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Compactness by coarse-graining

in long-range lattice systems

Andrea Braides
Dipartimento di Matematica, Università di Roma Tor Vergata

via della ricerca scientifica 1, 00133 Roma, Italy

Margherita Solci
DADU, Università di Sassari

piazza Duomo 6, 07041 Alghero (SS), Italy

Abstract. We consider energies on a periodic set L of the form
∑

i,j∈L a
ε
ij |ui − uj |,

defined on spin functions ui ∈ {0, 1}, and we suppose that the typical range of the
interactions is Rε with Rε → +∞, i.e., if |i− j| ≤ Rε then aεij ≥ c > 0. In a discrete-to-
continuum analysis, we prove that the overall behaviour as ε→ 0 of such functionals is
that of an interfacial energy. The proof is performed using a coarse-graining procedure
which associates to scaled functions defined on εL with equibounded energy a family
of sets with equibounded perimeter. This agrees with the case of equibounded Rε and
can be seen as an extension of coerciveness result for short-range interactions, but is
different from that of other long-range interaction energies, whose limit exits the class
of surface energies. A computation of the limit energy is performed in the case L = Zd.
Keywords. Homogenization, lattice systems, long-range interactions, interfacial ener-
gies, coarse graining

MSC Classifications. 49J45, 49Q20, 35B27, 82B20

1 Introduction

In this paper we give a contribution to the general problem of the asymptotic analysis
of systems of lattice interactions of the form∑

i,j∈L
aεij |ui − uj | (1)

where L is a periodic lattice in Rd, ε > 0 is a parameter tending to 0, and aεij are
non-negative coefficients. These functionals depend on (scalar) ‘spin functions’ with

1



ui ∈ {0, 1}, somehow related to ferromagnetic energies in the terminology of Statistical
Mechanics (where usually ui ∈ {−1, 1}).

We investigate coerciveness properties related to such energies in a discrete-to-
continuum process, where the values uεi are identified as the values uε(εi) of a function
defined on εL. In this way a continuum limit of uε can be defined as a limit of their
piecewise-constant interpolations; e.g., defined as uε(x) = uεi if the point of minimum
distance of εL from x is εi. Coerciveness is established by exhibiting scales sε such
that if uεi are such that ∑

i,j∈L
aεij |uεi − uεj | ≤ sε, (2)

then the interpolations uε are precompact in some topology and their limit points are
in general non trivial. This can be expressed by proving that the domain of the Γ-limit
of the scaled energies

1

sε

∑
i,j∈L

aεij |uεi − uεj | (3)

in that topology is not trivial.
The simplest case that has been previously treated [16, 1] is nearest-neighbour

interactions; i.e, when aεij are strictly positive only when i, j are nearest neighbours

(n.n. for short) in the Delaunay triangulation of L (e.g., |i− j| = 1 if L = Zd). In this
case choosing sε = ε1−d gives that the scaled energies∑

i,j∈L i,j n.n.

εd−1aεij |uεi − uεj | (4)

can be directly seen as a (possibly anisotropic) perimeter of the sets {x : uε(x) =
1} defined through the piecewise-constant interpolation of uε from the scaled lattice
εL. Then, the compactness properties of sets of equibounded perimeter ensure the
coerciveness in L1

loc(Rd) and the limits are characteristic functions. Moreover, the Γ-
limit of the energies can be described by an energy defined on sets of finite perimeter
A, which, in the simplest homogenous case, takes the form∫

∂A
ϕ(ν)dHd−1. (5)

The same scaling works for finite-range interactions; i.e., when aεij is 0 if |i − j| > R
for some R, even though the energies in that case must be interpreted as a non-local
perimeter [14]. The finiteness of the range of the interactions can be weakened to a
decay condition that can be quantified as

sup
{ ∑
j∈L\{i}

aεij |j − i| : i ∈ L, ε > 0
}
< +∞, (6)
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even though the limit energies may have a non-local part if the ‘tails’ of these series are
not uniformly negligible [2]. We note that such analysis is valid beyond pair potentials
and generalizes to classes of many-point interactions (see [12]).

