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Abstract

In this thesis, we study two distinct, yet equally fascinating, aspects of many-
body physics. Synthetic quantum matter – engineered many-body systems with
high controllability and tunability – serves as a cornerstone for the research. The
combination of these features makes them incredibly suited for research at the cross-
roads of traditional statistical physics, new concepts coming from field theory (par-
ticularly gauge theories), and quantum information.

In the first part, we delve into the quantum simulation of novel quantum phe-
nomena with analog quantum simulators. In particular, recent advances in the
synthetic platforms based on Rydberg atoms, i.e., neutral atoms trapped in opti-
cal tweezers, have opened up new avenues to explore exotic topological phases like
quantum spin liquids, which hold potential applications in quantum computing.
We employ a combination of numerical and analytical tools to address open ques-
tions regarding the realization of these phases in experiments. Our results show that
the recently observed spin liquids can be directly connected to a Higgs-Ising lattice
gauge theory, providing a clear-cut theoretical argument for its origin. Moreover,
different setups with chiral interacting Hamiltonians offer new avenues to realize
chiral spin liquids - a lattice version of the celebrated quantum Hall effect.

In the second part, we explore the role of a quantum information quantity known
as nonstabilizerness in quantum many-body systems. By now, the study of quan-
tum information concepts in the realm of many-body theory represents a very ac-
tive research effort, with a prominent example being entanglement, which has rev-
olutionized our understanding of quantum systems. Similar to entanglement, non-
stabilizerness has emerged as a crucial resource for achieving quantum advantage,
although in a fundamentally different way. While entanglement is well-studied,
the exploration of nonstabilizerness in many-body contexts is still in its very early
stages. Its ongoing investigation holds significant promise for deepening our un-
derstanding of many-body systems and their complexity. We develop new methods
based on tensor networks and Monte Carlo methods to enable the quantification of
nonstabilizerness at large scales. We subsequently apply them to uncover the role of
nonstabilizerness in various many-body settings, particularly in critical phenomena,
gauge theory, and quantum circuits.
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Introduction

Our universe, from the subatomic realm to the vast expanse of galaxies, is gov-
erned by the laws of quantum mechanics. This captivating theory underpins the
behavior of everything, from the tiniest particle to the collective behavior of millions
of stars in a galaxy. However, when we turn our attention to quantum many-body
systems, namely, systems composed of many interacting quantum particles, these
very laws present us with a formidable challenge [13–15]. Their immense complex-
ity arises due to the exponential scaling of the size of the Hilbert space with the num-
ber of interacting particles. These particles strongly interact with each other, which
lead to emergent behavior: a collective behavior that transcends the properties of the
individual particles. For instance, the different phases and transitions observed in
water, magnetism, and superconductors, all stem from correlations within systems
of electrons and ions.

A notable example of a rich phenomenology in strongly correlated systems is the
emergence of novel phases of matter that go beyond the classical Landau sponta-
neous symmetry breaking paradigm [16, 17]. These phases exhibit exotic properties,
such as non-local order, and properties that depend on the topology in which the sys-
tem is defined. Moreover, they host “fractionalized excitations", namely, emergent
particles that can be seen as equivalent to a fraction of an elementary charge, such
as an electron or magnetic monopoles. This new type of order is called topological
order, which has already been experimentally demonstrated in fractional quantum
Hall (FQH) effect [18].

Beyond the realm of theoretical curiosity, quantum many-body systems hold im-
mense potential for technological breakthroughs in areas like quantum computing
and the design of novel materials. As such, their investigations have been at the
forefront of condensed matter physics research for the past several decades, and it
remains a vibrant and exciting area of research to date. Scientists are not only striv-
ing to deepen our fundamental understanding of these phenomena but also actively
seeking to harness their novel properties for technological applications.

However, directly simulating these complex systems using classical computers
quickly becomes intractable due to the large number of interacting qubits. To over-
come this hurdle, physicists have developed a range of powerful simulation tech-
niques. One promising approach utilizes specially designed quantum systems to
mimic the behavior of the target many-body system. These “quantum simulators"
essentially act as miniature quantum computers, capable of solving problems be-
yond the reach of classical computers. In particular, recent advances in the synthetic
platforms based on Rydberg atoms [19, 20], i.e., neutral atoms trapped in optical
tweezers, have opened up unprecedented possibilities to explore exotic phases like
quantum spin liquids, which hold potential applications in quantum information
technologies. At the same time, they are offering a new platform to probe many-
body dynamics, with unique features in terms of controllability and probing that go
well beyond what is available in solid state experiments.

In Chapter 3, we investigate the recently discovered spin liquids in Rydberg atom
arrays with strongly repulsive van der Waals interactions. While the emergence of



Abstract 2

QSLs in physically realizable parameter regimes has been verified both numerically
and experimentally, the specific mechanism stabilizing such a phase remained un-
clear. We elucidate the origin of the previously observed QSLs by directly linking
it to a Ising-Higgs lattice gauge theory. Furthermore, we show numerically that the
topological phases extend in a broad region of the parameter space. Finally, we pro-
pose an experimental protocol to realize the extended Rydberg model using Rydberg
dressing.

In Chapter 4, we focus on the emergence of a chiral spin liquids (CSL) - lattice
analogue of FQH Laughlin state - in a very different regime of Rydberg systems.
Specifically, the dynamics solely takes place within the Rydberg subspace, with the
atoms interacting through dipolar exchange interactions. Such a setup has been ex-
perimentally demonstrated in a system of three sites. To understand what classes
of CSLs these models can stabilize, we classify all possible CSLs with U(1) global
symmetry using parton construction on the honeycomb lattice. The resulting classi-
fication includes six distinct classes of gapped CSLs: the corresponding variational
wavefunctions obtained from two of these classes accurately describe the Rydberg
many-body ground state at 1/2 and 1/4 particle density.

While the first two chapters concern topological spin liquids, in Chapter 5 we
instead focus on exotic dipole symmetry that emerges in atomic ladders. We study
the dynamics of a model of hard-core bosons on ladders, in the presence of strong
kinetic constrains akin to those of the Bariev model. The model displays a paired
Tomonaga-Luttinger liquid phase featuring an emergent dipole symmetry, which
encodes the local pairing constraint into a global, non-local quantity. We scrutinize
the effect of such emergent low-energy symmetry during quench dynamics includ-
ing single particle defects. We observe that, despite being approximate, the dipole
symmetry still leads to very slow relaxation dynamics, which we model via an effec-
tive field theory. The model is amenable to realization in both cold atoms in optical
lattices and Rydberg atom arrays with dynamics taking place solely in the Rydberg
manifold. We present a blueprint protocol to observe the effect of emergent dipole
symmetry in such experimental platforms, combining adiabatic state preparation
with quench dynamics.

In a distinct development, remarkable advancements in our understanding of
many-body physics have been achieved through the exploration of concepts origi-
nally developed in the context of quantum information theory and their subsequent
application to quantum many-body systems [21, 22]. The first and most prominent
example is a concept known as entanglement [23]. In quantum mechanics, entan-
glement describes a phenomenon where the quantum states of two or more parti-
cles become inextricably linked, such that a measurement on one particle instanta-
neously influences the state of the other, regardless of their physical distance. From
the quantum information point of view, entanglement has been known to be a key
resource for performing several quantum information protocols, such as quantum
teleportation [24] and quantum cryptography [25].

In the realm of many-body physics, entanglement plays an important role as a
tool to characterize and classify phases of matter and their transitions. Building
on its early understanding in few-body systems, its importance for the many-body
problem has been uncovered [26–28]. It has found applications over a wide range of
phenomena, from real-time dynamics [29], to topological order [30, 31] and classifi-
cation of states [32, 33]. Moreover, a particularly useful perspective has pivoted on
the role of bipartite entanglement in representing quantum wave functions, leading
to the formulation of several classes of tensor network states [34–38]. These tensor
network states have found immense success in numerical applications, exploiting
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the well-known fact that ground states of quantum systems with local interactions
possesses lower amount of entanglement than generic states, known as the area law.
Finally, advancements in experimental platforms have enabled to probe and mea-
sure entanglement in quantum systems of few qubits [39–42].

The significant impact achieved through the application of entanglement in many-
body theory underscores the need to investigate additional quantum information
quantities that could serve as powerful tools for understanding complex quantum
systems. In a recent development, another key quantity in quantum information -
magic, also known as nonstabilizerness [43] - has received a lot of attention within
the domain of many-body physics [44]. As the name suggests, nonstabilizerness is
related to the complexity of simulating states that are not in the class of stabilizer
states. These are quantum states with a rich structure, and while they can exhibit a
large amount of entanglement, they can be efficiently simulated by classical comput-
ers according to the Gottesmann-Knill theorem [45–47]. Interestingly, this efficient
simulability has proven valuable in studying entanglement dynamics in quantum
circuits, including both unitary dynamics [48] and measurement-induced phenom-
ena [49, 50].

In the context of quantum computing, magic plays a pivotal role in achieving uni-
versal quantum computation through a specific scheme known as magic state injec-
tion [43]. Thus, similarly to entanglement, magic is a fundamental resource essential
for achieving quantum advantage, although in a fundamentally distinct way. It is
worth noting a recent breakthrough experiment conducted by the Harvard group
[42], which realizes a quantum circuit designed to exhibit a high degree of both en-
tanglement and magic in order to demonstrate possible quantum advantage. How-
ever, in contrast to entanglement, to date little is known about the properties and
behavior of magic in many body quantum systems.

The main challenge is the difficulty in quantifying magic compared to entan-
glement. In the case of entanglement, the von–Neumann entanglement entropy is
widely accepted as a good measure for bipartite entanglement in pure states, and ef-
ficient theoretical and numerical methods to explore it in many-body systems have
been developed. In contrast, the choice of a “good measure” for magic is still under
discussion in current literature. Of particular interest is the recently introduced mea-
sure of magic, known as the stabilizer Rényi entropy (SRE) [51], which was subse-
quently shown to be a good magic monotone [52]. The key advantage of the SRE lies
in its computability, making it particularly attractive for studying magic in many-
body systems.

In Chapter 7, we introduce a method to compute the SRE based on a statistical
exploration of Pauli strings via Markov chains. By sampling the Pauli strings, this
obviates the need to compute the exponentially many terms in the definition of SRE,
enabling to estimate the SRE in many-body settings. We also formulate an equivalent
of mutual information for magic, dubbed mutual magic, which can be computed
efficiently within our formalism as well. While the formalism is rather general, we
focus on a class of tensor network state called Tree Tensor Network (TTN), where the
sampling procedure can be done efficiently by exploiting its hierarchical structure.
We showcase the applicability and efficiency of this method in various many-body
models, demonstrating the importance of magic in criticality and gauge theories.
Additionally, we discuss the corresponding experimental protocol relying on the
same technique.

In Chapter 8, we applied the Pauli-Markov method to calculate a measure of
magic known as mana, which has strong advantages compared to the SRE. To this
end, we introduce Rényi generalizations of mana, which are also measures of magic
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for pure states, and show how this allows to adapt previous methods for SREs to
compute mana in large quantum systems. We provide numerical evidence that mu-
tual mana exhibits universal logarithmic scaling with distance in critical spin chains
governed by (1+1)D conformal field theories, analogous to entanglement.

We propose another tensor network method in Chapter 10, which is based on
writing a matrix product state (MPS) in the Pauli basis, dubbed Pauli-MPS. The co-
efficients of a state in the Pauli basis are exactly the Pauli spectrum, i.e., the set of
expectation values of all possible Pauli strings. Similarly to entanglement spectrum,
Pauli spectrum captures the magic properties of a state, and many measures of magic
are defined in terms of the Pauli spectrum. We discuss how this method allows us
to express the SRE as the contraction of replicas of Pauli-MPS, enabling its efficient
calculation. While the use of replica trick to compute the SRE has been known previ-
ously [53], the replica trick based on Pauli-MPS stands out as it facilitates the use of
controlled approximation scheme, offering a significant practical advantage. In ad-
dition, the method is easily generalized to compute other measures of magic, such
as Bell magic [54] and stabilizer nullity [55].

In Chapter 9, we focus on a class of wavefunction called the (generalized) Rokhsar-
Kivelson (RK) wavefunctions. The amplitudes of this class of wavefunctions are as-
sociated to classical statistical mechanics models, thereby admitting a simplification
when it comes to computing quantities of interest, including the SRE. This allows
powerful analytical and numerical approaches that are not usually available in con-
ventional quantum many body settings. We exploit this property to express the SRE
as a free energy difference of related classical problems, that can be evaluated using
classical Monte Carlo techniques. We apply this to a range of quantum RK Hamilto-
nians, which affords us to obtain analytical and numerical results of the SRE in large
high-dimensional systems.

In Chapter 11, we introduce and study the magic in a measurement-only circuit
consisting of Clifford and non-Clifford measurements. The investigation of magic in
quantum circuits has been an outstanding challenge, due to the inherent difficulty
of evaluating measures of magic in large quantum systems. We overcome this chal-
lenge by showing that the magic in our circuit model can be efficiently quantified
by any measure of magic which is additive for tensor product of single-qubit states.
This allows us to perform large-scale simulations to study the magic transition in
this circuit, which can be viewed as a result of the competition between Clifford
and non-Clifford measurements. Furthermore, we explore the intriguing behavior
of specifically constructed linear combinations of magic, analogous to those used for
entanglement.

In Chapter 12, we uncover an intriguing relation between magic and entangle-
ment. From the structure of stabilizer states, it is straightforward to show that the
entanglement spectrum of stabilizer states for any bipartition is “flat", namely, all en-
tanglement spectrum are equal. The converse is not true, however: a state with flat
entanglement spectrum is not necessarily a stabilizer state. Our key finding is that
the SRE is directly related to the entanglement spectrum flatness averaged over Clif-
ford orbit. This establishes a deep connection between the two fundamental resource
quantities. Leveraging this connection, we developed an experimental protocol to
efficiently probe nonstabilizerness in cold atom and solid-state platforms.

Finally, in Chapter 13, we study the dependence of magic with bond dimen-
sion of MPS representing ground states. The results indicate that obtaining con-
verged results for nonstabilizerness is typically considerably easier than entangle-
ment. Specifically, we observed that the magic converges with 1/c2, where c is the
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MPS bond dimension. Moreover, mutual magic also consistently shows a fast con-
vergence with bond dimension. As a byproduct of our study, we show how Pauli-
Markov chains (originally formulated to evaluate magic) resets the state of the art in
terms of computing mutual information for MPS.
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Chapter 1

Quick overview of tensor networks

Quantum many-body systems, with their intricate interactions between a large
number particles, hold the key to unraveling fundamental phenomena in quan-
tum physics. Understanding these systems is thus crucial for both theoretical ad-
vancements and novel technological applications. However, investigating complex
quantum systems presents a formidable challenge, which lies in the fact that the
Hilbert space dimension grows exponentially with system size. Simulating such
systems using classical computers requires resources that increase exponentially as
well, quickly becoming intractable even for moderately sized systems.

Over the last decades, Tensor Network (TN) methods have emerged as a reli-
able tool to solve quantum many-body problems on a classical computer. They offer
a compact description of quantum many-body states which possess limited entan-
glement, by exploiting the underlying entanglement structure. They have shown
massive success in simulating one-dimensional (1D) systems and are increasingly
being applied to higher dimensions. Beyond numerical simulations, Tensor Net-
works have also become valuable tools for theoretical investigations, such as in the
classification of 1D gapped phases of matter [1–5].

This chapter provides a general overview on Tensor Networks, a tool which we
have employed extensively throughout this thesis. Our focus here is not an exhaus-
tive review – for that, we refer to established references such as [6–10]. Instead, we
aim to introduce the core concepts behind Tensor Networks and how they are used
in practice, while omitting technical details.

1.1 Tensor Networks in a nutshell

We will consider a quantum many-body system consisting of N qubits (or spin-
1/2). Each qubit has a Hilbert space H ' C2 spanned by the two basis states |0i , |1i.
The total Hilbert space of N qubits is obtained as the tensor product of the local
Hilbert spaces H ' C⌦2n.

The most general (pure) quantum state can be written as

|yi = cs1s2...sN |s1s2 . . . sNi (1.1)

where si 2 {0, 1} and cs1s2...sN = hs1s2 . . . sN | yi are the wavefunction coefficients.
This representation captures the complete information about the wavefunction. How-
ever, the number of such coefficients that we need to specify is 2N , that grows expo-
nentially with the number of qubits. This makes it computationally impractical to
describe quantum systems with many qubits in classical computers. As we shall see
in the next sections, Tensor Networks offer a solution to this challenge. In a nutshell,
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Tensor Networks represent quantum many-body systems by leveraging the under-
lying entanglement structure within the system. As such, Tensor Networks are ex-
tremely powerful at representing and simulating states with low entanglement. In
such cases, Tensor Networks achieve a significant reduction in the number of param-
eters needed to describe the state, bringing it down from an exponential dependence
on the number of qubits to a much more manageable polynomial dependence.

Tensor Network representation came about by viewing the coefficients cs1s2...sN as
a tensor with N indices, each corresponding to each spin. Each indices thus has di-
mension 2 (for qubits). The key idea is to decompose the tensor cs1s2...sN as a network
of smaller, interconnected tensors. These smaller tensors are connected through aux-
iliary indices which encode information about the correlations of the system. The di-
mension of these auxiliary indices are called the bond dimensions, usually denoted
by c, which represent its representation power. In essence, the bond dimension acts
as a control parameter for the accuracy of the tensor network representation. If the
bond dimension required to faithfully represent a state is finite (or at most poly-
nomially growing), the Tensor Network representation is said to be efficient. This
efficiency hinges on the entanglement structure of the state itself – states with lower
entanglement require lower bond dimensions for faithful representation.

Depending on the way the tensors are connected, several Tensor Network ge-
ometries have been established over the last decades. The geometry of the Tensor
Network plays a crucial role for the efficiency of Tensor Network algorithm as well
as the capability to capture the entanglement scaling properties of the state. The
most widely employed structures are the Matrix Product States (MPS), the Tree Ten-
sor Networks (TTN) and the Projected Entangled Pair States (PEPS). They will be
discussed in more details in Sec. 1.3.

1.2 Main concepts in Tensor Networks

In this section, we will review the fundamental concepts in Tensor Networks.
We will begin from the mathematical foundation, which is rooted in linear algebra.
This framework translates into concrete physical consequences in terms of quantum
correlations within the wavefunction, which is reflected in the structure of Tensor
Networks.

1.2.1 Singular Value Decomposition and QR decomposition

Singular Value Decomposition (SVD) is a linear algebra tool that is extensively
used in tensor network. Here, we briefly recall its definition.

The SVD of an m⇥ n complex matrix M is given by

M = USV†, (1.2)

where U(V) is an m ⇥ r (r ⇥ n) complex matrix with orthonormal columns (rows)
and S is an r ⇥ r diagonal matrix with non-negative real numbers elements. Here,
r = min(m, n) is the rank of M, and the diagonal elements of S are called the singular
values of M. The SVD is not unique, but the singular values are uniquely determined
by M. Moreover, it is always possible to choose the decomposition such that the
singular values are in descending order. Note that If M is real, then U and V are real
orthogonal matrices. The computational complexity of the numerical algorithms for
SVD is O(mn2), if m � n.
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The power of SVD lies in its ability to provide the most efficient low-rank approx-
imation of any matrix. Specifically, for a matrix M (rank r), we can construct a matrix
M0 = US0V (with rank r0  r) that provides the optimal approximation of M in the
Frobenius norm kMk =

p
Tr(MM†). Here, S0 is obtained from S by keeping only

the largest r0 singular values.
In Tensor Network applications, it is often the case that one needs only the matrix

U and the product SV†. In this case, the QR decomposition, which is given by

M = QR, (1.3)

offers a computationally cheaper way. Here, Q is a matrix of dimension m⇥ r with
orthonormal columns, Q†Q = 1, and R is upper-triangular.

1.2.2 Entanglement and area law

For a pure state with two complementary partitions A and B, the entanglement
with respect to the bipartition can be assessed by the Schmidt decomposition. For
any pure state |yi, there exists orthonormal bases {|yAii} and {|yBii} of A and B,
such that |yi can be written as

|yi = Â
i

lr
i=1 |yAii |yBii , (1.4)

where li > 0 are the Schmidt coefficients. Such a decomposition can be obtained us-
ing SVD where the state is first rewritten as |yi = c(s1...sk),(sk+1...sN) |s1 . . . skiA |sk+1 . . . sNiB.
We can then perform SVD on the matrix c(s1...sk),(sk+1...sN), obtaining c(s1...sk),(sk+1...sN) =

USV†. Here, the columns of U correspond to the orthonormal bases of A, while the
rows of V correspond to the orthonormal bases of B. Moreover, the singular values
in S are precisely the Schmidt coefficients.

The amount of entanglement can be quantified using a suitable function of li.
The standard measure of entanglement is the von Neumann entanglement entropy,
defined as

S = �Tr rA log rA

= �Â
i

l2
i log l2

i , (1.5)

where rA is the reduced density matrix of the subsystem A, rA = TrB[|yihy|]. The
entanglement entropy S is zero if and only if the state is a product state of A and
B, and it is greater than zero otherwise. Moreover, it does not increase on average
under local operation and classical communications (LOCC). It is upper bounded by
NA log 2, where NA is the number of qubits in the subsystem A.

Consider a D-dimensional system with linear system sizes L. Most states in the
Hilbert space have entanglement entropy that scales extensively S ⇠ LD, the so-
called volume-law. However, if we consider ground states of local gapped Hamil-
tonians, they instead follow an area law, S ⇠ aLD�1. Physically, the area law points
out that entanglement is localized around the boundary between two subsystems.
In 1D systems, where the area law implies the entanglement approaches a constant
value in the thermodynamic limit, this has been rigorously proved to hold when the
system is gapped [11]. For a 1D critical system described by conformal field theory
(CFT), the entanglement entropy acquires a logarithmic correction to the area law
[12]. In higher dimensions, there are fewer rigorous results on the area law. For
free bosonic systems, the area law is shown to hold in any dimension [13]. The area
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FIGURE 1.1: Graphical representation of (a) an order-1 tensor (i.e. a
vector), (b) an order-2 tensor (i.e. a matrix) , (c) an order-3 tensor, and

(d) an order-N tensor.

law also holds for non-critical free fermionic systems, while in critical fermionic sys-
tems, the area law is violated if the system exhibits a finite Fermi surface, in which
case the entropy scales as LD�1 log L [14, 15]. However, in a fermionic model with
zero-dimensional Fermi surface, numerical analysis showed that the corrections are
sub-logarithmic [16]. In any case, it is expected that all ground states of lattice mod-
els satisfy such entanglement scaling governed by the area law, possibly with some
corrections.

The area law signifies that relevant physical states occupy a tiny fraction of the
entire Hilbert space. This result is extremely crucial as the family of Tensor Network
states precisely targets these relevant area-law states.

1.2.3 Tensors

The fundamental building block of a Tensor Network is a tensor. From a math-
ematical point of view, an order-n tensor T is a multidimensional array with n in-
dices. Each tensor element Ti1,...,in is a scalar. For example, an order-1 tensor is a
vector, while an order-2 tensor is a matrix. In Tensor Network applications, tensors
are often visualized graphically, as illustrated in Fig. 1.1. Here, the tensors are rep-
resented by circles (or similarly closed shapess), while the indices are represented
by outgoing legs. The contraction of two indices is obtained by connecting the legs
representing the indices that are summed over. This graphical approach allows for a
compact visual representation of complex tensor algebra equations using diagrams.

1.3 Tensor Network states

There are different ways to represent the coefficient cs1s2...sN as a Tensor Network,
depending on the geometry of the network. This leads to different classes of Tensor
Network states. Here, we review some of the prevalent Tensor Network states.

1.3.1 Matrix Product States (MPS)

Matrix Product States (MPS) are the first and the most commonly used Tensor
Network states [6, 17]. The MPS representation is given by

cs1s2...sN = Â
a1,...,aN�1

As1
a1

As2
a1,a2

. . . AsN
aL�1

, (1.6)

where Asi
ai�1,ai are order-3 tensors (except at the left and right boundaries where they

are order-2 tensors). The index si corresponds to the physical index, while the other
two are auxiliary indices. Its graphical representation is shown in Fig. 1.2(a). The
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(a)
(b)

(c)

FIGURE 1.2: Various Tensor Network geometries: (a) MPS and (b)
TTN for 1D systems, (c) PEPS for 2D systems.

dimension of each auxiliary index, ci = dim(ai), determines the amount of entan-
glement that the MPS captures. We denote the maximum value of ci across all links
as c, which is known as the bond dimension of the MPS.

Any quantum state |yi can be decomposed as an MPS by performing repeated
SVD decomposition. The important question is: when is it useful to work with MPS
representation? The answer to this question lies in the entanglement properties of
the state. Indeed, one can show that the von Neumann entanglement entropy of an
MPS is bounded by

S  log c (1.7)

Thus, a state with bounded entanglement can be expressed as an MPS with c ⇠
exp(S). When c is finite (or grows at most polynomially with N), the MPS repre-
sentation is efficient. Namely, the total number of parameters is reduced from an
exponential O(eN) to a polynomial O(poly(N)) with respect to system size N, thus
the simulation requires only polynomial resources. This points to the main reason of
the success of MPS in the investigation of 1D systems in equilibrium: in 1D, it is well-
known that all gapped phases obey the area law with S ⇠ O(1), while critical states
governed by conformal field theory may exhibit a logarithmic scaling S ⇠ log N. In
both cases, the MPS representation is efficient. In out-of-equilibirum dynamics or
higher-dimensional systems, the entanglement is expected to grow with the system
size and time (with known exceptions), thus the bond dimension required to faith-
fully represent the state as an MPS must grow exponentially. Nevertheless, MPS
has proven valuable in their investigations, by making use of the established MPS
algorithms and pushing the bond dimension to a large value [18, 19].

The tensor contractions and manipulations in MPS can be done efficiently with
cost O(c3). More generally, any Tensor Network state which contains no loop in its
structure can be contracted efficiently. Such Tensor Network state is called loopless
tensor network, of which MPS is the simplest example.
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1.3.2 Tree Tensor Networks (TTN)

Tree Tensor Network (TTN) is another example of loopless tensor network [7,
20]. In TTN, the tensors are arranged in a tree structure as shown in Fig. 1.2(b).
The complexity of TTN contraction is O(c4), that is slightly more expensive than
MPS. The advantage of TTN lies in its strongly connected structure: the distance
between two tensors are at most O(log N) in the TTN structure, as opposed to O(N)
in MPS. Consequently, TTN is able to represent states with polynomally decaying
correlations, such as 1D critical systems. Moreover, with its flexible geometry, it is
particularly suited to handle systems with periodic boundary conditions and higher
dimensional systems, while maintaining efficient manipulation.

1.3.3 Projected Pair Entangled State (PEPS)

Projected Pair Entangled State (PEPS) is a natural extension of MPS to two-dimensional
(and higher) systems [9, 17], as depicted in Fig. 1.2(c). The structure of PEPS in-
herently capture states that obey the area law of entanglement in any dimension.
However, unlike MPS, PEPS contains many loops within their structure, hindering
efficient contraction. This makes PEPS considerably more challenging to handle,
both analytically and numerically.

1.4 Tensor Network algorithms

Tensor Networks have various algorithms for a broad range of applications. Be-
low, we describe two of the most prominent algorithms using Tensor Networks.

1.4.1 Ground state search

The most common application of Tensor Networks is to solve a given many-body
Hamiltonian H for its ground state, i.e., an eigenstate with the lowest energy. For
this purpose, the Tensor Network is treated as a variational ansatz with some chosen
bond dimension, and the algorithm is designed to optimize the variational parame-
ters of the Tensor Network ansatz |yi by minimizing the energy

E =
hy| H |yi
hy|yi . (1.8)

For MPS and TTN, such minimization problem can be formulated as an eigenvalue
problem in terms of the local tensors, which can then be solved one at a time. This is
the core idea of the well-known density matrix renormalization group (DMRG) for
MPS, and a similar algorithm for TTN [7, 20].

1.4.2 Time evolution

Another important Tensor Network algorithm is the simulation of time evolu-
tion under a unitary dynamics. There are two established methods for performing
such a time evolution. The first, and the most intuitive, algorithm is Time-Evolving
Block Decimation (TEBD) [21], which is based on decomposing the unitary evolu-
tion by means of a Suzuki-Trotter decomposition into a set of local operators to be
applied to the network. The second method is the Time-Dependent Variational Prin-
ciple (TDVP) [22, 23], which exploits mathematical concepts of differential calculus
to compute a time evolution based on the geometry of the network. Despite of these
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well-established algorithms, it is important to note that simulations of time evolu-
tion are typically limited to small system sizes in 1D or short time-scales. This is
because the entanglement in non-equilibrium dynamics typically scales as volume-
law, thus it is not efficiently simulable with Tensor Networks.

1.5 Final remarks

The tools and concepts introduced in this chapter have been applied extensively
in much of the work presented in this thesis. Our simulations are done using the
C++ iTensor library [24], in which MPS algorithms like the DMRG and TDVP are
readily available. Additionally, we have implemented TTN codes in iTensor, which
were utilized in Chapter. 7.
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Chapter 2

Quantum simulation of spin
liquids

Quantum spin liquids (QSLs) are a fascinating phases of matter which have cap-
tivated the attention of physicists for decades. These phases exhibit exotic quantum
properties, such as long-range entanglement, topological degeneracy, and fraction-
alized excitations.

Due to their exotic properties, QSLs hold potential applications in quantum com-
puting technologies, and therefore, the experimental realization of QSLs is of con-
siderable interest. This remains a major challenge in the field despite intense theo-
retical efforts. The main obstacle lies in the fact that most theoretically established
models that support QSLs involve interactions that encompass multi-body (more
than two) interactions. This differs from the interactions that naturally occur in ex-
perimental setups, which typically involve only two-body interactions. However,
recent advances in the synthetic platforms based on Rydberg atoms, i.e., neutral
atoms trapped in optical tweezers, have opened up new avenues for exploring novel
quantum phases in these platforms. In recent years, several numerical studies have
predicted the appearance of QSLs in two distinct experimental setups of Rydberg
atom arrays [25–28], with pioneering experiments already reporting evidence for
realization of QSL in the “toric code” phase [29].

In this chapter, we will introduce some of the key concepts on this topic that will
be relevant throughout Part I. In Section 2.1, we describe the experimental platform
of Rydberg atom arrays. In Section 2.2, we discuss how Z2 QSLs emerge in the
framework of Z2 gauge theory. Finally, in Section 2.3, we review the parton con-
struction and projective symmetry group (PSG) classification of spin liquids, which
could be used as a tool to identify QSLs in experimentally relevant models.

2.1 Rydberg atom arrays

Quantum simulation has emerged as a powerful tool for understanding quantum
many-body systems. It involves building a synthetic quantum system in the lab,
implementing a theoretical model of interest which is inaccessible using classical
simulations. This idea dates back to Richard Feynmann [30], but only in the last
two decades that significant advancements in experimental techniques have finally
made quantum simulation becomes a reality. State-of-the-art quantum simulators
have been able to simulate systems reaching hundreds of qubits.

Among all the platforms being developed, Rydberg atom arrays have come to the
forefront of synthetic quantum systems [31]. These consist of ensembles of individ-
ual neutral atoms trapped in optical lattices or optical tweezers, that are almost fully
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FIGURE 2.1: a: The ground and Rydberg states |gi and |ri are coupled
by a resonant laser with Rabi frequency W. b: For two atoms sepa-
rated by a distance R < Rb, the collective ground state |ggi is coupled
only to |y+i = (|gri+ |rgi) /

p
2, but not to |rri, as this is forbidden

by the strong van der Waals interaction. c: In an array of atoms with
lattice spacing a, an atom in the Rydberg state |ri (denoted by red cir-
cle) prevents the excitation of all the atoms contained in a sphere of

radius Rb. Figures taken from Ref. [31].

controllable and tunable. The atomic states are coupled via a laser excitation to a
Rydberg state, i.e., a state with large principal quantum number n.

The large electric dipole moment of atoms excited to Rydberg states leads to
strong dipole-dipole interactions between them. There are two types of interaction
naturally occur between two Rydberg atoms, which leads to a mapping onto Ising
and XY Hamiltonians, respectively.

2.1.1 Blockade interactions

The Rydberg excitations are modeled as hard-core bosons with the mapping |0i =
|gi and |1i = |ri, where |gi , |ri are the ground and Rydberg state, respectively. We
introduce the creation and annihilation operators bj, b†

j , with the operator nj = b†
j bj

signals the presence of a Rydberg excitation at site j. The Hamiltonian is given by
[32]

HRyd = �W Â
j
(bj + b†

j )� d Â
j

nj + Â
i 6=j

Vi,jninj, (2.1)

which is equivalent to the Ising Hamiltonian with transverse and longitudinal field
in the spin language. Here, W is the Rabi frequency, d is the detuning of the laser,
and Vi,j is the strength of the van der Waals-type interactions between two Rydberg
atoms at sites i and j. The latter is strongly repulsive at short distances and decays
as 1/r6 at large distances, where r = |i � j| is the distance between the two atoms.
This interaction profile is very well approximated by ’blockade interaction’, namely

Vi,j =

(
•, if |i� j|  Rb

0, otherwise ,
(2.2)

where Rb is the blockade radius defined from V(Rb) = W. This induces an effective
constraint ninj = 0 at low energies, known as Rydberg blockade [33]: simultaneous
excitation of two atoms within the blockade radius to the Rydberg state is forbidden.
This Rydberg blockade interaction is schematically illustrated in Fig. 2.1.
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In 1D, when the blockade extends only to nearest-neighbors, the resulting effec-
tive model is equivalent to the model first introduced by Fendley, Sengupta, Sachdev
(FSS) [34], that can be directly related to exactly soluble classical statistical mechan-
ics systems in some parameter regimes. In recent years, it is also known as the PXP
model. Such a constrained dynamics could lead to a plethora of interesting phe-
nomena, such as quantum many-body scars [35, 36]. The dynamics described by
HRyd has already been realized in several experiments utilizing either optical lat-
tices or optical tweezers [37–42]. More recently, Ref. [29] implemented the blockade
which extends to third nearest neighbors on the Ruby lattice, discovering signatures
of quantum spin liquids in some parameter regimes.

2.1.2 Dipolar exchange interactions

In a different scenario, the atoms belong to the same Rydberg manifold and differ,
e.g., by their total angular momentum, such as |nSi and |nPi. The mapping to hard-
core bosons is then given by |0i = |nSi and |1i = |nPi. Here, the dipole-dipole
interaction leads to a coherent exchange of photons, thus flipping the internal states
of the atoms. This results in an effective interaction potential that scales as 1/r3. The
Hamiltonian reads

H = �W Â
j
(bj + b†

j )� d Â
j

nj + Â
i 6=j

C3

|i� j|3 (bib†
j + bjb†

i ), (2.3)

which is equivalent to the XY Hamiltonian with transverse and longitudinal field.
The model has been realized in [43] in a two-dimensional square lattice, which
demonstrated true long-range ferromagnetic order in 2D for the first time.

2.2 Z2 lattice gauge theory

As mentioned above, Rydberg atom arrays have emerged as a powerful platform
for exploring exotic phases of matter in the lab, including QSLs. In this section, we
discuss how the emergence of QSLs can be understood within the framework of Z2
lattice gauge theory (LGT).

2.2.1 Toric code

Before embarking on the discussion of Z2 LGT, we will first review the toric code
model introduced by Kitaev [44] as a simplest LGT.

We consider a L⇥ L square lattice on the torus, and we put the spins at the edges
of the lattice. There are thus N = 2L2 qubits. We define the star operators Ss and pla-
quette operators Pp on the vertices and plaquettes, respectively, as (see Fig. 2.2(a)):

Ss = ’
i2s

sx
i , Pp = ’

i2p
sz

i , (2.4)

where sx,z are the Pauli operators. The toric code Hamiltonian has the form

HTC = �J Â
s

Ss � J0Â
p

Pp. (2.5)

It is easy to check that Ss and Pp form a mutually commuting set. Therefore, a ground
state of HTC minimizes each individual term in Eq. (2.5), i.e, Ss = 1 and Pp = 1 for
all vertices and plaquettes. A Hamiltonian with this property is also known as a
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(a) (b)

FIGURE 2.2: (a) Operators in the toric code on the square lattice. Blue
and red links denote sx

i and sz
i operators, respectively. A star Ss and

plaquette Pp are shown, as is a loop operator on the contour L enclos-
ing the area A. (b) Anyons in the toric code. A pair of e particles is
created at the ends of a string of sx

i operators as shown. Similarly, a
pair of m anyons is created at the ends of a string of sz

i operators, as
indicated. The # anyon is defined as the composite particle of an e and

m particle. Figures taken from Ref. [45].

frustration-free Hamiltonian. Note that the ground state is not unique; there is four-
fold degeneracy if the system is placed on a torus. These degenerate groundstates
are characterized by topological string operators, which we will discuss in more
detail below. More generally, the groundstate degeneracy is 4g if the system is placed
on an orientable manifold with boundaries with genus g.

