

,

where in the last step we used CpJ ¨, J ¨, J ¨q “ ´CpJ ¨, ¨, ¨q “ ´Cp¨, J ¨, ¨q “ ´Cp¨, ¨, J ¨q. The
action of the operators B and B̄ on τ are defined as follows:

pBτqpv, ¨, ¨, ¨q “
1

2

´

∇vτ ´ i∇Jvτ
¯

, pB̄τqpv, ¨, ¨, ¨q “
1

2

´

∇vτ ` i∇Jvτ
¯

.

With a fairly long calculation in local coordinates we deduce

||pB̄τqpe1, ¨, ¨, ¨q||2 ´ ||pBτqpe1, ¨, ¨, ¨q||2 “ p∇e1Cq222p∇e2Cq111 ´ p∇e1Cq111p∇e2Cq222 .

Finally, we get

pωp∇‚pJ,Aq,∇‚pJ,Aqq “ ppωf qpJ,Aq

`

p0,∇e1Aq, p0,∇e2Aq
˘

“ ´
2

3
f 1
´

||τ ||2J

2

¯

`

||B̄τ ||2´||Bτ ||2
˘

ρ ,

where ||Bτ ||2 “ ||Bτpv, ¨, ¨, ¨q||2 and ||B̄τ ||2 “ ||B̄τpv, ¨, ¨, ¨q||2 for some unit vector v (the norm
is independent of such vector).

The term xpµs | R∇y:
Since ∇ is the Levi-Civita connection for gJ , the tensor R∇ coincides with the Riemann
tensor of gJ . A classical computation using a local orthonormal frame shows that R∇ “
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KJρJ , where KJ is the Gaussian curvature of gJ . From Theorem F we have pµpJ,Aqp¨q “
ˆ

1 ´ f
´

||τ ||2J
2

¯

˙

trpJ ¨q, therefore

xpµs | R∇y “ 2KJ

ˆ

f
´

||τ ||2J

2

¯

´ 1

˙

ρ .

The term d
`

cp∇‚pµsq
˘

:

Notice that, for any B P slpTΣ, ρq ” End0pTΣq and for any v P ΓpTΣq, we have

∇vpµpJ,Aq

`

B
˘

“ ´df
´

||τ ||2J

2

¯

pvq trpJBq ,

where we used again ∇‚J “ 0. If te1, e2u denotes a local gJ -orthonormal frame for TΣ and
te˚

1 , e
˚
2u denotes its dual frame, we obtain

cp∇‚pµpJ,Aqqpvq “ x∇e1pµpJ,Aq | pv b e1q˚
0y ` x∇e2pµpJ,Aq | pv b e2q˚

0y

“ ´df
´

||τ ||2

2

¯

pe1q tr
`

Jpv b e1q˚
0

˘

´ df
´

||τ ||2

2

¯

pe2q tr
`

Jpv b e2q˚
0

˘

“ ´df
´

||τ ||2

2

¯

pe1qe˚
1

`

Jv
˘

´ df
´

||τ ||2

2

¯

pe2qe˚
2

`

Jv
˘

“ ´

ˆ

d
´

f
´

||τ ||2

2

¯¯

˝ J

˙

pvq .

In other words cp∇‚pµpJ,Aqq “ ´d
´

f
´

||τ ||2

2

¯¯

˝ J . It is not difficult to show that, for any
ψ P C8pΣq, the following relation holds:

d
`

dψ ˝ J
˘

“ ´∆gJψ “ ´2iBJ B̄Jψ “ 2iB̄JBJψ .

In the end, we get

d
`

cp∇‚pµpJ,Aqq
˘

“ ´d

ˆ

d
´

f
´

||τ ||2

2

¯¯

˝ J

˙

“ ´2iB̄Bf
´

||τ ||2

2

¯

.

Corollary 3.34. Let ρ be a fixed area form on Σ, and let c :“ 2πχpΣq

AreapΣ,ρq
. Then, the map

rµ :D3pJ pΣqq ÝÑ B2pΣq Ă HpΣ, ρq˚

pJ,Aq ÞÝÑ µpJ,Aq ` 2cρ

is a moment map for the action of HampΣ, ρq on
`

D3pJ pΣqq,ωf
˘

.
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Proof. According to Lemma 3.32, the de-Rham cohomology class of the closed 2-form
µpJ,Aq does not depend on the choice of the section, and the same is true for its inte-
gral over the surface. Hence, if A “ 0, by Gauss-Bonnet Theorem we get

ż

Σ
µpJ, 0q “ ´2

ż

Σ
KJρ “ ´4πχpΣq .

In particular, the integral of the 2-form µpJ,Aq ` 2cρ is equal to zero. This implies that
rµ takes values in the space of exact 2-forms B2pΣq, which is contained in HpΣ, ρq˚ (see
Section 3.1.1). Finally, the properties piq and piiq in Definition B.3 continue to hold for rµ
since the additional term 2cρ does not depend on the chosen section.

In the remaining part of this section we show how, if we assume the additional hypothesis
B̄Jτ “ 0, the moment map rµ we found is directly related to Wang’s equation for hyperbolic
affine spheres in R3 (see Section 1.4). The idea of proof of the following result is similar to
that used in [Tra18] for a slightly different moment map.

Theorem 3.35. Let pJ,Aq P D3pJ pΣqq and suppose that A “ g´1
J Repτq with B̄Jτ “ 0,

then

rµpJ,Aq “ ´2e
F

´

||τ ||2J
2

¯

´

Kh ´ ||τ ||2h ` 1
¯

ρ , where h :“ e
F

´

||τ ||2J
2

¯

gJ .

Proof. If A “ 0, the statement is immediate. Suppose that A ‰ 0 and define λ to be the
function ||τ ||2J

2 . Then, outside the zeroes of A it is easy to show that:

´
i

λ
B̄λ^ Bλ “ ||Bτ ||2Jρ , KJρ “ ´

i

3
B̄B logpλq .

Let us assume for a moment that the following identity holds:

2iB̄

ˆ

´

f 1pλq ´
fpλq

3λ

¯

Bλ

˙

“ ´
2i

3λ
f 1pλqB̄λ^ Bλ` 2fpλqKJρ` 2iB̄Bfpλq . (3.3.2)

According to Theorem 3.33 we can write rµpJ,Aq as follows:

rµpJ,Aq “ ´
2i

3λ
f 1pλqB̄λ^ Bλ`

2i

3

`

1 ´ fpλq
˘

B̄B logpλq ` 2iB̄Bfpλq ` 2cρ

In particular, we obtain the following sequence of identities:

rµpJ,Aq “ ´
2i

3λ
f 1pλqB̄λ^ Bλ`

2i

3

`

1 ´ fpλq
˘

B̄B logpλq ` 2iB̄Bfpλq ` 2cρ

“ ´
2i

3λ
f 1pλqB̄η ^ Bλ`

2i

3

`

1 ´ fpλq
˘`

´
3

i
KJρq ` 2iB̄Bfpλq ` 2cρ (rel. p3.3.2q)

“ 2iB̄

ˆ

´fpλq

3λ
´ f 1pλq

¯

Bλ

˙

´ 2pKJ ´ cqρ (Lemma 3.12)
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“ ´2iB̄F 1pλq ^ Bλ´ 2pKJ ´ cqρ

“ ´2iB̄BF pλq ´ 2pKJ ´ cqρ

“ ´2
´

KJ ´
1

2
∆gJF pλq ´ c

¯

ρ .

Now, if h denotes the Riemannian metric on Σ conformal to gJ with conformal factor equal
to eF pλq, we get

Kh “ e´F pλq
´

KJ ´
1

2
∆gJF pλq

¯

.

On the other hand, using the functional equation (3.2.5) satisfied by F , we have

rµpJ,Aq “ ´2
´

KJ ´
1

2
∆gJF pλq ´ c

¯

ρ

“ ´2
´

eF pλqKh ´ c
¯

ρ

“ ´2eF pλq
`

Kh ´ ||τ ||2Je
´3F pλq ` 1

˘

“ ´2eF pλq
`

Kh ´ ||τ ||2h ` 1
˘

ρ .

In order to finish the proof, it only remains to show that relation (3.3.2) holds, which stems
from the following identities:

2fKJρ “
2i

3λ
f
´ 1

λ
B̄ ^ Bλ´ B̄Bλ

¯

, 2iB̄Bf “ 2i
´

f2B̄λ^ Bλ` f 1B̄Bλ
¯

.

This ends the proof outside the zeroes of A, which is a finite set in Σ. Thus, the statement
follows by continuity of the expression.

Corollary 3.36. Let pJ,Aq P D3pJ pΣqq. Then rµpJ,Aq “ 0 and d∇A “ 0 if and only if
pJ,Aq P ĄHS0pΣ, ρq.

Proof. Recall from Section 3.2.2 that ĄHS0pΣ, ρq is the space of pairs pJ,Aq such that
`

h “

eF gJ , A
˘

satisfies (HS) (see also Remark 1.12). By Theorem 1.11 we know that, up to
contraction with the metric, A is the real part of a J-holomorphic cubic differential τ .
Finally, the above theorem implies that rµpJ,Aq “ 0 if and only if Kh ´ ||τ ||2h “ ´1.

3.3.3 The symplectic quotient

Here we explain how the use of symplectic reduction allows us to determine (in part)
the system of differential equations (3.2.9) defining WpJ,Aq, hence those characterizing the
tangent space to the PSLp3,Rq-Hitchin component (see Remark 3.17). Following in parallel
the construction done for Teichmüller space in Section 3.1.2, the idea is to induce our
symplectic form ωf from the ambient space D3pJ pΣqq to the quotient of rµ´1

p0q by the
group HampΣ, ρq. On the other hand, there are two major differences with the case of
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T pΣq: the first is that the infinite-dimensional space ĄHS0pΣ, ρq is cut by two equations
(see Corollary 3.36) and, only one of them, has an interpretation as a moment map. In
particular, we have to look at the space rµ´1

p0q X MC modulo HampΣ, ρq; the second is
that once we induce the symplectic form on the quotient, the pairing ωf pI¨, ¨q “ gf gives
rise to a pseudo-Riemannian metric, and this generates additional difficulties since one is
intent to identify the space WpJ,Aq with the gf -orthogonal to the HampΣ, ρq-orbit.
Our moment map rµ has values in the space of exact 2-forms on the surface, which is
contained in the dual Lie algebra of the Hamiltonian group (see Corollary 3.34). After
recalling two technical lemmas, in Proposition 3.39 we compute a primitive of the differential
of the moment map (still with values in the exact 2-forms). This will allow us, in Proposition
3.41, to perform a highly non-trivial integration by parts, which will be useful later in
discussing the (possible) presence of degenerate vectors for the pseudo-metric away from
the Fuchsian locus. Then, with Proposition 3.44 we prove the inclusion of WpJ,Aq inside
the tangent to ĄHS0pΣ, ρq, the discussion of which had been left hanging by Section 3.2.5.
Finally, inspired by the Kähler reduction of Teichmüller space, we are able to characterize
WpJ,Aq as the largest subspace in TpJ,Aq

ĄHS0pΣ, ρq that is both gf -orthogonal to the orbit
and invariant under the action of the complex structure I.
The statements and the proofs of Proposition 3.39 and Proposition 3.41 are inspired by
the analogous counterparts in the anti-de Sitter case ([MST21, Proposition 6.10 and 6.12]).
Despite that, the presence of the 1-form part in the tensor A created additional problems
during the development of the proofs, which will be highlighted throughout. We first recall
two technical lemmas that will be useful further on.

Lemma 3.37 ([MST21, Lemma 4.16]). Let B be a trace-less endomorphism of TΣ, then

p∇XBqY ´ p∇YBqX “ pdivgBqpY qX ´ pdivgBqpXqY .

Lemma 3.38 ([MST21, Lemma 4.15]). Let 9J P TJJ pΣq be an infinitesimal variation of a
complex structure on Σ. If 9∇ denotes the first order variation of the Levi-Civita connection
of gJ “ ρp¨, J ¨q along 9J , then the following holds:

9∇XY “ ´
1

2

`

pdiv 9JqpXqJY ` Jp∇X
9JqY

˘

, (3.3.3)

for every tangent vector fields X,Y on Σ.

Proposition 3.39. For every pJ,Aq P D3pJ pΣqq such that A “ g´1
J Repτq with B̄Jτ “ 0,

and for every tangent vector p 9J, 9Aq P TpJ,AqD
3pJ pΣqq we have

drµp 9J, 9Aq “ d
´

pf ´ 1qdivg 9J ` df ˝ 9J ` d 9f ˝ J ´
f 1

6
β
¯

, (3.3.4)

where f, f 1, 9f are evaluated at ||τ ||2J
2 and β is the 1-form defined as βpV q :“ x 9A0, p∇VAqJy.
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Proof. The most intricate part of the proof is encompassed in showing the following identity:
ˆ

´
2

3
f 1
`

||B̄τ ||2 ´ ||Bτ ||2
˘

ρ

˙1

“ ´d
´f 1

6
β
¯

´ 2 9fKJρ` dpf ´ 1q ^ divg 9J , (3.3.5)

where the derivative is taken with respect to pJ,Aq along tangent directions p 9J, 9Aq. Let us
assume for a moment that (3.3.5) holds and let us prove the formula stated in the theorem.
In fact, the other terms in rµ (see Theorem 3.33) are easier to handle

`

2pf ´ 1qKJρ
˘1

“ 2 9fKJρ` 2pf ´ 1qdKJp 9Jqρ (Proposition 3.9)

“ 2 9fKJρ` pf ´ 1qd
`

divg 9J
˘

.

Moreover,
`

2iB̄Bf
˘1

“ ´
`

∆gJf
˘1
ρ “ d

`

pdf ˝ Jq1
˘

“ d
`

d 9f ˝ J ` df ˝ 9J
˘

.

Combining these formulae, we get the desired expression for the moment map

drµp 9J, 9Aq “ ´d
´f 1

6
β
¯

´ 2 9fKJρ` df ^ divg 9J ` d
`

d 9f ˝ J ` df ˝ 9J
˘

` 2 9fKJρ` pf ´ 1qd
`

divg 9J
˘

“ d
´

pf ´ 1qdivg 9J ` df ˝ 9J ` d 9f ˝ J ´
f 1

6
β
¯

.

Now let us focus on proving relation (3.3.5). As was shown in Theorem 3.33, we know that:

´
2

3
f 1
`

||B̄τ ||2 ´ ||Bτ ||2
˘

“ ppωf qpJ,Aq

`

p0,∇e1Aq, p0,∇e2Aq
˘

, (3.3.6)

for any choice of a local frame te1, e2u such that ρpe1, e2q “ 1. Therefore, we can compute
the following derivative:

ˆ

´
2

3
f 1
`

||B̄τ ||2 ´ ||Bτ ||2
˘

˙1

“

ˆ

ppωf qpJ,Aq

`

p0,∇e1Aq, p0,∇e2Aq
˘

˙1

“

ˆ

´
f 1

6
x∇e1A, p∇e2AqJy

˙1

,

where in the second step we used that, for any i “ 1, 2, the endomorphism part of ∇eiA
is trace-less and gJ -symmetric. In order to simplify the computation of the derivative, let
us make some preliminary observations. Since equation (3.3.6) is true for any unit volume
local frame te1, e2u, we can further assume that it is gJ -orthonormal and does not change
as J varies along tangent directions. Moreover, the terms corresponding to variations 9J

make no contributions as tr
´

∇e1A∇e2A
9J
¯

“ 0 (see (2.2.4)). This allows us to reduce the
study of the derivative to only the following terms:
ˆ

´
2

3
f 1
`

||B̄τ ||2 ´ ||Bτ ||2
˘

˙1

“ ´
f2

24
xA, 9A0yx∇e1A, p∇e2AqJy`

´
f 1

6
xp∇e1Aq1, p∇e2AqJy ´

f 1

6
x∇e1A, p∇e2Aq1Jy ,

(3.3.7)
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and we expressed the first order variation of f 1 as f2

4 xA, 9A0y (Lemma 2.23). At this point,
using Lemma 3.38, we can obtain an expression for p∇XAq1. In fact,

p∇XAq1 “ 9∇XA` ∇XA
1

and we can compute

p 9∇XAqpY qZ “ 9∇X

`

ApY qZ
˘

´Ap 9∇XY qZ ´ApY q 9∇XZ

“
1

2

´

´ pdiv 9JqpXqJApY qZ ´ Jp∇X
9JqApY qZ ` pdiv 9JqpXqApJY qZ`

`A
`

Jp∇X
9JqY

˘

Z ` pdiv 9JqpXqApY qJZ `ApY qJp∇X
9JqZ

¯

“
1

2

´

3pdiv 9JqpXqApY qJZ `A
`

Jp∇X
9JqY

˘

Z `ApY qJp∇X
9JqZ ´ Jp∇X

9JqApY qZ
¯

where we used ApJY qZ “ ApY qJZ and ApY qJZ “ ´JApY qZ. As for the term involving
the derivative of A, we first notice that A1 “ J 9JA` 9A, hence

p∇XA
1q “ J∇X

9JA` J 9J∇XA` ∇X
9A0 ` ∇X

9Atr

“ J∇X
9JA` J 9J∇XA` ∇X

9A0 `
1

2

´

tr
´

∇X
9JJA

¯

` tr
´

9JJ∇XA
¯¯

.

Now, choosing X “ e1 and observing that the two trace terms in p∇e1A
1q and the four

elements AJ∇e1
9J, J∇e1

9JA, J∇e1
9JA, J 9J∇e1A are zero once they pair with p∇e2AqJ using

the scalar product (2.2.4), we get

´
f 1

6
xp∇e1Aq1, p∇e2AqJy “ ´

f 1

4
pdiv 9Jqpe1qxAJ, p∇e2AqJy ´

f 1

6
x∇e1

9A0, p∇e2AqJy

´
f 1

12
xA

`

∇e1
9J ¨
˘

J,∇e2AJy .

Moreover, since x∇e1A, p∇e2Aq1Jy “ ´xp∇e1AqJ, p∇e2Aq1y, performing a similar computa-
tion as above, we obtain

f 1

6
xp∇e2Aq1, p∇e1AqJy “

f 1

4
pdiv 9Jqpe2qxAJ, p∇e1AqJy `

f 1

6
x∇e2

9A0, p∇e1AqJy

`
f 1

12
xA

`

∇e2
9J ¨
˘

J,∇e1AJy .
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Combining everything together in (3.3.7), we have
´

´
2

3
f 1
`

||B̄τ ||2 ´ ||Bτ ||2
˘

¯1

“ ´
f2

24
xA, 9A0yx∇e1A, p∇e2AqJy `

f 1

4

´

pdiv 9Jqpe2qx∇e1A,Ay

´ pdiv 9Jqpe1qxAJ, p∇e2AqJy

¯

´
f 1

6

´

x∇e1
9A0, p∇e2AqJy

` x∇e1A, p∇e2
9A0qJqy

¯

`
f 1

12

´

x∇e1A,A
`

∇e2
9J ¨
˘

y

´ xA
`

∇e1
9J ¨
˘

,∇e2Ay

¯

,

(3.3.8)
where we used, again, the symmetry and the compatibility of the scalar product with J (see
(2.2.5)). Regarding the divergence term found in (3.3.8), it can be elaborated as follows:

f 1

4

´

pdiv 9Jqpe2qx∇e1A,Ay ´ pdiv 9Jqpe1qxA,∇e2Ay

¯

“ ´
`

div 9J ^ df
˘

pe1, e2q

“
`

dpf ´ 1q ^ div 9J
˘

pe1, e2q ,

where we used df “
f 1

4 xA,∇‚Ay. Comparing relation (3.3.5) with (3.3.8), the proof is
complete if we show that

piq ´ d
´f 1

6
β
¯

pe1, e2q “ ´
f2

24
xA, 9A0yx∇e1A, p∇e2AqJy ` 2 9fKJ`

´
f 1

6

´

x∇e1
9A0, p∇e2AqJy ` x∇e1A, p∇e2

9A0qJqy

¯

,

piiq x∇e1A,A
`

∇e2
9J ¨
˘

y ´ xA
`

∇e1
9J ¨
˘

,∇e2Ay “ 0 .

Proof of relation piq
First notice that if A “ 0 then the relation is clearly satisfied. Suppose A is not identically
zero, then

´d
´f 1

6
β
¯

“ ´
1

6
df 1 ^ β ´

f 1

6
dβ “ ´

f2

24
xA,∇‚Ay ^ β ´

f 1

6
dβ .

Regarding the differential of βp‚q “ x 9A0, p∇‚AqJy we get

dβpe1, e2q “ e1 ¨
`

x 9A0, p∇e2AqJy
˘

´ e2 ¨
`

x 9A0, p∇e1AqJy
˘

´ x 9A0, p∇re1,e2sAqJy

“ x∇e1
9A0, p∇e2AqJy ´ x∇e2

9A0, p∇e1AqJy ` x 9A0,
`

∇e1∇e2A´ ∇e2∇e1A´ ∇re1,e2sA
˘

Jy

“ x∇e1
9A0, p∇e2AqJy ´ x∇e2

9A0, p∇e1AqJy ´ 3KJxA, 9A0y ,

where the last equality follows from R∇pe1, e2qA “ 3KJAJ since R∇pe1, e2q “ ∇e1∇e2 ´

∇e2∇e1 ´ ∇re1,e2s. Thus,

´
f 1

6
dβpe1, e2q “ ´

f 1

6

´

x∇e1
9A0, p∇e2AqJy ´ x∇e2

9A0, p∇e1AqJy

¯

` 2 9fKJ . (3.3.9)
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Concerning the other therm, we need to prove that
`

xA,∇‚Ay ^ β
˘

pe1, e2q “ xA, 9A0yx∇e1A, p∇e2AqJy .