If the decay assumptions (6) do not hold then the ‘natural’ scaling for the energies
may be different from the ‘surface scaling’ εd−1, and we might exit the class of interfacial
energies. An extreme case is that of ‘dense graphs’, which is better stated in a bounded
domain; i.e., when considering energies∑

i,j∈L∩ 1
ε
Q

aεij |ui − uj |, (7)

with Q a cube in Rd, and suppose that aεij ≥ c > 0 for (a positive percentage of) all

interactions. In that case the scaling is sε = ε−2d, and the limit behaviour is described
by a more abstract limit functional called a ‘graphon’ energy [3, 5, 20, 21], which can
be viewed as a relaxation of a double integral on (0, 1) of the form∫

(0,1)×(0,1)
W (x, y)|v(x)− v(y)| dx dy (8)

defined on BV ((0, 1); {0, 1}) after a complex and rather abstract relabeling procedure
and identification of functions defined on Q with functions defined on (0, 1) (see [9]).
For sparse graphs (i.e., graphs which are not dense according to the definition above)
and interactions not satisfying the decay conditions (6), the correct scaling, the relative
convergence and the form of the Γ-limit is a complex open problem. In [8] an example is
given of one-dimensional energies with range Rε = 1/

√
ε such that a non-trivial Γ-limit

exists for sε = 1/
√
ε with respect to the L∞-weak∗ convergence, but it is defined on all

functions of bounded variation with values in [0, 1] (and not only those with values in
{0, 1}). In that example a crucial issue is the topology of the graph of the connections
where aεij 6= 0.

In this paper we consider an intermediate case; i.e., when the decay condition
described above does not hold, and aεij ≥ c > 0 when |i− j| ≤ Rε with Rε >> 1 but the
topology of the interactions within that range is that of a ‘dense’ graph. We further
make the assumption εRε <<1 so that the discrete-to-continuum process makes sense.
We note that this latter condition is not restrictive upon a redefinition of ε in terms of

Rε; e.g. taking R
−1/2
ε in the place of ε. We keep the dependence of our system on Rε

and ε separate since these parameters may be defined independently in applications.
Under these conditions we have

sε =
Rd+1
ε

εd−1
,

and with this scaling functions of equi-bounded energy interpolated on the lattice εL
converge to a characteristic function of a set of finite perimeter. The main argument
for obtaining this result is by coarse-graining. Namely, we average the values of uε
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for interaction on cubes with side length of order Rε, so that we can think of those
averages as labelled on εRεZd. We prove first that those labels for which averages are
not essentially close to 0 and 1 are negligible; hence, we may regard such functions as
spin functions defined on a cubic lattice. Then, we show that the arguments used for
nearest-neighbour interactions of [1] can be adapted for the interpolated functions of the
averages. Once a limit set of finite perimeter is obtained we can prove the convergence
of the interpolations of the original functions to the same set.

As an application of this scaling argument we show that for

aεij = a
( i− j
Rε

)
, (9)

where a is a positive function with
∫
a(ξ)|ξ|dξ finite, the Γ-limit of the energies

Fε(u) =
εd−1

Rd+1
ε

∑
i,j∈Zd

aεij |ui − uj |, (10)

defined on the cubic lattice of Rd, is given by an energy as in (5) with

ϕ(ν) =

∫
Rd
a(ξ)|〈ξ, ν〉|dξ. (11)

In particular, if a is radially symmetric then (5) is simply a multiple of the perimeter
of A. It is interesting to note that in a sense the case Rε → +∞ can be seen as a
limit of the case of Rε finite, for which the Γ-limit is of the form (5) with the integrand
ϕ(ν) given by a discretization of the integral in (11) (as seen in [17, 11, 4] in a slightly
different context). This convergence can be re-obtained using the results in [19], where
transportation maps are used to transform discrete energies in convolution functionals.

2 A compactness result

We denote by QR = [−R/2, R/2)d the (semi-open) coordinate cube centered in 0 and
with side length R in Rd, by BR the open ball centered in 0 and with side length R in
Rd, and by e1, . . . , ed the vectors of the canonical basis of Rd. Moreover, Hd−1 denotes
the d− 1-dimensional Hausdorff measure and | · | the Lebesgue d-dimensional measure.

Let L ⊂ Rd be a discrete periodic set. We can suppose without loss of generality
that it is periodic in the coordinate directions with period 1; i.e.,

L+ ei = L for all i ∈ {1, . . . , d}.

The Voronoi cells of L are defined as

Vi = {x ∈ Rd : |x− i| < |x− j| for all j ∈ L, j 6= i }.
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By the periodicity of L there exists a constant CL > 0 such that

1

CL
≤ |Vi| ≤ CL,

1

CL
≤ Hd−1(∂Vi) ≤ CL. (12)

Each spin function u : εL → {0, 1} is identified with its piecewise-constant interpo-
lation, which is the L∞ function defined by

u(x) = u(εi) if x ∈ εVi ; i.e., |x− εi| < |x− εj| for all j ∈ L, j 6= i .

