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1 Introduction

Two-dimensional conformal field theory is undoubtedly the basic working knowledge for
modern theoretical physicists. It has wide applications in a variety of areas, ranging from de-
scribing the critical phenomenon in the second-order phase transition or boundary modes in
the quantum Hall system in a lab, to the worldsheet theory of moving string in a higher dimen-
sional spacetime. Moreover, it also has profound and beautiful geometric or algebraic struc-
tures, which have continuously sparkled fruitful interplay between mathematics and physics.

Two-dimensional rational conformal field theory (RCFT) is a special class that enjoys
particularly nice properties. By definition, it means that there are only finitely many
conformal primaries. Putting the theory on a torus, the partition function naturally
decomposes in terms of finitely many characters labeled by those primaries. The large
diffeomorphism group of torus, i.e., SL(2,Z) naturally acts on the partition function and
hence the characters. In this way, modularity plays an important role in the study of
RCFTs. For example, combining with various other operations like fusion and braiding, it
gives rise to an algebraic concept known as the modular tensor category (MTC). The study
of MTC, especially its classification, is an active research topic in mathematics. See [1–4]
for a partial list.

Despite several decades of extensive research, we are still witnessing new discoveries
nowadays. Recently, Harvey and Wu proposed a striking relation among characters of
RCFTs with different central charges via the so-called Hecke operator method [5]. Later,
in [6] it was extended to an action among MTCs, which can be regarded as a “categorification”
of the Galois action on the modular representations. A further exploration of this method
is one of the main motivations for this paper.

Clearly, a natural playground to apply it is the RCFTs with a small number of characters.
This links with another direction of research, namely, a complete list of classification for all
of them. In the literature, Mathur, Mukhi and Sen first initiated a classification program
for RCFTs based on two integral quantities: the number of characters and the (Wronskian)
index. In the original papers [7, 8], they completely classified all two-character cases with
zero index. In [9, 10], the authors further considered and even classified certain theories
with positive index. Quasi-characters, which have integral but not necessarily positive
q-expansion were considered in [11, 12]. See [13] for a review of the recent progress. What’s
more, they found an interesting duality phenomenon between theories with different indices,
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which they dubbed as the generalized coset construction. Recently, there is also an extension
of their idea to fermionic RCFTs by demanding modular covariance only under suitable
subgroups of SL(2,Z) [14, 15].

Last year, motivated by results in the study of MTCs, [16] used the representation
theory of finite groups to obtain a classification of consistent characters with number less
than or equal to five.1 Greatly extending our previous knowledge, it is however not clear a
priori if there is an underlying RCFT, perhaps of exotic type, for each of them. As a modest
first step, we analyze systematically the possible relations among all the characters obtained
in [16] and even beyond. The main tool we are using is the Hecke operator from [5], but the
modular linear differential equation (MLDE) also plays an important role. The highlights
of our results are as follows:

1. We find a huge number of (generalized) Hecke relations among the characters of RCFT
whose rank is not greater than seven.

2. We find that each set of characters can be paired up to give a single and modular
invariant character, which resembles a generalized coset relation w.r.t. a putative
single-character c = 8k theory. In particular, for c = 24 we recover 51 out of the 71
theories in the Schellekens’ list [17], while we also find many new candidates which
might describe certain non-conventional CFTs.2

3. We propose that the characters of an arbitrary RCFT can be realized as either a
Hecke image or the coset of a Hecke image w.r.t. a putative c = 8k theory, starting
from a handful of initial theories. As supporting evidence, for theories which satisfy
holomorphic MLDEs with rank not greater than five, the initial ones are listed
in table 7.

This paper is organized as follows. In section 2, we give an overview on some salient
features of 2d RCFTs, including MLDEs, generalized cosets with respect to c = 8k and
Hecke relations. A new ingredient we propose is the concept of generalized Hecke relations
in section 2.5, which describes Hecke image Tp for p not coprime to the conductor N . In
section 3, we state our main results of this paper and elaborate them for the prototype —
RCFTs with two characters classified by Mathur-Mukhi-Sen (MMS) in the 1980s [8]. In
sections 4, 5, 6, 7, 8, we discuss in detail the Hecke relations and c = 8k coset relations
among 2d RCFTs with 3,4,5,6,7 characters which contain all the cases found in [16]. In
particular we establish many new interesting Hecke and generalized Hecke relations for a
large number of putative new 2d RCFTs. In section 9, we summarize our results and point
out a possible generalization of our program to fermionic RCFTs.

Throughout the paper, we use Tp, ? to represent Hecke images with quasi-characters. We
adopt the node order of affine Lie algebras as in SageMath [18]. Red color is used to highlight
the weight-3/2 primaries which could be connected to emergent supersymmetry [19–21].

1The classification in [16] only contains non-degenerate theories, which means that there does not exist
any pair of conformal weights whose difference is an integer. Besides, [16] restricts to Wronskian index
smaller than six.

2One such example that we have in mind is the (E7 1
2

)1 theory introduced in section 2.2.
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2 Review on 2d RCFTs

2.1 Basics of RCFTs

In this section, we give a brief overview of some basic facts of RCFTs that are important in
this paper. We refer readers to [22, 23] for more extensive reviews.

Consider the radial quantization in CFT with the Hilbert space of states H on the
space slice S1. It can be naturally decomposed into irreducible representations of the chiral
algebra,

HS1 =
⊕
i,̄

Mi,̄Vhi ⊗ Vh̄̄ , (2.1)

where we label the irreducible representation by the conformal weight of lowest state hi, h̄̄,
andMi,̄ is the multiplicity. A nice way to encapsulate this piece of information is through
the character, defined as

χi = TrVhi q
L0− c

24 , q = exp(2πiτ) and τ = τ1 + iτ2 ∈ H , (2.2)

with c the central charge and H the upper half plane. Similarly one can also define its
counterpart χ̄̄ as the trace over Vh̄̄ , such that the partition function Z as a trace over HS1

becomes
Z(τ, τ̄) = TrHS1 [exp (2πiτ1P − 2πτ2H)] =

∑
i,̄

Mi,̄χiχ̄̄ , (2.3)

where P and H are respectively the momentum and Hamiltonian of the system. On the
other hand, Z(τ, τ̄) has the interpretation as the partition function on the torus. In this
paper, We will mainly focus on the holomorphic part and hence properties of χi.

RCFT, by definition, means that there are only finitely many summands in (2.1),
assumed to be d in total. This already entails that the central charge c and all conformal
weights hi are rational. In this paper, we label the set of characters as {χi}d−1

i=0 , and χ0 will
denote the vacuum character with the following q-expansion,

χ0 = q−
c
24 (1 +m1q +m2q

2 + · · · ) , (2.4)

where the normalization is fixed by assuming a non-degenerate vacuum. In particular,
m1 counts the number of spin-1 currents. Meanwhile, for the non-vacuum primary with
conformal weight hi, we adopt the notation (hi)Mi to indicate its degeneracyMi. Crucially
for us, the modular group SL(2,Z) as a global diffeomorphism group on the torus, naturally
acts on the whole set of χi,

γ :=
(
a b

s d

)
∈ SL(2,Z), χi

(
aτ + b

cτ + d

)
=

d−1∑
k=0

ρ(γ)ikχk(τ) , (2.5)

where ρ can be regarded as a d dimensional representation of SL(2,Z). ρ also transforms
χ̄̄ in such a way that Z remains invariant. Mathematically speaking, all the χi form a
vector-valued modular function. Since we know that SL(2,Z) is generated by two elements,

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, (2.6)
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their image under ρ will play an important role. It is immediate that ρ(T ) is a diagonal
and unitary matrix, but ρ(S) in general is complicated.

In this part, we briefly review some well-known examples of 2d RCFTs for later
convenience. In fact, we will mainly be concerned with two classes: minimal models and
Wess-Zumino-Witten (WZW) models.

Minimal models are RCFTs with only Virasoro symmetry. They are classified by a pair
of coprime positive integers (p, q) with p > q, and we label them by M(p, q). The central
charge is given as

cM(p,q) = 1− 6(p− q)2

pq
. (2.7)

They are unitary with positive central charge if and only if |p− q| = 1. Furthermore, we
can label the conformal primaries by two integers (r, s) which are constrained to lie inside
the triangle

1 ≤ r < q, 1 ≤ s < p, pr > qs, (2.8)

so there are altogether (p − 1)(q − 1)/2 fields. For reader’s convenience, we give their
conformal dimension

hr,s = (pr − qs)2 − (p− q)2

4pq , (2.9)

as well as the corresponding character

χr,s(τ) = 1
η(τ)

∑
n∈Z

(
q

(2pq·n+pr−qs)2
4pq − q

(2pq·n+pr+qs)2
4pq

)
. (2.10)

Under the S-transformation, we have

χr,s

(
−1
τ

)
=
∑
S(r,s),(ρ,σ)χρ,σ(τ), S(r,s),(ρ,σ) = 2

√
2
pq

(−1)1+sρ+rσ sin
(
π
p

q
rρ

)
sin
(
π
q

p
sσ

)
.

(2.11)
Last but not least, we remark that every primary is non-degenerate. Hence purely at the
level of characters, we are free to choose any primary as the vacuum.3 In particular, even if
p− q > 1, we can give an effective unitary description by declaring the character with the
biggest exponent to be the vacuum character. This leads to the effective central charge and
effective conformal weights as

ceff = 1− 6
pq
, heffr,s = (pr − qs)2 − 1

4pq . (2.12)

On the other hand, WZW models are nonlinear sigma models whose fields g are
mappings from S2 to a group manifold G with Lie algebra g. It has conserved current Ja(z),
which when expanded in terms of modes, Ja(z) = ∑

m∈Z J
a
m z

m−1, gives the commutation
relation of affine Lie algebra,

[Jam, Jbn] = ifabc J
c
m+n + kmδa,bδm+n,0 . (2.13)

3But surely only the correct vacuum gives rise to a well-defined fusion algebra.
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Here fabc is the structure constant of g and the integer k is called the level. From the
Sugawara construction we have the central charge

c = k dim g

k + h∨
(2.14)

with h∨ the dual Coxeter number.
In this paper, we will only consider WZW theories with a positive level. To describe

them, let us introduce some notations. First we name a given theory as (G)k where G is
the Lie group. Suppose the rank r root system of its Lie algebra g has a set of simple roots
{αi}ri=1 and the Killing form 〈, 〉. We associate to each αi a positive integer a∨i known as
the comark. Moreover, a representation λ can always be written as λ = ∑

λiωi, where
{ωi}ri=1 are fundamental weights and λi are a set of non-negative integers.

In this way, the weight λ which labels the primary for a fixed level k satisfies an upper
bound,

λ0 := k −
r∑
i=1

λi · a∨i ≥ 0 , (2.15)

namely, we can associate to it an affine weight λ0ω0 + λ (the definition of ω0 can be found
in e.g., [22]). Its conformal dimension is given by the formula,

hλ = 〈λ, λ+ ρ〉
2(k + h∨) . (2.16)

Here ρ is the Weyl vector, which is one half of the sum of all the positive roots.
For each conformal primary labeled by λ, the associated character χλ is given by the

Weyl-Kac character formula, and we record the S-matrix of the characters below,

χλ

(
−1
τ

)
=
∑

Sλµχµ(τ), (2.17)

with
Sλµ = i|∆+|

(
det (α∨i , α∨j )

)− 1
2 (k + h∨)−

r
2
∑
ω∈W

ε(ω)e−2πi 〈ω(λ+ρ),µ+ρ〉
k+h∨ , (2.18)

where |∆+| is the number of positive roots in g, {α∨i }ri=1 are the coroots, W is the Weyl
group and ε(w) is the signature of an element ω ∈W written as a product of transposes.

In later sections, we also need to take G to be U(1). For this somewhat degenerate
situation, the WZW model actually describes a single compact boson and the level k is
replaced by N with radius of the circle being R =

√
2N . It always has central charge one,

and its conformal primaries are indexed by the finite group Z2N . For completeness we give
their characters and S-matrix,

χk(τ) = 1
η(τ)

∑
m∈Z

q(k+m2N)2/4N , k ∈ Z2N

χk

(
−1
τ

)
= 1√

2N
∑

k′∈Z2N

e−iπkk′/Nχk′(τ) ,
(2.19)

where η(τ) is the Dedekind eta function.
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Finally, we introduce the notion of level k Lee-Yang model defined by

(LY )k = Meff(2k + 3, 2). (2.20)

The nomenclature originates from the observation that the effective Lee-Yang model (LY )1
can be seen as the first object in the Deligne exceptional series [24], which has dimension 1
and dual coxeter number 3/2. Then by the central charge formula of WZW models (2.14),
the level k version should have central charge c = k/(k + 3/2) = 2k

2k+3 . On the other hand,
the effective central charge and effective conformal weights of M(2k + 3, 2) minimal models
follow from the general formula (2.12)

ceff = 2k
2k + 3 , heff

j = j(j + 1)
2(2k + 3) , j = 0, 1, 2, · · · , k .

The central charge indeed matches, which validates our proposal. The weights heff
j here

actually can also be obtained from the weight formula (2.16) of WZW models, with
λ = j, ρ = 1 and bilinear form 〈x, y〉 = xy/2. The characters of (LY )k theories can be
nicely expressed as

χj(τ) = q−ceff/24+heff
j

∏
n 6=0,±(k−j+1)mod(2k+3)

(1− qn)−1

= q−ceff/24+heff
j

∑
n1,n2···nk≥0

qN
2
1 +N2

2 +···+N2
k+Nk−j+1+···+Nk

(q)n1 · · · (q)nk
,

(2.21)

where Ni = ni + · · · + nk for i ∈ {1, 2 · · · k} and (q)n = (1 − q) · · · (1 − qn) with (q)0 = 1.
The expression in the second line is often called Nahm sums, while the equality between the
first and the second line is famously known as the generalized Rogers-Ramanujan identities,
or Andrews-Gordon identities, see e.g. [25]. The S-matrix (2.11) can be simplified as

Si,j = 2√
2k + 3

(−1)i+j+k sin
(2π(k − i+ 1)(k − j + 1)

2k + 3

)
. (2.22)

2.2 Modular linear differential equations

Based on the modularity or the existence of null states in the spectrum, it is well-known
that the d characters of an RCFT form solutions to an MLDE of the same order. Such
differential equations were first proposed by Eguchi and Ooguri [26] in the context of CFT,
and also by Kaneko and Zagier [27] in mathematics. It is most convenient to present it
based on the Wronskian method [8], which we sketch here.

First we define a covariant derivative called Serre derivative sending a modular form of
weight k to a new modular form of weight k + 2 [28],

Dk = 1
2πi

d

dτ
− k

12E2(τ) , (2.23)

where E2(τ) is the quasi-modular Eisenstein series of weight 2. Then we define the order d
modular derivative as

Dd := D2d−2 ◦D2d−4 ◦ · · · ◦D0 . (2.24)

– 6 –
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For an arbitrary function f(τ) made of a linear combination of d characters, the following
determinant obviously vanishes,

det


χ0 · · · χd−1 f

Dχ0 · · · Dχd−1 Df
...

...
Ddχ0 · · · Ddχd−1 Ddf

 = 0. (2.25)

Expanding it according to the last column, we obtain the following equation,[
Dd +

d−1∑
k=0

φk(τ)Dk
]
f(τ) = 0, (2.26)

with

φk(τ) = (−1)d−kWk

Wd
, Wk = det



χ0 · · · χd−1
Dχ0 · · · Dχd−1
...

...
Dk−1χ0 · · · Dk−1χd−1
Dk+1χ0 · · · Dk+1χd−1

...
...

Ddχ0 · · · Ddχd−1


. (2.27)

Henceforth, we will call Wd as the Wronskian. It turns out the equation (2.26) is precisely
the MLDE that we are looking for. At the same time, due to possible zeros of the Wronskian,
we also learn that the coefficients φk(τ) can be meromorphic. In order to characterize
the order of poles, one introduces a notion of index l for Wd as the sum of order of zeros
multiplied by six in the fundamental domain. In other words, zero at the orbifold point
τ = e2πi/3 contributes two, at the orbifold point τ = i contributes three while others give
six. Furthermore, from the valence formula we are able to express l as

l

6 = d(d− 1)
12 −

d−1∑
i=0

αi, (2.28)

where αi = hi − c/24 is the leading exponent of each character. If l = 0, we call the
corresponding MLDE holomorphic or monic. Clearly, in that situation all the coefficients
φk(τ) are polynomials in terms of Eisenstein series E4(τ) and E6(τ).

As mentioned in the introduction, Mathur, Mukhi and Sen first initiated a classification
program for RCFTs based on the number of characters d and the index l. Their strategy
goes as follows: one first writes down the most general MLDE once given d and l. Integrality
of the characters requires all the solutions to have integral and non-negative q-expansion.
For example, the solution corresponding to the vacuum character must take the form
of (2.4). Therefore, all the mi must be non-negative integers. Clearly, integrality imposes a
very stringent constraint on the unknown parameters in the MLDE, and often renders the
allowed choices of parameters finite.
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(LY )1 (A1)1 (A2)1 (G2)1 (D4)1 (F4)1 (E6)1 (E7)1 (E7 1
2
)1 (E8)1

c 2
5 1 2 14

5 4 26
5 6 7 38

5 8
h 1

5
1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5 −

M 1 1 2 1 3 1 2 1 1 −

Table 1. Central charge c and non-vacuum conformal weight h with its degeneracyM for Mathur-
Mukhi-Sen series.

In [7, 8], the authors completely classified all cases with d = 2 and l = 0, see also in
mathematics literature [29]. There are only ten theories in total, and we provide some
basic information in table 1.4 Note from A1 to E7 and E8 these are exactly the Deligne
exceptional series [24]. We remark that (E7 1

2
)1 is actually an intermediate vertex operator

algebra (IVOA) [31], while E7 1
2
is an intermediate Lie algebra filling a hole in the Deligne

exceptional series between E7 and E8 [32]. The WZW (E8)1 only has a single-character
but is included for completeness. Later, [9, 10] further considered theories with positive
index, and they found an interesting duality phenomenon between theories in table 1 and
those with l = 2, which is the focus of the next section.

There have been many developments since the MMS classification of d = 2 RCFTs.
The classification of the d = 3 cases was studied in [12, 15, 16, 33–35]. In this work, We
adopt the most recent results for d = 3, l = 0 in [16]. The classification of d = 4, 5, l = 0
cases was also recently obtained in [16], see also an earlier study on the d = 4 case in [36].
Besides, the explicit values of l for WZW models can be found in e.g. [37]. The MLDEs for
Virasoro minimal models were discussed in [38].

2.3 Cosets with respect to c = 8k

In this section, we will explain the coset construction of RCFTs. It is by now well-known
that many RCFTs admit a coset presentation, the simplest which can be unitary minimal
models in terms of diagonal coset of SU(2) WZW models. In the classical textbook [22] it is
restricted to taking coset within the class of WZW models, but here we actually need a more
general setup. Therefore, we will adopt the terminology in [39] and call it as generalized
coset.5 We will also closely follow their treatment in the first part.

Suppose we are given an RCFT G. The coefficient of q in the expansion of the vacuum
character contains the dimension of global symmetries. Assuming the affine currents can
generate a subtheory H, then the generalized coset,

C = G/H, (2.29)

is formally defined as the subtheory in G whose chiral algebra generators have trivial OPE
with all those in H. One can show that C is indeed well-defined, for instance it contains a
genuine Virasoro algebra with central charge cC = cG − cH. This can be argued as follows.

4If releasing the non-negativity constraint, a more general classification was given in [30].
5Coset can also be understood from the more general procedure of gauging certain object in the fusion

category [40]. We thank Ying-Hsuan Lin for the discussion on this point.
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The stress-energy tensor of H that is given by the Sugawara construction, should still
have the standard OPE with the affine currents Ja(z). In other words, denoting their
stress-energy tensor as T G and TH respectively, we have

T G(z)Ja(w) ∼ Ja(w)
(z − w)2 + ∂Ja(w)

(z − w) , TH(z)Ja(w) ∼ Ja(w)
(z − w)2 + ∂Ja(w)

(z − w) . (2.30)

Their difference T C := T G − TH hence has trivial OPE with all the generators of H. By
computing the OPE of T C with itself, it is easy to see that the generalized coset C indeed
has the desired central charge.

In fact, one can generalize the above picture even further, and take H to be a subtheory
with a closed subchiral algebra generated by spin one or spin two currents. With a similar
argument, one shows that the generalized coset is still a well-defined CFT. This kind of
construction already appeared, say, in the decomposition of Monster CFT into theories
with other sporadic group symmetries [41, 42].

From the point of view of physical states, (2.29) means that we decompose the Hilbert
space of states in G into irreducible representations of commuting subchiral algebra for
C ⊗H. At the level of characters this yields what is known as the bilinear relation,

χG0 (τ) = χH0 (τ) · χC0(τ) +
d−1∑
i=1
Mi χ

H
i (τ) · χCi (τ) , (2.31)

where χH0 (χC0) is the vacuum character of H(C), while χHi (χC0) for 1 ≤ i ≤ d−1 are characters
for the other primaries in H(C) with degeneracyMi.

In later sections, we shall discuss a lot of theories with various Wronskian indices
l that can be paired up to give a putative single-character theory with c = 8k. Some
immediate constraints can already be deduced from the characters. Suppose theory H(C)
has Wronskian index lH(lC) and conformal weights hHi (hCi ) for non-vacuum primaries labeled
by 1 ≤ i ≤ d− 1, then the bilinear relation (2.31) demands in particular

hHi + hCi = ni, with ni ∈ N (2.32)

after a possible reordering of the indices. What’s more, since the Wronskian index of
each theory is constrained by the exponents (2.28), taking the sum of two equations and
expressing αi in terms of central charge and weights yields

lH + lC = d2 + (2k − 1)d− 6
d−1∑
i=1

ni . (2.33)

Let us give some simple examples with d = 2, k = 1 in table 2, which are well-known
decompositions of WZW (E8)1 theory into pairs of two-character theories. All theories
here are exactly in the Mathur-Mukhi-Sen series, i.e., l = l′ = 0. Notice for each pair,
n1 = h1 + h̃1 = 1, which satisfies the general relation (2.33).

More interesting examples are the c = 24 pairs, i.e., k = 3. In the case of RCFTs with
two characters, i.e., d = 2, such pairs have been studied in ([39], table 1), where each WZW
theory from A1 to E7 in Mathur-Mukhi-Sen series has a dual l′ = 2 theory w.r.t. c = 24.
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l = 0 l′ = 0

c h m1 remark c̃ h̃ m̃1 remark
2
5

1
5 1 (LY )1

38
5

4
5 190 (E7 1

2
)1

1 1
4 3 (A1)1 7 3

4 133 (E7)1

2 1
3 8 (A2)1 6 2

3 78 (E6)1

14
5

2
5 14 (G2)1

26
5

3
5 52 (F4)1

4 1
2 28 (D4)1 4 1

2 28 (D4)1

Table 2. Cosets of c = 8 WZW (E8)1 theory with two characters.

l = 0 l′ = 2 duality

c h m1 remark c̃ h̃ m̃1 remark m1 + m̃1 Schellekens No.
2
5

1
5 1 (LY )1

118
5

9
5 59 T59(LY )1 60 −

1 1
4 3 (A1)1 23 7

4 69 T23(A1)1 72 15− 21

2 1
3 8 (A2)1 22 5

3 88 T11(A2)1 96 24, 26− 28
14
5

2
5 14 (G2)1,T7(LY )1

106
5

8
5 106 T53(LY )1 120 32, 34

4 1
2 28 (D4)1 20 3

2 140 T5(D4)1 168 42, 43
26
5

3
5 52 (F4)1,T13(LY )1

94
5

7
5 188 T47(LY )1 240 52, 53

6 2
3 78 (E6)1 18 4

3 234 − 312 58, 59

7 3
4 133 (E7)1,T7(A1)1 17 5

4 323 T17(A1)1 456 64, 65
38
5

4
5 190 (E7 1

2
)1,T19(LY )1

82
5

6
5 410 T41(LY )1 600 −

Table 3. Cosets of c = 24 theories with two characters. The Hecke operation Tp will be defined in
section 2.4.

These dual theories have 16 < c < 24 and conformal weights 1 < h1 < 2. In each pair,
the conformal weights satisfy h1 + h̃1 = 2. Besides, each pair corresponds to some c = 24
theories in the Schellekens’ list [17]. The bilinear relation (2.31) of each pair gives the single
character J(τ) + N . Here recall j(τ) = J(τ) + 744 = q−1 + 744 + 196884q + · · · is the
well-known Klein j function. The constant N = m1 + m̃1 is the sum of spin-1 currents of
the paired theories. We can also extend it to the non-unitary cases (LY )1 and (E7 1

2
)1. All

together, we collect nine c = 24 pairs in table 3.
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l = 2 l′ = 2 duality

c h m1 c̃ h̃ m̃1 N
82
5

6
5 410 118

5
9
5 59 −27

17 5
4 323 23 7

4 69 −104

18 4
3 234 22 5

3 88 −174
94
5

7
5 188 106

5
8
5 106 −202

20 3
2 140 20 3

2 140 −216

Table 4. The (l, l′) = (2, 2) coset relations of c = 40 theories with two characters. The bilinear
relation gives (J(τ) +N )j(τ)2/3.

l = 0 l′ = 4 duality

c h m1 remark c̃ h̃ m̃1 N
38
5

4
5 190 (E7 1

2
)1

162
5

11
5 4 −302

7 3
4 133 (E7)1 33 9

4 3 −360

6 2
3 78 (E6)1 34 7

3 1 −417

Table 5. The (l, l′) = (0, 4) coset relations of c = 40 theories with two characters. The bilinear
relation gives (J(τ) +N )j(τ)2/3. Three l′ = 4 RCFTs of non-product type were conjectural to exist
in table 3 of [11] as IVOA.