Notice that, for any p P Σ outside the zeroes of A, the elements pA1qp :“
`

Ape1q
˘

p
and

pA1Jqp :“
`

Ape1qJ
˘

form a basis for the space of gJ -symmetric and trace-less endomor-
phisms of TpΣ. In particular, using the scalar product x¨, ¨y we can write

9A0 “
1

||A||2

´

xA, 9A0yA` xAJ, 9A0yAJ
¯

, ∇e1A “
1

||A||2

´

xA,∇e1AyA` xAJ,∇e1AyAJ
¯

.

Replacing these identities in the previous equation, we obtain
`

xA,∇‚Ay ^ β
˘

pe1, e2q “ xA,∇e1Ayx 9A0, p∇e2AqJy ´ xA,∇e2Ayx 9A0, p∇e1AqJy

“
xA,∇e1Ay

||A||2

´

x 9A0, AyxA, p∇e2AqJy ` x 9A0, AJyxAJ, p∇e2AqJy

¯

´
xA,∇e2Ay

||A||2

´

x 9A0, AyxA, p∇e1AqJy ` x 9A0, AJyxAJ, p∇e1AqJy

¯

“
x 9A0, Ay

||A||2

´

xA,∇e1AyxA, p∇e2AqJy ´ xA,∇e2AyxA, p∇e1AqJy

¯

“
x 9A0, Ay

||A||2
¨
@

xA,∇e1AyA` xAJ,∇e1AyAJ ; p∇e2AqJ
D

“ xA, 9A0yx∇e1A, p∇e2AqJy .

Since the relation is true on the complement of a finite set in Σ (the zeroes of A), it extends
on the whole surface by continuity of the expression.
Proof of relation piiq
As explained at the beginning of the section, the presence of the 1-form part in the tensor
A generates further difficulties. In fact, one has to deal with terms of the form A

`

∇ei
9J ¨
˘

which do not appear in the anti-de Sitter case. First of all notice that if A is identically
zero, then the relation is clearly satisfied. Hence, let us assume that this is not the case. In
the following, we will use the notations introduced in the proof of Theorem 3.33. Namely,

∇e1A “ pA1q1e˚
1 ` pA2q1e˚

2 , ∇e2A “ pA1q2e˚
1 ` pA2q2e˚

2 ,

where Aj :“ Apejq for j “ 1, 2 and since A “ g´1
J C, we have

A1 “

ˆ

C111 C112

C112 ´C111

˙

, A2 “

ˆ

C112 ´C111

´C111 ´C112

˙

,

pA1qk :“

ˆ

p∇kCq111 p∇kCq112

p∇kCq112 ´p∇kCq111

˙

, pA2qk :“

ˆ

p∇kCq112 ´p∇kCq111

´p∇kCq111 ´p∇kCq112

˙

, k “ 1, 2
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p∇kCqjlm :“ p∇ekCqpej , el, emq “ gJ
`

p∇ekAqpejq ¨ el, em
˘

.

By assumption, C is the real part of a holomorphic cubic differential and, this is equivalent
(see Theorem 1.11), to require that p∇JXAqp¨q “ p∇XAqpJ ¨q for any vector field X on the
surface. In particular, we obtain the following additional relations

p∇2Cq111 “ p∇1Cq112, p∇2Cq112 “ ´p∇1Cq111 . (3.3.10)

The next step is to write explicitly, in a similar way, the tensors

A
`

∇e1
9J ¨
˘

“ p rA1q1e˚
1 ` p rA2q1e˚

2 , A
`

∇e2
9J ¨
˘

“ p rA1q2e˚
1 ` p rA2q2e˚

2 .

For any p P Σ outside the zeroes of A, the elements A1 and A2 “ A1J form a basis for the
space of gJ -symmetric and trace-less endomorphisms of TpΣ. In particular, both ∇e1

9J and
∇e2

9J can be written in this basis as

∇e1
9J “

1

tr
`

A2
1

˘

´

tr
´

∇e1
9JA1

¯

A1 ` tr
´

A1J∇e1
9J
¯

A2

¯

∇e2
9J “

1

tr
`

A2
1

˘

´

tr
´

∇e2
9JA1

¯

A1 ` tr
´

A1J∇e2
9J
¯

A2

¯

.

This new form of the endomorphisms allows us to compute their values on the gJ -orthonormal
basis of the tangent to the surface

∇e1
9J ¨ e1 “

1

tr
`

A2
1

˘

´

tr
´

∇e1
9JA1

¯

C111 ` tr
´

A1J∇e1
9J
¯

C112

¯

e1

`
1

tr
`

A2
1

˘

´

tr
´

∇e1
9JA1

¯

C112 ´ tr
´

A1J∇e1
9J
¯

C111

¯

e2

∇e1
9J ¨ e2 “

1

tr
`

A2
1

˘

´

tr
´

∇e1
9JA1

¯

C112 ´ tr
´

A1J∇e1
9J
¯

C111

¯

e1

´
1

tr
`

A2
1

˘

´

tr
´

∇e1
9JA1

¯

C111 ` tr
´

A1J∇e1
9J
¯

C112

¯

e2

and the same calculation can be done for ∇e2
9J . In particular, we obtain

p rA1qk “
1

tr
`

A2
1

˘

´

tr
´

∇ek
9JA1

¯

`

C111A1 ` C112A2

˘

` tr
´

A1J∇ek
9J
¯

`

C112A1 ´ C111A2

˘

¯

,

p rA2qk “
1

tr
`

A2
1

˘

´

tr
´

∇ek
9JA1

¯

`

C112A1 ´ C111A2

˘

´ tr
´

A1J∇ek
9J
¯

`

C111A1 ` C112A2

˘

¯

.
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To conclude, we notice that tr
`

A2
1

˘

“ 2
`

C2
111 ` C2

112

˘

, hence

x∇e1A,A
`

∇e2
9J ¨
˘

y ´ xA
`

∇e1
9J ¨
˘

,∇e2Ay “ tr
´

pA1q1p rA1q2 ` pA2q1p rA2q2
¯

´ tr
´

pA1q2p rA1q1 ´ pA2q2p rA2q1
¯

“ 0 .

Since the relation is true on the complement of a finite set in Σ (the zeroes of A), it extends
on the whole surface by continuity of the expression.

Remark 3.40. In analogy with what happens for the PSLp2,Rq ˆ PSLp2,Rq case (see
[MST21, Remark 6.11]), we fix a primitive of drµ found in Proposition 3.39 and we consider
the linear map LpJ,Aq : TpJ,AqD

3pJ pΣqq Ñ Ω1pΣq{B1pΣq Ă SpΣ, ρq˚ which associates to
each tangent vector p 9J, 9Aq the above primitive (modulo exact 1-forms). With an abuse of
notation we will denote this primitive by drµp 9J, 9Aq ” LpJ,Aqp

9J, 9Aq.

Proposition 3.41. Let pJ,Aq P ĄHS0pΣ, ρq, then for every p 9J, 9Aq P TpJ,AqD
3pJ pΣqq and

for every symplectic vector field V , we have

ωf
`

pLV J, g´1
J LV Cq; p 9J, 9Aq

˘

“ ´xdrµp 9J, 9Aq | V yS (3.3.11)

Proof. Before we begin the proof of the formula stated in the proposition, let us make some
preliminary remarks. For any vector field X on the surface, let use define the operator
MX : ΓpTΣq Ñ ΓpTΣq as MXpY q :“ ∇g

YX, where ∇g is the Levi-Civita connection with
respect to g ” gJ “ ρp¨, J ¨q. The endomorphism MX can be decomposed as

MX “
trpMXq

2
1 ´

trpJMXq

2
J `M s

X ,

where the first term is the trace part, the second one is the g-skew-symmetric part, and the
third one is the g-symmetric and trace-less part. If X “ V is a ρ-symplectic vector field,
then the trace part of MV vanishes. Since J is ∇g-parallel, we have MJV “ JMV and its
decomposition is given by

MJV “ JMV “
trpJMV q

2
1 ` 0 ` JM s

V . (3.3.12)

In particular, the g-skew-symmetric part of MJV vanishes and JM s
V “ M s

JV . Recall that
(see (3.2.18)) we found the following formula for the Lie derivative of C expressed in terms
of the tensor A

pg´1LV Cqp¨q “ p∇VAqp¨q `ApMV ¨q `Ap¨qMV `M˚
VAp¨q ,
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which can be re-written using the decomposition of MV found above

pg´1LV Cqp¨q “ p∇VAqp¨q ´
3

2
trpJMV qAJ `A

`

M s
V ¨

˘

looooooooooooooooooooooooomooooooooooooooooooooooooon

trace-less

`AM s
V `M s

VA
looooooomooooooon

trace part

. (3.3.13)

At this point, we can compute the symplectic form

pωf q
`

pLV J, g´1LV Cq, p 9J, 9Aq
˘

“

ż

Σ

´

pf ´ 1qxLV J, J 9Jy ´
f 1

6
xpg´1LV Cq0, p 9AJ `A 9Jq0y

`
f 1

12
xpg´1LV Cqtr, p 9AJ `A 9Jqtry

¯

ρ

“

ż

Σ

´

pf ´ 1qxLV J, J 9Jy ´
f 1

6
x∇VA´

3

2
trpJMV qAJ, 9A0Jy

´
f 1

6

`

xA
`

M s
V ¨

˘

, 9A0Jy ´
1

2
xAM s

V `M s
VA, p

9AJ `A 9Jqtry
˘

¯

ρ

In order to simplify the third and fourth term in the integral, we make us of the following
identity which will be proven at the end

xA
`

M s
V ¨

˘

, 9A0Jy ´
1

2
xAM s

V `M s
VA, p

9AJ `A 9Jqtry “ 0 . (3.3.14)

Regarding the first term in the symplectic form, we use Lemma 3.8 and we obtain
ż

Σ
pf ´ 1qxLV J, J 9Jyρ “

ż

Σ

´

p1 ´ fqpdivg 9JqpV q ` pf ´ 1qdivgp 9JV q

¯

ρ

“

ż

Σ

´

p1 ´ fqpdivg 9JqpV q ´ dfp 9JV q ` divg
`

pf ´ 1q 9JV
˘

¯

ρ

“ ´

ż

Σ

´

pf ´ 1qpdivg 9JqpV q ` dfp 9JV q

¯

ρ .

Moving on to the second term in the symplectic form

´

ż

Σ

f 1

6
x∇VA´

3

2
trpJMV qAJ, 9A0Jyρ “ ´

ż

Σ

´

´
f 1

6
βpV q ´ 9fdivgpJV q

¯

ρ

“ ´

ż

Σ

´

´
f 1

6
βpV q ` d 9fpJV q ´ divgp 9fJV q

¯

ρ

“ ´

ż

Σ

´

´
f 1

6
βpV q ` d 9fpJV q

¯

ρ .

In the end, combining the above two relations with (3.3.14), we obtain

pωf q
`

pLV J, g´1LV Cq, p 9J, 9Aq
˘

“ ´

ż

Σ

´

pf ´ 1qpdivg 9JqpV q ` dfp 9JV q ´
f 1

6
βpV q ` d 9fpJV q

¯

ρ
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“

ż

Σ
ιV

´

pf ´ 1qdivg 9J ` df ˝ 9J ´
f 1

6
β ` d 9f ˝ J

¯

ρ

“

ż

Σ

´

pf ´ 1qdivg 9J ` df ˝ 9J ´
f 1

6
β ` d 9f ˝ J

¯

^ ιV ρ

“ ´xdrµp 9J, 9Aq | V yS ,

where in the third step we used equation (3.1.6).
Proof of relation (3.3.14)
Once again, the presence of the 1-form part in A makes the analysis more difficult. In fact,
there is an additional term which does not appear in the anti-de Sitter case. If A “ 0 the
identity is clearly satisfied. Suppose A ‰ 0, then for any p P Σ outside the zeroes of A
the elements A1 and A2 “ A1J form a basis for the space of gJ -symmetric and trace-less
endomorphisms of TpΣ. Let te1, e2u be a gJ -orthonormal basis and let te˚

1 , e
˚
2u be its dual.

Following the approach used to prove Proposition 3.39, we have

A
`

M s
V ¨

˘

“
1

tr
`

A2
1

˘

´

trpM s
VA1q

`

C111A1 ` C112A2

˘

` trpA1JM
s
V q

`

C112A1 ´ C111A2

˘

¯

e˚
1

`
1

tr
`

A2
1

˘

´

trpM s
VA1q

`

C112A1 ´ C111A2

˘

` trpA1JM
s
V q

`

C111A1 ` C112A2

˘

¯

e˚
2 ,

AM s
V `M s

VA “ trpM s
VA1q1e˚

1 ` trpA1JM
s
V q1e˚

2 ,

p 9AJ `A 9Jqtr “
1

2
tr
´

9A2

¯

1e˚
1 ´

1

2
tr
´

9A1

¯

1e˚
2 ,

9A0J “ p 9A1q0Je
˚
1 ` p 9A2q0Je

˚
2

In particular, we can write the two terms in (3.3.14) as follows:

´
1

2
xAM s

V `M s
VA, p

9AJ `A 9Jqtry “ ´
1

2

´

tr
´

9A2

¯

trpA1M
s
V q ´ tr

´

9A1

¯

trpA1M
s
JV q

¯

,

xA
`

M s
V ¨

˘

, 9A0Jy “
trpA1M

s
V q

tr
`

A2
1

˘

´

C111 tr
´

A1p 9A1q0J
¯

` C112 tr
´

A2p 9A1q0J
¯¯

`
trpA1M

s
V q

tr
`

A2
1

˘

´

C112 tr
´

A1p 9A2q0J
¯

´ C111 tr
´

A2p 9A2q0J
¯¯

`
trpA1M

s
JV q

tr
`

A2
1

˘

´

C112 tr
´

A1p 9A1q0J
¯

´ C111 tr
´

A2p 9A1q0J
¯¯

´
trpA1M

s
JV q

tr
`

A2
1

˘

´

C111 tr
´

A1p 9A2q0J
¯

` C112 tr
´

A2p 9A2q0J
¯¯

.
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Finally, writing 9A in term of the variations of the tensor C, namely

9A1 “

ˆ

9C111
9C112

9C112
9C122

˙

, 9A2 “

ˆ

9C112
9C122

9C122
9C222

˙

and using that tr
´

Aip 9Akq0J
¯

“ tr
´

Ai 9AkJ
¯

for any i, j “ 1, 2, a direct computation shows
the desired equality. Since (3.3.14) holds on the complement of a finite set in Σ, it holds
everywhere by continuity of the expression.

Remark 3.42. It is crucial to emphasize the importance of the result just proved. From
the general theory of moment maps (see Definition B.3) we know that (3.3.11) follows from
Corollary 3.34 if drµ is paired with Hamiltonian vector fields. The point is that rµ can
not be promoted to a moment map for the action of SymppΣ, ρq, which still preserves ωf .
In particular, the formula showed above is far from being obvious when computed for a
symplectic vector field, which decomposes as the sum of a harmonic and a Hamiltonian
vector field (see (3.1.2)).

Lemma 3.43. Let pJ,Aq P D3pJ pΣqq, then the kernel of the linearized Codazzi-like equation
d∇A “ 0 is given by

␣

p 9J, 9Aq P TpJ,AqD
3pJ pΣqq | d∇ 9A0p‚, ‚q ´ Jpdivg 9J ^Aqp‚, ‚q “ 0

(

.

Proof. Recall that, for any vector fields X,Y, Z P ΓpTΣq, we have

pd∇AqpX,Y qZ “ p∇XAqpY qZ ´ p∇YAqpXqZ . (3.3.15)

Therefore, we need to compute the derivative of (3.3.15) with respect to variations of pJ,Aq.
For instance,

´

p∇XAqpY qZ ´ p∇YAqpXqZ
¯1

“ p 9∇XAqpY qZ ´ p 9∇YAqpXqZ ` pd∇A1qpX,Y qZ ,

where A1 “ J 9JA` 9A. The part involving the variation of the connection has already been
computed in the proof of Proposition 3.39

p 9∇XAqpY qZ “
1

2

´

3pdiv 9JqpXqApY qJZ `A
`

Jp∇X
9JqY

˘

Z `ApY qJp∇X
9JqZ ´ Jp∇X

9JqApY qZ
¯

.

Subtracting the term p 9∇YAqpXqZ from the last expression and using Lemma 3.37 on
A
`

p∇X
9JqY ´ p∇Y

9JqX
˘

, we get

p 9∇XAqpY qZ ´ p 9∇YAqpXqZ “ J
´

pdiv 9JqpY qApXq ´ pdiv 9JqpXqApY q

¯

Z `
1

2
JApXqp∇Y

9JqZ

`
1

2
J
´

p∇Y
9JqApXq ´ApY qp∇X

9Jq ´ p∇X
9JqApY q

¯

Z
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“ ´Jpdiv 9J ^AqpX,Y qZ `
1

2
JApXqp∇Y

9JqZ

`
1

2
J
´

p∇Y
9JqApXq ´ApY qp∇X

9Jq ´ p∇X
9JqApY q

¯

Z .

Regarding the term with the exterior covariant derivative of A1, we have

pd∇A1qpX,Y qZ “ pd∇pJ 9JAqqpX,Y qZ
looooooooooomooooooooooon

term paq

` pd∇ 9AtrqpX,Y qZ
looooooooomooooooooon

term pbq

`pd∇ 9A0qpX,Y qZ . (3.3.16)

The term paq is easy to handle since ∇‚J “ 0 and d∇A “ 0,

pd∇pJ 9JAqqpX,Y qZ “ ∇XpJ 9JAqpY qZ ´ ∇Y pJ 9JAqpXqZ

“ J
´

p∇X
9JqApY q ´ p∇Y

9JqApXq

¯

Z .

As for the term pbq, recall that 9Atr “ 1
2 tr

´

9JJA
¯

1, hence

pd∇ 9AtrqpX,Y qZ “ p∇X
9AtrqpY qZ ´ p∇Y

9AtrqpXqZ

“
1

2
tr
´

∇X

`

9JJApY q
˘

¯

Z ´
1

2
tr
´

∇Y

`

9JJApXq
˘

¯

Z

“
1

2
tr
´

p∇X
9JqJApY q ´ p∇Y

9JqJApXq

¯

Z .

We conclude if we show that

1

2
tr
´

p∇X
9JqJApY q ´ p∇Y

9JqJApXq

¯

Z “ ´Jp∇X
9JqApY qZ ` Jp∇Y

9JqApXqZ

´
1

2
JApXqp∇Y

9JqZ ´
1

2
Jp∇Y

9JqApXqZ

`
1

2
JApY qp∇X

9JqZ `
1

2
Jp∇X

9JqApY qZ ,

which follows from the fact that the elements JApXq∇Y
9J´Jp∇Y

9JqApXq and Jp∇X
9JqApY q´

JApY q∇X
9J are both trace-term, and they can be written as

JApXq∇Y
9J ´ Jp∇Y

9JqApXq “ ´ tr
´

Jp∇Y
9JqApXq

¯

1,

Jp∇X
9JqApY q ´ JApY q∇X

9J “ ´ tr
´

JApY q∇X
9J
¯

1 .
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Proposition 3.44. Let pJ,Aq P ĄHS0pΣ, ρq and consider the space WpJ,Aq defined by the
system of equations (3.2.9). Then,

WpJ,Aq Ă TpJ,Aq
ĄHS0pΣ, ρq .

Proof. According to Corollary 3.36, the infinite-dimensional space ĄHS0pΣ, ρq can be seen
as the intersection of rµ´1

p0q with MC :“ tpJ,Aq P D3pJ pΣqq | d∇A “ 0u. In particular,
the tangent space to the pre-image of the zero locus of the moment map is identified with
Ker

`

drµ
˘

. On the other hand, Proposition 3.39 and Lemma 3.43 together implies that

p 9J, 9Aq P TpJ,Aq
ĄHS0pΣ, ρq ðñ

#

d
´

pf ´ 1qdivg 9J ` df ˝ 9J ` d 9f ˝ J ´
f 1

6 x 9A0, p∇‚AqJy

¯

“ 0

d∇ 9A0p‚, ‚q ´ Jpdivg 9J ^Aqp‚, ‚q “ 0

Looking again at the equations (3.2.9) defining the space WpJ,Aq, it is clear that

WpJ,Aq Ă TpJ,Aq
ĄHS0pΣ, ρq .

At this point, it must be noted that the subspace we are interested in can be described
as

WpJ,Aq “

"

p 9J, 9Aq P TpJ,AqD
3pJ pΣqq

ˇ

ˇ

ˇ

ˇ

p 9J, 9Aq, Ip 9J, 9Aq P Kerpdrµq

d∇ 9A0p‚, ‚q´Jpdivg 9J^Aqp‚, ‚q “ 0

*

(3.3.17)

which clarifies the connection of the first two equations in (3.2.9) with symplectic reduction
theory.

Theorem G. For any pJ,Aq P ĄHS0pΣ, ρq, the vector space WpJ,Aq is the largest subspace
in TpJ,Aq

ĄHS0pΣ, ρq that is:

‚ invariant under the complex structure I;

‚ gf -orthogonal to the orbit TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

.