The groundstates can be intuitively understood using a graphical representation.
Let us consider the sx basis, and we represent the sx = �1 by a string. Due to
the constraint Ss = 1, an even number of strings must emanate from each vertex,
implying that these strings form closed loops. Furthermore, the constraint Pp = 1
effectively generates a superposition of loop configurations. More specifically, the
state with Pp = 1 is the equal-weight superposition of all possible loop configura-
tions that are related to one another by the flip of square plaquettes.

The groundstates can be characterized by the t’Hooft loop operators

Tx,y = ’
i2cx,y

sx
i (2.6)

and the Wilson loop operators

Wx,y = ’
i2c0x,y

sz
i . (2.7)

Here, cx,y is a loop (closed path) that winds around the torus in the x(y) direction,
whereas c0x,y is a cut, i.e. a loop on the dual lattice defined analogously. The string
operators Tx,y, Wx,y have the same commutation relations as sz

1,2, sx
1,2, and thus the

ground state space corresponds to a state of two qubits, i.e., the degeneracy is four-
fold.

The low-energy excitations can also be described in a rather simple way. An el-
ementary excitation occurs if one has Ss = �1 or Pp = �1 at a given vertex or
plaquette. These excitations are referred to as “electric” (e) and “magnetic” (m) ex-
citations, respectively. Alternatively, they are also called spinon and vison in the
literature. Because of the relations ’s Ss = 1 and ’p Pp = 1, there must be at least
two vertices (plaquettes) such that Ss = �1 (Pp = �1). It follows that the elementary
excitations cannot be created individually; they must be created in pairs. One can
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create a pair of elementary excitations by applying a string of sz(sx) to an arbitrary
ground state, in which case the excitations would live at each end of the string (see
Fig. 2.2(b)).

The nonlocal nature of the e and m excitations in the toric code manifests in their
unusual braiding statistics. Consider an m particle placed at the origin and an e
particle moved around it in a closed loop (see Fig. 2.2(b)). Moving the e particle
one link at at a time by acting with sz

i operators, where i labels the connecting link,
results in a final state related to the initial state by the action of a product of spins
around the closed loop L

|yfini = ’
i2L

sz
i |yiniti . (2.8)

One can see that the product of sz
i can be written as a product of plaquette operators:

’
i2L

sz
i = ’

p2A
Pp, (2.9)

where L = ∂A is the closed loop and A is the region enclosed by the loop. Since the
initial state has an m particle inside L, exactly one Pp in this product will be negative.
This results in a negative sign in the final state:

|yfini = � |yiniti . (2.10)

This phase factor of �1 (or a p phase shift) acquired by the state upon moving one
particle around another (of different type) highlights their “mutual statistics”. Par-
ticles exhibiting such behavior are called anyons. Due to this property, a composite
particle formed by combining an e and an m particle would exhibit fermionic self-
statistics.

The existence of anyons can be seen as a fundamental property of the toric code.
For example, the ground state degeneracy on the torus can be directly attributed to
the existence of anyonic excitations within the system [46].

2.2.2 Ising gauge theory

As we shall see below, the toric code in fact emerges in a particular limit of an
Ising gauge theory. We again consider a L ⇥ L square lattice, with the spins at the
edges of the lattice. Here, the spins represent Z2 gauge fields. The Hamiltonian of
the Ising gauge theory has the form

HIsing�GT = �J Â
p

Pp � g Â
i

sx
i . (2.11)

The model is invariant under the Gauss’ law operators

Gs = ’
i2s

sx
i , (2.12)

defined on each site s. Consequently, we can work in the sector with fixed values of
Gs. Usually, one would consider the sector Gs = 1, i.e., the physical states are gauge-
invariant, meaning that Gs |yi = |yi , 8s (Gauss’ law). This sector is also called the
“even” Ising gauge theory. Instead, the “odd” Ising gauge theory corresponds to the
sector Gs = �1, 8s.

It is instructive to consider the various limits of HIsing�GT. Firstly, for g/J !
0, the model reduces to the toric code discussed in the previous section, i.e., the
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phase is topologically ordered. The phase hosts excitations that can be separated
at any distance with finite energy cost; we say that the excitations are deconfined.
Conversely, for g/J ! •, the phase is a trivial paramagnet. In this case, it takes a
large energy cost (specifically, linear with distance) to separate two excitations; we
say that the excitations are confined. We thus expect that there is a phase transition
at some (g/J)c between the deconfined (toric code) and confined (paramagnetic)
phase.

Interestingly, it is known that HIsing�GT can be transformed to the 2D transverse-
field Ising model through a duality known as Wegner duality [47]. Therefore, the
location of the transition is given exactly by the critical point of the 2D transverse-
field Ising model.

2.2.3 Ising-Higgs gauge theory

One can couple the Ising gauge theory to matter; the resulting theory is called
the Ising-Higgs gauge theory. The matters live on the vertices of the lattice, and we
denote the matter operators by tx,z. The Hamiltonian reads

HIsing�Higgs = �J Â
p

Pp � hx Â
i

sx
i � hz Â

i
sz

i ’̀
2∂i

tz
` �m Ầ tx

` . (2.13)

The Gauss’ law operators become

Gs = tx
s ’

i2s
sx

i . (2.14)

By integrating out the matter field, the model is transformed to the toric code in
parallel magnetic field

H = �J Â
p

Pp �’
i2s

ss
i � hz Â

i
sz

i � hx Â
i

sx
i . (2.15)

There exists a duality that interchanges hx and hz. The phase diagram of the model
has been obtained with Quantum Monte Carlo in [48, 49]. There are three distinct
phases: topological, e-condensed, and m-condensed phases (see Fig. 2.3). The transi-
tions from the topological phase to the two condensed phases are both second-order.
The second-order transition lines merge into a first-order line that lies on the self-
dual line (hx = hz). The three transition lines have been conjectured to meet at a
multicritical point, although numerical simulations have not been able to show this
conclusively [48].

2.3 Parton construction of spin liquids

In this section, we review the parton construction for quantum spin liquids in
spin S = 1/2 systems. Building upon this construction, we then discuss the PSG
classification of spin liquids. We recall that quantum spin liquids are phases of mat-
ter that do not (spontaneously) break any symmetry, and yet they are distinct from a
trivial phase. The PSG classification offers a systematic approach to classify all pos-
sible QSLs based on symmetry considerations and how these symmetries manifest
in the parton representation of the spins.

Our focus here will be on the slave-boson (Abrikosov fermion) approach [50, 51].
While the slave-fermion (Schwinger boson) approach also exists, it is limited to de-
scribing gapped spin liquids.
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FIGURE 2.3: Phase diagram of the toric code model in magnetic field.
The second-order transition lines are shown by full (red) lines and the
first-order transition line is represented by dashed (blue) line. Phase
A is the e-condensed phase and Phase B is the m-condensed phase.

Figure taken from Ref. [48].

The core step of the construction is to write spin operators in terms of spinon
operators. The latter are effective low-energy quasiparticles carrying a fractional
spin quantum number. The spin operators are represented by

Sa =
1
2

f †
i sa

ij f j (2.16)

for a 2 {x, y, z}. Here sa are Pauli matrices and fi, i 2 {", #}, are the fermionic
spinon operators. Notice that the local Hilbert space dimension is doubled as a
result, since the fermionic Fock space is four-dimensional. The equivalence is thus
only valid by imposing a constraint that there is exactly one spinon per site

f †
i fi = 1, (2.17)

while all the other fermionic states are unphysical.
In the following, it is convenient to introduce a two-component spinor

Y = ( f" f †
# )

T. (2.18)

The f -fermion states and the Y-fermion states have the following relation

|0 f i = Y†
2 |0Yi

f †
# |0 f i = |0Yi

f †
" f †
# |0 f i = Y†

1 |0Yi
f †
" |0 f i = Y†

1Y†
2 |0Yi

(2.19)

Therefore, the constraint f †
i fi = 1 is equivalent to the constraint that there are even

Y-fermion, with the empty state corresponds to down-spin and the doubly-occupied
state corresponds to the up-spin state.

One can verify that the representation in Eq. (2.16) is unchanged under SU(2)
transformations on Y, i.e., Y ! gY, where g is an SU(2) matrix. As this can be
performed independently on each site of a lattice, this leads to SU(2) gauge symme-
try on the spinon representation. The additional gauge symmetry implies that there
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is some flexibility in how physical (spin) symmetries manifest within the spinon
Hilbert space. If the original spin model possesses a symmetry x, the correspond-
ing symmetry in the spinon space can be realized with an additional SU(2) gauge
transformation gx. In this case, we say that the symmetry group is (projectively)
represented in the spinon Hilbert space.

For spin models which possess spin-spin interactions (e.g. quantum Heisenberg
models), directly rewriting the spins in terms of spinons using Eq. (2.16) gives rise
to quartic spinon interactions, which do not lead to a solvable model. Nevertheless,
one can perform a mean-field approximation to transform it into a quadratic spinon
Hamiltonian

HMF = Â
ij

Y†
i uijYj + h.c. Â

i
la

i Y†
i saYi, (2.20)

which is then solvable. Here, uij are the mean-field amplitudes which include hop-
ping and pairing terms, and la

i are the on-site potentials.
The matrices uij can be written as uij = uµ

ijt
µ, where (tµ) = (is0, sa), uµ

ij are com-
plex parameters and sa are Pauli matrices. Real uµ

ij correspond to singlet terms, while
imaginary uµ

ij correspond to triplet terms. Different mean-field ansätze are labeled

by different
⇥
uij, li

⇤
=

h
uµ

ijs
µ, la

j sa
i
. The core of the PSG classification is to deter-

mine all possible
⇥
uij, li

⇤
which produces physical wavefunctions respecting certain

symmetries of interest. For a given ansatz labeled by
⇥
uij, li

⇤
, the corresponding

physical spin state is obtained by applying Gutzwiller projection

|yi = PG|yMFi, (2.21)

with PG = ’i ni(2� ni), to the mean-field ground state |yMFi. Expectation values
in such wavefunctions can be efficiently computed numerically using variational
Monte Carlo (VMC) techniques [52].

In this section, we restrict ourselves to real uµ
ij when the full SU(2) spin rotation

symmetry is preserved. In this case, the mean-field amplitudes uij can be written as
(uµ

ij) = (c1
ij, h1

ij, h2
ij, c2

ij) where cij = c1
ij + ic2

ij are complex hopping and hij = h1
ij + ih2

ij
are singlet pairing terms. We can then write in a compact form

uij =

✓
cij hij
h⇤ij �c⇤ij

◆
(2.22)

One can verify that the spinon Hamiltonian in Eq. (2.20) is invariant under SU(2)
gauge transformation gi

Yi ! giYi

uij ! giuijg†
j

lj ! gjljg†
j

(2.23)

The presence of gauge symmetry in the spinon Hilbert space leads to a crucial im-
plication: if two mean-field ansätze are related by a gauge transformation, they will
lead to the same physical spin state using the Gutzwiller projection in Eq. (2.21). This
implies that the invariance of a physical wavefunction under a symmetry transfor-
mation only requires the invariance of the corresponding mean-field ansatz up to a
gauge transformation.

Consequently, we can classify mean-field ansatz using PSG, which distinguishes
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between phases that have the same physical symmetries. More specifically, PSG
contains all symmetry transformations x that leave the physical wavefunction in-
variant, along with the corresponding gauge transformation gx. We will call the
group of symmetry transformations SG. Then we can write Qx(u) = (g, x) 2 PSG,
which action on the ansatz u =

⇥
uij, lj

⇤
is

Qx(u) =
h

giux�1(i,j)g†
j , gjlx�1(j)g†

j

i
. (2.24)

The multiplication law in this group is

QxQy = (gx, x)(gy, y)(gxxgyx�1, xy), (2.25)

and the inverse element is

Q�1
x = (gx)

�1 = (x�1g�1x, x�1). (2.26)

The invariance of an ansatz under its PSG requires that Qx(u) = u for unitary trans-
formations and Qx(u) = �u for anti-unitary transformations.

Every PSG contains an important subgroup of gauge transformations that leave
the mean-field Hamiltonian invariant known as the invariant gauge group (IGG),
i.e., g(u) = u for all g 2 IGG. It always contains Z2 as a subgroup since global trans-
formations gj = ±1 leave any ansatz invariant. Typically, it is either SU(2), U(1), or
Z2. The IGG characterizes the emergent low-energy gauge fluctuations in the effec-
tive theory. For example, if IGG = Z2, the emergent gauge bosons are gapped and
expected to be irrelevant at low energy. However, if IGG = U(1) or IGG = SU(2),
the gauge bosons (“photons” or “gluons”) are gapless and may strongly affect the
low-energy physics. Depending on the IGG of its ansatz, a spin liquid is said to
have a Z2, U(1), or SU(2) gauge structure. The IGG is related to the PSG through
the following relation

SG = PSG/IGG. (2.27)

This relation tells us that a PSG is a projective representation or an extension of
the symmetry group. Once we specify the PSG, we can subsequently construct the
corresponding ansätze that respect those symmetries.

As a final remark, it is important to discuss the effect of fluctuations on the mean-
field states. Some mean-field states are stable against fluctuations. For such stable
states, the corresponding PSG accurately captures the underlying quantum order in
the physical spin liquids. As mentioned above, this is for example the case when
the IGG = Z2, where gauge fluctuations are gapped via the Anderson-Higgs mech-
anism. Alternatively, the Chern-Simons mechanism can also gap out gauge bosons,
leading to chiral spin liquids. Conversely, there are mean-field states that are unsta-
ble against fluctuations. In these cases, the PSG may not accurately reflect any real
quantum order within the spin liquid.
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Chapter 3

Gauge-theoretic origin of Rydberg
quantum spin liquids

Introduced by Kitaev as a model for fault-tolerant quantum computation, the
toric code is one of the most renowned examples of topological order [44]. Its ground
state, a Z2 quantum spin liquid (QSL) characterized by long-range entanglement,
topological degeneracy and fractionalized excitations, has had a profound impact
on both quantum information and condensed matter physics [45, 53]. In particular,
it has shed considerable light onto the use of topological matter to encode quantum
information in a robust manner. One of its key elements is its particularly clear
connection to the gauge-theoretical origin of QSLs [54–57]: the presence of a Z2
gauge symmetry allows to interpret the latter as a deconfined phase of matter, where
excitations (e.g., anyons) can be separated at arbitrary distance at finite energy cost,
in sharp contrast to what happens in confined phases [58, 59].

Despite the aforementioned clear theoretical interpretation, experimentally ob-
serving such deconfined phases has proven challenging, mostly because directly
engineering the toric code is highly non-trivial. A recent development has been
the proposal that topological QSL can be realized in Rydberg atom arrays [31, 60,
61]: in these systems, constraints akin to Gauss laws (or, equivalently, dimer con-
straints [62]) are imposed by means of the phenomenon of Rydberg blockade [33,
63–67].

Recent numerical work has reported signatures of QSLs in a constrained model
on the Ruby lattice, both at equilibrium [25] and at the level of diabatic state prepara-
tion [68]: in the following, we will refer to this state as a Rydberg quantum spin liq-
uid (RQSL). In a similar model [29], strong signatures of deconfinement of a gauge
theory have also been observed in experiments, albeit not yet in the ground state.
Despite these remarkable results, the theoretical origin of such a deconfined phase
remains so far unclear. While the similarity between the Rydberg blockade and a
dimer constraint suggests that the RQSL phase can be understood as a resonant
dimer state on the kagome lattice (which is known to be a Z2 QSL state [69, 70]),
this interpretation is challenged by the fact that no QSL phase is found in the dimer-
model limit. In fact, signatures of a QSL are observed only when a moderate density
of monomers is present: if this density is too low or too high the system will be in
a crystalline or in a trivial phase, respectively. It remains an open question what is
the mechanism that can allow for the emergence of topological order in such a small
range of densities, with the additional crux that, at odds with gauge-theoretical ex-
pectations [59, 71], such a QSL appears in the absence of plaquette terms.

Here we address this conundrum by proving an exact mapping between Z2 lat-
tice gauge theories [72] on the kagome lattice and a class of constrained models on
the ruby lattice. Using this connection, we find a regime where topological order can
be analytically established, showing how a resonating valence bond (RVB) [55] state
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FIGURE 3.1: (a) Definition of vertex operators A+ and plaquette op-
erators B4, B7. (b) Example of a configuration in the sz basis: links
marked with red solid (grey dashed) lines correspond to sz = +1
(sz = �1). Electric excitations are located on vertices with A+ = 1.
(c) Definition of the operator F4. (d) Examples of atom positions on
the ruby lattice, formed by the midpoints on the links of a kagome
lattice. (e) Definition of the interaction terms: nearest, next-nearest,
and next-next-nearest neighbor interactions are V1 = •, V2 = 4W
and V3 = 4W, respectively. Longer-range interactions are neglected.
(f) Local mapping between the Hilbert spaces of a triangle in the toric
code (left) and Rydberg atom models (right). The toric code space is
constrained by B4 = 1. Solid red (grey dashed) lines indicate links
with sz = 1 (sz = �1). The Rydberg atom Hilbert space is con-
strained by the Rydberg blockade phenomenon: a triangle can have

either 0 or 1 Rydberg excitations (orange circles).

is the exact ground state wavefunction of a Hamiltonian featuring solely two-body
interactions. We then study the phase diagram beyond this regime using numerical
simulations. Our results suggest that the QSL phase reported in Ref. [25] is adi-
abatically connected to the exactly soluble point in an extended parameter space:
importantly, according to our mapping, the experimentally relevant point is com-
patible with deconfinement, as its dual model features strong plaquette interactions
- albeit, rather peculiarly, only on a certain sublattice. We then discuss how the type
of models resulting from our mapping can be realized using Rydberg dressing tech-
niques 1.

3.1 Lattice gauge theory

We are interested in the toric code Hamiltonian on the kagome lattice, where Pauli
operators sa

j are assigned to each link j. We define the operators A+, B4 and B7 on
vertices, triangular, and hexagonal plaquettes, respectively, as (see Fig. 3.1-a):

A+ = ’
j2+

sz
j , B4 = ’

j24
sx

j , B7 = ’
j27

sx
j . (3.1)

A+, B4 and B7 form a mutually commuting set. Our Hamiltonian of interest has
the form

HTC
0 = W Â

+
A+ � J1 Â

4
B4 � J2 Â

7
B7 � g Â

j
sx

j . (3.2)

Let us first focus on the case g = 0. Here, the ground state is obtained for A+ = �1
on every vertex and B4/7 = 1 on every plaquette, and is a (odd) Z2 spin liquid,

1We note that our discussion specifically applies to the experimental setups inspired by Ref. [29],
and is complementary to other approaches to spin liquids in Rydberg systems [28, 65, 73, 74]
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with anyonic excitations. A vertex with A+ = 1 represents an electric excitation or
charge (see Fig. 3.1-b), with mass 2W, while a plaquette with B4 = �1 (B7 = �1) is
a magnetic excitation or vison, with mass 2J1 (2J2).

For g 6= 0 the Hamiltonian does still commute with B4 and B7, but does not
commute with the A+ operators. The effect of the term proportional to g is to ex-
cite pairs of electric charges on neighbouring sites; the model is a Ising-Higgs lattice
gauge theory [71, 75], as it describes a Z2 gauge field coupled to matter. Since the
toric-code ground state is gapped, for sufficiently small g the system remains a Z2
spin liquid [57, 71]. For g/W larger than a critical value, the model has a phase
transition to a confined phase (a condensate of electric charges). Utilizing Wegner
duality [47], we quantitatively establish the extent of the topological phase until
gc/W = egc ' 0.3387. This argument and the location of the phase transition are
valid for arbitrary J1 and J2, as long as the ground state is in the sector with no mag-
netic excitations. The model in Eq. (3.2) can equivalently be interpreted as a pure
Ising gauge theory on the dual lattice (a dice lattice), where electric and magnetic
charges are interchanged: the term proportional to g now excite pairs of magnetic
excitations on neighboring plaquettes while the electric charge is static, the plaquette
terms B4,7 become vertex terms, and Gauss’ law is enforced on every vertex.

In our mapping to the Rydberg model below, we will consider J1 ! • and J2 = 0:
in this case, we are restricted to the sector with B4 = 1 on every triangular plaquette,
while hexagonal plaquettes have zero “mass” for g = 0. While the absence of a
gap at g = 0 may be concerning, as it does not guarantee that the system is in a
gapped spin liquid state in a finite range of g/W, we will show via both numerical
simulations and perturbation theory that the ground state is always in the sector
with no magnetic excitations and that a gapped spin liquid is present in a region
with 0 < g/W < egc. This is because the term proportional to g generates an effective
mass for magnetic excitations, allowing for a gapped ground state with topological
order even for J2 = 0.

3.2 Rydberg model

We now map the toric code on the kagome lattice to a model of Rydberg atoms
constrained by the Rydberg blockade. The atoms are located on the links of the lat-
tice, forming a ruby lattice (see Fig. 3.1-d). The Rydberg excitations are modeled as
hard-core bosons with operators bj, b†

j . We assume that interactions between neigh-
bouring atoms (i.e., belonging to the same triangle) are repulsive and very strong,
inducing a nearest-neighbor blockade. Under this assumption, each triangle can
have either 0 or 1 Rydberg excitation: each triangle has a Hilbert space spanned by
the four basis states in Fig. 3.1-f (right column). Note that this assumption differs
from the one of Ref. [25], where the blockade extends to next-nearest and next-next-
nearest neighbours: this naturally leads to different gauge constraints.

In the model in Eq. (3.2), the constraint B4 = 1 reduces the Hilbert space dimen-
sion of a triangle from 23 to 4. The constrained Hilbert space is spanned by the states
in Fig. 3.1-f (left column), defining a local mapping between the Hilbert spaces of
the two models. This correspondence allows a direct mapping between the Hamil-
tonian in Eq. (3.2) with J1 ! •, J2 = 0 and the following Hamiltonian for Rydberg
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excitations (see Sec. 3.2.1):

HRyd
0 =� g Â

j
(bj + b†

j )� g Â
hi,ji

(b†
i bj + b†

j bi)

� 4W Â
j

nj + 4W Â
hhi,jii

ninj + 4W Â
hhhi,jiii

ninj.
(3.3)

Here, the first term is the creation/annihilation of Rydberg excitations, the second
term is the hopping of excitations between neighbouring atoms, the third term is a
chemical potential for the excitations, and the fourth and fifth terms are Rydberg in-
teractions between next-nearest neighbors and next-next-nearest neighbors respec-
tively. Note that, while the nearest-neighbour interaction is V1 = •, next-nearest-
neighbor and next-next-nearest-neighbor interactions are V2 = V3 = 4W (see Fig.
3.1-e). The experimental realization of this Hamiltonian will be discussed in Sec. 3.6.

A first result of the mapping above is that ’t Hooft and Wilson lines in the toric
code model are mapped onto the string operators proposed in Ref. [25] 2: this sug-
gests the QSL phase observed there has the same nature as the topological phase of
the model in Eq. (3.2), that is, stemming from a genuine Z2 gauge theory. Moreover,
the resonating valence bond (RVB) state of dimers in [25] is here mapped to the toric
code ground state (equal weight superposition of the configurations with A+ = �1
on each vertex): our mapping provides a local unitary transformation that relates
the RVB dimer state and the toric code ground state; the existence of such a unitary
was proven in [78].

3.2.1 Mapping

In this section, we show the mapping of HTC to HRyd. First of all, since all tri-
angular plaquettes are independent, the Hilbert space can be decomposed as H =N
4H4. Both the constraints B4 and ninj = 0 (for nearest neighbors i, j) restrict

the Hilbert space of a single triangle from 8 to 4 dimensions. We take a basis of 4
states of a triangle in the Z2 LGT model and map them to 4 states of a triangle in the
Rydberg model, as shown in Fig. 3.1-f.

With this mapping, the Hamiltonian terms are transformed in the following way,

sx
i

 
1 + sz

j sz
k

2

!
7�! (b†

i + bi)

sx
k

 
1� sz

i sz
j

2

!
7�! (bib†

j + h.c.)

’
i2⇥

sz
i 7�! ’

i2⇥
(2ni � 1)

Â
hiji24

sz
i sz

j 7�! �4 Â
j24

nj + 3

(3.4)

2We nevertheless stress that utilizing such operators as order parameters for deconfinement should
be done with great care: the correct order parameter [76] is defined by correlations in real space and
imaginary time, and it is not necessarily matching real space correlations in lattice models with very
small correlation length (for a spectacular failure, see Ref. [77]). While our work suggests a very strong
correspondence between those and deconfinement even in real space, a quantitative verification of
their regime of applicability is an interesting, open question.
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where i, j and k are the three links belonging to a single triangle. We note that terms
of the form b†

i b†
j are not present in the model (and, in the implementation discussed

in the main text, can be systematically avoided as discussed in Ref. [65]).
To simplify the term ’j2⇥(2nj� 1), consider the links i, j, k, l 2 ⇥with i, j belong-

ing to the same triangle and k, l belonging to a different triangle. Then,

’
j2⇥

(2nj � 1) = (2ni � 1)(2nj � 1)(2nk � 1)(2nl � 1)

= (4ninj � 2ni � 2nj + 1)(4nknl � 2nk � 2nl + 1)

= (�2ni � 2nj + 1)(�2nk � 2nl + 1)

= 4nink + 4ninl + 4njnk + 4nl � 2(ni + nj + nk + nl) + 1.

(3.5)

Hence, we obtain
’
j2⇥

sz
j 7�! 1� 2 Â

j2⇥
nj + 4 Â

i2>
Â
j2<

ninj (3.6)

Note that each link belongs to two vertices, hence

Â
⇥

Â
j2⇥

nj = 2 Â
j

nj (3.7)

Moreover, Âi2> Âj2< ninj contains four pairs: two at distance r2 and two at distance
r3, i.e., they are respectively second and third nearest neighbors, hhi, jii and hhhi, jiii.
Finally, summing over all triangles and vertices, the mappings in Eq. (3.4) and (3.6)
define a mapping (up to constants) of HTC to HRyd.

3.3 Wegner duality and Ising model

In this section, we show the mapping of the Hamiltonian HTC
0 for J1 ! • and

J2 = 0 to the quantum Ising model on the kagome lattice. This mapping follows the
general approach of Wegner dualities [47]. Although the hexagonal plaquette oper-
ators B7 do not appear in the Hamiltonian, they do commute with the Hamiltonian.
Therefore, we can study the model separately in each sector of fixed eigenvalues of
B7 and the Wilson loops Wx,y. Each sector can be mapped to a transverse-field Ising
model on the kagome lattice with appropriate nearest-neighbor coupling signs. To
see this, we define an Ising variable on each vertex r of a kagome lattice

tz
r = ’

j2⇥
sz

j

tx
r = ’

j2gr

sjs
x
j ,

(3.8)

where the signs sr,r0 = ±1 are chosen such that ’j24,7 sj = B4,7 and ’j2gx,y sj =
Wx,y, and gr is a path between a specific vertex and r (see Fig. 3.2-a). Note that
the variables tx

r are defined independently of the choice of the path gr because
’j2G sjs

x
j = 1 for every closed loop G. The variable tz

r indicates the presence of/absence
of an electric charge in r.

With the mapping in Eq. (3.8), the toric code Hamiltonian is mapped to

H = �g Â
hr,r0i

sr,r0t
x
r tx

r0 + W Â
r

tz
r . (3.9)
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FIGURE 3.2: (a) The LGT variables sa
j are located on the links of the

kagome lattice (black dots). The Ising variables are defined on the
vertices of the kagome (grey circles). A unit cell (blue shaded area)
contains 6 LGT sites, 3 Ising sites, 2 triangular plaquettes, 1 hexagonal
plaquette. The dashed blue line delimits a system with Nc = 6 cells.
Periodic boundary conditions are imposed. The paths gr, gr0 connect
a designated vertex (here on the left-bottom corner) with sites r and r0.
(b-d) Sectors with different values of the Wilson loops are obtained by
setting sj = �1 on the links crossing the horizontal/vertical bound-
aries. The links in orange are the ones with sj = �1. (e) A sector with
a pair of magnetic excitations can be obtained with an appropriate
choice of signs of sj: a line is drawn that connects the two magnetic
excitations; for all the links crossed by the line we set sj = �1. This
choice ensures that B7 = �1 for the two plaquettes with the excita-

tions, and B4 = 1, B7 = 1 for all the other plaquettes.

A few comments are in order. In the original lattice gauge theory, the number
of degrees of freedom once the plaquettes and the Wilson loops are fixed is 6Nc �
Np � NW + 1 = 3Nc � 1, where Nc is the number of unit cells in the system (each
unit cell has 6 spins, see Fig. 3.2-a), Np = 3Nc is the number of plaquettes, NW = 2
is the number of independent Wilson loops, and we also take into account the fact
that not all plaquettes are independent, because the product of all plaquettes is 1.
In the corresponding Ising model, each unit cell contains 3 Ising variables, so the
total number of degrees of freedom is 3Nc. To obtain the correct counting, we have
to further fix the value of the parity P = ’r tz

r to P = 1 (this is easily found by
rewriting P in terms of the original sz

j operators).
We now comment on the physical interpretation of the mapping to the Ising

model outlined in this section. The Ising variables correspond to the vertex oper-
ators A+ defined in the main text: tz

r = +1 indicates the presence of an electric
charge on site r, while no charge is present for tz

r = �1. The (fixed) plaquettes rep-
resent a static background of magnetic fluxes, while the Wilson loops represent the
fluxes around the two directions of the torus. The Hamiltonian in Eq. (3.9) describes
the dynamics of the charges in the static background of magnetic fluxes.

The lowest energy is obtained when no flux is present, i.e., when all the plaquettes
are fixed to B4,7 = 1, and Wx = Wy = 1. For g > 0, this sector is mapped to the
ferromagnetic Ising model on the kagome lattice, with sj = 1 for every j. The QSL
phase in this sector is mapped to the paramagnetic phase in the ferromagnetic Ising
model, which is known to exist up until gc/W = 0.338678(4) [79]. The correlation
length of the ground state in this sector is associated with the mass of the electric
excitation and vanishes for g ! gc. On the other hand, for g < 0, the no-flux
sector is mapped to the antiferromagnetic Ising model on the kagome lattice. In this
model, it is known that the paramagnetic phase extends along the whole g < 0 line
(as long as W 6= 0) [54, 80]. This shows that the QSL phase exists in our model for
h = 0, l = 0 for any value of g/W < 0.
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In the QSL phase, the lowest energy states in the sectors with B4,7 = 1 for every
plaquette but different signs of Wilson loop operators have a gap µ exp(�cL) (where
L is the shortest linear size of the system) with respect to the case Wx = Wy = 1.
Possible configurations of sj corresponding to these sectors are shown in Fig. 3.2-
b,c,d.

Another interesting quantity that we can compute exploiting this mapping is the
mass of magnetic excitations. Because the product of all plaquettes is equal to 1, we
can only have an even number of magnetic excitations. Therefore, to measure the
mass of a single excitation, we consider a sector with two excitations at very long
distance (see Fig. 3.2-e): we expect that their interaction energy becomes small for
sufficiently long distance, such that the energy difference between the lowest-energy
state in this sector and the ground state is equal to twice the mass of a magnetic
excitation.

3.3.1 Effective magnetic mass from perturbation theory

Each sector of the toric code Hamiltonian HTC
0 can be mapped to a quantum Ising

model on the kagome lattice with appropriate nearest-neighbor couplings, as shown
above. We can apply perturbation theory to these Ising models in the small g/W
limit to estimate the ground-state energy for each sector. We note that perturbation
theory is carried out within the regime of validity of the mapping we discussed
above, and it is only needed to estimate energy splittings within allowed states in
the spectrum.

At g = 0, the ground state is the paramagnetic state with all tz
r = �1 and the

energy is E0 = �6WNc in each sector. The first perturbative correction that depends
on the sector is at sixth order, E6 µ �g6 Â7 B7, corresponding to flipping 6 Ising
variables around a hexagonal plaquette. We see that, for both g < 0 and g > 0,
the lowest ground state energy belongs to the sector with all B7 = 1, and there is
a finite gap (mass of magnetic excitations) separating this state from all the other
sectors. Note that this mass is zero for g = 0 and it is generated “dynamically” by
the charge fluctuations, resulting in a gapped spin liquid ground state even in the
absence of hexagonal plaquette terms.

3.4 Additional terms

In order to emphasize the wide applicability of our reasoning in terms of ex-
perimental platforms, we now consider a broader class of dynamics, introducing
additional Hamiltonian terms:

HRyd
1 = �h Â

j
(bj + b†

j ) + h Â
hiji

(b†
i bj + b†

j bi)� 4l Â
j

nj, (3.10)

which, under the local mapping in 3.1-f become

HTC
1 = �h Â

4
F4 + l Â

hi,ji
sz

i sz
j , (3.11)

where F4 is the operator in Fig. 3.1-c. Note that HTC
1 commutes with the triangular

plaquette operators B4, but does not commute with the hexagonal plaquette oper-
ators B7. In particular, the term proportional to h creates a pair of electric charges
and a pair of visons (on hexagonal plaquettes) on the toric code ground state, while



Chapter 3. Gauge-theoretic origin of Rydberg quantum spin liquids 38

the term proportional to l creates pairs of visons on neighboring hexagons (i.e.,
hexagons that share a vertex).

We remark that, by using the mapping defined for the states in Fig. 3.1-f, any
Hamiltonian term of the Rydberg-atom model that is compatible with nearest-neighbor
blockade (e.g., longer-range interactions) can be mapped to a Hamiltonian term of
the toric code model. The blockade is the fundamental ingredient to enforce Gauss
law [63].

3.4.1 Self-duality

We show here that the Hamiltonian HTC
0 + HTC

1 with J2 = 0 has a self-duality that
maps g! �h, h! �g. The transformation we consider is induced by the following
unitary mapping:

U = exp

"
�i

p

4 Â
4

 

Â
j24

sz
j + ’

j24
sz

j

!#
= ’
4

2

41
2

0

@1� Â
hi,ji24

sz
i sz

j

1

A

3

5 (3.12)

We remark that, in contrast with other dualities of the theory, this transformation has
a completely local nature. The action of this transformation on the Pauli operators
of the link j is

Usz
j U† =sz

j , (3.13)

Usx
j U† =� sx

j sz
i sz

k , (3.14)

where i and k are the two links that belong to the same triangle as j. It can be easily
checked that UB4U† = B4 and UA+U† = A+, while

U

 

Â
j24

sx
j

!
U† = �F4, (3.15)

UF4U† = � Â
j24

sx
j . (3.16)

Therefore, the transformation sends g ! �h, h ! �g while leaving W, J1 and l
invariant. Note that, while B4 and A+ are invariant under the transformation, the
hexagonal plaquette B7 is not, as it gets decorated by sz operators.

Under the mapping to the Rydberg model, the unitary U in Eq. (3.12) takes the
form

U = ’
j

(�1)nj , (3.17)

and therefore induces the transformations UbjU† = �bj, Ub†
j U† = �b†

j , UnjU† =
nj.

A consequence of the self-duality illustrated here is that the phase diagram in
the g� h plane is symmetric under reflection with respect to the axis h = �g, and
that the line g = 0 for l = 0 can also be solved analytically with a mapping to the
Ising model, similarly to the h = 0, l = 0 case. On the self-dual line h = �g the
quantity Âhi,ji sz

i sz
j (and, equivalently, the total number of Rydberg excitations Âj nj)

is conserved.
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FIGURE 3.3: (a) Fidelity susceptibility of the Hamiltonian HTC for
l = 0 as a function of the parameter g. (b) Phase diagram of HTC for
l = 0. The heatmap indicates the overlap of the ground state with

|y0i. The dots indicate the peaks of the fidelity susceptibility.

3.5 Phase diagram

We now study the phase diagram of the Hamiltonian HTC = HTC
0 + HTC

1 by
means of exact diagonalization, imposing the constraint J1 ! • by directly restrict-
ing the Hilbert space to the states with B4 = 1 on every triangular plaquette. All
results shown are for a 3⇥ 2 cluster containing 36 spins. Our goal here is not to pre-
cisely determine transition points, but rather, to discuss the generic structure of the
phase diagram against theory.

We first focus on the case l = 0. For g = 0 or h = 0, the model can be mapped to
the quantum Ising model on the kagome lattice (see Sec. 3.3), whose phase diagram
has been obtained in previous studies [54, 79, 80]. To detect the transition points and
obtain the phase diagram for arbitrary g, h, we compute the fidelity susceptibility cF
defined as

cF(h) = lim
dh!0

�2 ln F(h, dh)
(dh)2 (3.18)

where the fidelity F is defined as F(h, dh) = |hy(h)|y(h + dh)i|, with h being any
parameter of the Hamiltonian. In systems with finite volume Ld, cF/Ld is known
to exhibit peaks, whose amplitudes diverge in the thermodynamic limit and whose
positions converge towards the critical point; the position of the latter can be derived
via finite-size scaling techniques [81].