Note that by (12) the L1 norm of such u is equivalent to εd#{i : ui 6= 0}.
In this section we prove coerciveness properties for energies Eε defined on spin

functions u : εL → {0, 1} by

Eε(u) =
ε2d

ηd+1

∑
i,j∈L, i−j∈Qη/ε

|ui − uj |, (13)

where we denote ui = u(εi), and η = ηε are such that

lim
ε→0

ηε = lim
ε→0

ε

ηε
= 0. (14)

Lemma 1 (Compactness). Let uε be spin functions such that Eε(u
ε) is equibounded.

Then, up to subsequences, the corresponding piecewise-constant interpolations, still de-
noted by uε, converge in L1

loc(Rd) to u = χA, where A is a set of finite perimeter.

Proof. The idea of the proof is to subdivide the set of indices L into disjoint cubes of
side-length η/4ε. The factor 4 is chosen so that if we consider i, j indices belonging
to two neighbouring cubes with this side-length, respectively, then i − j ∈ Qη/ε so
that they interact in energy Eε. In such a way we can associate to each uε and each
such smaller cube the value 0 or 1 of the ‘majority phase’, if such majority phase is
sufficiently close to 0 and 1, respectively, while we prove that the remaining cubes
can be neglected. In this way we will construct coarse-grained functions for which the
energy Eε can be viewed as a standard nearest-neighbour ferromagnetic energy and the
compactness then follows by interpreting spin functions as sets of finite perimeter.

For any k ∈ Zd we set

Qεk =
η

4ε
k +Q η

4ε
.

For u : εL → {0, 1} we define

D(ε, k)(u) =

∣∣#{i ∈ Qεk ∩ L : ui = 1} −#{i ∈ Qεk ∩ L : ui = 0}
∣∣

#(Qεk ∩ L)
.
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Note that D(ε, k)(u) measures how much the function u is close to its majority phase;
more precisely, D(ε, k)(u) = 1 if u is constant on Qεk ∩ L, while D(ε, k)(u) = 0 if the
values of u are equally distributed between 0 and 1 in Qεk ∩ L.

With fixed δ ∈ (0, 1), we define

Bε(u) = {k ∈ Zd : D(ε, k)(u) < 1− δ}.

The Qεk corresponding to k ∈ Bε(u) will be considered as the cubes where u is not close
to a phase 1 or 0. We will first show that such cubes are negligible. Indeed, note that
thanks to the first inequality in (12) the number of pairs of indices i, j within Qεk are
of order (η/ε)2d and hence there exists Cδ > 0 such that if k ∈ Bε(u), then the number
of ‘interactions within the cube’ Qεk is at least Cδ(

η
ε )2d; namely,

#{(i, j) : i, j ∈ Qεk ∩ L, ui 6= uj} ≥ Cδ
(η
ε

)2d
.

Hence, if uε are as in the hypotheses of the lemma; that is, Fε(u
ε) ≤ c, we have

#Bε(uε) ≤ c

Cδ
η1−d.

We can estimate the measures∣∣∣ ⋃
k∈Bε(uε)

εQεk

∣∣∣ = #Bε(uε)η
d

4d
≤ c

4dCδ
η, (15)

Hd−1
(
∂

⋃
k∈Bε(uε)

εQεk

)
= #Bε(uε)2d ηd−1

4d−1
≤ 2cd

4d−1Cδ
. (16)

As for the indices such that D(ε, k)(u) ≥ 1− δ, we subdivide them into the sets

Aε1(u) = {k ∈ Zd : D(ε, k)(u) ≥ 1− δ,#{i ∈ Qεk : ui = 1} > #{i ∈ Qεk : ui = 0}}
Aε0(u) = {k ∈ Zd : D(ε, k)(u) ≥ 1− δ,#{i ∈ Qεk : ui = 1} < #{i ∈ Qεk : ui = 0}}

and define

Kε
j (u) =

⋃
k∈Aεj(u)

εQεk for j = 0, 1.

In order to estimate the measure of the boundary of Kε
1(u) we estimate the number

of cubes Qεk with k ∈ Aε1(u) which have a side in common with a cube Qεk′ with
k′ ∈ Aε0(u), parameterized on the set

Aε(u) := {k ∈ Aε1(u) : k + ej ∈ Aε0(u) for some j = 1, . . . , d}
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To that end, note that if D(ε, k)(u) ≥ 1− δ and k ∈ Aε1(u) then

#{i ∈ Qεk ∩ L : ui = 1} ≥
(

1− δ

2

)
#{i ∈ Qεk ∩ L},

so that, again recalling the first inequality in (12), each site i ∈ Qεk such that ui = 1
interacts with C ′δ(

η
ε )d and conversely for each site i ∈ Qεk′ such that ui = 0. Hence, the

interacting pairs (i, j) ∈ Qεk ×Qεk′ are at least C ′δ(
η
ε )2d.