Proof. Recall from Corollary 3.36 that the space ĄHS0pΣ, ρq can be identified with rµ´1
p0qX

MC, where MC :“ tpJ,Aq P D3pJ pΣqq | d∇A “ 0u. Let us denote with ĂW the largest
subspace in TpJ,Aq

ĄHS0pΣ, ρq that is gf -orthogonal to TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

and I-
invariant. Suppose that p 9J, 9Aq P ĂW , hence the same is true for Ip 9J, 9Aq by I-invariance.
In particular, both p 9J, 9Aq and Ip 9J, 9Aq lie in Kerpdrµq. We now note that p 9J, 9Aq is gf -
orthogonal to the HampΣ, ρq-orbit if and only if Ip 9J, 9Aq lies in Kerpdrµq thanks to the
following computation

gf
`

pLV J, g´1
J LV Cq, p 9J, 9Aq

˘

“ ´gf
`

pLV J, g´1
J LV Cq, I2p 9J, 9Aq

˘



93 3.4. THE PSEUDO-METRIC IS NON-DEGENERATE

“ ´ωf
`

pLV J, g´1
J LV Cq, Ip 9J, 9Aq

˘

“ xdrµ
`

Ip 9J, 9Aq
˘

| V yH, @ V P HpΣ, ρq .

by definition of moment map. This implies that an element p 9J, 9Aq belongs to ĂW if and only
if

$

’

&

’

%

drµp 9J, 9Aq “ 0

drµ
`

Ip 9J, 9Aq
˘

“ 0

d∇ 9A0p‚, ‚q ´ Jpdivg 9J ^Aqp‚, ‚q “ 0 ,

which is equivalent to the system of partial differential equations (3.2.9) defining the sub-
space WpJ,Aq (see Proposition 3.39).

3.4 The pseudo-metric is non-degenerate

Here we discuss the possible presence of degenerate vectors for gf away from the Fuchsian
locus and we present the results obtained suggesting the non-degeneracy of the pseudo-
metric over the entire PSLp3,Rq-Hitchin component.

3.4.1 The finite-dimensional quotient

Although the main part of the results have been shown, it still remains to prove Theo-
rem K, namely the identification of Hit3pΣq with the finite dimensional quotient rBpΣq{H,
where rBpΣq is the smooth manifold of real dimension 16g ´ 16 ` 2g isomorphic to the
quotient of the space ĄHS0pΣ, ρq by the group HampΣ, ρq (see Theorem J), and H :“
Symp0pΣ, ρq{HampΣ, ρq is isomorphic to H1

dRpΣ,Rq (see Lemma 3.2). The tangent space
TrJ,As

rBpΣq is identified with the vector spaceWpJ,Aq which is defined as the space of solutions
to the following system of differential equations

$

’

&

’

%

d
`

div
`

pf ´ 1q 9J
˘

` d 9f ˝ J ´
f 1

6 β
˘

“ 0

d
`

div
`

pf ´ 1q 9J
˘

˝ J ` d 9f0 ˝ J ´
f 1

6 β ˝ J
˘

“ 0

d∇ 9A0p‚, ‚q ´ Jpdiv 9J ^Aqp‚, ‚q “ 0

Let us denote with α1 and α2 the 1-forms in the above system whose differential is zero
and let us introduce the vector space

VpJ,Aq :“

"

p 9J, 9Aq P TpJ,Aq
ĄHS0pΣ, ρq

ˇ

ˇ

ˇ

ˇ

α1 ` iα2 is exact
d∇ 9A0p‚, ‚q´Jpdiv 9J^Aqp‚, ‚q “ 0

*

(3.4.1)

It is not difficult to see, following the lines of the proof of Lemma 3.23 and Lemma 3.25,
that VpJ,Aq is invariant under the action of SymppΣ, ρq and the complex structure I. In
what follows, although we will use the term "symplectic form" to denote ωf , we do not yet
know whether on the spaces we are considering ωf is actually non-degenerate. In any case,
with abuse of terminology, the results we are about to present still apply.
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Proposition 3.45. There is a ωf -orthogonal decomposition

WpJ,Aq “ VpJ,Aq

Kωf

‘ SpJ,Aq ,

where SpJ,Aq :“ t
`

LXJ, g´1
J LXC

˘

| X P ΓpTΣq, dpιXρq “ dpιJXρq “ 0u – TpJ,Aq

`

H ¨pJ,Aq
˘

is the tangent space to the harmonic orbit.

Proof. Recall that, according to (3.3.11), for any symplectic vector field X on the surface
and for any p 9J, 9Aq P TpJ,AqD

3pJ pΣqq, we have

ωf
`

pLXJ, g´1
J LXCq; p 9J, 9Aq

˘

“ ´xdrµp 9J, 9Aq | XyS ,

where drµp 9J, 9Aq denotes the primitive found in Proposition 3.39 (see also Remark 3.40). In
particular, if p 9J, 9Aq P VpJ,Aq such a primitive equals the 1-form α1 considered in (3.4.1),
hence it is exact. Using the non-degenerate symplectic pairing (3.1.5), we get

ωf
`

pLXJ, g´1
J LXCq; p 9J, 9Aq

˘

“ ´xdrµp 9J, 9Aq, XyS “ 0 ,

for any symplectic vector field X and for any p 9J, 9Aq P VpJ,Aq. In other words, VpJ,Aq is
ωf -orthogonal to the symplectic orbit and it coincides with the ωf -orthogonal to SpJ,Aq

inside WpJ,Aq. For this reason, we can conclude if we show that

VpJ,Aq X SpJ,Aq “ t0u .

Suppose there exists a harmonic vector field X such that pLXJ, g´1
J LXCq P VpJ,Aq. By

definition of VpJ,Aq, the 1-form

rα1 :“ div
´

pf ´ 1qLXJ
¯

` d 9f ˝ J ´
f 1

6
x
`

g´1
J LXC

˘

0
, p∇‚AqJy

is exact. Therefore,
ż

Σ
rα1 ^ ιUρ “ ´xdrµ

`

LXJ, g´1
J LXC

˘

, UyS (rel. (3.1.6))

“ 0, @U P SpΣ, ρq .

Since X is harmonic, we can choose U “ JX and obtain

0 “

ż

Σ

´

div
´

pf ´ 1qLXJ
¯

` d 9f ˝ J ´
f 1

6
β
¯

^ ιJXρ (rel. (3.1.6))

“

ż

Σ

´

div
´

pf ´ 1qLXJ
¯

` d 9f ˝ J ´
f 1

6
β
¯

`

JX
˘

ρ

“

ż

Σ

´

div
´

pf ´ 1qLXJ
¯

´
f 1

6
β
¯

pJXqρ´

ż

Σ
pd 9fqpXqρ
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“

ż

Σ

´

div
´

pf ´ 1qLXJ
¯

´
f 1

6
β
¯

pJXqρ´

ż

Σ

`

divp 9fXq ´ 9f divpXq
˘

ρ

“

ż

Σ

´

div
´

pf ´ 1qLXJ
¯

´
f 1

6
β
¯

pJXqρ . (X is harmonic)

Now let us compute the term

βpJXq “ x
`

g´1
J LXC

˘

0
, p∇JXAqJy (Theorem 1.11)

“ ´x
`

g´1
J LXC

˘

0
,∇XAy (rel. (3.3.13))

“ ´x∇XA´
3

2
trpJMXqAJ `A

`

M s
X ¨

˘

,∇XAy (JX is symplectic)

“ ´x∇XA`A
`

M s
X ¨

˘

,∇XAy

“ ´||∇XA||2 ´ xA
`

M s
X ¨

˘

,∇XAy (Theorem 1.11)

“ ´||∇XA||2 ` xA
`

M s
X ¨

˘

, p∇JXAqJy (∇‚J “ 0)

“ ´||∇XA||2 ` xA
`

M s
X ¨

˘

, p∇JXAqJ `A∇JXJy .

Applying equation (3.3.14) to the last term with 9A0 “ ∇JXA and 9J “ ∇JXJ , we get

βpJXq “ ´||∇XA||2 ` xA
`

M s
X ¨

˘

, p∇JXAqJ `A∇JXJy

“ ´||∇XA||2 `
1

2
xAM s

X `M s
XA,

´

p∇JXAqJ `A∇JXJ
¯

tr
y

“ ´||∇XA||2 ,

where we used that the endomorphism part of p∇JXAqJ is trace-less. In order to study
the divergence term, let us first make some preliminary observations. Let L : ΓpTΣq Ñ

End0pTΣ, gJq be the Lie derivative operator. It can be shown that its L2-adjoint is L˚p 9Jq “

´JpdivgJ
9Jq# ([Tro12]), where # : Ω1pΣq Ñ ΓpTΣq is the musical isomorphism induced by

the metric gJ . Therefore,
ż

Σ

´

div
´

pf ´ 1qLXJ
¯¯

pJXqρ “

ż

Σ
xdiv

´

pf ´ 1qLXJ
¯#
, JXyρ

“ ´

ż

Σ
xJ

´

div
´

pf ´ 1qLXJ
¯¯#

, Xyρ

“

ż

Σ
xpf ´ 1qLXJ,LXJρy

“

ż

Σ
pf ´ 1q||LXJ ||2ρ .

Referring back to the term we are interested in, we conclude
ż

Σ
pf ´ 1q||LXJ ||2ρ`

1

6

ż

Σ
f 1||∇XA||2ρ “ 0
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and, since f, f 1 are both strictly negative, this is possible if and only if LXJ “ ∇XA “ 0.
Given that on a Riemann surface pΣ, Jq of genus g ě 2 there are no non-zero biholomor-
phism isotopic to the identity, it follows that X “ 0.

Lemma 3.46. The vector space SpJ,Aq is a complex-symplectic subspace of
`

WpJ,Aq, I,ωf
˘

isomorphic to H1
dRpΣ,Rq.

Proof. Requiring SpJ,Aq to be a complex subspace of
`

WpJ,Aq, I
˘

is equivalent to say that it is
preserved by the action of the complex structure. For instance, if pLXJ, g´1

J LXCq P SpJ,Aq

then I
`

LXJ, g´1
J LXC

˘

“
`

´LJXJ,´g´1
J LJX

˘

(see Lemma 3.26). Since X is harmonic, i.e.
X and JX are symplectic vector field, the element

`

´ LJXJ,´g´1
J LJX

˘

belongs to SpJ,Aq

as d
`

ιJ2Xρ
˘

“ ´d
`

ιXρ
˘

“ 0. Moreover, according to Proposition 3.45, we have

SpJ,Aq X
`

SpJ,Aq

˘Kωf “ t0u ,

which implies that SpJ,Aq is a symplectic subspace of
`

WpJ,Aq,ωf
˘

endowed with the re-
stricted symplectic form.
Now if pLXJ, g´1

J LXCq P SpJ,Aq, then dpιXρq “ dpιJXρq “ 0. In particular,

0 “ dpιJXρq “ ´dpιXρ ˝ Jq

and since ιXρ ˝ J “ ˚JpιXρq, we conclude that ιXρ is a harmonic 1-form. This gives
a well-defined map from SpJ,Aq to the space of harmonic 1-forms on the surface, which
is isomorphic to H1

dRpΣ,Rq by Hodge theory. The map is an isomorphism since for any
cohomology class rγs P H1

dRpΣ,Rq there exists a unique harmonic representative, which is
of the form ιXρ, for some harmonic vector field X on the surface (see Lemma 3.1).

Remark 3.47. It should be noted that the decomposition of Proposition 3.45 is also or-
thogonal with respect to gf . In fact, gf p¨, ¨q “ ωf pI¨, ¨q and using the I-invariance of SpJ,Aq

it follows that
VpJ,Aq “

`

SpJ,Aq

˘Kωf “
`

SpJ,Aq

˘Kgf Ă WpJ,Aq .

In Section 3.1.2, we discussed how to obtain Teichmüller space by means of symplectic
reduction theory and we argued how the symplectic form is actually part of a Kähler metric.
If µ denotes the moment map of Theorem 3.5, the quotient space rT pΣq “ µ´1p0q{HampΣ, ρq

is a smooth manifold of dimension 6g´ 6` 2g with a natural H-action. In particular, since
the action is free and proper, the quotient map p : rT pΣq Ñ T pΣq is an H-principal bundle.
On the other hand, there is a MCGpΣq-equivariant projection map rπ : rBpΣq Ñ rT pΣq which
allows us to lift the H-action from rT pΣq to rBpΣq. By a standard argument, the H-action
on rBpΣq is free and proper as well (see [Lab08, Proposition 6.3.3]). In the end, the quotient
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rBpΣq{H results in an identification with BpΣq so that the following diagram commutes

rBpΣq rT pΣq

BpΣq T pΣq

rπ

p1 p

π

where π : BpΣq Ñ T pΣq is the MCGpΣq-equivariant holomorphic vector bundle map given
by Theorem 1.20, and p1 : rBpΣq Ñ BpΣq is the quotient projection. According to Propo-
sition 3.45 and Lemma 3.46, the H-orbits in rBpΣq are complex-symplectic submanifolds,
therefore there is a well-defined complex structure I and symplectic form ωf on the quotient
(see [Tra18, Lemma 4.4.9]), giving rise to a pseudo-Kähler metric on the PSLp3,Rq-Hitchin
component. In other words, we proved the following

Theorem F. The H-action on rBpΣq is free and proper, with complex and symplectic H-
orbits. Moreover, the pseudo-Kähler structure pgf , I,ωf q descend to the quotient which is
identified with Hit3pΣq. Finally, the complex structure I induced on the PSLp3,Rq-Hitchin
component coincides with the one found by Labourie and Loftin.

3.4.2 The pseudo-metric is non-degenerate on the orbit

Here we want to study the set MC “ tpJ,Aq P D3pJ pΣqq | d∇A “ 0u, namely the subspace
of D3pJ pΣqq where the Codazzi-like equation for hyperbolic affine spheres (see (HS)) is
satisfied.

Lemma 3.48. Let pJ,Aq be a point in MC, then

TpJ,Aq

`

DiffpΣq ¨ pJ,Aq
˘

Ă TpJ,AqMC .

Moreover, the tangent space TpJ,AqMC admits the following decomposition:

VpJ,Aq

Kgf

‘ SpJ,Aq

Kgf

‘ TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

Kgf

‘ I
´

TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

¯

.

Proof. If pJ,Aq P MC, then d∇A “ 0 where ∇ is the Levi-Civita connection with respect to
gJ “ ρp¨, J ¨q. In particular, A “ g´1

J C “ g´1
J Repqq where q is a J-complex cubic differential

on pΣ, Jq so that equation d∇A “ 0 is equivalent to B̄Jq “ 0 (see Theorem 1.11). Now let
X P ΓpTΣq and consider its flow tϕtu Ă DiffpΣq, namely X “ d

dtϕt|t“0 and ϕ0 “ Id. Let us
define

Jt :“ dϕ´1
t ˝ J ˝ dϕt, Ct :“ Cpdϕt¨,dϕt¨, dϕt¨q, qt :“ ϕ˚

t q .

It is not difficult to show that q is holomorphic with respect to J if and only if qt is
holomorphic with respect to Jt. Therefore, to conclude the proof of the first part of the
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statement, we only need to show that RepCtq “ qt. This last identity can be proven with
a computation in coordinates. In fact, let tx, yu be isothermal coordinates on the surface,
so that gJ “ eupdx2 ` dy2q and q “ pP ` iQqdz3, with P ` iQ a J-holomorphic function.
Then, we get

C “ Pdx3 ´ 3Pdxd dy2 ´ 3Qdx2 d dy `Qdy3 ,

where d denotes the symmetric product. Plugging in the action of the flow pϕtq on the
expressions above for q and C gives the claim. Regarding the decomposition, we already
know by Lemma 3.1 that TpJ,Aq

`

DiffpΣq ¨ pJ,Aq
˘

splits as a direct sum

TpJ,Aq

`

H ¨ pJ,Aq
˘

‘ TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

‘ I
´

TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

¯

,

where H :“ Symp0pΣ ρq{HampΣ, ρq. In particular, by Lemma 3.46 the tangent to the
harmonic orbit is identified with SpJ,Aq. Let U be a Hamiltonian vector field on the surface.
The gf -orthogonality follows from the following computation:

gf
`

pLUJ, g´1LUCq; IpLUJ, g´1LUCq
˘

“ ωf
`

pLUJ, g´1LUCq; pLUJ, g´1LUCq
˘

“ 0 ,

and by I-invariance of SpJ,Aq, which is contained in the largest subspace in TpJ,Aq
ĄHS0pΣ, ρq

that is gf -orthogonal to the Hamiltonian orbit (see Theorem G). Finally, VpJ,Aq is gf -

orthogonal to the symplectic orbit by Proposition 3.41 and to the space I
´

TpJ,Aq

`

HampΣ, ρq¨

pJ,Aq
˘

¯

by I-invariance.

Proposition 3.49. Let pJ,Aq be a point in MC. Then, the pseudo-metric gf is non-
degenerate when restricted to the following subspaces:

SpJ,Aq, TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

, I
´

TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

¯

.

Proof. The pseudo-metric gf is non-degenerate on the Hamiltonian orbit as a consequence
of Lemma 3.29 and Theorem G, indeed they imply together the following condition

TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

X

´

TpJ,Aq

`

HampΣ, ρq ¨ pJ,Aq
˘

¯Kgf
“ t0u .

Moreover, the same is true on the Hamiltonian orbit after applying the complex structure
I since gf pI¨, I¨q “ gf p¨, ¨q. Regarding the subspace SpJ,Aq, we get the thesis directly from
the proof of Lemma 3.46 (see also Remark 3.47).

Theorem M. Let pJ,Aq be a point in MC. Then, the following are equivalent:
‚ gf is non-degenerate on TpJ,AqMC;
‚ gf is non-degenerate when restricted to VpJ,Aq, hence on the Hitchin component.

Proof. The tangent space TpJ,AqMC decomposes in the gf -ortoghonal direct sum of four
subspaces (Lemma 3.48). Thanks to Proposition 3.49 we know that the metric gf is non-
degenerate on three out of four spaces, and the one not counted is exactly VpJ,Aq. Using
that the decomposition is gf -orthogonal, the thesis follows directly.
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3.4.3 Krein spaces

Using the construction of Section 3.2.1 we can define a (formal) pseudo-Kähler structure
pgf , I,ωf q on the infinite-dimensional manifoldD3pJ pΣqq. In particular, the pseudo-metric,
and hence the symplectic form, is known to be non-degenerate. Unlike the positive definite
case, the tangent space TpJ,AqD

3pJ pΣqq will no longer have a Hilbert space structure, but
rather will be a so-called Krein space. The aim of this section is to introduce such spaces
by following the theory developed in [AI81]. Then, in Section 3.4.4, we explain how this
approach can actually lead to the proof of the absence of degenerate vectors for gf when
restricted on the PSLp3,Rq-Hitchin component.

In what follows we are going to consider a real vector space F , possibly of infinite di-
mension, endowed with a symmetric bi-linear form x¨|¨y.

Remark 3.50. Given a space
`

F , x¨|¨y
˘

as above, we do not require the value xv|vy to always
be strictly positive whenever v is non-zero, but rather consider more general situations in
which xv|vy can be positive, negative or null. In particular, if not specified, there could be
degenerate vectors for the form x¨|¨y among those that are isotropic, i.e. xv|vy “ 0.

Definition 3.51. Let F be a real vector space with a symmetric bi-linear form x¨|¨y, then

(i)
`

F , x¨|¨y
˘

is non-degenerate if there are no non-zero vectors orthogonal to the whole
space F ;

(ii) let L Ă F be a linear subspace, then it is non-degenerate with respect to the restricted
symmetric bi-linear form if

L X
`

L
˘Kx¨|¨y “ t0u .

In the following, let us denote with F` and F´ the set of vectors v P F such that
xv|vy ą 0 and xv|vy ă 0, respectively.

Lemma 3.52. Let L Ă F be a linear subspace. If there exists a decomposition L “

L`‘L´ in positive and negative part, then the linear subspace L endowed with the restricted
symmetric bi-linear form is non-degenerate.

Proof. Suppose, by contrary, there exists a non-zero vector v P L such that xv|wy “ 0 for
any w P L. By hypothesis, we can decompose v “ v` ` v´ in its positive and negative part
to get

0 “ xv|v`y “ xv`|v`y ` xv´|v`y

0 “ xv|v´y “ xv`|v´y ` xv´|v´y .

Therefore, using the symmetry of the bi-linear form, we have the following contradiction

0 ă ´xv´|v´y “ xv`|v´y “ ´xv`|v`y ă 0 .
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Remark 3.53. It must be pointed out that the decomposition of Lemma 3.52 is not
required to be orthogonal and the symmetric bi-linear form x¨|¨y is not required to be non-
degenerate on the ambient space. Moreover, the converse of the above statement is not
true (see [AI81, Example 1.33])

Definition 3.54. Let F be a real vector space endowed with a symmetric bi-linear form
x¨|¨y and a decomposition

F “ F`

K

‘ F´ , (3.4.2)

where the symbol K denotes the orthogonal with respect to x¨|¨y. Suppose also that the
linear subspace F` (resp. F´) endowed with x¨|¨y (resp. ´x¨|¨y) is a Hilbert space, then
`

F , x¨|¨y
˘

is called a Krein space.

Notice that if
`

F , x¨|¨y
˘

is a Krein space, the symmetric bi-linear form x¨|¨y is non-
degenerate by Lemma 3.52. In particular, we can define an inner product by using the
decomposition (3.4.2). In fact, if v “ v` ` v´ and w “ w` ` w´ is such a decomposition
for some v, w P F , then

pv, wq :“ xv`|w`y ´ xv´|w´y , (3.4.3)

is positive-definite. In particular, the subspaces F` and F´ are orthogonal with respect to
p¨, ¨q as well. In other words, we can think of F , endowed with p¨, ¨q, as a Hilbert space H
with an orthogonal decomposition

H “ H`

K

‘ H´ .