Fig. 3.3-a shows the fidelity susceptibility as a function of g for l = 0. The
marked dots in Fig. 3.3-b indicate the phase boundary, estimated as the position of
the maximum of the fidelity susceptibility.

In addition, we compute the overlap of the ground state |yi with the state |y0i,
defined as the ground state of the model for h = 0, l = 0, g/W = 0.1. Since we
know that the ground state of the model with h = 0, l = 0 and small g/W is a QSL,
the overlap of |y0i with the ground state of the other points in the parameter space
may tell us if those ground states have the same correlation structure. Fig. 3.3-b
shows that, as expected, the overlaps are large in the QSL phases, and are close to 0
for the electric and magnetic condensates.

3.5.1 Adiabatic path from exactly soluble point to the Rydberg line

A key question is, whether the exactly soluble point is adiabatically connected
to the regime studied in Ref. [25]. To reproduce the parameter ranges considered



Chapter 3. Gauge-theoretic origin of Rydberg quantum spin liquids 40

FIGURE 3.4: Adiabatic path from exactly soluble point (red dots) to
the Rydberg line (thick red line): the square dot is common to both
parts of the path. The overlap of the ground state of HTC with |y0i at

(a) h = 0 and (b) W/d = 10.

there, we first define d = W + l, and set it to be finite, while W is taken to be large
(W = 10d). We proceed in two steps: (i) on the h = 0 hyperplane, we ramp W/d
from 1 to 10, and (ii) on the hyperplane W = 10d, we ramp h from 0 to the Rydberg
line, g = h [25].

Fig. 3.4 shows the overlap with the exact RVB wave function in these parameter
regimes; the various phases are separated by local peaks of the fidelity susceptibility,
indicated by dots. The red line is a sample of an adiabatic path entirely in the QSL
phase: starting from the exactly soluble point (red circle), to the Rydberg line (thick
red line in the right panel). As a non-trivial check on the latter line, we find two
transitions at g/d ⇡ 0.525 and g/d ⇡ 0.7, corresponding to d/W = 1.4 and d/W =
1.9 in the notation of Ref. [25], and compatible with the transitions found there.
Overall, these results show that the QSL phase observed in Ref. [25] is connected
with the QSL phase that we demonstrated for W/d = 1.

3.5.2 Quantum Monte Carlo spectroscopy

It is expected that, within the entire topological phase, the ground state is approx-
imately four-fold degenerate on torus geometries. An important question is how
large is the energy gap separating the ground state manifold from excited states.
This question is particularly relevant in this case, as there is no “bare mass” for the
magnetic excitations on hexagonal plaquettes (i.e., J2 = 0). Along the line h = 0,
we have devised a spectroscopy based on simulating, via unbiased Quantum Monte
Carlo approaches [82, 83], a dual Ising model description of low-lying states.

To this end, we exploit the mapping between the superselection sectors of the
toric code Hamiltonian in Eq. (3.2) and inhomogeneous transverse-field Ising mod-
els, each characterized by the change in sign of a different subset of the nearest-
neighbor couplings, as discussed in Sec. 3.3. Subsequently, we simulate the resulting
quantum Ising models via Stochastic Series Expansion Monte Carlo [82, 83], a state-
of-the-art, unbiased method for the calculation of equilibrium properties of bosonic
and unfrustrated quantum spin systems.

We compute the energies, on a cluster containing Ncells = 8⇥ 8 elementary cells,
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FIGURE 3.5: Rescaled energy per elementary cell of the quasi-
degenerate ground states (blue triangles) and of the charged states
(red circles) for the model HTC on a Ncell = 8⇥ 8 cluster and g/W =
0.32. All charged states displayed here are characterized by the Wil-
son loop signs Wx = Wy = +1. Errorbars correspond to a 95% confi-

dence interval.

of the four quasi-degenerate ground states and of three charged states with increas-
ing charge separation. Each of these calculations corresponds to a ground-state anal-
ysis of a different quantum Ising model as discussed above. A sample of the corre-
sponding results are presented in Fig. 3.5 for g/W = 0.32. The four-fold degeneracy
of the ground state manifold is clear: the (expected) small splitting between those
states is within our error bars. The gaps to the first excited states with magnetic
excitations (labelled as “ch1,2,3”) are finite; their relatively small magnitude we at-
tribute to the strong anisotropy of magnetic and electric excitations. Convergence
to the ground-state regime has been verified in all cases by the compatibility within
error of the results for inverse temperatures b = 16, 32.

3.6 Experimental realization with Rydberg dressing

The class of models in HRyd considerably extends the range of target Hamiltoni-
ans that can realize a QSL. The salient features of Eq. (3.3) and Eq. (3.10) are natu-
rally realized in arrays of atoms weakly laser-coupled to Rydberg states [39, 65, 84–
98], and trapped into very deep potentials (e.g., optical lattices or tweezers), so that
tunneling is suppressed over the time scales of the experiment. We discuss here two
distinct experimental implementation for the h 6= g regime and for h = g, respec-
tively.

For h 6= g, we consider two states of an atom with different mF, both belonging
to the ground state manifold. They are laser-coupled to a Rydberg manifold with
Rabi frequency W, and detuning d, with |W| ⌧ d. Within perturbation theory, the
most relevant terms are: (a) a soft-shoulder potential that decays quickly to 0 after a
cut-off distance that can be tuned by changing W and d: this realizes our potentials
in the limit g/W ⌧ 1; and (b) a hopping term, induced by the off-diagonal part of
the Rydberg interaction. The range of the latter can be tuned independently of the
previous one [65]. The linear terms in b, b† as well as the l term can be realized, e.g.,
utilizing a resonant microwave coupling.

The regime h = g as realized in Ref. [29], often referred to as frozen Rydberg gas,
features interparticle interactions decaying as power law potentials: this induces
substantial differences between V2, V3, and possibly next-neighbor interactions. This
is because the native interactions between Rydberg atoms are induced dipole dipole
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ones, and only differ from that functional form at very short distances (where, how-
ever, a precise modelling of the dynamics as spin-1/2 model is not necessarily valid).

We propose here an alternative, double-dressing scheme that allows to indepen-
dently tune V1/V2, and realize V2 ' V3. We consider alkaline-earth like atoms
trapped into deep optical potentials [99–102], so that atomic motion can be neglected.
Within the low-energy manifold, we consider the electronic ground state |gi and the
3P0 (or 3P2) metastable state |ei 3[103]. These two states represent the nj = 0, 1 states,
and are coupled by a clock laser, with Rabi frequency WC and detuning dC: these two
quantities will determine (h + g) and l, respectively.

The metastable state is then off-resonantly coupled to two Rydberg states (see,
e.g., Ref. [104] for another proposal utilizing related settings), |r1,2i, with Rabi fre-
quencies W1,2 and detunings d1,2, such that d1,2 � W1,2, and W1/d1 � W2/d2. Note
that both of those couplings can be single-photon couplings to s-states, so that the
resulting potentials are spatially isotropic. For both 3P0 and 3P2, they have already
been experimentally engineered in Sr [101] and Yb bosonic isotopes [105].

The resulting dressed potential is dominated by two contributions in perturbation
theory:

V(r) =
V(1)

1 + (r/r1)6 +
V(12)

1 + (r/r12)6 (3.19)

with V(1) = W4
1/8d3

1, r1 = (C6[11]/2d1)1/6, V(12) µ W2
1W2

2/d1d2
2, r12 µ (C6[12]/d1)1/6,

where C6[ij] are the van der Waals coefficients capturing the interactions between
two atoms in the states i, j. Under the condition that (C6[11]/C6[12])1/6 ' 2, Eq. (3.19)
describes a potential that is very strong at short distances, with ratio V2/V1 ' (W2d1

W1d2
)2,

and then features a plateau that realizes approximately equal interactions for V2 and
V3.

3.6.1 State preparation protocols

In both implementations discussed, coupling to Rydberg states will necessarily
lead to some amount of noise. In order to minimize the role of the latter, fast state
preparation protocols are desirable.

For the case of quantum spin liquids, the corresponding (diabatic) state prepa-
ration can take advantage of the relatively fast timescales that have been proven
effective in preparing spin liquid states. In particular, in Ref. [68], it has been shown
that, even for moderate sizes of up to 70 spins, state preparation times of order of
few tunneling processes shall suffice to realize very large overlaps with the target
state. Since we do have access to an exactly soluble point, state preparation may fur-
ther be shortened by starting from exact dimer coverings, following ideas already
discussed in the context of strongly correlated fermions [106].

An interesting, alternative path is to explore Floquet driving within the Rydberg
manifold [107], that has already been demonstrated as a powerful tool to engineer
long-ranged Heisenberg-like models [108].

3.7 Conclusions

In this work, we showed that a Z2 lattice gauge theory with matter on a kagome
lattice can be exactly mapped to a blockaded model of atoms on the ruby lattice,
realizable with Rydberg-dressed potentials. Building on this analytical finding, we

3The hyperfine structure can be handled in different ways, depending on the laser polarizations.
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proved the existence of a Z2 QSL and precisely located the transition to a trivial
phase. By including additional perturbations, we extended our model to comprise,
as a specific case, the Hamiltonian studied in Ref.[25, 29]: our numerical results sug-
gest that the QSL observed therein belongs to the same phase of our solvable case.
By elucidating the origin of QSL phases in blockaded systems, our work opens in-
teresting directions for future experiments: more robust QSL states could be realized
in an enlarged class of models, and the gauge-theoretical interpretation can help to
identify useful perturbations that stabilize QSL phases, as well as suitable observ-
ables to detect and characterize their topological properties.
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Chapter 4

Classification and emergence of
quantum spin liquids in chiral
Rydberg models

There is presently considerable interest in studying strongly correlated phases of
matter in synthetic quantum systems based on Rydberg atom arrays [31, 109]. Stim-
ulated by early experiments realizing symmetry-protected topological phases in one
dimension [40], these platforms are now able to realize frustrated Hamiltonian dy-
namics in two dimensions [29, 41, 42], thus providing unparalleled opportunities
to realize quantum spin liquids (QSLs) – elusive, exotic states of matter which have
captivated the attention of physicists for decades [45, 53, 55, 57]. One route to access
QSLs is based on the realization of frustrated Ising models in the so-called frozen gas
regime [31, 33, 110]: several theoretical works have proposed different realistic sce-
narios for both gapped and gapless phases of matter [25, 61, 67, 68], with pioneering
experiments already reporting evidence for deconfinement [29]. These models re-
semble closely situations investigated in the context of quantum dimer models [54],
providing direct link between gauge theories and experimental settings [63, 111–
113].

Over the last two years, a new route has been paved in a very different exper-
imental regime, where the dynamics solely takes place within the Rydberg sub-
space. The resulting Hamiltonians naturally feature various forms of chiral multi-
body interactions [28, 74, 114, 115], which have already been experimentally demon-
strated [116]. These classes of dynamics differ fundamentally from traditional Ising-
and Heisenberg-type frustrated magnets and, while very promising since they dis-
play chiral terms, it is presently not even clear what classes of quantum spin liquids
these can stabilize, and in which parameter regimes they might be observed.

In this work, we provide a general framework to describe chiral spin liquids
(CSLs) in Rydberg atom honeycomb arrays. This framework is based on a system-
atic CSLs classification [117–119] using a fermionic spinon construction [50, 51] that
yields Gutzwiller-projected parton wavefunction ansätze for the many-body ground
state. The resulting classification differs substantially from those of Heisenberg-type
regimes: it rules out the possibility of gapless Dirac spectrum, while predicting sev-
eral, distinct topological phases.

Combining variational wavefunctions obtained from the classification with exact
diagonalization (ED) methods, we demonstrate that the former capture the inter-
mediate liquid regime of the chiral Rydberg model at both 1/2 [74] and 1/4 den-
sity [28], which - surprisingly - encode the same form of topological order: a two-
fold ground state degeneracy and a fractionalized Chern number C = 1/2 per state.
These two CSLs represent two distinct phases characterized by different projective
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representations of the lattice symmetries in the underlying fermionic spinon space.
Remarkably, the CSL at 1/2 density is a new phase which corresponds to integer
filling of the single-particle band, thereby representing an interaction-driven topo-
logical phase generated from a trivial band insulator 1, setting an open quest re-
cently put forward in Ref. [74]. We then corroborate the topological character of
this phase by computing the topological correction to the area-law scaling of entan-
glement entropy [121, 122], which is consistent with a CSL ground state, and by
analyzing the pattern of currents at the edges of a cylinder using the density-matrix-
renormalization-group (DMRG) [6, 9, 123, 124], which shows substantial counter-
propagating nearest-neighbor edge currents, offering a simple mean for experimen-
tal detection. In the 1/4-density case, our results allow to frame the recent obser-
vation of CSL [28] within a rigorous classification, as well as providing a genuine
understanding of the system wavefunction.
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FIGURE 4.1: (a) Schematics of the model on the honeycomb lattice.
The signs of the complex phase in the next-nearest-neightbor (NNN)
hoppings are indicated by the colored arrows. (b) Mean-field ansätze
of chiral spin liquids on the honeycomb lattice with broken time-
reversal and reflection symmetries. e indicates whether the unit-cell
is doubled in the spinon space. gs(A/B) and gR(A/B) are projective
representations of reflection and rotation symmetries, respectively,
with a = ei2p/3t3 . u1 and u2 are mean-field amplitudes at NN and
NNN links, respectively. The CSL phase at 1/2 and 1/4-density are
captured by ansatz no. 1 and 4, respectively. (c) NN edge currents for
cylinders with periodic width LPBC = 4 (i.e., 8 lattice sites). The edge
currents are substantially larger in the intermediate phase compared
to the neighboring phases. (d) The current profile at g = 0.74 for a
cylinder with periodic width LPBC = 4 and length LOBC = 8. Widths
of the arrows are proportional to the current values and directions de-
note the current directions. Large counter-propagating NN currents

are observed only at the edges, while they vanish in the bulk.

4.1 Model Hamiltonian and phase diagram

We consider a system with atoms arranged on a honeycomb lattice. We assume
optical control on the three Rydberg states |0i, |+i= a†|0i, and |�i= b†|0i, where
the state |0i has no excitations, and the states |+i and |�i (which belong to the
same Rydberg manifold and differ, e.g., by their total angular momentum) encode
two species of hard-core bosons created by the operators a† and b†, respectively.
Atomic motion is irrelevant on typical experimental timescales: below, we focus on
the dynamics of the Rydberg excitations. The model Hamiltonian is [114, 115]:

1In a different context, another example of such occurrence on a Kagome lattice is reported in
Ref. [120].
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The first term represents hopping processes (of excitations) between different
sites, with the real hopping conserving the internal state, and the complex hopping
resulting in a change of the internal state. The amplitudes for real and complex hop-
pings are given by ta

ij, tb
ij, and wije±i2fij respectively, with fij being the polar angle

between the two Rydberg atoms on the sites i and j. All the amplitudes scale as
1/r3

ij. The second term represents the energy difference between the two internal
states, with na

i and nb
i being the particle number operators for the |+i and |�i states,

respectively.
Here, we focus on the regime µ � ta

ij, tb
ij, w, in which case the internal state |+i

can be adiabatically eliminated. We further make an approximation by considering
only nearest-neighbor (NN) interactions in Eq. (4.1), with NN hopping amplitudes
ta, tb, and we±i2fij . At leading order, the effective Hamiltonian is given by [116]

H =� J Â
hiji

b†
j bi � 2gJ Â

hhijii
b†

j bie±2pi/3(1� nij) + h.c.

+ 4gJ Â
hiji

ninj, (4.2)

where J = tb and g = w2/(2µ). The complex phases e±2pi/3 in the next-nearest-neighbor
(NNN) hopping are illustrated in Fig. 4.1a. The NNN hoppings explicitly break
time-reversal and reflection symmetries, but preserves their combination. The Hamil-
tonian has U(1) symmetry related to particle-number conservation. Note that, in
the language of spins, the U(1) symmetry corresponds to spin-rotation symmetry
around the z-axis. Hereafter, we set the energy scale to J = 1.

The phase diagram of the model at 1/2-density has been studied in Ref. [74],
where three different phases were found for g� 0. For g. 0.4, the phase is a Bose-
Einstein condensate (BEC) 2, while for g& 0.9 the phase exhibits spiral or 120� spin
order. The intermediate phase between 0.4. g. 0.9, shows no clear order, and it
is believed to be a candidate for a spin liquid. However, its true nature remains
unclear, also due to hard-to-interpret spectral properties.

At 1/4-density, Ref. [28] investigated the full model in Eq. (4.1) and provided clear
numerical evidence for a fractional Chern insulating state: that included ground
state degeneracy and Chern number compatible with a n = 1/2 bosonic Fractional
Quantum Hall (FQH) state. Building on such numerical understanding, we will
show below how that reflects into a very clear ansatz for the system wavefunction,
informed by our classification.

2As we report in Sec. 4.7, an extra intermediate phase occurs for 0.25 . g . 0.4.
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4.2 Classification and variational wavefunctions from parton
construction

In order to construct a spin liquid wavefunction, a method based on fermionic
representation of spins have been introduced in [50, 51]. The main idea is to fraction-
alize the spin-1/2 operators into fermionic spinon operators as Sa = 1

2 f †
i sa

ij f j, where
sa are Pauli matrices, with the constraint of one spinon per site. It is convenient
to introduce a two-component spinor Y = ( f" f †

# )
T. Directly rewriting the spins in

terms of spinons gives rise to quartic spinon interactions, which after performing
mean-field approximation, leads to a quadratic spinon Hamiltonian

HMF = Â
ij

Y†
i uijYj + h.c., (4.3)

where uij are the mean-field amplitudes. The spinon interactions include hopping
and pairing terms. The mean-field Hamiltonian is invariant under global spin rota-
tion around the z-axis [125, 126]. The matrices uij can be written as uij = uµ

ijs
µ, where

(sµ) = (it0, ta), uµ
ij are complex parameters and ta are Pauli matrices. Real uµ

ij corre-
spond to singlet terms, while imaginary uµ

ij correspond to triplet terms 3. Different
mean-field ansätze are described by different (gauge-inequivalent) {uij} on the links
of the lattice. Finally, a physical spin state is obtained by applying Gutzwiller projec-
tion |yi= PG|yMFi, with PG = ’i ni(2� ni), to the mean-field ground state |yMFi.

A method to systematically classify all possible spin liquids within this parton
construction has been introduced by Wen [117, 118], based on projective symmetry
groups (PSG). It has subsequently been extended to classify spin liquid phases in
the absence of time-reversal (i.e., CSL) [119] and SU(2) spin-rotation [125, 126] sym-
metries. Here, we are interested in a CSL which breaks time-reversal and reflection
symmetries but preserve their combination, and which preserves U(1) spin-rotation
symmetry. Such chiral mean-field states are stable beyond mean-field treatment, as
the mean-field gauge fluctuations are gapped out by the Chern-Simons mechanism
[127].

The PSG classification of symmetric spin liquids on the honeycomb lattice has
been worked out in [128], where 160 different algebraic PSG’s are found. In the
absence of time-reversal symmetry, we do not need to specify the SU(2) representa-
tion of the time-reversal operation [119]. Below, we provide the details on the PSG
classification

The symmetry group on the honeycomb lattice that we are interested in is gen-
erated by translations along x and y, reflection accompanied by time-reversal Ts,
and p/3 rotation centered on a hexagonal plaquette R. Each algebraic PSG class
is characterized by the SU(2) representation of each symmetry generator: gx(x, y, s),

3The “singlet” and “triplet” terminology is derived from the discussion of SU(2) spin-rotation sym-
metric Hamiltonians, which have been extensively studied in the literature. If the state does not spon-
taneously break the spin-rotation symmetry, only singlet terms are present. However, in the presence
of spin-rotation symmetry-breaking perturbations, both terms may be present, and more generally the
mean-field Hamiltonian has to be written in terms of a four-component spinor Y = ( f" f †

# f# � f †
" )

T .
If the spin-rotation is only broken down to U(1), it is still possible to use a two-component spinor
representation as in Eq. (4.3), where the singlet and triplet terms can be present without mixing.
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No. gs(A/B) gR(A/B) es eeR esR
1 t0/t0 t0/t0 + + +
2 �t0/�t0 t0/� t0 + - +
3 t0/�t0 t0/t0 - + +
4 �t0/t0 t0/� t0 - - +
5 �it2/it0 t0/t0 + + -
6 �it2/it0 t0/� t0 + - -
7 it2/it0 t0/t0 - + -
8 it2/it0 t0/� t0 - - -
9 �it2/it0 t0/a + + -

10 �it2/it0 t0/� a + - -
11 it2/it0 t0/a - + -
12 it2/it0 t0/� a - - -

TABLE 4.1: PSG representations of point-group symmetries on the
honeycomb lattice.Taking into account the two possible signs e = ±1

gives 24 distint algebraic PSG’s in total.

gy(x, y, s), gs(x, y, s), gR(x, y, s), respectively. This can be further simplified by work-
ing in a specific gauge. Here, we choose a gauge defined as [128]

gx(x, y, s) = t0 (4.4)
gy(x, y, s) = ext0 (4.5)

gs(x, y, s) = ex+y(y+1)/2gs(s) (4.6)

gR(x, y, s) = exy+x(x�1)/2gR(s), (4.7)

where e = ±1, with e = �1 indicates that the unit-cell is doubled in the spinon
space. Within this gauge choice, each PSG is characterized by the representations
of reflection, gs(A, B), and p/3 rotation, gR(A, B), for each sublattice A and B. The
representation matrices satisfy the equations (for a detailed derivation, see [128])

gs(A)gs(B) = gs(B)gs(A) = est0 (4.8)
(gs(A)gR(B))2 = (gs(B)gR(A))2 = esRt0 (4.9)
(gR(A)gR(B))3 = (gR(B)gR(A))3 = eeRt0. (4.10)

We find 24 different classes of algebraic PSG, which are listed in table 4.1.
Given the model that we study, we focus on those ansätze that have nonzero

mean-field amplitudes on the NN and NNN links. For each algebraic PSG, we now
determine the mean-field amplitudes uij allowed by symmetry up to NNN links.
The consistency conditions for u1 and u2 are

u†
1 = �(�1)cgs(A)u1gs(B)†

u†
1 = gR(A)gR(B)gR(A)u1gR(B)†gR(A)†gR(B)†

u=
2 � (�1)cgR(B)gs(A)u2gs(B)†gR(A)†,

(4.11)

where c = 0 for singlet terms and c = 1 for triplet terms. This leaves 6 distinct
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FIGURE 4.2: Periodic clusters used for the exact diagonalization cal-
culations.

ansätze, which are listed in the Fig. 4.1b. The last 2 columns indicate the symmetry-
allowed terms in the mean-field Hamiltonian on the NN and NNN links 4. Each uij
can be propagated to the entire lattice using rotations, which act as

uij = gR(i)uR�1(i)R�1(j)gR(j)†, (4.12)

followed by translations, which act similarly with gx,y. Their amplitudes are taken
as variational parameters in the following section.

Note that if the ansätze are restricted to NN interactions, the mean-field states
are gapless with Dirac spectrum (in particular, ansatz no. 1 corresponds to the SU(2)
algebraic spin liquid (ASL) state discussed in [129], or equivalently the u-RVB state
discussed in [128]). Thus, the resulting states after Gutzwiller projection describe
a Dirac spin liquid (DSL). However, this DSL ansatz submanifold preserves time-
reversal, which is explicitly broken by our Hamiltonian. This excludes the possibility
of a DSL being stabilized in chiral systems such as our model.

4.3 Overlaps with Gutzwiller-projected parton wavefunctions

To determine whether the intermediate phase of the model in Eq. (4.2) is de-
scribed by one of the ansätze above, we optimize the variational parameters by max-
imizing the overlap of the exact ground state of the Hamiltonian with the wavefunc-
tion ansatz, for each of the 6 ansätze. The optimization of the overlap is performed
using the Nelder-Mead optimization method, implemented in MATLAB. The opti-
mization is performed on a 16-site cluster at g = 0.7. We find that the ansatz with the
largest overlap with the ground state at 1/2-density is ansatz no. 1, characterized
by non-zero real triplet NN hopping parameter t0, imaginary singlet NNN hopping
parameter it0, and imaginary triplet NNN hopping parameter it3. The correspond-
ing amplitudes are uit0

2 /ut0

1 = �0.31 and uit3

2 /ut0

1 = �0.1. We have also checked
that the optimal parameters do not differ much from the optimal parameters on the
smaller clusters.

The spinon band structure with the optimal parameters are shown in Fig. 4.3a.
Note that each band is spin-degenerate. With one fermion per site, the mean-field
ground state is obtained by filling all single-particle orbitals in the lower band, for
both spin-up and spin-down orbitals. There is a finite energy gap to the valence

4We include all terms that are allowed by symmetry for each link, which in principle can be present
in a mean-field state. However, if the mean-field Hamiltonian is restricted in the range of interactions
(such as up to NNN interactions in our case), some of the terms can be removed by a gauge transfor-
mation.
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(a) (b)

FIGURE 4.3: (a) Spinon bandstructure and (b) Berry curvature on the
cluster 24b (normalized with the average) of the optimal ansatz at
g = 0.7 for n = 1/2. The parameters are uit0

2 /ut0

1 = �0.31 and
uit3

2 /ut0

1 = �0.1.

band, resulting in a fully gapped state. The Gutzwiller projection of such an ansatz
has been shown to yield a topological CSL [127, 130, 131], which is a lattice analogue
of n = 1/2 FQH Laughlin state [132]. The topological nature of such CSL is mani-
fested by the two-fold topological degeneracy of states on a torus. These degenerate
states can be constructed by threading fluxes along the non-contractible loops on
a torus [133], which can be implemented by twisting the boundary conditions of
the spinons, Y ! eiq/2Y. Although there are four states that can be constructed
with qx, qy 2 {0, p}, they only span a 2-dimensional space, resulting in two topo-
logical states. We verify this numerically by computing the overlap matrix for the
four states, defined as Oij = hyj|yii. We find that the rank of the overlap matrix is 2,
within a numerical accuracy on the order of 10�2. The two independent states are
then constructed from the eigenvectors of the overlap matrix with non-zero eigen-
values.

Furthermore, we computed the many-body Chern number, a topological invari-
ant that characterizes the topologically nontrivial phases of matter [134]. It can be
computed by twisting the boundary condition by angles qx,y in the x, y direction,
and is given by the integral of the Berry curvature over the twist space:

C =
1

2pi

Z 2p

0

Z 2p

0
dqxdqy(h∂qx Y(q)⇤|∂qy Y(q)i

� h∂qy Y(q)⇤|∂qx Y(q)i), (4.13)

where |Y(q)i = |Y(qx, qy)i is the ground state wavefunction with twist angles qx
and qy. To compute Eq. (4.13) numerically, we discretize the twist space into D ⇥
D mesh and sum the discretized Berry curvature. We have obtained C = 2, with
the Berry curvature for D = 24 is shown in Fig. 4.3b. Note that the twist 0 
qx,y  2p for the fermionic spinon operators corresponds to 0 to 4p twist for the
spin operators, and therefore, the result must be divided by 4. Thus, the Chern
number of the spin wavefunction is fractionalized C = 1/2 per state. The Chern
number, along with the two-fold degeneracy, are consistent with the properties of
n = 1/2 bosonic Laughlin state.

Having established the FQH nature of the ansatz, we next compute the overlap
of the ground state of the Hamiltonian with the two topological states [135, 136],

OED
GW =

q
|hyED|y1

GWi|2 + |hyED|y2
GWi|2. (4.14)
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where |yEDi is the ground state obtained with ED and |y1
GWi and |y2

GWi are the two
topological states. All the ED clusters that are considered are depicted in Fig.4.2.
We impose periodic boundary conditions, and the ED calculations are performed
exploiting translational symmetry. The cluster 24a and the 32-site cluster has sixfold
rotational symmetry, which we also exploit.

The results are shown in Fig. 4.4a for different system sizes. It can be seen
that the overlap remains large in the middle phase with increasing system size,
indicating that the ground state is strongly related to the topological states. In-
terestingly, on a 32-site cluster, we find that the ground state in the intermediate
phase is not in the rotation-neutral sector. Specifically, if we take the operator Rp/3
which generates a p/3 rotation around the center of a honeycomb plaquette, then
Rp/3|yEDi= e�2pi/3|yEDi. This can be seen in Fig. 4.4a as a discontinuous jump in
the overlap at g ⇡ 0.45, as the transition from the BEC phase becomes a level cross-
ing between different rotation sectors. Remarkably, one of the two topological states
is in the same nontrivial rotation sector as the ground state of the Hamiltonian, i.e.,
the eigenvalue of Rp/3 is e�2pi/3. This nontrivial observation strongly supports the
hypothesis that the intermediate phase is described by the wavefunction ansatz.

At this point, it is worth emphasizing that the CSL phase found at 1/2-density
represents a novel phase that has not been previously identified. Notably, this CSL
has a dispersive band (see Fig. 4.3a), distinguishing it from the previously observed
CSLs at 1/4-density [28, 137] and 1/8-density [137], that possesses topological flat
bands. As such, this CSL is inevitably missed by previous approaches relying on
the identification of flat bands [28, 137]. Moreover, its dispersive band significantly
affects the physical properties on finite-size clusters, thus hindering the identifica-
tion of the true CSL nature in previous study [74]. Our hybrid approach, combining
theoretical PSG classification and numerical optimization, thus showcases its effec-
tiveness by successfully identifying the CSL phase even in the presence of strong
finite-size effects.

To compare with the 1/2-density case, we performed the same parameter op-
timization procedure for the 1/4-density case. In [28], it was shown that a CSL
emerges at 1/4-density for the full model in Eq. (4.1). For the effective model in
Eq. (4.2), we found that the CSL phase emerges in a narrow range around g = 0.2.
For 1/4-density, a gapped phase can be obtained within the parton construction
when the mean-field ansatz has a doubled unit-cell. We obtain large overlaps with
the ansatz no. 4 at small-size clusters in the CSL phase. Fig. 4.4b shows the overlaps
for 1/4-density with the optimized parameter for different system sizes. We found
that the overlap remains huge in the CSL phase, reaching 0.96 at the largest system
size we considered, L = 40.

In Fig. 4.5, we present the excitation spectrum in the momentum sector k = (0, 0)
at g = 0.1 and g = 0.7, along with the overlaps OED

GW for each eigenstate. Note that,
since the two topological states |y1

GWi and |y2
GWi lie in the momentum sector k = (0, 0),

only the eigenstates in this sector can have non-zero overlap. In agreement with
[74], we observe no approximate two-fold degeneracy in the ED spectra, which
would have been expected in a CSL. Nevertheless, this can be attributed to finite-
size effects, which may significantly modify the spectra on small-size clusters. It is
therefore possible that one of the low-lying states corresponds to another topological
ground state, which becomes degenerate with the true ground state in the thermo-
dynamic limit. To test this hypothesis, it is useful to examine the overlaps of the
low-lying levels. If an eigenstate describes the topological ground state of the CSL,
it would have a sizable overlap with the wavefunction ansatz. Indeed, at g = 0.7, we
observe that the overlap is highest for the ground state, and that there is a low-lying



Chapter 4. Classification and emergence of quantum spin liquids in chiral Rydberg
models 52

0.0 0.5 1.0
g

0.00

0.25

0.50

0.75
O

E
D

G
W

(a) n = 1/2

20

24a

24b
28

32

0.0 0.2 0.4
g

0.00

0.25

0.50

0.75

1.00

O
E

D
G

W

(b) n = 1/4

24

32

40

FIGURE 4.4: Overlaps OED
GW between the exact ground states with (a)

ansatz no. 1 at 1/2-density and (b) ansatz no. 4 at 1/4-density. The
shaded region denotes the intermediate phase which we show to be

a CSL.
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FIGURE 4.5: Excitation spectrum in the momentum sector k = (0, 0)
up to the 10th excited state for (a) g = 0.1 and (b) g = 0.7 at 1/2-

density. The markers are colored according to the overlap OED
GW .

state with a modest overlap. In contrast, at g = 0.1, the overlaps do not exhibit any
clear pattern for each system size.

4.4 Excitation spectra

In Ref. [74], a DSL was proposed as one of possible scenarios, based on the ob-
servation that the gap to the first excited state varies significantly with twist angle
when imposing twisted boundary conditions. In light of this, we analyze the ex-
citation gaps as a function of twist angles q1,2 along the lattice vectors ~a1,2. In Fig.
4.6a, we show the gap to the first excited state obtained with ED on a 24-site clus-
ter, while the gap to the second excited state and the (symmetrized) charge gap are
shown in Fig. 4.6b and 4.6c, respectively. We observe that while the first gap may
become very small at some isolated points in twist space, the second gap and charge
gap remain wide open. This contrasts with the expected behavior of a DSL, where
all gaps would exhibit a vanishing behavior with respect to twist angles [138–140].
This is consistent with our results that DSL is unstable against time-reversal symme-
try breaking perturbations (see Sec. 4.2).

We note that the drastic variation of the first gap with respect to the twist an-
gles becomes even more pronounced at larger sizes, as can be seen in the cluster of
L = 32 sites shown in Fig. 4.6d. Based on our findings, we are able to offer an in-
terpretation of the curious vanishing of the gap to the first excited state as observed
in [74]. Indeed, for a CSL two topological ground states will flow into each other
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(a)
(b)

(c) (d)

FIGURE 4.6: (a) Excitation spectrum on the cluster 24a at g = 0.7 with
twist q1 = 2p/3 and varying q2. (b) Gap to the second excited state
E2 � E0 and (c) (symmetrized) charge gap Dc(N) = 1

2 (E(N + 1) +
E(N � 1) � 2E(N)) with N = L/2 as a function of the twist angles
{q1, q2} on the cluster 24a. (d) Gap to the first excited state E1 � E0 in
the k = (0, 0) momentum sector on the 32-site cluster as a function of

the twist angles {q1, q2}.

upon inserting flux (see, e.g., [137]). In the case of CSL at n = 1/2 density, the two
ground states live in the same k = (0, 0) momentum sector. Consequently, the flow
between these ground states manifests as an avoided crossing. As a result, the gap
appears to vanish at some isolated points, corresponding precisely to the locations
where the avoided crossing occurs. This behavior is specific to the first gap and not
observed in higher gaps or the charge gap, as the CSL is gapped to all excitations.
This is consistent with our results on excitation spectra discussed above.

4.5 Topological entanglement entropy

A topological phase can be characterized by the scaling of the entanglement en-
tropy. The entanglement entropy for a region with perimeter L is known to scale as
S(L) = aL� g, where the subleading term g is a universal constant called the topo-
logical entanglement entropy which characterizes the topological order in a ground
state wavefunction [121, 122]. Here, we employ the Kitaev-Preskill scheme [121] to
compute g:

g = SAB + SBC + SAC � SA � SB � SC + SABC, (4.15)

where the partitioning is depicted in Fig. 4.7a. In Fig. 4.7b, we show the behavior of
g in the exact ground state obtained with ED for n = 1/2 density. In the CSL phase,
even in small systems, the computed g is finite, and close to the expected value
g = 1

2 log(2) for a n = 1/2 FQH state 5.

5We note however that the finite volume effects prevent a clear interpretation of this data as a
striking signature of topological order: such effects are expected given the observed strong finite-size
effects in the numerical simulations.
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FIGURE 4.7: (a) Partitions used for the topological entanglement en-
tropy calculation. (b) Topological entanglement entropy g as a func-
tion of g at 1/2-density, obtained from the exact ground state on dif-
ferent periodic clusters (see Fig. 4.2). The dashed red line is the value

of g expected for a n = 1/2 FQH state.

4.6 Chiral currents

Quantum Hall states can be identified through the pattern of the currents in the
system. With a finite gap in the bulk and gapless edge excitations on the boundary,
it is expected that the currents are large at the edges and vanish in the bulk. Further-
more, the current can be readily measured in experiments, making it a convenient
tool for diagnosing the phase in experimental setups. The NN and NNN currents
can be derived using the continuity equation, resulting in

Jnn = ihb†
j bi � bjb†

i i,
Jnnn = 2gie±2p/3ih(1� nij)(b†

j bi � bjb†
i )i, (4.16)

where i and j are nearest-neighbors or next to nearest-neighbors respectively.
We perform DMRG simulations on a finite cylinder to compute the edge currents

as a function of g, as shown in Fig. 4.1c 6. It can be seen that the NN edge currents,
computed across two rungs in one of the edges, in the intermediate phase are sig-
nificantly larger compared to those in the neighboring phases. The transition points
are in good agreement with those found in [74]. Furthermore, we show the full cur-
rent profile in the intermediate phase (g = 0.74) in Fig. 4.1d. It is clear that, in the
CSL phase, large NN currents are only observed at the edges, while they vanish in
the bulk. The full current profile is shown for each phases in Fig. 4.8. Clearly, sub-
stantial counter-propagating NN edge currents manifests only in the CSL phase that
vanish in the bulk. On the other hand, most dominant currents in the other phases
are of the NNN nature that originate from the NNN term in the Hamiltonian.