Hence,

Eε(u) ≥ ε2d

ηd+1
#Aε(u)C ′′δ (

η

ε
)2d = C ′′δ#Aε(u)ηd−1

so that

#Aε(u) ≤ 1

C ′′δ
Eε(u)η1−d.

For the functions uε we then obtain

#Aε(uε) ≤ c

C ′′δ
η1−d,

so that

Hd−1(∂Kε
1(uε)) ≤ 2d

(
Hd−1

( ⋃
k∈Aε(uε)

εQεk

)
+Hd−1

( ⋃
k∈Bε(uε)

εQεk

))

≤ 2d
(

#Aε(uε)2d ηd−1

4d−1
+

2cd

4d−1Cδ

)
≤ C ′′′δ

where C
′′′
δ is a positive constant depending only on d, c and δ. By the compactness of

sets of equibounded perimeter this shows that the characteristic functions of the sets
Kε

1(uε) are compact in L1
loc(Rd). The symmetric argument shows also that Kε

0(uε) are
compact in L1

loc(Rd). Moreover, if we denote a limit of the sets Kε
j (uε) by Kj then we

have
|Rd \ (K0 ∪K1)| = 0 (17)

by (15). We highlight the possible dependence of the sets obtained by this procedure
on δ by renaming them Kδ

1 and Kδ
0 .

Note that if δ < δ′ then

Kδ′
1 ⊂ Kδ

1 and Kδ′
0 ⊂ Kδ

0 .

Since in both cases (17) holds, then we must have Kδ′
1 = Kδ

1 and Kδ′
0 = Kδ

0 , so that
these sets are independent of δ and we may go back to denoting them by K1 and K0.

We can now prove the convergence of uε. Fixed δ < 1 as above, we write

uε = uεχKε
1(uε) + uεχKε

0(uε) + uεχRd\(Kε
1(uε)∪Kε

0(uε)).
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By (15) the last term converges to 0 in L1(Rd) As for the other two terms we localize
the convergence by restricting to a cube QR. Note that for k ∈ Aε1(uε) we have

‖uε − 1‖L1(εQεk) ≤ C(1− δ)ηd,

so that
‖uεχKε

1(uε)∩QR − χKε
1(uε)∩QR‖L1(Rd) ≤ C(1− δ)Rd

where C denotes a positive constant not depending on δ. Analogously for k ∈ Aε0(uε)
we have

‖uε‖L1(εQεk) ≤ C(1− δ)ηd,

and hence
‖uεχKε

0(uε)∩QR‖L1(Rd) ≤ C(1− δ)Rd.

We then have, by the local convergence of Kε
j (uε),

lim sup
ε→0

‖uεχKε
1(uε)∩QR − χK1∩QR‖L1(Rd)

≤ lim sup
ε→0

(
‖uεχKε

1(uε)∩QR − χKε
1(uε)∩QR‖L1(Rd) + ‖χKε

1(uε)∩QR − χK1∩QR‖L1(Rd)

)
≤ C(1− δ)Rd,

and
lim sup
ε→0

‖uεχKε
0(uε)∩QR‖L1(Rd) ≤ C(1− δ)Rd,

so that, by the arbitrariness of δ, uε converge locally to χK1 .

Remark 2. The proof of Lemma 1 works exactly in the same way if we suppose that
‘almost all’ pairs of indices of L within Qη/ε interact; namely, if in place of energy (13)
we consider

Eε(u) =
ε2d

ηd+1

∑
i,j∈L: i−j∈Qη/ε

aεij |ui − uj |, (18)

with the requirement that there exists c > 0 such that

lim
ε→0

#{(i, j) : i, j ∈ x+Qη/ε : aεij ≥ c}
#{(i, j) : i, j ∈ x+Qη/ε}

= 1 (19)

uniformly in x ∈ Rd. Condition (19) is trivially satisfied by energies (13) for c = 1.
Note that condition (19) cannot be relaxed to ‘having a proportion’ of pairs of

indices of L within Qη/ε interacting, however large this proportion may be below 1;
i.e., it is not sufficient that

lim
ε→0

#{(i, j) : i, j ∈ x+Qη/ε : aεij ≥ c}
#{(i, j) : i, j ∈ x+Qη/ε}

≥ λ, (20)
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for any λ < 1. To check this, we may consider the following example: choose L = Rd,
fix N ∈ N, and define

aεij =

{
1 if i− j ∈ Qη/ε and both i, j 6∈ NZ
0 otherwise.