At first glance, the definition of the scalar product p¨, ¨q might give the impression that it
depends on the chosen orthogonal decomposition (3.4.2) (which is not unique if F admits
isotropic vectors). However, it can be shown (see [AI81, Remark 2.5 and Theorem 7.19])
that the norms induced by different orthogonal decompositions are equivalent, and thus
they induce the same topology on F . This allows us to consider continuous operators on
Krein spaces and to state a result that is fundamental for our purposes.

From now on, we will denote a Krein space as a Hilbert space H “ H`

K

‘ H´ with re-
spect to the scalar product p¨, ¨q, since as explained above, there is no issue with the choice
of a decomposition. Such a splitting, generates two mutually complementary projectors P`

and P´ mapping H on to H` and H´, respectively. In particular, P` ` P´ “ IdH and
`

P˘

˘2
“ P˘. The projectors P˘ are called canonical projectors and they are orthogonal

(self-adjoint) with respect to the scalar product p¨, ¨q:

H “ H`

K

‘ H´ “ P`H
K

‘ P´H´ .

We can also define another linear operator J : H Ñ H given by J :“ P` ´ P´, which is
called the canonical symmetry of the Krein space H.
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Lemma 3.55 ([AI81]). The canonical symmetry J is a bounded linear operator and it has
the following properties:

(i) J˚ “ J;

(ii) J2 “ IdH;

(iii) J´1 “ J˚;

where the adjoint J˚ is taken with respect to p¨, ¨q. Moreover, H˘ is an eigen-subspace of J
with eigenvalue λ “ ˘1.

The introduction of the canonical symmetry allows us to find a close relationship be-
tween the indefinite symmetric bi-linear form x¨|¨y and the scalar product p¨, ¨q, indeed we
see from their definition that:

xv|wy “ pJv, wq, @v, w P H . (3.4.4)

Lemma 3.56. Let L be a linear subspace of a Krein space
`

F , x¨|¨y
˘

, then

´

L
¯Kp¨,¨q

“

´

JL
¯Kx¨|¨y

.

Proof. This is simply a consequence of relation (3.4.4) and Lemma 3.55, since given v P F
we have

pv, wq “ 0 ðñ xv|Jwy “ 0, @w P L .

3.4.4 Conclusion

In this final paragraph of the chapter we want to explain how, the approach of Krein
spaces, can actually shed some light on the non-existence of degenerate vectors for the
pseudo-metric when restricted to VpJ,Aq. We will also discuss the reason why, in our case,
knowing that gf is non-degenerate on the symplectic orbit is not sufficient to conclude.

In what follows, we will recall the construction of the set D3pJ pΣqq that was explained
in Section 3.2.1. The final goal is to study its tangent space as an infinite-dimensional
vector space and thus its structure as a Banach space with respect to a norm that we will
introduce shortly. We recall the construction made for smooth sections, but the same holds
for sections of L2 regularity with respect to a fixed area form, so that the corresponding
space will be denoted with D3pJ pΣqqL2 . In particular, any tangent vector to D3pJ pΣqqL2

will be a L2-section as well.
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The infinite dimensional manifold D3pJ pΣqq has been defined as the space of smooth sec-
tions of the bundle

P
`

D3pJ pR2qq
˘

:“ P ˆD3pJ pR2qq
M

SLp2,Rq ÝÑ Σ ,

where SLp2,Rq acts diagonally on two factors. In particular, each element in D3pJ pΣqq can
be described as a pair pJ,Aq, with J an almost-complex structure on Σ, and A a 1-form
with values in the trace-less and gJ -symmetric endomorphisms of TΣ. Moreover, a tangent
vector p 9J, 9Aq, where 9A :“ g´1

J
9C, at pJ,Aq can be considered as the data of:

• a section 9J of EndpTΣq such that 9JJ ` J 9J “ 0, namely 9J is a gJ -symmetric and
trace-less endomorphism of TΣ;

• an EndpTΣ, gJq-valued 1-form 9A such that

9A “
9̃A0 ` T pJ,A, 9Jq `

1

2
tr
´

JA 9J
¯

1
loooooooooooooooomoooooooooooooooon

completely determined by 9J

, (3.4.5)

where 1 is the 2 ˆ 2 identity matrix and 9A0 “
9̃A0 ` T pJ,A, 9Jq is the trace-less part

of 9A. Moreover, the trace-part 9Atr and the tensor 9A0 ´
9̃A0 is uniquely determined by

9J (see Lemma 2.10).

In Section 3.2.1 we also defined a (formal) pseudo-Kähler metric pgf , I,ωf q on the infinite-
dimensional manifold D3pJ pΣqq. In particular, for any pJ,Aq P D3pJ pΣqq, the tensor

pgf qpJ,Aq

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

“

ż

Σ
p1 ´ fqx 9J, 9J 1yρ`

ż

Σ

f 1

6

´

x 9A0, 9A1
0y ´

1

2
x 9Atr, 9A1

try
¯

ρ

defines a symmetric bi-linear form on each tangent space TpJ,AqD
3pJ pΣqq, which is known

to be non-degenerate.

Theorem 3.57. For any pJ,Aq P D3pJ pΣqqL2, the tangent space TpJ,AqD
3pJ pΣqqL2 en-

dowed with pgf qpJ,Aq is a Krein space.

Proof. During the proof of the theorem we will denote by FL2 the tangent space TpJ,AqD
3pJ pΣqqL2 .

Let pJ,Aq P D3pJ pΣqqL2 , then for any p 9J, 9Aq P FL2 there is a gf -orthogonal decomposition
in positive and negative part, given by:

FL2 “
`

FL2

˘

`

Kgf

‘
`

FL2

˘

´
, (3.4.6)

where
`

FL2

˘

`
:“ tp 9J, 9Aq P FL2 |

9̃A0 “ 0u and
`

FL2

˘

´
:“ tp 9J, 9Aq P FL2 | 9J “ 0u. In fact,

using relation (3.2.2), we have

pgf qpJ,Aq

ˇ

ˇ

pFL2 q´
“

ż

Σ

f 1

6
x

9̃A0,
9̃A0yρ ă 0 (Lemma 3.11)
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pgf qpJ,Aq

ˇ

ˇ

pFL2 q`
“

ż

Σ

´

1 ´ f `
3

2
||q||2Jf

1
¯

x 9J, 9Jyρ ą 0 (Lemma 3.12 with t “
||q||2J
2 )

In particular, pgf qpJ,Aq and ´pgf qpJ,Aq are positive-definite scalar products on
`

FL2

˘

`
and

`

FL2

˘

´
, respectively. Let us denote with || ¨ ||gf the norm induced by gf on

`

FL2

˘

`
, then

´|| ¨ ||gf induces a norm on
`

FL2

˘

´
. To conclude the proof of the theorem, we show that

the above norms are equivalent to the standard L2-norms:

|| 9J ||2L2 “
1

2

ż

Σ
tr
´

9J2
¯

ρ “

ż

Σ
|| 9J ||2Jρ, || 9A||2L2 “

ż

Σ
tr
`

9A^ ˚ 9A
˘

“

ż

Σ
|| 9A||2Jρ

defined for p1, 1q-tensors 9J and p1, 2q-tensors 9A (see (2.2.3) and (2.2.4)). Since the latter
are complete norms, the former are complete as well. The functions f and f 1 appearing
in the definition of pgf qpJ,Aq are computed in ||q||2J

2 , which is a smooth function on Σ. Let
us denote with mq “ 0 (resp. Mq) the minimum (resp. the maximum) of ||q||2J . Then, we
have

´||
9̃A0||2gf “ ´

ż

Σ

f 1

6
||

9̃A0||2Jρ

ě ´
1

6

ż

Σ
f 1
´Mq

2

¯

||
9̃A0||2Jρ

“ c̃pJ, qq||
9̃A0||2L2 , c̃pJ, qq P R`

as the function ´f 1 is strictly decreasing. Moreover,

´||
9̃A0||2gf “ ´

ż

Σ

f 1

6
||

9̃A0||2Jρ

ď ´
1

6

ż

Σ
f 1p0q||

9̃A0||2Jρ

ď c̃1pJ, qq||
9̃A0||2L2 , c̃1pJ, qq P R` .

Regarding the norm induced on the positive part, first recall that 1´fptq`3tf 1ptq “ 3tg
1ptq
gptq

with gptq, g1ptq both strictly positive for any t ą 0, and it is equal to 1 when t “ 0 (Lemma
3.12). Then, notice that 1´f

´

||q||2J
2

¯

` 3
2 ||q||2Jf

1
´

||q||2J
2

¯

is a smooth function on Σ with non
negative values, hence its minimum m is positive and different from zero according to what
we observed above. Therefore, we have

|| 9J ||2gf “

ż

Σ

´

1 ´ f `
3

2
||q||2Jf

1
¯

|| 9J ||2Jρ
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ě

ż

Σ
m|| 9J ||2Jρ

“ cpJ, qq|| 9J ||2L2 , cpJ, qq P R` .

Moreover,

|| 9J ||2gf “

ż

Σ

´

1 ´ f `
3

2
||q||2Jf

1
¯

|| 9J ||2Jρ

ď

ż

Σ

´

1 ´ f
¯

|| 9J ||2Jρ (f 1 ă 0)

ď

ż

Σ

ˆ

1 ´ f
´Mq

2

¯

˙

|| 9J ||2Jρ (f decreasing)

“ c1pJ, qq|| 9J ||2L2 , c1pJ, qq P R` .

In what follows, we keep using the notation introduced in the proof of Theorem 3.57,
namely FL2 denotes the space of tangent vectors with L2-regularity and F denotes the
space of smooth tangent vectors. According to (3.4.6), let p 9J, 9Aq “ p 9J` ` 9J´, 9A` ` 9A´q be
the decomposition for a vector in FL2 , then we can introduce the canonical symmetry of
the Krein space:

Jp 9J, 9Aq :“ p 9J`, 9A`q ´ p 9J´, 9A´q “ p 9J, T pJ,A, 9Jq ` 9Atrq ´ p0, 9̃A0q ,

where T pJ,A, 9Jq is the tensor defined in Lemma 2.10. In particular,

prgf qpJ,Aq

`

p 9J, 9Aq; p 9J 1, 9A1q
˘

:“ pgf qpJ,Aq

`

Jp 9J, 9Aq; p 9J 1, 9A1q
˘

(rel. (3.4.4))

“

ż

Σ

´

1 ´ f `
3

2
||q||2Jf

1
¯

x 9J, 9J 1yρ´

ż

Σ

f 1

6
x

9̃A0,
9̃A1
0yρ

`

ż

Σ

f 1

6

´

xT pJ,A, 9Jq, 9̃A1
0y ´ x

9̃A0, T
1pJ,A, 9J 1qy

¯

ρ

defines a positive-definite scalar product on FL2 (see Lemma 3.12). Such a rgf induces the

norm ||p 9J, 9Aq||2
rgf

:“ || 9J ||gf ´ ||
9̃A0||2gf on FL2 which is complete by using the same argument

as in the proof of Theorem 3.57. In the end, the pair
`

FL2 , rgf
˘

defines a Hilbert space
and the decomposition (3.4.6) is orthogonal with respect to rgf as well. Now let us consider
the linear subspace LL2 Ă FL2 given by LL2 :“ TpJ,AqML2

C , namely it is formed by the
L2-tensors tangent to the space of pairs pJ,Aq such that d∇A “ 0. By using the scalar
product rgf , we get an Hilbert space decomposition

FL2 “ LL2

K
rgf

‘
`

LL2

˘K
rgf ,
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where the rgf -orthogonal to LL2 can be identified with the range of the linearized rgf -adjoint
of d∇, denoted with pd∇q

˚
rgf .

Lemma 3.58. In the setting explained above, the following properties hold:

‚
`

d∇
˘˚gf “ J

`

d∇
˘˚

rgf J;

‚ there are two further Hilbert space decompositions for FL2 as:

FL2 “ J
`

LL2

˘

K
rgf

‘ Range
`

pd∇q
˚gf J

˘

FL2 “
`

LL2 ` L
Kgf

L2

˘

K
rgf

‘ J
`

L0

˘

,

where L0 denotes the space of degenerate vectors in LL2 with respect to gf , namely

L0 :“ LL2 X L
Kgf

L2 .

Proof. The relation between the gf -adjoint of d∇ and its rgf -adjoint follows directly from
rgf p¨, ¨q “ gf pJ¨, ¨q and the properties of the canonical symmetry stated in Lemma 3.55.
Regarding the Hilbert space decompositions of FL2 , the first one is obtained by applying J
on (3.4.6) and using that J is orthogonal with respect to the scalar product rgf . The second
one follows from a general argument on Krein spaces ([AI81, §7]).

Remark 3.59. In Theorem M we proved that the pseudo-metric is non-degenerate on
VpJ,Aq if and only if it is so on L ” TpJ,AqMC. The same correspondence holds for tensors
with L2-regularity, but because of a standard elliptic argument applied on VpJ,Aq, one gets
the following further equivalence: gf is non-degenerate on VpJ,Aq (smooth sections) if and
only if it is non-degenerate on LL2 .

The bottom line is that VpJ,Aq is described by a system of PDEs, whose solution is far
from being explicit. On the other hand, in light of Lemma 3.48, every element inside LL2

can be written explicitly as

p 9J, 9Aq “ pLXJ ` g´1
J Repq2q, g´1

J LXC ` g´1
J Repq3qq , (3.4.7)

where X is a vector field on the surface and q2, q3 are J-holomorphic quadratic and cubic
differentials, respectively.

Conjecture 3.60. The pseudo-metric gf restricted on LL2 is non-degenerate, which is

equivalent to J
`

L0

˘

“ t0u or, in other words, LL2 ` L
Kgf

L2 is dense in FL2.
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We conclude the discussion by explaining why the results presented in Section 3.4.2,
namely the absence of degenerate vectors on the orbit, are not sufficient to conclude in
our case. The PSLp3,Rq-Hitchin component can be described (see Proposition 1.13 and
Proposition 3.14) as the following quotient space:

HS0pΣ, ρq :“

$

’

&

’

%

pJ,Cq

ˇ

ˇ

ˇ

ˇ

ˇ

J is an (almost) complex structure on Σ
C is the real part of a J-cubic differential q
`

h :“ eF
` ||q||2gJ

2

˘

gJ , A :“ g´1
J C

˘

satisfy (HS)

,

/

.

/

-

M

Symp0pΣq ,

where (HS) is the system formed by: Kh ´ ||q||2h “ ´1, i.e. Wang’s equation for hyperbolic
affine spheres in R3 and d∇A “ 0. Throughout the paper, we explained that the first
equation in the above system has an interpretation as a moment map with respect to the
action of the group of Hamiltonian symplectomorphisms of the surface. This allowed us, in
part, to find the PDEs with which we were able to describe the space VpJ,Aq. It is not clear
to us whether equation d∇A “ 0, which we have seen to be equivalent to requiring q to be
J-holomorphic, also has an interpretation as a moment map. There are contexts in which
this happens: the first one is that of self-duality equations for Higgs bundles over Riemann
surfaces, provided that the complex structure on Σ is fixed at the beginning ([Hit87]); the
second one is that of almost-Fuchsian hyperbolic 3-manifolds ([Don03],[Tra18]), and the last
one is that of maximal globally hyperbolic Anti-de Sitter 3-manifolds ([MST21]). In the for-
mer case, the cubic differential is replaced by the Higgs field of the holomorphic bundle and
the corresponding moduli space results in a hyperKähler reduction; in the remaining two
cases q is replaced by a quadratic differential on the surface and the corresponding deforma-
tion space is constructed as a hyperKähler reduction for almost-Fuchsian manifolds and a
para-hyperKähler reduction (also called hypersymplectic reduction) for Anti-de Sitter mani-
folds. The context studied by Hitchin ([Hit87]) and Donaldson-Trautwein ([Don03],[Tra18])
is quite different from ours, as in their case the metric is positive-definite on an open subset
of the quotient, and the non-degeneracy on this subspace follows by a standard argument.
Instead, in the case of hypersymplectic reduction ([DS08]), if the pseudo-metric is non-
degenerate on the orbit then it is so on the quotient. Unfortunately, even though we know
gf to be non-degenerate on the symplectic orbit (Proposition 3.49), the absence of an
interpretation of d∇A “ 0 as a moment map for does not allow us to conclude.



Chapter 4
Symplectic and metric properties

In this chapter we return to the study of the deformation space of properly convex RP2-
structures on the torus. In fact, we introduced a family of pseudo-Kähler metrics ppgf ,pI, pωf q

on B0pT 2q invariant by the action of SLp2,Rq. Any element of the aforementioned structure
can be written in coordinates according to the isomorphism B0pT 2q – H2 ˆC˚, therefore it
comes naturally to ask what might be some metric and symplectic properties of ppgf ,pI, pωf q

and how they might depend on the choice of the smooth function f . After briefly recall-
ing the Arnold-Liouville theorem in Hamiltonian mechanics, we introduce the theory of
complete Lagrangian fibrations, and we show how they are connected with a large class of
completely integrable Hamiltonian systems into which B0pT 2q falls.

4.1 The Arnold-Liouville Theorem

Definition 4.1. A Hamiltonian system is a triple pM,ω,Hq, where pM,ωq is a symplectic
manifold and H P C8pM,Rq is a function, called the Hamiltonian function.

If pM,ωq is a symplectic manifold and f P C8pM,Rq, then the Hamiltonian vector field
Xf P ΓpTMq associated with f is defined by the following property

ωpXf , Y q “ dfpY q, @Y P ΓpTMq . (4.1.1)

Definition 4.2. Let pM,ω,Hq be a Hamiltonian system. A function f P C8pM,Rq is
called an integral of motion if

ωpXf ,XHq “ 0 .

In other words, any integral of motion f is constant along the integral curves of XH .

Definition 4.3. A Hamiltonian system pM,ω,Hq is completely integrable if it possesses
n “ 1

2 dimpMq integrals of motion f1 “ H, f2, . . . , fn such that:

107
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‚ The differentials pdf1qp, . . . , pdfnqp are linearly independent for each p P M ;

‚ they are pairwise in involution, i.e. ωpXfi ,Xfj q “ 0 for each i, j “ 1, . . . , n.

The first condition in the previous definition is called independence and the second one
is called involutivity. Notice that one of the integral of motion can always be taken to be
the Hamiltonian function of the system. Furthermore, at each p P M , the Hamiltonian
vector fields associated with the integrals of motion span an isotropic subspace of TpM .
One of the most relevant results of this theory is the following

Theorem 4.4 (Arnold-Liouville, [Arn13]). Let pM,ω,Hq be a completely integrable Hamil-
tonian system of dimension 2n and with integrals of motion f1 “ H, f2, . . . , fn. Let c P Rn
be a regular value of the map f “ pf1, . . . , fnq :M Ñ Rn. Then,

‚ The level set f´1pcq is a Lagrangian submanifold of M ;

‚ if the Hamiltonian vector fields Xf1 , . . .Xfn are complete on the level set f´1pcq, then
each connected component of f´1pcq is diffeomorphic to Rk ˆTn´k, for some 0 ď k ď

n. Moreover, that component has coordinates θ1, . . . , θn called angle coordinates, in
which the flows of Xf1 , . . .Xfn are linear;

‚ there are coordinates ψ1, . . . , ψn, called action coordinates such that the manifold

pM,ωq is symplectomorphic to pRn`k ˆ Tn´k, ω0q, where ω0 “

n
ÿ

i“1

θi ^ ψi.

Remark 4.5. From a geometric point of view, regular level sets f´1pcq being Lagrangian
submanifolds implies that, in a neighborhood of a regular value, the map f : M Ñ Rn is
a Lagrangian fibration, i.e. it is locally trivial and its fibers are Lagrangian submanifolds
([DD08]).

On the other hand, one of the main limitation of this result is that the action coordi-
nates ψ1, . . . , ψn are, in general, not the given integrals of motion, since θ1, f1, . . . , θn, fn
may not form a global Darboux chart for ω.

It is worth mentioning that a first general strategy to overcome this problem was pre-
sented in [Dui80], in the case in which the Lagrangian fibration π : pM,ωq Ñ B Ă Rn has
fiber diffeomorphic to an n-dimensional torus. The crucial point is the existence of a global
Lagrangian section σ : B Ñ pM,ωq, which is guaranteed as long as H2pB,Rq – t0u. Re-
cently, Choi-Jung-Kim have presented an adapted version of this result, in the case where
each fibre of π : pM,ωq Ñ B is diffeomorphic to Rn (see Theorem 3.4.5 in [CJK20]). Their
main application was the existence of a global Darboux frame for Goldman symplectic form
ωG on the PSLp3,Rq-Hitchin component of a surface of genus at least two.
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As for our case, we are going to study Lagrangian fibrations, associated with Hamilto-
nian systems, whose fibre is neither compact nor simply connected. We will give a criterion
on the fibration that allows the action variables to be used as part of the global Darboux
frame, and we show that B0pT 2q is among the Hamiltonian systems that give rise to this
type of Lagrangian fibrations.

4.2 Complete Lagrangian fibrations

Here we briefly review and recall the fundamental results of the theory of complete La-
grangian fibrations, and we show how they are directly related to a large class of completely
integrable Hamiltonian systems. Since we could not find references with all the necessary
details, we also include the proofs of the most important steps.

Definition 4.6. A Lagrangian fibration is a triple pπ,M,Bq, where pM,ωq is a symplectic
manifold, B is an open subset of Rn contained in the set of regular values of π, the map
π : pM,ωq Ñ B is a smooth surjective submersion and for each b P B the submanifold
π´1pbq is Lagrangian in pM,ωq.