4.7 Another intermediate phase

Notice that Fig. 4.1c also exhibits signatures of another intermediate phase with
non-zero edge currents for 0.25. g. 0.4. While its full characterization is beyond
the scope of this work, we report here our preliminary findings on this possible new
phase.

6We consider two different cylinder geometries for our calculations, namely the geometries I and
II, as demarcated in [141].



Chapter 4. Classification and emergence of quantum spin liquids in chiral Rydberg
models 55

g = 0.2, BEC

0.04

0.06

0.08

0.10

0.12

0.14

(a)

g = 0.74, CSL

0.04

0.06

0.08

0.10

0.12

0.14

(b)

g = 1.3, 120�

0.04

0.06

0.08

0.10

0.12

0.14

(c)

FIGURE 4.8: Full current profiles at n = 1/2 filling for the cylin-
ders with geometry I and with periodic width LPBC = 4 and length
LOBC = 8 for three representative values of g inside three phases,
namely BEC (top), CSL (middle), and the 120� (bottom) phases. The
widths of the arrows are proportional to the magnitudes of the cur-
rent, while their direction indicates the directions of respective cur-

rents.

To detect transition points and obtain the phase diagram as a function of g, we
compute the fidelity-susceptibility cF defined as

cF(g) =
2
L

lim
dg!0

� ln F(g, dg)
(dg)2 (4.17)

where the fidelity F is defined as F(g, dg) = |hy(g)|y(g + dg)i|. The fidelity sus-
ceptibility cF is known to be a good indicator for quantum phase transition, whose
critical point can be derived via finite-size scaling techniques [81]. In case of iDMRG
simulations, however, we have

F(g, dg) = lim
L!•

|h|L, (4.18)

where h is the dominant eigenvalue of the transfer matrix constructed from the
iMPS ansatze of |y(g)i and |y(g + dg)i. Since, for two normalized iMPS |y(g)i
and |y(g + dg)i, |h| < 1 for dg 6= 0, we get F(g, dg) ! 0 as L ! •. The fidelity-
susceptibility can be expressed as

cF(g) = �2 ln |h|, (4.19)

which remains finite.
We show the fidelity-susceptibility obtained using iDMRG for two different types

of cylinders in Fig. 4.9(a). The emergence of the CSL phase can be identified in the
parameter range 0.4 . g . 1. Interestingly, there appears to be an additional phase
emerging between the BEC phase and the CSL. Since, the system is invariant un-
der the joint operation of time-reversal and reflection, total nearest-neighbor edge
current J edge 1

nn + J edge 2
nn , odd under this joint operation, must vanish for the ground

states that respects reflection⇥ time-reversal symmetry. By performing finite DMRG
on finite-cylinders, we find that this reflection ⇥ time-reversal symmetry gets spon-
taneously broken in this parameter regime, and the total nearest-neighbor edge cur-
rent J edge 1

nn + J edge 2
nn attains a finite (positive or negative) value (see Fig. 4.9(b)). The

profile of the total edge current in Fig. 4.9(b) clearly indicates two-fold degenerate
ground-state manifold in this new unknown phase.
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24a

FIGURE 4.9: (a) The fidelity susceptibility cF(g) as a function of g
for infinite cylinders with two different geometries and with periodic
width LPBC = 4 in the n = 1/2 density regime. The cF(g) shows the
existence of a new phase sandwiched between the BEC and the CSL
phases. (b) The total nearest-neighbor edge current J edge 1

nn + J edge 2
nn

computed for finite cylinders of geometry I and with periodic width
LPBC = 4 for n = 1/2 density. In the new intermediate phase, re-
flection ⇥ time-reversal symmetry gets spontaneously broken, and
the total edge current becomes finite (positive or negative). Since, the
DMRG simulations breaks this Z2 symmetry somewhat randomly,
there is a arbitrariness in the sign of the edge current. That is why
transparent symbols are added that represent the currents with op-
posite signs of the actual DMRG data. (c) Fidelity susceptibility and
overlaps of the exact ground state with various ansatz on the cluster
24a for n = 1/2. Orange line: overlap with ansatz no. 1 optimized at
each point. Blue line: Overlap with DSL wavefunction with uniform
spin-dependent NN hopping t0. Green line: Overlap with super-
fluid ansatz, defined as the equal-weight superposition of all states at
fixed density. The emergence of the additional phase can already be
observed, between the two nearby peaks of fidelity susceptibility at
g = 0.24 and g = 0.43, which are denoted by the vertical red lines.
The overlap with DSL wavefunction peaks close to the transition be-

tween the BEC phase and the additional phase.

We note that the emergence of this additional phase can already be seen in small
size clusters, as observed from ED calculations. In Fig. 4.9(c), we show the fidelity
susceptibility as well as the overlap of the exact ground state with various ansatz
on the cluster 24a. We find that the additional phase also have a large overlap with
ansatz no. 1, where now we optimize the ansatz at each point (orange line). We
find that the optimal ansatz in this phase is in the vicinity of the DSL wavefunction.
Indeed, the overlap with the DSL wavefunction (blue line), which is obtained by set-
ting the NNN interactions to zero, is remarkably close with the optimal overlap. One
possible scenario to explain this observation is that the DSL wavefunction describes
the critical wavefunction at the transition from the BEC phase to the unknown phase.
A similar scenario was put forward in [136]. Finally, the optimal overlap becomes
smaller in the BEC phase, as expected. Instead, in this regime, large overlaps are
obtained with the superfluid ansatz, which is defined as the equal-weight superpo-
sition of all states at fixed density [142].

4.8 Conclusions

In this work, we systematically classify CSLs on the honeycomb lattice relevant
to Rydberg atom experiments using the PSG analysis. We show that the CSL wave-
functions constructed from the Gutzwiller-projected parton wavefunctions are able



Chapter 4. Classification and emergence of quantum spin liquids in chiral Rydberg
models 57

to capture the intermediate disordered phase in chiral Rydberg atom arrays. In par-
ticular, our results resolve the previously unclear nature of the intermediate phase
found in Ref. [74]. In the context of Rydberg atom experiments, our work provides a
general framework which can be utilized to search for CSLs in other lattice models.
Given the fast experimantal progress in the field, it would be interesting to extend
our approach to other lattices, which are immediately available in tweezer arrays [31,
38].
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Chapter 5

Emergent dipole field theory in
atomic ladders

Sparked by a series of remarkable atomic physics experiments [37, 143–145], con-
strained dynamics in quantum many-body systems have attracted a great deal of
attention in recent years [146–154]. From a fundamental viewpoint, these systems
offer a rich playground for studying complex non-equilibrium properties, where the
interplay of correlations and dynamical frustration can result in a variety of elusive
phenomena, such as Hilbert space fragmentation [155–158], slow relaxation dynam-
ics [159–161], as well as intriguing links to lattice gauge theories [66, 162–164] and
fracton models [165–167]. Such phenomena are inherently related to strong correla-
tions and lack a counterpart in the context of non-interacting particles.

The imposition of higher, multipole conservation laws in the many-body the-
ory [147, 163] represents a new opportunity to generate nontrivial dynamics. This
has been recently demonstrated in experiments with ultracold atom gases [143–145],
where a tilted optical lattice is used to enforce a dipole (center-of-mass) preserving
dynamics. In view of that, a number of works have not only established the ground
state phase diagram of dipole-conserving lattice models of fermions or bosons [152],
but have also considered the nonequilibrium dynamics of such models [153]. The
core idea about this research line is to enforce as well as possible the dipole symme-
try as a Hamiltonian property (regardless of energy scale).

In this work we pursue a different approach, where the symmetry constraint
emerges as a low-energy property of the ground state. We draw inspiration from
a Bariev-like model [168–172], whose phase diagram features a Tomonaga-Luttinger
liquid (TLL) state formed by bound pairs. We use field theory arguments and exact
diagonalization (ED) to link this ground state to an emergent dipole-type symmetry,
which constrains the local dynamics of single-particle excitations that need to find
partners in order to move. Having in mind atomic physics realizations (Fig. 5.1), we
propose a quasi-adiabatic protocol [68] to prepare the dipole TLL state from biased
optical ladders, as well as Rydberg atom arrays. We benchmark the state preparation
by using a time-dependent variational principle (TDVP) algorithm to dynamically
evolve an initial product state. Finally we consider the quench dynamics of iso-
lated defects placed on top of the dipole TLL state. We use a combination of density
matrix renormalization group (DMRG) and time-evolving block-decimation (TEBD)
algorithms to prepare and evolve the single-defect states, contrasting our numeri-
cal results to field theory predictions. Figure 5.1 gives a general perspective onto a
protocol that prepares and observes the time evolution of defects.

The rest of the chapter is organized as follows. We set our notation and introduce
the model Hamiltonian as a hardcore boson ladder in Sec. 5.1. We inspect analyt-
ically specific parameter regimes, and then focus on the regime where the model
exhibits strictly confined excitations. We utilize a duality map to reveal a connection
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FIGURE 5.1: Schematic of the protocol to observe fragmentation dy-
namics in the presence of an emergent dipole symmetry. (A) Ini-
tially, a product state is prepared in the first time interval. (B) This
is followed by a quasi-adiabatic state preparation over a time frame
T = tprep � t0. (C) Once the target state is prepared, a single-particle
defect is created by the action of the local operator s±

j , and the result-
ing state is left to undergo unitary evolution during the time interval.

At the final time the density nj is measured.

to a PXP-type model featuring Hilbert space fragmentation, providing an alterna-
tive viewpoint on dipole symmetry at one of the exactly solvable points the model
features. We discuss experimental implementations of the microscopic dynamics
in Sec. 5.2: we derive the effective Hamiltonian from physically sensible Rydberg-
and cold-atom models, discussing pertinent perturbations to each platform. A low-
energy field theory description for the lattice model is presented in Sec. 5.3, which
we use to assess the stability of the dipole TLL state and devise the mobile impurity
model. This analysis is complemented by numerical simulations in Sec. 5.4. We give
particular focus to benchmark the state preparation protocol and test the nontrivial
dynamics of isolated defects. We offer a summary and point out open perspectives
in Sec. 5.5.

5.1 Effective hard-core boson model

We consider hard-core bosons on a two-leg zigzag ladder (shown in Fig. 5.2),
where the number of particles is preserved separately in each sub-lattice. The system
dynamics is described by a Bariev-like [168, 172] Hamiltonian:

H = �J Â
i
(s+

i s�i+2 + H.c.)�W Â
i
(s+

i sz
i+1s�i+2 + H.c.) + V Â

i
sz

i sz
i+1, (5.1)

where i = 1, 2, . . . , L are sites in the zigzag geometry, and s+
i is the hard-core boson

creation operator. The hard-core boson occupation number ni = s+
i s�i is related to

the Pauli matrix sz
i by ni = (1 + sz

i )/2. The lattice model depends on three coupling
parameters. The intra-leg hopping amplitude J, the correlated hopping term W, and
the Ising-like interaction V. Note that single-particle tunneling among different legs
is not allowed as it violates the number conservations.

The two global U(1) symmetries of the model can be expressed as the conserva-
tion of the total number of excitations and the so called inter-leg magnetization:

N = Â
i

ni, M =
1
2 Â

i
(�1)ini. (5.2)

We call N and M the charge and spin quantum numbers, given the similarity to elec-
tronic systems. We use these two conserved charges to fix a subspace of interest.
Hereafter, we concentrate on the scenario where both legs are half-filled, meaning
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FIGURE 5.2: Illustration of the hard-core boson model. The two-leg
ladder has the geometry of a zigzag chain where odd and even sub-
lattices enjoy their own number conservation. Correlated hopping W
modulates tunneling amplitudes according to the presence or absence
of bosons in the other leg. Additional nearest-neighbor interactions

V favor attraction or repulsion among neighboring bosons.

we shall consider chains whose thermodynamic limit is defined by N/L ! 1/2,
with vanishing magnetization M/L ! 0. We use J = 1 to set the energy scale, and
study the model as a function of W and V. We only consider positive values of W,
given that we can flip its sign via a global particle-hole transformation, sz

i ! �sz
i .

5.1.1 Phase diagram overview

Bariev-like models and their corresponding phase diagrams have been discussed
in the literature [168–172]. Below, we exploit some of these earlier results to clarify
the phase diagram of the hard-core boson ladder, referring the reader to Refs. [171,
172] for more details. We will complement those with a field theory approach we
describe below.

The phase diagram is schematically depicted in Fig. 5.3. At V = W = 0, we
find the 2TLL phase, a critical state with power-law decaying correlation functions
described by two independent TLL theories (as for decoupled chains). The TLLs
govern the low-energy spectrum of collective excitations of charge and spin that are
generated from the hybridization of the original excitations in the legs. This phase
arises from the competition among the correlated hopping W and the antiferromag-
netic V interaction that prevents excitations from pairing up.

If we keep V small and move towards dominant W coupling, spin excitations are
gapped out and we enter the dipole TLL phase. The dipole TLL phase can be viewed
as a quantum liquid of molecular dimers [168], where each dimer is formed by bind-
ing two single-particle excitations that live in distinct legs together. The associated
pairing strength depends mostly on the correlated hopping W [169], which drives
a BKT type transition at V = 0 into the dipole TLL phase. The underlying liquid
ground state can be identified by a den Nijs-Rommelse type string order parameter
as showed by Chhajlany et al. [172].

Alternatively, we identify here an emergent dipole-like symmetry that constrains
the dynamics of single-particle excitations in the dipole TLL state. At W = J the
binding strength reaches its maximum [169]. At this special point, excitations are
strictly confined (see Fig. 5.4) and the dipole symmetry becomes exact as the lattice
model Eq. (5.1) commutes with

D = Â
i

iñi, ñi = ni exp
⇣

ip Â
j<i

nj

⌘
, (5.3)

which encodes the local constraint in a nonlocal global operator. We point out that,
although clearly grounded in the fixed points provided by the Bariev chain obtained
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FIGURE 5.3: Simplified sketch of the phase diagram as obtained from
the weak-coupling theory. Near the origin we find the 2TLL and
dipole TLL phases. For large V these give room to phase separation

PSc and PSs.

for V = 0 [168], the dipole TLL phase is quite robust to a great sort of perturbations,
cf. Sec. 5.2, surviving up to finite values of V [172].

Finally, for dominant V coupling we find the phase separated (PS) states PSc and
PSs. The phases PSc and PSs correspond to phase separation of charge and ladder
spin [171, 173]. We note these are particularly sensitive to boundary conditions (as
well as form of interactions, e.g., replacing Ising-like to density-density interactions).
For simplicity we only comment on open chains with a double even number of sites,
so each sub-lattice is at exact half-filling.

Ferromagnetic interactions favor clustering, giving rise to the PSc phase at large
enough V < 0. The two degenerate classical ground states of the Ising-like interac-
tion take the domain-wall form

|f1i = | • • • • • • � � � � � � i , |f2i = | � � � � � � • • • • • • i , (5.4)

breaking Z2 mirror reflection across the center link of the chain. The gapped spec-
trum is composed from the creation of additional domain-walls, obtained by either
the full displacement of the cluster or its separation in smaller pieces. The addition
of the couplings J and W do not lift the twofold degeneracy of the PSc ground state,
but give kinetic energy to domain-wall excitations renormalizing energy gaps.

On the other hand, strong antiferromagnetic interactions lead to the so-called PSs
phase, which can be thought of as a Néel state with a domain-wall excitation stuck
in the center of the chain [171]. As in the ferromagnetic case, the antiferromagnetic
Ising-like interaction has two classical ground states:

|y1i = | � • � • � • • � • � • � i , |y2i = | • � • � • � � • � • � • i . (5.5)

However, while the addition of J is still innocuous, a nonzero W lifts the ground
state degeneracy. The favored configuration can be deduced from the sign of W and
the nature of the pair excitation in the center of the state. For positive W the state
containing a particle dimer |y1i is favored, while |y2i is selected for negative W.

5.1.2 Duality and exotic dipole constraint

The behavior of the dipole TLL state is reminiscent of the so-called fractonic liq-
uids that have been studied recently in literature [153, 166]. To clarify this link, we
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FIGURE 5.4: Cartoon of the strictly constrained point W = J. Dimers
are depicted as bound pairs of bosons, which move by playing a

leapfrog game. Isolated particles are unable to move by their own.

inspect more closely the point W = J where the dipole-type operator D becomes an
exact symmetry of the lattice model.

The operator D has been discussed before in the context of constrained quantum
dynamics in one dimension [166, 174]. In particular, Ref. [166] introduced D as
an ingredient to restrain spinless fermions to move in pairs and produce fractonic
dynamics in one-dimensional polaronic systems. The hard-core boson ladder Eq.
(5.1) has a similar behavior when W = J. As illustrated in Fig. 5.4, bosons in one leg
only move when assisted by a boson partner in the neighboring chain, binding them
into a two-site molecule.

The nonlocal character of D makes it hard to recognize its meaning. We thus
move to a dual picture, by performing a Kramers-Wannier-like transformation, de-
fined as

tx
i = (�1)i ’

ji
sz

j , tz
i = (�1)isx

i sx
i+1, (5.6)

where we introduce oscillatory factors for convenience. Then, by replacing ni =
1
2 (1 + sz

i ) into the formula for ñi in Eq. (5.3), we learn ñi is given by the difference
ñi = 1

2 (tx
i�1 � tx

i ). This implies that the dipole operator D becomes the dual magne-
tization along the x axis:

D =
1
2 Â

i
tx

i , (5.7)

where we assume an infinite system and drop boundary terms. Translating the hard-
core boson model in Eq. (5.1) as well, we arrive at

HKW = Â
i

h
Wt

y
i t

y
i+1 + Jtz

i tz
i+1 + tx

i�1(Jt
y
i t

y
i+1 + Wtz

i tz
i+1)tx

i+2 + Vtx
i�1tx

i+1

i
. (5.8)

The model HKW has a quite intriguing form. First, we readily recognize it commutes
with D when W = J, as HKW becomes manifestly invariant under rotations along
the x axis. The PXP-type constraint is perfectly implemented at the point W = J,
where it becomes the folded XXZ model studied by Zadnik and Fagotti [160], who
showed the existence of exponentially many jammed states. The W = J model has
also been considered by Yang et al. [157], who demonstrated that the Hamiltonian
features Hilbert-space fragmentation and unusal thermalization properties even for
nonzero V, away from the integrable point.

For W 6= J the constraint is no longer perfectly implemented and the Hamiltonian
HKW loses its invariance under U(1) rotations along the x-axis. The model still fea-
tures a pair of U(1) conservation laws, inherited from the N and M numbers, given
by the numbers of ferromagnetic and antiferromagnetic domain walls Âi tx

i tx
i+1 and

Âi(�1)itx
i tx

i+1, which are conserved for all W. We note that Eq. (5.8) highlights the
existence of a strong-weak W coupling duality around W = J, implementing the
exchange of ty $ tz terms in the Hamiltonian.
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5.2 Microscopic realizations of constrained dynamics

In this section we discuss potential realizations of our target Bariev-like model
in atomic arrays. We use perturbation theory to examine two scenarios, one with
Rydbergs in a linear chain and other where cold atoms move through the sites of
an optical lattice. In both cases the central idea is the use of a strong potential bias
to split the system into two sublattices, so that the slow, non-equilibrium dynamics
preserves the relative number of excitations in each sublattice. Before continuing, let
us note that some of the parameter regimes we are interested in can also be achieved
following earlier proposals, in particular, Refs. [170–172].

5.2.1 Rydberg-atom chain

We first illustrate a proposal utilizing Rydberg atoms trapped into optical poten-
tials in the frozen regime, where atomic motion can be neglected [31]. We assume
atoms, prepared in two different Rydberg states, e.g., |�i = |nSi and |•i = |nPi, are
placed in the sites of a linear chain. Dipolar coupling between Rydbergs produce
a flip-flop (dipolar) exchange interaction tij between pairs of atoms that decays ap-
proximately as tij = t|i�j| = t/|i � j|3. We also assume the two atomic states are
coupled by an external (microwave) drive. The Rydberg model Hamiltonian then
reads

HRyd =
W
2 Â

i
sx

i +
d

2 Â
i
(�1)isz

i + Â
i<j

tij(s+
i s�j + s�i s+

j ), (5.9)

where W is the Rabi frequency, and d is the staggered detuning corresponding to
the drive. The staggering can be realized, e.g., by locally changing the Stark shift
generated by the optical potential. To engineer the model in Eq. (5.1), we work in
the regime where W! 0 and d� t. We take the zero Rabi frequency limit W! 0 so
the total number of excitations is preserved, while the large d limit allow us to freeze
the magnetization M and study hopping processes perturbatively.

Perturbative treatment.— We separate hopping terms in two groups. The first
group does not change the number M, and comprises the hopping processes within
the same sublattice. These tunneling amplitudes are hence not quenched by the
detuning bias, popping out directly into the projected effective Hamiltonian. The
second group on the other hand includes tunneling processes where an excitation
moves from one sublattice to the other. These processes are associated with a change
DM = ±1, and their leading contribution comes from second-order perturbation
theory. Finally, given the rapid decay of the tunneling amplitudes, we truncate long-
range hoppings beyond second-neighbors and make use of a Schrieffer-Wolff trans-
formation to find

HRyd,eff = J Â
i
(s+

i s�i+2 + H.c.)�W Â
i
(�1)i(s+

i sz
i+1s�i+2 + H.c.), (5.10)

where J = t/8, and W = t2/2d. The effective model looks much like the Bariev chain
[168], but the correlated exchange term acquires a staggering factor. The oscillatory
phase is innocuous to our goal and favors pairing in the antisymmetric channel,
giving rise to a dipole TLL made of particle-hole molecules. In fact the staggering
phase in W can be easily removed by performing a particle-hole transformation in
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just one of the legs, say

C1 : s+
2l+1 $ s�2l+1, sz

2l+1 ! �sz
2l+1. (5.11)

The resulting model, although with dominant antiferromagnetic correlations, is thus
equivalent to Eq. (5.1) exhibiting a dipole TLL phase.

The Hamiltonian in Eq. (5.10) can only be taken as the dominant contribution
in the more general case once longer-range terms are included. We however antic-
ipate that those perturbations should not be harmful to the dipole TLL liquid. For
instance, two perturbations that could arise are

dHRyd,eff ⇡ t4 Â
i

s+
i s�i+4 + w4 Â

i
(�1)is+

i (sz
i+1 + sz

i+3)s�i+4 + H.c. + · · · , (5.12)

where the estimated size of these couplings are t4 = t/64 and w4 ⇠ t1t3/d = t2/27d.
These two terms break the integrability of the Bariev model, but are not enough
to drive us away from the dipole TLL phase (as can be seen, at weak coupling, by
analyzing their bosonized form). We thus argue Rydbergs are a promising platform
to observe and study the dipole TLL state in quasi-adiabatic state preparations.

5.2.2 Cold atoms with laser driven hopping

We now consider an alternative implementation, based on ultracold atoms trapped
in the sites of an optical lattice [175]. We assume atoms are allowed to hop among
first and second neighbors sites of a zigzag chain, and repel whenever two or more
of them occupy the same site. The microscopic Hamiltonian then takes the form of
a Bose-Hubbard (BH) model, with an additional chemical potential bias µ between
even and odd sublattices:

HBH = �t Â
i
(a†

i ai+1 + H.c.)� t0Â
i
(a†

i ai+2 + H.c.) +
U
2 Â

i
na

i (na
i � 1) +

µ

2 Â
i
(�1)ina

i ,

(5.13)
where ai removes an atom sitting at i, t and t0 are the hopping amplitudes, and U
is the onsite Coulomb repulsion. The number of atoms is denoted as na

i = a†
i ai to

discern it from the hard-core boson number introduced before.
We utilize here laser-assisted tunneling [176–178] to induce hopping of atoms

with a site-dependent phase. In particular, we consider a nearest-neighbor hopping
t! teiji,i+1 with staggered flux pattern, depicted in Fig. 5.5. We choose the phase so
its sole effect is to flip the sign of t every two sites:

Ht ! Ht = �t Â
l
(�1)l�a†

2l�1a2l + a†
2l a2l+1 + H.c.

�
, (5.14)

where the l sum is taken over half the system size. This phase dressing helps us to
cancel out the oscillatory factor that arises in the perturbation theory, as we argue
below.

Perturbative treatment.— The perturbative treatment is reminiscent of that in the
previous subsection. We consider the large-µ limit to effectively enforce spin sym-
metry, and assume U is strong enough so that every site contains at most one boson.
It is worth noting that such strong couplings are not detrimental to a treatment in
the single-band Hubbard regime, as the dynamics of single particles along the wires
is not affected by those (in fact, similar regimes have been investigated in Ref. [90]).
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FIGURE 5.5: Illustration of the cold-atom ladder with second-order
perturbative processes that arise in the quasi-adiabatic preparation.
We assume t0 is small enough that we can neglect its corrections. The
ladder has an artificial staggered flux configuration: triangles point-

ing up and down enclose zero and p flux respectively.

We then take into account hopping processes perturbatively. As a further sim-
plification, we consider the regime t0 ⌧ t, so the second-neighbor hopping only
contributes at first-order in perturbation theory (this assumption is not necessary,
but makes computations easier to interpret). Taking into account second-order vir-
tual processes generated by the first neighbor hopping, as seen in Fig. 5.5, we find
the effective Hamiltonian governing the slow dynamics of the system takes the form

HBH,eff = �Â
la

⇣
Jas+

2l�2+as�2l+a + Was+
2l�2+asz

2l�1+as�2l+a + H.c.
⌘

+ V Â
i

sz
i sz

i+1,

(5.15)
where we use a = 1, 2 to denote odd and even sub-lattices. The effective Hamilto-
nian features the desired U(1)c ⇥U(1)s symmetry, but lacks leg permutation sym-
metry. From the Schrieffer-Wolff transformation, we estimate the couplings to be

J1,2 = t0 ± t2

U ± µ
, W1,2 =

t2

µ
± t2

U ± µ
, V = � t2

2

⇣ 1
U + µ

+
1

U � µ

⌘
, (5.16)

where we take the upper sign for a = 1 and the lower sign otherwise. There are
two different ways to restore Z2 leg symmetry.1 The first involves adjusting the
relative filling in the legs, changing the free Fermi velocity so that they match at
some nonzero magnetization M 6= 0. Another, less fine-tuned possibility, amounts
to considering an extra separation of energy scales in the lattice parameters. Either
considering U � µ or U ⌧ µ will do the job. In the first case, for instance, by taking
the limit U ⌧ µ, with t0 ⇠ t2/µ, we can approximate the couplings to J1,2 ! J =

t0 + t2

µ and W1,2 ! W = 2t2

µ , while V goes to V ! t2U/µ2, and is then assumed to
be much smaller than J and W. In this limit, we thus arrive at precisely the model
Hamiltonian in Eq. (5.1).

5.3 Effective field theory approach

In this section we present a long-distance, low-energy description for the hard-
core boson ladder model. We use bosonization to analyze the effects of interactions
starting from the limit of weakly coupled XY chains. As usual for TLLs, we can
explore the predictions of the effective theory beyond the perturbative regime by
treating the velocities and Luttinger parameters as phenomenological parameters.
We shall see that this approach captures the transitions to the dipole TLL phase as

1We note the lack of this Z2 symmetry is not necessarily incompatible with the dipole conservation.
As a simple check one may consider the dipole-preserving, but still leg-anisotropic case where W1 =
J1 = J + h and W2 = J2 = J � h, which realizes an alternating hopping pattern for dimers, in a similar
fashion to the so called Su-Schrieffer-Heeger model [179].
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well as to the classically ordered phases, providing a field theory framework for
the entire phase diagram sketched in Fig. 5.3. In addition, we examine the repre-
sentation of the dipole moment operator in the low-energy theory. We argue that
the violation of the dipole symmetry is associated with the creation of gapped spin
excitations that behave as mobile defects interacting with the gapless charge modes.

5.3.1 Tomonaga-Luttinger liquid theory

Let us write the hardcore boson ladder model in the limit of decoupled legs, ob-
tained by setting W = V = 0 in Eq. (5.1). It is convenient to introduce a leg index
a = 1, 2 corresponding to odd and even sites, respectively, and denote the spin
operators by s±

a (l) ⌘ s±
2l�2+a, with l 2 Z. In this notation, the Hamiltonian for

decoupled legs reads

H0 = �J Â
la

[s+
a (l)s�a (l + 1) + H.c.]. (5.17)

We can then bosonize the low-energy excitations of each XY chain separately [180].
The effective Hamiltonian is that of two independent free bosons:

H0 ⇡Â
a

v0

2

Z
dx

⇥
(∂xqa)

2 + (∂xfa)
2⇤, (5.18)

where v0 = 2J is the velocity of the bosonic modes in each leg and the bosonic fields
obey the commutation relation [qa0(x0), ∂xfa(x)] = idaa0d(x � x0). The fields fa are
associated with fluctuations of the hard-core boson occupation number by

dna(l) =
1
2

sz
a(l) ⇡ � 1p

p
∂xfa(x) + (�1)xconst⇥ sin[

p
4pfa(x)]. (5.19)

The staggered part has a nonuniversal prefactor and oscillates with momentum p =
p(1 + hsz

i i) for a pair of half-filled chains, described by N/L! 1/2 and M/L! 0.
Note that if we allow the numbers N and M to change, the value of the momentum
is not fixed and may be even different in each sub-lattice. The continuum expansion
of the spin raising and lowering operators reads

s±
a (x) µ e±i

p
pqa(x)�1 + (�1)xconst⇥ cos[

p
4pfa(x)]

 
. (5.20)

We note that the lattice model is invariant under discrete translations i ! i + 2,
corresponding to a rigid displacement of one site on each leg. In the low-energy
theory, this lattice translation amounts to x 7! x + 1 translations, under which the
bosonic fields transform according to

L : fa 7! fa +

p
p

2
, qa 7! qa +

p
p. (5.21)

In addition, the zigzag chain is invariant under a reflection about a site, which acts
as site parity for the leg that contains that site but link parity for the other leg. For
instance, the reflection about an odd site acts in the low-energy theory as:

P : x 7! �x, f1 7! �f1, f2 7!
p

p

2
� f2, q1 7! q1, q2 7! q2 +

p
p.
(5.22)
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We can also define time reversal as the anti-unitary transformation that takes �j 7!
��j. In the low-energy theory:

T : i 7! �i, fa 7! �fa, qa 7! qa. (5.23)

Next, we add interchain interactions perturbatively. We have H = H0 + HW +
HV , where

HW =�W Â
l

⇥
s+

1 (l)sz
2(l)s�1 (l + 1) + s+

2 (l)sz
1(l + 1)s�2 (l + 1) + H.c.

⇤
, (5.24)

HV =V Â
l

sz
2(l)[sz

1(l) + sz
1(l + 1)]. (5.25)

The three-spin interaction HW preserves L and P symmetries, but breaks T . Using
the continuum expansion of the spin operators, we can combine oscillatory terms
from both legs to produce the operator dHW ⇡ � 2W

p2

R
dx sin[

p
4p(f1 � f2)] as the

most relevant contribution. The Ising-like interchain interaction HV contributes with
a marginal operator that couples the uniform magnetization in the two legs: dHV ⇡
8V
p

R
dx ∂xf1∂xf2. We define the charge and spin fields as the linear combinations

fc,s =
f1 ± f2p

2
, qc,s =

q1 ± q2p
2

. (5.26)

Adding the leading perturbations to Eq. (5.18), we obtain a spin-charge-separated
Hamiltonian in the form H = Hc + Hs, where

Hc =
vc

2

Z
dx


Kc(∂xqc)

2 +
1

Kc
(∂xfc)

2
�

,

Hs =
vs

2

Z
dx


Ks(∂xqs)

2 +
1

Ks
(∂xfs)

2
�
� l

2p2

Z
dx sin

⇣p
8pfs

⌘
. (5.27)

At weak coupling, the spin and charge velocities are given by vc,s ⇡ 2J(1 ± 4V/p J).
The Luttinger parameters Kc and Ks encode the interactions in the charge and spin
sectors, respectively. To first order in the interleg interaction, we find Kc,s ⇡ 1 ⌥
4V/p. The sine potential in the spin sector, with coupling constant l ⇡ 4W, has
scaling dimension 2Ks. Note that this operator is odd under time reversal, as ex-
pected for the three-spin operator in HW . Importantly, the low-energy Hamiltonian
in Eq. (5.27) remains valid beyond the regime of small W and V because the sine
potential is the leading perturbation compatible with L, P and U(1)c ⇥U(1)s sym-
metry.

The 2TLL phase corresponds to the regime in which both charge and spin sectors
in Eq. (5.27) remain gapless. This can happen with the help of a repulsive interaction,
V > 0, which disfavors the formation of pairs by making Ks > 1 and rendering the
sine potential irrelevant. We can write the uniform part of the s+

i operator in terms
of charge and spin fields as

s+
1,2(l) µ ei

p
p/2[qc(x)±qs(x)]. (5.28)

In the 2TLL phase, single-particle correlators display a power-law decay, given by

h0|s+
i s�i+2r|0i µ r�(Kc+Ks)/4KcKs , (5.29)

where |0i stands for the ground state. Note that in Eq. (5.29) we must take two points
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that belong to the same chain, otherwise the correlator vanishes identically. This is
a consequence of the U(1)c ⇥U(1)s global symmetry of the ladder and remains true
even if we move away from the weak-coupling limit.

The transition to the dipole TLL phase is driven by the flow of the l perturbation
to strong coupling. For V = 0, the coupling is marginally relevant, and, as a result,
the spin sector undergoes a BKT-type transition. In the strong-coupling limit, we
minimize the potential energy by pinning the scalar field fs to one of its minima:

p
8pfs !

p

2
+ 2pZ. (5.30)

The dipole TLL phase then corresponds to a gapless charge sector and a gapped
spin sector. Note that attractive V favors pairing, facilitating the transition to the
dipole TLL state. Once the spin sector is gapped out, the single-particle propagator
develops an exponential decay as follows:

h0|s+
i s�i+2r|0i µ e�r/x/r1/4Kc . (5.31)

The correlation length x is inversely proportional to the mass gap in the spin sector.
In the case of a BKT transition at V = 0, the gap is exponentially small at weak
coupling, with x�1

BKT ⇠ exp(�const/l) [180]. Power-law correlations in the dipole
TLL phase are only found by pairing bosons in different sublattices, e.g.,

h0|s+
i s+

i+1s�i+rs�i+r+1|0i µ r�1/Kc . (5.32)

Note that the distance r is not restricted to even multiples of the lattice spacing, cf.
Eq. (5.29), since the two-particle operator s+

i s+
i+1 creates one excitation in each leg,

and the correlator always respects the U(1)c ⇥U(1)s symmetry.
Instability towards phase separation is deduced from the vanishing of either

charge or spin velocities in the large V limit. Assuming a monotonic behavior and
estimating the interaction dependence from the weak-coupling expressions for vc
and vs, we predict V?/J ' ±0.78, with positive and negative values corresponding
to the transitions towards PSs and PSc, respectively. Given that W does not enter into
the renormalization of Luttinger parameters at weak-coupling, we expect the criti-
cal value V? to be roughly independent of W. We are thus led to the phase diagram
shown in Fig. 5.3.

5.3.2 Emergent dipole symmetry

Let us now use our field theory formulation to examine the dipole operator in
Eq. (5.3). Our goal here is to find its long-distance representation in order to verify
it commutes with the low-energy Hamiltonian of the dipole TLL state, and thus
represents an emergent symmetry of this phase.

We start from the dual representation in Eq. (5.7), where the dipole operator is
given by the sum of Jordan-Wigner strings. We then expand each tx as the product
of sz strings in each leg. For an odd-site operator tx

1 (l) = tx
2l�1, we get tx

1 (l) =
�S1(l)S2(l), where Sa(l) is defined as

S1(l) = ’
m<l

sz
2m, S2(l) = ’

m<l
sz

2m+1. (5.33)
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Likewise, the even-site operator tx
2 (l) = tx

2l is given by tx
2 (l) = S1(l)S2(l + 1). We

can then rewrite Eq. (5.7) as

D = �1
2 Â

l
[S1(l)� S1(l + 1)]S2(l), (5.34)

where we sum over half the total number of sites.
We can now bosonize the dipole operator using the standard expression for the

string operators in terms of the bosonic fields in each sublattice. Naive bosonization
yields the complex form Sa(l) ⇡ ei p

2 x+i
p

pfa(x). To obtain a manifestly Hermitian
operator, we symmetrize the string, leading to

Sa(l)! Sa,reg(l) ⇡ cos[p
2 x +

p
pfa(x)]. (5.35)

The product of strings at the same site gives S1(l)S2(l) ⇡ 1
2 cos[

p
2pfs(x)], where

we drop oscillatory terms and higher-order corrections. The second term in Eq.
(5.34) is quite similar, but involves a derivative because the fields are at different
points:

S1(l + 1)S2(l) ⇡ �1
2

sin[
p

2pfs(x)]�
p

2p

4
cos[
p

2pfs(x)]∂xfc(x) + · · · (5.36)

Taking both contributions into account, we arrive at the long-distance representation
of the dipole operator:

D µ
Z

dx


sin
⇣p

2pfs + p
4

⌘
+

p
p

2
cos

⇣p
2pfs

⌘
∂xfc

�
+ · · · , (5.37)

where we omit the prefactor and the ellipsis contains higher-order corrections.
From the continuum version of D, we readily learn that the dipole operator can

only be a symmetry if fs condenses. This is clearly not the case in the 2TLL phase,
where both fc and fs fluctuate and D does not commute with the low-energy Hamil-
tonian in Eq. (5.27). In the dipole TLL phase, however, this condition is met as the
spin field is pinned to

p
8pfs ! p/2 according to the strong-coupling flow of l.