We can even form two-character RCFTs together as c = 40 pairs, i.e., k = 5. In such
cases, the relation (2.33) allows n1 = h1 + h̃1 = 3 and l+ l′ = 4. There are two possibilities.
We collect the (l, l′) = (2, 2) pairs in table 4 and (l, l′) = (0, 4) pairs in table 5.6

2.4 Hecke relations

Let us describe here an important method that will be used extensively in the core of this
article to generate new RCFT characters, especially the candidate characters of a putative
dual RCFT to the one character theory. We refer the reader to [5] for more details about
this method.

In previous sections, we learn that the n distinct characters of irreducible modules of an
RCFT transform in an n-dimensional complex representation ρ of the full modular group,
hence forming a vector-valued modular function. In addition to that, according to the
integrality conjecture which is recently proved by [43], there exists a smallest positive integer
N so that every character is already modular invariant under the principal congruence

6Although in table 4 and 5 all N ’s are negative, the single character (J(τ) + N )j(τ)2/3 always gives
positive and integral q-expansion.
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subgroup Γ(N) of SL(2,Z). Such a subgroup is defined as follows,

Γ(N) :=
{(

a b

c d

)
∈ SL(2,Z),

(
a b

c d

)
≡
(

1 0
0 1

)
mod N

}
. (2.34)

In [44], it is proved that for RCFT characters the integer N coincides with the order of ρ(T ).
Adopting the terminology in [5], we henceforth refer to it as the conductor of the theory.

Now it is time to define the Hecke operator. In fact, the case for the full modular
group and congruence subgroups can be found in the textbooks on number theory, e.g., [45].
However, the novel point is that since the characters form a vector-valued modular function,
it had better directly involve the representation ρ instead of the Dirichlet characters. This
kind of Hecke operator was first defined in [5] as follows. Given a prime number p not
dividing the conductor N , let us denote by p̄ its multiplicative inverse in Z/NZ, and by σp
the pre-image of the diagonal matrix diag(p̄, p) under the mod N map.7 Then one defines
the action of the Hecke operator Tp on the α-th component of the vector-valued modular
function,

(Tpχ)α(τ) =
∑
β

ραβ(σp)χβ(pτ) +
p−1∑
i=0

χα

(
τ + iN

p

)
. (2.35)

This leads to a formula in terms of the coefficients of the Fourier expansion

χα(τ) =
∑
n

bα(n) q
n
N , (2.36)

as
(Tpχα)(τ) =

∑
n

b(p)α (n) q
n
N , (2.37)

with

b(p)α (n) =
{
pbα(pn), p - n,
pbα(pn) +∑

β ραβ(σp)bβ
(
n
p

)
, p | n. (2.38)

The above formula clearly indicates that the Fourier coefficients of each component of
Hecke image Tp satisfy certain mod p property, i.e., for any Fourier coefficient not divisible
by p, the p− 1 Fourier coefficients behind or after it must be divisible by p. Furthermore, if
p is no longer prime but still coprime to N , we can make use of the following formulas to
define Tp, {

Trs = Tr ◦ Ts, (r, s) = 1,
Tpn+1 = Tp ◦ Tpn − pσp ◦ Tpn−1 , p prime. (2.39)

At the level of the action on the representation ρ, one can show that the new representation
ρ(p) is given by

ρ(p)(T ) = ρ(T p̄) , ρ(p)(S) = ρ(σpS) , (2.40)

in terms of the generators of SL(2,Z).
7For example σp can be chosen to be T p̄S−1T pST p̄S.
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An easy consequence of the Hecke operator action is that is p times the (effective)
central charge and conformal weights of χα should respectively give the central charge and
conformal weights derived from (Tpχα), for the latter only up to integers. We may refer to
it as the multiple p requirement.

Meanwhile, experimentally we observe that for all the cases considered, the char-
acters (Tpχα) can always be decomposed into degree p homogeneous polynomials with
variables being χα. Despite a lack of proof, we believe it to hold in general and dub it the
homogeneous property.

Next we explain why Hecke operators are particularly suited for finding characters of
dual RCFT. In [5], it is shown that for given two Hecke images Tp1,p2χ(τ), the bilinear
combination with the matrix Gl = ρ(T lS−1T l̄ST lS)

Tp1χ(τ)T ·Gl · Tp2χ(τ) (2.41)

is modular invariant if
p̄2 + p̄1l

2 ≡ 0 mod N . (2.42)

In other words, they combine to give the character of a putative single-character CFT of
central charge c = 24k.

For example, if one chooses p1 = 1, p2 = N − 1, then setting p̄1 = 1, p̄2 = −N − 1 we
can simply take l = 1 to satisfy the above equation. If furthermore the charge conjugate
matrix C is the identity, then Gl=1 is also the identity matrix such that (2.41) is reduced to
the familiar diagonal pairing. The single-character for a c = 24k + 8 or 24k + 16 theory is
not strictly speaking modular invariant but up to a phase e±2πi/3. Two Hecke images Tp1,p2

can also combine into a c = 24k + 8 or 24k + 16 theory. We will see many such examples in
the main context.

Now we give some examples of Hecke relations which appear in [5] for RCFTs with two
characters. First, consider the effective Lee-Yang model (LY )1 which has central charge
c = 2/5, conformal weights 1/5 and conductor N = 60. The two characters are just the
well-known Rogers-Ramanujan functions

φ1 = q−
1
60

∞∏
n=0

1
(1− q5n+1)(1− q5n+4) , φ2 = q

11
60

∞∏
n=0

1
(1− q5n+2)(1− q5n+3) , (2.43)

with transformation of vector-valued modular form as

ρ(LY )1(S) = 2√
5

(
sin(2π

5 ) sin(π5 )
sin(π5 ) − sin(2π

5 )

)
, ρ(LY )1(T ) = diag(ξ−1

60 , ξ
11
60). (2.44)

All Hecke images Tp of (LY )1 with ordinary characters for p < 60 are collected in table 3.
For example, T7(LY )1 = (G2)1, T13(LY )1 = (F4)1 and T19(LY )1 = (E7 1

2
)1. Let us look at

the c = 118/5 theory in table 3, which can be realized as the T59 image of (LY )1. We find
the vacuum characters of this theory can be exactly written as

χT59
0 =φ59

1 +162545φ49
1 φ

10
2 +8777430φ44

1 φ
15
2 +57609370φ39

1 φ
20
2 +48470919φ34

1 φ
25
2

+29482300φ29
1 φ

30
2 −34622085φ24

1 φ
35
2 +28804685φ19

1 φ
40
2 −2925810φ14

1 φ
45
2 +32509φ9

1φ
50
2 ,
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while the non-vacuum character χ9/5 can be obtained from χ0 by replacing φ1 → φ2, φ2 →
−φ1. Together with (LY )1, they form a c = 24 pair with bilinear relation of characters as

J(τ) + 60 = χT59
0 χ

(LY )1
0 + χT59

9/5χ
(LY )1
1/5

= φ60
1 + 195054φ50

1 φ
10
2 + 11703240φ45

1 φ
15
2 + 86414055φ40

1 φ
20
2

+ 83093004φ35
1 φ

25
2 + 58964600φ30

1 φ
30
2 − 83093004φ25

1 φ
35
2

+ 86414055φ20
1 φ

40
2 − 11703240φ15

1 φ
45
2 + 195054φ10

1 φ
50
2 + φ60

2

= q−1 + 60 + 196884q + 21493760q2 + 864299970q3 + . . . .

(2.45)

On the other hand, consider the c = 82/5 theory in table 3, which can be realized as the
T41 image of (LY )1. We find the vacuum characters of this theory can be exactly written as

χT41
0 = φ41

1 + 369φ36
1 φ

5
2 + 50594φ31

1 φ
10
2 + 261580φ26

1 φ
15
2 + 136735φ21

1 φ
20
2

− 151003φ16
1 φ

25
2 + 54858φ11

1 φ
30
2 − 902φ6

1φ
35
2 ,

(2.46)

while the non-vacuum character χ6/5 again can be obtained from χ0 by replacing φ1 →
φ2, φ2 → −φ1. Together with (E7 1

2
)1, they form a c = 24 pair with bilinear relation of

characters as

J(τ)+600 =χT41
0 χ

(E7+1/2)1
0 +χT41

6/5χ
(E7+1/2)1
4/5

=φ60
1 +540φ55

1 φ
5
2+165354φ50

1 φ
10
2 +12353940φ45

1 φ
15
2 +79345455φ40

1 φ
20
2

+120668904φ35
1 φ

25
2 −13806340φ30

1 φ
30
2 −120668904φ25

1 φ
35
2

+79345455φ20
1 φ

40
2 −12353940φ15

1 φ
45
2 +165354φ10

1 φ
50
2 −540φ5

1φ
55
2 +φ60

2

= q−1+600+196884q+21493760q2+864299970q3+. . . .

(2.47)

The difference of the two identities (2.45) and (2.47) yields a simpler identity

φ1φ2(φ10
1 − 11φ5

1φ
5
2 − φ10

2 ) = 1. (2.48)

This famous identity was proposed by Ramanujan and later proved by Darling, Rogers and
Mordell independently, see for example [46] for the history.

We also collect the Hecke relations involving (A1)1, (A2)1, (D4)1 in table 3. These
relations were revealed in [5] and will be useful to us when discussing the Hecke images
of product theory later. Lots of new Hecke relations involving RCFTs with 3, 4, 5, 6, 7
characters will be given in the main context of this paper. Owing to the finite-generation
property of Γ(N) modular forms, it is always sufficient to verify a Hecke relation by checking
the Fourier coefficients of the two sides to certain q orders, called the Sturm bound [47].

2.5 Generalized Hecke relations

In practice, we often encounter situations where two RCFTs seemingly have an analogous
Tp relation but the suitable p and N are not coprime to each other. The simplest example
perhaps is Ising model with c = 1/2, hi = 1

16 ,
1
2 and WZW (A1)2 with c = 3/2, hi = 3

16 ,
1
2

which appear to have a T3 relation but 3 is not coprime to the conductor 48 of Ising model.
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At present, we are not able to find a similar formula as (2.35), while its naive generalization
does not make sense. Nevertheless, we propose that there should exist a generalized Hecke
relation Tp characterized by the following three conditions when p is not coprime to the
conductor N :

1. The central charge and conformal weights satisfy the multiple p requirement.

2. The degeneracy for each non-vacuum primary is inherited.

3. The homogeneous property holds.

We regard these three conditions as the defining properties of generalized Hecke relations.
By computing a large quantity of examples, we observe the following additional properties
when a theory with conductor N is mapped to its generalized Hecke image Tp:

1. Conductor N becomes N/p.

2. Fourier coefficients of Tp satisfy the mod p properties, just like ordinary Hecke image.

3. The classes of ordinary Hecke operations of Tp resemble those of the original theory.

We make some clarifications for the third point. A generalized Hecke image Tp can of course
have its own ordinary Hecke images Tk with k coprime to N/p. In these cases, we simply
denote them as the generalized Tkp image of the original theory. This may bring in some
uniqueness issues, but for all examples we encounter in the current paper this notion is
indeed valid. The resemblance between the Hecke classes we declare in the third point will
be shown for every example in the main context. Here let us just point out that the number
of different ρ(σk) matrices for the Tp image is always the same with the number of different
ρ(σp) matrices of the original theory. This is not obvious as the two cases have different
conductors, different T transformations, and in general different S transformations. As
mentioned above, it would be desirable to give a concrete formula in terms of the coefficients
in the q-expansion as (2.35). For now, we can only establish generalized Hecke relations
between existing theories. We give a summary of generalized Hecke relations appearing in
the current work in table 6. We will discuss these examples one by one in the main context,
examine the defining conditions and check the above properties. It is interesting to notice
only generalized T3,T2 appearing in table 6. We suspect these are the only two possibilities
for generalized Hecke which may have something to do with the 24 in vacuum α0 = −c/24
only has factors 2 and 3.

We remark that the three defining conditions of generalized Hecke together are actually
quite restricted. There exist situations where the first and third conditions are satisfied
while the second is not. For example, the following two theories do not satisfy a generalized
T2 relation:

(LY )⊗3
1 , c = 6

5 , hi = 0,
(1

5

)
3
,

(2
5

)
3
,
3
5 , N = 20,

(G2)1/(LY )1, c = 12
5 , hi = 0, 1

5 ,
2
5 ,

4
5 , N = 10.

(2.49)
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Theory A c hi N generalized Tp Theory B c′ h′i N ′

Ising 1
2

1
16 ,

1
2 48 T3 (A1)2

3
2

3
16 ,

1
2 16

(LY )2
4
7

1
7 ,

3
7 42 T3 M12/7

12
7

2
7 ,

3
7 14

(LY )⊗2
1

4
5 (1

5)2,
2
5 30 T3 (A1)D6

12
5

1
5 , (

3
5)2 10

U(1)2 1 (1
8)2,

1
2 24 T3 (A3)1 3 (3

8)2,
1
2 8

(A1)⊗2
1 2 (1

4)2,
1
2 12 T3 (D6)1 6 (3

4)2,
1
2 4

M4/3
4
3 (2

9)3,
1
3 ,

2
3 18 T2 M8/3

8
3

1
3 , (

4
9)3,

2
3 9

(G2)1/(LY )1
12
5

1
5 ,

2
5 ,

4
5 10 T2 (F4)1/(LY )1

24
5

2
5 ,

3
5 ,

4
5 5

Table 6. Examples of generalized Hecke relation Tp between theory A with central charge c,
non-vacuum weights hi, conductor N and theory B with central charge c′, non-vacuum weights
h′i, conductor N ′. Here (A1)D6 is the D6 type modular invariant of Â1. The M12/7 theory will be
discussed in section 4.4. The M4/3 and M8/3 theories will be discussed in section 5.1.

There also exist situations where the first two conditions are satisfied while the third is
not. For example, the following two theories do not satisfy a generalized T2 relation:

Msub(6, 5), c = 4
5 , hi = 0,

( 1
15

)
2
,

2
5 ,
(2

3

)
2
, N = 30,

(A2)1/(LY )1, c = 8
5 , hi = 0,

( 2
15

)
2
,

4
5 ,
(1

3

)
2
, N = 15.

(2.50)

Here Msub(6, 5) describes the critical 3-state Potts model. One can easily check that the
vacuum character of (A2)1/(LY )1 is not the square of the vacuum character of Msub(6, 5).

3 Classification of 2d RCFTs

The classification of 2d RCFTs we are interested in here is in more sense of number theory
rather than category theory. One of the main reasons is that non-unitary RCFTs such
as Lee-Yang theory and WZW (E7 1

2
)1 are of interest to us as much as unitary RCFTs.

From the viewpoint of vector-valued modular forms, the characters of non-unitary and
unitary RCFTs show no difference and deserve equal treatment. The classification of RCFTs
exploiting the modularity of characters started from the seminal work of Mathur-Mukhi-Sen,
and has now been achieved for the situation with up to five characters in [16]. One main
aim of this paper is to better understand the classification results in [16].

The 2d RCFTs having at least one pair of weights with integral difference are often
called degenerate theories, for example those with integral-weight non-vacuum primaries.
Those theories bring more complexity in the holomorphic modular bootstrap, thus were not
included in the classification in [16]. Let us consider the classification of non-degenerate
theories appearing in [16]. We have the following main observation: the characters of an
arbitrary l = 0 RCFT can be realized as either a Hecke image or the coset of a Hecke image
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d 2d RCFTs

2 (LY )1, (A1)1, (A2)1, (D4)1

3 (LY )2, (LY )⊗2
1 , Spin(1, 2, 4)1, (A2)⊗2

1 , (A4)1

4 (LY )3,(LY )⊗3
1 ,(A1)⊗3

1 ,Meff(5, 3),Msub(6, 5),Msub(14, 3),M4/3,6/5,8/5,12/5,2, (A6)1,U(1)3

5 (LY )4, (LY )⊗4
1

Table 7. Initial 2d RCFTs for (generalized) Hecke operations and c = 8k cosets. The Spin(1, 2, 4)1
theories are also denoted as Ising,U(1)2, (A1)⊗2

1 respectively. M8/5,M12/5 and M2 can be realized
as cosets (A2)1/(LY )1, (G2)1/(LY )1 and (D4)1/(A2)1 respectively. M4/3 is a theory with central
charge c = 4/3 and weights with degeneracy 0, ( 2

9 )3,
1
3 ,

2
3 which will be discussed in section 5.1.

M6/5 is a subtheory of Ising ⊗M(5, 4) with central charge c = 6/5 and weights with degeneracy
0, ( 1

10 )3, ( 1
2 )3,

3
5 which will be discussed in section 5.3.

d 2d RCFTs

2 (LY )1, (A1)1, (A2)1, (D4)1

3 (LY )2, Spin(1, 2)1, (A4)1

4 (LY )3,Msub(6, 5),Msub(14, 3),M4/3,6/5, (A6)1

5 (LY )4

Table 8. Primitive 2d RCFTs for (generalized) Hecke operations and c = 8k cosets.

w.r.t. a c = 8k theory. We summarize all the initial theories for the (generalized) Hecke
operations in table 7. Each initial theory represents a type which contains all its Hecke
images and the c = 8k cosets of its Hecke images. Clearly all theories in one type share the
same degeneracy. We will discuss all types in table 7 one by one in the following sections. If
we further allow product or coset among initial theories, then the set of initial theories can be
further reduced, which we collect in table 8 and call them primitive theories. One important
consequence of our proposal is that it fixes the degeneracy and normalization of characters
of all l = 0 RCFTs which are not explicit in the holomorphic modular bootstrap program.

Let us explain our proposal for RCFTs with d = 2, for which we need initial theories
(LY )1, (A1)1, (A2)1 and (D4)1 from table 7. We want to argue that the level 1 WZW
G2, F4, E6, E7, E7 1

2
models in the Mathur-Mukhi-Sen classification table 1 can be generated

by the level 1 LY,A1, A2 models from Hecke operations and c = 8 cosets. This is actually
obvious owing to T5(LY )1 = (G2)1 and the c = 8 cosets in table 2.

In the above discussion, we have limited ourselves to the non-degenerate RCFTs. For
degenerate theories, one still needs to add to the l = 0 classification at least with (D4)⊗2

1 for
d = 3, (D4)⊗3

1 , (A2)⊗3
1 for d = 4, and (D4)⊗4

1 , (A2)⊗4
1 , (A1)⊗4

1 ,U(1)4, (A1)4 for d = 5. The
Hecke images of degenerate theories are still degenerate and normally have l > 0, thus are
not the main interest of the current paper.
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One interesting phenomenon we observe for c = 24 pairs of Hecke images is that if
a theory of central charge c and conductor N satisfies cN = 24, then for any c = 24 pair
of its (generalized) Hecke images (Tp,TN−p), the sum of spin-1 currents m1 + m̃1 = N is
always divisible by the conductor N . One can confirm this for all two-character RCFT pairs
in table 3, knowing the conductor of (LY )1, (A1)1, (A2)1, (D4)1 are 60, 24, 12, 6 respectively.
This is not surprising since σ(ρp) ≡ σ(ρN−p). In the cases where both images of a pair
have ordinary characters, the bilinear relation of the characters is just equal to J +N . It
was recently suggested in [48] that for J + N to be the single character of a consistent
c = 24 theory, the theory of topological modular forms constrains N to be divisible by 12.
However by computing the pairs of Hecke images, we do find some counterexamples to this
constraint. This suggests that some Hecke images may not be as physical as they may look.
It would be interesting to further explore this point.

4 RCFTs with three characters

The potential RCFTs with three characters, non-integral weights and l = 0 MLDEs have
been recently classified by modular bootstrap in [16], see also an early work [33]. Apart
from an infinite series Spin(n)1, n 6= 8k, there are in total 65 theories in ([16], table 5). We
propose that all these theories including the infinite series can be merely generated by 7
simple theories which we will discuss individually in the following subsections. Therefore
there are in total 7 types from the viewpoint of Hecke relation. We emphasize that RCFTs
with three characters can have more than three primaries due to degeneracy. Among the 7
types we will discuss in the section, type Ising and (LY )2 have three primaries, type U(1)2,
(A1)⊗2

1 , (LY )⊗2
1 and (A2)⊗2

1 have four primaries, while type (A4)1 have five primaries.
We remark that l = 0 RCFTs with three characters can have integral weights. For

example, the double product theory (D4)⊗2
1 has c = 8 and conformal weights and degeneracy

as hi = 0, (1
2)6, (1)9. Its conductor N = 6. We compute its Hecke images Tp for p =

5, 7, 11, . . . which all have l ≥ 6 thus are not of our major interest here.

4.1 Type Ising

Critical Ising model M(4, 3) is the first of a series Spin(n)1 unitary theory for n = 1. It
has central charge c = 1

2 and conformal weights hi = 0, 1
16 ,

1
2 . The three characters are

well-known to be

χ0 = 1
2

(√
θ3(τ)
η(τ) +

√
θ4(τ)
η(τ)

)
= q−

1
48 (1 + q2 + q3 + 2q4 + 2q5 + 3q6 + . . . ),

χ 1
2

= 1
2

(√
θ3(τ)
η(τ) −

√
θ4(τ)
η(τ)

)
= q

23
48 (1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + . . . ),

χ 1
16

=
√
θ2(τ)
2η(τ) = q

1
24 (1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + . . . ),

(4.1)
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where θi are Jacobi theta functions. Obviously the conductor N = 48. The S-matrix for
(χ0, χ 1

2
, χ 1

16
) is well-known to be

ρ(S)Ising =


1
2

1
2

1√
2

1
2

1
2 − 1√

2
1√
2 −

1√
2 0

 . (4.2)

In fact, this is also the S-matrix of all WZW (Br)1 theories in the order of weights 0, 1
2 ,

2r+1
16 .

The Hecke images Tp of Ising model for p coprime to 48 have been discussed in ([5],
section 5.3). There are two classes for the Hecke operation: for p = 1, 7, 17, 23, 25, 31,
41, 47 mod 48, i.e., p2 ≡ 1 mod 48, ρ(σp) = Id, while for p = 5, 11, 13, 19, 29, 35, 37,
43 mod 48, i.e., p2 ≡ 25 mod 48,

ρ(σp) =

 0 1 0
1 0 0
0 0 −1

 . (4.3)

Notably, it was pointed out in [5] that the T31 image of Ising describe the WZW model
(E8)2 and the T47 image describe the characters of the Baby Monster B vertex algebra [49].
We compute all admissible Tp for p < 48 and collect the relevant information of all Hecke
images in c = 24 pairs in table 9. We observe more Hecke relations, such as the T35
image can describe a subtheory of (C10)1, while the T37 image can describe a subtheory of
(E7)2 ⊗ (F4)1.

The original Hecke operation in [5] does not include T3 as 3 is divisible by the conductor
48. However, we notice many well-defined RCFTs can be described by the generalized
Hecke operation T3k of Ising model, k ∈ Z. In particular, the generalized T3 image
describes the WZW model (A1)2. The rest generalized Hecke images T3k can be obtained
simply by ordinary Hecke operation Tk(A1)2. We include all generalized Hecke images for
k = 3, 5, 7, 9, 11, 13, 15 in table 9 as well. It is easy to check the sums of spin-1 currents
m1 + m̃1 for all pairs in table 9 are divisible by the conductor 48. We also checked the
bilinear relations of characters of all pairs which give J(τ) + m1 + m̃1. All theories in
table 9 that appeared in the Schellekens’ list belong to the MTC classes 3B±1/2,±3/2,±5/2,±7/2
in table I of [50]. Besides, all theories in the l′ = 0 column of table 9 have appeared as
solutions in the holomorphic modular bootstrap ([16], table 5), and were determined to
have well-defined fusion algebras. However, we notice that some c = 24 pairs in table 9 do
not belong to the Schellekens’ list, for example the pair (T23,T25). This suggests that some
Hecke images here such as T25 may not be unitary or physical theories. We also remark that
the all theories in the l = 0 column can be fermionized to 2c copies of Majorana-Weyl free
fermions, and all theories in the l′ = 0 column may have supersymmetric interpretations
due to the presence of weight-3/2 primaries.