Let π : pM,ωq Ñ B be a Lagrangian fibration and let α : B Ñ T ˚B be a 1-form. Define
a vector field Xπ˚α P ΓpTMq by setting

ωpXπ˚α, ¨q “ π˚α . (4.2.1)

Proposition 4.7. For all α, β P ΓpT ˚Bq and for all f P C8pBq we have:

(i) Xπ˚pα`βq “ Xπ˚α `Xπ˚β

(ii) Xπ˚pfαq “ pπ˚fqXπ˚α

(iii) Xπ˚α P Kerπ˚

(iv)
“

Xπ˚α, Xπ˚β

‰

“ 0

Proof. Properties (i) and (ii) follow directly form the defining equation (4.2.1). Let q1, . . . , qn

be local coordinates on V Ă B such that α “

n
ÿ

i“1

αidq
i for some functions αi : V Ñ R, i “

1, . . . , n. Then, by properties (i) and (ii)

Xπ˚α “

n
ÿ

i“1

pπ˚αiqXπ˚dqi .

Since condition (iii) is pointwise, it suffices to prove that for all functions f P C8pV q we
get Xπ˚df P Kerπ˚. Let f be such a function and Y P Kerπ˚. Since π˚f is constant along
the fibre of π :M Ñ B, it follows Y pπ˚fq “ 0. On the other hand,

0 “ Y pπ˚fq “
`

π˚pdfq
˘

pY q “ ωpXπ˚df , Y q
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by definition ofXπ˚df . Since the last equality holds for all vertical fields Y , we haveXπ˚df P

pKerπ˚qKω . The map π defines a Lagrangian fibration, which implies that pKerπ˚qKω “

Kerπ˚ and property (iii) follows.
For the last property, let α, β P ΓpT ˚Bq and locally write

α “

n
ÿ

i“1

αidq
i, β “

n
ÿ

j“1

βidq
i

for smooth functions αi, βj . Then

rXπ˚α, Xπ˚βs “

n
ÿ

i,j“1

rpπ˚αiqXπ˚dqi , pπ
˚βjqXπ˚dqj s “

n
ÿ

i,j“1

ˆ

pπ˚αiqpπ˚βjqrXπ˚dqi , Xπ˚dqj s

` pπ˚αiq
`

Xπ˚dqipπ
˚βjq

˘

Xπ˚dqj ´ pπ˚βjq
`

Xπ˚dqj pπ
˚αiq

˘

Xπ˚dqi

˙

“

n
ÿ

i,j“1

pπ˚αiqpπ˚βjqrXπ˚dqi , Xπ˚dqj s

where the first equality follows from properties (i)-(ii) and the the third one from property
(iii). Thus, it suffices to show that for any f, g P C8pBq one has rXπ˚df , Xπ˚dgs “ 0.
Notice that the homomorphism

C8pMq Ñ ΓpTMq

f ÞÑ Xdf

is a Lie algebra homomorphism with respect to the Poisson bracket t¨, ¨uω and the Lie
bracket r¨, ¨s, where tf, guω :“ ωpXdf , Xdgq. In particular, for each f, g P C8pBq

rXπ˚df , Xπ˚dgs “ Xdtπ˚f,π˚guω “ 0 .

The second equality follows from the fact that π : pM, t¨, ¨uωq Ñ pB, 0q is a Poisson mor-
phism (see [Vai94]).

Definition 4.8. A Lagrangian fibration π : pM,ωq Ñ B is complete if for each compactly
supported 1-form α on B, the vector field Xπ˚α defined by (4.2.1) is complete.

Recall that a Lagrangian fibration is naturally associated with a completely integrable
Hamiltonian system (see Remark 4.5). The next Proposition explains why the previous
hypothesis of completeness on a Lagrangian fibration is on the one hand interesting from
the point of view of geometry and on the other not too restrictive.

Proposition 4.9. Let π : pM,ωq Ñ B be a Lagrangian fibration associated with a com-
pletely integrable Hamiltonian system pM,H,ωq with integrals of motion given by f1 “

H, f2, . . . , fn. If the Hamiltonian vector fields Xf1 , . . . ,Xfn are complete on π´1pbq for each
b P B, then the Lagrangian fibration π : pM,ωq Ñ B is complete.
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Proof. Since the Hamiltonian vector fields are vertical and linearly independent, they point-
wise generate the tangent space to each fibre π´1pbq. Moreover, there exist 1-forms αi :
B Ñ T ˚B such that

ωpXfi , ¨q “ π˚αi, i “ 1, . . . , n

where ωpXfi , ¨q “ dfi by (4.1.1). The 1-forms αi are point-wise linearly independent on B,
indeed if

a1α1 ` ¨ ¨ ¨ ` anαn “ 0, for some a1, . . . , an P C8pBq

then the above sum is still equal to zero after taking the pullback via π. By using the defining
property of the αi’s and the independence property of f1, . . . , fn we get pπ˚a1qpmq “ ¨ ¨ ¨ “

pπ˚anqpmq “ 0, @m P M , i.e. the functions a1, . . . , an are zero on the whole set B. Let
α : U Ă B Ñ T ˚U be a locally defined compactly supported 1-form. We need to prove
that the vector field Xπ˚α, defined by (4.2.1), is complete. By the above argument, there
exist n functions g1, . . . , gn on U such that

α “

n
ÿ

i“1

giαi .

Since α has compact support on U , the functions gi have compact support on the same set
as well. In particular, they are bounded on U . By properties (i) an (ii) of Proposition 4.7
it follows that

Xπ˚α “

n
ÿ

i“1

pπ˚giqXπ˚αi “

n
ÿ

i“1

pπ˚giqXfi .

The vector field Xπ˚pgjαjq “ pπ˚gjqXfj is complete for all j “ 1, . . . , n by an application
of the so-called "Escape Lemma" (see [Lee13], Lemma 9.19), indeed the function π˚gj is
bounded and Xfj is complete. Moreover, since rXπ˚pgiαiq, Xπ˚pgjαjqs “ 0 for all i, j “

1, . . . , n by property (iv) of Proposition 4.7, it follows that Xπ˚pgiαiq ` Xπ˚pgjαjq defines
a new complete vector field as it is the sum of two commuting complete vector fields.
Applying in an iterative way the previous observation, we deduce that Xπ˚α is complete,
as well.

From now on, all Lagrangian fibrations will be complete. Let α : U Ñ T ˚U be a
compactly supported locally defined 1-form on the base and let ϕtα : π´1pUq Ñ π´1pUq be
the flow of the vector field Xπ˚α defined for all t P R. Since Xπ˚α is vertical, its flow ϕtα
lies along the fibres of π : pM,ωq Ñ B for all t P R. Furthermore, for each αb P T ˚B there
exists a compactly supported locally defined 1-form α : U Ñ T ˚U such that αpbq “ αb
and the value of Xπ˚α at a point m P M only depends on αb and not on the choice of α.
Therefore, for each αb P T ˚B there is a well-defined diffeomorphism

ϕ1αb :“ ϕ1α|π´1pbq : π
´1pbq Ñ π´1pbq
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where α P ΓpT ˚Uq is a compactly supported form such that αpbq “ αb. In particular, for
each b P B the map

T ˚
b B Ñ Diffpπ´1pbqq

αb ÞÑ ϕ1αb
(4.2.2)

is a Lie group homomorphism, where T ˚
b B has the structure of an abelian Lie group with

respect to the sum of covectors. In other words, for each b P B, the map in (4.2.2) defines
a transitive action of T ˚

b B on π´1pbq. In general, this action is not free and for instance
one can consider the associated isotropy group, namely

Λb :“ tαb P T ˚
b B | ϕ1αbpmq “ m, @m P π´1pbqu

known as the period lattice. It can be proved that it is a discrete subgroup of T ˚
b B isomorphic

to Zk, with k “ 1, . . . , n (see [Dui80] for the case k “ n or [FGS03] in general).

Remark 4.10. In the case M “ T ˚B and ω “ Ωcan, the transitive action is simply given
by the sum of covectors and Λb “ 0 for each b P B.

Definition 4.11 ([Vai94]). The subset

Λ :“
ď

bPB

Λb Ă T ˚B

is called the period net associated with the complete Lagrangian fibration π : pM,ωq Ñ B.

Lemma 4.12. Let π : pM,ωq Ñ B be a complete Lagrangian fibration and let α : U Ñ T ˚U
be a locally defined 1-form. Then,

`

ϕ1α
˘˚
ω ´ ω “ π˚dα (4.2.3)

Proof. The proof relies on the following computation

`

ϕ1α
˘˚
ω ´ ω “

ż 1

0

d

dt

`

ϕtα
˘˚
ωdt

“

ż 1

0

`

ϕtα
˘˚`LXπ˚α

ω
˘

dt

“

ż 1

0

`

ϕtα
˘˚
d
`

ωpXπ˚α, ¨q
˘

dt (Cartan’s magic formula)

“

ż 1

0

`

π ˝ ϕtα
˘˚
dαdt (Equation (4.2.1))

“

ż 1

0
π˚dαdt “ π˚dα . (π ˝ ϕtα “ π, for all t)
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Theorem 4.13. Let π : pM,ωq Ñ B be a complete Lagrangian fibration and let Λ be the
associated period net. Then,

‚ Λ is a closed Lagrangian submanifold of T ˚B;

‚ the quotient T ˚B{Λ is a smooth manifold.

Proof. Since π : pM,ωq Ñ B is a surjective submersion, then for each b P B there exists a
local section σ : U Ñ π´1pUq defined in an open neighborhood U containing b ([GM+97],
Proposition 1.2.4). Fix such a section and consider the map

ψσ : T ˚U Ñ π´1pUq

α ÞÑ ϕ1α
`

σ ˝ ppαq
˘

(4.2.4)

where p : pT ˚B,Ωcanq Ñ B. We first want to prove that ψσ is a local diffeomorphism.
Since dimT ˚U=dimπ´1pUq it suffices to prove that Kerdαψσ “ t0u for all α P T ˚U . Fix
an element α0 P T ˚U and notice that if X P Tα0T

˚U is tangent to the fibres of p, then
dα0ψσpXq “ 0 if and only if X “ 0. Therefore, if dα0ψσpY q “ 0 and Y ‰ 0, then dα0ppY q ‰

0. Any such vector Y P Tα0T
˚U is mapped to a non-zero vector rY P Tψσpα0qπ

´1pUq such
that dπψσpα0qp

rY q ‰ 0, since the action in (4.2.2) preserves the fibre of π : pM,ωq Ñ B

and σ is an immersion. This is not possible as the vector field rY is vertical with respect
to π. Hence, ψσ is a local diffeomorphism. Now let b0 P U and α0 P Λb0 . By definition
ψσpα0q “ pσ ˝ pqpα0q. The map ψσ is a local diffeomorphism, hence there exists an inverse
ψ´1
σ defined on an open neighbourhood V Ă π´1pUq of pσ ˝ pqpα0q. By shrinking U if

needed, we may assume that U “ πpV q. The composition

ασ :“ ψ´1
σ ˝ σ : U Ñ T ˚U

is a locally defined 1-form, since p “ π ˝ ψσ. In particular, for all b P U we get

σpbq “ ψσ ˝ ασpbq “ ϕ1ασpbq

`

σpbq
˘

which means that for all b P U , ασpbq P Λb|U . Define W :“ ψ´1
σ pV q and since ψ´1

σ is an open
map, W is an open neighbourhood (diffeomorphic to V ) of ασpbq. In the end, the above
argument shows that ασpUq Ă W X Λ. In order to show that Λ is a smooth submanifold
of T ˚B it suffices to prove that W X Λ Ă ασpUq, since that would mean that Λ is locally
given by the graph of the 1-form ασ. Let β P W X Λ, then there exists m P V “ ψσpW q

such that
m “ ψσpβq “ ϕ1β

`

σ ˝ ppβq
˘

.

On the other hand, β P Λppβq implies that for all rm P π´1pppβqq, ϕ1βprmq “ rm. Therefore,

ϕ1βpσ ˝ ppβqq “ σ ˝ ppβq .
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Putting all together we get
ψσpβq “ σ ˝ ppβq

and applying ψ´1
σ to both sides of the equality

β “ ψ´1
σ ˝ σ ˝ ppβq “ ασ ˝ ppβq .

Thus proving that β P ασpUq. This completes the proof that Λ is a smooth submanifold of
T ˚B. In order to show Λ is also closed, let tβnu Ă Λ be a sequence converging to β P T ˚B.
By taking a small enough neighbourhood ĂW of β in T ˚B, it is possible to ensure that all
but finitely many βn lie in ĂW and that there exists a local section σ : rU :“ ppĂW q Ă B Ñ M .
Again, for all but finitely many n, we have

ψσpβnq “ σ ˝ ppβnq

since βn P Λppβnq for all n P N. By continuity of ψσ the left hand side of the above equation
converges to ψσpβq and by continuity of σ ˝ p the right hand side to σ ˝ ppβq. Therefore,
ψσpβq “ σ ˝ ppβq which means that β P Λ. It only remains to show that Λ is Lagrangian in
pT ˚B,Ωcanq. Notice that any locally defined section α : U Ñ Λ|U of p|Λ : Λ Ă T ˚B Ñ B
is a closed 1-form. In fact, for any such α we get ϕ1α “ Id, which implies

`

ϕ1α
˘˚
ω “ ω. By

Lemma 4.12 it follows that π˚dα “ 0. Since π is a submersion, we get dα “ 0 as required.
In the end, the closed submanifold Λ is locally given by the image of closed 1-forms, hence
it is Lagrangian in pT ˚B,Ωcanq. The proof of the first claim is completed.
The proof of the second one relies on the following standard result ([Vai94]): if N is a
smooth manifold and R is an equivalence relation on N whose graph in N ˆN is a closed
submanifold, then the quotient N{R is a smooth manifold.
In our case, two elements α, β P T ˚B are equivalent if and only if α ´ β P Λ. The proof
that

Q :“
␣

pα, βq P T ˚B ˆ T ˚B | α ´ β P Λ
(

is a closed submanifold of T ˚B ˆ T ˚B can be done in the same way as before. Indeed
by repeating the construction above it follows that Q X pW1 ˆ W2q “ ασ1pUq ˆ βσ2pUq,
where σ1, σ2 : U Ă B Ñ π´1pUq Ă M are local sections of π and Wi :“ ψ´1

σi pV q are the
corresponding open neighbourhood of ασ1pbq and βσ2pbq, for some b P U “ πpV q.

Corollary 4.14. A choice of a local section σ : U Ă B Ñ π´1pUq Ă M induces a diffeo-
morphism

rψσ : T ˚U{Λ|U Ñ π´1pUq

which commutes with the projections onto U .

Remark 4.15. The diffeomorphism rψσ can be thought of as a local trivialization for the
Lagrangian fibration π : pM,ωq Ñ B. In particular, it sends the zero section of T ˚U Ñ U to
the image of σ. The main issue of this construction is that a complete Lagrangian fibration
π : pM,ωq Ñ B may not admit a globally defined section and, therefore, there is no natural
choice of locally defined sections σ : U Ñ π´1pUq to construct the "trivialization" rψσ.
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By Theorem 4.13, the vertical action of Λ (sum of covectors) on the fibres of T ˚B
induced by a section α : U Ñ Λ|U is by symplectomorphisms with respect to Ωcan. In
particular, this implies that the quotient space T ˚B{Λ inherits a symplectic form rω which
makes the induced projection

rp :
`

T ˚B{Λ, rω
˘

Ñ B

a complete Lagrangian fibration.

Definition 4.16. Given a complete Lagrangian fibration π : pM,ωq Ñ B with period net
Λ Ă T ˚B, the complete Lagrangian fibration given by

rp :
`

T ˚B{Λ, rω
˘

Ñ B

is called the symplectic reference fibration associated to π : pM,ωq Ñ B.

Remark 4.17. Any symplectic reference Lagrangian fibration admits a globally defined
Lagrangian section, obtained as the image of the zero section 0 : B ãÑ T ˚B inside T ˚B{Λ.
In fact, if q : pT ˚B,Ωcanq Ñ pT ˚B{Λ, rωq is the quotient projection such that q˚

rω “ Ωcan
and s :“ q ˝ 0, then

s˚
rω “ 0˚pq˚

rωq “ 0˚Ωcan “ 0

hence s : B Ñ pT ˚B{Λ, rωq is a globally defined Lagrangian section.

4.2.1 The existence of global Lagrangian sections

Let π : pM,ωq Ñ B be a complete Lagrangian fibration as in the previous sections and let
Ui, Uj Ă B be open subsets such that Ui X Uj ‰ H. Pick sections σi : Ui Ñ π´1pUiq, σj :

Uj Ñ π´1pUjq and construct local trivializations rψσi ,
rψσj as in Corollary 4.14. Consider

the diffeomorphism

rψ´1
σj ˝ rψσi : T

˚
`

Ui X Uj
˘

{Λ|UiXUj Ñ T ˚
`

Ui X Uj
˘

{Λ|UiXUj

which leaves the projection onto B invariant and it sends the zero section to rψ´1
σj pσiq (see

Remark 4.15). It can be proved ([Dui80],[DD87]) that rψ´1
σj pσiq is the unique section sji

of T ˚
`

Ui X Uj
˘

{Λ|UiXUj Ñ Ui X Uj satisfying ψ´1
sji pσjq “ σi. Fixing a good open cover

U “ tUiuiPI in the sense of Leary, i.e. all subsets Ui and all finite intersections of these
subsets are contractible, the above construction yields locally defined smooth sections sji
for each pair i, j whose respective open sets in U intersect non-trivially. By definition,
the family sji defines a Čech 1-cocyle for the cohomology of B with coefficients in the
sheaf C8

`

T ˚B{Λ
˘

of smooth sections of T ˚B{Λ Ñ B and, therefore, a cohomology class
η P H1

`

B,C8
`

T ˚B{Λ
˘˘

. Let FΛ be the sheaf of smooth sections of p|Λ : Λ Ñ B. There is
a short exact sequence of sheaves ([Dui80],[DD87])

0 Ñ FΛ Ñ C8pT ˚Bq Ñ C8
`

T ˚B{Λ
˘

Ñ 0 (4.2.5)
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where the first map is induced by the inclusion Λ ãÑ T ˚B and C8pT ˚Bq is the sheaf of
1-forms of B. It is a standard result that the sheaf C8pT ˚Bq is fine, in particular it is
acyclic since B is a paracompact Hausdorff space ([Gun15]). Then, for all k ě 1 we have

Hk
`

B,C8pT ˚Bq
˘

– t0u .

The long exact sequence in cohomology induced by the short exact sequence in (4.2.5)
induces an isomorphism

Φ : H1pB,C8pT ˚B{Λq
˘ –

ÝÑ H2pB,FΛq

Theorem 4.18 ([Dui80],[DD87]). The image Φpηq “: cΛ P H2pB,FΛq is called the Chern
class associated with the Lagrangian fibration π : pM,ωq Ñ B and cΛ “ 0 if and only if
there exists a globally defined section σ : B Ñ M .

Remark 4.19. The topological (indeed smooth) structure of a complete Lagrangian fi-
bration π : pM,ωq Ñ B is completely determined by its period net Λ and its Chern class
cΛ P H2pB,FΛq. More precisely, two complete Lagrangian fibrations are fiber-wise diffeo-
morphic if and only if they have diffeomorphic period nets and equal (up to diffeomorphism
relating the period nets) Chern classes.

In light of the results of the previous section it makes sense to ask for a symplectic
classification of complete Lagrangian fibrations. In particular, one might be interested
in understanding when the diffeomorphism rψσ of Corollary 4.14 can be chosen to be a
symplectomorphism between

`

T ˚U{Λ|U , rω
˘

and
`

π´1pUq, ω
˘

. The first step in this direction
is the existence of local Lagrangian sections.

Theorem 4.20 ([FGS03]). Let π : pM,ωq Ñ B be a complete Lagrangian fibration. Then,
for each b P B there exists a neighborhood U Ă B of b and a local Lagrangian section
σ : U Ñ π´1pUq.

Corollary 4.21. The diffeomorphism rψσ is a symplectomorphism from
`

T ˚U{Λ|U , rω
˘

to
`

π´1pUq, ω
˘

if and only if the local section σ is Lagrangian.

Proof. Let α P ΓpT ˚Uq be a locally defined 1-form on B and let q : T ˚U Ñ T ˚U{Λ|U

be the restricted quotient map. Then, q ˝ α : U Ñ T ˚U{Λ|U is a local section of the
symplectic reference Lagrangian fibration associated with π : pM,ωq Ñ B (see Definition
4.16). Applying Lemma 4.12 we get

pϕ1αq˚ω “ ω ` π˚dα

“ ω ` π˚α˚Ωcan (dα “ α˚Ωcan)
“ ω ` π˚pq ˝ αq˚

rω . (q˚
rω “ Ωcan)
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Applying σ˚ to both sides of the equation and using π ˝ σ “ IdU we have

pϕ1α ˝ σq˚ω “ σ˚ω ` pq ˝ αq˚
rω .

Moreover, since by definition ϕ1α ˝ σ “ rψσ ˝ q ˝ α and rp ˝ q ˝ α “ IdU (see (4.2.4) and
Definition 4.16), the last equality can be written as

pq ˝ αq˚
`

p rψσq˚ω ` rp˚σ˚ω ´ rω
˘

“ 0 .

Claim: There exists a locally defined 2-form β on U Ă B such that p rψσq˚ω ´ rω “ rp˚β.
Assuming the claim we can conclude the proof of the theorem. In fact, if such β exists we
get

pq ˝ αq˚
`

rp˚β ` rp˚σ˚ω
˘

“ 0 .

Using again that rp ˝ q ˝ α “ IdU we obtain β “ σ˚ω, hence

p rψσq˚ω ´ rω “ rp˚σ˚ω .

At this point it is clear that σ is Lagrangian (i.e. σ˚ω “ 0) if and only if rψσ is a sym-
plectomorphism. Finally, the proof of the claim above can be found in [Gro01, Proposition
2.3].