Then (20) holds for λ =
(
1− 1

Nd

)2
but, if we define

uεi =

{
1 if i 6∈ NZ
0 if i ∈ NZ,

then uε converge weakly in L1
loc(Rd) to the constant 1 − 1

Nd . Since Eε(uε) = 0 this
shows that Lemma 1 does not hold.

In this example the subset NZd of Zd can be considered as a ‘perforation’ of the
domain and can be treated as such, considering convergence only of the restriction of
the functions to Zd \NZd (see Section 3 of [10]). However, the situation can be more
complicated if we take

aεij =

{
1 if i− j ∈ Qη/ε and both i, j 6∈ NZ
cε otherwise,

that can be regarded as representing a ‘high-contrast medium’, for which the effect
of the ‘perforation’ cannot be neglected and for some values of cε may give a ‘double
porosity’ effect [10].

3 Homogenization of long-range lattice systems

Let a : Rd → [0,+∞) be such that a(ξ)|ξ| is Riemann integrable on bounded sets and
such that ∫

Rd
a(ξ)|ξ| dξ < +∞, (21)

and
a(ξ) ≥ c0 if |ξ| ≤ r0 (22)

for some c0, r0 > 0.
Given ε, η = ηε satisfying (14) we define the coefficients

aεij = aεi−j = a
(ε(i− j)

η

)
for i, j ∈ Zd, and the energies

Fε(u) =
ε2d

ηd+1

∑
i,j∈Zd

aεi−j |ui − uj |. (23)
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Definition 3. A family {uε} of functions uε : εZd → {0, 1} converges to a set A ⊂ Rd
if the piecewise-constant interpolations of uε converge to the characteristic function χA
in L1

loc(Rd) as ε→ 0.

By hypothesis (22) we may apply Compactness Lemma 1, obtaining that the family
{Fε} is coercive with respect to this convergence.

Proposition 4. Let {uε} be such that supε Fε(u
ε) < +∞. Then, up to subsequences,

there exists a set of finite perimeter A such that uε converge to A in the sense of
Definition 3.

This coerciveness property justifies the computation of the Γ-limit of Fε with respect
to the convergence in Definition 3. We use standard notation in the theory of sets of
finite perimeter (see e.g. [6, 22]).

Theorem 5 (Homogenization). The functionals defined in (23) Γ-converge with respect
to the convergence in Definition 3 to the functional F defined on sets of finite perimeter
by

F (A) =

∫
∂∗A

ϕa(ν)dHd−1, (24)

where ∂∗A denotes the reduced boundary of A, ν the outer normal to A and ϕa is given
by

ϕa(ν) =

∫
Rd
a(ξ)|〈ξ, ν〉|dξ. (25)

Proof. In order to better illustrate the proof in the general d-dimensional case we first
deal with the one-dimensional case, in which we may highlight the coarse-graining
procedure without the technical complexities of the higher-order geometry. In this case
we may rewrite the energies as

Fε(u) =
ε2

η2

∑
ξ∈Z

∑
i∈Z

aεξ|ui+ξ − ui|.

The relevant computation is that of the lower bound for the target A = [0,+∞). Let
uε converge to A. For each ξ ∈ Z \ {0} and i ∈ {1, . . . , |ξ|} we consider the function
uε restricted to εi + εξZ. By the L1

loc convergence, we may suppose that each such
restriction changes value; i.e., there exists some ki,ξ ∈ Z such that

uε(εi+ εki,ξξ) = 0 and uε(εi+ ε(ki,ξ + 1)ξ) = 1.

The set of ξ and i for which this does not hold is negligible for ε→ 0; the precise proof
is directly given for the d-dimensional functionals below. For each ξ we then have

|ξ|∑
i=1

∑
k∈Z

aεξ|uεi+(k+1)ξ − u
ε
i+kξ| ≥ |ξ|a

( ε
η
ξ
)
,

10



so that

lim inf
ε→0

Fε(u
ε) ≥ lim inf

ε→0

ε2

η2

∑
ξ∈Z
|ξ|a
( ε
η
ξ
)

= lim inf
ε→0

∑
ξ∈Z

ε

η
a
( ε
η
ξ
)∣∣∣ ε
η
ξ
∣∣∣,

the latter being a Riemann sum giving the integral

∫
R
a(ξ)|ξ| dξ, which is F (A).