In the following, we demonstrate in detail the basic generalized Hecke relation (A1)2 =
T3M(4, 3). WZW model (A1)2 has central charge c = 3/2 and three primaries with

– 19 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
2

l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch
1
2

1
16 ,

1
2 0 T1

47
2

3
2 ,

31
16 0 T47,B 0 0

3
2

3
16 ,

1
2 3 T3, (A1)2

45
2

3
2 ,

29
16 45 T45 48 5, 7, 8, 10

5
2

5
16 ,

1
2 10 T5, (B2)1

43
2

3
2 ,

27
16 86 T43 96 25, 26, 28

7
2

7
16 ,

1
2 21 T7, (B3)1

41
2

3
2 ,

25
16 123 T41 144 39, 40

9
2

1
2 ,

9
16 36 T9, (B4)1

39
2

23
16 ,

3
2 156 T39 192 47, 48

11
2

1
2 ,

11
16 55 T11, (B5)1

37
2

21
16 ,

3
2 185 T37 240 53

13
2

1
2 ,

13
16 78 T13, (B6)1

35
2

19
16 ,

3
2 210 T35, (C10)1 288 56

15
2

1
2 ,

15
16 105 T15, (B7)1

33
2

17
16 ,

3
2 231 T33 336 −

17
2

1
2 ,

17
16 136 T17, (B8)1

31
2

15
16 ,

3
2 248 T31, (E8)2 384 62

19
2

1
2 ,

19
16 171 T19, (B9)1

29
2

13
16 ,

3
2 261 T29 432 −

21
2

1
2 ,

21
16 210 T21, (B10)1

27
2

11
16 ,

3
2 270 T27 480 −

23
2

1
2 ,

23
16 253 T23, (B11)1

25
2

9
16 ,

3
2 275 T25 528 −

Table 9. (Generalized) Hecke images of critical Ising model. Note for p = 3k, k ∈ Z, we regard
them as generalized Hecke images, i.e., Hecke images Tk of WZW (A1)2. Here and after, “Sch” is
short for the “Schellekens’ list No.”

characters:

χ2w0
0 = q−

1
16 (1 + 3q + 9q2 + 15q3 + 30q4 + 54q5 + 94q6 + . . . ),

χ2w1
1/2 = q

7
16 (3 + 4q + 12q2 + 21q3 + 43q4 + 69q5 + 123q6 + . . . ),

χw0+w1
3/16 = q

1
8 (2 + 6q + 12q2 + 26q3 + 48q4 + 84q5 + 146q6 + . . . ).

(4.4)

Here w0, w1 denote the affine weights of Â1. Clearly the conductor of (A1)2 is N = 16. We
find the following exact relation between the (A1)2 characters and Ising characters:

χA1
0 = χ3

0 + 3χ0χ
2
1/2, χA1

1/2 = χ3
1/2 + 3χ1/2χ

2
0, χA1

3/16 = 2χ3
1/16. (4.5)

This means the (A1)2 characters are the degree 3 homogeneous polynomials of Ising
characters. We can see that all three conditions of generalized Hecke operation T3 listed
in section 2.5 are satisfied. Besides, it is easy to derive from (4.5) that the S-matrix of
(A1)2 is identical to ρ(S)Ising. The Hecke operations of (A1)2 fall into two classes: for
p = 1, 7, 9, 15 mod 16, i.e., p2 ≡ 1 mod 16, ρ(σp) = Id, while for p = 3, 5, 11, 13 mod 16,
i.e., p2 ≡ 9 mod 16, ρ(σp) is the same with (4.3). These highly resemble the two classes
of original Hecke operation of Ising. Remark that although the S-matrices of Ising and
(A1)2 are identical, their T -matrices are not. We further compute the Hecke images
Tk(A1)2 and observe the Hecke relations such as T3(A1)2 = (B4)1, T5(A1)2 = (B7)1 and
T7(A1)2 = (B10)1. Moreover, T15(A1)2 image can describe a subtheory of (D5)8. This
subtheory pairs with (A1)2 to form a c = 24 theory in the Schellekens’ list No.10, of which
the associated holomorphic VOA was constructed in [51].
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4.2 Type U(1)2

The U(1)2 theory is a well-known c = 1 RCFT which can also be regarded as Spin(n)1
theory with n = 2. It has four primaries with conformal weights hi = 0, (1

8)2,
1
2 . The three

distinct characters are:

χ0 = q−
1
24 (1 + q + 4q2 + 5q3 + 9q4 + 13q5 + 21q6 + . . . ),

χ1/8 = q
1
12 (1 + 2q + 3q2 + 6q3 + 9q4 + 14q5 + 22q6 + . . . ),

χ1/2 = q
11
24 (2 + 2q + 4q2 + 6q3 + 12q4 + 16q5 + 26q6 + . . . ).

(4.6)

Obviously the conductor N = 24. The S-matrix is well-known to be

ρ(S) =


1
2 1 1

2
1
2 0 −1

2
1
2 −1 1

2

 . (4.7)

In fact, this is also the S-matrix of all WZW (Dr)1 theories in the order of weights 0, r8 ,
1
2 .

Consider the Hecke images Tp of U(1)2. It is easy to find for all p coprime to 24, ρ(σp) = Id.
We compute all admissible Hecke images for p < 24 and summarize them in c = 24 pairs
in table 10. Interestingly, we notice many well-defined RCFTs can be described by the
generalized Hecke operation T3k of U(1)2 theory, k ∈ Z. In particular, the generalized T3
image describes the WZW model (A3)1. In the following, we discuss the basic generalized
Hecke relation (A3)1 = T3U(1)2.

WZW model (A3)1 has central charge c = 3 and four primaries with conformal weights
hi = 0, (3

8)2,
1
2 . The three distinct characters are:

χw0
0 = q−

1
8 (1 + 15q + 51q2 + 172q3 + 453q4 + 1128q5 + . . . ),

χw1
3/8 = q

1
4 (4 + 24q + 84q2 + 248q3 + 648q4 + 1536q5 + . . . ),

χw2
1/2 = q

3
8 (6 + 26q + 102q2 + 276q3 + 728q4 + 1698q5 + . . . ).

(4.8)

Here w0,1,2,3 denote the affine weights of Â(1)
3 . The conductor of (A3)1 is N = 8. We find

the following exact relation between the (A3)1 characters and U(1)2 characters:

χA3
0 = χ3

0 + 3χ0χ
2
1/2, χA3

3/8 = 4χ3
1/8, χA3

1/2 = χ3
1/2 + 3χ1/2χ

2
0. (4.9)

This means the (A3)1 characters are the degree 3 homogeneous polynomials of U(1)2
characters. Note the relation (4.9) is almost identical to relation (4.5). We checked all three
conditions of generalized Hecke operation T3 are satisfied. From (4.9) and (4.7), it is easy
to find the S-matrix of (A3)1 is identical to the S-matrix (4.7) of U(1)2.

Consider the Hecke images Tk of (A3)1. We find for all k coprime to the conductor
8, ρ(σp) = Id, which resembles the situation of U(1)2. We then compute all Tk(A3)1
for k = 3, 5, 7 and list them as generalized Hecke images in table 10. We observe Hecke
relations such as T3(A3)1 = (D9)1 and T5(A3)1 describes a subtheory of WZW (A15)1.
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l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1+m̃1 Sch

1 1
8 ,

1
2 1 T1 23 3

2 ,
15
8 23 T23 24 1

3 3
8 ,

1
2 15 T3, (A3)1 21 13

8 ,
3
2 105 T21 120 30, 31, 33− 35

5 5
8 ,

1
2 45 T5, (D5)1 19 11

8 ,
3
2 171 T19 216 49

7 7
8 ,

1
2 91 T7, (D7)1 17 9

8 ,
3
2 221 T17 312 59

9 1
2 ,

9
8 153 T9, (D9)1 15 7

8 ,
3
2 255 T15, (A15)1 408 63

11 1
2 ,

11
8 231 T11, (D11)1 13 5

8 ,
3
2 273 T13 504 −

Table 10. (Generalized) Hecke images of U(1)2. For p = 3k, k ∈ Z, we regard them as generalized
Hecke images as Tk(A3)1.

More precisely, the T5(A3)1 image and (A15)1 characters satisfy the following relation

χ
T5(A3)1
0 = χ

(A15)1,w0
0,1 + χ

(A15)1,w8
2,12870 = q−

5
8 (1 + 255q + 27525q2 + 713850q3 + . . . ),

χ
T5(A3)1
7
8

= χ
(A15)1,w2
7
8 ,120 + χ

(A15)1,w6
15
8 ,8008 = q

1
4 (120 + 17104q + 494040q2 + . . . ),

χ
T5(A3)1
3
2

= 2χ(A15)1,w4
3
2 ,1820 = q

7
8 (3640 + 154056q + 2878920q2 + . . . ).

(4.10)

Here the primary with weight 7/8 has degeneracy two. Together T5(A3)1 and T3(A3)1
form a c = 24 theory in Schellekens’ List No.63. Moreover, T7(A3)1 image can describe
a subtheory of WZW (C7)2, which pairs with (A3)1 itself to form another c = 24 theory
in Schellekens’ List No.35. The holomorphic VOA associated to this c = 24 theory was
constructed in [51].

We can see the sums of spin-1 currents m1 + m̃1 for all pairs in table 10 are divisible by
the conductor 24 of U(1)2 theory. We also checked the bilinear relations of characters of all
pairs which give J(τ) +m1 + m̃1. All theories in table 10 that appeared in the Schellekens’
list belong to the MTC classes 4B±1,±3 in table I of [50]. Besides, all theories in the l′ = 0
column of table 10 have appeared in the holomorphic modular bootstrap ([16], table 5),
and were determined to have positive integer Verlinde formulas. However, the last pair
(T11,T13) do not belong to the Schellekens’ list. This suggests that the T13 image may not
be unitary or physical theories.

There is one more potential theory from holomorphic modular bootstrap ([16], table 5)
falling into type U(1)2, which has c = 23, hi = 0, 7

8 ,
5
2 and m1 = 2323. We find it can form

a c = 24 pair with U(1)2 which has bilinear relation of characters equal to J + 3474.

4.3 Type (A1)⊗2
1

Consider the double product theory (A1)⊗2
1 which has central charge c = 2 and conformal

weights with degeneracy hi = 0, (1
4)2,

1
2 . This can also be regarded as Spin(4)1 theory. We

use h to denote χ(A1)1 , then h0 = θ3(2τ)/η(τ) and h1/4 = θ2(2τ)/η(τ). The three distinct
characters (A1)⊗2

1 , i.e., h2
0, h0h1/4, h

2
1/4 have the same S-matrix as (4.7). The conductor of

(A1)⊗2
1 is N = 12. Consider the Hecke images Tp of (A1)⊗2

1 . We find for all p coprime to
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l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch

2 (1
4)2,

1
2 6 T1 22 3

2 , (
7
4)2 66 T11 72 15− 20

6 1
2 , (

3
4)2 66 T3, (D6)1 18 (5

4)2,
3
2 198 T9 264 54, 55

10 1
2 , (

5
4)2 190 T5, (D10)1 14 (3

4)2,
3
2 266 T7, (E7)⊗2

1 456 64

Table 11. (Generalized) Hecke images of (A1)⊗2
1 . All theories are unitary. For p = 3k, we regard

them as generalized Hecke images Tk(D6)1.

12, ρ(σp) = Id. We then compute all admissible Hecke images for p < 12 and summarize
them in c = 24 pairs in table 11. Beside Hecke relation inherited from T7(A1)1 = (E7)1,
we observe new Hecke relations such as T5(A1)⊗2

1 = (D10)1, and T11(A1)⊗2
1 can describe a

subtheory of (D6)5.
Interestingly, we notice some RCFTs can be described by the generalized Hecke operation

T3k, k ∈ Z of (A1)⊗2
1 . In particular, the generalized T3 image describes the WZW model

(D6)1. This model has central charge c = 6 and four primaries with weights hi = 0, (3
4)2,

1
2 .

The three distinct characters associated to the affine, spinor and vector nodes of D̂(1)
6 are

respectively

χ0 = h6
0 + 3h2

0h
4
1/4 = q−

1
4 (1 + 66q + 639q2 + 3774q3 + 17283q4 + . . . ),

χ3/4 = 4h3
0h

3
1/4 = q

1
2 (32 + 384q + 2496q2 + 12032q3 + 48288q4 + . . . ),

χ1/2 = h6
1/4 + 3h2

1/4h
4
0 = q

1
4 (12 + 232q + 1596q2 + 8328q3 + . . . ).

(4.11)

Here the conductor N = 4. It is easy to find the S-matrix of these three characters is still
identical to (4.7). Besides, the Hecke operations for (D6)1 always have ρ(σp) = Id. We
compute T3(D6)1 and regard it as generalized T9 Hecke image of (A1)⊗2

1 . This image can be
interpreted as a subtheory of (A9)⊗2

1 or a subtheory of (D6)⊗3
1 . Besides, (D6)1 and T3(D6)1

form a c = 24 pair which we add in table 11. Note the sums of spin-1 currents m1 + m̃1 for
all three pairs in table 11 are divisible by the original conductor 12 of (A1)⊗2

1 theory.
There is one more potential theory from holomorphic modular bootstrap ([16], table 5)

falling into type (A1)⊗2
1 , which has c = 22, hi = 0, 3

4 ,
5
2 and m1 = 1298. We find it can form

a c = 24 pair with (A1)⊗2
1 which has bilinear relation of characters equal to J + 1920.

4.4 Type (LY )2

Minimal model M(7, 2) is a non-unitary theory with central charge −68
7 and conformal

weights hi = 0,−2
7 ,−

3
7 . The effective theory (LY )2 has ceff = 4

7 and heff
i = 0, 1

7 ,
3
7 . The

three characters have the following Fourier expansion

χ0 = q−
1
42 (1 + q + 2q2 + 2q3 + 3q4 + 4q5 + 6q6 + . . . ),

χ 1
7

= q
5
42 (1 + q + q2 + 2q3 + 3q4 + 3q5 + 5q6 + . . . ),

χ 3
7

= q
17
42 (1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + . . . ).

(4.12)
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Clearly, the conductor N = 42. The S-matrix for (LY )2 is

ρ(S) = 2√
7


cos

(
π
14
)

cos
(

3π
14

)
sin
(
π
7
)

cos
(

3π
14

)
− sin

(
π
7
)
− cos

(
π
14
)

sin
(
π
7
)
− cos

(
π
14
)

cos
(

3π
14

)
 . (4.13)

Many Hecke images Tp of (LY )2 for p coprime to 42 have been discussed in [5]. In
particular, there exist three classes for the Hecke operation: for p = 1, 13, 29, 41 mod 42,
i.e., p2 ≡ 1 mod 42, ρ(σp) = Id,

for p = 5, 19, 23, 37 mod 42, i.e., p2 ≡ 25 mod 42, ρ(σp) =

 0 1 0
0 0 −1
−1 0 0

 , (4.14)

for p = 11, 17, 25, 31 mod 42, i.e., p2 ≡ 37 mod 42, ρ(σp) =

 0 0 −1
1 0 0
0 −1 0

 . (4.15)

It was also pointed out in [5] that the T5 image is related to the Witten-Reshetikhin-Turaev
invariant of the Brieskorn homology sphere Σ(2, 3, 7) [52]. We compute all admissible Hecke
images for p < 42 and list them in pairs w.r.t. c = 24 in table 12. The pairs (Tp,Tp′) satisfy
p + p′ = 42. We also use the T−17 as a formal notation to denote the original M(7, 2)
minimal model, which is dual to the Hecke image T59. This c = 24 pair (M(7, 2),T59) has
the following bilinear relation of characters8

J(τ) = χT59
0 χ

M(7,2)
0 − χT59

16
7
χ
M(7,2)
− 2

7
+ χT59

17
7
χ
M(7,2)
− 3

7
. (4.16)

Interestingly, we find many theories appeared in the holomorphic modular bootstrap
([16], table 5) can be described by the generalized Hecke operation T3k of (LY )2, k ∈ Z,
which are ordinary Tk of a c = 12

7 theory with weights hi = 0, 2
7 ,

3
7 . We compute all such

generalized Hecke images and list them in pairs in table 12 as well. We can see the sums of
spin-1 currents m1 + m̃1 for all pairs in table 12 are divisible by the conductor 42 of (LY )2.
In the following, we discuss in detail the intriguing c = 12

7 theory and its Hecke operations.
Consider the c = 12

7 theory with weights hi = 0, 2
7 ,

3
7 appeared in the holomorphic

modular bootstrap [16]. We compute from l = 0 MLDE that the three characters are

χM0 = q−
1
14 (1 + 6q + 12q2 + 28q3 + 57q4 + 108q5 + 191q6 + . . . ),

χM3
7

= q
5
14 (2 + 3q + 12q2 + 20q3 + 42q4 + 75q5 + 140q6 + . . . ),

χM2
7

= q
3
14 (3 + 8q + 21q2 + 42q3 + 87q4 + 156q5 + 285q6 + . . . ).

(4.17)

The conductor N = 14. We checked that the degeneracy of this theory is (1, 1, 1), and
notice that this is actually a subtheory of (LY )⊗3

2 . The exact character relations are

χM0 = χ3
0 + 3χ 1

7
χ2

3
7
, χM2

7
= 3χ0χ

2
1
7
− χ3

3
7
, χM3

7
= 3χ2

0χ 3
7
− χ3

1
7
. (4.18)

8We notice it is a typical phenomenon that when a non-unitary minimal model and a c > 24 Hecke image
pair up to a putative c = 24 theory, the bilinear relation of characters always involves some negative signs.
We do not have a clear physical understanding of this phenomenon at the moment.

– 24 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
2

l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch

−68
7 −2

7 ,−
3
7 0 T−17

236
7

16
7 ,

17
7 0 T59 0 0

4
7

1
7 ,

3
7 1 T1

164
7

11
7 ,

13
7 41 T41 42 −

12
7

2
7 ,

3
7 6 T3

156
7

11
7 ,

12
7 78 T39 84 −

20
7

1
7 ,

5
7 10 T5, ?,Σ(2, 3, 7) 148

7
9
7 ,

13
7 74 T37, ? 84 −

36
7

2
7 ,

6
7 36 T9, ?

132
7

8
7 ,

12
7 132 T33, ? 168 −

44
7

4
7 ,

5
7 88 T11

124
7

9
7 ,

10
7 248 T31 336 −

52
7

4
7 ,

6
7 156 T13

116
7

8
7 ,

10
7 348 T29 504 −

60
7

3
7 ,

8
7 210 T15

108
7

6
7 ,

11
7 378 T27 588 −

68
7

3
7 ,

9
7 221 T17

100
7

5
7 ,

11
7 325 T25 546 −

76
7

5
7 ,

8
7 152 T19, ?

92
7

6
7 ,

9
7 184 T23, ? 336 −

Table 12. (Generalized) Hecke images of (LY )2. All theories are non-unitary. For p = 3k, k ∈ Z,
we regard them as generalized Hecke images.

These suggest that the c = 12
7 theory satisfies the generalized Hecke T3 relation with (LY )2.

Note the Fourier coefficients in (4.17) satisfy the mod 3 properties. The S matrix of this
theory can be computed from the S-matrix of (LY )2 as

ρ(S) = 2√
7


cos

(
3π
14

)
cos

(
π
14
)

sin
(
π
7
)

cos
(
π
14
)
− sin

(
π
7
)
− cos

(
3π
14

)
sin
(
π
7
)
− cos

(
3π
14

)
cos

(
π
14
)
 . (4.19)

We then compute all admissible Hecke images of this c = 12
7 theory. We find there exist

three classes for its Hecke operation: for p = 1, 13 mod 14, i.e., p2 ≡ 1 mod 14, ρ(σp) = Id,

for p = 3, 11 mod 14, i.e., p2 ≡ 9 mod 14, ρ(σp) =

 0 1 0
0 0 −1
−1 0 0

 , (4.20)

for p = 5, 9 mod 14, i.e., p2 ≡ 11 mod 14, ρ(σp) =

 0 0 −1
1 0 0
0 −1 0

 . (4.21)

These resemble the three classes of original Hecke operation of (LY )2.
There are three more potential theories from holomorphic modular bootstrap ([16],

table 5, the forth column) falling into type (LY )2. One has c = 100
7 , hi = 0, 4

7 ,
12
7 and

m1 = 380. We find it can form a c = 24 pair with T17 which has bilinear relation of
characters equal to J + 1536. The second has c = 108

7 , hi = 0, 4
7 ,

13
7 and m1 = 456, which

can form a c = 24 pair with T15 which has bilinear relation of characters equal to J + 1056.
The third has c = 156

7 , hi = 0, 5
7 ,

18
7 and m1 = 1248, which can form a c = 24 pair with T3

which has bilinear relation of characters equal to J + 1644.
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4.5 Type (LY )⊗2
1

Consider the double product of effective Lee-Yang model (LY )⊗2
1 which has central charge

c = 4
5 and conformal weights with degeneracy hi = 0, (1

5)2,
2
5 . This theory can also

be regarded as a subtheory of effective minimal model Meff(10, 3). The conductor of
(LY )⊗2

1 is N = 30. The full S-matrix is (ρ(S)(LY )1)⊗2, or for the three distinct characters
φ2

1, φ1φ2, φ
2
2 as

ρ(S) = 1√
5


1
2

(√
5 + 1

)
2 1

2

(√
5− 1

)
1 −1 −1

1
2

(√
5− 1

)
−2 1

2

(√
5 + 1

)
 . (4.22)

Consider the ordinary Hecke images Tp of (LY )⊗2
1 for p coprime to 30.

We find there exist two classes for the Hecke operation: for p = 1, 11, 19, 29 mod 30,
i.e., p2 ≡ 1 mod 30, ρ(σp) = Id, while for p = 7, 13, 17, 23 mod 30, i.e., p2 ≡ 19 mod 30,

ρ(σp) =

 0 0 1
0 −1 0
1 0 0

 . (4.23)

We compute all admissible Hecke images of (LY )⊗2
1 for p < 30 and list them in c = 24 pairs

in table 13. The pairs satisfy p + p′ = 30. Beside the Hecke relations inherit from those
of (LY )1, we observe some new ones such as T17 describes a subtheory of WZW (C8)1,
and T23 describes a subtheory of WZW (G2)1 ⊗ (E6)3. For example, we find the following
relation between the T17 image and (C8)1 characters:

χT17
0 = χ

(C8)1,w0
0,1 + χ

(C8)1,w8
2,4862 = q−

17
30 (1 + 136q + 10438q2 + 216920q3 + . . . ),

χT17
4
5

= χ
(C8)1,w2
4
5 ,119 + χ

(C8)1,w6
9
5 ,6188 = q

7
30 (119 + 13328q + 326026q2 + . . . ),

χT17
7
5

= χ
(C8)1,w4
7
5 ,1700 = q

5
6 (1700 + 61625q + 1009000q2 + . . . ).

(4.24)

Here the primary with weight 7/5 has degeneracy 2. The two pairs (T7,T23) and (T13,T17)
have appeared in the Schellekens’ list No.32 and No.52 [17].

Consider a unitary c = 12/5 RCFT which is a subtheory of WZW (A1)8, — the D6
type in the ADE classification of Â1 modular invariant, see e.g. [22]. The three distinct
characters are

χ8w0
0 = q−

1
10 (1 + 3q + 18q2 + 38q3 + 99q4 + 207q5 + 438q6 + . . . ),

χ4w0+4w1
3/5 = q

1
2 (5 + 15q + 45q2 + 110q3 + 255q4 + 525q5 + 1060q6 + . . . ),

χ2w0+6w1
1/5 = q

1
10 (3 + 16q + 48q2 + 129q3 + 294q4 + 642q5 + 1302q6 + . . . ).

(4.25)

The primary with weight 3/5 has degeneracy two. Clearly the conductor N = 10. We find
the exact formulas for the characters as

χ0 = φ6
1 − 3φ1φ

5
2, χ3/5 = 5φ3

1φ
3
2, χ1/5 = φ6

2 + 3φ5
1φ2. (4.26)
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−44
5 −{(

1
5)2,

2
5} 0 T−11

164
5 (11

5 )2,
12
5 0 T41 0 0

4
5 (1

5)2,
2
5 2 T1

116
5

8
5 , (

9
5)2 58 T29 60 −

12
5

1
5 , (

3
5)2 3 T3, (A1)8

108
5 (7

5)2,
9
5 27 T27 30 −

28
5 (2

5)2,
4
5 28 T7, (G2)⊗2

1
92
5

6
5 , (

8
5)2 92 T23 120 32

36
5

3
5 , (

4
5)2 144 T9

84
5 (6

5)2,
7
5 336 T21 480 −

44
5

2
5 , (

6
5)2 220 T11

76
5 (4

5)2,
8
5 380 T19, (E7 1

2
)⊗2
1 600 −

52
5 (3

5)2,
6
5 104 T13, (F4)⊗2

1
68
5

4
5 , (

7
5)2 136 T17, (C8)1 240 52

Table 13. (Generalized) Hecke images of (LY )⊗2
1 . For p = 3k, k ∈ Z, we regard them as generalized

Hecke images Tk of a subtheory of WZW (A1)8.

It is easy to see these are the degree 3 homogeneous polynomials of (LY )⊗2
1 characters. We

regard this theory as the generalized Hecke image T3 of (LY )⊗2
1 . From ρ(S)(LY )1 , it is easy

to find the S-matrix for χ0, χ3/5, χ1/5 is

ρ(S) = 1√
5


1
2

(√
5− 1

)
2 1

2

(√
5 + 1

)
1 1 −1

1
2

(√
5 + 1

)
−2 1

2

(√
5− 1

)
 . (4.27)

Consider the Hecke images Tp of this c = 12
5 theory. We find there exist two classes

for the Hecke operation: for p = 1, 9 mod 10, i.e., p2 ≡ 1 mod 10, ρ(σp) = Id, while for
p = 3, 7 mod 10, i.e., p2 ≡ 9 mod 10, ρ(σp) is the same with (4.23). These resemble the
two classes of Hecke operation of (LY )⊗2

1 . We compute Hecke images Tk, k = 3, 7, 9 of the
c = 12

5 theory and regard them as generalized T3k images of (LY )⊗2
1 . We add these theories

in c = 24 pairs in table 13. Clearly, the sums of spin-1 currents m1 + m̃1 for all pairs in
table 13 are divisible by the conductor 30 of (LY )⊗2

1 .
We remark that the c = 24 pair between the double product of original M(5, 2) model

and the T41 Hecke image has the following bilinear relation of characters:

J(τ) = χT41
0 χ

M(5,2)⊗2

0 − 2χT41
11
5
χ
M(5,2)⊗2

− 1
5

+ χT41
12
5
χ
M(5,2)⊗2

− 2
5

. (4.28)

There are two more potential theories from holomorphic modular bootstrap ([16], table 5,
the third column) falling into type (LY )⊗2

1 . One has c = 76
5 , hi = 0, 3

5 ,
9
5 and m1 = 437. We

find it can form a c = 24 pair with T11 which has bilinear relation of characters equal to
J + 1284. The second has c = 108

5 , hi = 0, 4
5 ,

12
5 and m1 = 1404, which can form a c = 24

pair with T3 which has bilinear relation of characters equal to J + 2784.