Let π : pM,ωq Ñ B be a complete Lagrangian fibration and choose a good open cover
U “ tUiuiPI of B such that there exists a local Lagrangian section σi : Ui Ñ π´1pUq

for each i P I (Theorem 4.20). Using Corollary 4.21 we can apply verbatim the con-
struction made at the beginning of the section replacing "diffeomorphism" with "sym-
plectomorphism". In particular, we get the existence of local Lagrangian sections sji for
rp :

`

T ˚pUi X Ujq{Λ|UiXUj , rω
˘

Ñ Ui X Uj . Let us denote this sheaf of Lagrangian sec-
tions by Z1pT ˚B{Λq. As before, the family tsjiui,jPI defines a Čech cohomology class
ξ P H1pB,Z1pT ˚B{Λqq, called the Lagrangian Chern class associated with the complete
Lagrangian fibration π : pM,ωq Ñ B.

Proposition 4.22. The map p|Λ : Λ Ñ B is a covering space.

Proof. Notice that the smooth submanifold ι : Λ ãÑ T ˚B intersects T ˚
b B, for each b P B,

at the period lattice Λb – Zk, 1 ď k ď n (see Definiton 4.11). Hence, the fibre pp|Λq´1pbq –

ΛXT ˚
b B – Λb – Zk is discrete. Since p : T ˚B Ñ B is a vector bundle, for each b P B there

exists an open neighborhood Ub such that p´1pUbq – Ub ˆ T ˚
b B. In particular,

pp|Λq´1pUbq “ ι´1
`

p´1pUbq
˘

– p´1pUbq X Λ

– Ub ˆ pT ˚
b B X Λq

– Ub ˆ Zk .
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Theorem 4.23 ([Dui80],[DD87]). Let π : pM,ωq Ñ B be a complete Lagrangian fibration
with period net Λ and vanishing Chern class cΛ “ 0. Then, it admits a global Lagrangian
section if and only if ξ “ 0.

Corollary 4.24. Let π : pM,ωq Ñ B be a complete Lagrangian fibration over a contractible
open connected subset B in Rn. Then, it admits a global Lagrangian section σ : B Ñ pM,ωq.

Proof. Let Λ be the period net of the complete Lagrangian fibration. There exists a short
exact sequence of sheaves

0 Ñ FΛ Ñ Z1pT ˚Bq Ñ Z1pT ˚B{Λq Ñ 0,

where Z1pT ˚Bq denotes the sheaf of closed 1-forms on B and FΛ is the sheaf of sections
of the covering p|Λ : Λ Ñ B. The sheaf Z1pT ˚Bq can be equivalently described as the
sheaf of Lagrangian sections of p : pT ˚B,Ωcanq Ñ B. The long exact sequence induced in
cohomology gives

. . . Ñ H1pB,Z1pT ˚Bqq Ñ H1pB,Z1pT ˚B{Λqq
δ

Ñ H2pB,FΛq Ñ

Ñ H2pB,Z1pT ˚Bqq Ñ H2pB,Z1pT ˚B{Λqq Ñ . . . .

Using the following isomorphism

HkpB,Z1pT ˚Bqq – Hk`1
dR pB,Rq, if k ě 1 (see [Gun15] and [BT+82])

and the hypothesis that B is contractible we get

H1pB,Z1pT ˚B{Λqq – H2pB,FΛq . (4.2.6)

On the other hand, the sheaf FΛ is the sheaf of sections of a covering space over B (Propo-
sition 4.22), hence it is locally constant on B1. It is a standard result that over a smooth
manifold X, locally constant sheaves of abelian groups FG (also known as local systems)
correspond to representations ρ : πpX,x0q Ñ AutpGq (see [Dim04] Proposition 2.5.1). In
our case X “ B is contractible, thus any representation as above is trivial and the local sys-
tem FΛ is actually isomorphic to the constant sheaf Zk, for some 1 ď k ď n (see Definition
4.11). In the end,

H1pB,Z1pT ˚B{Λqq – H2pB,FΛq

– H2pB,Zkq (sheaf cohomology)

– H2pB,Zkq (singular cohomology)

–

ˆ

H2pB,Zq

˙k

– t0u

In particular, both the Chern class and the Lagrangian Chern class of the fibration vanish.
As a consequence of Theorem 4.18 and Theorem 4.23 we get the existence of a global
Lagrangian section σ : B Ñ pM,ωq.

1A sheaf of abelian groups F on X is locally constant if for each x P X there exists a neighborhood U
containing x such that F |U is a constant sheaf on U .
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4.3 The Hamiltonian actions

Here we recall the existence of the circle and SLp2,Rq actions we defined on B0pT 2q. Then,
we compute the Hamiltonian function of the associated restricted R˚ ă SLp2,Rq action.

Lemma 4.25. Let pM,ωq be a symplectic manifold endowed with a Hamiltonian G-action
and moment map µG : M Ñ g˚. If H ď G is any closed subgroup, then the restricted
H-action is Hamiltonian with moment map µH : M Ñ h˚ given by µH :“ |h ˝ µG, where
|h : g

˚ Ñ h˚ is the map which associates to each functional on g its restriction on h.

From Lemma 2.20 and Corollary 2.4 the deformation space B0pT 2q is diffeomorphic to
H2 ˆ C˚. Let us denote with pz, wq the coordinates on H2 ˆ C. Since the circle action

pz, wq ÞÑ pz, e´iθwq, θ P R

preserves H2 ˆ t0u, we can consider pΨθ to be the induced S1-action on B0pT 2q. We proved
that such an action is Hamiltonian with respect to pωf and pΨ˚

θpgf “ pgf . In particular the
Hamiltonian function is given by

H1pz, wq “
2

3
f
´ Impzq3|w|2

2

¯

.

The SLp2,Rq-action defined in (2.2.16) preserves H2 ˆ t0u as well, and we proved that it is
Hamiltonian on B0pT 2q – H2 ˆ C with associated moment map

pµXpz, wq “

ˆ

1 ´ f
´ Impzq3|w|2

2

¯

˙

trpjpzqXq, X P slp2,Rq .

Notice that inside SLp2,Rq there is the subgroup of diagonal matrices with determinant
equal to one, namely

"ˆ

λ 0
0 1

λ

˙ ˇ

ˇ

ˇ

ˇ

λ P R˚

*

ă SLp2,Rq . (4.3.1)

In particular, such a subgroup can be identified with a copy of R˚ which still acts in a
Hamiltonian fashion (Lemma 4.25) on the space B0pT 2q.

Lemma 4.26. Let R˚ be a copy of the subgroup of diagonal matrices in SLp2,Rq and
consider its restricted Hamiltonian action on B0pT 2q, then the Hamiltonian function is
given by

H2pz, wq “ 2
x

y

ˆ

1 ´ f
´y3|w|2

2

¯

˙

.

Proof. The Lie algebra of R˚ can be identified with

h :“

"ˆ

α 0
0 ´α

˙ ˇ

ˇ

ˇ

ˇ

α P R
*

.
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By Lemma 4.25, the the associated moment map for the restricted R˚-action pµh : B0pT 2q Ñ

h˚ is

pµXh pz, wq “

ˆ

1 ´ f
´y3|w|2

2

¯

˙

trpjpzqXq,

where X P h. Let ξ :“

ˆ

1 0
0 ´1

˙

P h, then the Hamiltonian function H2 : B0pT 2q Ñ R is

H2pz, wq :“ µξhpz, wq, given that dµξh “ pωf pVξ, ¨q, where

Vξ “ 2

ˆ

x
B

Bx
` y

B

By

˙

´ 3

ˆ

u
B

Bu
` v

B

Bv

˙

is the infinitesimal generator of the action. Finally, since

trpjpzqξq “ tr

ˆ

˜

x
y ´

x2`y2

y
1
y ´x

y

¸

¨

ˆ

1 0
0 ´1

˙˙

“ 2
x

y

we get H2pz, wq “ 2
x

y

ˆ

1 ´ f
´y3|w|2

2

¯

˙

.

4.3.1 Global Darboux coordinates

In this section we prove the main result regarding the symplectic geometry of
`

B0pT 2q, pωf
˘

.

Proposition 4.27. The Hamiltonian system pB0pT 2q, pωf , H1q is completely integrable. The
integrals of motion are given by

H1pz, wq “
2

3
f
´y3|w|2

2

¯

, H2pz, wq “ 2
x

y

ˆ

1 ´ f
´y3|w|2

2

¯

˙

.

Proof. Let XH1 ,XH2 be the Hamiltonian vector fields associated with H1, H2. An explicit
expression is given by

XH1 “ u
B

Bv
´ v

B

Bu
, XH2 “ 2

ˆ

x
B

Bx
` y

B

By

˙

´ 3

ˆ

u
B

Bu
` v

B

Bv

˙

.

It is clear that they are point-wise linearly independent on B0pT 2q, hence to end the proof
we only need to show that they are involutive. The symplectic form is

pωf “

ˆ

´ 1 ` f ´
3

2
f 1y3pu2 ` v2q

˙

dx^ dy

y2
´

2

3
f 1y3du^ dv

´ y2f 1

ˆ

updx^ du` dy ^ dvq ` vpdu^ dy ´ dv ^ dxq

˙

.
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Moreover,

pωf pXH1 ,XH2q “ 2

ˆ

uxpωf

ˆ

B

Bv
,

B

Bx

˙

` uypωf

ˆ

B

Bv
,

B

By

˙

´ vxpωf

ˆ

B

Bu
,

B

Bx

˙

´

vypωf

ˆ

B

Bu
,

B

By

˙˙

´ 3

ˆ

u2pωf

ˆ

B

Bv
,

B

Bu

˙

´ v2pωf

ˆ

B

Bu
,

B

Bv

˙˙

.

It is easy to see that the term at the right hand side of the last equality is equal to zero,
hence we get the claim.

Let H :“ pH1, H2q : pB0pT 2q, pωf q Ñ B be the Lagrangian fibration associated with the
above completely integrable Hamiltonian system (see Remark 4.5), whereB :“ H

`

B0pT 2q
˘

Ă

R2. Using the explicit expression of the integrals of motion and the properties of the func-
tion f , it is clear that B is homeomorphic to U :“

␣

pu1, u2q P R2 | u1 ă 0
(

, hence it is
contractible. Moreover, any b “ pb1, b2q P B is a regular value for H and each fiber

H´1pbq “

"

pz, wq P B0pT 2q

ˇ

ˇ

ˇ

2

3
f
´y3|w|2

2

¯

“ b1, 2
x

y

ˆ

1 ´ f
´y3|w|2

2

¯

˙

“ b2

*

is diffeomorphic to R ˆ S1.

Remark 4.28. The fact that each fiber is diffeomorphic to R ˆ S1 can be seen directly
from Theorem 4.4, since the vector fields XH1 ,XH2 are complete on H´1pbq, for each b P B.
Indeed XH1 is the generator of the counter clock-wise rotation in the plane and the integral
curve of XH2 passing through the point pz, wq is γpz,wqptq “ pe2tz, e´3twq, which is defined
for all t P R.

Theorem G. Let ps, θq P R ˆ S1 be the angle coordinates of pB0pT 2q, H1, pωf q given by the
Arnold-Liouville theorem. Then,

␣

θ,H1, s,H2

(

is a global Darboux frame for pωf .

Proof. The Lagrangian fibration H : pB0pT 2q, pωf q Ñ B is the one arising from the com-
pletely integrable Hamiltonian system pB0pT 2q, pωf , H1q. Since the vector fields XH1 ,XH2

are complete on each fiber H´1pbq, by Proposition 4.9 the associated Lagrangian fibra-
tion H : pB0pT 2q, pωf q Ñ B is complete (see Definition 4.8). Moreover, the base B is
a contractible open subset of R2. Using Corollary 4.24 we get the existence of a global
Lagrangian section σ : B Ñ B0pT 2q. In particular, σpBq is a Lagrangian submanifold of
pB0pT 2q, pωf q, σpbq P H´1pbq for each b P B and H ˝ σ “ IdB. Let b “ pb1, b2q P B, then the
vector fields

B

BHi
“ dσ

ˆ

B

Bbi

˙

, i “ 1, 2

are tangent to σpBq and they generate a Lagrangian subspace of TσpbqB0pT 2q. In fact,

ppωf qσpbq

ˆ

B

BH1
,

B

BH2

˙

“ ppωf qσpbq

ˆ

dσ

ˆ

B

Bb1

˙

, dσ

ˆ

B

Bb2

˙˙
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“ pσ˚
pωf qb

ˆ

B

Bb1
,

B

Bb2

˙

“ 0 . (The section σ is Lagrangian)

Let ps, θq P R ˆ S1 be the angle coordinates given by the Arnlod-Liouville Theorem, then

the vector fields
B

Bθ
,

B

Bs
are point-wise tangent to the fiber of H : pB0pT 2q, pωf q Ñ B. In

particular, they correspond to XH1 and XH2 respectively. Hence,

pωf

ˆ

B

Bθ
,

B

Bs

˙

“ pωf
`

XH1 ,XH2

˘

“ 0 . (Involution)

Let us denote the coordinate s with g1 and θ with g2. In order to conclude the proof of the
theorem, we need to show that

ppωf qx

ˆ

B

Bgi
,

B

BHj

˙

“ δij , @x P B0pT 2q . (4.3.2)

Suppose first x P σpBq, hence px1, x2q “ σpb1, b2q for some pb1, b2q P B. Then,

ppωf qx

ˆ

B

Bgi
,

B

BHj

˙

“ ppωf qx

ˆ

XHi ,dbσ
ˆ

B

Bbj

˙˙

“ dxHi

ˆ

dbσ

ˆ

B

Bbj

˙˙

(4.1.1)

“ db
`

Hi ˝ σ
˘

ˆ

B

Bbj

˙

(Chain rule)

“ δij . (Hi ˝ σ “ bi)

Now let x be an arbitrary point of B0pT 2q and let Ψt
i be the Hamiltonian flow associated

with Hi. Since the flow action on the fiber H´1pbq is transitive, we can always assume

that x “ Ψt
i

`

σpHpxqq
˘

, where b “ Hpxq. In particular, we have that the vector field
B

BHj

computed at x “ Ψt
i

`

σpHpxqq
˘

is equal to dΨt
i

ˆ

B

BHj

˙

, where now the vector field inside

the differential of Ψt
i is computed at σpHpxqq. Hence,

ppωf qx

ˆ

B

Bgi
,

B

BHj

˙

“ ppωf qx

ˆ

XHi ,dΨ
t
i

ˆ

B

BHj

˙˙

“

ˆ

`

pΨt
iq

´1
˘˚
pωf

˙

x

ˆ

XHi ,dΨ
t
i

ˆ

B

BHj

˙˙

(Ψt
i preserves pωf )

“ ppωf qσpHpxqq

ˆ

`

dΨt
i

˘´1
ˆ

XHi

˙

,
B

BHj

˙
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“ ppωf qσpHpxqq

ˆ

XHi ,
B

BHj

˙

(Ψt
i is the flow associated with Hi)

“ δji (σpHpxqq P σpBq)

4.4 The Ricci tensor and the scalar curvature

In this section we show that the copy of the hyperbolic plane H2 ˆ t0u Ă H2 ˆ C –

D3pJ pR2qq is the only embedded submanifold with scalar curvature equal to 2, whenever
fptq “ ´kt for k ą 0. The formulae given for the scalar curvature of pgf differ by a rescaling
factor with respect the ones in [RT22] (see Remark 1.14 and Remark 2.21).

A Kähler manifold is a particular case of a pseudo-Kähler one, namely when the pseudo-
Riemannian metric has index equal to zero. For this very reason it is natural to ask
whether some properties of Kähler manifolds still holds in this more general setting. Now
we briefly recall the definition of some curvature tensors defined on Kähler manifolds and
we will explain how their formulae still hold in the pseudo-Riemannian setting as long as
the pseudo-metric is of neutral signature.

Let pM, g, Iq be a Kähler manifold of complex dimension n. The tensor I can be extended
by C-linearity on the complexified tangent bundle TCM :“ TM bRC. Since I2 “ ´1 there
is an eigenbundle decomposition TCM “ T 1,0 ‘ T 0.1M , where

T 1,0M :“ tX P TCM | IpXq “ i ¨Xu, T 0,1M :“ tX P TCM | IpXq “ ´i ¨Xu .

The bundle T 1,0M is called the holomorphic tangent bundle and T 0,1M the anti-holomorphic
tangent bundle of M , in particular they are the conjugate of each other. If pz1, . . . , znq are
local holomorphic coordinates on M , the n-dimensional complex vector space T 1,0M is
generated by t B

Bz1
, . . . B

Bzn
u. Since zk “ xk ` iyk for each k “ 1, . . . , n we have

B

Bzk
“

1

2

ˆ

B

Bxk
´ i

B

Byk

˙

,
B

Bz̄k
“

1

2

ˆ

B

Bxk
` i

B

Byk

˙

, @k “ 1, . . . n .

If we denote with gC the C-linear extension of g to TCM , then locally it can be written as

gC :“
ÿ

j,k

gCjk̄
`

dzj b dz̄k ` dz̄k b dzj
˘

where gC
jk̄

:“ gC
`

B
Bzj
, B

Bz̄k

˘

“ 1
4

´

g
`

B
Bxj

, B
Bxk

˘

`g
`

B
Byj
, B

Byk

˘

´ ig
`

B
Byj
, B

Bxk

˘

` ig
`

B
Bxj

, B
Byk

˘

¯

, since

the Hermitian condition implies that gCjk “ gC
j̄k̄

“ 0 and the symmetry that gC
jk̄

“ gC
kj̄

for
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each j, k “ 1, . . . , n.

In the following, by abuse of notation, we will denote with g the metric extended by C-
linearity on TCM . If ∇ denotes the Levi-Civita connection of g, then the only non vanishing
Christoffel symbols are

Γijk :“ gil̄
Bgkl̄
Bzj

, Γīj̄k̄ :“ Γijk

where gjk̄ denotes the inverse metric computed on B
Bzj
, B

Bz̄k
. The Riemann curvature tensor

R P Γ
`

T ˚
CM b TCM b EndpTCMq

˘

of ∇ is given by

Ri
j
kl̄ “ ´

Γjki
Bz̄l

, Rαβ̄γδ̄ “ Rα
j
γδ̄gjβ̄ .

As a consequence of the Bianchi identity, the Riemann tensor enjoys the following symme-
tries

Rij̄kl̄ “ Ril̄kj̄ “ Rkj̄il̄ “ Rkl̄ij̄ .

Finally, the Ricci tensor and the scalar curvature are given, respectively, by:

Rij̄ “ gkl̄Rij̄kl̄, scalpgq “ gij̄Rij̄ .

Remark 4.29. All the properties listed so far hold in the case of pseudo-Kähler manifolds,
indeed they are only a consequence of the fact that the metric is non-degenerate and that
∇g “ ∇I “ 0 (see [Zhe01]).

Lemma 4.30. Let pM, g, Iq be a pseudo-Kähler manifold of real dimension 4n and of
neutral signature p2n, 2nq, then

Rij̄ “ ´
B2

BziBz̄j
log

`

detpgq
˘

.

Proof. First, notice that log
`

detpgq
˘

is well-defined since the pseudo-metric g is of neutral
signature, hence detpgq ą 0. Then, by using the formulae above, we get

Rij̄ “ gkl̄Rkl̄ij̄ (symmetry of Rij̄kl̄)

“ Rp
p
ij̄ (Rkl̄ij̄ “ gpl̄Rk

p
ij̄)

“ ´
BΓpip
Bz̄j

“ ´
B

Bz̄j

`

gpq̄
Bgpq̄
Bzi

˘

“ ´
B2

BziBz̄j
log

`

detpgq
˘

. (Jacobi’s formula)
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Before computing the Ricci tensor and the scalar curvature of the new metrics, it should
be noted that it is sufficient to do the computation at points pi, uq P H2 ˆ C. In fact, the
SLp2,Rq-action introduced in Section 2.2.1 allows us to reduce to the points pi, wq and the
natural S1-action on C introduced in Section 2.3, to the points pi, uq, since both actions are
isometric (Theorem 2.16 and Theorem E). Furthermore, we need to write detppgf q and the
inverse of the metric pgf , extended by C-linearity on TCpH2ˆCq, in terms of the coordinates
pz, wq. We have:

ppgzz̄f qpi,uq “
1

1 ´ f
, ppgww̄f qpi,uq “

3p1 ´ f ` 3f 1u2q

4f 1p1 ´ fq

ppgzw̄f qpi,uq “ i
3u

2p1 ´ fq
, detppgf q

pz,wq
“

4

9
Impzq2pf 1q2p1 ´ fq2 .

Proposition 4.31. The Ricci tensor and the scalar curvature of the pseudo-Kähler metrics
ppgf ,pI, pωf q are given by:

pRzz̄qpi,uq “
1

2
` 3u2

ˆ

f 1

1 ´ f
´
f2

f 1

˙

`
9

2
u4Gf

pRww̄qpi,uq “ ´2

ˆ

f2

f 1
´

f 1

1 ´ f

˙

` 2u2Gf

pRzw̄qpi,uq “ i

ˆ

3u

ˆ

f2

f 1
´

f 1

1 ´ f

˙

´ 3u3Gf

˙

scalppgf qpi,uq “
2

1 ´ f
´

3

2

f2

pf 1q2
`

3u2

1 ´ f

ˆ

6u2Gf `
11

2

ˆ

f 1

1 ´ f
´
f2

f 1

˙

`
Gf p1 ´ fq

2f 1

˙

where Gf :“
f2p1 ´ fq ` pf 1q2

p1 ´ fq2
´
f3 ¨ f ´ pf2q2

pf 1q2
.