Plugging this condition into Eq. (5.37) gives

D ⇡ 1p
2p

Z
dx ∂xfc + · · · , (5.38)

where we drop an unimportant additive constant, and fix the proportionality con-
stant. In this form, the dipole operator is proportional to the total number of particles
(half of it if we assume all particles are bound in pairs), and certainly commutes with
the low-energy Hamiltonian.

This analysis tell us that the dipole operator describes an emergent symmetry of
the dipole TLL phase. This symmetry is valid at low energies, below the spin gap,
where all particles are confined into pairs but gapless excitations are still possible in
the form of collective modes in the charge sector. This finding supports the dimer
picture of the dipole TLL phase. While our bosonization approach started in the
weak-coupling limit where the spin gap is small, we expect this picture to become
more accurate as we increase W towards the special point W = J, where the dipole
symmetry becomes exact and the pairs are strictly confined.

Single-particle excitations violate the pinning condition on fs because they carry
both charge and spin quantum numbers. In the low-energy theory, the operator s+

i
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in Eq. (5.28) creates a kink in the spin field at the position x, shifting fs as
p

8pfs(y)!
p

8pfs(y) + 2pQH(y� x), (5.39)

where QH(x) is the Heaviside step function. This means that the kink interpolates
between two ground states of the sine potential in Eq. (5.27). On the other hand, the
kink changes the sign of the dipole operator in Eq. (5.37) across the position where
the single particle is created. This effect is consistent with the original definition of
the dipole operator in Eq. (5.3), since inserting a single particle changes the sign of
the string in ñi. Thus, we can view a local single-particle excitation as a defect in the
spin field configuration. Far from this defect, we could still pin fs to a local mini-
mum, but the dipole symmetry is spoiled if the defect is allowed to move through
the lattice. In the following we will construct an effective mobile impurity model to
describe the dynamics of this defect in the dipole TLL phase.

5.3.3 Mobile impurity model

According to Eq. (5.27), at low energies the spin sector of the dipole TLL is de-
scribed by a sine-Gordon-type model. At weak coupling, i.e., for small spin gap
Ds ⌧ J, the elementary excitations are kinks or anti-kinks with relativistic dispersion
Es(k) =

p
v2

s k2 + D2
s [181]. As we increase the Bariev interaction strength W, the spin

gap increases and the dispersion relation deviates from the relativistic dispersion.
We are now interested in exploring the vicinity of the special point W = J, where the
dipole symmetry imposes that single-particle excitations, which are charged under
the U(1)s symmetry, cannot move by themselves. To describe this regime, we restrict
the excitation spectrum to allow at most one spin excitation. This type of problem
can be tackled using effective mobile impurity models, in which the finite-energy ex-
citation is treated as a distinguishable particle that interacts with the gapless modes
of the TLL [182].

We start by approximating the spin dispersion near its minimum by

Es(k) ⇡ Ds +
k2

2m
, (5.40)

where m is the effective mass. For W = J, we expect m ! •, corresponding to
localized spin excitations due to the exact dipole symmetry. We then treat the single
spin excitation as an impurity mode, writing

s+
i µ ei

p
p/2qc(x)d†

s (x), (5.41)

where d†
s (x) is charge neutral but carries spin quantum number DM = +1/2 (�1/2)

if i is an odd (even) site. In this representation, the ground state |0i = |0ic ⌦ |0is is
a vacuum of the bosonic charge modes and of the ds particle. The effective mobile
impurity model that includes the spin excitation has the form

H = Hc +
Z

dx

"
d†

s

✓
Ds �

1
2m

∂2
x

◆
ds � g

r
2
p

∂xfcd†
s ds

#
+ . . . , (5.42)

where Hc is the bosonic Hamiltonian in Eq. (5.27) and we omit irrelevant interaction
terms. Phenomenologically, the coupling g between the impurity and the charge
density can be interpreted as follows. Suppose we perturb the hardcore boson lad-
der in the dipole TLL phase by adding a uniform field dHZ = � h

2 Âi sz
i . In the
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low-energy theory, this perturbation becomes dHZ ⇡ h
q

2
p

R
dx ∂xfc. In a grand

canonical ensemble formulation, the change in the particle density can be absorbed

by shifting the charge boson by fc(x) ! fc(x)� hKc
vc

q
2
p x. Implementing this shift

generates a renormalization of the spin gap in the mobile impurity model in Eq.
(5.42). As a result, we obtain the relation

g =
∂Ds

∂r̄c
, (5.43)

where r̄c = 1
2 hsz

i + sz
i+ii is the average charge density in the ground state and we use

k = ∂r̄c/∂h = 2Kc/pvc for the charge compressibility of the TLL. Thus, the coupling
constant g depends on how the spin gap changes when we vary the total number of
particles. This coupling is allowed when we have a finite-energy excitation in either
spin or charge sectors [182–184].

We can eliminate the interaction between the impurity and the gapless modes
using a unitary transformation. We define

U = exp

"
�i
r

2
p

gKc

vc

Z
dx qcd†

s ds

#
(5.44)

and the transformed fields

d̃s = U†dsU = dse�i
p

2
p

gKc
vc qc , (5.45)

∂xf̃c = U†∂xfcU = ∂xfc �
r

2
p

gKc

vc
d†

s ds . (5.46)

In terms of the new fields, the Hamiltonian becomes

H =
Z

dx


vcKc

2
(∂x q̃c)

2 +
vc

2Kc
(∂xf̃c)

2 + d̃†
s

✓
Ds �

1
2m

∂2
x

◆
d̃s

�
+ . . . , (5.47)

where again we drop irrelevant interactions. Importantly, the dressed impurity
mode d̃s carries a charge proportional to the coupling g because the charge density
operator is given by

rc = �
r

2
p

∂xfc = �
r

2
p

∂xf̃c �
r

2
p

gKc

vc
d̃†

s d̃s . (5.48)

Since this impurity mode is non-interacting, we obtain the free propagator

Gd(x, t) = h0|d̃s (x, t)d̃†
s (0, 0)|0i =

Z •

�•

dk
2p

eikx�iDst�ik2t/2m�a2k2/2

=
1p
2p

✓
a2 +

it
m

◆�1/2
exp

✓
� x2

2a2 + 2it/m

◆
, (5.49)

where a�1 is a momentum cutoff, with a of the order of the lattice spacing. Note that
the propagator is a scaling function of t/m.

To probe the time evolution of the defect, let us consider the time-dependent vari-
ation in the local density:

C(j, t) = hW| s�0 nj(t)s+
0 |Wi � hW| nj |Wi , (5.50)
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where |Wi denotes the ground state of the hardcore boson ladder. In the mobile
impurity model, this quantity becomes

C(x, t) ⇡ Cc(x, t) + Cs(x, t). (5.51)

The first term involves the charge density. Defining the vertex operator Vc = e�i
p

p/2(1�gk)q̃c ,
we obtain Cc(x, t) µ h0|Vc(0)∂xfc(x, t)V†

c (0)|0ic. This contribution spreads ballisti-
cally with the charge velocity vc and decays algebraically at long times. The second
contribution involves the impurity propagator:

Cs(x, t) µ h0|d̃s(0)d̃†
s (x, t)d̃s(x, t)d̃†

s (0)|0is = Gd(x, t)Gd(�x,�t). (5.52)

Using Eq. (5.49) and setting x = 0, we find that the density measured at the same
position where the defect is created decays with time as C(0, t) µ m/t for any finite
mass. In the limit of an immobile defect, m ! •, C(0, t) converges to a finite non-
universal value for t ! •, implying that some charge remains at x = 0 while the
other fraction propagates away with velocity vc.

We can also use the mobile impurity model to study the dynamics of the dipole
moment within the low-energy theory. To reproduce the properties of the dipole
operator in Eqs. (5.3) and (5.38), we propose the following expression in the contin-
uum:

D ⇡
Z •

�•
dx xd†

s (x)ds(x) +
1p
2p

Z •

�•
dx Ŝ(x)∂xfc(x), (5.53)

where we define Ŝ(x) = 1� 2
R x
�• dx0 d†

s (x0)ds (x0). The first term simply accounts
for the dipole moment of the single defect. The second term represents the contribu-
tion from bound pairs, where Ŝ(x) implements the sign change of the string when
we cross the position of the defect. In the defect-free sector, the impurity density
vanishes identically, and the dipole operator reduces to the total number of pairs,
a conserved quantity within the low-energy theory. By contrast, if we consider the
initial state |Y(t = 0)i = s+

j |Wi, we expect the variance of the dipole operator to in-
crease with time as the defect moves through the system. We can capture this effect
by calculating the variance due to the first term in Eq. (5.53). We obtain

hDD2(t)i = hY(t)| D2 |Y(t)i � hY(t)| D |Y(t)i2 ⇡
Z

dx x2|Gd(x, t)|2, (5.54)

which can be interpreted as the mean squared displacement of the defect. We find

hDD2(t)i ⇡ a2 +
⇣ t

ma

⌘2
. (5.55)

The variance is finite at t = 0 because the initial state is not an eigenstate of the
dipole operator. For any finite mass, the variance is a function of t/m and increases
quadratically with time. For m ! •, the variance remains approximately constant,
in agreement with the picture of a localized defect enforced by the exact dipole mo-
ment conservation law.

5.4 Numerical simulations

In this section we present our numerical findings, obtained from a combination of
ED and matrix product states (MPS) based methods, such as TDVP and TEBD. We
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FIGURE 5.6: Ground state characterization with ED. (a) Phase dia-
gram showing the variance of the dipole operator hdD2i/L as a func-
tion of W and V for an open chain with L = 28 sites. (b) Fidelity
susceptibility at V = 0 for various system sizes with periodic bound-

ary conditions.

begin with an examination of the phase diagram from the viewpoint of the emer-
gent dipole conservation. We use ED results to provide insight into the conserva-
tion of the dipole moment in both ground state and low-energy excited states. We
then move to the benchmark of the quasi-adiabatic state preparation. We focus on
the more challenging preparation with cold atoms, simulating the dynamical prepa-
ration with TDVP. We close our numerical survey by studying the isolated defect
dynamics close to the dipole TLL ground state.

5.4.1 Phase diagram and emergent dipole symmetry

We start with a phase diagram characterization of the dipole symmetry. Our goal
here is not to precisely determine transition points, but rather to uncover the emer-
gent status of the dipole symmetry in the dipole TLL state.

We first check how the ground state variance of the dipole operator, hDD2i =
hD2i � hDi2, behaves as we navigate across different portions of the phase diagram.
In Fig. 5.6(a) we plot the results obtained for a chain with L = 28 sites and open
boundary conditions. We observe a great similarity with the phase diagram sketched
in Fig. 5.3. Near the origin, where we find the 2TLL state, we see the ground state
is far from being dipole symmetric as flagged by the higher variance. Moving either
up or down we eventually cross to vanishing dipole variance regions, which we
associate to the classically ordered states. Coincidentally, we find the transitions
take place around the values V/J ⇡ ±0.75, quite close to the ones predicted from
the weak-coupling bosonization. Finally, when we leave the 2TLL state moving in
the direction of increasing W, we appear to cross a smoother region after which
the dipole variance also approaches zero. This would correspond to the BKT-type
transition into the dipole TLL state, supporting the picture of an emergent dipole-
conserving liquid groundstate.

The BKT nature of the transition to the dipole TLL phase makes it difficult to use
finite-size scaling techniques effectively. This limitation leads to an overestimation
of the 2TLL phase in finite-size numerics, as can be seen in Fig. 5.6(a). This becomes
clear when we compute the fidelity susceptibility cF, conventionally used to detect
critical points via finite-size scaling techniques [81] and defined as

cF(h) = lim
dh!0

2
L

1� F(h, dh)
(dh)2 , (5.56)
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FIGURE 5.7: Matrix elements of the dipole operator for three values
of W. We plot the absolute values |Dab| = |ha|D|bi|, obtained from
the 20 lowest-energy excited states. Data obtained from the ED of an

open chain with L = 28 sites and V = 0.

where F(h, dh) = | hy(h)| |y(h + dh)i | is the fidelity and h is a parameter of the
Hamiltonian. We show in Fig. 5.6(b) the ground state fidelity susceptibility as a
function of W/J for a few different sizes L. We find that the transition slowly moves
towards weak coupling as we increase the size L, indicating that the 2TLL may ac-
tually be much smaller in the thermodynamic limit.

Next, we address the behavior of the dipole operator for excited states. Figure
5.7 shows the matrix elements |Dab| = |ha|D|bi| of the dipole operator, computed
in the basis of eigenstates for W/J = 0, 0.60 and 0.90. Note that we plot absolute
values, so we can focus on the strength of nonzero terms. We observe off-diagonal
terms are gradually supressed as we move from W/J = 0 to W/J = 0.90, in support
to the emergent status of the symmetry. In particular, for W/J = 0.90, we can see a
low-energy block, whose nonzero elements are concentrated on the diagonal.

5.4.2 State preparation

Let us now consider the state preparation protocol. We start from the simple
initial state |Néel⇥Néeli = |01100110 . . .i, and evolve it according to the following
time-dependent Hamiltonian:

Hexp(t) = HBH(t) + h(t) Â
l
(�1)l(na

2l + na
2l+1), (5.57)

where HBH(t) is a time-dependent variant of the Bose-Hubbard model shown in Eq.
(5.13). At the initial time, t = 0, coupling parameters are chosen so the initial state is
the actual ground state of the full Hamiltonian Hexp(0) in the symmetry sector where
both sublattices are half-filled. This means, initially, the Bose-Hubbard model only
includes the potential terms U = U0 and µ = µ0, while the hopping elements are set
to zero, t0 = t00 = 0. Note that we also add an extra time-dependent staggering field
h(t), whose initial value h = h0 favors the |Néel⇥Néeli configuration.

The preparation then proceeds by slowly tuning the coupling parameters in Hexp(t).
We vary three parameters t, t0, and h, while keeping the potentials U and µ static
along the evolution. The hopping parameters t and t0 are increased up to the termi-
nal values t f = 1 and t0f = 0.1, while h is decreased all the way down to h f = 0.
The parameter sweep is shown in Fig. 5.8(a) as a function of t/T, where T de-
notes the duration of the sweep. We use ED to verify how the many-body spectrum
evolves along our parameter flow. In Fig. 5.8(b) we plot the spectrum evolution
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of the Hamiltonian (5.57) for a modest chain with L = 16 sites. We observe the
low-energy manifold remains separated, below the rest of the spectrum, during the
whole evolution. Note that we choose the parameters to be as close as possible to
the strictly confined point of the Bariev-like model, so we perform the ED in the
limit of hard-core bosons (U ! •) with potential bias set to µ = 10. In this pa-
rameter regime, we should ideally end up in the effective model of Eq. (5.15), with
parameters Ja = t0, Wa = t2/µ, and V = 0, as estimated from Eq. (5.16).
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FIGURE 5.8: Quasiadiabatic preparation protocol. (a) Parameter
sweep profile employed. (b) Energy spectrum evolution along the
parameter sweep. Obtained from the ED of Hexp(t) in the limit of
hardcore bosons, with µ = 10 and a chain with L = 16 sites. (c) Over-
lap between the dynamically prepared state in the TDVP evolution
and the ground state of the target model as a function of µ. (d) Time
evolution of the inter-leg magnetization for the initial |Néel⇥Néeli
state. (e) Single-particle and (f) two-particle correlators of the dynam-
ically prepared state, compared with the correlators obtained from
the ED of the target model. Insets in (e) and (f) are respectively the
log-linear and log-log behavior of the corresponding correlators. For

the inset in (e) we only plot even values of r.

We now consider a quasi-adiabatic protocol with a finite preparation time T [68].
To perform the dynamical evolution of the initial state we then resort to TDVP, using
a MPS representation of the boson states with maximum occupation number equal
to four. We study this preparation as a function of the duration time T and the
potential bias µ, fixing the on-site potential to U = 50.

Figure 5.8(c) shows the behavior of the overlap between the dynamically pre-
pared and the (DMRG obtained) target state of the Bariev model, F = |hYprep(T)|Ytargeti|.
As expected, we see that the fidelity improves with increasing T (or, equivalently,
with decreasing sweep rate). We also observe that the maximal overlap is reached at
intermediate µ, while small and large values of µ lead to significantly smaller over-
laps with the target state. For small µ, higher-order terms in the perturbation theory
become sizeable and cannot be neglected. On the other hand, for large µ, the energy
gaps, which scale as t2/µ, become small, such that a higher density of excitations
are created in the quasi-adiabatic protocol. We then verify that, while the experi-
mentally prepared state does not conserve the magnetization number M exactly, its
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FIGURE 5.9: Defect dynamics on top the dipole TLL state. Time evo-
lution of the local density variation hdni(t)i for three different values
of W. From left to right, W/J = 1, 0.96, and 0.92. The Ising-like inter-
action is set to V/J = 0.1 in all cases. Results obtained with TEBD on

a chain with L = 201 sites.

expectation value approaches zero with increasing µ as shown in Fig. 5.8(d).
To conclude, we compare the behavior of the single- and two-particle correlators

obtained at the end of the protocol with the ones computed from the ED of the target,
hardcore boson model Eq. (5.1), with W = J and V = 0. As shown in panels (e) and
(f) of Fig. 5.8, these are in good agreement with the ideal results obtained from
the target model. We point out, however, that the single-particle correlator exhibits
greater deviations at larger distances, aligning with predictions from the Kibble-
Zurek mechanism [185, 186]. We have also tried the state preparation protocol in the
limit U ⌧ µ. However, we observe that the state does not appear to enter the dipole
TLL phase, using experimentally realizable parameter regimes.

5.4.3 Dynamics of defects

Finally, we investigate the out-of-equilibrium dynamics of single-particle excita-
tions. The philosophy here is that, after approaching a target ground state in the
quasi-adiabatic preparation, one acts locally with an operator that creates an excita-
tion in the center of the chain letting it evolve coherently for some time. With this in
mind, we however leave microscopic models behind and concentrate on the ground
state and dynamics produced by the effective hardcore boson ladder.

Numerically our quench protocol goes as follows. First, we use DMRG to prepare
the ground state |Wi of the Bariev-like Hamiltonian, Eq. (5.1). We then act with
s+

0 , where j = 0 represents the center site of a chain with an odd number of sites.
Finally, we use a three-site gate TEBD to approximate the time evolution |Y(t)i =
e�iHt |Y0i, with |Y0i = s+

0 |Wi the prepared initial state.
We apply this recipe to examine how the defect behaves above the dipole TLL

ground state. In order to get cleaner results, we choose lattice parameters so we
are deep in the dipole TLL phase, close to the strictly confined point W = J. We
consider values of W in the range from W/J = 1 to W/J = 0.92, always with a small
V/J = 0.1 interaction for generality. We run the DMRG for a chain with L = 201
sites and quantum numbers fixed to N = (L � 1)/2 = 100 and M = 0. For the
TEBD part, we use moderately small time steps Jdt = 0.01, and stop the evolution at
Jt = 18.0, roughly when the light cone reaches the edges of the chain. The maximum
truncation error is set to 10�8 during the whole numerical experiment. Attained with
a maximum bond dimension of c = 1000, the results appear well-converged for the
times considered.

In Fig. 5.9 we plot the time evolution of the variation in the local density for three
different values of W. In agreement with the field theory prediction, we observe the
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FIGURE 5.10: Time correlators for the defect in the dipole TLL state.
(a) Time evolution of the charge density in the central site of the
chain for different values of W ranging from W/J = 1 (darker) to
W/J = 0.92 (lighter). The inset shows the rescaling of the time axis
by the factor J �W. (b) Time evolution of variance of the lattice
dipole operator. Inset shows the rescaling of the time axis by the fac-
tor J �W. The purple dashed line represents a quadratic behavior of
the form a + bt2, with a and b constants. Results obtained via TEBD

on a chain with L = 201 sites.

defect exhibits two different spreading patterns as it carries both quantum numbers
of charge and spin. After emitting the gapless part, which spreads ballistically, leav-
ing a clear light cone signal, the remaining part of the defect features a substantial
slowdown in the relaxation towards equilibrium. For W/J = 1 the effect is most
dramatic, since the spin part of the defect lies still at the central site where it was
created. However, as we move away from the strictly confined point, we are able to
observe a slow spreading of the contribution associated with defect.

The time evolution of the density at the central site for various values of W is
shown in Fig. 5.10(a). There we can spot two time regimes. At short times we ob-
serve a rapid decay due to the formation of the wave front that spreads ballistically.
After this initial decay, the density leak slows down. In particular, for W = J the
density does not seem to decay significantly for the time scales observed, staying
close to hn0i ⇡ 0.8. This is compatible with the limit m ! • of the mobile impurity
model, where a finite amount of the density excess remains localized at infinitely
long times. For W < J we start to observe a slow decay in the density. The inset of
Fig. 5.10(a) we show that these curves collapse onto a single curve upon scaling time
has been rescaled by (J �W)t. The data collapse gives the estimate m ⇠ |W � J|�1

for the behavior of the effective mass parameter in the mobile impurity model. Note
however in the available time windows we could not directly verify the long-time
behavior of 1/t predicted by the impurity model, controlled by the limit t � ma2,
with a a short-distance cutoff.

We show the time evolution of the variance of the dipole operator in Fig. 5.10(b).
As expected, we observe that the dipole variance vanishes for W = J and increases
with the difference |W � J|. We use this correlator to cross compare time scales as
extracted from the time evolution of the central site density. As showed in the inset
of Fig. 5.10(b), the time scales here are also compatible with an effective mass for
the mobile impurity model given by m ⇠ 1/|W � J|, displaying a quadratic form as
predicted in Eq. (5.55).

To complete the picture, we consider the same quench protocol but with a defect
added on top of the 2TLL state. However, due to the large entanglement pattern of
the c = 2 state, we observe a greater difficulty to prepare well-converged ground
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FIGURE 5.11: Ballistic dynamics for defect in the 2TLL phase. (a)
Spacetime dependence of the charge excess. (b) Time evolution of the
charge density at the central site. Here the parameters of the lattice
model are W = 0, and V/J = 0.1. Results obtained by TEBD on a

chain with L = 49 sites.

states with DMRG. In view of that we reduce the system size and consider a modest
chain of L = 49 sites. We set the lattice parameters to W = 0 and V/J = 0.1, setting
the truncation error to 10�12, with maximum bond dimension to c = 600 during the
ground state search. The rest of the numerical protocol goes the same as before and
we arrive at the results shown in Fig. 5.11.

Given that the 2TLL phase is adiabatically connected to the fixed point of decou-
pled chains, the numerical results confirm the natural expectation, and demonstrate
the defect thermalizes quickly, spreading ballistically throughout the system. In Fig.
5.11(a) we plot the spacetime dependence of the charge variation hdnj(t)i during
the quench with respect to the unperturbed ground state. Note that for the system
size considered, and small difference in velocities, it is difficult to tell apart the light-
cones associated with the fractionalization of the single-particle excitation into gap-
less modes of charge and spin. Another contrast is provided in Fig. 5.11(b), where
we plot the time evolution for the number occupation at the central site. When com-
pared to the behavior in the dipole TLL phase, we can see the charge leak does not
exhibit any sort of slowdown, relaxing at time scales of the order Jt ⇠ 1.

Next, we discuss the quench dynamics of a pair of defects on top the dipole TLL
state. The two excitations are created upon the action of s+

i s+
j onto the half-filled

ground state.
We remain close to the strictly confined point, i.e., |W � J| small, and consider

two different scenarios. On the first case we create a pair in consecutive sites s+
i s+

i+1,
while on the second we take them far apart s+

i�rs+
i+1+r, with r = 20. Figure 5.12

shows the results obtained for a chain with L = 200 sites. In Fig. 5.12(a) we observe
a clear lightcone signal formed upon the time evolution of a creation of the local pair.
Note that the ballistic spreading of the local pair is in agreement with the continuum
limit field theory. Note the motion of the local pair is compatible with the emergent
dipole symmetry. This is further showcased in 5.12(c), where we observe the vari-
ance of the dipole does not evolve significantly in time. Finally, in Fig. 5.12(b) a
separated pair exhibits the approximate behavior of independent single-particle de-
fects. This is further reinforced in5.12(c) where we see the dipole variance changes
with time whenever |W � J| 6= 0.
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5.5 Outlook

We investigated a Bariev-type model for hardcore bosons and its non-equilibrium
implementation in biased atomic ladders. We considered how deviations from a
strictly confined point, still leaves significant imprints in the low-energy physics.
In particular we uncovered the emergence of a global non-local symmetry in the
dipole TLL state, which constrains the dynamics in the ground state, binding exci-
tations into pairs. Through the use of extensive numerical methods, we simulated
and verified the effectiveness of the quasi-adiabatic preparation in the context of a
Bose-Hubbard model. We further considered the out-of-equilibrium dynamics of
single-particle defects created above the dipole TLL state. We showed that they ex-
hibit a substantial slowdown in the spreading dynamics and compared their slow
motion to that of a heavy particle whose mass diverges as we approach the special
point where the dipole symmetry is exact.

We leave some open directions for future works. The continuum-limit descrip-
tion of single-particle defects may be improved by treating the sine-Gordon model
in its entirety, which may open the possibility of better understanding the role of the
emergent constraint as well as extending the theory to finite densities of such de-
fects. Another promising direction is the exploration of a potential link to the theory
of Z2 lattice gauge theories coupled to spinless fermions [162, 164], which exhibits
a Bariev-type dynamics in the strong string-tension limit. Driving inspiration from
works on the folded XXZ model [160, 161], it may also be of interest to explore the
role of the emergent dipole symmetry (if there is any) in the realm of finite tempera-
ture transport [148].

Our predictions are of particular relevance to atomic physics experiments, where
the protocol we describe could be implemented in a controllable way. We note the
use of staggering fields has also been proposed to implement gauge symmetries
[187] in quantum analog simulators, as an alternative to tilting potentials [143–145]
which need to scale with system size. The core idea of splitting a bipartite lattice with
a bias potential is quite generic, and one may envision extensions to 2D systems,
where the number of excitations is separately conserved in each sublattice. These
ideas might also be of relevance to trapped ion chains, where the implementation of
three-body terms similar to those discussed here has recently been proposed [188],
or via effective dynamics similar to the Rydberg case, but at the price of introducing
longer-range interactions [189, 190].
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Chapter 6

Stabilizer formalism and resource
theory of magic

Quantum computers hold promise for simulating quantum systems [1], a task
that classical computers struggle with [2]. In order to definitively establish the ad-
vantage of quantum computers, we need to identify specific resources that are re-
quired for this goal. The classes of quantum circuits that do not possess these re-
sources (or in limited amount) must then be easy to simulate classically. For ex-
ample, it has been recognized that quantum circuits with limited entanglement are
classically simulable; thus entanglement is necessary to achieve quantum advantage
[3].

Nevertheless, entanglement alone is not sufficient to achieve this goal. Indeed,
there is a class of quantum circuits that is known to be simulable in polynomial
time, despite exhibiting high amount of entanglement. This is the class of Clifford
circuits, acting on specific input states called stabilizer states [4]. Clifford circuits
and stabilizer states play an important role in the field of quantum error correction
as they enable a large and powerful class of error correcting codes [5, 6].

This brings us to another crucial resource: nonstabilizerness, or also known as
magic. In this thesis, we will use the two terms interchangeably. Since stabilizer
states can be efficiently simulated, states with properties beyond those captured
by stabilizer states (nonstabilizer states) are also necessary for achieving quantum
advantage. Unlike entanglement, which has been extensively studied, its quantifi-
cation and characterization in many-body quantum systems have began only very
recently. This suggests a potentially rich area of exploration for unlocking the true
power of quantum computation, with potential impact on current and near-term
quantum devices. The role of nonstabilizerness in achieving quantum advantage
has also been demonstrated in recent experiments [7, 8].

In this chapter, we briefly review the stabilizer formalism and resource theory of
nonstabilizerness. In Section 6.1, we provide a brief introduction to the formalism of
stabilizer states and the Clifford group. In Section 6.2, we explain how nonstabilizer
states can be utilized to achieve universal quantum computation. This leads to the
notion of nonstabilizer states as resource, which we discuss in Section 6.3. In Section
6.4, we introduce several computable measures of nonstabilizerness, including sta-
bilizer Rényi entropies, stabilizer nullity, and Bell magic. Finally, in Section 6.5 we
discuss possible future research directions.



Chapter 6. Stabilizer formalism and resource theory of magic 96

6.1 Pauli group, Clifford group, and stabilizer states

The single-qubit Pauli matrices are defined as

I =

✓
1 0
0 1

◆
, X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆
. (6.1)

It is convenient to label them using a pair of indices (a, a0) 2 Z2 ⇥Z2, such that

Pa,a0 = iaa0XaZa0 , (6.2)

whereby P(0,0) = I, P(1,0) = X, P(0,1) = Z, and P(1,1) = Y.
Pauli strings of N qubits are defined as all tensor products of N Pauli matrices:

Pw = P(u1,v1) ⌦ · · ·⌦ P(uN ,vN), (6.3)

where we define a binary vector w = (u, v) 2 Z2N
2 , and u, v 2 ZN

2 . Finally, the Pauli
group PN on N qubits is defined as the group of all Pauli strings with overall phase
±i or ±1. The size of PN is thus 4N+1.

The Clifford group CN on N qubits is defined as the normalizer of the N-qubit
Pauli group under conjugation. In other words, C is a Clifford operator if CPwC† =
eiq Pw0 , where w, w0 2 Z2N

2 , for some phase factor eiq . It is known that the Clif-
ford group can be generated by the Hadamard gate, the p/4-phase gate, and the
controlled-NOT gate, defined in the following

H =
1p
2

✓
1 1
1 �1

◆
(6.4)

S =

✓
1 0
0 i

◆
(6.5)

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA (6.6)

, respectively. The size of Clifford group is |CN | = 2N2+2N ’N
i=1(4i � 1), which scales

super-exponentially with the number of qubits.
Given a pure quantum state |yi, we say a unitary operator U stabilizes |yi if

U |yi = |yi, i.e., |yi is an eigenvector of U with eigenvalue 1. An important class of
states called stabilizer states are stabilized solely by Pauli operators. These stabiliz-
ers form a group called the stabilizer group Stab(|yi), which is an abelian subgroup
of the Pauli group, Stab(|yi) ⇢ PN such that �I /2 Stab(|yi). Formally,

Stab(|yi) = {P 2 PN : P|yi = |yi} . (6.7)

The group is generated by N generators g1, g2, . . . , gN , which are mutually commut-
ing Pauli operators. The basic idea of the stabilizer formalism is that stabilizer states
can be more compactly and efficiently described by working with their stabilizers
than the state vector description. Indeed, these generators are sufficient to represent
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a given stabilizer state since we have

|yi hy| =
1

2N

N

’
i=1

(I + gi). (6.8)

These generators are commonly stored in a matrix called stabilizer tableau.
Notably, the pure stabilizer states defined above are precisely the set of states that

can be obtained by applying Clifford gates to the computational basis state |0i⌦N . In
other words, for a stabilizer state |yi, there is C 2 CN such that

|yi = C |0i⌦N . (6.9)

Moreover, updating the stabilizer tableau after a Clifford operation can be done ef-
ficiently. This operation includes the unitary gates in the Clifford group, and Pauli
measurements. This implies that Clifford circuits with stabilizer states input can be
efficiently simulated classically; this is indeed the celebrated Gottesman-Knill theo-
rem [9–11].

Going beyond pure states, a special class of mixed stabilizer states has the form

r =
1

2N

K

’
i=1

(I + gi). (6.10)

where g1, g2, . . . , gK are mutually commuting Pauli operators and K < N. That is,
the main difference with pure stabilizer states in Eq. (6.8) is that the number of
generators is less than N. For a mixed stabilizer state r with K generators, there is
C 2 CN such that

r =
1

2N�K C(|0i h0|)⌦K ⌦ I⌦(N�K)C†. (6.11)

The techniques to simulate pure stabilizer states can be straightforwardly adapted
to this class of states. Note however that this class of states does not encompass all
stabilizer states, which will be defined below.

We denote the set of N-qubit pure stabilizer states as SN , which size scales su-
perexponentially with N, |SN | = 2N ’N

i=1(2i + 1) µ 2O(N2). The full set of stabilizer
states is defined as the convex hull of SN :

STABN =

(
r : r = Â

j
pj |sji hsj| , 8jpj � 0, Â

j
pj = 1

)
, (6.12)

where |sji are pure stabilizer states.

6.2 Nonstabilizerness as quantum resource

As discussed above, Clifford circuits can only prepare stabilizer states when ap-
plied on a computational basis state. Since the set of stabilizer states obviously does
not encompass all possible states, it follows that Clifford circuits do not lead to uni-
versal quantum computation. The key to achieving computational speedup using
quantum computers lies in introducing an additional operation [4, 12, 13]. Interest-
ingly, it turns out that it is sufficient to introduce a simple one-qubit gate. Specifically,
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FIGURE 6.1: Quantum circuit which implements a T gate.

one can add a gate called the T gate, defined as

T =

✓
1 0
0 eip/4

◆
, (6.13)

to the set of Clifford gates, which allows to perform universal quantum computa-
tion. Another commonly used non-Clifford gate is the CCZ (controlled-controlled-
Z) gate, or also known as Toffoli gate:

CCZ = diag(1, 1, 1, 1, 1, 1, 1,�1), (6.14)

which also promotes the Clifford set to a universal gate set.
The elements of Clifford group can be implemented fault-tolerantly, i.e., in a way

that is resilient against noise. The T gate can be implemented by a Clifford circuit
plus an ancilla state [12]

|Ti =
|0i+ eip/4 |1ip

2
, (6.15)

which can also be written as |Ti = TH |0i. The circuit is shown in Fig. 6.1. The
Toffoli gate can be implemented with a similar scheme using the ancilla state [14]

|y3i =
1
2
(|000i+ |100i+ |010i+ |001i). (6.16)

In fact, this scheme is general in that any nonstabilizer operation can be imple-
mented in such a way using a suitable ancilla state. Therefore, having a supply of
magic states, combined with Clifford operations, would enable fault-tolerant univer-
sal quantum computation. Such magic states can be prepared by a scheme known
as magic state distillation [12].

6.3 Resource theory of nonstabilizerness

In the above scheme of universal quantum computation, one can view the magic
states as a “resource” that allows to achieve true quantum advantage. Such resource
can be studied in a rigorous manner in the framework of quantum resource theory
[15]. The basic idea is to define the set of “free states”, while the states that are not
free states are considered resource states. We also define “free operations” which
include operations that leave the set of free states invariant, i.e., it cannot generate
resource states from free states. One can further quantify how much resource that
a state has by a resource measure. The most well-known example of a quantum re-
source theory is the theory of quantum entanglement [16], where the free states are
separable states and the free operations are local operations and classical commu-
nication (LOCC). There are numerous existing entanglement measures, such as the
von Neumann entanglement entropy for pure states.
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In the case of magic, the free states are stabilizer states and the free operations
are stabilizer operations. The latter are generated from the following elementary
operations:

1. Clifford unitaries, r! CrC†, C 2 CN .

2. Composition with stabilizer states, r! r⌦ S, where S is a stabilizer state.

3. Measurements in the computational basis, r ! Âk PkrPk, where Pk are the
projectors on the computational basis (Âk Pk = 1).

4. Discarding of qubits, r! TrA r, for a set of qubits A.

5. The above operations conditioned on the outcomes of measurements or classi-
cal randomness.

A valid measure of magic M(r) must be faithful, i.e., M(r) = 0 if and only
if r is a stabilizer state. Moreover, it must be non-increasing under any stabilizer
operations E , i.e.,

M(r) �M(E(r)). (6.17)

Actually, the monotonicity becomes an invariance for operations (1) and (2) since
they are reversible (by the inverse gate and discarding of qubits, respectively).