4.6 Type (A2)⊗2
1

Consider the double product theory (A2)⊗2
1 which has central charge c = 4 and conformal

weights with degeneracy hi = 0, (1
3)2,

2
3 . The modular form expression of (A2)1 characters
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4 (1
3)2,

2
3 16 T1 20 4

3 , (
5
3)2 80 T5 96 24, 26, 27

Table 14. Hecke images of (A2)⊗2
1 .

can be found in e.g. [29]. The S-matrix of (A2)⊗2
1 is

ρ(S) =


1
3

4
3

4
3

1
3

1
3 −

2
3

1
3 −

2
3

1
3

 . (4.29)

The conductor of (A2)⊗2
1 is N = 6. Consider the Hecke images of (A2)⊗2

1 . We find for
all p coprime to 6, ρ(σp) = Id. We compute all admissible Hecke images Tp for p < 12.
Obviously the only one c = 24 pair of (Tp,Tp′) is (p, p′) = (1, 5), which we list in table 14.
We find the T5 image can be interpreted as a subtheory of WZW (A8)3. For example, the
vacuum character of T5 can be expressed by

χT5
0 = χ

(A8)3,3w0
0,1 + 2χ(A8)3,w1+w2+w6

2,17325 + χ
(A8)3,w4+w5+w0
2,8820 + 2χ(A8)3,3w3

3,41580

= q−
5
6 (1 + 80q + 46790q2 + 2654800q3 + 68308625q4 + . . . ).

(4.30)

This pair gives a c = 24 theory appearing in the Schellekens’ List No.27, with the associated
holomorphic VOA constructed in [53] by certain Z2 orbifold. Besides, we find the T7 image
has hi = 0, 4

3 ,
5
3 and T11 image has hi = 0, 7

3 ,
8
3 . Both T7 and T11 images have m1 = 0 and

l = 6 MLDEs.
We find there exist six more potential theories from holomorphic modular bootstrap

([16], table 5) falling into the type (A2)⊗2
1 beside the T1,T5 images. The (E6)⊗2

1 which has
central charge c = 12 and conformal weights with degeneracy hi = 0, (2

3)2,
4
3 , naturally is

dual to T1 w.r.t. (E8)⊗2
1 . The c = 12, hi = 0, 1

3 ,
5
3 theory is also dual to T1 w.r.t. (E8)⊗2

1 .
The c = 20, hi = 1

3 ,
8
3 theory can pair with (A2)⊗2

1 with bilinear relation of characters equal
to J + 960. The c = 20, hi = 2

3 ,
7
3 theory can pair with (A2)⊗2

1 with bilinear relation of
characters equal to J + 1716. Besides, we find the c = 28, hi = 2

3 ,
10
3 theory is the c = 32

dual to (A2)⊗2
1 with bilinear relation of characters equal to j1/3(J + 3066). We also find

that the c = 36, hi = 2
3 ,

13
3 theory is the c = 40 dual to (A2)⊗2

1 with bilinear relation of
characters equaling j2/3(J + 4848).

4.7 Type (A4)1

WZW model (A4)1 has central charge c = 4 and conformal weights with degeneracy as
hi = 0, (2

5)2, (3
5)2. The three distinct characters are:

χw0
0 = q−

1
6 (1 + 24q + 124q2 + 500q3 + 1625q4 + 4752q5 + . . . ),

χw1
2/5 = q

7
30 (5 + 50q + 220q2 + 820q3 + 2525q4 + 7070q5 + . . . ),

χw2
3/5 = q

13
30 (10 + 65q + 300q2 + 1025q3 + 3140q4 + 8565q5 + . . . ).

(4.31)
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Here w0,1,2,3,4 denote the affine weights of Â(1)
4 . Clearly the conductor N = 30. WZW

(A4)1 is self-dual w.r.t. c = 8, which means χ2
0 + 4χ2/5χ3/5 = j1/3. The Hecke images Tp

of (A4)1 for p ≥ 5 all have l ≥ 6 MLDEs, thus we are only brief here. We find there are
two classes for the Hecke operation: for p = 1, 11, 19, 29 mod 30, ρ(σp) = Id, while for
p = 7, 13, 17, 23 mod 30,

ρ(σp) =

−1 0 0
0 0 −1
0 −1 0

 . (4.32)

We find there are two more potential theories with c = 12, 20 from holomorphic modular
bootstrap ([16], table 5) falling into the type (A4)1. The c = 20 theory has hi = 0, 7

5 ,
8
5 and

m1 = 120. We find this theory is dual to (A4)1 w.r.t. c = 24, thus the degeneracy is also
(1, 2, 2). This allows us to determine the multiplicities of the primaries of weights 7

5 ,
8
5 to be

2500 and 8125. The bilinear relation of characters gives J + 144. We also find the c = 12
theory with hi = 0, 3

5 ,
7
5 and m1 = 222 is the dual of (A4)1 w.r.t. c = 16. Thus it again has

degeneracy (1, 2, 2). This coset allows us to determine the multiplicities of the primaries of
weights 3

5 ,
7
5 to be 25 and 1275.

5 RCFTs with four characters

The potential RCFTs with four characters, non-integral weights and l = 0 MLDEs have been
recently classified by modular bootstrap in [16]. There are in total 72 theories, see table 6
therein. We propose that all these 72 theories can be merely generated by 13 simple theories
which will be discussed individually in the following subsections. In other words, there are
in total 13 types from the viewpoint of Hecke relation. When two of the 13 initial theories
satisfy the first condition of generalized Hecke relation, we put them in the same subsection.
Among the 13 types, types (LY )3,M12/5,Meff(5, 3) have four primaries, type Meff(14, 3) has
five primaries, types M4/3,Msub(6, 5),M8/5,U(1)3 have six primaries, type (A6)1 has seven
primaries, types (LY )⊗3

1 , (A1)⊗3
1 ,M6/5 have eight primaries, type M2 has 12 primaries.

RCFTs with four characters and integral weights include (A2)⊗3
1 which has central

charge c = 6, conductor N = 12 and weights and degeneracy hi = 0, (1
3)6, (2

3)12, (1)8, and
(D4)⊗3

1 theory with c = 12, N = 2 and hi = 0, (1
2)9, (1)27, (3

2)27. We also compute the Hecke
images of these two theories and find all Tp, p > 1 have l ≥ 6 MLDEs, thus are not of our
main interest here.

5.1 Type (LY )3 and type M4/3

Minimal model M(9, 2) is a non-unitary RCFT with central charge c = −46
3 and conformal

weights hi = 0,−1
3 ,−

5
9 ,−

2
3 . The effective theory Meff(9, 2), i.e., (LY )3 has ceff = 2

3 and
heff
i = 0, 1

9 ,
1
3 ,

2
3 . The conductor of (LY )3 is N = 36. The S-matrix of (LY )3 is

ρ(S) = 1
3


2 cos

(
π
18
) √

3 2 sin
(

2π
9

)
2 sin

(
π
9
)

√
3 0 −

√
3 −

√
3

2 sin
(

2π
9

)
−
√

3 −2 sin
(
π
9
)

2 cos
(
π
18
)

2 sin
(
π
9
)
−
√

3 2 cos
(
π
18
)
−2 sin

(
2π
9

)

 . (5.1)
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−46
3 −{

2
3 ,

5
9 ,

1
3} 0 T−23

118
3

7
3 ,

23
9 ,

8
3 0 T59, ? 0 0

2
3

1
9 ,

1
3 ,

2
3 1 T1

70
3

4
3 ,

5
3 ,

17
9 35 T35 36 −

10
3

1
3 ,

5
9 ,

2
3 15 T5

62
3

4
3 ,

13
9 ,

5
3 93 T31 108 −

14
3

1
3 ,

2
3 ,

7
9 14 T7, (G2)2

58
3

11
9 ,

4
3 ,

5
3 58 T29, (C5)3 ⊗ (A1)1 72 21

22
3

1
3 ,

2
3 ,

11
9 44 T11, ?

50
3

7
9 ,

4
3 ,

5
3 100 T25, ? 144 −

26
3

4
9 ,

2
3 ,

4
3 130 T13, ?

46
3

2
3 ,

4
3 ,

14
9 230 T23, ? 360 −

34
3

2
3 ,

8
9 ,

4
3 306 T17, ?

38
3

2
3 ,

10
9 ,

4
3 342 T19, ? 648 −

Table 15. Hecke images of (LY )3.

Various Hecke images Tp of (LY )3 for p coprime to 36 have been discussed in [6]. For
example, T7(LY )3 = (G2)2 and T29(LY )3 describes a subtheory of (C5)3 ⊗ (A1)1. Together
these two images T7 and T29 form a c = 24 theory in the Schellekens’ list No.21, of which
the associated holomorphic VOA was constructed in [54]. We compute all admissible Hecke
images of (LY )3 for p < 36 and summarize them in c = 24 pairs in table 15. We also
consider the dual of original minimal model M(9, 2) w.r.t. c = 24, which is the T59 Hecke
image with weights 0, 7

3 ,
23
9 ,

8
3 . We find the vacuum of the T59 image has quasi-character,

while the rest three primaries have ordinary characters. We find the bilinear relation of
characters between M(9, 2) and T59 is

J(τ) = −χT59
0 χ

M(9,2)
0 + χT59

7
3
χ
M(9,2)
− 1

3
− χT59

23
9
χ
M(9,2)
− 5

9
+ χT59

8
3
χ
M(9,2)
− 2

3
. (5.2)

Beside those in table 15, we find there are two more theories from holomorphic modular
bootstrap ([16], table 6) falling into type (LY )3. One has c = 58

3 , hi = 0, 2
3 ,

4
3 ,

20
9 and

m1 = 638. We find it pairs with T7(LY )3 with bilinear relation of characters equal to
J + 1464. The other one has c = 70

3 , hi = 0, 2
3 ,

4
3 ,

26
9 and m1 = 2730. We find it pairs with

(LY )3 with bilinear relation of characters equal to J + 2976.
Consider the c = 4

3 theory with weights hi = 0, 2
9 ,

1
3 ,

2
3 appeared in holomorphic modular

bootstrap ([16], table 6). We denote this theory as M4/3 and find it is possible to express
its four characters as degree 2 homogeneous polynomials of (LY )3 characters:

χ
M4/3
0 = χ2

0 + 2χ 1
3
χ 2

3
= q−

1
18 (1 + 4q + 7q2 + 14q3 + 26q4 + 44q5 + . . . ),

χ
M4/3
2/9 = χ2

1
9

= q
1
6 (1 + 2q + 5q2 + 8q3 + 16q4 + 26q5 + 44q6 + . . . ),

χ
M4/3
1/3 = 2χ0χ 1

3
− χ2

2
3

= q
5
18 (2 + 3q + 8q2 + 14q3 + 26q4 + 41q5 + . . . ),

χ
M4/3
2/3 = 2χ0χ 2

3
− χ2

1
3

= q
11
18 (1 + 3q2 + 4q3 + 7q4 + 10q5 + 20q6 + . . . ).

(5.3)
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4
3 (2

9)3,
1
3 ,

2
3 4 T1

68
3

4
3 ,

5
3 , (

16
9 )3 68 T17 72 −

8
3

1
3 , (

4
9)3,

2
3 12 T2

64
3

4
3 , (

14
9 )3,

5
3 96 T16 108 −

16
3

1
3 ,

2
3 , (

8
9)3 8 T4, (A2)6

56
3 (10

9 )3,
4
3 ,

5
3 28 T14, (D4)12 36 3

20
3

1
3 ,

2
3 , (

10
9 )3 20 T5, ?

52
3 (8

9)3,
4
3 ,

5
3 52 T13, ? 72 −

28
3 (5

9)3,
2
3 ,

4
3 182 T7, ?

44
3

2
3 ,

4
3 , (

13
9 )3 286 T11, ? 468 −

32
3

2
3 , (

7
9)9,

4
3 272 T8, ?

40
3

2
3 , (

11
9 )9,

4
3 340 T10, ? 612 −

Table 16. (Generalized) Hecke images of M4/3. For p = 2k, we regard them as generalized Hecke
images TkM8/3.

Note the conductor is N = 18. The S-matrix of these four characters is

ρ(S)M8/3 = 1
3


2 cos

(
π
9
)

3 2 cos
(

2π
9

)
2 sin

(
π
18
)

1 0 −1 −1
2 cos

(
2π
9

)
−3 −2 sin

(
π
18
)

2 cos
(
π
9
)

2 sin
(
π
18
)
−3 2 cos

(
π
9
)
−2 cos

(
2π
9

)

 . (5.4)

We find the primary with weight 2/9 actually has degeneracy 3. Since the degeneracy of
M4/3 is different from the one of (LY )3, we do not regard it as the generalized T2 of (LY )3.
Consider all admissible Hecke images of M4/3 theory. We find there exist three classes for
the Hecke operation: for p = 1, 17 mod 18, i.e., p2 ≡ 1 mod 18, ρ(σp) = Id,

for p = 5, 13 mod 18, i.e., p2 ≡ 7 mod 18, ρ(σp) =


0 0 −1 0
0 1 0 0
0 0 0 1
−1 0 0 0

 , (5.5)

for p = 7, 11 mod 18, i.e., p2 ≡ 13 mod 18, ρ(σp) =


0 0 0 −1
0 1 0 0
−1 0 0 0
0 0 1 0

 . (5.6)

We collect all admissible Tp of M4/3 for p < 18 in c = 24 pairs in table 16.
Consider the c = 8

3 theory with weights hi = 0, 1
3 ,

4
9 ,

2
3 appeared in holomorphic modular

bootstrap ([16], table 5), which we denote as M8/3. We compute the four distinct characters
and find it is possible to express them as degree 2 homogeneous polynomials of M4/3
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characters:

χ
M8/3
0 = (χM4/3

0 )2 + 2χM4/3
1
3

χ
M4/3
2
3

= q−
1
9 (1 + 12q + 36q2 + 112q3 + 275q4 + . . . ),

χ
M8/3
4/9 = 3(χM4/3

2
9

)2 = q
1
3 (3 + 12q + 42q2 + 108q3 + 267q4 + 588q5 + . . . ),

χ
M8/3
1/3 = 2χM4/3

0 χ
M4/3
1
3
− (χM4/3

2
3

)2 = q
2
9 (4 + 21q + 68q2 + 184q3 + 456q4 + . . . ),

χ
M8/3
2/3 = (χM4/3

1
3

)2 − 2χM4/3
0 χ

M4/3
2
3

= q
5
9 (2 + 4q + 21q2 + 44q3 + 112q4 + . . . ).

(5.7)

Here the conductor is N = 9. Note the character relation here resembles the character
relation (5.3) between (LY )3 and M4/3, except the last line has an opposite sign. It is easy
to find the S-matrix of M8/3 is

ρ(S)M8/3 = 1
3


2 cos

(
2π
9

)
3 2 cos

(
π
9
)

2 sin
(
π
18
)

1 0 −1 1
2 cos

(
π
9
)
−3 2 sin

(
π
18
)
−2 cos

(
2π
9

)
2 sin

(
π
18
)

3 −2 cos
(

2π
9

)
−2 cos

(
π
9
)

 . (5.8)

The weight-4/9 primary of this theory has degeneracy 3. Given the same degeneracy and
the homogeneous expressions, we regard M8/3 as the generalized T2 Hecke image of M4/3.
Next consider all admissible Hecke images of M8/3 theory. We find there exist three classes
for the Hecke operation: for p = 1, 8 mod 9, i.e., p2 ≡ 1 mod 9, ρ(σp) = Id,

for p = 2, 7 mod 9, i.e., p2 ≡ 4 mod 9, ρ(σp) =


0 0 −1 0
0 1 0 0
0 0 0 −1
1 0 0 0

 , (5.9)

for p = 4, 5 mod 9, i.e., p2 ≡ 7 mod 9, ρ(σp) =


0 0 0 1
0 1 0 0
−1 0 0 0
0 0 −1 0

 . (5.10)

We compute all admissible Tp of M8/3 for p < 9 and find T2M8/3 describe a subtheory of
WZW (A2)6, while T7M8/3 describe a subtheory of WZW (D4)12. For example, we find
the following relation between the T2M8/3 image and (A2)6 characters:

χ
T2M8/3
0 = χ

(A2)6,6w0
0 + 2χ(A2)6,6w1

2 = q−
2
9 (1 + 8q + 100q2 + 480q3 + 2020q4 + . . . ),

χ
T2M8/3
1
3

= χ
(A2)6,w1+w2+4w0
1
3

+ 2χ(A2)6,4w1+w2+w0
4
3

= q
1
9 (8 + 134q + 912q2 + . . . ),

χ
T2M8/3
2
3

= 2χ(A2)6,3w1+3w0
2
3

+ χ
(A2)6,3w1+3w2
5
3

= q
4
9 (20 + 224q + 1267q2 + . . . ),

χ
T2M8/3
8
9

= χ
(A2)6,2w1+2w2+2w0
8
9

= q
2
3 (27 + 216q + 1188q2 + 4968q3 + . . . ).

(5.11)

Here the primary with weight 8/9 has degeneracy three. This subtheory is actually known
as the D6 type modular invariant of Â2 [55]. Together T2M8/3 and T7M8/3 form a c = 24
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theory in Schellekens’ List No.3, with the associated holomorphic VOA constructed in [54]
by a Z6 orbifold of the Niemeier lattice A12

2 . We regard the Hecke images of M8/3 as the
generalized T2k images of M4/3 and list them in c = 24 pairs in table 16. Note the sums of
spin-1 currents m1 + m̃1 for all pairs in table 16 are divisible by the conductor 18 of M4/3.

Beside the Hecke images with characters in table 16, we find there are two more theories
from holomorphic modular bootstrap ([16], table 6) falling into type M4/3. One has c = 56

3 ,
hi = 0, 2

3 ,
4
3 ,

19
9 and m1 = 420. We find it pairs with T4M4/3 with bilinear relation of

characters equal to J + 1212. The other one has c = 68
3 , hi = 0, 2

3 ,
4
3 ,

25
9 and m1 = 2278. We

find it pairs with M4/3 with bilinear relation of characters equal to J + 2724. Note these
two theories should have degeneracy (1, 3, 1, 1) automatically.

5.2 Type (LY )⊗3
1 and type M12/5

The product theory (LY )⊗3
1 has central charge 6

5 and conformal weights with degeneracy
0, (1

5)3, (2
5)3,

3
5 . The four distinct characters can be easily computed from those of (LY )1.

The conductor N = 20. We compute the Hecke images Tp of (LY )⊗3
1 like in section 4.5 and

find Hecke relations such as the T7 image describes WZW (G2)⊗3
1 , while the T13 image

describes a subtheory of WZW (E6)3. More precisely, we observe the following relation
between the T13 image and (E6)3 characters:

χT13
0 = χ

(E6)3,3w0
0 + 2χ(E6)3,3w1

2 = q−
13
20 (1 + 78q + 9165q2 + 263926q3 + . . . ),

χT13
8
5

= χ
(E6)3,w4
8
5

= q
19
20 (2925 + 122550q + 2340325q2 + . . . ),

χT13
6
5

= χ
(E6)3,w1+w6+w0
6
5

= q
19
20 (650 + 50700q + 1241175q2 + . . . ),

χT13
4
5

= χ
(E6)3,w2+w0
4
5

+ 2χ(E6)3,w1+w3
9
5

= q
3
20 (78 + 17732q + 606684q2 + . . . ).

(5.12)

Here the primaries with weights 8/5 and 6/5 have degeneracy 3 as required by the Hecke
operation. Together T7 and T13 form a c = 24 theory appearing in the Schellekens’ List
No.32. The construction of holomorphic VOA of this c = 24 theory was given in [56] by
a Z3 orbifold from the Niemeier lattice E4

6 , see also [57]. There are in total four pairs of
Hecke images (Tp,Tp′) w.r.t. c = 24 which satisfy p+ p′ = 20. We summarize all admissible
Hecke images Tp for p < 20 in pairs in table 17. Note the sums of spin-1 currents m1 + m̃1
for all pairs in table 17 are divisible by the conductor 20.

Beside the Hecke images with ordinary characters in table 17, we notice there exists two
more theories from holomorphic modular bootstrap ([16], table 6) falling into type (LY )⊗3

1 .
The c = 78

5 theory with hi = 0, 3
5 ,

6
5 ,

9
5 and m1 = 156 is just (F4)⊗3

1 . Naturally it forms a
c = 24 pair with T7(LY )⊗3

1 , of which the bilinear relation of characters gives J + 744. The
c = 114

5 theory with hi = 0, 4
5 ,

8
5 ,

12
5 and m1 = 570 is just (E7 1

2
)⊗3
1 which similarly forms a

c = 24 pair with (LY )⊗3
1 .

Now let us consider a c = 12
5 RCFT appeared in holomorphic modular bootstrap ([16],

table 6) which has weights hi = 0, 1
5 ,

2
5 ,

4
5 . We denote this theory as M12/5. Naively, it

looks like a generalized T2 image of (LY )⊗3
1 , as the first condition of the generalized Hecke

relation is satisfied. However, we will show that their degeneracies do not match. It is easy

– 33 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
2

l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1+m̃1 Sch
6
5 (1

5)3, (2
5)3,

3
5 3 T1

144
5

7
5 , (

8
5)3, (9

5)3 57 T19 60 −
18
5 (1

5)3, (3
5)3,

4
5 9 T3, ?

102
5

6
5 , (

7
5)3, (9

5)3 51 T17, ? 60 −
42
5 (2

5)3, (4
5)3,

6
5 42 T7, (G2)⊗3

1
78
5

4
5 , (

6
5)3, (8

5)3 78 T13, (E6)3 120 32
54
5 (3

5)3, (4
5)3,

7
5 270 T9, ?

66
5

3
5 , (

6
5)3, (7

5)3 330 T11, ? 600 −

Table 17. Hecke images of (LY )⊗3
1 .

to compute the four characters from MLDE and we determine the following exact formulas:

χ
M12/5
0 = φ6

1 + 2φ1φ
5
2, χ

M12/5
1/5 = 2φ5

1φ2 − φ6
2,

χ
M12/5
2/5 = 5φ4

1φ
2
2, χ

M12/5
4/5 = 5φ2

1φ
4
2.

(5.13)

The conductor of this theory is N = 10. From the characters, we find this theory can
actually be realized as the coset (G2)1/(LY )1. Indeed, we checked the following character
relations

χ
(G2)1
0 = χ

M12/5
0 χ

(LY )1
0 + χ

M12/5
4/5 χ

(LY )1
1/5 , χ

(G2)1
2/5 = χ

M12/5
2/5 χ

(LY )1
0 + χ

M12/5
1/5 χ

(LY )1
1/5 . (5.14)

This suggests that the degeneracy of M12/5 theory is actually (1, 1, 1, 1). From ρ(S)(LY )1 ,
we compute the S-matrix of M12/5 as

ρ(S)M12/5 = 1√
5


1 1 1

2

(√
5 + 1

)
1
2

(√
5− 1

)
1 1 1

2

(
1−
√

5
)

1
2

(
−
√

5− 1
)

1
2

(√
5 + 1

)
1
2

(
1−
√

5
)

−1 1
1
2

(√
5− 1

)
1
2

(
−
√

5− 1
)

1 −1

 . (5.15)

With S-matrix at hand, we can further study its Hecke images. We find there exist
two classes for the Hecke operation of M12/5: for p = 1, 9 mod 10, i.e., p2 ≡ 1 mod 10,
ρ(σp) = Id, while for p = 3, 7 mod 10, i.e., p2 ≡ 9 mod 10,

ρ(σp) =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 . (5.16)

We compute Hecke images TpM12/5 for p = 3, 7, 9 and list them in c = 24 pairs in table 18.
All of them are non-unitary.

Let us further consider a c = 24
5 RCFT appeared in holomorphic modular bootstrap

([16], table 6) which has weights hi = 0, 2
5 ,

3
5 ,

4
5 . We denote this theory as M24/5. We find it
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l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch
12
5

1
5 ,

2
5 ,

4
5 8 T1

108
5

6
5 ,

8
5 ,

9
5 72 T9 80 −

24
5

2
5 ,

3
5 ,

4
5 36 T2

96
5

6
5 ,

7
5 ,

8
5 144 T8 180 −

36
5

2
5 ,

3
5 ,

6
5 96 T3, ?

84
5

4
5 ,

7
5 ,

8
5 224 T7, ? 320 −

48
5

3
5 ,

4
5 ,

6
5 168 T4, ?