Proof. Using the formulae above and the symmetries Rij̄ “ Rjī, the Ricci tensor is given
by

Ric
pgf “ Rzz̄dz b dz̄ `Rww̄dw b dw̄ ` 2RepRzw̄qdz b dw̄ .

According to Lemma 4.30, the components can be computed as

Rzz̄ “ ´
B2

BzBz̄
log

`

detppgf q
˘

, Rww̄ “ ´
B2

BwBw̄
log

`

detppgf q
˘

, Rzw̄ “ ´
B2

BzBw̄
log

`

detppgf q
˘

.

Using the expression of detppgf q found above we get

log
`

detppgf q
˘

“ log

ˆ

4

9

˙

` 2 log
`

Impzq
˘

` log
`

pf 1q2
˘

` 2 log
`

1 ´ f
˘

.

Finally, recalling that the functions f, f 1, f2, f3 are all evaluated at Impzq3|w|2 and using

the formula
B

Bz
Impzql “

l

p2iql
Impzql´1 we obtain the desired expression for the components
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of the Ricci tensor.
The scalar curvature is given, by definition, by

scalppgf q “ pgzz̄f Rzz̄ ` pgww̄f Rww̄ ` pgzw̄f Rzw̄ ` pgwz̄f Rwz̄ .

Since pgwz̄f Rwz̄ “ pgzw̄f Rzw̄, the final expression is

scalppgf q “ pgzz̄f Rzz̄ ` pgww̄f Rww̄ ` 2Reppgzw̄f Rzw̄q .

Now, we can directly compute the scalar curvature at the points pi, uq. By a simple, but
long enough, direct calculation, one gets the desired formula.

As one can see, these expressions are too complicated to be able to make any estimates
on the scalar curvature. On the other hand, on H2 ˆ t0u Ă H2 ˆ C the expression is
considerably simplified, indeed given that fp0q “ 0, it follows that

scalppgf qpi,0q “ 2 ´
3

2

f2p0q

f 1p0q2
. (4.4.1)

In particular, if we pick the function f to be of the form fptq “ ´kt, with k ą 0, it becomes
clear that the scalar curvature on H2 ˆ t0u is constant and equal to 2.

Corollary 4.32. For any pi, uq P H2 ˆ C˚ and for fptq “ ´kt, with k ą 0, the scalar
curvature scalppgf qpi,uq is strictly less then 2.

Proof. For this choice of f , at the point pi, uq we have

f 1ptq “ ´k, f2 “ f3 “ 0, Gf ptq “
k2

p1 ` kt2q
, t “ u2 ‰ 0 .

Thanks to Proposition 4.31 it follows that

scalppgf qpi,uq “
2

1 ` kt

ˆ

1 ` 3t

ˆ

6tk2

p1 ` ktq2
´

6k

1 ` kt

˙˙

.

Using that
1

1 ` kt
ă 1 for all k ą 0 and t ą 0, we obtain

scalppgf qpi,uq ă 2 `
36tk

1 ` kt

ˆ

tk

1 ` kt
´ 1

˙

.

The last quantity is strictly less then 2 since

36tk

1 ` kt
ą 0,

tk

1 ` kt
´ 1 ă 0, @t, k ą 0 .
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4.4.1 The isometry group

It is clear from Theorem 2.16 and Theorem E, that any matrix in PSLp2,Rq and any
rotation of the fiber generated by S1, is an isometry of H2 ˆ C with respect to pgf . Plus,
the two actions commute. We will show that, whenever fptq “ ´kt, with k ą 0, any other
isometry h, isotopic to the identity, can be written as composition h “ P ˝ eiθ for some
pP, eiθq P PSLp2,Rq ˆ S1. Finally, we deduce the expression for an arbitrary isometry of
the space.

Lemma 4.33. Let h1, h2 : pM1, g1q Ñ pM2, g2q be two isometries between smooth connected
pseudo-Riemannian manifolds. If there is a point p P M1 such that h1ppq “ h2ppq and
dph1 ” dph2, then h1 ” h2.

Proof. Let C :“ tq P M1 | dqh1 “ dqh2u. Then, by continuity C is a closed subset in M1.
Since p P C by hypothesis, it is non-empty. Therefore, it only remains to show that C is
open in M1. We infer that if q P C, then any normal neighborhood U of q is contained in
C. In fact, if r P U there exists a v P TqM1 such that γvp1q “ expqpvq “ r. Thus,

h1prq “ h1
`

γvp1q
˘

“ γdh1pvqp1q “ γdh2pvqp1q “ h2
`

γvp1q
˘

“ h2prq .

In other words, the functions h1 and h2 coincide when restricted on U , hence drh1 “ drh2
for all r P U , which implies U Ă C.

Theorem 4.34. Let Isom0

`

H2 ˆ C, pgf
˘

be the connected component of the identity of the
isometry group Isom

`

H2 ˆ C, pgf
˘

. If fptq “ ´kt, with k ą 0, then Isom0

`

H2 ˆ C, pgf
˘

–

PSLp2,Rq ˆ S1.

Proof. First notice that each isometry h P Isom0

`

H2 ˆ C, pgf
˘

preserves the copy of the
hyperbolic plane H2 ˆ t0u. In fact, if there was an isometry rh with rhpz, 0q “ pz1, wq for
some pz1, wq P H2 ˆ C˚, then we would get the following contradiction

2 “ scalppgf qpz,0q

“
`

rh˚scalppgf q
˘

pz,0q
(rh is an isometry)

“ scalppgf qpz1,wq

ă 2 . (Corollary 4.32)

Pick any h P Isom0

`

H2 ˆ C, pgf
˘

such that hpz, 0q “ pz1, 0q for some z, z1 P H2. We can
always assume that hpi, 0q “ pi, 0q, indeed there exist two matrices P, P 1 P SLp2,Rq such
that pz, 0q “ P ¨ pi, 0q, pz1, 0q “ P 1 ¨ pi, 0q, hence the isometry pP 1q´1 ˝ h ˝ P would fix the
point pi, 0q. If we consider the linear map dpi,0qh : TiH2 ˆ T0C Ñ TiH2 ˆ T0C restricted to
horizontal directions, we can again assume, up to pre- and post-composition with elements
in PSLp2,Rq as before, that dpi,0qhpZ, 0q “ pZ, 0q, for all Z P TiH2. This implies that

dpi,0qh|TiH2
“ IdTiH2 .
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Now if p0, Uq P TiH2 ˆT0C˚ is a real vertical direction, then dpi,0qhp0, Uq “ p0,W q for some
W P T0C˚. In particular, since h is an isometry we get

||U ||2
pgf

“ ||W ||2
pgf
,

which implies that W “ eiθU for some θ P R. Furthermore, since the circular action is an
isometry for pgf that is trivial on the base H2, up to pre- and post-composing with rotations
in the complex plane we have

dpi,0qhpZ,Uq “ pZ,Uq

for all Z P TiH2. Since h is orientation preserving, we deduce that dpi,0qh “ Id, since h
should also fix an imaginary vertical tangent vector. In the end, using Lemma 4.33, we
obtain that h “ Id on the whole H2 ˆ C after possibly pre- and post-composing h by
elements of PSLp2,Rq and rotations. Therefore, h was of the form h “ P ˝ eiθ for some
pP, eiθq P PSLp2,Rq ˆ S1.

During the proof of the theorem we used that each isometry isotopic to the identity
preserves the orientations on both H2 and C. There are other three possibilities for an
arbitrary isometry h P Isom

`

H2 ˆ C, pgf
˘

:

‚ h reverses the orientation on H2 and preserves the orientation on C. Then, by com-
posing with h1pz, wq :“ p´z̄, wq we get an isometry preserving both orientations.
Hence, the proof of Theorem 4.34 holds for h ˝ h1.

‚ h preserves the orientation on H2 and reverses the orientation on C. Then, by com-
posing with h2pz, wq “ pz, w̄q we get an isometry preserving both orientations. Hence,
we have the same conclusion as above for h ˝ h2.

‚ Finally, h reverses both the orientations. Then, the same argument applies to h˝h1 ˝

h2.

In the end, we proved the following

Corollary 4.35. If fptq “ ´kt, with k ą 0, then any isometry h :
`

H2 ˆ C, pgf
˘

Ñ
`

H2 ˆ C, pgf
˘

can be written as

h “ P ˝ eiθ, h “ P ˝ eiθ ˝ h1, h “ P ˝ eiθ ˝ h2, h “ P ˝ eiθ ˝ h1 ˝ h2

for some P P PSLp2,Rq and eiθ P S1.



Chapter 5
Further developments

While this thesis answers, at least partially, some questions that have long remained unan-
swered, it also introduces new ones that deserve to be analyzed and hopefully answered in
the near future.

5.1 Relation with Goldman’s symplectic form

In Chapter 3 we proved the existence of a (possibly new) symplectic form ωf on the
PSLp3,Rq-Hitchin component (Theorem A), which is known to be non-degenerate in a
neighborhood of the Fuchsian locus. It is thus natural to ask about the relation between
ωf and Goldman’s symplectic form ωG. According to our construction (Section 3.3.1)
we need first to understand what happens in the torus case, where we have a family of
symplectic forms parameterized by smooth functions.

Question 5.1. Does there exist a smooth function f : r0,`8q Ñ p´8, 0s with fp0q “ 0,
f 1ptq ă 0 @t ą 0 and lim

tÑ`8
fptq “ ´8 such that pωf “ kωG, for some k P R?

If this were true for the torus, then one could try to prove something similar in the genus
g ě 2 case using Donaldson’s construction. In particular, an affirmative answer would
imply that our symplectic form ωf is non-degenerate on the entire Hitchin component and
would show that Goldman’s symplectic ωG form is compatible with Labourie and Loftin’s
complex structure, giving rise to a pseudo-Kähler metric.

Another possible approach comes from an equivalent expression for ωG found by Gold-
man. He showed that the space of projective equivalence classes of affine connections on Σ
can be realized as a symplectic quotient using the theory of infinite-dimensional symplectic
reduction ([Gol90b]). Because of the equivalence with the deformation space of convex

129
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RP2-structures on Σ, he showed that Goldman’s symplectic form can be expressed as:

ωGp 9σ1, 9σ2q “
1

3

ż

Σ
tr 9σ1 ^ tr 9σ2 ´

ż

Σ
trp 9σ1 ^ 9σ2q,

where 9σ1, 9σ2 are tangent vectors to the space of connections, namely EndpTΣq-valued 1-
forms. In particular, they are deformations of the canonical projectively flat connection (the
Blaschke connection) coming from the hyperbolic affine sphere formulation. Given that we
were able to write Labourie and Loftin’s complex structure I in terms of pairs p 9J, 9Aq, with
9J a variation of an almost complex structure on Σ and 9A a variation of the Pick form of the

corresponding hyperbolic affine sphere, it would be interesting to understand the action of
I on tangent vectors 9σ1, 9σ2.

Question 5.2. Using the above expression for ωG, is it true that

ωG

`

Ip 9σ1q, 9σ2
˘

“ ´ωG

`

9σ1, Ip 9σ2q
˘

,

or, in other words, that ωG is compatible with I?

5.2 A new geometric transition

In this thesis we proved that
Kh ´ ||q||2h “ ´1,

namely Wang’s equation for hyperbolic affine spheres in R3, has an interpretation as a
moment map for the action of an infinite-dimensional Lie group. It is interesting to note
that ([LM16]), by changing the sign in front of the cubic differential part, one obtains the
equation governing minimal Lagrangian immersions in the complex hyperbolic plane CH2.
In particular, using Trautwein’s result ([Tra18]), it can be shown that an open subset of
the moduli space of such minimal Lagrangian immersions inherits a mapping class group
invariant Kähler metric, and there is an analogous moment map interpretation for the
corresponding equation. The aforementioned open subset correspond to an open subset
in the SUp2, 1q-character variety of the surface Σ ([HLL13],[LM13],[LM19]), so that the
Kähler metric is defined on a neighborhood of the "Fuchsian locus". Moreover, by letting
q tends to zero both equations degenerate to the constant curvature equation defining the
Teichmüller space. At the level of Lie algebras slp3,Rq and sup2, 1q are the 8-dimensional
real split and real quasi-split forms of slp3,Cq of rank 2 and 1, respectively.

Question 5.3. Is there a geometric transition from a hyperbolic affine sphere in R3 to a
minimal Lagrangian in CH2? If so, what is the intermediate geometry and the corresponding
immersion?

Question 5.4. How is the pseudo-Kähler metric we introduced on Hit3pΣq related to the
Kähler one introduced by Trautwein? How do they interact under the above geometric
transition?
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5.3 What about other rank 2 split Lie groups?

One of the key results we used for our construction was the natural isomorphism between
the PSLp3,Rq-Hitchin component and a holomorphic bundle over T pΣq. In fact, according
to this parameterization, Hit3pΣq inherits a complex structure invariant under the action of
the mapping class group. Recently, Labourie ([Lab17]) has shown a similar result regarding
the Hitchin component for a general real simple split Lie group of rank 2, which up to
isomorphism is PSLp3,Rq,PSpp4,Rq or the real split form GR

2 of the exceptional G2. In
the PSpp4,Rq case, the Hitchin component is parameterized by the bundle of holomorphic
quartic differentials, and in the case of GR

2 by the bundle of holomorphic sextic differentials.
In particular, both connected components inherit a natural complex structure.

Question 5.5. Does there exist a symplectic form ω on the PSpp4,Rq and GR
2 Hitchin

component compatible with the aforementioned complex structure? Do they give rise to a
natural pseudo-Kähler structure which restrics to (a multiple of) the Weil-Petersson metric
on Teichmüller space?

The first major difference in these two cases, is that Hitchin equations of the associated
cyclic Higgs bundle over pΣ, Jq P T pΣq (the equivalent of Wang’s equation for PSLp3,Rq),
form a coupled system of PDE’s. Assuming that Donaldson’s construction can also be
applied in these cases, there remains the problem of understanding how the two coupled
equations can be interpreted as the intersection of the zero locus of two moment maps. In
fact, as explained several times throughout Section 3.3.1, Donaldson’s theorem provides us
with only one. In particular, such a moment map depends on a particular choice of smooth
function f . So it is natural to ask the following:

Question 5.6. Is it possible to find two smooth functions f, g : R Ñ R satisfying some
functional equation, so that Donaldson’s theorem provides two moment maps whose zero
locus can be identified with the above system of PDE’s?

One possible approach, when G “ PSpp4,Rq, comes from the exceptional isomorphism
PSpp4,Rq – SO0p2, 3q. In fact, in this case, thanks to the work in [CTT19], for any Hitchin
representation (actually maximal) ρ : π1pΣq Ñ SO0p2, 3q there exists a unique ρ-equivariant
embedding rΣ ãÑ H2,2 as a maximal space-like surface. The equations governing the embed-
ding data of such surfaces are quite similar to the one governing hyperbolic affine spheres in
R3. It turns out that, at least when Σ “ T 2, there is an explicit (actually constant) solution
to the self-duality equations for the corresponding SO0p2, 3q-Higgs bundle, and this allows
us to write the induced metric on the normal tangent bundle of the embedded surface in
terms of the metric induced on the tangent bundle. Then, combining the work in [LT23]
and the very recent one in [Nie22], we expect to define a pseudo-Kähler structure on the
SO0p2, 3q-Hitchin component of the torus using the same approach as the one presented in
this thesis.





Appendix A
Elliptic operators on compact
manifolds

In this appendix we recall the fundamental results about elliptic differential operators de-
fined on smooth compact manifolds that we used during the proof of the main result of the
thesis. The material covered here is classical ([Dem97],[War83],[Gil18],[Nic20]).

A.1 Sobolev space of sections

Let M be a smooth compact n-manifold equipped with a Riemannian metric g and let dVg
be its volume form, normalized to unit volume, i.e.

ż

M
dVg “ 1 .

Definition A.1. Let p ě 1, define the p-Lebesgue space as

LppMq :“

#

f :M ÝÑ R
ˇ

ˇ

ˇ

ˇ

ˆ
ż

M
|f |pdVg

˙
1
p

ă 8

+

.

This is a Banach space for p ě 1 with norm given by ∥f∥p :“
ˆ
ż

M
|f |pdVg

˙
1
p

, and it

is a Hilbert space when p “ 2 with the following scalar product

pf, gq :“

ż

M
f ¨ g dVg . (A.1.1)

Definition A.2. Let p ě 1 and k be a non negative integer. Define the (k,p)-Sobolev
space W k,ppMq to be the set of f P LppMq such that f is k-times weakly differentiable and
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|Dαf | P LppMq for |α| ď k, where in a local coordinate x “ px1, . . . , xnq we have

Dα “

´

B

Bx1

¯α1

¨ ¨ ¨

´

B

Bxn

¯αn
, α “ pα1, . . . , αnq .

Then W k,ppMq is a Banach space with the Sobolev norm

∥f∥Wk,p “

ˆ

ÿ

|α|ďk

ż

M
|Dαf |pdVg

˙
1
p

(A.1.2)

and W k,2pMq is a Hilbert space (with scalar product similar to (A.1.1)).
Let π : E Ñ M be a real (or complex) vector bundle and let x¨, ¨yE be a scalar product on
E. We define, for p ě 1, the space LppM,Eq to be the set of locally integrable sections of
E over M , namely it is formed by the smooth sections s P ΓpM,Eq for which the norm

∥s∥p “

ˆ
ż

M
|s|pdVg

˙
1
p

is finite, where |s|2 “ xs, syE . Let ∇ be a connection on E compatible with x¨, ¨y, we define
the space W k,ppM,Eq as the completion of ΓpM,Eq with respect to the norm

∥s∥Wk,p :“

ˆ

ÿ

jďk

ż

M
∥∇js∥pdVg

˙
1
p

.

In particular when p “ 2 we obtain that W k,2pM,Eq is the completion of ΓpM,Eq with
respect to

∥s∥2Wk,2 “
ÿ

jďk

ż

M
∥∇js∥2dVg , (A.1.3)

where

∥∇0s∥2 “ xs, syE

∥∇s∥2 “ x∇s,∇syT˚pMqbE

∥∇2s∥2 “ x∇2s,∇2syT˚pMqbT˚pMqbE .

and W 0,2pM,Eq “ L2pM,Eq. The scalar product on W k,2pM,Eq is simply given by
ps, sqk :“

`

∥s∥Wk,2

˘2 and it can be proved that

8
č

k“1

W k,2pM,Eq “ ΓpM,Eq .
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Proposition A.3. Let M be a compact smooth n-dimensional manifold, then the Sobolev
norms (A.1.3) associated with two different choices of Riemannian metrics on M , scalar
products on E and connections, are equivalent. Furthermore each of these norms is in turn
equivalent to the norm associated with the scalar product

xs, s1yk :“
ÿ

j

@

pψjsq ˝ ϕ´1
j ; pψjs

1q ˝ ϕ´1
j

D

k
,

where
`

Uj , ϕj
˘

is an atlas for M which is trivializing for E and with the property that
the image of ϕj is all contained in a foundamental domain for Tn “ Rn{Zn, and tψju is a
partition of unity subordinate to tUju.

A.2 Differential operators over compact manifolds

Definition A.4. Let E and F be real (or complex) vector bundles over a smooth compact
n-manifold M . Let L : ΓpM ;Eq ÝÑ ΓpM ;F q be a K-linear map, where K “ R or K “ C.
We say that L is a differential operator if for any trivializing chart U for E and F we have

χ : U ÝÑ A Ă Rn

φ : E
ˇ

ˇ

U
ÝÑ Aˆ Kl

ψ : F
ˇ

ˇ

U
ÝÑ Aˆ Km

and the following diagram is commutative:

Γ0pU,E
ˇ

ˇ

U
q ΓpU,F

ˇ

ˇ

U
q

Γ0pA,Aˆ Klq ΓpA,Aˆ Kmq

rU˝L˝iU

LU

where iU : Γ0pU,E
ˇ

ˇ

U
q ãÑ ΓpM,Eq is the immersion of compact support functions, rU :

ΓpM,F q ÝÑ ΓpU,F
ˇ

ˇ

U
q is the restriction and LU is a matrix of differential operators.

The operator L is of order k if in any trivialization LU involves no derivatives of order
bigger than k, hence locally pLU qij “

ÿ

|α|ďk
aαD

α.

We denote the space of differential operators of order k over M as DiffkpM ;E;F q.

Theorem A.5. Let L : ΓpM ;Eq ÝÑ ΓpM ;F q be a differential operator of order k. Then
there is a K-linear extension L̃ : W k`l,2pM ;Eq ÝÑ W l,2pM ;F q, for every non negative
integer l ě 0, such that L̃

ˇ

ˇ

C8pM ;Eq
“ L .
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Let L PDiffkpM ;E;F q, it is possible to define the principal symbol of L

σkpLq P ΓpT ˚pMq;Hompπ˚E, π˚F qq

as follows. Let px, ξq P T ˚pMq and ex P Ex be given; find f P C8pMq and e P ΓpM ;Eq

such that df |x “ ξ and epxq “ ex. Define σkpLqxpξq P HompEx, Fxq ([Dem97]) to be:

σkpLqxpξqpexq :“ L
`

pf ´ fpxqqke
˘

pxq (A.2.1)

It can be checked that σkpLqxpξq does not depend on the choices made and that it is a
linear map from Ex to Fx. In a local trivialization if ξ “ ξ1dx

1 ` ¨ ¨ ¨ ` ξndx
n, using the

construction above, one has

σk
`

ÿ

|α|ďk
aαpijqDα

˘

x
pξq “

ÿ

|α|“k
aαpijqpξ1qα1 . . . pξnqαn .