We now deal with the d-dimensional case. The proof of the lower bound follows the
argument above, but is more complex since we must take into account the direction of
the interaction vectors ξ.

We prove the inequality by applying the blow-up technique (see [18] and [13], and
for instance [15, 14, 23] for the discrete setting).

We assume that the sequence {Fε(uε)} is equibounded and that uε converge in
L1

loc(Rd) to u = χA, where A is a set of finite perimeter. Up to subsequences, we can
assume that lim infε→0 Fε(u

ε) = limε→0 Fε(u
ε). We define the localized energy on an

open set U by

Fε(u
ε;U) =

ε2d

ηd+1

∑
i∈U

∑
j∈Zd

aεi−j |uεi − uεj |,

and define the measures µε(U) = Fε(u
ε;U); since the family {µε} is equibounded, we

can assume that µε
∗
⇀ µ up to subsequences. Now, let λ = Hd−1 ∂∗A; the lower

bound inequality follows if we show that for Hd−1-a.a. x ∈ ∂∗A we have

dµ

dλ
(x) ≥ ϕa(ν),

where dµ
dλ denotes the Radon-Nikodym derivative of µ with respect to the Hausdorff

d−1-dimensional measure λ. By the Besicovitch Derivation Theorem, forHd−1-a.a. x ∈
∂∗A we have that

dµ

dλ
(x) = lim

%→0

µ(Qν%(x))

λ(Qν%(x))
,

where λ is the measure Hd−1 ∂∗A, ν is the normal vector to ∂∗A at x and Qν%(x) is
a cube centered in x with side length % and a face orthogonal to ν. We can fix x = 0
and denote Qν%(0) by Qν%. Hence, the lower bound follows if we show that

lim
%→0

lim inf
ε→0

1

%d−1
Fε(u

ε;Q%ν) ≥ ϕa(ν). (26)

We may therefore assume that % = %ε be such that ε
% → 0 and the scaled functions

uε( ε% i) interpolated on the lattice ε
%Z

d converge to the characteristic function of the half

space Hν = {x : 〈x, ν〉 < 0} on Q1
ν . We define

Aε := {x ∈ Q1
ν : uε(x) 6= χHν (x)},

11



so that |Aε| → 0.
If we define

Iξε/% =
{
i ∈ Zd :

ε

%
i,
ε

%
(i+ ξ) ∈ Q1

ν

}
then

Fε(u
ε;Q%ν) ≥ ε2d

ηd+1

∑
ξ∈Zd

a
( ε
η
ξ
) ∑
i∈Iξ

ε/%

∣∣∣uε(ε
%

(i+ ξ))− uε(ε
%
i)
∣∣∣.

Figure 1: The set Rα,ξ

We begin by estimating∑
i∈Iξ

ε/%

∣∣∣uε(ε
%

(i+ ξ))− uε(ε
%
i)
∣∣∣ = #

{
i ∈ Iξε/% : uε(

ε

%
(i+ ξ)) 6= uε(

ε

%
i)
}
.

With fixed α ∈ (0, 1) for each ξ ∈ Zd satisfying∣∣∣〈 ξ|ξ| , ν〉∣∣∣ ≥ α√
1 + α2

, (27)

we define
Pα,ξ =

{
y ∈ Πν ∩Q1

ν : y ± α

2|〈ξ, ν〉|
ξ ∈ Q1

ν

}
,

which is not empty by (27), and

Rα,ξ =
{
x ∈ Q1

ν : x = y + tξ, y ∈ Pα,ξ, − α

2|〈ξ, ν〉|
≤ t ≤ α

2|〈ξ, ν〉|

}
(see Fig. 1). Furthermore, we fix β with

β >
α√

1 + α2
. (28)

12



Since we will restrict our arguments to sets Pα,ξ and Rα,ξ above with ξ satisfying∣∣∣〈 ξ|ξ| , ν〉∣∣∣ ≥ β; (29)

we omit the dependence of the sets Pα,ξ and Rα,ξ on ν, since the estimates we will
obtain will be independent on ν.

As in the one-dimensional case we consider the functions restricted to the discrete
lines ε

% i+ ε
%ξZ. The parameter α is introduced so as to estimate the number of sites of

such discrete lines inside Q1
ν . We then set

Bα,ξ
ε/% =

{
i ∈ Zd :

ε

%
i ∈ Rα,ξ and uε is not constant in

(ε
%
i+

ε

%
ξZ
)
∩Rα,ξ

}
.