An additional property known as strong monotonicity requires that a measure
is non-increasing on average under measurements. Consider the measurement of
a Pauli operator P with the set of outcomes l 2 {+1,�1}. We denote the post-
measurement state by rl = VlrVl/pl, where pl = Tr rVl is the corresponding
probability and Vl = (I + lQ)/2. A measure is a strong monotone if it satisfies

M(r) �Â
l

plM(rl). (6.18)

This property is not required but is particularly desirable as measurements represent
an important component in stabilizer formalism. In addition, there are some features
that are desirable but not necessary, such as continuity, convexity, and sub-additivity.

One approach to construct a measure of magic is based on distance: the distance
between the given state and the closest stabilizer state serves as a magic measure in
the given state. For example, if the distance is measured by the quantum relative en-
tropy, S(rks) = �Tr [r(log s� log r)], we can define the relative entropy of magic
as [17]

rM(r) = min
s2STABN

S(rks). (6.19)

This is a genuine measure which satisfies strong monotonicity. Another example is
the robustness of magic [18], given by

R(r) = min

(
|SN |

Â
i=0

|xi|
����� r = Â

s2SN

xisi, x 2 R

)
, (6.20)

which is also a strong monotone.
We note that both of these measures can be defined for a generic resource theory,

and their nice properties can be established in general [15]. However, these measures
are also notoriously difficult to compute as it requires an optimization over the set of
stabilizer states, which grows super-exponentially with the number of qubits. As a
result, their evaluation quickly becomes impractical beyond a few qubits. In the next
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section, we will introduce a few measures of magic which do not involve minimiza-
tion, thus making them simpler to compute. This computability is a crucial property
that enables the investigation of these measures in quantum many-body systems.

6.4 Measures of nonstabilizerness

In this section, we will review the definitions and properties of several com-
putable measures of nonstabilizerness. We note that most of the discussions below
apply only to pure states, unless stated otherwise.

6.4.1 Pauli spectrum

Since the Pauli operators provide an orthonormal basis in the space of Hermitian
operators, one can expand the density matrix r = |yi hy| as

|yihy| =
1

2N Â
u

hy|Pu|yiPu. (6.21)

One can see that the coefficients of |yihy| in the basis of Pauli operators, i.e., the
Pauli basis, directly correspond to the expectation values of the corresponding Pauli
strings for the state |yi. The set of these expectation values is called the Pauli spec-
trum

spec(|yi) =
n
hy| Pu |yi , u 2 Z2N

2

o
. (6.22)

It captures the nonstabilizerness of a state, in a similar way that the entanglement
spectrum captures the entanglement of a state. For a stabilizer state, the Pauli spec-
trum contains only 2N non-zero values, all of them are ±1.

6.4.2 Stabilizer Rényi entropy

Stabilizer Rényi Entropies (SREs) are a measure of nonstabilizerness recently in-
troduced in Ref. [19]. For a pure quantum state |yi of a system of N qubits, SREs are
expressed in terms of the expectation values of all Pauli strings:

Mn (|yi) =
1

1� n
log

(

Â
u

hy|Pu|yi2n

2N

)
. (6.23)

Eq. (6.23) can be seen as the Rényi-n entropy of the classical probability distribution

X|yi(u) =
hy|Pu|yi2

2N , (6.24)

also known as the characteristic function [20]. The SREs can also be seen as the
moments of the Pauli spectrum, or equivalently, the participation entropy in the
Pauli basis [21].

The SREs are a pure-state magic monotone, which is a monotone when the op-
erations are restricted to the stabilizer protocols that map pure states to pure states.
Specifically, the SREs have the following properties [19, 22]:

• faithfulness, i.e., Mn(|yi) = 0 iff |yi 2 STAB;

• invariance under Clifford unitaries C 2 CN , i.e., Mn(C|yi) = Mn(|yi);
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• additivity, i.e., Mn(|yiA ⌦ |yiB) = Mn(|yiA) + Mn(|yiB);

• monotonicity under pure-state stabilizer protocols for integer n � 2.

The SREs of integer n � 2 are thus a good measure of magic from the point of
view of resource theory. However, it was observed that the SREs are not a strong
monotone for any n [23]. While it is possible to propose modifications like linear
stabilizer entropies to address this and create a strong monotone [22, 24], it comes
with its own disadvantages. We will therefore focus on the SREs in this thesis.

The definition of SREs can be extended to mixed states by properly normalizing
X|yi(u). For example, for n = 2, the mixed state SRE is given by [19]

M̃2 = � log

 
Âu Tr (rPu)4

Âu Tr (rPu)2

!
, (6.25)

which can be seen as the Rényi-2 entropy of

Xr(u) =
Tr (rPu)2

Âv Tr (rPv)
2 , (6.26)

apart from some offset. Here, the free states are defined as the mixed stabilizer states
that have the form in Eq. (6.10). Since this is a restricted class of mixed stabilizer
states, M̃2 is not a true measure of magic for mixed states. Nevertheless, it has the
advantage that it is simple to compute, similarly with the pure-state SRE.

An alternative approach to define the mixed state extension of SRE involves convex-
roof construction [22]. In this way, the measure would capture the whole set of sta-
bilizer states, not just the restricted class of mixed stabilizer states that is captured by
M̃2. However, convex roof construction is significantly more difficult to work with.

Since the definition of SREs do not involve minimization, they are much simpler
to compute than previously known measures of nonstabilizerness. Note however
that the cost for naive computation is still exponential, as there are exponentially
many Pauli strings, whose expectation values need to be computed. There are by
now a number of cases where the computation (analytical or numerical) can be done
for large system sizes, including tensor network states [25–28], Rokhsar-Kivelson
states [29], sign-problem-free models [30], hypergraph states [31], permutationally
invariant systems [32], and dual-unitary circuits [33].

6.4.3 Stabilizer nullity

The stabilizer group Stab(|yi) in Eq. (6.7) can in fact be defined for any quantum
state. Its size |Stab(|yi)| is given by the number of ±1 in the Pauli spectrum. For a
nonstabilizer state, the number of generators k = log2 |Stab(|yi)| is less than N. This
naturally leads to a simple measure of nonstabilizerness by substracting the number
of generators k from the number of qubits N, i.e.

n (|yi) = N � log2 |Stab(|yi)|. (6.27)

This measure is called the stabilizer nullity [34], which is a strong monotone. It can
only take integer values between 0 and N. Furthermore, it is additive under the
tensor product. We will show in Chapter 10 that stabilizer nullity is related to the
SRE in the limit of Rényi index n! •.

Surprisingly, stabilizer nullity can be estimated efficiently using a protocol called
Bell difference sampling [20]. Specifically, the protocol efficiently learns the stabilizer
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group of a state in O(N3) time, from which we can directly obtain the stabilizer
nullity. We refer to Refs. [35, 36] for details on the protocol.

6.4.4 Bell magic

Bell magic is a measure of magic that can be estimated using a protocol known
as Bell sampling. The protocol involves preparing two identical copies of a state
and measuring them in the Bell basis. The measurement outcome r appears with a
probability

P(r) =
| hy| Pr |y⇤i |2

2N . (6.28)

Bell magic is then defined as [37]

B = Â P(r)P(r0)P(q)P(q0)||[sr�r0 , sq�q0 ]||•, (6.29)

where the infinity norm is zero when the Pauli strings commute and 2 otherwise.
In words, Bell magic quantifies the probability that sampled Pauli strings commute
with each other. Bell magic is a faithful measure of nonstabilizerness, namely, it is
zero for stabilizer states and greater than zero otherwise. Moreover, it is invariant
under Clifford unitary. To construct a measure which is additive under tensor prod-
uct, the additive Bell magic is given by

Ba = � log(1� B). (6.30)

Bell magic is particularly relevant in experimental setting as it can be estimated
through Bell sampling followed by O(N) classical post-processing time. Its experi-
mental measurement has already been demonstrated in Ref. [7] in a quantum circuit
of up to 6 qubits.

6.5 Outlook

The characterization of nonstabilizerness in quantum many-body systems is a
topic that has recently witnessed growing interest and offers numerous prospects
for future investigations.

On one side, investigating nonstabilizerness in such systems poses a significant
challenge, particularly due to the inherent difficulty of evaluating measures of non-
stabilizerness for large system sizes. It is thus essential to address this issue by de-
veloping scalable methods to compute nonstabilizerness at large scales. In Chapter
7, we introduce a new method to measure many-body magic in quantum systems
based on a statistical exploration of Pauli strings via Markov chains. We describe an
efficient sampling procedure using Tree Tensor Networks (TTNs), that exploits their
hierarchical structure leading to a modest O(log N) computational scaling with sys-
tem size. A subsequent application of this method reveals that mutual information
of nonstabilizerness grows logarithmically in critical spin chains, similarly to entan-
glement, as discussed in Chapter 8. Then, in Chapter 9, we show how to compute
nonstabilizerness in a relevant class of many-body systems called the generalized
Rokhsar-Kivelson systems. In Chapter 10, we present a novel approach for the eval-
uation of nonstabilizerness within the framework of matrix product states (MPS),
based on expressing the MPS directly in the Pauli basis. Finally, in Chapter 11, we
introduce a measurement-only circuit whose magic dynamics is efficiently simula-
ble, allowing for large-scale simulations. These new methods have enabled initial
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explorations of the connection of nonstabilizerness to many-body physical phenom-
ena. Further applications of these approaches to other models and in various many-
body phenomena will be an exciting avenue for future research. It could potentially
advance our understanding of quantum systems, provide new tools for the analy-
sis of quantum many-body models, and has significant implications for numerical
simulations in many-body quantum systems.

On another side, an increasing effort is being put to understand connections be-
tween different quantum resources. This line of research is important to unravel
the fundamental source of quantum computational power. Among these resources,
entanglement and nonstabilizerness stand out due to their tight connection to clas-
sical simulability of quantum circuits. Delving into the relationship between these
two key resources could shed light on the origins of quantum computational advan-
tage. In Chapter 12, we show how the SRE is connected to the flatness of the en-
tanglement spectrum, thus establishing a direct link between nonstabilizerness and
entanglement. Importantly, this connection can be leveraged to develop a protocol
to efficiently probe nonstabilizerness in experimental platforms. Finally, in Chapter
13, we investigate the relationship between entanglement and nonstabilizerness in
MPS.
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Chapter 7

Many-body magic via
Pauli-Markov chains – from
criticality to gauge theories

In this chapter, we present a theoretical framework to measure many-body magic
that leverages on a stochastic sampling of the system wave function. Our work
builds upon recent developments in the field, in particular, on the recognition of
stabilizer Renyi entropies (SREs) as measures of magic (including an experimental
demonstration with 4 qubits) [19, 38–40]. While a direct measure of the former is
extremely challenging as it requires a number of measurements that grows expo-
nentially with the size of the partition, we introduce a Markov chain on Pauli strings
as a tool to distill the most relevant contribution to magic. We show that our proto-
col returns an unbiased estimator of SREs of all orders, and that it is efficient under
several important scenarios: those include both full state magic (that is relevant, e.g.,
to quantify the overall difference from a stabilizer state), and long-range magic - a
quantity that is akin to mutual information and that, crucially, is not plagued by any
UV-divergences when applied to field theory.

The estimation of magic via Pauli-Markov chain is a general construction, that
is broadly applicable to computations as well as experiments. We explore in detail
its capabilities in the context of tree tensor networks (TTN) [41, 42]. At first, we
perform extensive methodological checks, in particular, on the efficiency of Markov
sampling and autocorrelations. We then showcase the flexibility of our approach
with several applications, to understand advantages and overall comparison with
recently introduced direct sampling methods that constitute the state of the art in
terms of measuring many-body magic in numerical computations [23, 25, 27].

Firstly, we consider one-dimensional systems. There, by considering both Ising,
Potts and Heisenberg models, we show that full-state magic is not always indica-
tive of quantum critical behavior. In particular, while it works for the conceptually
simple cases of Ising (as already observed in Ref. [23, 25, 27, 43]) and Potts models,
it spectacularly fails detecting any criticality in the case of spin-1 XXZ models. Op-
positely, long-range magic (whose computation was not accessible before our algo-
rithm, to the best of our knowledge) displays sharp signatures of critical behavior in
all models considered. Our work thus clarifies how, in the context of critical behav-
ior, it is fundamental to construct - and to compute - UV-divergence free estimators
to understand the role of magic.

Secondly, we consider two-dimensional interacting systems, where the connec-
tion between magic and many-body phenomena is uncharted territory. We focus on
the Z2 lattice gauge theory, for two reasons: its importance as a paradigmatic model
for more complicated lattice field theories, as it displays a confinement-deconfinement
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transition, as well as topological order; and its direct connection to the toric code, an
epitome example of quantum memory based on the stabilizer language [1, 9–11,
16, 44–48]. Thanks to the very modest O(ln N) size-scaling of our algorithm versus
system size N, we are able to consider systems up to 100 spins. Our results show
how both confined and deconfined phase have volume-law magic: most remarkably,
magic features striking signatures of critical behavior. Close to the transition point,
its behavior is akin to that of a Binder cumulant, as magic density displays a cross-
ing as a function of volume, whose functional form is dictated by finite-size scaling
theory. Even more remarkably, universal collapses are not only evident at modest
volumes, but even at relatively small bond dimensions, signalling that magic might
be considerably less affected than other observables by tensor network truncations.
At the physical level, our results point out that magic may serve as an order pa-
rameter for confinement-deconfinement transitions, even at volumes where other
quantities (e.g., order parameters) are of very limited use.

Finally, we give a glimpse of the applicability of our approach to experiments. In
that context, we discuss in detail experimental errors as a function of finite sampling,
size, and autocorrelations. Our results indicate that the sampling needed to scale to
large systems requires very fast repetition rates, which are available in solid state
settings, but constitute a challenge for atomic experiments.

The rest of the chapter is structured as follows. In Sec. 7.1, we review the SREs and
extend it to qudits. In Sec. 7.2, we describe how to sample Pauli strings via Markov
chains, discuss the efficiency of various estimators, and detail our implementation
with tree tensor networks. In Sec. 7.3, we present our results on both one- and two-
dimensional spin systems. In Sec. 7.4, we detail our experimental protocol, and then
conclude in Sec. 7.5.

7.1 Stabilizer Renyi entropy

Stabilizer Rényi Entropies (SREs) are a measure of nonstabilizerness recently in-
troduced in Ref. [19]. For a pure quantum state r, SREs are expressed in terms of the
expectation values of all Pauli strings in PN :

Mn (r) =
1

1� n
log

(

Â
P2PN

| Tr (rP) |2n

dN

)
, (7.1)

with d is the local dimension of the Hilbert space of N qudits and PN is the gener-
alized Pauli group of N qudits [49]. The SREs have the following properties: [19] (i)
faithfulness: Mn(r) = 0 iff r 2 STAB, (ii) stability under Clifford unitaries C 2 CN :
Mn(CrC†) = Mn(r) , and (iii) additivity: Mn(rA ⌦ rB) = Mn(rA) + Mn(rB). The
SREs are thus a good magic measure in the point of view of resource theory, where
the free states are defined as the stabilizer states while the free operations are the
Clifford unitaries. This definition is a straightforward generalization to general local
dimension d from the one given in Ref. [19]. For d > 2, the Pauli operators are no
longer Hermitian, and thus the expectation values can be complex. In Eq. (7.1), we
take the absolute values of the expectation values | Tr (rP) |. Eq. (7.1) can be seen as
the Rényi-n entropy of the classical probability distribution:

XP = | Tr (rP) |2/dN . (7.2)
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FIGURE 7.1: Stabilizer entropies for qubit and qutrit states. The SRE
density m1 and m2 for single qubit state (a) defined in the Eq. (7.6),

and for single qutrit state defined in Eq. (7.7) (b).

Moreover, the definition of SREs can be extended to mixed states by properly
normalizing XP. For example, for n = 2, the mixed state SRE is given by [19]

M̃2 = � log

 
ÂP2PN

| Tr (rP) |4

ÂP2PN
| Tr (rP) |2

!
, (7.3)

which can be seen as the Rényi-2 entropy of

X̃P = | Tr (rP) |2/ Â
P2PN

| Tr (rP) |2, (7.4)

apart from some offset. Here, the free states are defined as the mixed states that can
be obtained from pure stabilizer states by partial tracing [19].

Furthermore, the long-range magic can be quantified by

L(rAB) = M̃2(rAB)� M̃2(rA)� M̃2(rB) (7.5)

where A and B are two separated subsystems (see Fig. 7.2 (a)- (b)). A similar quan-
tity has been considered previously in the context of mana [50, 51] and robustness of
magic [52, 53]. L(rAB) measures how magic is contained in the correlation between
the subsystems, and thus it quantifies the degree to which magic cannot be removed
by finite-depth quantum circuits [50]. Indeed, due to the additivity of SRE, L(rAB)
vanishes for a product state rA ⌦ rB. On the other hand, a non-vanishing value of
L(rAB) effectively quantifies the extent of deviation from the additivity in the case
of entangled subsystems.

The long-range magic is directly reminiscent of mutual information, that has
played a major role in characterizing the distribution of both classical information
and quantum correlations in many-body systems [4, 54–65]. On the lattice, the main
motivation for looking at functionals such as in Eq. (7.5) is that they are much more
meaningful than simple bipartition properties from a field theory standpoint. In-
deed, these quantities are expected to be free of UV divergences, and thus solely
dominated by infrared, universal properties of the lattice theory. This parallels the
f-functions used in field theory [66].
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7.1.1 Examples

To familiarize with the behavior of SREs in many-body systems, here we provide
some examples of SREs in simple wave functions. First of all, we stress that the
SREs are basis-dependent, i.e., it is not invariant under local basis change. In partic-
ular, the SREs of a single-qubit state may be non-trivial. For example, consider the
following one-parameter family of single-qubit states

|y(q)i =
1p
2

h
|0i+ eiq |1i

i
. (7.6)

Note that |y(p/4)i corresponds to the canonical T-state. The SREs can be computed
easily by evaluating the expectation values of P 2 {I, X, Y, Z}, and then plugging it
in Eq. (7.1). The result is shown in Fig. 7.1 (a). As can be seen, the SREs are non-zero
apart from some special points q = mp/2 with integer m.

Now, the SREs of a product state of N copies of |y(q)i can also be computed
straightforwardly, utilizing the additivity property of SRE, Mn(rA⌦ rB) = Mn(rA)+
Mn(rB). The SREs are then just given by Mn(|y(q)i⌦N) = NMn(|y(q)i).

For an example of qudit states, we consider the following family of single-qutrit
states

|f(q)i =
1p
3

h
|0i+ eiq |1i+ e�iq |2i

i
. (7.7)

Here, |f(2p/9)i corresponds to the canonical qutrit T-state. We now need to com-
pute the expectation values of 32 single-qutrit Pauli operators. To define the Pauli
operators, we first define the shift and clock operators for d-level system as

X =
d�1

Â
k=0

|k + 1ihk| and Z =
d�1

Â
k=0

wk
d|kihk|, (7.8)

where wd = e2pi/d, and the addition is defined modulo d. For qutrits, we have d = 3.
The qudit Pauli operators are defined as

Taa0 = w�2�1aa0ZaXa0 (7.9)

for a, a0 2 Zd. Here, 2�1 is the inverse element of 2 in Zd.
Computing the expectation values of the Pauli operators in Eq. (7.9), we can

compute the SREs of |f(q)i using Eq. (7.1). The result is shown in Fig. 7.1 (b). In
this case, the SREs are non-trivial apart from some special points q = m2p/3 with
integer m.

7.2 Markov chain Monte Carlo sampling of Pauli strings

In this work, we investigate the SREs using Monte Carlo sampling of Pauli strings
according to some probability distribution PP, which only depends explicitly on the
expectation values of Pauli strings. For example, for the calculation of Mn, we get
PP = XP (Eq. (7.2)), while for M̃2 we have PP = X̃P (Eq. (7.4)). Here we focus on
Metropolis algorithm, although other sampling methods, such as heat bath, may also
be employed. Since PP only depends on the expectation value of P, this method is
applicable to any numerical methods in which expectation values of (non-local) op-
erators can be accessed, such as exact diagonalization and tensor network methods.
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Furthermore, this method can also be utilized to experimentally measure SREs (see
Sec. 7.4).

Algorithm 1 Monte Carlo sampling of Pauli strings

Input: a quantum state r and number of sampling NS

1: Initialize the Pauli string P.
2: Compute Tr(rP) and PP.
3: for (i = 1; i  NS; i + +) do
4: Propose a candidate Pauli string P0.
5: Compute Tr(rP0) and PP0 .
6: Accept the move with probability: min

⇣
1, PP0

PP

⌘
.

7: Measure the estimators.
8: end for

Output: a Markov chain of P with probability PP.

7.2.1 Algorithm theory

The scheme is summarized in the Algorithm 1. If we sample according to XP, Mn
can be estimated using the unbiased estimators

Mn =
1

1� n
log

D
| Tr(rP)|2(n�1)

E

XP
(7.10)

for n > 1 and
M1 =

⌦
� log

�
| Tr(rP)|2

�↵
XP

(7.11)

for n = 1, where h...iXP is the average over XP obtained with sampling. For n < 1, a
better estimation can be done by reversing Eq. (7.10), i.e.,

Mn = � 1
1� n

log
D
| Tr(rP)|2(1�n)

E

PP,n
(7.12)

where PP,n µ | Tr(rABP)|2n. Let us analyze the efficiency of these estimators.

SRE with n = 1.– For n = 1, the variance of M1 is shown to be at most quadratic
in N in Ref. [27]. Thus, the estimator for M1 is efficient. Actually, we can even make
a stronger statement, if we make the assumption that the SREs are linear in N, i.e.,
Ma = N f (a) + O(1), where f (a) is a function that does not depend on N. Using the
relation [67]:

Var(M1) =
d2[(1� a)Ma]

da2

�����
a=1

, (7.13)

we see that Var(M1) is linear in N. It follows that the variance (standard deviation)
of the SRE density, m1 = M1/N, scales as 1/N (1/

p
N).
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FIGURE 7.2: Schematics of partitions. (a) Full partition. (b) Two
widely-separated partitions for the calculation of long-range magic
in Eq. (7.5). (c) Subleading term as in Eq. (7.22), as well as a cartoon

depicting the increment trick discussed in the main text.

SRE with n 6= 1.– For n > 1, the variance of Eq. (7.10) is given by

Var
⇣
| Tr(rP)|2(n�1)

⌘

=
D
| Tr(rP)|4(n�1)

E

XP
�
D
| Tr(rP)i|2(n�1)

E2

XP

= exp [�2(n� 1)M2n�1]� exp [�2(n� 1)Mn] .

(7.14)

Now, by second-order approximation Var (log x) ⇡ Var (x) /x2, we have

Var (Mn) ⇡
exp [�2(n� 1)M2n�1]� exp [�2(n� 1)Mn]

|n� 1| exp [�2(n� 1)Mn]

=
exp [2(n� 1)(Mn �M2n�1)]� 1

|n� 1| .
(7.15)

For n < 1,

Var
⇣
| Tr(rP)|2(1�n)

⌘

=
D
| Tr(rP)|4(1�n)

E

PP,n
�
D
| Tr(rP)|2(1�n)

E2

PP,n

= exp [(n� 1)(M2�n + Mn)]� exp [2(n� 1)Mn] .

(7.16)

Then,

Var (Mn) ⇡
exp [(n� 1)(M2�n + Mn)]� exp [2(n� 1)Mn]

|n� 1| exp [2(n� 1)Mn]

=
exp [(1� n)(Mn �M2�n)]� 1

|n� 1| .
(7.17)

In both cases, if the SREs grow at most logarithmically in N, the variance grows at
most polynomially. Thus, by Chebyshev’s inequality, the number of samples needed



Chapter 7. Many-body magic via Pauli-Markov chains – from criticality to gauge
theories 110

for a fixed error e is polynomial in N, i.e, the estimator is efficient. On the other
hand, if the SREs are linear in N, as is typically the case in many-body systems [25,
43, 50], the variance grows exponentially with N when n 6= 1. Thus, the estimator
for Mn, n 6= 1 is efficient only if the SREs are at most O(log N). One can also see
this intuitively by noting that the quantity being estimated is exponentially small
in N when Mn is linear, and thus we need exponentially small precision. We note
in passing that states with logarithmically growing SREs can arise in many-body
systems in the frustrated regime [40].

Note, however, that the SREs are typically linear in N. Therefore, using the esti-
mators in Eq. (7.10), the estimation of Mn, n 6= 1 will almost always be exponentially
costly. Nevertheless, the cost typically grows much more slowly than d2N which is
the cost for exact computation. Thus, in practice, using this estimator is still ben-
eficial to extend the system sizes we can study, as we shall illustrate in Sec. 7.3.
Importantly, using Monte Carlo sampling, we are not restricted to sample the Pauli
strings according to XP. An alternative approach is to sample Pauli strings according
to the probability distribution PP,n µ Tr(rP)2n. We then need to estimate the nor-
malization constant of PP,n to estimate Mn. This is a non-trivial task, equivalent to
estimating the partition function, for which a wealth of sophisticated methods have
been put forward [68–78].

Long-range magic.– In addition, we are interested to estimate the long-range magic
as quantified by L(rAB) in Eq. (7.5). While we can in principle compute the individ-
ual M̃2 for rC, C 2 {A, B, AB}, this is not optimal, as we have seen that the estimation
for M̃2 is not efficient when M̃2 grows linearly with N. Moreover, we expect that the
leading term of M̃2 will be canceled out in L(rAB). In this case, it is more desirable
to estimate L(rAB) directly, without having to resort to inefficient estimation of M̃2.
To do this, we first rewrite Eq. (7.5) as follows:

L(rAB) = I2(rAB)�W(rAB), (7.18)

where

W(rAB) = � log

 
ÂPA2PA

| Tr(rAPA)|4 ÂP2PB
| Tr(rBPB)|4

ÂPAB2PAB
| Tr(rABPAB)|4

!
, (7.19)

and I2(rAB) = S2(rA) + S2(rB)� S2(rAB) is the Rényi-2 mutual information. If one
is to sample according to PPAB µ Tr(rABPAB)4, we can estimate W(rAB) by

W(rAB) = � log
⌧

| Tr(rAPA)|4| Tr(rBPB)|4
| Tr(rABPAB)|4

�

PPAB

, (7.20)

where PAB is decomposed as PAB = PA ⌦ PB. Similarly, we have

I2(rAB) = � log
⌧

| Tr(rAPA)|2| Tr(rBPB)|2
| Tr(rABPAB)|2

�

XPAB

. (7.21)

Therefore, as a byproduct, our scheme can be applied to compute the Rényi mutual
information for disjoint subsystems.

Subleading term.– The previous scheme can be straightforwardly modified to ex-
tract the subleading term in the expansion Mn(N) = DN N + cN [25]. Here we con-
sider 1D systems for simplicity. Specifically, the subleading term is approximated by
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the quantity cN = 2Mn(N/2)�Mn(N) (see Fig. 7.2 (c)), which expands as

cN = log

* | Tr
⇣

rN/2P(1)
⌘
|2n| Tr

⇣
rN/2P(2)

⌘
|2n

| Tr(rN P)|2n

+

PP,n

(7.22)

for n 6= 1, where rN,N/2 is the density matrix for a 1D system of size N and N/2,
respectively. For simplicity, we have assumed translational invariance in Eq. (7.22),
but the procedure can be straightforwardly generalized to any system. Here, denot-
ing P = P1P2...PN , where Pi is a Pauli operator acting on site i in the N�site system,
we choose P(1) = P1P2...PN/2 and P(2) = PN/2+1PN/2+2...PN . Note that, differently
from Eq. (7.20), here we consider two pure states of different sizes N and N/2. For
the subleading term in 1D systems, the term inside the log in Eq. (7.22) does not
decay exponentially, and thus the estimation can be done more efficiently than the
estimation of the leading term in Eq. (7.10).

Increment trick for SRE.– The extraction of the subleading term in Eq. (7.22)
presents an alternative strategy to estimate Mn, which circumvents the problem of
exponential variance for the estimator in Eq. (7.10). The key idea is that, if the es-
timation in Eq. (7.22) is efficient, then we can estimate cN , cN/2, ..., until the size is
small enough that Mn can be evaluated exactly. The number of cM’s that needs to
be computed scales as O(log N) (assuming translational invariance). Then, we can
determine Mn(N) by considering a proper linear combination of cM’s. This strategy
is reminiscent of the increment trick employed in estimation of Rényi entanglement
entropies in Quantum Monte Carlo simulations [79–81], which considers the differ-
ence of Rényi entropies of smaller and smaller regions, to compute the Rényi entropy
of a large entangling region with high precision. However, in this case, the form of
cN is specifically designed to cancel out the volume-law term of Mn, differently from
entanglement entropy which exhibits area law.

The above strategy is effective in 1D systems because the subleading term cN is
expected to either remain independent of system size or exhibit at most logarithmic
growth. However, in higher-dimensional systems, cN may exhibit area-law scaling,
leading to growth with size. In this case, more complicated linear combination of
Mn’s shall be considered to eliminate the area-law term (while, at the same time,
also keeping the volume law one vanishing). For example, in 2D systems, the form
of linear combination used in extracting the topological entanglement entropy with
Kitaev-Preskill [82] or Levin-Wen scheme [83] will cancel both the volume-law and
area-law term. It is convenient to partition the system into four subsystems as pro-
posed in [84], which is also suitable with 2D TTN geometry. With this scheme, the
estimation of Mn(L ⇥ L) is reduced to Mn(L/2⇥ L), Mn(L/2⇥ L/2), ..., such that
only O(log N) computations are required, as in 1D case1.

7.2.2 Efficient sampling with tensor networks: the example of tree tensor
networks

The probability PP of a given Pauli string P only depends on the expectation
value of P, and thus it is efficiently computable in TTN (or any loopless tensor net-
work [42]). Following the convention introduced in Ref. [41], each tensor in the TTN

1In each computation, one estimates the linear combination gMn = Mn(L⇥ L)� 4Mn(L/2⇥ L) +
4Mn(L/2 ⇥ L/2), and similar form for L/2 ⇥ L geometry. This quantity can be recast into a form
suitable for Monte Carlo estimation in a similar way as the subleading term in Eq. (7.22).
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FIGURE 7.3: Efficient Monte Carlo sampling using Tree Tensor Net-
work. (a) Tree Tensor Network (TTN) representation of a many-body
wavefunction |yi, where tensors are depicted as circles arranged in
a binary-tree structure. Each tensor is identified by a pair of zero-
indexed integers [l, n], representing its layer index l and tensor index
n at that layer. The red circle at the top-most layer represents the root
tensor having index [0, 0], where the isometry center of the TTN is
taken. (b) To evaluate the expectation value of a tensor-product of
single-site operators hO1O2 . . . ONi, we first place each operator Oi
at the physical site it acts on in the TTN representation. Then, we
compute the effective link operators which live at the virtual links
by the coarse-graining procedure as shown in the figure. The coarse-
graining is performed iteratively from the physical sites to the top-
most virtual links, which are directly connected to the root tensor. At
each step, the link operators O[l+1,2n] and O[l+1,2n+1] are combined
into O[l,n] by the [l, n]-tensor. The resulting link operator O[l,n] acts
on the [l � 1, bn/2c]-tensor one layer above in the TTN structure. (c)
The expectation value hO1O2 . . . ONi is calculated from the contrac-
tion of the root [0, 0]-tensor and the top-lost link operators as shown
in the figure. (d) Considering a modified operator which differs only
at a single site from the previous one, O1O2...O0i ...ON , we only need to
recompute the link operators in the path from the modified physical

site i to the topmost link.

structure is denoted by the pair of zero-indexed integers [l, n], where l corresponds
to the layer index (starting from the top root tensor) and n denotes the tensor at a
particular layer l counted from the left (see Fig. 7.3(a)). Obviously, in this notation,
the top root tensor is represented by [l, n] = [0, 0].

The algorithm to sample Pauli strings for the ground state of a quantum many-
body system is described below.

È After performing the adaptive variational ground-state search [41] for a many-
body Hamiltonian, we arrive at the TTN representation of the many-body
ground state wavefunction |yi. We start by bringing the TTN into the central
canonical form, where the [0, 0]-tensor is the orthogonality center (see Fig. 7.3(a)).

È Given the initial Pauli string P = P1P2 . . . PN , where Pi is a Pauli operator
at site i, we construct the coarse-grained effective “link” operators O[l,n] at
each link iteratively from the physical sites to the top-most links, where at the
bottom-most (i.e., the physical) layer these link operators are identified with
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the Pauli operators (see Fig. 7.3(b)). At each step, the link operators O[l+1,2n]

and O[l+1,2n+1] are coarse-grained into O[l,n] by [l, n]-tensor. The new link oper-
ator O[l,n] acts on the [l � 1, bn/2c]-tensor a layer above in the TTN structure.
We keep all the link operators in memory for future uses.

È The expectation value hy|P|yi now only involves the root [0, 0]-tensor and top-
most link operators O[1,0] and O[1,1] as seen in Fig. 7.3(c).

È At each sampling step, we either propose a single-site update P0 = P1 . . . P0i . . . PN ,
or a two-site update P0 = P1 . . . P0i . . . P0j . . . PN , following Algorithm 1. The up-
dated sites i and j are chosen randomly.

È We observe (Fig. 7.3(d)) that the effective link operators for P0 only differ with
those of P on the links that lie on the path from the site i (or j) to the root
[0, 0]-tensor. The number of such links scales only logarithmically in system
size. This implies that computing hy|P0|yi can be done very efficiently with a
computational cost of O(log(N)c4), as opposed to O(Nc4) for a generic many-
body operator for the TTN.

The heart of our efficient sampling procedure lies within the above observation
for TTN. We exploit this scaling property to perform efficient Monte Carlo sampling
of Pauli strings by standard Metropolis algorithm, where the candidate Pauli string
for the next configuration only differs at a few sites with the previous Pauli string
configuration. Crucially, the sites can be chosen arbitrarily, and this does not change
the log N scaling of the TTN sampling, provided that the number of modified sites
does not scale with system size. This allows for flexible sampling strategy, which
can be designed by taking into account our knowledge about the state that we want
to sample – very much like Monte Carlo methods are designed to probe partition
functions.

The final step for calculating the expectation value of a proposed candidate Pauli
string at each Metropolis iteration is the following:

È The link operators, that reside in the path from the updated site i (or j) to
the root [0, 0]-tensor, are updated by the coarse-graining step. The expectation
value hy|P0|yi is now calculated by tensor contractions of the root tensor and
top-most (updated) link operators (see Fig. 7.3(d)).

At this stage, it is important to discuss the efficiency of the more widely used
MPS tensor network structure in relation to our sampling strategy. The compu-
tational cost for direct sampling of Pauli strings using MPS with OBCs scales as
O(Nc3) [23, 27, 85], that also holds for Monte Carlo sampling using MPS2, as op-
posed to the O(log(N)c4) that we get utilizing TTN. Consequently, our method
with TTN for obtaining SREs becomes increasingly efficient as the number of qu-
dits N grows large, particularly when N/ log N & c. Specifically, since the MPS
or the TTN bond dimension c saturates to a constant value with N in 1D quantum
systems with gapped spectrum due to the area-law of entanglement entropy, our
approach involving TTN vastly outperforms MPS based methods in terms of effi-
ciency for large N. Most importantly, the enhanced connectedness inherent in the

2Using the MPS structure, the cost of each iteration in Monte Carlo sampling using single-site up-
date can be reduced from O(N) to O(1) in N using sequential left$ right sweeps of updates, but this
strategy trivially induces exploding autocorrelation time, making it unusable for practical purposes.
Moreover, this sequential strategy becomes a real problem for two-site updates that are required for
systems that preserves some symmetries (see Sec. 7.3).
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TTN structure allows for efficient exploration of higher-dimensional (2D and even
3D) many-body systems (see e.g., [86–90]). This paves the way to investigate SREs
in higher-dimensional systems, as we present in Sec. 7.3.

7.3 Application to Quantum Many-Body Systems

We apply the TTN based sampling method in Sec. 7.2.2 using the estimators in
Eq. (7.10) and Eq. (7.11) to investigate the SREs in various many-body systems, espe-
cially near quantum critical points, both in 1D and 2D geometries. Unlike MPS, the
structure of TTN allows for efficient exploration of systems under periodic bound-
ary conditions (PBC) with similar computational cost as the open boundary condi-
tions [41]. Therefore, we consider the periodic many-body systems, i.e., ring and
torus geometry in 1D and 2D, respectively, to avoid boundary effects. In our simula-
tions, we have ensured that the SREs have converged with bond dimensions of the
TTN in each models.

To obtain the TTN representation of the ground state of many-body systems we
perform variational minimization with TTN sweeping algorithm [41, 42], and then
employ the sampling scheme in Sec. 7.2.2 to estimate the SREs of the ground state.
In particular, since the SREs are generally linear in the number of qudits N, we focus
on the SRE densities mn = Mn/N.