72
5

4
5 ,

6
5 ,

7
5 252 T6, ? 420 −

Table 18. (Generalized) Hecke images of M12/5 theory. For T2k, we regard them as generalized
Hecke images TkM24/5.

can be regarded as a generalized Hecke image T2 of M12/5. We compute the four characters
of M24/5 from MLDE and determine the exact formulas are

χ
M24/5
0 = φ12

1 + 24φ7
1φ

5
2 − 6φ2

1φ
10
2 , χ

M24/5
2/5 = 6φ10

1 φ
2
2 + 24φ5

1φ
7
2 − φ12

2 ,

χ
M24/5
3/5 = 5(4φ9

1φ
3
2 + 3φ4

1φ
8
2), χ

M24/5
4/5 = 5(3φ8

1φ
4
2 − 4φ3

1φ
9
2).

(5.17)

Here the conductor N = 5. We observe this theory can be realized as the coset (F4)1/(LY )1,
with character relations

χ
(F4)1
0 = χ

M24/5
0 χ

(LY )1
0 + χ

M24/5
4/5 χ

(LY )1
1
5

, χ
(F4)1
3/5 = χ

M24/5
3/5 χ

(LY )1
0 + χ

M24/5
2
5

χ
(LY )1
1/5 . (5.18)

Therefore, the degeneracy is (1, 1, 1, 1), the same with M12/5. We also find the S-matrix
of M24/5 is exactly the same with the one (5.15) of M12/5. The Hecke operation of M24/5
also resembles the one of M12/5. We find for p = 1, 4 mod 5, i.e., p2 ≡ 1 mod 5, ρ(σp) = Id,
while for p = 2, 3 mod 5, i.e., p2 ≡ 4 mod 10, ρ(σp) is the same with (5.16). We collect
the Hecke images Tk of M24/5 as the generalized T2k images of M12/5, and list them in
table 18 as well. We can see the sums of spin-1 currents m1 + m̃1 for all pairs in table 18
are divisible by the conductor 10 of M12/5.

Beside the Hecke images with ordinary characters in table 18, we find there exist two
more theories from holomorphic modular bootstrap ([16], table 5) falling into type M12/5.
The c = 96

5 theory with hi = 0, 3
5 ,

7
5 ,

11
5 and m1 = 276 can pair with M24/5, of which the

bilinear relation of characters gives J + 444. The c = 108
5 theory with hi = 0, 4

5 ,
8
5 ,

11
5 and

m1 = 204 can pair with M12/5, of which the bilinear relation of characters gives J + 344.

5.3 Type Meff(5, 3) and type M6/5

Minimal model M(5, 3) is non-unitary with central charge c = −3
5 and conformal weights

hi = 0,− 1
20 ,

1
5 ,

3
4 . While the effective theory Meff(5, 3) has ceff = 3

5 and heff
i = 0, 1

20 ,
1
4 ,

4
5 .

The conductor N = 40. Both M(5, 3) and Meff(5, 3) are well known as the coset theories
between WZW models (LY )1 and (A1)1 or between WZW models (E7)1 and (E7 1

2
)1, see

for example [31]. To be precise,

(E7)1
(E7 1

2
)1

= (LY )1
(A1)1

= M(5,3), and
(E7 1

2
)1

(E7)1
= (A1)1

(LY )1
= Meff(5, 3). (5.19)
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l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch

−3
5 − 1

20 ,
1
5 ,

3
4 0 T−1

123
5

5
4 ,

9
5 ,

41
20 0 T41 0 0

3
5

1
20 ,

1
4 ,

4
5 1 T1

117
5

6
5 ,

7
4 ,

39
20 39 T39 40 −

9
5

3
20 ,

2
5 ,

3
4 3 T3, (A1)3

111
5

5
4 ,

8
5 ,

37
20 37 T37 40 −

21
5

7
20 ,

3
5 ,

3
4 21 T7, (C3)1

99
5

5
4 ,

7
5 ,

33
20 99 T33 120 33

27
5

1
4 ,

9
20 ,

6
5 63 T9, ?

93
5

4
5 ,

31
20 ,

7
4 217 T31, ? 280 −

33
5

11
20 ,

3
4 ,

4
5 99 T11

87
5

6
5 ,

5
4 ,

29
20 261 T29 360 −

39
5

2
5 ,

13
20 ,

5
4 91 T13, ?

81
5

3
4 ,

27
20 ,

8
5 189 T27, ? 280 −

51
5

3
5 ,

17
20 ,

5
4 153 T17, ?

69
5

3
4 ,

23
20 ,

7
5 207 T23, ? 360 −

57
5

3
4 ,

19
20 ,

6
5 285 T19, ?

63
5

4
5 ,

21
20 ,

5
4 315 T21, ? 600 −

Table 19. Hecke images of Meff(5, 3). We remark that although the T37 image has a positive integer
Verlinde formula [16], the pair (T3,T37) yields bilinear relation of characters equal to J + 40, which
does not appear in the Schellekens’ list, nor satisfies the divisibility condition proposed in [48] for
c = 24 theories. This suggests that the T37 image may not be unitary or physical theories.

Various Hecke images Tp of Meff(5, 3) have been discussed in [6] for p coprime to 40, for
example T3 = (A1)3 and T7 = (C3)1. We compute all Hecke images for admissible p ≤ 41
and collect them in c = 24 pairs in table 19. All these Hecke images have l = 0 MLDEs.
The c = 24 pairs have p+ p′ = 40. We can see from table 19 that the sum of spin-1 currents
m1 + m̃1 for all pairs are divisible by the conductor 40.

Consider a c = 123
5 > 24 theory proposed in ([16], table 6) from holomorphic modular

bootstrap, which has conformal weights h1,2,3 = 5
4 ,

9
5 ,

41
20 . We find this theory is actually just

the T41 Hecke image of Meff(5, 3). This theory can pair with the original M(5, 3). Indeed
we find the following bilinear relation of characters:

J(τ) = χT41
0 χ

M(5,3)
0 − χT41

5
4
χ
M(5,3)
3
4

− χT41
9
5
χ
M(5,3)
1
5

+ χT41
41
20
χ
M(5,3)
− 1

20
. (5.20)

There exists one more theory from holomorphic modular bootstrap ([16], table 6) falling
into type Meff(5, 3). We find the c = 117

5 theory with hi = 0, 19
20 ,

7
4 ,

11
5 and m1 = 325 can pair

with Meff(5, 3) with ni = 0, 1, 2, 3, of which the bilinear relation of characters gives J + 612.
An interesting c = 6

5 RCFT was studied in [58] which has weights and degeneracy
hi = 0, ( 1

10)3, (1
2)3,

3
5 . This theory which we denote as M6/5 can be viewed as a subtheory

of Ising ⊗M(5, 4) and associated to the D2A conjugacy class of the Monster group [58].
Although the central charge and conformal weights of M6/5 satisfy the generalized Hecke T2
condition of Meff(5, 3), the degeneracy does not match. Therefore, we do not regard M6/5
as a type Meff(5, 3) theory. We compute the Fourier expansion of the four characters to be

χ0 = q−
1
20 (1 + 3q2 + 4q3 + 9q4 + 12q5 + 22q6 + 30q7 + . . . ),

χ 1
10

= q
1
20 (1 + 2q + 4q2 + 8q3 + 13q4 + 22q5 + 35q6 + . . . ),

χ 1
2

= q
9
20 (1 + 2q + 3q2 + 6q3 + 10q4 + 16q5 + 26q6 + . . . ),

χ 3
5

= q
11
20 (2 + 3q + 6q2 + 9q3 + 18q4 + 27q5 + 44q6 + . . . ).

(5.21)
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l = 0 l′ = 0 duality

c hi m1 remark c̃ h̃i m̃1 remark m1+m̃1 Sch
6
5 ( 1

10)3, (1
2)3,

3
5 0 T1, D2A

114
5

7
5 , (

3
2)3, (19

10)3 0 T19, 22.2E6(2) 0 0
18
5 ( 3

10)3, (1
2)3,

4
5 18 T3

102
5

6
5 , (

3
2)3, (17

10)3 102 T17 120 −
42
5 (1

2)3, ( 7
10)3,

6
5 126 T7, ?

78
5

4
5 , (

13
10)3, (3

2)3 234 T13, ? 360 −
54
5 (1

2)3, ( 9
10)3,

7
5 108 T9, ?

66
5

3
5 , (

11
10)3, (3

2)3 132 T11, ? 240 −

Table 20. Hecke images of M6/5 with degeneracy (1, 3, 3, 1).

Clearly, the conductor N = 20. The modular S-matrix as well as the relation between these
characters with those of Ising and M(5, 4) can be found in e.g. ([42], section 3.2.2). We
find there exist 4 classes for the Hecke operation: for p mod 20,

ρ(σ1,19) = −ρ(σ9,11) = Id, or ρ(σ3,17) = −ρ(σ7,13) =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (5.22)

We then compute the Hecke images Tp for all admissible p < 20 and summarize them in
c = 24 pairs in table 20. Notably, it was observed in [42] that the T19 Hecke image produces
the characters of the RCFT associated to the Steinberg group 22.2E6(2). We find the
T11,T13,T17,T19 Hecke images may have emergent supersymmetry owing to the presence
of weight-3/2 primaries. In particular, the fermionization of the 22.2E6(2) RCFT has been
studied in [14]. Note all theories in table 20 automatically have degeneracy (1, 3, 3, 1) as
required by the Hecke operation.

There exists one more theory from holomorphic modular bootstrap ([16], table 6) falling
into type M6/5. We find the c = 114

5 theory with hi = 0, 9
10 ,

3
2 ,

12
5 and m1 = 1938 can pair

with M6/5 with ni = 0, 1, 2, 3, of which the bilinear relation of characters gives J + 3876.

5.4 Type Msub(14, 3)

Minimal model M(14, 3) is non-unitary with central charge c = −114
7 and 13 primaries. The

effective theory Meff(14, 3) has ceff = 6
7 and heff = 0, 1

56 ,
5
56 ,

1
7 ,

2
7 ,

3
8 ,

33
56 ,

5
7 , 1,

85
56 ,

15
7 ,

23
8 ,

26
7 . It

is known a subset of the 13 primaries can form a block-diagonal modular invariant known
as (A2, D8) theory [22] with weights and degeneracy as hi = 0, 1

7 , (
2
7)2,

5
7 . We compute the

four characters to be

χ0 = q−
1
28 (1 + 2q + 3q2 + 5q3 + 8q4 + 11q5 + 17q6 + . . . ),

χ 1
7

= q
3
28 (1 + q + 3q2 + 3q3 + 6q4 + 8q5 + 13q6 + . . . ),

χ 2
7

= q
1
4 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + . . . ),

χ 5
7

= q
19
28 (1 + q2 + 2q3 + 3q4 + 3q5 + 6q6 + 7q7 + . . . ).

(5.23)
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−114
7 −{5

7 , (
4
7)2,

3
7} 0 T−19

282
7

17
7 , (

18
7 )2,

19
7 0 T47, ? 0 0

6
7

1
7 , (

2
7)2,

5
7 2 T1

162
7

9
7 , (

12
7 )2,

13
7 54 T27 56 −

18
7

1
7 ,

3
7 , (

6
7)2 3 T3, (A1)12

150
7 (8

7)2,
11
7 ,

13
7 25 T25 28 −

30
7 (3

7)2,
4
7 ,

5
7 30 T5

138
7

9
7 ,

10
7 , (

11
7 )2 138 T23 168 −

54
7

3
7 , (

4
7)2,

9
7 117 T9, ?

114
7

5
7 , (

10
7 )2,

11
7 247 T19, ? 364 −

66
7

4
7 ,

6
7 , (

8
7)2 66 T11, ?

102
7 (6

7)2,
8
7 ,

10
7 102 T17, ? 168 −

78
7 (5

7)2,
6
7 ,

9
7 312 T13, ?

90
7

5
7 ,

8
7 , (

9
7)2 360 T15, ? 672 −

Table 21. Hecke images of Msub(14, 3).

Clearly, the conductor N = 28. The S matrix for the four characters is

ρ(S) = 1√
7


2 cos

(
π
7
)

2 sin
(

3π
14

)
2 2 sin

(
π
14
)

2 sin
(

3π
14

)
2 sin

(
π
14
)
−2 −2 cos

(
π
7
)

1 −1 −1 1
2 sin

(
π
14
)
−2 cos

(
π
7
)

2 −2 sin
(

3π
14

)

 . (5.24)

Now let us consider the Hecke images Tp of this subtheory. We find there exist 6
classes for the Hecke operation. For p2 ≡ 1 mod 28, ρ(σ1,27) = −ρ(σ13,15) = Id. While for
p2 ≡ 9 mod 28 and p2 ≡ 25 mod 28, the corresponding ρ(σp) matrices are

ρ(σ3,25) = −ρ(σ11,17) =


0 −1 0 0
0 0 0 −1
0 0 1 0
1 0 0 0

 , ρ(σ5,23) = −ρ(σ9,19) =


0 0 0 −1
1 0 0 0
0 0 −1 0
0 1 0 0

 . (5.25)

Using these ρ(σp) matrices, we compute the Hecke images for all admissible p < 28 and
collect them in c = 24 pairs in table 21. We can see the sums of spin-1 currents m1 + m̃1
for all pairs in table 21 are divisible by the conductor 28. We find the T3 image describe
a subtheory of WZW (A1)12, which is actually the D8 type invariant of Â1 in the ADE
classification. Note the T1,3,5,23,25,27 images appear in the holomorphic modular bootstrap
([16], table 6, the fifth column). One extra theory there has c = 150

7 , hi = 0, 6
7 ,

11
7 ,

15
7 and

m1 = 300. We find this theory can form a c = 24 pair with the T3 image with ni = 0, 1, 2, 3.
This pair has bilinear relation of characters equal to J + 1128.

We also study the c = 24 dual of the subtheory of original M(14, 3) which we formally
denote as T−19. The dual theory has central charge c = 282

7 and weights 0, 17
7 ,

18
7 ,

19
7 . We

find it can be realized as Hecke image T47 but with quasi-characters. We find this pair has
the following bilinear relation of characters

J(τ) = χ
T−19
0 χT47

0 − χT−19
− 5

7
χT47

19
7
− χT−19

− 4
7
χT47

18
7

+ 2χT−19
− 3

7
χT47

17
7
. (5.26)
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4
5 ( 1

15)2,
2
5 , (

2
3)2 0 T1

116
5 (4

3)2,
8
5 , (

29
15)2 0 T29, F i24 0 0

28
5 ( 7

15)2, (2
3)2,

4
5 56 T7

92
5

6
5 , (

4
3)2, (23

15)2 184 T23 240 −
44
5

2
5 , (

11
15)2, (4

3)2 88 T11, ?
76
5 (2

3)2, (19
15)2,

8
5 152 T19, ? 240 −

52
5 (2

3)2, (13
15)2,

6
5 208 T13, ?

68
5

4
5 , (

17
15)2, (4

3)2 272 T17, ? 480 −

Table 22. Hecke images of Msub(6, 5).

5.5 Type Msub(6, 5), 3-states Potts model and type M8/5

Unitary minimal model M(6, 5) has central charge c = 4
5 and 10 primary fields with

weights hi = 0, 1
40 ,

1
15 ,

1
8 ,

2
5 ,

21
40 ,

2
3 ,

7
5 ,

13
8 , 3. It is well-known a subtheory of M(6, 5) describes

the three-states Potts model which has four characters with weights and degeneracy
hi = 0, ( 1

15)2,
2
5 , (

2
3)2 [22]. The four characters have the following Fourier expansion

χ0 = q−
1
30 (1 + q2 + 2q3 + 3q4 + 4q5 + 7q6 + . . . ),

χ 1
15

= q
1
30 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + . . . ),

χ 2
5

= q
11
30 (1 + 2q + 2q2 + 4q3 + 5q4 + 8q5 + 11q6 + . . . ),

χ 2
3

= q
19
30 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + . . . ).

(5.27)

Clearly the conductor N = 30. The S matrix for the four characters is

S =


a− 2a+ a+ 2a−
a+ a− −a− −a+
a+ −2a− −a− 2a+
a− −a+ a+ −a−

 , with a± = 2

√√√√ 1
15

(
5
8 ±
√

5
8

)
. (5.28)

Let us consider the Hecke images Tp of this subtheory Msub(6, 5). We find the following
ρ(σp) matrices with p modulo 30:

ρ(σ1,29) = −ρ(σ11,19) = Id, and ρ(σ7,23) = −ρ(σ13,17) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 . (5.29)

Using these ρ(σp) matrices, we compute its Hecke images for all admissible p ≤ 29 and
collect them in c = 24 pairs in table 22. Notably, it was observed in [42] that the T29 image
produces the characters of the RCFT associated to the largest Fischer group Fi24. We
remark that the T7,T23 images are non-unitary.

There exists one more theory from holomorphic modular bootstrap ([16], table 6) falling
into type Msub(6, 5). We find the c = 116

5 theory with hi = 0, 14
15 ,

8
5 ,

7
3 and m1 = 1566 can

pair with Msub(6, 5) with ni = 0, 1, 2, 3, of which the bilinear relation of characters gives
J + 3132.
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8
5 ( 2

15)2, (1
3)2,

4
5 4 T1

112
5

6
5 , (

5
3)2, (28

15)2 56 T14 60 −
16
5 ( 4

15)2,
3
5 , (

2
3)2 8 T2, (A2)2

104
5 (4

3)2,
7
5 , (

26
15)2 52 T13, (F4)6 60 14

32
5 (1

3)2, ( 8
15)2,

6
5 80 T4, ?

88
5

4
5 , (

22
15)2, (5

3)2 220 T11, ? 300 −
56
5

3
5 , (

14
15)2, (4

3)2 140 T7, ?
64
5 (2

3)2, (16
15)2,

7
5 160 T8, ? 300 −

Table 23. Hecke images of M8/5.

A non-unitary theory with central charge c = 8
5 and weights and degeneracy hi =

0, ( 2
15)2,

4
5 , (

1
3)2 was studied in [6], which can be realized as a coset (A2)1/(LY )1. We denote

this theory as M8/5. The conductor is N = 15. The Fourier expansion can be found in
([6], section 2.4). Although the weights and degeneracy of M8/5 satisfy the generalized
T2 conditions of Msub(6, 5), unfortunately we checked the characters of M8/5 can not be
written as degree two homogeneous polynomial of the characters of Msub(6, 5). Therefore,
we do not regard M8/5 as the generalized T2 image of Msub(6, 5). Still, it is worthy to
explore the Hecke images of M8/5 itself. We determine the S-matrix of M8/5 as

ρ(S) =


a+ 2a− a− 2a+
a− a+ −a+ −a−
a− −2a+ −a+ 2a−
a+ −a− a− −a+

 . (5.30)

Then we find the following ρ(σp) matrices of M8/5 with p modulo 15:

ρ(σ1,14) = −ρ(σ4,11) = Id, and ρ(σ2,13) = −ρ(σ7,8) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 . (5.31)

Note these exactly resemble the ρ(σp) matrices of Msub(6, 5). We compute the Hecke images
of M8/5 for all admissible p ≤ 14 and collect the results in table 23. It was observed in [6]
that the T2 and T13 images describe the WZW (A2)2 and a subtheory of (F4)6. Together
they form a c = 24 theory appearing in the Schellekens’ list No.14, with holomorphic VOA
construction recently given in [59].

There exists one more theory from holomorphic modular bootstrap ([16], table 6) falling
into type M8/5. We find the c = 112

5 theory with hi = 0, 13
15 ,

5
3 ,

11
5 and m1 = 210 can pair

with M8/5 with ni = 0, 1, 2, 3, of which the bilinear relation of characters gives J + 368.

5.6 Type U(1)3 and type M2

Consider the U(1)3 theory with central charge c = 1 and conformal weights and degeneracy
hi = 0, ( 1

12)2, (1
3)2,

3
4 . This theory can also be regarded as coset (A2)1/(A1)1. It is easy to
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1 ( 1
12)2, (1

3)2,
3
4 1 T1 23 5

4 , (
5
3)2, (23

12)2 23 T23 24 1
5 ( 5

12)2, (2
3)2,

3
4 35 T5, (A5)1 19 5

4 , (
4
3)2, (19

12)2 133 T19 168 43− 45
7 (1

3)2, ( 7
12)2,

5
4 77 T7, ? 17 3

4 , (
17
12)2, (5

3)2 187 T17, ? 264 −
11 (2

3)2, (11
12)2,

5
4 187 T11, ? 13 3

4 , (
13
12)2, (4

3)2 221 T13, ? 408 −

Table 24. Hecke images of U(1)3.

compute the four distinct characters as

χ0 = q−
1
24 (1 + q + 2q2 + 5q3 + 7q4 + 11q5 + 17q6 + . . . ),

χ 1
12

= q
1
24 (1 + q + 3q2 + 4q3 + 8q4 + 11q5 + 18q6 + . . . ),

χ 1
3

= q
7
24 (1 + 2q + 3q2 + 5q3 + 8q4 + 13q5 + 19q6 + . . . ),

χ 3
4

= q
17
24 (2 + 2q + 4q2 + 6q3 + 10q4 + 14q5 + 24q6 + . . . ).

(5.32)

Note the conductor N = 24. Consider the Hecke images Tp of U(1)3 theory. We find for
p = 1, 5, 19, 23 mod 24, ρ(σp) = Id, while for p = 7, 11, 13, 17 mod 24, ρ(σp) = −Id. We
collect all admissible Hecke images in c = 24 pairs in table 24. Note the sums of spin-1
currents m1 + m̃1 for all pairs in table 24 are divisible by the conductor 24.

We find the Hecke relations such as T5U(1)3 = (A5)1 and T19U(1)3 can describe a
subtheory of WZW (E7)3. More precisely, we have the following relation between the T19
Hecke image and (E7)3 characters:

χT19
0 = χ

(E7)3,3w0
0 + χ

(E7)3,w2+w7
2 = q−

19
24 (1 + 133q + 49799q2 + 2414976q3 + . . . ),

χT19
19
12

= χ
(E7)3,w1+w7
19
12

= q
19
24 (6480 + 541728q + 16030224q2 + . . . ),

χT19
4
3

= χ
(E7)3,w6+w0
4
3

= q
13
24 (1539 + 204687q + 7299477q2 + . . . ),

χT19
5
4

= χ
(E7)3,w2+w0
5
4

+ χ
(E7)3,3w7
9
4

= q
11
24 (912 + 145616q + 5572928q2 + . . . ).

(5.33)

The primaries with weights 19/12 and 4/3 have degeneracy 2 as required by the Hecke
operation. Together these two images T5 and T19 can form a c = 24 theory in Schellekens’
List No.45, with the associated holomorphic VOA constructed in [53] by certain Z2 orbifold.

There exists one more theory from holomorphic modular bootstrap ([16], table 6) falling
into type U(1)3. We find the c = 23 theory with hi = 0, 11

12 ,
5
3 ,

9
4 and m1 = 575 can pair

with U(1)3 with ni = 0, 1, 2, 3, of which the bilinear relation of characters gives J + 1128.
Consider a c = 2 theory with conformal weights hi = 0, 1

6 ,
1
2 ,

2
3 appeared in holomorphic

modular bootstrap ([16], table 5), which we denote as M2. Although the central charge
and conformal weights of M2 satisfy the generalized T2 condition of U(1)3 theory, we will
show that their degeneracies do not match. Therefore they are not in generalized Hecke
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2 (1
6)6, (1

2)3, (2
3)2 2 T1 22 (4

3)2, (3
2)3, (11

6 )6 22 T11 24 −

10 (1
2)3, (5

6)6, (4
3)2 110 T5, ? 14 (2

3)2, (7
6)6, (3

2)3 154 T7, ? 264 −

Table 25. Hecke images of M2 theory.

relation. We determine the four distinct characters of M2 to be

χM2
0 = q−

1
12 (1 + 2q + 11q2 + 22q3 + 50q4 + 96q5 + . . . ),

χM2
1
6

= q
1
12 (1 + 4q + 11q2 + 26q3 + 55q4 + 110q5 + . . . ),

χM2
1
2

= q
5
12 (2 + 6q + 14q2 + 34q3 + 70q4 + 136q5 + . . . ),

χM2
2
3

= q
7
12 (3 + 6q + 18q2 + 36q3 + 81q4 + 150q5 + . . . ).

(5.34)

Clearly, the conductor N = 12. We find this theory can be realized by the coset M2 =
(D4)1/(A2)1. Indeed, we checked the following character relations

χ
(D4)1
0 = χM2

0 χ
(A2)1
0 + 2χM2

2
3
χ

(A2)1
1
3

, χ
(D4)1
1
2

= χM2
1
2
χ

(A2)1
0 + 2χM2

1
6
χ

(A2)1
1
3

. (5.35)

Therefore, the degeneracies of the four characters of M2 are (1, 6, 3, 2) respectively.
Consider the Hecke images of M2 theory. We find for p = 1, 11 mod 12, ρ(σp) = Id,

while for p = 5, 7 mod 12, ρ(σp) = −Id. We summarize all admissible Hecke images Tp for
p < 12 in c = 24 pairs in table 25. Note the sums of spin-1 currents m1 + m̃1 for all pairs
in table 25 are divisible by the conductor 12. The T11 image has made an appearance in
holomorphic modular bootstrap ([16], table 5).