Note that if i ∈ Bα,ξ
ε/% then i+ kξ ∈ Bα,ξ

ε/% for all k with ε
%(i+ kξ) ∈ Rα,ξ, so that, if we

define the equivalence relation i ∼ i′ if i− i′ ∈ ξZ, we may set

B̃α,ξ
ε/% = Bα,ξ

ε/%/ ∼

getting

#
{
i ∈ Iξε/% : uε(

ε

%
(i+ ξ)) 6= uε(

ε

%
i)
}
≥ #B̃α,ξ

ε/%.

We can estimate the number of ‘discrete lines’ intersecting Rα,ξ as

#
({
i ∈ Zd :

ε

%
i ∈ Rα,ξ

}
/ ∼
)
≥ |Rα,ξ|(

ε
%

)d 1
α

ε
%
|〈ξ,ν〉|

− Cα|ξ|
(ε
%

)2−d

≥ Hd−1(Pα,ξ)|〈ξ, ν〉|
(ε
%

)1−d
− Cα|ξ|

(ε
%

)2−d
,

where the last term is an error term accounting for the cubes intersecting the boundary
of Rα,ξ.

Note that to every element of the complement of B̃α,ξ
ε/% there correspond at least

b α
ε
%
|〈ξ,ν〉|c points in ε

%Z
d ∩Aε}, so that for ε sufficiently small we get

#
({
i ∈ Zd :

ε

%
i ∈ Rα,ξ and uε constant in

(ε
%
i+

ε

%
ξZ
)
∩Rα,ξ

}
/ ∼
)

≤ |Aε|(
ε
%

)d ε
% |〈ξ, ν〉|
α

+ C ′α|ξ|
(ε
%

)2−d

=
1

α
|Aε|

(ε
%

)1−d
|〈ξ, ν〉|+ C ′α|ξ|

(ε
%

)2−d
,

13



with C ′α again a positive constant accounting for boundary cubes, and hence

#B̃α,ξ
ε/% ≥ H

d−1(Pα,ξ)|〈ξ, ν〉|
(ε
%

)1−d
− 1

α
|Aε|

(ε
%

)1−d
|〈ξ, ν〉|−(Cα+C ′α)|ξ|

(ε
%

)2−d
. (30)

By (29) we can estimate

Hd−1(Pα,ξ) ≥
(

1− α

2|〈ξ, ν〉|
|ξ − 〈ξ, ν〉ν|

)d−1
≥
(

1− α

2

√
1

β2
− 1
)d−1

(31)

(see also Fig. 1), and hence, upon fixing R > 0 and introducing the set

Ξνε(R, β) =
{
ξ ∈ Zd : |ξ| ≤ η

ε
R,
∣∣∣〈 ξ|ξ| , ν〉∣∣∣ ≥ β},

by (30) and (31) we have

1

%d−1
Fε(u

ε;Q%ν) ≥ 1

%d−1

ε2d

ηd+1

∑
ξ∈Ξνε (R,β)

a
( ε
η
ξ
)
Hd−1(Pα,ξ)|〈ξ, ν〉|

(ε
%

)1−d

− 1

%d−1

ε2d

ηd+1

∑
ξ∈Ξνε (R,β)

a
( ε
η
ξ
) 1

α
|Aε|

(ε
%

)1−d
|〈ξ, ν〉|

−(Cα + C ′α)
(ε
%

)2−d 1

%d−1

ε2d

ηd+1

∑
ξ∈Ξνε (R,β)

a
( ε
η
ξ
)
|ξ|

≥
(

1− α

2

√
1

β2
− 1
)d−1 ∑

ξ∈Ξνε (R,β)

( ε
η

)d
a
( ε
η
ξ
)
|〈 ε
η
ξ, ν〉|

− 1

α
|Aε|

∑
ξ∈Ξνε (R,β)

( ε
η

)d
a
( ε
η
ξ
)
|〈 ε
η
ξ, ν〉|

−(Cα + C ′α)
ε

%

∑
ξ∈Ξνε (R,β)

( ε
η

)d
a
( ε
η
ξ
)∣∣∣ ε
η
ξ
∣∣∣.