All of the models we consider possess Zn symmetry, with n = 2 or 3, and thus,
a two-site update scheme is required to sample only the Pauli strings that preserve
the symmetry. The Pauli strings that preserve the Zn symmetry, generated by ’i Zi,
are generated by Zi and X†

i Xj (up to a phase constant). Here, X and Z are the shift
and clock operators defined in Eq. (7.8) To ensure that only the Pauli strings that
obey the Zn symmetry are considered, we generate the candidate Pauli string P0 by
randomly multiplying the current Pauli string P with either Zi or X†

i Xj. It is easy to
see that the update scheme is ergodic. For d = 3, we set the probability to multiply
with Zi or Z†

i to be equal, so as to satisfy detailed balance. For d = 2, when there is
time-reversal-symmetry, the Pauli strings are additionally constrained to those with
even numbers of Y = iZX. As such, the Pauli strings with odd numbers of Y can be
directly rejected.

7.3.1 Non-stabilizerness in 1D many-body systems

The behavior of SREs in quantum Ising chain in 1D, i.e,

H1D-Ising = �Â
hi,ji

sx
i sx

j � h Â
i

sz
i , (7.23)

with sx,z being the spin-1/2 Pauli matrices, has been studied in Refs. [25, 43], where
it has been shown that the SRE densities peak at the critical point hc = 1, and
follow universal critical finite-size scaling hypothesis. In Fig. 7.4, we show the re-
sults for Rényi-2 SRE M2, estimated efficiently using the subleading term cL =
2M2(L/2) � M2(L) as described in Sec. 7.2. Surprisingly, the sampling errors of
the SRE density m2 scales slower than log L, with L being the system-size, even at
the critical point hc = 1. Therefore, unlike the MPS-based 2n-replica method em-
ployed in Ref. [25] that suffers from a computational cost of O(c12), our Monte Carlo
method for estimating m2 provides accurate results without being severely limited
by c. Moreover, the computation of m2 using the perfect sampling of MPS [23, 27]
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FIGURE 7.4: Efficient estimation of Rényi-2 SRE density in 1D
quantum Ising chain. (a) The subleading term for the Rényi-2
SRE, cL = 2M2(L/2)� M2(L), directly estimated using the efficient
scheme specified in Sec. 7.2, for various system-sizes in 1D quantum
Ising chain. (b) The SRE density m2 for the 1D quantum Ising chain
near the critical point hc = 1 computed using the increment method
using different subleading terms. (Inset) The sampling errors for m2
at hc = 1 for various system-sizes L (in log-scale). Clearly, the errors
show even slower than than logarithmic growth for the efficient sam-
pling scheme. Here we consider TTN bond dimension c = 30 and the
number of sample is NS = 106. Error bars represent 95% confidence

interval.

will necessarily incur statistical errors that are exponential in system-size as the di-
rect estimation of the subleading term cL = 2M2(L/2) � M2(L) is not feasible by
perfect sampling.

In the following, we extend the studies of SREs in 1D quantum many-body sys-
tems to qutrit systems by considering the three-state Clock model and the spin-1
XXZ model in 1D.

Three-state Clock model

The quantum Clock model is a generalization of the quantum Ising model with d
states per site. Here we focus on the case d = 3, where the Hamiltonian is given by

H1D-Clock = �Â
hi,ji

(XiX†
j + X†

i Xj)� h Â
i
(Zi + Z†

i ), (7.24)

where X, Z are the shift and clock operators in Eq. (7.24) with d = 3. The model is
equivalent to the three-state Potts model [91]. There is a transition from the ferro-
magnetic phase to the paramagnetic phase at hc = 1, as in the quantum Ising model.
The critical point is described by Z3 parafermion CFT, with central charge c = 4/5.
The exact correlation length exponent is nPotts = 5/6 [91]. It is to be noted that, since
the system obeys Z3 symmetry, a two-site update scheme (see Sec. 7.2.2) is required
to sample the Pauli strings that preserve the symmetry. Indeed, the Pauli strings that
preserve the Z3 symmetry, generated by ’i Zi, are generated by Zi and X†

i Xj (up to
a phase constant).
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FIGURE 7.5: Magic density in 1D quantum three-state Clock model.
(a) The SRE density m1 in the ground-state of the three-state Clock
model as a function of h. (b) Finite-size scaling for m1. Here. m1,m is
the maximum m1 at hc = 1. We extract the critical exponent n ⇡ 0.844
and g ⇡ 0.66. The correlation-length exponent n is close to the known
nPotts = 5/6. We used bond dimension up to c = 36 and the number
of sample is NS = 106. Error bars represent 95% confidence interval.

In the three-state Clock model, the magic density displays similar behavior as
in the quantum Ising model [25, 43], as shown in Fig. 7.5(a). Namely, m1 displays
maximum at the critical point hc = 1. We further investigate the finite-size scaling of
m1, that has been done for the quantum Ising chain [25], using the finite-size scaling
hypothesis:

m1 �m1,m = L�g/n f
⇣

L1/n(h� hc)
⌘

, (7.25)

where m1,m is the maximum SRE density at hc = 1. In Fig. 7.5(b), we show the
data collapse corresponding to the finite-size scaling relation of Eq. (7.25), where
we obtain the critical exponent n ⇡ 0.844, close to the expected theoretical value
nPotts = 5/6.

Spin-1 XXZ chain

Next, we consider a spin-1 XXZ chain with single-ion anisotropy, whose Hamil-
tonian reads

HXXZ = �Â
hi,ji

h
Sx

i Sx
j + Sy

i Sy
j + DSz

i Sz
j

i
+ D Â

i
(Sz

i )
2, (7.26)

where Sa’s, a = x, y, z, are the spin-1 operators, D is the easy-axis anisotropy, and D
is the single-ion anisotropy. The model has a global U(1) symmetry corresponding
to the conservation of total magnetization Âi Sz

i , and here we consider the scenario
of zero total magnetization.

The phase diagram of the model has been studied in previous works [92–95].
For D > 0, the model hosts three phases (with increasing D): the antiferromagnetic
Néel order, the symmetry-protected topological (SPT) Haldane phase, and the large-
D trivial phase. The Néel to Haldane transition is an Ising transition, while the
Haldane to large-D transition is a Gaussian transition.
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the ground-state of the spin-1 XXZ model with D = 1 as a function
of D. We consider bond dimension up to c = 60 and the number
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transition points.

Here, we focus on the isotropic case, i.e., D = 1. In this case, the transition is
known to be at D ⇠ �0.3 and D ⇠ 0.97 for Néel-Haldane and Haldane-large D
transitions, respectively [93–95]. Fig. 7.6(a) shows the SRE density m1. We observe
that m1 is large and rather constant in the topological Haldane phase, while it be-
comes smaller in the neighboring phases. Note that the maximum value of m1 for
a product state is 2

3 log(4) ⇡ 0.92, achieved by the tensor product of single-qutrit
states, each of which has hPi2 = 1/4 for all P 6= I. Thus, it is seen that the magic in
the SPT Haldane phase almost saturates the maximum value.

Long-range SRE

In the spin-1 XXZ chain, while the onset of the topological Haldane phase is rather
apparent from the magic density, there is no clear peak at the transitions, rendering
the determination of the critical point difficult. Here we show that, unlike the magic
density, the long-range magic LAB (see Eq. (7.5)), using the estimators in Eq. (7.20)
and Eq. (7.21), can be used as a faithful indicator of quantum phase transitions.
For the analysis of LAB, we consider the spatially separated, extended subsystems
A = {1, 2, ..., L/4} and B = {L/2 + 1, ..., 3L/4} in a perioidic chain of L sites, as
depicted in Fig. 7.2b.

The long-range magic, for the the spin-1 XXZ chain, as plotted in Fig. 7.6(b) shows
clear extremums at the two transitions. Although L(rAB) is still non-zero for small
L away from criticality, it quickly decays to zero as the system size is increased. The
peak at the Gaussian transition is very close to D ⇠ 0.97, as obtained with DMRG up
to L = 20000 spins [94]. Notably, our results are obtained with only moderate sizes,
and without any prior knowledge of the order parameter. At the Ising transition,
the extremum occurs at a negative value as a minimum. Unlike entanglement, the
SRE is not known to satisfy subadditivity, meaning that it is not always the case that
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fidence interval.

L(rAB) � 0. Nevertheless, the non-trivial value at criticality is a useful indicator for
detecting criticality.

The decay of long-range SRE away from criticality can be understood through a
simple physical argument. Within a gapped phase characterized by a finite corre-
lation length, when considering two subsystems A and B separated by a distance
exceeding the correlation length, A and B are approximately uncorrelated. More
formally, rAB ⇡ rA ⌦ rB, which implies L(rAB) ⇡ 0. In contrast, at criticality, the
correlation length becomes infinite, such that A and B are always correlated regard-
less of their distance. This results in a non-trivial value of L(rAB).

We also come back to the quantum Ising chain (Eq. (7.23)), and investigate the
long-range magic across the Ising transition. We observe that L(rAB) peaks at the
critical point, as shown in Fig. 7.7. Furthermore, we plot L(rAB) at hc = 1 in the
inset of Fig. 7.7, where we see that the long-range magic grows logarithmically in
L. In contrast, L(rAB) quickly decays away from criticality (not shown). We note
that, at the critical point, we observe long autocorrelation times between samples,
which is the reason for the growing errors for larger sizes. This is reminiscent of the
problem of critical slowing-down in the Monte Carlo simulations at criticality [96].
It is thus interesting to develop a cluster update, akin to Wolff cluster update [97],
that may overcome this issue, which we leave for future studies.

7.3.2 SRE density in 2D many-body systems: Z2 lattice gauge theory

Based on the favourable scaling of our scheme with system size, we investigate
the non-stabilizerness in 2D systems, which so far have not been properly explored
in the literature. In particular, we consider a Z2 lattice gauge theory, with Hamilto-
nian:

HZ2-Gauge = �h Â
⇤

’
i2⇤

tx
i �Â

i
tz

i , (7.27)

where the spin-1/2 Pauli operators, ta, a = x, z, live on the links of the square lattice.
The first term is the plaquette term that flips the four spins on an elementary square
plaquette of the lattice. We are interested in the charge-free sector, that satisfies the
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Gauss’ law
’
i2+

tz
i = 1, (7.28)

on each vertices of the lattice. It is well known that the Hamiltonian in Eq. (7.27) is
dual to the 2D transverse-field Ising model on the square lattice

H2D-Ising = �Â
hi,ji

sx
i sx

j � h Â
i

sz
i . (7.29)

by Wegner duality [98]. Here, the spin-1/2 Pauli operators, sa, a = x, z, live on the
lattice sites of the dual square lattice. We will first show that the duality transforma-
tion preserves SREs.

Equivalence of the SRE in 2D Z2 gauge theory and the 2D transverse-field Ising
model

The duality transformation between Eq. (7.27) and Eq. (7.29) is defined with the
following transformation,

sx
i sx

j = tz
hiji

sz
i = ’

i2⇤
tx

i . (7.30)

More precisely, the transformation maps the charge-free sector of Eq. (7.27) to the
even sector of Eq. (3.9). This mapping also sheds light on the transition point of the
2D Z2 gauge theory, which is precisely mapped to the transition point of the Ising
model: there, the transition from ferromagnetic phase to the paramagnetic phase is
known to be at hc ' 3.04, as obtained with Quantum Monte Carlo [99]. In the lat-
tice gauge theory framework, such transition corresponds to confined to deconfined
transition, where the behavior of Wilson loops turns from area to perimeter law.

It is easy to see that the mapping in Eq. (7.30) maps Pauli strings in the Ising
model to Pauli strings in Z2 gauge theory, because the Pauli operators on both sides
of the equation generate the Pauli group in the corresponding models. Since the
SREs depend only on the expectation values of Pauli strings, it follows that the SREs
are preserved by the duality transformation. Therefore, the SREs in the Ising model
are identical to the SREs in Z2 gauge theory, up to a constant shift. It should be, how-
ever, noted that equivalence relation in case of the subsystem mixed-state SRE (e.g.,
M̃2 defined in Eq. (7.3)), and the long-range magic thereof, is non-trivial because of
the non-local nature of the transformation (7.30). Consequently, the distribution of
magic within the subsystems may differ in these two theories.

It is worth nothing that the same conclusion evidently holds for other dualities
that map Pauli strings to Pauli strings, such as the Kramers-Wannier duality which
maps h ! h�1 in Eq. (7.23) and Eq. (7.24). As previously discussed, the long-range
magic is not preserved under the duality. This is reflected in the distinct behavior of
L(rAB) for h > 1 and h < 1 in Fig. 7.7.

Numerical results

The duality above enables us to compute the SREs of the the Z2 gauge theory
(7.27) by considering the ground state of the transverse-field Ising model, which is
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FIGURE 7.8: Magic densities in 2D Z2 gauge theory. The SRE desni-
ties (a) m1 and (b) m2 of the ground-state of Z2 gauge theory on L⇥ L
square lattice as a function of h. We use TTN bond dimension up to
c = 60 and the number of sample is NS = 106. Error bars represent

95% confidence interval.

computationally more convenient for TTNs. In the following, we discuss the numer-
ical results on the behavior of the SREs around the critical point of the 2D transverse-
field Ising model.

The results for magic density for n = 1, 2 are presented in Fig. 7.8. It is seen
that both quantities detect the transition. However, the observed behavior is very
different from the 1D quantum Ising chain, which exhibits a peak at the transition.
Instead, here we observe that the curves exhibit crossings at the transition.

In Fig. 7.9(a), we depict m1 close to the critical point, using a fixed bond dimen-
sion c = 30. Remarkably, we observe that m1 detects the transition point very well:
all the curves cross near the critical point at hc = 3.04(1). We should highlight at this
point that the TTN ansatz with such a low bond dimension of c = 30 can not approx-
imate the ground state wave function accurately near the critical point, particularly
in 2D critical systems. Consequently, the standard phase transition detectors, such
as the Binder cumulant, calculated from the TTN state with c = 30, do not exhibit
the expected critical crossing behavior. Therefore, the remarkable observation of the
perfectly crossing behavior in m1 near the critical point underscores the significant
value of magic in detecting and characterizing quantum phase transitions. This is
particularly relevant in situations where other quantities are prone to significant er-
rors, e.g., due to limited bond dimensions in tensor network states. While we believe
that a further characterization of what the scaling resources (e.g., size and bond di-
mension) to detect a transition point are is outside the scope of our paper, this would
be very much worth pursuing based on the Ising model results we presented.

Furthermore, we show excellent data collapse for m1 in Fig. 7.9(b), using the
finite-size scaling relation of Eq. (7.25), from which we extract the correlation length
exponent n = 0.64 ± 0.05, that is close to the known n3D = 0.63 for 3D (classical)
Ising universality [99].

Comparison with Binder cumulant

We have demonstrated the ability of the magic density to accurately detect and
characterize the quantum critical point in the 2D quantum Ising model, and thereby
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FIGURE 7.9: Finite-size critical scaling of SRE density in 2D Z2
gauge theory. (a) The SRE density m1 near the critical point at the
Z2 gauge theory. Even with small TTN bond dimension c = 30, m1
captures the transition very well: all the curves cross near the known
critical point hc = 3.04. (b) Finite-size scaling of m1. Here, m1,cr
is m1 at h = 3.04. We find the correlation length critical exponent
n = 0.64 ± 0.05. The extracted n is remarkably close to the known
n3D ' 0.63 for 3D Ising universality class. Here, the number of sam-

ples is NS = 107.

in 2D Z2 gauge theory. Notably, the curves of m1 for different linear system-sizes
exhibit a clear critical crossing behavior near the critical point hc = 3.04, even with a
modest TTN bond dimension of c = 30. However, the same level of accuracy is not
achieved when utilizing the Binder cumulant, defined as

U = 1� hs4
xi

3hs2
xi2

, with sx =
1
L2 Â

i
sx

i , (7.31)

for the 2D Ising model (3.9). Due to the inability of the TTN state with a small
bond dimension of c = 30 to faithfully represent the ground state in the vicinity of
the critical point, the calculation of the Binder cumulant U yields erroneous results.
Consequently, the curves of U for different linear system-sizes L do not exhibit a
clear crossing behavior near the critical point (Fig. 7.10). For instance, while the
curves for L = 4 and 5 intersect at h = 2.98, the intersection for L = 7 and 8 occurs
around h = 3.14. As such, if one attempts to perform finite size scaling on the
Binder cumulant data, the resulting critical point and the correlation-length critical
exponent n will be erroneous.

7.3.3 Autocorrelations and statistical errors

Here, we analyzed the statistical errors and the autocorrelation times in the Markov
chain samples. We consider the integrated autocorrelation time of m1 and m2 close
to the critical point of the 2D transverse-field Ising model at h = 3. The integrated
autocorrelation time is defined as tI = 1 + 2 Â•

t=1 r(t), where r(t) is the autocorrela-
tion function. The integrated autocorrelation time affects the statistical errors of the
averages obtained from Monte Carlo sampling [100]. We observe that tI is linear for
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FIGURE 7.10: The Binder cumulant across the critical point in the
2D quantum Ising model. Here we approximate the ground state of
2D quantum Ising model with TTN having bond dimension c = 30,

in parity with Fig. 7.9.
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FIGURE 7.11: Autocorrelation time and statistical errors in Monte
Carlo sampling of SREs. (a) Integrated autocorrelation time tI at the
ground state of 2D transverse-field Ising model with h = 3 for various
system sizes N = L⇥ L. It is linear for m1 and saturates for m2. (b)
Standard deviation s for various system sizes. Inset shows s for m1
in log-log scale. The solid line denotes a fit s = aN�b for L � 6, with
b = 0.503. The standard deviation is obtained by error propagation.

M1, while it saturates for M2, as shown in Fig. 7.11(a). We have also checked that tI
does not show much variation with respect to bond dimension.

Moreover, the standard deviation s for various system sizes is shown in Fig. 7.11(b).
For n = 2, it is seen that s grows exponentially, confirming the analysis in Sec. 7.2.
On the other hand, for n = 1, s is decreasing with power-law behavior (see inset).
The power-law exponent is found to be compatible with 1/2, again as anticipated
in Sec. 7.2. We note here that the behavior of the integrated autocorrelation time
and the standard deviations remains qualitatively similar near the critical points for
other many-body systems considered here.

7.4 Experimental protocol

The numerical method described above can be easily adapted for experimental
measurements of SREs. In particular, we can sample Pauli strings according to XP
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using Monte Carlo sampling. We note that, although the probability distribution
XP can be sampled directly through measurements in the Bell basis [37, 101], the
method requires preparation of two copies of a state and joint operations on them.
In practice, this may not be feasible in some experimental platforms, or difficult to
scale up to larger sizes and higher-dimensional systems. Moreover, the method only
works for real wavefunctions [20]. Instead, our proposal relies solely on measure-
ments in the computational basis on a single instance of a state, and it is applicable
to generic quantum states.

In experiments, the Pauli strings are measured from NM copies of r where the
measurement outcomes are Ai 2 {+1,�1}. The expectation value is then given by
the average taken over the random measurement outcomes. The sampling of Pauli
strings can be performed with Metropolis algorithm, similar to our numerical calcu-
lations. However, it is important to note that in experimental setups, the candidate
Pauli string is not restricted to few-site updates, as is the case of TTN. This flexibil-
ity allows for multi-site updates and can potentially reduce the autocorrelation time
associated with the sampling process enormously.

For a finite number of measurements NM, we have that

P̄ =
1

NM

NM

Â
i=1

Ai (7.32)

is an estimate for hPi. The total number of resources is thus NM ⇥ NS, where NS is
the number of sampled Pauli strings. In view of Eq. (7.14), when the SREs are at most
O(log N), the required NS is polynomial in N. Note that NM may still be exponential,
but it is expected to be no larger than O(dN), with d being the local dimension. As a
result, the number of resource required in our protocol is significantly lower than the
protocol in Ref. [38] when the SREs are at most O(log N). Moreover, our protocol
offers a possibility to measure M1, in which case NS is always polynomial3.

The variance of the estimator in Eq. (7.32) is given by Var(P) = 1� hPi2. Thus,
the standard error reads

DP =

s
1� hPi2

NM
. (7.33)

For large NM, the random variable P̄ approximately has a Gaussian distribution with
average hPi and standard deviation DP. Note that this will introduce bias to the
estimators in Eq. (7.10) and Eq. (7.11). This bias can be made smaller by increasing
NM, where the estimators become unbiased in the limit NM ! •.

Here, we simulate this situation numerically by perturbing the computed hPi
with e, where e is a random number chosen from a Gaussian distribution centered
at zero and with standard deviation DP. We would like to investigate the effects of
taking finite NM and NS. Here, we consider the ground state of 1D transverse-field
Ising chain at h = 1 for concreteness. An example of the results of such a protocol is
shown in Fig. 7.12 for L = 8 with NM = 500 and NS = 10000.

3It is to be noted that the measurement of Mn with n 6= 1 in experiments by employing the in-
crement scheme with subleading terms, as discussed in Sec. 7.2, can be challenging. This procedure
necessitates the simultaneous sampling from two distinct physical systems, something that is easily
achievable on some platforms (optical lattices, circuit QED, tweezer arrays) but not immediately on
others (e.g., ion chains). Furthermore, in experimental measurements, the obtained expectation val-
ues are only approximations of the true values. Consequently, computing ratios of these approximate
values, as in Eq. (7.22), introduces errors into the calculations.



Chapter 7. Many-body magic via Pauli-Markov chains – from criticality to gauge
theories 124

0.4 0.6 0.8 1.0 1.2 1.4 1.6
h

0.0

0.1

0.2

0.3

0.4

m
n

Simulated Exp., n = 2

Simulated Exp., n = 1

Exact, n = 2

Exact, n = 1

FIGURE 7.12: Simulated experiment to measure SREs. Simulation of
experimental measurement of SREs in the ground state of 1D quan-

tum Ising chain for L = 8. Here, NM = 500 and NS = 104.
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FIGURE 7.13: The errors in SRE density for simulated experiments.
The deviation dmn = |mn,Sim.Exp. �mn,exact| for n = 1, 2 in the ground
state of 1D quantum Ising chain at the critical point h = 1 for L = 16.
In (a), we fix NS = 10000 and vary NM, while in (b), we fix NM =

{103, 105} and vary NS.

Next, we compute the deviation dmn = |mn,Sim.Exp. �mn,exact| for n = 1, 2, where
mn,Sim.Exp. denotes the SRE density in simulated experiments. The results are shown
in Fig. 7.13. We see that, for fixed NS, the error first increases for small NM, before
it eventually decreases. We expect this is due to the bias with finite number of Pauli
measurements, as mentioned above. Indeed, as shown in Fig. 7.13(b), we see that
increasing NS while fixing NM does not result in vanishing dmn.

7.5 Conclusions and outlook

We have proposed a Markov chain Monte Carlo approach to compute magic in
many-body systems. We have discussed how the full state magic Mn can be esti-
mated for different values of n, and demonstrated the corresponding efficiency in
several scenarios. Moreover, long-range magic can be estimated efficiently in gen-
eral. The implementation of our algorithm is flexible and compatible with various
wave-function based methods. Specifically, we have provided detailed insights into
the efficiency and flexibility of our method when applied to tree tensor networks.
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Through our algorithm’s flexibility, we have gained valuable insights into the role
of magic in many-body systems. In one-dimensional systems, we observed that full
state magic is not universally associated with critical behavior. While it displays crit-
icality signatures in certain cases like Ising and Potts models, it does not in others.
However, long-range magic overcomes this limitation and consistently exhibits in-
dications of critical behavior across all scenarios we investigated. We speculate that
the functional form of long-range magic, similar to mutual information, is free of
potential UV-divergences in a field theory framework.

The very mild volume scaling cost of our sampling has also enabled us the ex-
ploration of two-dimensional Z2 lattice gauge theories. There, we have found that
magic displays finite-volume crossings in correspondence of the confined-deconfined
phase transition, and it also follows universal scaling behavior up to the volumes
(100 spins) we were able to treat. Remarkably, magic was well converged even at
modest bond dimensions.

Our numerical results suggest a deep connection between (long-range) magic
and many-body properties, highlighting the direct links between stabilizer Renyi en-
tropies and physical phenomena such as quantum critical behavior and confinement-
deconfinement transitions. To complement our theoretical findings, we have pro-
posed an experimental protocol for measuring stabilizer Renyi entropies solely us-
ing measurements in the computational basis.

In terms of future investigations, our technique can be extended to explore non-
stabilizerness in finite-temperature scenarios by generalizing it to tree-tensor op-
erators that efficiently represent low-temperature many-body states. In particu-
lar, it would be interesting to study the behavior of stabilizer Renyi entropies at
finite-temperature phase-transition and compare it with other information-theoretic
quantities, such as entanglement [102–105], quantum discord [106], and quantum
coherence [107]. Along the same lines, another possible scenario would be applying
our tools to faulty quantum circuits, recently discussed in the context of magic in
Ref. [108]. It would also be instructive to perform a systematic investigation of magic
within topological phases, extending our analysis of the Haldane phase. Another
interesting perspective is to understand the role of magic in many-body quantum
dynamics of closed quantum systems, whose investigation in the context of Ising
models has been the subject of recent works [109]. In particular, our method allows
for the investigation of genuine long-distance magic, that might be instrumental in
establishing the presence or absence of propagation bounds for magic.

At the methodological level, our work opens a series of questions. The Markov
chain Monte carlo approach could be extended to investigate other magic measures
that depend only on expectation values, such as mana. Moreover, so far, we have
only employed very basic sampling strategies. It would be worth exploring how
different ones, such as heatbath or non-local updates, can be used to design bet-
ter magic estimators since, in terms of experimental applicability, having shorter
autocorrelations could considerably improve realistic implementations. In terms
of efficiency of the increment trick in 2D models, it would be interesting to study
whether a one-dimensional projection of 2D systems such as the one introduced in
[110] would be beneficial. Finally, it would be interesting to understand the finer
structure of sampling Pauli strings in many-body systems, that could reveal both
useful insights into novel algorithms, and potentially deeper connections between
many-body properties and magic.
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Chapter 8

Critical behaviors of
nonstabilizerness in quantum spin
chains

Recent studies have established that nonstabilizerness is directly linked with en-
tanglement and Shannon (or participation) entropy [111, 112]. Specifically, it was
found that the entanglement spectrum flatness (in any bipartition) [111] and partic-
ipation entropy flatness [112] is directly related to the stabilizer linear entropy [19].
Both mutual information (of entanglement) and Shannon mutual information have
been shown to display the scaling relation [63, 113–118]

I =
c
4

log


L
p

sin
⇣
`

p

L

⌘�
+ g (8.1)

in critical spin chain governed by conformal field theory (CFT) on a periodic chain.
Here ` is the subsytem size, c is the central charge of the CFT, and g is a non-universal
constant. Given the connections mentioned above, it becomes natural to question
whether the corresponding mutual information of nonstabilizerness exhibits similar
scaling behavior as in Eq. (8.1).

Addressing this question poses significant challenges. Firstly, directly evaluat-
ing nonstabilizerness becomes increasingly difficult for larger systems (especially
since in principle Eq. (8.1) holds only for `, L � 1). Secondly, quantifying non-
stabilizerness in mixed states, necessary for studying subsystems, is significantly
more difficult compared to pure states. Previous studies on nonstabilizerness have
been restricted to very small sizes [50, 52], or relied on a nonstabilizerness mono-
tone restricted to pure states [23, 25, 28, 29, 33, 119]. To overcome these hurdles,
this work focuses on quantum critical spin chains with odd on-site Hilbert space di-
mension. In such systems, there exists a strong measure of nonstabilizerness known
as mana [17, 120]. Mana quantifies the nonstabilizerness for both pure states and
mixed states, and its definition does not employ minimization procedures, making
it the perfect choice to address the above question on scaling behavior of nonstabi-
lizerness in critical systems. We leverage this advantage to investigate the behavior
of mana in quantum critical spin chains governed by CFT.

Prior investigations of mana have been limited to very small systems up to L = 6
sites [50, 121]. This work significantly expands the capability of evaluating mana in
substantially larger systems. To achieve this, we first introduce a Rényi generaliza-
tion of mana, which we call mana entropies. These quantities are also measures of
nonstabilizerness for pure states, although unlike mana they are not good measures
for mixed states. We then construct a classical statistical mechanics systems derived
from the discrete Wigner function, such that the computation of mana can be recast
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as a free energy calculation. We then show how this can be done by thermodynamics
integration. Finally, we introduce the mutual mana and study its scaling in CFT.

Our results demonstrate that the mana is significant at the critical point, and it
exhibits a finite-size scaling. Moreover, we find that the mutual mana scales linearly
with log

⇥ L
p sin

�
`p

L
�⇤

, analogous to entanglement and Shannon entropy. Addition-
ally, we show that the mutual mana instead saturates in gapped phases, thus show-
ing the capability of the mutual mana to distinguish between critical and non-critical
behavior. Our results highlight the difficulty of removing the nonstabilizerness in
CFT with finite-depth quantum circuits, and in turn in classically simulating CFT.

The rest of the chapter is structured as follows. In Sec. 8.1, we briefly cover some
key preliminaries to provide the necessary background for introducing the nonsta-
bilizerness monotone mana. In Sec. 8.2, we introduce the Rényi generalizations of
mana called the mana entropy, which themselves are new measures of nonstabiliz-
erness for pure states, and in Sec. 8.3 we present a thermodynamics view on the
mana entropy, such that the computation of mana can be recast in the language of
classical statistical mechanics. In Sec. 8.4, we introduce the notion of mutual mana,
and present a scalable method to compute them. In Sec. 7 we review the numeri-
cal method that we employ. In Sec. 8.5 we introduce the model under study and
in Sec. 8.6 we present our numerical results, both on the mana and mutual mana.
Finally, we conclude in Sec. 8.7.

8.1 Preliminaries

Mana is a measure of non-stabilizerness that is only defined in terms of expec-
tation values of operators, and is thus one of measures of non-stabilizerness that
is relatively easy to compute. However, mana is only well-defined for systems of
odd prime power dimensions. To define mana, we first define the shift and clock
operators as

X =
d�1

Â
k=0

|k + 1ihk| and Z =
d�1

Â
k=0

wk
d|kihk|, (8.2)

where wd = e2pi/d. Here, the addition is defined modulo d. They satisfy the com-
mutation relation XZ = wZX.

The generalized Pauli operators (also known as the Heisenberg-Weyl operators)
are defined as

Taa0 = w�2�1aa0ZaXa0 (8.3)

for a, a0 2 Zd. Here, 2�1 is the inverse element of 2 in Zd. For a system of N qudits,
the Pauli strings are

Ta = Ta1,a01 Ta2,a02 ...TaN ,a0N . (8.4)

We denote the group of all N-qudit Pauli strings as PN .
Next, the phase-space point operators are defined in terms of the Pauli strings as

A0 = Â
u

Tu, Au = Tu A0T†
u. (8.5)

These operators are Hermitian with eigenvalues 1 and �1, with multiplicity d+1
2

and d�1
2 , respectively. Moreover, they are orthogonal, i.e, Tr(Aa Ab) = dNd(a, b),

and thus they provide an orthogonal basis for an operator in CdN⌦dN . Thus, one can
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expand the density matrix r of a state (pure or mixed) as

r = Â
u

Wr(u)Au. (8.6)

where Wr(u) is known as the discrete Wigner function [122, 123], a discrete analogue
of the infinite-dimensional Wigner function [124]. Equivalently, we can write

Wr(u) =
1

dN Tr(Aur). (8.7)

The Wigner functions satisfy the following relations

Â
u

Wr(u) = 1 (8.8a)

Â
u

Wr(u)2 = e�S2 /dN , (8.8b)

where S2 is the 2-Rényi entropy.
Finally, mana is defined in terms of the Wigner functions as

M(r) = log

 

Â
u

|Wr(u)|
!

. (8.9)

Due to the normalization condition in Eq. (8.8a), mana measures the negativity of
the Wigner representation of r. For pure states, the set of states with positive Wigner
representation is exactly the set of pure stabilizer states [122], in which case the mana
vanishes. For mixed states, the set of states with positive Wigner representation is
strictly larger than the convex hull of stabilizer states. Nevertheless, it is shown that
states with positive Wigner representation (including those outside of the convex
hull of stabilizer states) cannot be distilled [120], and moreover they are efficiently
simulatable [125]. In fact, mana directly quantifies the cost of classical simulation
based on Monte Carlo in Ref. [125]. Thus, mana is a useful measure to quantify the
resources required for classically simulating a quantum circuit, both for pure and
mixed states [17].

Crucially, mana stands out as the only known strong nonstabilizerness monotone
whose definition bypasses the need for minimization procedures (Eq. (8.9)), both for
pure and mixed states. This offers a significant computational advantage compared
to other monotones. However, calculating mana still incurs an exponential cost as it
necessitates computing the discrete Wigner function, Wr(u), for all possible u 2 ZN

d .
This exponential scaling renders direct calculation impractical for large systems, a
key challenge that we would like to address in this work.

8.2 Rényi generalizations of mana: mana entropy (ME)

In order to compute mana, we find it useful to introduce Rényi generalizations
of mana, following closely the definition of stabilizer Rényi entropies (SREs). We
restrict to the case of pure states, where P|yi(u) = dNWr(u)2 can be interpreted as a
probability distribution (see Eq. (8.8b)), thus bearing similarity to X|yi(u). We now
consider the n-Rényi entropies associated to this probability distribution in the same
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spirit as the SREs, as

Mn =
1

1� n
log Â

u

⇣
dNWr(u)2

⌘n
� N log d

=
1

1� n
log Â

u

��W̃r(u)
��2n

dN

(8.10)

where we define W̃r(u) := dNWr(u) = hAui. Comparing this with Eq. (6.23), we
see that MEs are just SREs with the Pauli operators replaced by the phase-space
point operators in Eq. (8.5). It follows that the MEs possess similar properties as
SREs, namely (i) faithfulness, (ii) stability under Clifford unitaries, and (iii) additiv-
ity. Moreover, they are upper bounded by Mn  N log d.

Notice that the index n = 1/2 corresponds to mana of pure states (up to a pref-
actor of 2). Mana has been rigorously proven to obey both monotonicity and strong
monotonicity under stabilizer operations, making it a genuine measure of nonstabi-
lizerness, also for mixed states [17]. In contrast, SREs of all index have been shown
to violate strong monotonicity, while SREs of index 0 < n < 2 violate monotonicity
[23]. It is presently unclear if such monotonicity property holds for MEs of index
n 6= 1/2, a question that we leave for future investigations. Nonetheless, they could
be useful to provide non-trivial bounds for other known measures of nonstabiliz-
erness. Moreover, while the computational cost to compute the mana grows expo-
nentially in N, MEs of integer indices n > 1 can be efficiently computed in matrix
product states (MPS) with replica trick in the same way as SREs [25, 26]. The same
technique can also be used to obtain analytical results [33], which may be analyti-
cally continued to n = 1/2 to obtain the mana.

8.2.1 Mana entropy and stabilizer Rényi entropy

Interestingly, we find that the mana entropy and SRE is equivalent under some
symmetry conditions, through the following proposition:

Proposition: Let |yi be an N-qudit pure state. If Ab is a phase-space operator such
that Ab|yi = l|yi, where l 2 {+1,�1}, then

lhy|Aa+b|yi = hy|T2a|yiw2(ba0�b0a) (8.11)

for all a 2 Z2N
d .

Proof. We will first prove that the following equation holds:

Aa+b Ab = T2aw2(ba0�b0a) (8.12)

Firstly, we note that Aa can be written as

Aa =
1

dN

NO

i=1
Â
b,b0

waib0�a0ibTb,b0 (8.13)
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The action of Aa on a basis state |si is

Aa|�i =
1

dN

N

’
i=1

Â
bi ,b0i

waib0i�a0ibi Tbi ,b0i
|sii

=
1

dN

N

’
i=1

Â
bi ,b0i

waib0i�a0ibi w�2�1bib0i Zbi Xb0i |sii

=
1

dN

N

’
i=1

Â
bi ,b0i

waib0i�a0ibi+bi(si+2�1b0i)|si + b0ii

=
N

’
i=1

Â
b0i

waib0i dsi+2�1b0i�a0i ,0
|si + b0ii

= w2a(a0��)|2a0 � �i.

(8.14)

On the other hand, the action of Ta is

Ta|�i =
N

’
i=1

Tai ,a0i
|sii

=
N

’
i=1

w�2�1aia0i Zai Xa0i |sii

= wa.(2�1a0+�)|a0 + �i.

(8.15)

From Eq. (8.14), we have that A0|�i = |� �i. Then,

Aa A0|�i = Aa|� �i = w2a(a0+�)|2a0 + �i = T2a|�i. (8.16)

Since Eq. (8.16) holds for all basis states |�i, then Aa A0 = T2a. This proves Eq. (8.12)
in the case b = 0.

Now, using Aa = Ta A0T†
a and the commutation relation TaTb = wab0�a0bTbTa,

we have

Aa+b Ab = Aa+bTb A0T†
b

= TbT†
b Aa+bTb A0T†

b

= Tb Aa A0T†
b

= TbT2aT†
b

= T2aw2(ba0�b0a).