5.7 Type (A1)⊗3
1

Consider the triple product theory (A1)⊗3
1 which has central charge c = 3 and weights with

degeneracy hi = 0, (1
4)3, (1

2)3,
3
4 . The conductor N = 8. For the Hecke operation of (A1)⊗3

1 ,
we find for p modulo 8, the ρ(σp) matrices are ρ(σ1,7) = −ρ(σ3,5) = Id. We compute all
admissible Hecke images for p < 8 and list them in c = 24 pairs in table 26. Notably, we find
the T7 Hecke image can describe a subtheory of WZW (A7)4 with weights 0, 5

4 , (
3
2)3, (7

4)3.
For example, the vacuum character can be decomposed as

χT7
0 = χ

(A7)4,4w0
0,1 + 2χ(A7)4,w1+w3+w4+w0

2,14700 + χ
(A7)4,w1+w2+w6+w7
2,24255

+ 2χ(A7)4,4w2
3,13860 + χ

(A7)4,w2+w3+w5+w6
3,577500 + χ

(A7)4,4w4
4,232848

= q−
7
8 (1 + 63q + 55734q2 + 3714697q3 + 106849134q4 + . . . ).

(5.36)

This subtheory of (A7)4 can pair with (A1)⊗3
1 to form a c = 24 theory in the Schellekens’

list No.8, of which the associated holomorphic VOA was constructed in [51].
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3 (1
4)3, (1

2)3,
3
4 9 T1, (A1)⊗3

1 21 5
4 , (

3
2)3, (7

4)3 63 T7 72 15− 18

9 (1
2)3, (3

4)3,
5
4 117 T3, ? 15 3

4 , (
5
4)3, (3

2)3 195 T5, ? 312 −

Table 26. Hecke images of (A1)⊗3
1 theory.

There exists one more theory from holomorphic modular bootstrap ([16], table 6) falling
into type (A1)⊗3

1 . We find the c = 21 theory with hi = 0, 3
4 ,

3
2 ,

9
4 and m1 = 399 is just

(E7)⊗3
1 , which can pair with (A1)⊗3

1 , and the bilinear relation of characters gives J + 744.

5.8 Type (A6)1

WZW model (A6)1 has central charge c = 6 and conformal weights with degeneracy as
hi = 0, (3

7)2, (5
7)2, (6

7)2. The four distinct characters are

χw0
0 = q−

1
4 (1 + 48q + 489q2 + 2842q3 + 13083q4 + . . . ),

χw1
3/7 = q

5
28 (7 + 147q + 1071q2 + 5628q3 + 23709q4 + . . . ),

χw2
5/7 = q

13
28 (21 + 273q + 1764q2 + 8652q3 + 34790q4 + . . . ),

χw3
6/7 = q

17
28 (35 + 357q + 2268q2 + 10619q3 + 42042q4 + . . . ).

(5.37)

Here w0,1,2,...,6 denote the affine weights of Â(1)
6 . Clearly the conductor N = 28. Consider

the Hecke images Tp of WZW (A6)1. We find the T3 image has c = 18, l = 0, weights
hi = 0, (8

7)2, (9
7)2, (11

7 )2 and spin-1 current m1 = 144. This theory can be regarded as a
subtheory of (A6)⊗3

1 and forms a c = 24 pair with (A6)1 itself, which appeared in the
Schellekens’ list No.46. Besides, for p ≥ 5, we notice that the Hecke images Tp(A6)1 have
l ≥ 6 MLDEs.

6 RCFTs with five characters

The potential RCFTs with five characters, non-integral weights and l = 0 MLDEs have been
recently classified by modular bootstrap in ([16], table 7). There are in total 23 theories.
We propose that all these 23 theories can be merely generated by two simple types (LY )4
and (LY )⊗4

1 which have 5 primaries and 16 primaries respectively. We will discuss the
Hecke images and cosets of these two types individually. We also discuss the U(1)4 theory
which has five characters and integral weights. Though degenerate, this theory also has
many interesting Hecke images. There exists more degenerate l = 0 RCFTs such as (A1)4
which has c = 2, hi = 0, 1

8 ,
1
3 ,

5
8 , 1 and N = 24. We do not intend to discuss the Hecke

images of (A1)4 in detail, instead just comment that (A1)4 and its T11 image form a c = 24
theory in the Schellekens’ list No.2.

– 43 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
2

l = 0 l′ = 2 duality

c hi m1 remark c̃ h̃i m̃1 remark m1+m̃1 Sch

−232
11 −{

4
11 ,

7
11 ,

9
11 ,

10
11} 0 T−29

496
11

26
11 ,

29
11 ,

31
11 ,

32
11 0 T62 0 0

8
11

1
11 ,

3
11 ,

6
11 ,

10
11 1 T1

256
11

12
11 ,

16
11 ,

19
11 ,

21
11 32 T32 33 −

32
11

2
11 ,

4
11 ,

7
11 ,

12
11 8 T4

232
11

10
11 ,

15
11 ,

18
11 ,

20
11 58 T29 66 −

56
11

4
11 ,

7
11 ,

9
11 ,

10
11 28 T7

208
11

12
11 ,

13
11 ,

15
11 ,

18
11 104 T26 132 −

80
11

5
11 ,

8
11 ,

10
11 ,

12
11 120 T10

184
11

10
11 ,

12
11 ,

14
11 ,

17
11 276 T23 396 −

104
11

6
11 ,

9
11 ,

12
11 ,

13
11 52 T13, (F4)2

160
11

9
11 ,

10
11 ,

13
11 ,

16
11 80 T20, (A8)2 132 36

128
11

6
11 ,

8
11 ,

15
11 ,

16
11 224 T16

136
11

6
11 ,

7
11 ,

14
11 ,

16
11 238 T17 462 −

152
11

8
11 ,

13
11 ,

14
11 ,

15
11 304 T19, ?

112
11

7
11 ,

8
11 ,

9
11 ,

14
11 224 T14, ? 528 −

200
11

9
11 ,

14
11 ,

18
11 ,

19
11 225 T25, ?

64
11

3
11 ,

4
11 ,

8
11 ,

13
11 72 T8, ? 297 −

224
11

14
11 ,

16
11 ,

17
11 ,

18
11 112 T28

40
11

4
11 ,

5
11 ,

6
11 ,

8
11 20 T5 132 −

248
11

13
11 ,

16
11 ,

20
11 ,

21
11 0 T31, Th

16
11

1
11 ,

2
11 ,

6
11 ,

9
11 0 T2, D3C 0 0

Table 27. Hecke images of (LY )4.

6.1 Type (LY )4

Minimal model M(11, 2) is a non-unitary theory with real central charge c = −232
11 and

conformal weights h = {0,− 4
11 ,−

7
11 ,−

9
11 ,−

10
11}. Consider the effective theory Meff(11, 2)

i.e., (LY )4 which has ceff = 8
11 and heff = {0, 1

11 ,
3
11 ,

6
11 ,

10
11}. The conductor is N = 33.

The ρ(σp) matrices for various Hecke operations can be found in appendix D.2.2 of [60].
We compute its Hecke images for all admissible p < 33 and collect the results in table 27.
Some Hecke images can be identified as WZW models such as T13 = (F4)2 and T20 as a
subtheory of (A8)2 [60]. Together T13 and T20 Hecke images form a c = 24 theory in the
Schellekens’ list No.36, of which the associated holomorphic VOA was constructed in [61].
Besides, [60] also points out that the T31 image gives the characters of RCFT associated
to the Thompson group [42], while the T2 image describes the 3C conjugacy class of the
Monster group. The only unitary theories in table 27 are T13,T31,T20,T2 belonging to the
MTC classes 5B±16/11 in table II of [50], and all others are non-unitary. For c = 24 pairs
(Tp,Tp′), we have p + p′ = 33 and (l, l′) = (0, 2). We summarize all admissible pairs in
table 27. It is easy to check the sums of spin-1 currents m1 + m̃1 for all pairs are divisible
by the conductor 33. There also exist other c = 8k pairs. For example, we notice T4 and
T7 are dual w.r.t. WZW (E8)1.

Consider the c = 24 dual of the original M(11, 2) theory which we formally denote as
T−29. The dual theory has central charge c = 496

11 and weights hi = 0, 26
11 ,

29
11 ,

31
11 ,

32
11 . We

notice it can be realized as Hecke image T62 and has an l = 2 MLDE. We list this pair
(M(13, 2),T62) in the first row of table 27. We also find this pair has the following bilinear
relation of characters

J(τ) = χ
T−29
0 χT62

0 − χT−29
− 4

11
χT62

26
11

+ χ
T−29
− 7

11
χT62

29
11
− χT−29

− 9
11
χT62

31
11

+ χ
T−29
− 10

11
χT62

32
11
. (6.1)
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Now let us examine our main proposal and explain how all potential RCFTs from
holomorphic modular bootstrap — the right side of table 7 in [16] — are related to (LY )4
by Hecke and c = 8k coset operations. Apart from the l = 0 Hecke images in the left side
of table 27, there still remains five theories. We discuss them individually as follows.

• We identify the following c = 24 pair:

l = 0, (c, h,m1) =
(32

11 ,
1
11 ,

4
11 ,

7
11 ,

13
11 , 10

)
,⇐⇒ l = 2,T29, (6.2)

the characters of which satisfy the following bilinear relation

∑
χc=

32
11χT29 = J + 126. (6.3)

• We identify the following c = 24 pair:

l = 0, (c, h,m1) =
(128

11 ,
5
11 ,

8
11 ,

15
11 ,

17
11 , 248

)
,⇐⇒ l = 2,T17, (6.4)

the characters of which satisfy the following bilinear relation

∑
χc=

128
11 χT17 = J + 894. (6.5)

• We identify the following c = 24 pair:

l = 0, (c, h,m1) =
(224

11 ,
5
11 ,

14
11 ,

18
11 ,

28
11 , 528

)
,⇐⇒ l = 2,T5, (6.6)

the characters of which satisfy the following bilinear relation

∑
χc=

224
11 χT5 = J + 708. (6.7)

• WZW (E8)3 is characterized by (c, h,m1) = (248
11 ,

10
11 ,

16
11 ,

20
11 ,

24
11 , 248). We identify the

following c = 24 pair: ∑
χ(E8)3χT2 = J + 744. (6.8)

Note this is an (l, l′) = (0, 2) pair and ni = 1, 2, 2, 3.

• We identify the following c = 32 pair:

∑
χc=

344
11 χT1 = j1/3(J + 1000). (6.9)

Note this is an (l, l′) = (0, 0) pair and ni = 1, 2, 3, 4. This satisfies the relation (2.33).
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l = 0 l′ = 2 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch
8
5

1
5 ,

2
5 ,

3
5 ,

4
5 4 T1

112
5

6
5 ,

7
5 ,

8
5 ,

9
5 56 T14 60 −

32
5

2
5 ,

3
5 ,

4
5 ,

6
5 80 T4

88
5

4
5 ,

6
5 ,

7
5 ,

8
5 220 T11 300 −

56
5

3
5 ,

4
5 ,

6
5 ,

7
5 28 T7, (D4)4

64
5

3
5 ,

4
5 ,

6
5 ,

7
5 32 T8, (A2)⊗4

2 60 13
104
5

6
5 ,

7
5 ,

8
5 ,

9
5 0 T13

16
5

1
5 ,

2
5 ,

3
5 ,

4
5 0 T2 0 −

Table 28. Hecke images of (LY )⊗4
1 . We omit the degeneracy here.

6.2 Type (LY )⊗4
1

Consider the product theory (LY )⊗4
1 which has central charge c = 8

5 and conformal weights
with degeneracy hi = 0, (1

5)4, (2
5)6, (3

5)4,
4
5 . The conductor is N = 15. We find there exist two

classes for its Hecke operation. For p = 1, 4, 11, 14 mod 15, i.e., p2 ≡ 1 mod 15, ρ(σp) = Id.
For p = 2, 7, 8, 13 mod 15, i.e., p2 ≡ 4 mod 15, the ρ(σp) can be easily derived from those of
(LY )1. We compute all admissible Hecke images Tp of (LY )⊗4

1 for p < 15. Notably, we find
the T7 image describes a subtheory of WZW model (D4)4, while the T8 image describes a
subtheory of WZW model (A2)⊗4

2 . For example, we have the following relation between the
T7 Hecke image and (D4)4 characters:

χT7
0 = χ

(D4)4,4w0
0,1 + 3χ(D4)4,4w1

2,294 = q−
7
15 (1 + 28q + 1316q2 + 18480q3 + . . . ),

χT7
7
5

= χ
(D4)4,2w2
7
5 ,300 = q

14
15 (300 + 6475q + 76300q2 + . . . ),

χT7
4
5

= χ
(D4)4,2w1+2w0
4
5 ,35 + χ

(D4)4,2w1+2w3
9
5 ,840 = q

1
3 (35 + 1820q + 29800q2 + . . . ),

χT7
6
5

= χ
(D4)4,w1+w3+w4+w0
6
5 ,350 = q

11
15 (350 + 9800q + 126175q2 + . . . ),

χT7
3
5

= χ
(D4)4,w2+2w0
3
5 ,28 + 3χ(D4)4,2w1+w2

8
5 ,567 = q

2
15 (28 + 2485q + 46844q2 + . . . ).

(6.10)

The five characters of T7 in the above order have degeneracy (1, 4, 6, 4, 1). Together (T7,T8)
are glued as a c = 24 theory appearing in the Schellekens’ list No.13, of which the associated
holomorphic VOA was constructed in [61]. In total there exist 4 pairs of Hecke images w.r.t.
c = 24 which satisfy p+ p′ = 15 and (l, l′) = (0, 2). We summarize the relevant information
in table 28. Note all theories in table 28 have degeneracy (1, 4, 6, 4, 1). Clearly, the sums of
spin-1 currents m1 + m̃1 for all pairs are divisible by the conductor 15.

Let us check our main proposal and explain how all potential RCFTs from holomorphic
modular bootstrap — the left side of table 7 in [16] — are related to (LY )⊗4

1 by Hecke
and c = 8k coset operations. Apart from the l = 0 Hecke images in table 28, there are still
six l = 0 admissible theories from holomorphic modular bootstrap. We now discuss them
individually.

• We identify the following pair w.r.t. c = 24:

l = 0, (c, h,m1) =
(32

5 ,
1
5 ,

3
5 ,

4
5 ,

7
5 , 82

)
,⇐⇒ T11, ni = 1, 2, 2, 3. (6.11)
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The bilinear form of characters is

χ
c= 32

5
0 χT11

0 + χ
c= 32

5
1
5

χT11
4
5

+ 6χc=
32
5

3
5

χT11
7
5

+ 4χc=
32
5

4
5

χT11
6
5

+ 4χc=
32
5

7
5

χT11
8
5

= J + 324. (6.12)

• We identify the following pair w.r.t. c = 24:

l = 0, (c, h,m1) =
(56

5 ,
2
5 ,

4
5 ,

6
5 ,

8
5 , 56

)
,⇐⇒ T8, ni = 1, 2, 2, 3. (6.13)

The bilinear form of characters is

χ
c= 56

5
0 χT8

0 + 4χc=
56
5

2
5

χT8
3
5

+ 6χc=
56
5

4
5

χT8
6
5

+ 4χc=
56
5

6
5

χT8
4
5

+ χ
c= 56

5
8
5

χT8
7
5

= J + 312. (6.14)

• We identify the following pair w.r.t. c = 24:

l = 0, (c, h,m1) =
(104

5 ,
3
5 ,

6
5 ,

9
5 ,

12
5 , 208

)
,⇐⇒ T2, ni = 1, 2, 2, 3. (6.15)

The bilinear form of characters is

χ
c= 104

5
0 χT2

0 + 4χc=
104
5

3
5

χT2
2
5

+ 6χc=
104
5

6
5

χT2
4
5

+ 4χc=
104
5

9
5

χT2
1
5

+ χ
c= 104

5
12
5

χT2
3
5

= J + 312. (6.16)

• We identify the following pair w.r.t. c = 24:

l = 0, (c, h,m1) =
(104

5 ,
4
5 ,

7
5 ,

8
5 ,

11
5 , 520

)
,⇐⇒ T2, ni = 1, 2, 2, 3. (6.17)

The bilinear form of characters is

χ
c= 104

5
0 χT2

0 + 4χc=
104
5

4
5

χT2
1
5

+ 6χc=
104
5

7
5

χT2
3
5

+ 4χc=
104
5

8
5

χT2
2
5

+χ
c= 104

5
11
5

χT2
4
5

= J + 1560. (6.18)

• We identify the following pair w.r.t. c = 32:

l = 0, (c, h,m1) =
(128

5 ,
4
5 ,

7
5 ,

11
5 ,

13
5 , 28

)
,⇐⇒ T4, ni = 2, 2, 3, 3. (6.19)

The bilinear form of characters is
∑

χc=
128
5 χT4 = j1/3(J − 140). (6.20)

• The c = 152
5 theory is just (E7 1

2
)⊗4
1 . Obviously, it is dual to T1 w.r.t. c = 32.

l = 0, (c, h,m1) =
(152

5 ,
4
5 ,

8
5 ,

12
5 ,

16
5 , 760

)
,⇐⇒ T1, ni = 1, 2, 3, 4. (6.21)
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6.3 Type U(1)4

Consider the c = 1 RCFT U(1)4 model. It has conformal weights and degeneracy hi =
0, ( 1

16)2, (1
4)2, ( 9

16)2, 1. Note this theory is degenerate due to the presence of weight-1 primary.
It is easy to compute the five distinct characters to be

χ0 = q−
1
24 (1 + q + 2q2 + 3q3 + 7q4 + 9q5 + 15q6 + . . . ),

χ 1
16

= q
1
48 (1 + q + 2q2 + 4q3 + 6q4 + 10q5 + 15q6 + . . . ),

χ 1
4

= q
5
24 (1 + q + 3q2 + 4q3 + 7q4 + 10q5 + 17q6 + . . . ),

χ 9
16

= q
25
48 (1 + 2q + 3q2 + 5q3 + 8q4 + 12q5 + 18q6 . . . ),

χ1 = q
23
24 (2 + 2q + 4q2 + 6q3 + 10q4 + 14q5 + 22q6 + . . . ).

(6.22)

Clearly the conductor is N = 48. The S-matrix of the five characters is

ρ(S) = 1√
8


1 2 2 2 1
1
√

2 0 −
√

2 −1
1 0 −2 0 1
1 −
√

2 0
√

2 −1
1 −2 2 −2 1

 . (6.23)

As in Ising model, there are two classes for the Hecke operation: for p2 ≡ 1 mod 48,
ρ(σp) = Id, while for p2 ≡ 25 mod 48,

ρ(σp) =


−1 0 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 0 −1

 . (6.24)

We compute all admissible Hecke images Tp for p < 48 and collect them in c = 24 pairs in
table 29. We find Hecke relations T7U(1)4 = (A7)1, and T17U(1)4 can describe a subtheory
of (D9)2. Together they form a c = 24 pair in Schellekens’ list No.50. The characters
relations between T17 and WZW (D9)2 are for example:

χT17
0 = χ

(D9)2,2w0
0 + χ

(D9)2,w6
2 = q−

17
24 (1 + 153q + 30498q2 + 1078939q3 + . . . ),

χT17
1 = χ

(D9)2,2w1
1 + χ

(D9)2,w6
2 = q

7
24 (170 + 30362q + 1079636q2 + . . . ).

(6.25)

We also compute Hecke images Tp for 25 ≤ p ≤ 47, however those have l ≥ 6 MLDEs, thus
are not of our main interest here.
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l = 0 l′ = 2 duality

c hi m1 remark c̃ h̃i m̃1 remark m1 + m̃1 Sch

1 1
16 ,

1
4 ,

9
16 , 1 1 T1 23 1, 23

16 ,
7
4 ,

31
16 23 T23 24 1

7 7
16 ,

3
4 ,

15
16 , 1 63 T7, (A7)1 17 1, 17

16 ,
5
4 ,

25
16 153 T17 216 49, 50

13 13
16 , 1,

5
4 ,

21
16 195 T13, ? 11 11

16 ,
3
4 , 1,

19
16 165 T11, ? 360 −

19 1, 19
16 ,

27
16 ,

7
4 133 T19, ? 5 1

4 ,
5
16 ,

13
16 , 1 35 T5, ? 168 −

Table 29. Hecke images of U(1)4. All non-integral weights have degeneracy two.

7 RCFTs with six characters

RCFTs with six characters are not yet classified or studied from holomorphic modular
bootstrap. Nevertheless, the rank 6 MTC with N ij

k ≤ 3 are very recently classified in [4],
see table 3 and 4 there. We choose several interesting initial theories with six characters
to study their Hecke images and discover lots of new Hecke relations. In the following, we
discuss the Hecke operation of type (LY )5, M(5, 4), Msub(7, 6), (LY )1⊗(LY )2, (LY )⊗2

2 and
Ising⊗2 individually. There of course exist more RCFTs with six characters not included
in these Hecke types. For example, the Hecke images of Meff(7, 3) have been discussed in
appendix D.2.7 of [60] which reveals WZW (C5)1 = T11Meff(7, 3). Besides, these also exist
some RCFTs with integral central charge such as WZW (B2)2 and (G2)3 which seem to be
a bit isolated in the Hecke program.

7.1 Type (LY )5

Non-unitary minimal model M(13, 2) has central charge c = −350
13 and conformal weights

hi = 0,− 5
13 ,−

9
13 ,−

12
13 ,−

14
13 ,−

15
13 . The effective theory Meff(13, 2), i.e., (LY )5 has central

charge ceff = 10
13 and conformal weights heff = 0, 1

13 ,
3
13 ,

6
13 ,

10
13 ,

15
13 . It is easy to compute the

five characters to be

χ0 = q−
5

156 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + 13q7 + . . . ),

χ 1
13

= q
7

156 (1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 10q6 + 13q7 + . . . ),

χ 3
13

= q
31
156 (1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + 12q7 + . . . ),

χ 6
13

= q
67
156 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + . . . ),

χ 10
13

= q
115
156 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 + . . . ),

χ 15
13

= q
175
156 (1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + . . . ).

(7.1)

Clearly the conductor N = 156. The classes of Hecke operations and various ρ(σp) matrices
have been discussed in appendix D.2.3 of [60]. We compute the Hecke images for all
admissible p < 156 and collect the results for p < 38 in table 30. The T37 image belongs to
the MTC class 6B−46/13 in the table III of [50]. Meanwhile, a unitary c = 46

13 theory as the
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c hi m1 l remark
10
13

1
13 ,

3
13 ,

6
13 ,

10
13 ,

15
13 1 0 T1

50
13

2
13 ,

4
13 ,

5
13 ,

10
13 ,

11
13 20 6 T5, ?

70
13

3
13 ,

5
13 ,

7
13 ,

8
13 ,

14
13 35 6 T7, ?

110
13

6
13 ,

7
13 ,

9
13 ,

11
13 ,

14
13 44 6 T11, ?

170
13

8
13 ,

11
13 ,

12
13 ,

14
13 ,

17
13 136 6 T17, ?

190
13

10
13 ,

12
13 ,

18
13 ,

19
13 ,

21
13 190 0 T19, (E7 1

2
)2

230
13

10
13 ,

17
13 ,

20
13 ,

21
13 ,

22
13 230 0 T23, ?

250
13

10
13 ,

11
13 ,

12
13 ,

16
13 ,

20
13 175 12 T25, ?

290
13

16
13 ,

17
13 ,

18
13 ,

19
13 ,

22
13 58 6 T29, ?

310
13

15
13 ,

17
13 ,

18
13 ,

23
13 ,

24
13 31 6 T31

350
13

14
13 ,

15
13 ,

18
13 ,

22
13 ,

25
13 0 12 T35, ?

370
13

19
13 ,

20
13 ,

22
13 ,

24
13 ,

27
13 0 6 T37

Table 30. Hecke images Tp of (LY )5 for p < 38.

root of WZW (A1)11 belonging to the MTC class 6B46/13 [50] is dual to T37 w.r.t. c = 32.
Most Hecke images of type (LY )5 appear to be non-unitary.

As a fascinating example, let us consider the T19 Hecke image of (LY )5. We find this
Hecke image satisfies an l = 0 MLDE and have conformal weights hi = 0, 10

13 ,
12
13 ,

18
13 ,

19
13 ,

21
13 .

We regard this as exactly WZW E7 1
2
model of level 2 ! To the best of our knowledge, WZW

models (E7 1
2
)k for level k > 1 have not been discussed in the literature yet. We compute

the characters from Hecke operation to be

χ0 = q−
95
156 (1 + 190q + 18335q2 + 448210q3 + 6264585q4 + 62455698q5 + . . . ),

χ 10
13

= q
25
156 (57 + 10830q + 321575q2 + 4979330q3 + 53025295q4 + . . . ),

χ 12
13

= q
49
156 (190 + 20596q + 537890q2 + 7761500q3 + 79066030q4 + . . . ),

χ 18
13

= q
121
156 (1045 + 48070q + 910955q2 + 10983690q3 + 99272435q4 + . . . ),

χ 19
13

= q
133
156 (2640 + 109155q + 1979610q2 + 23245740q3 + 206319480q4 + . . . ),

χ 21
13

= q
157
156 (1520 + 51395q + 860890q2 + 9606457q3 + 82347710q4 + . . . ),

(7.2)

with S-matrix

ρ(S) = 2√
13



sin
(

3π
13

)
cos

(
3π
26

)
cos

(
π
26
)

sin
(

2π
13

)
cos

(
5π
26

)
sin
(
π
13
)

cos
(

3π
26

)
−cos

(
5π
26

)
sin
(

3π
13

)
sin
(
π
13
)
−sin

(
2π
13

)
−cos

(
π
26
)

cos
(
π
26
)

sin
(

3π
13

)
−sin

(
π
13
)
−cos

(
5π
26

)
−cos

(
3π
26

)
sin
(

2π
13

)
sin
(

2π
13

)
sin
(
π
13
)
−cos

(
5π
26

)
−sin

(
3π
13

)
cos

(
π
26
)
−cos

(
3π
26

)
cos

(
5π
26

)
−sin

(
2π
13

)
−cos

(
3π
26

)
cos

(
π
26
)

sin
(
π
13
)

sin
(

3π
13

)
sin
(
π
13
)
−cos

(
π
26
)

sin
(

2π
13

)
−cos

(
3π
26

)
sin
(

3π
13

)
cos

(
5π
26

)


. (7.3)
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We find the six characters satisfy the following 6th order MLDE:

[D6 + µ1E4D4 + µ2E6D3 + µ3E
2
4D2 + µ4E4E6D + (µ5E

3
4 + µ6E

2
6)]χ = 0,

µ1 = −1225
1872 , µ2 = 25205

36504 , µ3 = −1349885
3504384 , µ4 = 36703535

296120448
µ5 = − 57214927525

4804258148352 , µ6 = − 3824637775
450399201408 .