Definition A.6. A differential operator L : ΓpM ;Eq ÝÑ ΓpM ;F q of order k is elliptic if
for all px, ξq P T ˚pMqzt0u the principal symbol of L evaluated on px, ξq is an isomorphism.

Lemma A.7 (Weyl Lemma). Let L : ΓpM ;Eq ÝÑ ΓpM ;F q be an elliptic operator of
order k and let s P W k,2pM,Eq, then if Ls “ 0 holds weakly in L2pM,Eq it follows that
s P ΓpM,Eq.

Example A.8. Let ∆ : C8pRnq Ñ C8pRnq be the Euclidean Laplacian, namely

∆pfq :“ ´

n
ÿ

i“1

B2

Bx2i
f, f P C8pRnq .

Let 0 ‰ ξ P T ˚
xRn be such that dxf “ ξ. Then,

σ2p∆qxpξq “ ´σ2

´

n
ÿ

i“1

B2

Bx2i

¯

x
pξq

“ ´

n
ÿ

i“1

ξ2i

“ ´

n
ÿ

i“1

´

B

Bxi
f |x

¯2

“ ´|dxf |2 ‰ 0 .

Thus the Euclidean Laplacian ∆ on Rn is an elliptic operator of order 2. The same proof
applies to the Laplace-Beltrami operator ∆L : C8pMq Ñ C8pMq defined on a smooth
compact Riemannian manifold pM, gq of dimension n as the divergence of the gradient. In
fact, in a local coordinate x “ px1, . . . , xnq we have

∆L “
ÿ

i,j

´

gij
B2

BxiBxj
´
ÿ

l

gijΓlij
B

Bxl

¯

,
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where pgijqij is the matrix associated with the inverse metric and the Γlij ’s denote the
Christoffel symbols.

Given pM, gq a smooth compact Riemannian n-manifold and given E,F two smooth real
(or complex) vector bundles over M , let us consider x¨, ¨yE and x¨, ¨yF scalar products on E
and F , respectively. Define the following inner product on the space of smooth sections of
E

ps, tqE :“

ż

M
xs, tyEdVg @s, t P ΓpM ;Eq (A.2.2)

and similarly on ΓpM,F q.

Definition A.9. Let L : ΓpM,Eq Ñ ΓpM,F q be a smooth differential operator of order
k, then its adjoint L˚ : ΓpM,F q Ñ ΓpM,Eq is the smooth differential operator of order k
uniquely determined by the following property:

`

Lpsq, t
˘

F
“
`

s, L˚ptq
˘

E
, s P ΓpM ;Eq, t P ΓpM ;F q .

Theorem A.10. If L : ΓpM,Eq Ñ ΓpM,F q is an elliptic differential operator between the
space of smooth sections of two real (or complex) vector bundles of the same rank, then one
has the following decomposition:

ΓpM,Eq “ KerpLq ‘ RangepL˚q

and the space KerpLq is finite dimensional. Moreover, the direct sum decomposition is
orthogonal with respect to p¨, ¨qE.

Definition A.11. Given a bounded linear operator T : X Ñ Y between Banach spaces,
we say it is Fredholm if KerpT q and CokerpT q :“ Y {RangepT q are both finite dimensional
and RangepT q is closed. The number:

indpT q :“ dimKerpT q ´ dimCokerpT q P Z

is called the Fredholm index of T .

Lemma A.12. Any elliptic operator L : ΓpM,Eq Ñ ΓpM,F q between the space of smooth
sections of K-vector bundles over a compact smooth manifold M is Fredholm.

Theorem A.13 (Homotopy invariance of the index). Suppose that we have a continuous
path

Lt : ΓpM,Eq ÝÑ ΓpM,F q, t P r0, 1s

of elliptic differential operators of order k between the space of smooth sections of two K-
vector bundles over a smooth compact manifold M . Then,

indpLtq “ indpL0q, @t P r0, 1s .





Appendix B
Symplectic reduction theory

In this appendix we recall the notion of Hamiltonian action on a symplectic manifold with
associated moment map. We briefly explain the construction of symplectic reduction when
the manifold is of finite dimension, as it inspires the infinite-dimensional case. We will
not go into details since the material covered here is classical and can be found in many
books and papers ([MS17; DD08]). Finally, after recalling the definition of pseudo-Kähler
manifold, we state and prove the Marsden-Meyer-Weinstein theorem in the pseudo-Kähler
setting, since it is not easily found in the literature.

B.1 The Marsden-Meyer-Weinstein theorem

Definition B.1. A symplectic manifold is a pair pM,ωq, whereM is a real smooth manifold
and ω is a closed non-degenerate 2-form on M , called the symplectic form.

One can think of the closed 2-form ω as a family of skew-symmetric non-degenerate bi-
linear forms ωp : TpM ˆ TpM Ñ R, for any p P M . In particular, the non-degeneracy of ω
implies that dimM is even and there is an induced isomorphism T ˚

pM – TpM by ωp, for
any p P M .

Definition B.2. Let pM,ωq be a symplectic manifold and let G be a Lie group acting
on M . Let ψg : M Ñ M be the map ψgppq :“ g ¨ p, then we say the group G acts by
symplectomorphisms on pM,ωq if ψ˚

gω “ ω for all g P G.

Definition B.3. Let G be a Lie group, with Lie algebra g, acting on a symplectic manifold
pM,ωq by symplectomorphisms. We say the action is Hamiltonian if there exists a smooth
function µ :M Ñ g˚ satisfying the following properties:

(i) The function µ is equivariant with respect to the G-action on M and the co-adjoint
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action on g˚, namely

µg¨p “ Ad˚pgqpµpq :“ µp ˝ Adpg´1q P g˚ . (B.1.1)

(ii) Given ξ P g, let Xξ be the vector field on M generating the action of the 1-parameter
subgroup generated by ξ, i.e. Xξ “ d

dtexpptξq ¨ p|t“0. Then, for every ξ P g we have

dµξ “ ιXξω “ ωpXξ, ¨q , (B.1.2)

where µξ :M Ñ R is the function µξppq :“ µppξq.

A map µ satisfying the two properties above is called a moment map for the Hamiltonian
action.

Given a symplectic action of a Lie group G on a symplectic manifold pM,ωq, one can
ask whether a quotient exists in the category of symplectic manifolds. It is clear that the
topological quotient always exists, but it is not necessarily a smooth manifold, for example
when the G-action is not proper or free. Although the action is required to be free and
proper, the resulting quotient manifold may have odd dimension and so it will not admit
a symplectic form. All in all, the topological quotient M{G does not in general provide a
suitable quotient in symplectic geometry. Nevertheless, the existence of a moment map for
a Hamiltonian action allows us to induce a symplectic structure on the quotient of a level
set of the moment map. In fact, since 0 P g˚ is fixed by the co-adjoint action, equivariance
of µ implies that the preimage µ´1p0q Ă M is preserved by the action of G.

Theorem B.4 (Marsden-Weinstein-Meyer [MW74; Wei80]). Let G be a Lie group acting on
a symplectic manifold pM,ωq by symplectomorphisms. Suppose the action is Hamiltonian
with moment map µ :M Ñ g˚. Let ι : µ´1p0q ãÑ M be the inclusion map, and suppose the
restricted G-action on µ´1p0q is free and proper. Then, the following holds:
‚ The topological quotient µ´1p0q{G is a smooth manifold of dimension dimM ´ 2 dimG
and the quotient map π : µ´1p0q Ñ µ´1p0q{G is a principal G-bundle;
‚ there exists a unique symplectic form ωred on µ´1p0q{G such that π˚ωred “ ι˚ω.

The pair pµ´1p0q, ωredq is called the symplectic quotient or Marsden-Weinstein-Meyer
quotient of pM,ωq. The main steps of the proof can be summarized as follows:

Step 1:
If gp denotes the Lie algebra of the stabilizer of p P M , then dpµ : TpM Ñ g˚ satisfies:

Kerpdpµq “

´

Tp
`

G ¨ p
˘

¯Kωp
, Impdpµq “ g0p :“ tξ P g | xξ,Xy “ 0, @X P gpu .

In other words, the kernel of the differential of the moment map can be identified with the
symplectic orthogonal of the tangent space to the G-orbit, and the image of the differential
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is identified with the annihilator of gp. In particular, it can be proven that Tp
`

G ¨ p
˘

is an
isotropic subspace of pTpM,ωpq, namely pωqp|TppG¨pq ” 0.

Step 2:
The G-action on µ´1p0q is free, then 0 is a regular value of µ. In particular, µ´1p0q is a
closed submanifold of M of codimension equal to the dimension of G. Finally, using an
"equivariant" version of tubular neighborhood theorem (sometimes called slice theorem),
one gets that the quotient projection π : µ´1p0q Ñ µ´1p0q{G is a principal G-bundle.

Step 3:
The symplectic form ω is induced on the quotient µ´1p0q{G by using a standard argument
in symplectic geometry, namely if pV, ωq denotes a symplectic vector space which admits
an isotropic subspace U (i.e. ω|U ” 0), then there is a natural induced symplectic form on
the quotient UKω{U . In our case, we can pick V “ TpM and U “ Tp

`

G ¨ p
˘

which is an
isotropic subspace of pTpM,ωpq by Step 1. In the end, at the level of tangent spaces, we
get the following identifications:

UKω
{U – Kerpdpµq

M

Tp
`

G ¨ p
˘

– Trps

´

µ´1p0q {G

¯

.

In other words, the tangent space to the quotient is identified with the symplectic orthogonal
to Tp

`

G ¨ p
˘

inside Kerpdpµq.

B.2 Pseudo-Kähler reduction

A pseudo-Riemannian metric g on a smooth n-manifoldM is an everywhere non-degenerate,
smooth, symmetric p0, 2q-tensor. The index of g is the maximal rank k of the smooth
distribution where it is negative-definite. For instance, if k “ 0 then g is a Riemannian
metric. Now let J be a complex structure on M , then pg, Jq is a pseudo-Hermitian structure
if

gpJX, JY q “ gpX,Y q, @X,Y P TpM,p P M . (B.2.1)

Notice that, due to this last condition, the index of g in this case is always even k “ 2s,
where s is called the complex index and it satisfies 1 ď s ď m “ dimCM . The fundamental
2-form ω of a pseudo-Hermitian manifold pM, g, Jq is defined by:

ωpX,Y q :“ gpX, JY q, @X,Y P TpM,p P M . (B.2.2)

Definition B.5. A pseudo-Hermitian manifold pM, g, J, ωq is called pseudo-Kähler if the
fundamental 2-form is closed, namely if dω “ 0. In this case the corresponding metric is
called pseudo-Kähler. Moreover, if g is positive-definite then pM, g, J, ωq is called a Kähler
manifold.

Let pM, g, J, ωq be a pseudo-Kähler manifold and suppose there is an action of a Lie group
G on M which preserves the symplectic form ω and the pseudo-Riemannian metric g. Let
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us also assume that the action is Hamiltonian with moment map µ : M Ñ g˚. Then, one
is tempted to mimic the symplectic reduction case and try to induce the pseudo-Kähler
structure on the quotient µ´1p0q{G. Indeed, the same can be done with the appropriate
adjustements:

Theorem B.6 (Pseudo-Kähler reduction). Let G be a Lie group acting on a pseudo-
Kähler manifold pM,ω, J, gq by isometries and by symplectomorphisms. Suppose the action
is Hamiltonian with moment map µ : M Ñ g˚. Let ι : µ´1p0q ãÑ M be the inclusion map.
Suppose that the restricted G-action on µ´1p0q is free and proper and that the pseudo-metric
g restricted to the orbit Tp

`

G ¨ p
˘

Ă Tpµ
´1p0q is non-degenerate. Then, the following holds:

‚ The topological quotient µ´1p0q{G is a smooth manifold of dimension dimM ´ 2 dimG
and the quotient map π : µ´1p0q Ñ µ´1p0q{G is a principal G-bundle;
‚ there exists a unique pseudo-Riemannian metric gred and complex structure Jred on µ´1p0q{G
such that

π˚gred “ ι˚g, π˚Jred “ ι˚J

and the pairing ωred “ gredp¨, Jred¨q is a symplectic form on the quotient.

Proof. During the proof we will assume the first claim of the theorem to be true, namely
the existence of the G-principal bundle π : µ´1p0q Ñ µ´1p0q{G, and we will explain, step by
step, how to induce the pseudo-Riemannian metric and complex structure on the quotient.
Let V be the vertical bundle of the above G-principal bundle, namely Vp “ Kerpdpπq for
all p P µ´1p0q, and let N denotes the normal bundle of the inclusion ι : µ´1p0q ãÑ M .

Step 1: The pseudo-metric is non-degenerate when restricted to Vp and Np.

Let ξ P g and let Xξ be its infinitesimal generator, then we have

gpgradµξ, Y q “ dµξpY q “ ωpXξ, Y q “ ´gpJXξ, Y q , @Y P ΓpTMq

which implies that gradµξ “ ´JXξ. Now, let ξ1, . . . , ξk be a basis for g and η1, . . . , ηk P g˚

its dual basis. Then, the moment map µ can be seen as a smooth map from M to Rk – g˚,
as follows

µppq “ µξ1ppqη1 ` ¨ ¨ ¨ ` µξkppqηk ,@p P M ,

where µξj is a C8 function from M to R, for any j “ 1, . . . , k. A standard argument shows
that a global frame for the normal bundle N is given by

tgradµξ1 , . . . , gradµξku “ tJXξ1 , . . . , JXξku .

Moreover, since the restricted action of G on µ´1p0q is free, for all p P µ´1p0q each stabilizer
Gp is trivial, and the differential of the orbit map Φpphq “ h ¨ p P G ¨ p, for h P G, induces
a linear isomorphism

TppG ¨ pq – g .



143 B.2. PSEUDO-KÄHLER REDUCTION

In particular, from the above discussion, we deduce that tXξ1 , . . . , Xξku is a global frame
for the vertical bundle V . In other words, for any p P µ´1p0q, we showed that the set

tXξ1 , . . . , Xξk , JXξ1 , . . . , JXξku

is a basis for
Vp ‘Np – TppG ¨ pq ‘ J

´

TppG ¨ pq

¯

.

By hypothesis, the pseudo-metric g is non-degenerate when restricted to TppG ¨pq – Vp, and
together with the pseudo-hermitian condition (B.2.1), we deduce that g is non-degenerate
when restricted to J

´

TppG ¨ pq

¯

– Np as well. Finally, by using (B.2.2), we get a g-
orthogonal decomposition

Vp
K

‘Np – TppG ¨ pq
K

‘ J
´

TppG ¨ pq

¯

,

which implies that the restricted pseudo-metric is non-degenerate on the direct sum Vp
K

‘Np

for any p P µ´1p0q.

Step 2: The space Np is the g-orthogonal to Kerpdpµq.

Notice that for any ξ P g and for any w P Kerpdpµq “ Tpµ
´1p0q, we get

gpw, JXξq “ ωpw,Xξq “ dpµ
ξpwq “ 0 .

According to what has been shown in Step 1, we know that Np “ J
´

TppG ¨pq

¯

, and we can
deduce the following g-orthogonal decomposition:

TpM “ Tpµ
´1p0q

K

‘Np, @p P µ´1p0q ,

which implies that the pseudo-metric is non-degenerate when restricted to Tpµ
´1p0q “

Kerpdpµq.

Step 3: The choice of the supplement to the orbit.

Let us define the following space:

Hp :“ tv P Kerpdpµq | Jpvq P Kerpdpµqu, @p P µ´1p0q .

Notice that Hp is J-invariant by definition. We want to prove that there is a g-orthogonal
decomposition

Tpµ
´1p0q “ Hp

K

‘ Vp, @p P µ´1p0q .

Regarding the direct sum decomposition, suppose by contrary there exists 0 ‰ v P Hp X

Tp
`

G ¨ p
˘

, then by definition of Hp the element Jpvq still belongs to Kerpdpµq “ Tpµ
´1p0q.
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Moreover, since by hypothesis v P TppG ¨ pq “ Vp we deduce that Jpvq P Np by Step 1.
In particular, the element Jpvq is g-orthogonal to Kerpdpµq by Step 2. This is possible if
and only if Jpvq “ 0 as the pseudo-metric is non-degenerate on Kerpdpµq. Since J is an
isomorphism and we assumed v to be non-zero, we get a contradiction. Finally, notice that
an element v is g-orthogonal to TppG ¨ pq if and only if Jpvq P Kerpdpµq as shown by the
following computation:

gpXξ, vq “ ´gpXξ, J
2pvqq “ ´ωpXξ, Jpvqq “ dpµ

ξ
`

Jpvq
˘

, @ξ P g.

Hence, by definition of Hp we can conclude that Hp K Vp.

Before going on with the proof, let us give a brief summary of what has been deduced
so far. For any p P µ´1p0q we proved the existence of the following g-orthogonal decompo-
sition:

TpM “ Hp

K

‘ TppG ¨ pq
K

‘ J
´

TppG ¨ pq

¯

,

where Hp can be identified with the tangent to the quotient space µ´1p0q{G. Moreover,
the pseudo-metric g is non-degenerate whenever is restricted to one of the above spaces.
In particular, we will denote with gred the pseudo-metric induced on the quotient, so that
π˚gred “ ι˚g.

Step 4: The induced almost complex structure on µ´1p0q{G.

We first observe that, if Y is a vector field on µ´1p0q{G, its horizontal lift rY is not a vector
field on M , but only on µ´1p0q. Thus, it’s not clear a-priori how to apply the complex
structure to such lifts. Nevertheless, the map

µ´1p0q ÝÑ H

p ÞÑ JpprYpq

defines a smooth G-invariant section of H, since the complex structure preserves H, rY
is G-invariant and G preserves J . We will denote such a section by J rY . Since J rY is
a G-invariant horizontal section, it is the lift of a unique smooth vector field dπpJ rY q on
µ´1p0q{G. In other words, we have a way of applying the induced complex structure Jred
to vector fields on µ´1p0q{G, by the following formula:

JredpY q :“ dπpJ rY q , @Y P Γ
´

T pµ´1p0q{Gq

¯

.

It is easy to see that Jred is a p1, 1q-tensor and C8 linear. In fact,

JredpfY q “ dπ
`

Jp ĂfY q
˘

“ dπ
`

pf ˝ πqJ rY
˘

“ fdπpJ rY q “ fJredpY q ,
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for any C8 function f on µ´1p0q{G. Finally, to show that J2
red “ ´1 we only need to notice

that the horizontal lift of dπpJ rY q coincides with J rY . Hence,

Jred
`

JredpY q
˘

“ Jred
`

dπpJ rY q
˘

“ dπ
´

J ČdπpJỸ q

¯

“ dπ
`

J2prY q
˘

“ ´dπprY q “ ´Y .

Step 5: p∇Jred “ 0, where p∇ is the Levi-Civita connection with respect to gred.

Let ∇ be the Levi-Civita connection of g and let PH : TM Ñ H be the orthogonal
projection. We claim that for any Y,Z smooth vector fields on µ´1p0q{G, we have

p∇ZY “ dπ
´

PH
`

∇Z˚Y ˚
˘

¯

,

where Y ˚, Z˚ are arbitrary smooth extension to a neighborhood of µ´1p0q. In fact, if r∇
denotes the Levi-Civita connection of ι˚g on µ´1p0q Ă M , then it is standard to prove that

r∇ZY “

´

∇Z˚Y ˚
¯K

,

where K is the orthogonal projection onto Tµ´1p0q with respect to the pseudo-metric g on
M . The Levi-Civita connection p∇ is obtained by first projecting ∇Z˚Y ˚ onto Tµ´1p0q,
and then projecting onto H and using the correspondence between G-invariant sections of
H and vector fields on µ´1p0q{G. This procedure gives exactly the formula written above.
Finally, we need to prove that for any smooth vector fields Y,Z on µ´1p0q{G we have
pp∇ZJred

˘

Y “ 0, which is equivalent to
`

p∇ZJred
˘

Y “ Jred
`

p∇ZY
˘

. By taking the horizontal
lift of the terms we are interested in, we get

´

∇̂ZJredY
¯hor

“ PH

´

∇Z˚

`

JredY
˘˚
¯

“ PH
`

∇Z˚JY ˚
˘

(∇J “ 0 on M)
“ PH

`

J∇Z˚Y ˚
˘

(J preserves H)
“ JPH

`

∇Z˚Y ˚
˘

“

´

Jred
`

∇̂ZY
˘

¯hor
.

Step 6: The pair pgred, Jredq defines a pseudo-Kähler metric on µ´1p0q{G.

We first observe that the pseudo-metric gred satisfies Equation (B.2.1), indeed for any
smooth vector fields Y, Z on µ´1p0q{G we have

gredpJredY, JredZq “ gred
`

dπpJ rY q,dπpJ rZq
˘

“ pπ˚gredq
`

J rY , J rZ
˘

“ pι˚gq
`

J rY , J rZ
˘

“ pι˚gqprY , rZq “ gredpY,Zq .
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Then, let us denote with ωred the tensor obtained as follows:

ωredpY, Zq “ gredpY, JredZq , @Y,Z P Γ
`

T pµ´1p0q{Gq
˘

.

It follows easily, by using (B.2.1), that ωred defines a 2-form on µ´1p0q{G. Finally, in
the setting of Kähler geometry, the integrability of the almost complex structure and the
closedness of the fundamental 2-form are equivalent to the requirement that the almost
complex structure is parallel with respect to the Levi-Civita connection ([Voi02]). It turns
out that the same proof can be adapted to the pseudo-Kähler case, hence p∇Jred “ 0 if and
only if Jred is integrable and dωred “ 0. This directly implies that pgred, Jred, ωredq defines
a pseudo-Kähler structure on µ´1p0q{G.
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