Since |Aε| → 0 and

lim
ε→0

∑
ξ∈Ξνε (R,β)

( ε
η

)d
a
( ε
η
ξ
)∣∣∣〈 ε

η
ξ, ν〉

∣∣∣ =

∫
{|ξ|≤R,|〈ξ/|ξ|,ν〉|≥β}

a(ξ)|〈ξ, ν〉| dξ,

lim
ε→0

∑
ξ∈Ξνε (R,β)

( ε
η

)d
a
( ε
η
ξ
)∣∣∣ ε
η
ξ
∣∣∣ =

∫
{|ξ|≤R,|〈ξ/|ξ|,ν〉|≥β}

a(ξ)|ξ| dξ,

we get

lim inf
ε→0

1

%d−1
Fε(u

ε;Q%ν) ≥
(

1− α

2

√
1

β2
− 1
)d−1

∫
{|ξ|≤R,|〈ξ/|ξ|,ν〉|≥β}

a(ξ)|〈ξ, ν〉| dξ.
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Note that by (28) we may let first α→ 0 and then β → 0. We eventually obtain

lim inf
ε→0

1

%d−1
Fε(u

ε;Q%ν) ≥
∫
{|ξ|≤R}

a(ξ)|〈ξ, ν〉| dξ,

which, by the arbitrariness of R, gives (26).

εξ

ηRC ηR

Σ̃
k

u
i
=0

u
i+ξ=1

A

Figure 2: Upper-bound construction

The upper bound is obtained by a density argument (see [7] Section 1.7). Hence,
it suffices to treat the case of A polyhedral. In this case it suffices to take (the in-
terpolations) uεi = χA(εi) for i ∈ Zd. Indeed, we write ∂A as a union of N d − 1-
dimensional polytopes Σk and we denote by νk the outer normal to Σk and by K the
d− 2-dimensional skeleton of A.

We note that there exists a constant C depending only on A such that, for any
η,R > 0, after removing the closed neighborhood K + BCηR from ∂A, we obtain a

disjoint collection Σ̃1, . . . , Σ̃N with Σ̃k ⊂ Σk such that(
Σ̃k +BηR

)
∩
(

Σ̃k′ +BηR

)
= ∅ for any k 6= k′

(see Fig. 2). Hence, for any ξ ∈ Zd with |εξ| ≤ ηR, k ∈ {1, . . . , N}, and j ∈ Zd such
that the line εj+εξR intersects Σ̃k, the values uεi change only once on the points of the

discrete lines εj + εξZ which lie in a ηR neighbourhood of Σ̃k. We note that for lines
intersecting Σk at a point of distance not larger than CηR from K, such changes of
value are at most N ; then, repeating the counting argument used in the lower bound,
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we obtain

lim sup
ε→0

ε2d

ηd+1

∑
ξ∈Zd
|εξ|≤ηR

a
( ε
η
ξ
)∑
i∈Zd
|uεi+ξ − uεi |

≤ lim sup
ε→0

(
N∑
k=1

Hd−1(Σk)
εd

ηd

∑
ξ∈Zd
|εξ|≤ηR

a
( ε
η
ξ
)∣∣∣〈 ε

η
ξ, νk〉

∣∣∣+O(ηR)

)

≤ lim sup
ε→0

N∑
k=1

Hd−1(Σk)

∫
{|ξ|≤R}

a(ξ)|〈ξ, νk〉| dξ

≤
∫
∂A
ϕa(ν)dHd−1.

Since also for |εξ| ≥ ηR the changes of value of uεi are at most N , we then get

lim sup
ε→0

ε2d

ηd+1

∑
ξ∈Zd
|εξ|>ηR

a
( ε
η
ξ
)∑
i∈Zd
|uεi+ξ − uεi | ≤ NHd−1(∂A)

∫
{|ξ|>R}

a(ξ)|ξ|dξ.

Since this term vanishes as R→ +∞ the upper bound follows.

Example 6. If a is radially symmetric, then we have

F (A) = σHd−1(∂∗A), (32)

where σ is given by

σ =

∫
Rd
a(ξ)|ξ1|dξ. (33)

In particular, we may take a = χB1 the characteristic function of the unit ball in
Rd. In this case the limit of

Fε(u) =
ε2d

ηd+1

∑
i,j∈Zd |i−j|<η/ε

|ui − uj |. (34)

is given by

σ =

∫
B1

|ξ1|dξ. (35)

Remark 7 (local version). If Ω ⊂ Rd is an open set with Lipschitz boundary we may
define

Fε(u) =
ε2d

ηd+1

∑
i,j∈Zd∩ 1

ε
Ω

aεi−j |ui − uj |. (36)

16



Then the Γ-limit is

F (A) =

∫
Ω∩∂∗A

ϕa(ν)dHd−1, (37)

with minor modifications in the proof.
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