(7.4)

It was known E7 1
2
as an intermediate Lie algebra has dimension 190, dual Coxeter number

24 and fundamental representation 57 with Casimir invariants 40 [31]. Assuming the central
charge formula (2.14) of WZW models still work, then for (E7 1

2
)k model, central charge

ck = 190k/(k + 24). For example, c2 = 190
13 , c3 = 190

9 , c4 = 190
7 . . . Thus c2 matches with

the central charge of T19(LY )5. Besides, assuming the weight formula (2.16) of WZW
models still work, then (E7 1

2
)2 should have a character of weights 10

13 with leading Fourier
coefficients 57. Apparently, (7.2) also satisfies this condition. One more evidence is that the
character χ 12

13
in (7.2) has leading Fourier coefficients 190 which is exactly the dimension

of adjoint representation of E7 1
2
. These support us to propose (7.2) as the characters of

generalized WZW (E7 1
2
)2. We remark that (E7)2 also has six characters, the same number

with (E7 1
2
)2.

We newly recognize from (7.2) more “irreducible integrable representations” of E7 1
2

which are 1045,2640 and 1520 with Casimir invariants 72, 76, 84 respectively.9 We remark
that the representation 2640 appears in the defining property of Deligne exceptional series,
see e.g. [32]:

Sym2190 = 1 + 15504 + 2640, (7.5)

where 15504 = 2Adj. Similarly Alt2190 = 190+17765. We also notice the 1520 appears
as the Y∗3 representation in the notion of ([62], appendix A.3). In fact, we are able to
recognize the decomposition of representations in the flavored characters. For example, for
the vacuum character, we find

χ0 = q−
95
156 (1 + 190q + (1 + 190 + 2640 + 15504)q2 + (1 + 3× 190 + 1520
+ 2640 + 15504 + 2× 17765 + 392445)q3 + . . . ).

(7.6)

Here 392445 is the representation A in the notion of ([62], appendix A.3). Besides, from
the S-matrix (7.3), it is easy to determine the “fusion rule” for the non-vacuum primaries
of (E7 1

2
)2 as follows

φ1×φ1 =φ0−φ1+φ2−φ3+φ4+φ5, φ1×φ2 =φ1+φ3,

φ1×φ3 =−φ1+φ2−φ3+φ4+φ5, φ1×φ4 =φ1+φ3−φ5,

φ1×φ5 =φ1+φ3−φ4−φ5, φ2×φ2 =φ0+φ4, φ2×φ3 =φ1−φ5,

φ2×φ4 =φ2+φ5, φ2×φ5 =−φ3+φ4, φ3×φ3 =φ0−φ1−φ3+φ4+φ5,

φ3×φ4 =φ1+φ3−φ4, φ3×φ5 =φ1−φ2+φ3−φ5, φ4×φ4 =φ0−φ3+φ4,

φ4×φ5 =−φ1+φ2+φ5, φ5×φ5 =φ0−φ1−φ3+φ4. (7.7)
9The Casimir invariants suggest that (E7 1

2
)3 should contain conformal weights hi = 0, 20

27 ,
8
9 ,

4
3 ,

38
27 ,

14
9

with αi as − 95
108 ,−

5
36 ,

1
108 ,

49
108 ,

19
36 ,

73
108 . Presumably, (E7 1

2
)3 has 12 characters and conductor 108.
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For c = 8k cosets, if we want both theories of a pair to be Tp(LY )5, then the first
possibility is c = 40 and p+ p′ = 52. Unfortunately, there is no chance for both of them
to avoid quasi-characters. Pairs with quasi-characters include ∑χT5χT47 = j2/3(J − 516),∑
χT11χT41 = j2/3(J − 540), and ∑χT23χT29 = j2/3(J − 784). The next possibility is

c = 80 and p+ p′ = 104. We notice the pairs including (p, p′) = (31, 73) with l = 6, l′ = 12,
(p, p′) = (37, 67) with l = 6, l′ = 18 and (p, p′) = (43, 61) with l = 6, l′ = 12.

7.2 Type M(5, 4), tri-critical Ising

The tri-critical Ising model M(5, 4) is a unitary RCFT with central charge c = 7
10 and

conformal weights hi = 0, 3
80 ,

1
10 ,

7
16 ,

3
5 ,

3
2 . This is a well-known example which can be

fermionized to the first unitary N = 1 supersymmetic minimal model SM(l + 2, l) for
l = 3 [63]. The six characters of M(5, 4) have the following Fourier expansion

χ0 = q−
7

240 (1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + . . . ),

χ 3
80

= q
1

120 (1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 8q6 + 11q7 + . . . ),

χ 1
10

= q
17
240 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 + . . . ),

χ 7
16

= q
49
120 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 + . . . ),

χ 3
5

= q
137
240 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 7q6 + 9q7 + . . . ),

χ 3
2

= q
353
240 (1 + q + 2q2 + 2q3 + 3q4 + 4q5 + 6q6 + 7q7 + . . . ).

(7.8)

Clearly, the conductor N = 240. The S-matrix is

ρ(S) =



a−
√

2a+ a+
√

2a− a+ a−√
2a+ 0

√
2a− 0 −

√
2a− −

√
2a+

a+
√

2a− −a− −
√

2a+ −a− a+√
2a− 0 −

√
2a+ 0

√
2a+ −

√
2a−

a+ −
√

2a− −a−
√

2a+ −a− a+
a− −

√
2a+ a+ −

√
2a− a+ a−


. (7.9)

Here a± = (1
5(5

8 ±
√

5
8 ))1/2.

Let us now consider the Hecke images Tp of M(5, 4). There exist eight classes for
the Hecke operation, each containing 8 p coprime to 240. We summarize in table 31 the
classes of quadratic residue p2 ≡ a mod 240. Here the signs mean that the ρ(σp) in the
right column is the negative of the ρ(σp) in the left, for example ρ(σ31) = −ρ(σ1). For each
class, we compute the typical ρ(σp) matrices as

ρ(σ1) = Id, ρ(σ7) =



0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 −1
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0


. (7.10)
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a + −

1 1, 41, 79, 119, 121, 161, 199, 239 31, 49, 71, 89, 151, 169, 191, 209
49 7, 47, 73, 113, 127, 167, 193, 233 17, 23, 97, 103, 137, 143, 217, 223
121 11, 29, 91, 109, 131, 149, 211, 229 19, 59, 61, 101, 139, 179, 181, 221
169 13, 53, 67, 107, 133, 173, 187, 227 37, 43, 77, 83, 157, 163, 197, 203

Table 31. The classes of quadratic residue p2 ≡ a mod 240.

ρ(σ11) =



0 0 0 0 0 −1
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0
−1 0 0 0 0 0


, ρ(σ13) =



0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


. (7.11)

Then all Hecke images Tp of M(5, 4) can be obtained from these ρ(σp) matrices. We collect
the relevant information of Hecke images for all admissible p ≤ 43 in table 32.

It is interesting that the WZW model (E7)2 emerges as the T19 image of M(5, 4). We
compute the T19M(5, 4) image as

χ 3
2

= q
227
240 (1463 + 43757q + 654664q2 + 6593608q3 + 51472463q4 + . . . ),

χ 57
80

= q
19
120 (56 + 7448q + 186352q2 + 2512104q3 + 23785720q4 + . . . ),

χ 7
5

= q
203
240 (1539 + 52535q + 824999q2 + 8580229q3 + 68438741q4 . . . ),

χ 21
16

= q
91
120 (912 + 35112q + 577752q2 + 6183968q3 + 50300600q4 + . . . ),

χ 9
10

= q
83
240 (133 + 10318q + 222509q2 + 2768129q3 + 24909931q4 + . . . ),

χ0 = q−
133
240 (1 + 133q + 9044q2 + 180215q3 + 2158324q4 + . . . ).

(7.12)

These are exactly the six characters of WZW (E7)2 theory! The (E7)2 theory can be
fermionized to a supersymmetric theory satisfying a second order fermionic MLDE [14].

For c = 8k cosets, if we want both theories of a pair to be Hecke images of M(5, 4),
then the first possibility is c = 56 and p+ p′ = 80. We find pairs such as (p, p′) = (1, 79),
l = 0, l′ = 18 and (p, p′) = (19, 61), l = 0, l′ = 6. Let us consider the first pair. The
T79M(5, 4) theory has conformal weights hi = 0, 12

5 ,
5
2 ,

41
16 ,

29
10 ,

237
80 . We notice this theory

belongs to the MTC class 6B−7/10 in table III of [50]. Note this pair has ni = 3, 3, 3, 3, 4.
It is easy to see this satisfies the relation (2.33). We checked the bilinear relation of the
characters of this pair to be ∑χT1χT79 = j1/3(J2 − 248J − 336387). Consider the second
pair T19M(5, 4) = (E7)2 and T61M(5, 4) which have l = 0, 6 respectively. We notice
T61M(5, 4) theory which has weights hi = 0, 21

10 ,
183
80 ,

5
2 ,

13
5 ,

43
16 belongs to the MTC 6B27/10

in table III of [50]. This pair has ni = 3, 3, 4, 4, 4. It is easy to see this again satisfies
the relation (2.33). We checked the bilinear relation of the characters of this pair to be∑
χT19χT61 = j1/3(J2 − 115J − 358620).
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c hi m1 l remark
7
10

3
80 ,

1
10 ,

7
16 ,

3
5 ,

3
2 0 0 T1

49
10

1
5 ,

21
80 ,

1
2 ,

7
10 ,

17
16 35 6 T7, ?

77
10

33
80 ,

1
2 ,

3
5 ,

13
16 ,

11
10 66 6 T11, ?

91
10

39
80 ,

1
2 ,

11
16 ,

4
5 ,

13
10 143 6 T13, ?

119
10

1
2 ,

51
80 ,

7
10 ,

6
5 ,

23
16 221 6 T17

133
10

57
80 ,

9
10 ,

21
16 ,

7
5 ,

3
2 133 0 T19, (E7)2

161
10

4
5 ,

69
80 ,

17
16 ,

13
10 ,

3
2 207 6 T23

203
10

9
10 ,

87
80 ,

7
5 ,

3
2 ,

27
16 58 6 T29, ?

217
10

11
10 ,

93
80 ,

3
2 ,

25
16 ,

8
5 31 6 T31, ?

259
10

19
16 ,

6
5 ,

111
80 ,

3
2 ,

17
10 0 12 T37

287
10

3
2 ,

123
80 ,

8
5 ,

31
16 ,

21
10 0 6 T41

301
10

13
10 ,

3
2 ,

129
80 ,

9
5 ,

29
16 0 12 T43

Table 32. Hecke images Tp of M(5, 4) for all admissible p ≤ 43.

7.3 Type Msub(7, 6), tri-critical 3-states Potts model

Unitary minimal model M(7, 6) has central charge c = 6
7 and 15 primaries with conformal

weights hi = 0, 1
56 ,

1
21 ,

5
56 ,

1
7 ,

3
8 ,

10
21 ,

33
56 ,

5
7 ,

4
3 ,

85
56 ,

12
7 ,

23
8 ,

22
7 , 5. It is well-known a subset of the 15

primaries can form a new theory Msub(7, 6) describing the tri-critical 3-states Potts model,
also known as (D4, A6) theory, which has partition function [22]

Z =
∑

s=1,2,3
|χ1,s + χ5,s|2 + 2|χ3,s|2. (7.13)

Let us denote

χP0 = χ1,1 + χ5,1, χP1
7

= χ1,2 + χ5,2, χP5
7

= χ1,3 + χ5,3,

χP1
21

= χ3,3, χP10
21

= χ3,2, χP4
3

= χ3,1.
(7.14)

Note the three primaries in the second line have degeneracy two. The six characters have
the following Fourier expansion:

χP0 = q−
1
28 (1 + q2 + q3 + 2q4 + 3q5 + 5q6 + 6q7 + . . . ),

χP1
7

= q
3
28 (1 + q + q2 + 3q3 + 4q4 + 6q5 + 9q6 + 13q7 + . . . ),

χP5
7

= q
19
28 (1 + 2q + 3q2 + 4q3 + 7q4 + 9q5 + 14q6 + 19q7 + . . . ),

χP1
21

= q
1
84 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + . . . ),

χP10
21

= q
37
84 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + 14q7 + . . . ),

χP4
3

= q
109
84 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + . . . ).

(7.15)

– 54 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
2

a + −

1 1, 13, 71, 83 29, 41, 43, 55
25 5, 19, 65, 79 23, 37, 47, 61
121 11, 25, 59, 73 17, 31, 53, 67

Table 33. The classes of quadratic residue p2 ≡ a mod 84.

Clearly, the conductor N = 84. There exist in total six classes for the Hecke operation
Tp, each contains four p coprime to 84. We summarize in table 33 the classes of quadratic
residue p2 ≡ a mod 84. Again the ρ(σp) in the right column is the negative of the ρ(σp) in
the left. For each class, we compute the typical ρ(σp) matrices as ρ(σ1) = Id,

ρ(σ5) =



0 0 0 0 1 0
0 0 0 −1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 1 0 0 0 0


, ρ(σ11) =



0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0


. (7.16)

All Hecke images Tp can be obtained from these ρ(σp) matrices. We collect the relevant
information of Hecke images for all admissible p ≤ 30 in table 34.

Interestingly, we find the T13 Hecke image gives exactly the characters of (E6)2 WZW
theory which has Fourier expansion

χ2w0
0 = q−

13
28 (1 + 78q + 3159q2 + 44564q3 + 411372q4 + . . . ),

χw1+w0
13
21

= q
13
84 (27 + 2106q + 38961q2 + 411723q3 + 3172689q4 + . . . ),

χw2
6
7

= q
11
28 (78 + 3654q + 56862q2 + 549796q3 + 3997968q4 + . . . ),

χw3
25
21

= q
61
84 (351 + 9828q + 126009q2 + 1093716q3 + 7389603q4 + . . . ),

χw1+w6
9
7

= q
23
28 (650 + 15951q + 195858q2 + 1650961q3 + 10943478q4 + . . . ),

χ2w1
4
3

= q
73
84 (351 + 8073q + 97227q2 + 807651q3 + 5304663q4 + . . . ).

(7.17)

One can easily see the degeneracy is preserved upon Hecke operations from the affine
Dynkin diagram of Ê(1)

6 . Indeed, the characters with weights 13
21 ,

25
21 ,

4
3 have degeneracy

two, corresponding to E6 irreducible representations 27,27,351,351,351′,351′. The
degeneracy is transferred by the ρ(σ13) matrix.

7.4 Type (LY )1 ⊗ (LY )2

Consider the product theory Meff(5, 2) ⊗ Meff(7, 2) which has effective central charge
ceff = 2

5 + 4
7 = 34

35 and conformal weights heff = 0, 1
7 ,

1
5 ,

12
35 ,

3
7 ,

22
35 . It is easy to compute the
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c hi m1 l remark
6
7

1
21 ,

1
7 ,

10
21 ,

5
7 ,

4
3 0 0 T1

30
7

8
21 ,

4
7 ,

2
3 ,

5
7 ,

26
21 20 0 T5

66
7

11
21 ,

4
7 ,

2
3 ,

6
7 ,

26
21 154 6 T11, ?

78
7

13
21 ,

6
7 ,

25
21 ,

9
7 ,

4
3 78 0 T13, (E6)2

102
7

2
3 ,

17
21 ,

23
21 ,

8
7 ,

10
7 238 6 T17

114
7

5
7 ,

19
21 ,

22
21 ,

4
3 ,

11
7 171 6 T19

138
7

20
21 ,

23
21 ,

9
7 ,

10
7 ,

5
3 92 6 T23, ?

120
7

19
21 ,

25
21 ,

4
3 ,

11
7 ,

13
7 75 6 T25, ?

174
7

8
7 ,

29
21 ,

5
3 ,

12
7 ,

38
21 0 6 T29, ?

Table 34. Hecke images Tp of Msub(7, 6) for all admissible p ≤ 30. All weights with denominators
21 and 3 have degeneracy two.

a + −

1 1, 41, 139, 181, 239, 281, 379, 419 29, 71, 169, 209, 211, 251, 349, 391
121 11, 31, 109, 151, 269, 311, 389, 409 59, 101, 179, 199, 221, 241, 319, 361
169 13, 113, 127, 167, 253, 293, 307, 407 43, 83, 97, 197, 223, 323, 337, 377
289 17, 137, 143, 157, 263, 277, 283, 403 53, 67, 73, 193, 227, 347, 353, 367
361 19, 61, 79, 121, 299, 341, 359, 401 89, 131, 149, 191, 229, 271, 289, 331
109 23, 37, 103, 163, 257, 317, 383, 397 47, 107, 173, 187, 233, 247, 313, 373

Table 35. The classes of quadratic residue p2 ≡ a mod 420.

six characters to be

χ0 = q−
17
420 (1 + 2q + 4q2 + 6q3 + 10q4 + 15q5 + 24q6 + 34q7 + . . . ),

χ 1
7

= q
43
420 (1 + 2q + 3q2 + 5q3 + 9q4 + 13q5 + 20q6 + 29q7 + . . . ),

χ 1
5

= q
67
420 (1 + q + 3q2 + 4q3 + 7q4 + 10q5 + 16q6 + 22q7 + . . . ),

χ 12
35

= q
127
420 (1 + q + 2q2 + 4q3 + 6q4 + 8q5 + 14q6 + 19q7 + . . . ),

χ 3
7

= q
163
420 (1 + q + 2q2 + 3q3 + 6q4 + 8q5 + 13q6 + 17q7 + . . . ),

χ 22
35

= q
247
420 (1 + 2q2 + 2q3 + 4q4 + 5q5 + 9q6 + 11q7 + . . . ).

(7.18)

Clearly, the conductor N = 420. There exist 12 classes for the Hecke operation, each
containing 8 p coprime to 420. We summarize in table 35 the classes of quadratic residue
p2 ≡ a mod 420. The ρ(σp) matrices can be easily derived from those of (LY )1 and (LY )2.
We compute many Hecke images Tp of (LY )1 ⊗ (LY )2 theory and summarize the results
for p ≤ 40 in table 36. Interestingly, we find the T23 image gives exactly the characters of
the RCFT associated to the second largest Fischer group Fi23 given in [42]. The Fi23 is a
sporadic simple group of order 4089470473293004800. The Fi23 RCFT has central charge
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c hi m1 l remark
34
35

1
7 ,

1
5 ,

12
35 ,

3
7 ,

22
35 2 6 T1

374
35

4
7 ,

5
7 ,

27
35 ,

32
35 ,

6
5 220 6 T11, ?

442
35

4
7 ,

3
5 ,

6
7 ,

41
35 ,

51
35 208 6 T13

578
35

24
35 ,

29
35 ,

9
7 ,

7
5 ,

10
7 136 6 T17, ?

646
35

4
5 ,

33
35 ,

8
7 ,

53
35 ,

12
7 114 6 T19, ?

782
35

13
7 ,

9
7 ,

8
5 ,

51
35 ,

66
35 0 0 T23, F i23

986
35

10
7 ,

9
5 ,

68
35 ,

15
7 ,

78
35 0 0 T29, ?

1054
35

9
7 ,

10
7 ,

52
35 ,

57
35 ,

11
5 0 12 T31, ?

1258
35

59
35 ,

13
7 ,

79
35 ,

16
7 ,

12
5 0 6 T37

Table 36. Hecke images of (LY )1 ⊗ (LY )2 for all admissible p ≤ 40.

c = 782/35 and weights hi = 0, 9
7 ,

51
35 ,

8
5 ,

13
7 ,

66
35 . The characters were computed in [42] as

χ0 = q−
391
420 (1 + 30889q2 + 2546974q3 + 85135558q4 + · · · ),

χ 9
7

= q
149
420 (782 + 280347q + 16687166q2 + 470844155q3 + · · · ),

χ 51
35

= q
221
420 (3588 + 792948q + 39982878q2 + 1031142072q3 + · · · ),

χ 8
5

= q
281
420 (5083 + 817972q + 36460359q2 + 877212478q3 + · · · ),

χ 13
7

= q
389
420 (25806 + 2622828q + 96358822q2 + 2067752532q3 + · · · ),

χ 66
35

= q
401
420 (60996 + 5926778q + 213547709q2 + 4527955950q3 + · · · ).

(7.19)

We checked these are exactly the same with the Hecke image T23 of (LY )1⊗ (LY )2. Besides,
four classes in the MTC classification in table 4 of [4] are related to our type (LY )1⊗ (LY )2.
The T23 Hecke image we discussed belongs to the MTC class 6−58/35, while its dual w.r.t.
c = 24, i.e., the RCFT associated to the conjugacy class D3A of the Monster group belongs
to the MTC class 658/35. Besides, the Hecke image T37 belongs to the MTC class 6138/35,
while its dual w.r.t. c = 8k belongs to the MTC class 6−138/35.

7.5 Type (LY )⊗2
2

Consider the double product of (LY )2. Such product theory has central charge c = 8/7
and conformal weights with degeneracy: hi = 0, (1

7)2,
2
7 , (

3
7)2, (4

7)2,
6
7 . It is easy to compute

the six distinct characters to be
χ0 = q−

1
21 (1 + 2q + 5q2 + 8q3 + 14q4 + 22q5 + 36q6 + 54q7 + . . . ),

χ 1
7

= q
2
21 (1 + 2q + 4q2 + 7q3 + 12q4 + 19q5 + 31q6 + 46q7 + . . . ),

χ 2
7

= q
5
21 (1 + 2q + 3q2 + 6q3 + 11q4 + 16q5 + 26q6 + 40q7 + . . . ),

χ 3
7

= q
8
21 (1 + q + 3q2 + 4q3 + 8q4 + 12q5 + 20q6 + 28q7 + . . . ),

χ 4
7

= q
11
21 (1 + q + 2q2 + 4q3 + 7q4 + 10q5 + 17q6 + 24q7 + . . . ),

χ 6
7

= q
17
21 (1 + 2q2 + 2q3 + 5q4 + 6q5 + 11q6 + 14q7 + . . . ).

(7.20)
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8
7

1
7 ,

2
7 ,

3
7 ,

4
7 ,

6
7 2 T1

160
7

8
7 ,

10
7 ,

11
7 ,

12
7 ,

13
7 40 T20 42 −

16
7

1
7 ,

2
7 ,

4
7 ,

5
7 ,

6
7 0 T2, D5A

152
7

8
7 ,

9
7 ,

10
7 ,

12
7 ,

13
7 0 T19, HN 0 0

32
7

2
7 ,

3
7 ,

4
7 ,

5
7 ,

8
7 24 T4

136
7

6
7 ,

9
7 ,

10
7 ,

11
7 ,

12
7 102 T17 126 −

40
7

2
7 ,

3
7 ,

5
7 ,

6
7 ,

8
7 10 T5

128
7

6
7 ,

8
7 ,

9
7 ,

11
7 ,

12
7 32 T16 42 −

64
7

3
7 ,

4
7 ,

6
7 ,

8
7 ,

9
7 176 T8

104
7

5
7 ,

6
7 ,

8
7 ,

10
7 ,

11
7 286 T13 462 −

80
7

4
7 ,

5
7 ,

6
7 ,

9
7 ,

10
7 160 T10

88
7

4
7 ,

5
7 ,

8
7 ,

9
7 ,

10
7 176 T11 336 −

Table 37. Hecke images Tp of (LY )⊗2
2 . All images have l = 3 MLDEs. The degeneracies are omitted.

Clearly, the conductor N = 21. The S-matrix can be easily deduced from the one of
(LY )2. We find there exist three classes for the Hecke operation of (LY )⊗2

2 : for p =
1, 8, 13, 20 mod 21, i.e., p2 ≡ 1 mod 21, ρ(σp) = Id, while for p2 ≡ 4 and 16 mod 21,

ρ(σ2,5,16,19) =



0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 −1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0


, ρ(σ4,10,11,17) =



0 0 0 0 0 1
0 0 0 −1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 1 0 0 0


. (7.21)

We then compute all the Hecke images Tp for admissible p < 21 and summarize the results
in c = 24 pairs in table 37. Note the sums of spin-1 currents m1 +m̃1 for all pairs in table 37
are divisible by the conductor 21.

We find the T19 Hecke image of (LY )⊗2
2 describes the RCFT associated to the Harada-

Norton group HN defined in [42]. The Harada-Norton group is a simple sporadic simple
group of order 273030912000000. The HN RCFT has central charge c = 152/7 and weights
with degeneracy hi = 0, (8

7)2,
9
7 ,

10
7 , (

12
7 )2, (13

7 )2. We compute the T19 images of (LY )⊗2
2 as

χ0 = q−
19
21 (1 + 18316q2 + 1360096q3 + 42393826q4 + · · · ),

χ 8
7

= q
5
21 (133 + 65968q + 4172476q2 + 119360584q3 + · · · ),

χ 12
7

= q
17
21 (8778 + 1003408q + 37866696q2 + · · · ),

χ 9
7

= q
8
21 (760 + 231705q + 12595936q2 + 333082540q3 + · · · ),

χ 13
7

= q
20
21 (35112 + 3184818q + 108781232q2 + · · · ),

χ 10
7

= q
11
21 (3344 + 680504q + 32364068q2 + 795272512q3 + · · · ).

(7.22)

These are exactly the same characters computed in (3.115) of [42]. The degeneracy is also
matched. Besides, we find the T2 Hecke image describes the D5A conjugacy class of the
Monster group. The D5A RCFT has an explicit construction in ([64], Theorem 3.19). We
checked the characters there are exactly the same with our T2 Hecke image.
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9
10

1
16 ,

1
5 ,

21
80 ,

1
2 ,

7
10 1 6 T1

27
10

1
10 ,

3
16 ,

3
5 ,

63
80 ,

3
2 6 0 T3, ?

63
10

2
5 ,

7
16 ,

1
2 ,

67
80 ,

9
10 35 6 T7, 6B−17/10, (G2)1 ⊗ (B3)1

81
10

3
10 ,

29
80 ,

1
2 ,

9
16 ,

4
5 117 12 T9, ?

99
10

1
2 ,

11
16 ,

7
10 ,

71
80 ,

6
5 165 6 T11, ?

117
10

1
2 ,

3
5 ,

13
16 ,

11
10 ,

113
80 130 6 T13, 6B37/10, (F4)1 ⊗ (B6)1

153
10

9
10 ,

17
16 ,

7
5 ,

117
80 ,

3
2 153 0 T17, ?

171
10

4
5 ,

79
80 ,

19
16 ,

13
10 ,

3
2 190 6 T19

Table 38. Hecke images Tp of (LY )1 ⊗ Ising for all admissible p < 20.

7.6 Type (LY )1 ⊗ Ising

Consider product theory (LY )1 ⊗ Ising which has central charge c = 2
5 + 1

2 = 9
10 and

conformal weights hi = 0, 1
16 ,

1
5 ,

21
80 ,

1
2 ,

7
10 . The conductor N = 80. We compute the Hecke

images Tp for all admissible p < 20 and summarize relevant information in table 38. The
Hecke images of type (LY )1 ⊗ Ising contain some unitary theories. For example, the
Hecke image T7 belongs to MTC class 6B−17/10 = 2B14/5 ⊗ 3B7/2 in table III of [50] which is
represented by WZW (G2)1 ⊗ (B3)1, while the Hecke image T13 belongs to MTC class
637/10 = 2B−14/5⊗ 3B−3/2 which is represented by WZW (F4)1⊗ (B6)1. Note the T19 image is
not the naive guess (E7 1

2
)1 ⊗ (B9)1. It is interesting to consider whether it can be realized

as a supersymmetric theory.

7.7 Type Ising⊗2

Consider the double product of critical Ising model M4,3. Such theory has central charge 1
and nine primaries with conformal weights and degeneracy: hi = 0, ( 1

16)2,
1
8 , (

1
2)2, ( 9

16)2, 1.
This theory is also known as the Z2 orbifold of the c = 1 U(1)2 theory, see e.g. [22]. The
conductor N = 48. Let us compute the Hecke images and bilinear relations of character
of Ising⊗2 for full nine characters without degeneracy. The nine primaries can be marked
by (0, 0)1, (0, 1

2)2, (0, 1
16)3, (1

2 , 0)4, (1
2 ,

1
2)5, (1

2 ,
1
16)6, ( 1

16 , 0)7, ( 1
16 ,

1
2)8, ( 1

16 ,
1
16)9. We compute

all Hecke images Tp for admissible p < 48 and list the results for p < 24 in table 39. The
theories in the right side of table 39 may be supersymmetric theories owing to the presence
of weight 3/2 primaries. Notably it was found in [42] section 3.2.8 that the T23 Hecke
image of Ising⊗2 gives exactly the characters of RCFT associated to the second Conway
group Co2, while Ising⊗2 itself is associated to the conjugacy class 2B of the Monster group.
We further find the pair (T5,T19) forms a c = 24 theory in Schellekens’ list No.25, while
(T7,T17) forms a c = 24 theory in Schellekens’ list No.39. For example, the T17 image
describes a sub-theory of WZW (D6)2 ⊗ (C4)1.

We find the characters of all four pairs w.r.t. c = 24 in table 39 satisfy the following
bilinear relation ∑

χTp ·M · χT24−p = J +m1 + m̃1, (7.23)
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2
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1 1
16 ,

1
8 ,

1
2 ,

9
16 , 1 0 T1, D2B 23 1, 23

16 ,
3
2 ,

15
8 ,

31
16 0 T23, 2.21+22.Co2 0

5 5
16 ,

1
2 ,

5
8 ,

13
16 , 1 20 T5, (C2)⊗2

1 19 1, 19
16 ,

11
8 ,

3
2 ,

27
16 76 T19 96

7 7
16 ,

1
2 ,

7
8 ,

15
16 , 1 42 T7, (B3)⊗2

1 17 1, 17
16 ,

9
8 ,

3
2 ,

25
16 102 T17 144

11 1
2 ,

11
16 , 1,

19
16 ,

11
8 110 T11, (B5)⊗2

1 13 5
8 ,

13
16 , 1,

21
16 ,

3
2 130 T13 240

Table 39. Hecke images Tp of Ising⊗2 for p < 24. All theories have l = 3 MLDE. All weights with
denominators 16 and 2 have degeneracy two.

where all nonzero elements of M are Mii = 1, i = 1, 2, 4, 5, 7, 8, 9 and M36 = M63 = 1. If
directly taking M to be an identity matrix, the bilinear relation still gives J +N but the
N could be different from m1 + m̃1.

8 RCFTs with seven characters

RCFTs with seven characters are not yet classified or studied from MLDEs. Nevertheless,
the rank 7 MTC with N ij

k ≤ 1 has been classified in [50], see table IV therein. Here we
choose four interesting theories with seven characters to discuss their Hecke images and
cosets which are U(1)6, Meff(8, 3), (A1)⊗6

1 and (LY )6. The first three types could involve
many interesting fermionic or supersymmetric RCFTs.

8.1 Type U(1)6

Consider the compact Boson theory U(1)6 which has c = 1 and conformal weights with
degeneracy hi = 0, ( 1

24)2, (1
6)2, (3

8)2, (2
3)2, (25

24)2,
3
2 . This theory has a non-anomalous Z2

symmetry, which can be fermionized to give a supersymmetric RCFT [14]. The seven
characters are given as follows,

χ0 = q−
1
24 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 13q6 + 17q7 + · · · ),

χ1/24 = q0(1 + q + 2q2 + 3q3 + 5q4 + 8q5 + 12q6 + 18q7 + · · · ),

χ1/6 = q
1
8 (1 + q + 2q2 + 3q3 + 6q4 + 8q5 + 13q6 + 18q7 + · · · ),

χ3/8 = q
1
3 (1 + q + 2q2 + 4q3 + 6q4 + 9q5 + 14q6 + 20q7 + · · · ),

χ2/3 = q
5
8 (1 + q + 3q2 + 4q3 + 7q4 + 10q5 + 16q6 + 22q7 + · · · ),

χ25/24 = q(1 + 2q + 3q2 + 5q3 + 8q4 + 12q5 + 18q6 + 26q7 + · · · ),

χ3/2 = q
35
24 (2 + 2q + 4q2 + 6q3 + 10q4 + 14q5 + 22q6 + 30q7 + · · · ).

(8.1)

Note that χ1/24 = χ25/24+1, which signifies the unbroken supersymmetry. This phenomenon
also happens for M(8, 3) and (A1)⊗6

1 theories. The conductor of U(1)6 is N = 24. The
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2
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1 1
24 ,

1
6 ,

3
8 ,

2
3 ,

25
24 ,

3
2 1 0 T1 23 23

24 ,
4
3 ,

3
2 ,

13
8 ,

11
6 ,

47
24 23 6 T23

5 5
24 ,

1
3 ,

1
2 ,

5
6 ,

7
8 ,

29
24 25 6 T5, ? 19 19

24 ,
9
8 ,

7
6 ,

3
2 ,

5
3 ,

43
24 95 6 T19, ?

7 7
24 ,

1
2 ,

5
8 ,

2
3 ,

7
6 ,

31
24 49 6 T7, ? 17 17

24 ,
5
6 ,

4
3 ,

11
8 ,

3
2 ,

41
24 119 6 T17, ?

11 11
24 ,

5
6 ,

9
8 ,

4
3 ,

35
24 ,

3
2 143 0 T11, (A11)1 13 13

24 ,
2
3 ,

7
8 ,

7
6 ,

3
2 ,

37
24 169 6 T13

Table 40. Hecke images Tp of U(1)6 theory. All weights with denominators 24, 8, 6 and 3 have
degeneracy two.

S-matrix is

ρ(S) = 1
2
√

3



1 2 2 2 2 2 1
1
√

3 1 0 −1 −
√

3 −1
1 1 −1 −2 −1 1 1
1 0 −2 0 2 0 −1
1 −1 −1 2 −1 −1 1
1 −
√

3 1 0 −1
√

3 −1
1 −2 2 −2 2 −2 1


. (8.2)

Consider the Hecke images Tp of U(1)6. We find for p = 1, 5, 19, 23 mod 24, ρ(σp) = Id,
while for p = 7, 11, 13, 17 mod 24, ρ(σp) has non-vanishing elements (11), (33), (44), (55),
(77), (26), (62) as −1. We compute all admissible Hecke images for p < 24 and summarize
the results in table 40. In particular, we find the T11 images gives exactly the characters
of (A11)1 WZW model. We remark that (A11)1 can be fermionized into a supersymmetric
RCFT [14]. We checked the direct bilinear products of the characters of pairs (T1,T23) and
(T11,T13) give J + 72 and J + 648 respectively. However, the bilinear products of the quasi-
characters of pairs (T5,T19) and (T7,T17) are more complicated, and require non-integral
intermediate matrices. This phenomenon can happen when two characters of the initial
theory differ only by a constant. We discuss more about this in the next subsection.

8.2 Type Meff(8, 3)

Non-unitary minimal model M(8, 3) has central charge c = −21
4 and conformal weights

hi = −1
4 ,−

7
32 ,−

3
32 , 0,

1
4 ,

25
32 ,

3
2 . With weight- 3

2 primary, this becomes a supersymmetric
theory. The effective theory Meff(8, 3) has ceff = 3

4 and heff
i = 0, 1

32 ,
5
32 ,

1
4 ,

1
2 ,

33
32 ,

7
4 . The seven

characters have the following Fourier expansion

χ0 = q−
1
32 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + . . . ),

χ 1
32

= q0(1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 + . . . ),

χ 5
32

= q
1
8 (1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 9q6 + 12q7 + . . . ),

χ 1
4

= q
7
32 (1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + . . . ),

χ 1
2

= q
15
32 (1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 12q7 + . . . ),

χ 33
32

= q(1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 8q6 + 11q7 + . . . ),

χ 7
4

= q
55
32 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 7q7 + . . . ).

(8.3)

– 61 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
2

c hi m1 l remark c̃ h̃i m̃1 l′ remark +
3
4

1
32 ,

5
32 ,

1
4 ,

1
2 ,

33
32 ,

7
4 1 0 T1

93
4

31
32 ,

5
4 ,

3
2 ,

7
4 ,

59
32 ,

63
32 31 0 T31 32

9
4

3
32 ,

1
4 ,

15
32 ,

3
4 ,

35
32 ,

3
2 3 0 (A1)6,T3

87
4

29
32 ,

5
4 ,

3
2 ,

49
32 ,

7
4 ,

61
32 29 6 T29 32

15
4

5
32 ,

1
4 ,

1
2 ,

3
4 ,

25
32 ,

37
32 10 6 T5, ?

81
4

27
32 ,

27
32 ,

39
32 ,

5
4 ,

3
2 ,

7
4 54 12 T27, ? 64

21
4

7
32 ,

1
4 ,

1
2 ,

3
4 ,

35
32 ,

39
32 42 6 T7, ?

75
4

25
32 ,

25
32 ,

29
32 ,

5
4 ,

3
2 ,

7
4 150 12 T25, ? 192

27
4

9
32 ,

9
32 ,

13
32 ,

1
2 ,

3
4 ,

5
4 81 12 T9, ?

69
4

23
32 ,

5
4 ,

3
2 ,

51
32 ,

55
32 ,

7
4 207 0 T23, ? 288

33
4

11
32 ,

1
2 ,

23
32 ,

3
4 ,

5
4 ,

43
32 44 6 T11, ?

63
4

21
32 ,

3
4 ,

5
4 ,

41
32 ,

3
2 ,

53
32 84 6 T21, ? 128

39
4

13
32 ,

3
4 ,

33
32 ,

5
4 ,

45
32 ,

3
2 78 0 (C6)1,T13

57
4

19
32 ,

3
4 ,

31
32 ,

5
4 ,

3
2 ,

51
32 114 6 T19 192

45
4

15
32 ,

1
2 ,

3
4 ,

5
4 ,

43
32 ,

47
32 225 6 T15

51
4

17
32 ,

21
32 ,

3
4 ,

5
4 ,

3
2 ,

49
32 255 6 T17 480

Table 41. Hecke images Tp of Meff(8, 3). Only c = 9
4 ,

39
4 ,

57
4 ,

87
4 theories are unitary. The + is short

for m1 + m̃1.

Note χ1/32 = χ33/32 + 1, which often happens for supersymmetric theory. Clearly the
conductor N = 32. The S-matrix of Meff(8, 3) is

ρ(S) = 1
2



cos
(
π
8
) 1√

2 1 sin
(
π
8
)

cos
(
π
8
) 1√

2 sin
(
π
8
)

1√
2 1 0 1√

2 − 1√
2 −1 − 1√

2
1 0 0 −1 −1 0 1

sin
(
π
8
) 1√

2 −1 − cos
(
π
8
)

sin
(
π
8
) 1√

2 − cos
(
π
8
)

cos
(
π
8
)
− 1√

2 −1 sin
(
π
8
)

cos
(
π
8
)
− 1√

2 sin
(
π
8
)

1√
2 −1 0 1√

2 − 1√
2 1 − 1√

2
sin
(
π
8
)
− 1√

2 1 − cos
(
π
8
)

sin
(
π
8
)
− 1√

2 − cos
(
π
8
)


. (8.4)

Consider the Hecke images ofMeff(8, 3). There exist four classes for the Hecke operation,
see appendix D.2.7 in [60]. We compute the Hecke images Tp for all admissible p < 32
and summarize the results in c = 24 pairs in table 41. There are eight pairs w.r.t. c = 24
which satisfy p+ p′ = 32. The T3 and T13 images describe exactly the WZW (A1)6 and
(C6)1 theories [60], which are both renowned supersymmetric theories. Besides, we find
the pair (T13,T19) form a c = 24 theory in the Schellekens’ list No.48, where T19 describe
a subtheory of (C6)1 ⊗ (B4)1. Note the sums of spin-1 currents m1 + m̃1 for all pairs in
table 41 are divisible by the conductor 32.

We find the bilinear relations of characters w.r.t. c = 24 are complicated for most of
the pairs. Due to the relation χ1/32 = χ33/32 + 1 of Meff(8, 3), the intermediate M matrices
could have fractions for the (22), (26), (62), (66) elements. Nevertheless the summation of
the four elements is still 2. For example, for the four pairs with ordinary characters, we
determine the following M matrices and bilinear relations:

∑
χT1 ·M · χT31 = J + 32(1 + a), M =

(
a 1− a

1− a a

)
. (8.5)

∑
χT3 ·M · χT29 = J + 87a, M =

(
a− 32

87
30
29 − a

4
3 − a a

)
. (8.6)
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−164
5 −{

7
5 ,

4
3 ,

6
5 , 1,

11
15 ,

2
5} 0 0 T−41

284
5

12
5 ,

41
15 , 3,

16
5 ,

10
3 ,

17
5 0 12 T71 0

4
5

1
15 ,

1
5 ,

2
5 ,

2
3 , 1,

7
5 1 0 T1

116
5 1, 4

3 ,
8
5 ,

8
5 ,

9
5 ,

29
15 29 6 T29 30

28
5

2
5 ,

7
15 ,

2
3 ,

4
5 ,

4
5 , 1 42 6 T7

92
5 1, 6

5 ,
6
5 ,

4
3 ,

23
15 ,

8
5 138 6 T23 180

44
5

2
5 ,

11
15 , 1,

6
5 ,

4
3 ,

7
5 66 0 T11

76
5

2
3 ,

4
5 , 1,

19
15 ,

8
5 ,

8
5 114 6 T19 180

52
5

3
5 ,

2
3 ,

13
15 , 1,

6
5 ,

6
5 52 6 T13, ?

68
5

4
5 ,

4
5 , 1,

17
15 ,

4
3 ,

7
5 68 6 T17, ? 120

Table 42. Hecke images Tp of (LY )6. All theories here are non-unitary.

∑
χT13 ·M · χT19 = J + 247a+ 160, M =

(
a− 32

247
20
19 − a

14
13 − a a

)
. (8.7)

∑
χT15 ·M · χT17 = J + 270a+ 354, M =

(
a− 7

15 1− a
22
15 − a a

)
. (8.8)

HereM matrices are short for just the (22), (26), (62), (66) elements. All other non-vanishing
elements are (11), (33), (44), (55), (77) as 1.

8.3 Type (LY )6

Non-unitary minimal model M(15, 2) has central charge c = −164
5 and conformal weights

hi = −7
5 ,−

4
3 ,−

6
5 ,−1,−11

15 ,−
2
5 , 0. While the effective theory Meff(15, 2), i.e., (LY )6 has

ceff = 4
5 and heff = 0, 1

15 ,
1
5 ,

2
5 ,

2
3 , 1,

7
5 . The conductor N = 30. The ρ(σp) matrices for various

classes of the Hecke operation can be found in the appendix D.2.4 of [60]. We compute all
admissible Hecke images Tp for p < 30 and summarize the relevant information in c = 24
pairs in table 42. We can see the sums of spin-1 currents m1 + m̃1 for all pairs in table 42
are divisible by the conductor 30. We also study the dual theory of original M(15, 2) w.r.t.
c = 24 and find it can be realized as Hecke image T71(LY )6. On the other hand, the original
M(15, 2) can be formally denoted as T−41(LY )6.

8.4 Type (A1)⊗6
1

The product theory (A1)⊗6
1 has central charge c = 6 and weights hi = 0, 1

4 ,
1
2 ,

3
4 , 1,

5
4 ,

3
2 and

degeneracy 1, 6, 15, 20, 15, 6, 1 respectively. This theory has been discussed in [65] and is
related to the non-linear sigma model with target space being the K3 surface. We record
the first few terms of the characters,

χ0 = q−
1
4 (1 + 18q + 159q2 + 942q3 + 4323q4 + 16722q5 + · · · ),

χ1/4 = 2 + 32q + 256q2 + 1408q3 + 6144q4 + 22976q5 + · · · ,

χ1/2 = q
1
4 (4 + 56q + 404q2 + 2072q3 + 8648q4 + 31360q5 + · · · ),

χ3/4 = q
1
2 (8 + 96q + 624q2 + 3008q3 + 12072q4 + 42528q5 + · · · ),

χ1 = q
3
4 (16 + 160q + 944q2 + 4320q3 + 16720q4 + 57312q5 + · · · ),

χ5/4 = q(32 + 256q + 1408q2 + 6144q3 + 22976q4 + 76800q5 + · · · ),

χ3/2 = q
5
4 (64 + 384q + 2112q2 + 8576q3 + 31488q4 + 102144q5 + · · · ).

(8.9)
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c hi m1 l remark c̃ h̃i m̃1 l′ remark

6 1
4 ,

1
2 ,

3
4 , 1,

5
4 ,

3
2 18 0 T1 18 3

4 , 1,
5
4 ,

3
2 ,

3
2 ,

7
4 54 6 T3

Table 43. Hecke images Tp of (A1)⊗6
1 . The degeneracies are omitted.

Clearly the conductor N = 4. Note χ1/4 = χ5/4 + 1. We find for all p = 2k + 1, k ∈ Z,
ρ(σp) = Id. We summarize the relevant information of the Hecke images for p < 4 in table 43.
The (A1)⊗6

1 model form a c = 24 pair with its T3 image, which directly has conformal
weights 0, 3

4 ,
3
2 ,

5
4 , 1,

7
4 ,

3
2 and multiplicities 1, 8, 1216, 288, 48, 4224, 1152. The direct bilinear

product of their characters gives J + 168. We also compute many higher T2k+1 Hecke
images. For example, T5 and T7 images have good characters and l = 12 MLDEs.

9 Summary and outlook

The results of this work are twofold. On the one hand, we study the Hecke images of 2d
RCFTs with up to seven characters beyond [5, 6, 60] and identify a large number of new
Hecke relations among 2d RCFTs. For example, we find the Hecke image interpretations for
WZW models (E6)2, (E7)2, (E7 1

2
)2 and RCFTs associated to the second largest Fisher group

Fi23 and the Harada-Norton group HN . These should be interesting from the view point
of both number theory and representation theory. On the other hand, we give an account of
the holomorphic modular bootstrap results in [16] from the viewpoint of Hecke relations and
c = 8k coset relations. We find all theories bootstrapped in [16] can be elegantly generated
by these two operations from just a handful of initial theories. This new understanding also
allows us to neatly determine the degeneracies and multiplicities of all theories bootstrapped
in [16]. We also introduce the concept of generalized Hecke relation which sometimes allows
Tp operation when p is not coprime to the conductor N . We have observed this type of
new relations exist in many examples. However, our current definition is still ad hoc. It
would be certainly desirable to find a direct definition of generalized Hecke operation.

Furthermore, bootstrap approach is also used to study 2d fermionic RCFTs recently
in [14, 15]. It is interesting to generalize the philosophy of the current work to the fermionic
cases. In fact, we can define the fermionic Hecke operator which map the characters of
a fermionic RCFT to the characters of another fermionic RCFT. As a simple example,
let us consider the tri-critical Ising model M(5, 4) and WZW model (E7)2 discussed in
section 7.2, both of which are well-known to preserve N = 1 supersymmetry, but have
Ramond ground state breaking supersymmetry spontaneously [63]. We have declared the
bosonic characters of the two theories satisfy an T19 Hecke relation, which directly maps
the M(5, 4) weights 0, 3

80 ,
1
10 ,

7
16 ,

3
5 ,

3
2 to the (E7)2 weights in the order of 3

2 ,
57
80 ,

7
5 ,

21
16 ,

9
10 , 0.

The fermionic characters of supersymmetric minimal model SM(5, 3) are defined from the
bosonic characters of M(5, 4) by

fNS
0 = χ0 + χ 3

2
, fNS

1 = χ 1
10

+ χ 3
5
,

f ÑS
0 = χ0 − χ 3

2
, f ÑS

1 = χ 1
10
− χ 3

5
,

fR
0 =

√
2χ 3

80
, fR

1 =
√

2χ 7
16
.

(9.1)
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The WZW (E7)2 theory has fermionic characters defined by

f
(E7)2,NS
0 = χ

(E7)2
0 + χ

(E7)2
3
2

, f
(E7)2,NS
1 = χ

(E7)2
9
10

+ χ
(E7)2
7
5

,

f
(E7)2,ÑS
0 = χ

(E7)2
0 − χ(E7)2

3
2

, f
(E7)2,ÑS
1 = χ

(E7)2
9
10

− χ(E7)2
7
5

f̃
(E7)2,R
0 =

√
2χ(E7)2

21
16

, f̃
(E7)2,R
1 =

√
2χ(E7)2

57
80

.

(9.2)

Noticing the ρ(σ19) = −ρ(σ11) matrix in section 7.2, we observe that the fact ρ(σ19) matrix
has elements ρ16 = ρ61 = 1 and ρ35 = ρ53 = 1 perfectly allows an uniform transformation
of NS characters from (fNS

0 , fNS
1 ) to (f (E7)2,NS

0 , f
(E7)2,NS
1 ). We call such transformation

as fermionic Hecke relation TF
19. Similar relations hold for ÑS and R characters as well.

Although in this case, both bosonic and fermionic theories are quite clear, for some
potential NS characters bootstrapped from Γ(2) MLDEs, e.g., in [14, 15], there could be
many bosonic characters which may not be directly known for all of them. Therefore,
we suggest that for fermionic theories, it could be more convenient to discuss fermionic
Hecke relations directly. We plan to systematically study the fermionic Hecke relations
among fermionic/supersymmetric RCFTs in the future including their connection with the
classification of 2 + 1 dimensional fermionic topological orders [66].

At the physics level, it would be very interesting to understand if there is a physical
meaning underlying the Hecke operator, and a possible answer may lead to an explanation
of this huge zoo of Hecke relations. For example, it is well-known that 2d WZW RCFTs
can be realized as the boundary theories of 3d Chern-Simons theory. It is intriguing to
consider what the Hecke relations imply in 3d. Meanwhile, we find a lot of generalized coset
relations with respect to single and modular invariant characters. For many of them it still
remains to be understood whether those characters can be uplifted to holomorphic CFTs in
a certain sense.
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