(8.17)

This concludes the proof of Eq. (8.12).
The proposition now immediately follows as a corollary of Eq. (8.12). Indeed, if

Ab|yi = l|yi, then

lhy|Aa+b|yi = hy|Aa+b Ab|yi = hy|T2a|yiw2(ba0�b0a). (8.18)

As a corollary, the MEs and SREs are identical for all order whenever the state is
stabilized by a phase-space operator (up to a sign). Importantly, we emphasize that
mana entropies remain valid measures of nonstabilizerness even in cases where the
equality does not hold.
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8.3 Thermodynamics approach to nonstabilizerness

We define a classical statistical system with energies Eu = � log |W̃r(u)|, such
that the free energy is given by Fr(b) = � 1

b log Âu
��W̃r(u)

��b 1. One can see that the
free energy is the same as the quantity n�1

2n Mn � N
2n log d (for n 6= 1) with b = 2n 2.

The calculation of Mn thus amounts to the computation of free energy of a classical
system. Conventionally, this is commonly done by direct thermodynamics integra-
tion from infinite temperature (b = 0). This is applicable when the free energy at
infinite temperature is known, which is not generally true in this case. Luckily, the
free energy at b = 2 is known due to the relation in Eq. (8.8b). Indeed, for a pure
state (S2 = 0), Eq. (8.8b) implies Fr(b = 2) = �N

2 log d. Thus, one can perform a
direct thermodynamics integration starting from b = 2,

log Â
u

|W̃r(u)|b

dN =
Z b

2

⌦
log |W̃r(u)|

↵
b db, (8.19)

where h...ib denotes the thermal average at inverse temperature b.
Numerically, the thermal average can be calculated via Monte Carlo sampling

of the discrete Wigner function [125]. Here we perform the Monte Carlo sampling
using tensor network methods, slightly modifying the method originally developed
to compute SREs in Ref. [28]. In particular, we focus on mana, corresponding to
b = 1.

To emphasize the computational advantage of our newly proposed thermody-
namics integration approach, it is worth recalling that the number of samples re-
quired to estimate the SREs of integer indices n > 1 within a given error grows
exponentially with N [28]. This exponential scaling becomes a significant bottleneck
for studying large systems. In contrast, the thermodynamics integration approach
offers a more efficient strategy. This method only requires computing the expecta-
tion value

⌦
log |W̃r(u)|

↵
b for different values of b from b = 1 to b = 2 (see Eq.

(8.19)). Importantly, the variance of log |W̃r(u)| only scales polynomially with N
[67], making its estimation efficient for any value of b. This technique thus circum-
vents the exponentially difficult task of calculating the mana, enabling to study mana
in large systems.

8.4 Mutual mana

We will also consider the “mutual mana” defined as

IM(A, B) = M(rAB)�M(rA)�M(rB). (8.20)

We will use the notation IM(`, L) to denote the case A = {1, ..., `} and B = {` +
1, ..., L}. Notice that the definition of mutual mana involves the mana of subsystems,
which are mixed states. Crucially, mana is a genuine measure of nonstabilizerness
both for pure and mixed states, so that the mutual mana is a meaningful quantity
that quantifies the amount of resource that resides in the correlations between parts

1We note that similar thermodynamic description has been proposed for entanglement [67, 126,
127] and Shannon entropy [128].

2The case n = 1 is instead related to the energy at b = 2: M1 = 2hEuib=2. As such, M1 can be
directly estimated through perfect sampling techniques [23, 27]
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FIGURE 8.1: (a) Mana density M/L in the vicinity of the critical point
h = 1 in the three-state quantum Potts model. (b) Data collapse of the
mana density m = M/L with g ⇡ 0.83 and n ⇡ 0.85. The correlation-

length exponent n is close to the known nPotts = 5/6.

of the system. It has also been suggested that it quantifies the difficulty of removing
nonstabilizerness with a finite-depth circuit [50].

We note here that mana is typically an extensive quantity. The subtraction in
Eq. (8.20) thus serves to eliminate the leading extensive term, resulting in IM(A, B)
being significantly smaller than the mana itself. Extracting such a quantity through
Monte Carlo samplings is known to be a challenging task, akin to the challenge of
extracting topological entanglement entropy from entanglement entropy [81, 129,
130]. Indeed, if one tries to compute IM(A, B) by directly computing each of the
three terms on the right hand side of Eq. (8.20) separately (e.g., using Eq. (8.19)), the
resulting error bar will be prohibitively large. We overcome this difficulty by writing
IM(A, B) as

IM(A, B) = log
✓

Âu,v |WrAB(u� v)|
Âu |WrA(u)| Âv |WrB(v)|

◆
. (8.21)

In view of the thermodynamics description in the previous section, the expression
inside the logarithm can be interpreted as a ratio of partition functions of the clas-
sical systems corresponding to rAB and rA ⌦ rB. One way to estimate it in Monte
Carlo simulations is by sampling from one classical system and averaging the ra-
tio of the Boltzmann weights 3. Concretely, we consider the probability distribution
PrA(B)

(u) µ |WrA(B)
(u))|. We can estimate IM(A, B) using

IM(A, B) = log
⌧ |WrAB(u� v)|

|WrA(u)||WrB(v)|

�

PrA (u)PrB (v)

. (8.22)

8.5 Quantum Potts model

In this work, we consider the quantum Potts model, which can be seen as the gen-
eralization of the quantum Ising model with d states per site [91]. The Hamiltonian

3We note that thermodynamics integration can also be employed in this case. However, this re-
quires to compute the discrete Wigner function of both rAB and rA ⌦ rB at each Monte Carlo step.
As the discrete Wigner function evaluation is computationally heavy, we choose the simpler technique
described in the text, where we only need to sample the discrete Wigner function of rA ⌦ rB.
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is given by

HPotts = �J Â
hi,ji

d�1

Â
k=1

Xk
i Xd�k

j � h Â
i

d�1

Â
k=1

Zk
i , (8.23)

where X, Z are the shift and clock operators in Eq. (8.2). Here we focus on the case
d = 3. The point hc = 1 is a critical self-dual point, which is governed by a CFT for
d  4. For d = 3, the central charge is c = 4/5 in the ferromagnetic case (J = 1) and
c = 1 in the antiferromagnetic case (J = �1) [131–133].

We will also consider an extension of the Potts model introduced in Ref. [118].
The Hamiltonian is given by

HPotts(p) =�Â
hi,ji

d�1

Â
k=1

Xk
i Xd�k

j �Â
i

d�1

Â
k=1

Zk
i

� p Â
hhi,jii

d�1

Â
k=1

Xk
i Xd�k

j � p Â
hi,ji

d�1

Â
k=1

Zk
i Zd�k

j .

(8.24)

The model is self-dual at any p, and the case p = 0 corresponds to the self-dual
point h = 1 in Eq. (8.23), which is an integrable point. For p 6= 0, the model is not
integrable, but it is expected that they are described by the same CFT at p = 0 for
sufficiently small p [118].

8.6 Numerical results

We now present our numerical results on the mana in the quantum Potts model
on a periodic chain. We obtain the ground state using TTN ground state variational
search algorithm [41, 42], and then we sample the discrete Wigner function of the
ground state using Monte Carlo sampling on TTN discussed in Ref. [28]. We use
bond dimension up to c = 36. Here, we compute the full-state mana using Eq.
(8.19), while the mutual mana is evaluated using Eq. (8.22).

The mana density is shown in Fig. 8.1a. We observe that M/L reaches a max-
imum at the critical point hc = 1, which confirm the results of Ref. [50]. More
importantly, with the large systems we are able to simulate, we obtain good data
collapse, shown in Fig. 8.1b. Overall, these results are also similar to the behavior of
SREs, which are studied for n 2 {1, 2} in Ref. [28]. Indeed, in this case the mana is
identical to the SRE with n = 1/2 through the proposition in Sec. 8.2.1 4.

Next, we investigated the scaling of mutual mana (Eq. (8.20)) at the critical point
hc = 1. The results are shown in Fig. 8.2a(b) for J = 1 (J = �1) for sizes up to
L = 64 (L = 32) . We observe that the mutual mana is approximately proportional
to log

⇥ L
p sin

�
`p

L
�⇤

, similarly to the entanglement and Shannon entropy in CFT. How-
ever, we cannot make a direct connection between the slope and the central charge
of the associated CFT 5. This is expected since mana is a basis-dependent quantity,
and hence the proportionality factor would likely depend on the choice of basis.

We now turn to the extension of the Potts model in Eq. (8.24). Fig. 8.3 shows the
mutual mana for various values of p in a chain of L = 32 sites. These results clearly
reveal a linear scaling of the mutual mana with respect to log

⇥ L
p sin

�
`p

L
�⇤

, which

4In the case of three-state Potts model, the ground state satisfies A0|yi = |yi, due to the global S3
symmetry of permuting the three X eigenstates. A similar statement holds for all d-state Potts model
for odd prime d.

5Actually, there are also disputes regarding the slope of Shannon mutual information, and whether
it is truly equal to c/4. See [115].
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FIGURE 8.2: Mutual mana IM(`, L) in the ground state of the quan-
tum Potts model at the critical point h/J = 1 with (a) J = 1 and (b)
J = �1. The solid line denotes the linear fit obtained for the largest
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FIGURE 8.3: Mutual mana IM(`, L) for various values of p in the ex-
tension of the quantum Potts model (Eq. (8.24)) with (a) J = 1 and (b)
J = �1. The logarithmic scaling is also observed at the non-integrable

points p 6= 0. The system size is L = 32.

holds true even at the non-integrable points. Notably, the slope of the linear growth
shows little variation upon increasing p. Based on these findings, we conjecture that
the slope is universal and determined by the underlying CFT, although possibly not
by a simple relation with central charge as entanglement and Shannon entropy.

Since mana depends on the chosen basis, an important question is whether or
not the logarithmic scaling persists under local basis change. To address this ques-
tion, we show the mutual mana after applying unitary transformation T⌦N

q , where
Tq = diag(1, eiq , e�iq), to the ground state at h = 1 in Fig. 8.4a. Note that q = 2/9
corresponds to the canonical T-gate for qutrit. We see that the logarithmic scaling
remains evident up to q = 2/9, while it becomes less apparent for q = 3/9, possibly
due to finite-size effects.

Finally, in order to contrast with the behavior away from criticality, we plot the
scaling of mutual mana both at and away from the critical point in Fig. 8.4b. We see
that the logarithmic scaling is observed only at the critical point, while away from
the critical point the mutual mana saturates at large `.
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FIGURE 8.4: (a) Mutual mana IM(`, L) after performing the unitary
transformation T⌦N

q , where Tq = diag(1, eiq , e�iq), to the ground state
at h = 1 and J = 1. (b) Mutual mana IM(`, L) in the ground state
of the three-state Potts model and at three different transverse field
strength. The logarithmic scaling is only observed at the critical point
at h = 1. In contrast, the mutual mana saturates both at h > 1 and
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8.7 Conclusions and outlook

In this work, we investigate the behavior of mana around criticality in quantum
Potts models and its extension. We introduce Rényi version of mana, which enables
us to calculate mana for large system sizes. Our results on mutual mana provide
clear evidence of logarithmic scaling with distance in CFT, while it reaches satura-
tion in gapped phases. This illustrates that, much like entanglement, the scaling
of mutual mana provides a means to distinguish between critical and non-critical
behaviors. Moreover, our results on the non-integrable extension indicate the uni-
versal character of the logarithmic scaling at criticality. Combined with the findings
of recent studies indicating that nonstabilizerness is considerably less susceptible to
errors arising from finite bond dimensions [25, 28, 119], our work highlights the po-
tential of nonstabilizerness as a useful tool to detect and characterize conformally
invariant quantum chains, particularly in the context of tensor network simulations.

Our work opens up many interesting directions for future investigations. Al-
though mana is only defined for odd prime local dimension, several possible exten-
sions have been proposed for qubits [134–138]. It would be interesting to employ
them to investigate the qubit case, in particular regarding its scaling in CFT. A more
comprehensive examination of mutual mana in CFT also warrants futher investiga-
tion, for instance by looking at different partitioning schemes. Additionally, it would
be interesting to study the behavior of mana minimized over all possible bases.

Furthermore, our methods enable the exploration of mana in various scenarios,
such as quench dynamics [121, 139], open systems and finite-temperature scenarios.
In addition, it would be interesting to adapt our approach in different classes of ten-
sor network states such as PEPS [140] to investigate the mana in higher dimensions.
Another interesting direction is to systematically study and compare the behavior
of mana entropy and SRE, which may provide insights into how to construct a gen-
uine measure of nonstabilizerness for qubits that is efficiently computable. Finally,
while here the mana entropy is introduced to facilitate the numerical computations
of mana, it may also be helpful in the analytical investigation of mana in important
classes of states, such as the quantum hypergraph states [141].
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Chapter 9

Magic in generalized
Rokhsar-Kivelson wavefunctions

In this chapter, we introduce an approach to compute the stabilizer Rényi entropy
(SRE) [19] with integer Renyi index n > 1 in many-body wavefunction, by express-
ing it in terms of wavefunction coefficients that make it amenable to computation
using Monte Carlo sampling (provided the wavefunction can be gauged to have
non-negative coefficients).

We apply this approach to a class of models known as generalized Rokhsar-
Kivelson systems [142, 143], or Hamiltonians that allow a stochastic matrix form
(SMF) decomposition [144]. The ground state wavefunctions of these systems can
be written explicitly throughout their phase diagram, and their properties can be re-
lated to associated classical statistical mechanics problems in thermodynamic equi-
librium at temperature T, which plays the role of a parameter in the phase diagram
of the original quantum systems. This correspondence allows powerful analytical
and numerical approaches to be deployed, that are not usually available in conven-
tional quantum many body settings 1.

Since the early work of Rokhsar and Kivelson [146], SMF Hamiltonian and wave-
functions have appeared in many different physics contexts. Of late, a resurgence of
attention has derived from the fact that they can be naturally realised using tensor
networks and PEPS [147], and they can be implemented in measurement-prepared
quantum states and (monitored) quantum circuits [148–153]. In this context, the
magic of SMF wavefunctions thus directly quantifies the amount of non-Clifford re-
sources required to prepare these systems in the circuits.

We are able to express the SRE of SMF wavefunctions in terms of a free energy
difference of related classical problems, which can then be efficiently computed by
thermodynamic integration. We apply this insight to a range of quantum many body
SMF Hamiltonians, which affords us to study numerically the SRE of large high-
dimensional systems, unattainable using existing tensor network-based techniques,
and in some cases we obtain explicit analytical results.

We observe that the behaviour of the SRE is relatively featureless across quantum
phase transitions in these systems [154], although it is indeed singular in its first or
higher order derivative, depending on the first or higher order nature of the transi-
tion. On the contrary, we find that the maximum of the SRE generically occurs at a
cusp away from the quantum critical point, where the derivative suddenly changes
sign. Furthermore, we compare the SRE to the logarithm of overlaps with specific
stabilizer states, that are asymptotically realised in the ground state phase diagrams
of these systems. We find that they display strikingly similar behaviors, which in
turn establish rigorous bounds on the min-relative entropy of magic.

1We note that a study of the SRE in related Rokhsar-Kivelson-sign wavefunctions was presented in
Ref. [145].
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The rest of the chapter is structured as follows. In Sec. 9.1 and Sec. 9.2 we give a
brief review of SMF Hamiltonians and SRE, respectively. We then state our general
results in Sec. 9.3 about the SRE and its upper bounds in SMF systems. In Sec. 9.4
we then present a study of a range of models, encompassing the Ising ferromagnet
in 1D, 2D, 3D, and infinite dimensions; the J1 � J2 model on the square lattice; the
triangular Ising antiferromagnet; and the Edwards-Anderson model on the cubic
lattice. Finally, we conclude in Sec. 9.5.

9.1 Brief review of Stochastic Matrix Form (SMF) Hamiltoni-
ans

The stochastic matrix form wavefunctions, dependent on the parameter b, are
given by [142–144]

|ySMFi =
1p

Z(b)
Â
s

e�bEs/2|si , (9.1)

where
Z(b) = Â

s

e�bEs . (9.2)

Z(b) can be seen as a classical partition function at temperature T = 1/b. One
can design a quantum Hamiltonian for arbitrary choice of Es, such that |ySMFi is the
ground state of the Hamiltonian. In particular, for a locally interacting Es, the Hamil-
tonian also contains only local interactions. The quantum Hamiltonian is said to be
SMF decomposable [144]. The equal-time correlation function of diagonal operators
of SMF wavefunctions are given by the equal-time correlations functions in the as-
sociated classical systems in thermal equilibrium. It follows that the ground state
phase diagram of the quantum Hamiltonian contains the thermal phase diagram of
the classical system in thermal equilibrium. Since the wave function coefficients are
known exactly by design, the wave function can be sampled with classical Monte
Carlo simulations of the corresponding classical system.

9.2 Stabilizer Rényi entropy and upper bounds

The SRE is related to another magic monotone called the min-relative entropy of
magic, defined as

Dmin(|yi) = � log FSTAB(|yi) (9.3)

where FSTAB is the stabilizer fidelity defined as

FSTAB(|yi) = max
|fi2STAB

|hf|yi|2 . (9.4)

The following inequality holds [23]

Mn(|yi) 
2n

n� 1
Dmin(|yi) , n � 1 . (9.5)

In particular, setting n = 2, and defining D(|yi, |fi) = � log |hf|yi|2, one finds
that

M2(|yi)  4Dmin(|yi)  4D(|yi, |fi) , (9.6)

for any |fi 2 STAB.
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Because the SRE is defined in terms of the characteristic function XP(|yi), it is nat-
ural to estimate it through statistical sampling of XP(|yi). Indeed, this was the core
of previous numerical methods that have been introduced to compute the SRE [23,
27, 28], which are so far limited to tensor network techniques. To obtain reliable
statistics, a large number of samples is required, often resulting in computations
being restricted to small bond dimension. This limitation poses a challenge when
studying highly entangled systems, such as higher dimensional ones. Unfortunately,
the existing methods are not directly suitable for Quantum Monte Carlo approaches
due to the inherent difficulty in evaluating the expectation values of high-weight
Pauli strings within.

9.3 Magic in SMF ground states

In this section we show how the special form of the ground state wave functions
of SMF systems allows for analytical and numerical routes into the calculation of
their magic, that are not afforded to general quantum many body systems. In doing
so, we develop the machinery that will later be used to study a broad range of model
systems, to gain insight in the behaviour of this intriguing quantity.

9.3.1 Stabilizer Rényi entropy

Consider a N�qubit wave-function |yi = Âs cs|si, where cs = hs|yi and s
labels all tensor product basis states (e.g., the sz

i basis for a spin-1/2 system, i =
1, ..., N). We firstly show that the SRE M2 can be expressed as follows

exp(�M2) = Â
s(1),s(2),s(3),s(4)

⇥
cs(1) cs(2) cs(3) cs(1)s(2)s(3)

c⇤
s(1)s(2)s(4) c⇤s(1)s(3)s(4) c⇤s(2)s(3)s(4) c⇤s(4)

⇤
,

(9.7)

where cs(1)s(2)s(3) denotes the coefficient cs̃ corresponding to the tensor product label
s̃ given by the point product of s(1), s(2), and s(3): s̃i = s(1)

i s(2)
i s(3)

i , 8 i = 1, . . . , N.
Similarly for the other equivalent terms in Eq. (9.7). We can imagine s(a), a = 1, 2, 3, 4
as four copies of the N qubits. Similar expressions can be obtained for SREs of inte-
ger index n > 2.

Proof: Consider the single-qubit Pauli operators (including the identity) P 2 {I, X, Y, Z}.
It is convenient to label them using a pair of indices a, a0 2 {0, 1}, such that Pa,a0 =
iaa0XaZa0 whereby P0,0 = I, P1,0 = X, P0,1 = Z, and P1,1 = Y. For a system of N
qubits, the Pauli strings can then be written as

Pa,a0 = Pa1,a01 Pa2,a02 ...PaN ,a0N , (9.8)

where a, a0 are n-bit strings. We also denote s = (�1)a, for later convenience.
Substituting |yi = Âs cs|si to the SRE in Eq. (6.23), and using the representation

of Pa,a0 above, we obtain
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1
d Â

a,a0

"

Â
s,s0

csc⇤s0 hs0|Pa,a0 |si
#4

=
1
d Â

a,a0

"

Â
s,s0

csc⇤s0
N

’
j=1

iaja0jhs0j |Xaj Za0j |sji
#4

=
1
d Â

a,a0

"

Â
s,s0

csc⇤s0
N

’
j=1

s
a0j
j hs

0
j |Xaj |sji

#4

=
1
d Â

a,a0

"

Â
s,s0

csc⇤s0
N

’
j=1

s
a0j
j hs

0
j |sjsji

#4

=
1
d Â

a,a0

"

Â
s

csc⇤ss

N

’
j=1

s
a0j
j

#4

,

(9.9)

where ss represents the tensor product state label where s0j = sjsj, 8 j. Note that

the factor ’j iaja0j in the second line is independent of s, s0, and therefore factors out
of the summation and disappears due to the fourth power (i4 = 1). Expanding the
fourth power explicitly, we can further simplify the expression

exp(�M2) =
1
d Â

a,a0
Â

s(1),s(2),s(3),s(4)

"
4

’
i=1

cs(i) c⇤ss(i)

N

’
j=1

⇣
s(i)

j

⌘a0j
#

=
1
d Â

a
Â

s(1),s(2),s(3),s(4)

"
4

’
i=1

cs(i) c⇤ss(i)

# 2

4
N

’
j=1

Â
a0j=0,1

 
4

’
i=1

s(i)
j

!a0j
3

5

=
1
d Â

a
Â

s(1),s(2),s(3),s(4)

"
cs(1) cs(2) cs(3) cs(4) c⇤ss(1) c⇤ss(2) c⇤ss(3) c⇤ss(4)

N

’
j=1

⇣
1 + s(1)

j s(2)
j s(3)

j s(4)
j

⌘#
.

(9.10)

Since the product s(1)
j s(2)

j s(3)
j s(4)

j 2 {�1, 1}, the term in square brackets in the

last line above is nonzero only if s(1)
j s(2)

j s(3)
j s(4)

j = 1 for all sites j. This effectively
constraints the fourth layer s(4) = s(1)s(2)s(3):

exp(�M2) = Â
a,s(1),s(2),s(3)

⇥
cs(1) cs(2) cs(3) cs(1)s(2)s(3)

c⇤ss(1) c⇤ss(2) c⇤ss(3) c⇤ss(1)s(2)s(3)

⇤
.

(9.11)

Finally, we can replace the summation over a for a summation over s(4) = ss(1)s(2)s(3),
to bring the expression into a more symmetric form,

exp(�M2) = Â
s(1),s(2),s(3),s(4)

⇥
cs(1) cs(2) cs(3) cs(1)s(2)s(3)

c⇤
s(1)s(2)s(4) c⇤s(1)s(3)s(4) c⇤s(2)s(3)s(4) c⇤s(4)

⇤
.

(9.12)
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For the SMF systems introduced in Sec. 9.1, and in particular their ground state
wavefunctions, these known expressions for the magic can be further manipulated
upon substituting cs = e�bEs/2/

p
Z in Eq. (9.7) to obtain:

M2 = � log
ZM

Z4 (9.13)

where

ZM = Â e�bEM

= Â
s(1), s(2),
s(3), s(4)

exp

"
�b Â

a
Es(a) � b Â

a
E’b 6=a s(b)

#
. (9.14)

One can interpret ZM as a classical partition function constructed from four copies
of the original classical degrees of freedom. The second term in the square bracket
describes the energy of a configuration obtained from the spin product of three out
of four copies. The expression in Eq. (9.13) can thus be seen as (proportional to) the
difference between the free energy of the classical system described by ZM and four
non-interacting copies of the original classical system described by Z.

This manipulation is not only interesting from a conceptual point of view, but also
from a pragmatic one: it provides a new angle to compute the magic of a quantum
(SMF) state using classical statistical mechanics tools in the same number of dimen-
sions. As we demonstrate later, it affords us the ability to access significantly larger
system sizes and higher dimensional lattices than previously possible [23, 27, 28].

In practice, rather than computing ratios of partition functions or differences in
free energies, it is convenient to notice that the derivative of M2 with respect to
temperature reduces to:

dM2

dT
=

4hEi � hEMiM
T2 . (9.15)

Thus, M2 can be more efficiently obtained by computing the energies hEi and hEMiM
and then proceding to integrate the r.h.s. of Eq. (9.15).

9.3.2 Upper bound of M2

As discussed in Sec. 9.2, M2 is bounded from above by D(|yi, |fi) = � log |hf|yi|2
for any |fi 2 STAB. In the following sections, we compute D(|yi, |fi) for several
ad hoc choices of states |fi, specific to the system being considered. Once again, in
the case of SMF wavefunctions, these overlaps can be reduced to classical statistical
mechanical objects, amenable to corresponding analytical or numerical estimates.

Here, we illustrate the procedure to compute D(|yi, |fi) in a couple of cases that
will often be used in the following. Consider for example |fi = | + + + ...i, where
|+i = |"i+|#i

2 (i.e., a spin-1/2 state polarized in the x direction). In the context of SMF
wavefunctions, this is the ground state at b = 0. We denote Dx(|yi) = D(|yi, |fi =
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| + + + ...i). From the overlap

hy(b)|y(b = 0)i =
1p

Z(b)2N Â
s,s0

e�bEs/2hs0|si (9.16)

=
1p

Z(b)2N Â
s

e�bEs/2 (9.17)

=
Z(b/2)p
Z(b)2N

, (9.18)

we then obtain

Dx(|y(b)i) = � log
Z(b/2)2

Z(b)2N . (9.19)

Another useful example is |fi = (| """ ...i+ | ### ...i)/
p

2. In the ferromagnetic
Ising model, this is the ground state at T = 0 (namely, the exact ground state, ignor-
ing spontaneous symmetry breaking effects). We denote Dzz(|yi) = D(|yi, |fi =
(| """ ...i+ | ### ...i)/

p
2). From the overlap

hy(b)|fi =

s
2

Z(b)
e�bEzz/2 , (9.20)

where Ezz is the energy of the configuration si = 1(�1), for all i, we obtain

Dzz(|y(b)i) = bEzz � log
2

Z(b)
. (9.21)

In all cases, the overlaps D(|yi, |fi) are related to the partition function of the
classical model. Therefore, similarly to M2, we compute them using direct thermo-
dynamics integration.

9.4 SMF models

Armed with the tools developed above, we proceed to investigate a broad range
of models, in the attempt to deepen our understanding of stabilizerness and magic
in many body systems – albeit of the fine tuned SMF kind – and its relation to quan-
tum phase transitions. For this purpose, we consider in the first instance quantum
Ising ferromagnets in 1D, 2D, 3D, and infinite dimensions (mean field); we also con-
sider the J1-J2 model tuned to exhibit a first order phase transition, for comparison.
We then move on to more exotic examples, such as the quantum triangular Ising
antiferromagnet (which is fully frustrated in the SMF realisation) and the Edwards-
Anderson model (exemplifying a spin glass transition in the droplet picture).

Since the SREs are generally an extensive quantity, we focus on the SRE densities
Mn/N, where N = Ld is the total number of sites in the system with linear size L
and dimensionality d. For the numerical simulations at finite volume, we impose
periodic boundary conditions.



Chapter 9. Magic in generalized Rokhsar-Kivelson wavefunctions 142

0 1 2 3
T

0.00

0.05

0.10

0.15

m
ag

ic

1
4M2/N
1
3M3/N
4
10M5/N
5
12M6/N
6
14M7/N
7
16M8/N

Dx/N

Dzz/N

FIGURE 9.1: Behaviour of various measures of magic, including two
stabilizer bounds, for the SMF 1D Ising ferromagnet. For each n, we
plot n�1

2n Mn/N, which are upper bounded by Dx and Dzz by Eq. (9.5).

9.4.1 1D SMF Ising ferromagnet

The quantum SMF Hamiltonian for the 1D Ising ferromagnet is related to the
classical 1D Ising model with energy

Es = �Â
i

sisi+1 , (9.22)

where the spins si live on a chain, and it reflects its thermodynamic behaviour. In
particular, there is no phase transition and the system orders only in the limit b !
• (we stress that b plays the role of inverse temperature for the classical system
whereas it is merely a tunable parameter in the SMF quantum Hamiltonian, which
is considered to be at zero temperature in its ground state, for the purpose of this
work).

Despite its simplicity, this model serves as a useful warmup example and the
magic can be computed analytically using Eq. (9.13). Indeed, we recall that the
partition function of the 1D (nearest-neighbour) Ising model can be computed with
transfer matrix techniques:

Z = Â
s

eb Âi sisi+1

= Â
s

ebs1s2 ebs2s3 ...ebsLs1

= Â
s

Vs1,s2Vs2,s3 ...VsL,s1

= Tr(VL) ,

(9.23)

where Vh,h0 = ebhh0 is a 2⇥ 2 matrix. The eigenvalues of V are l1 = 2 cosh b and
l2 = 2 sinh b. Thus,

Z = Tr(VL) = lL
1 + lL

2 = [2 cosh b]L + [2 sinh b]L . (9.24)

We can similarly compute ZM by interpreting the four layers of the 1D chain as a
1D chain with 16 states per site: ZM = Tr

�
VL

M
�
, where VM is a 16⇥ 16 matrix.
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More generally, for an integer index n > 1, the transfer matrix VM,n is a 22n ⇥ 22n

matrix with elements

VM

⇣
{h(1), ..., h(2n)}, {h0(1), ..., h0(2n)}

⌘
=

exp

"
b

2 Â
a

h(a)h0(a) +
b

2 Â
a

’
b 6=a

h(b)h0(b)

#
. (9.25)

To compute ZM,n = Tr
⇣

VL
M,n

⌘
we work in the thermodynamic limit L ! •, where

we only need to find the largest eigenvalue of VM,n. One can verify that the column
vector with all elements equal to 1 is an eigenvector of VM,n. By the Perron-Frobenius
theorem, the corresponding eigenvalue is the unique largest eigenvalue:

ln =
22n + [2 cosh(b)]2n + [2 sinh(b)]2n

2
. (9.26)

Finally, using Eq. (9.26) and (9.24), we find

Mn/N =
1

1� n
log

1 + cosh(b)2n + sinh(b)2n

2 cosh(b)2n , (9.27)

for integer n > 1.
Furthermore, Dx and Dzz can be computed directly by plugging in the partition

function Eq. (9.24) into Eq. (9.19) and (9.21), respectively. In Fig. 9.1, we show the
SREs, Dx, and Dzz of the SMF 1D Ising model, observing the expected asymptotic
agreement in the limits T ! 0 and T ! •.

To avoid confusion, we remark here that the SMF Hamiltonian and correspond-
ing GS wavefunction related to the classical 1D Ising ferromagnet are strikingly dif-
ferent from the conventional 1D Ising ferromagnet in a transverse field. Most no-
tably, in the SMF case there is no phase transition and ordering occurs only asymp-
totically in the limit T ! 0.

9.4.2 2D SMF Ising ferromagnet

The quantum SMF Hamiltonian of the 2D Ising ferromagnet is related to the 2D
classical Ising model with energy

Es = �Â
hiji

sisj , (9.28)

where the spins si are taken without loss of generality to live on the 2D square lattice.
There is a phase transition between the ferromagnetic and the paramagnetic phase
at Tc = 2/ log

⇣
1 +
p

2
⌘
⇡ 2.269815.

To study the thermodynamics properties of ZM, we perform Monte Carlo simula-
tions augmented with Wolff cluster algorithm [97] and parallel tempering [155, 156].
We study the energy hEMiM as a function of temperature for a range of system sizes
as shown in Fig. 9.2 (top panel). We observe a behaviour compatible with a first-
order transition from a high-temperature paramagnetic phase to a low-temperature
ordered phase, at some value T⇤ 6= Tc (whereas we know hEi from the classical 2D
Ising model to be smooth, with a singularity in its first derivative at Tc). The presence
of a first order transition in the classical system described by ZM will be a common
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FIGURE 9.2: Magic and stabilizer bounds for the SMF 2D Ising fer-
romagnet. The top panel shows the behaviour of hEMiM introduced
in Sec. 9.3.1 as a stepping stone to compute M2/N (bottom panel).
The vertical dashed lines indicate the location of the quantum phase
transition, whereas the vertical dotted lines indicate the location of
the transition in the coupled layered system ZM (resulting in a cusp

in the magic M2).

feature in all examples considered in our work; however, while T⇤ > Tc for the 2D
Ising case, we will find for example that T⇤ < Tc in higher-dimensional systems.

Integrating the energy as in Eq. (9.15) from high temperature, we obtain the SRE
M2. In contrast to the results of previous studies [25, 28], we see that M2 is con-
tinuous and does not exhibit a maximum nor minimum at the transition point. In
fact, we know that at Tc, M2 inherits a singularity in its second derivative from the
singularity in the first derivative of the energy hEi of the associated classical system
described by the partition function Z (which undergoes a second order phase tran-
sition). The maximum of M2 occurs instead away from the quantum critical point
(into the paramagnetic phase), at a cusp that can be related to the first order tran-
sition point of the classical system described by ZM. Furthermore, we observe that
the bounds 4Dx and 4Dzz lie very close above M2. By Eq. (9.6), this also establishes
strict upper and lower bounds for Dmin. This is again a common feature that we
consistently observe in all examples considered in this work.

Although the SRE M2 appears relatively featureless across Tc, we know from
Eq. (9.15) that it must inherit any singularity present in hEi and in hEMiM. The
well-known critical behaviour of the 2D Ising model gives a singularity in the sec-
ond derivative of M2, which is related to the specific heat of the classical 2D Ising
model: d2M2/dT2 exhibits a peak at Tc which diverges logarithmically, as shown in
Fig. 9.3. A (negative) peak is observed at T⇤, due to the the specific heat of ZM; here
the transition is first order and the peak diverges as N, much faster than the known
logarithmic divergence at Tc.

We note that, by Wegner duality [98], the SMF groundstates corresponding to the
2D Ising model are dual to a wavefunction deformation of the toric code studied
in Ref. [157]. Therefore, the SREs of the two wavefunctions are identical (up to a
constant shift), since the SREs are preserved by Wegner duality [28].

9.4.3 3D SMF Ising ferromagnet

The discussion of the 3D Ising ferromagnet goes along the same line as in 2D,
with the spins si living without loss of generality on the 3D cubic lattice. The model
is known to exhibit a second-order phase transition between the ferromagnetic and
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the paramagnetic phase. Through large-scale Monte Carlo simulations, the critical
point was found to be at Tc ⇡ 4.5115 [158].

The results are shown in Fig. 9.4. The energy hEMiM once again exhibits a first-
order transition that induces a cusp in the behaviour of M2 at T⇤, where it reaches
its maximum value. At the quantum phase transition, M2 is once again continuous,
with a singularity in its second derivative. Differently from the 2D case, the cusp
(and maximum) of M2 occurs in the ferromagnetic phase instead of the paramag-
netic one. Once again, the upper bounds 4Dx and 4Dzz lie very close to M2.
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9.4.4 Infinite-range Ising model

For completeness, we consider the case of an infinite-range Ising ferromagnet,
with classical energy

Es = � 1
2N Â

i 6=j
sisj (9.29)

= � 1
2N

 

Â
i

si

!2

+ 1/2 , (9.30)

which becomes again analytically tractable. Hereafter, we shall neglect the trivial
constant energy shift in the last line.

The partition function of the infinite-range model can be evaluated by first re-
casting it to a Gaussian integral and then performing a saddle-point approximation,
which is exact in the thermodynamic limit L ! • (see e.g., Ref. [159]). Explicitly,
the free energy is given by

bF/N =
b

2
m2 � log [2 cosh(bm)] , (9.31)

where the saddle point magnetisation is found by solving the self-consistency equa-
tion

m = tanh(bm) . (9.32)

The system exhibits a second-order phase transition at Tc = 1 between the ferromag-
netic and the paramagnetic phase.

The evaluation of bFM = � log ZM follows along the same lines. First, we write
the partition function as

ZM = Â
s

exp

2

4 b

4N

4

Â
a=1

 

Â
i

s(a)
i

!2

+
b

4N

4

Â
a=1

 

Â
i

’
b 6=a

s(b)
i

!2
3

5 . (9.33)

Then, we make use of the identity

eax2/2 =

r
aN
2p

Z •

�•
dm e�Nam2/2+

p
Namx (9.34)

to obtain

ZM =

✓
bN
4p

◆4 Z •

�•

4

’
a=1

dma

4

’
b=1

dqb (9.35)

⇥ exp

"
�Nbm2

a
4
�

Nbq2
b

4
+ NbF̃

#
, (9.36)

where

ebF̃ = Â
h(1,...,4)=±1

exp

"

Â
a

bma

2
h(a) + Â

b

bqb
2 ’

c 6=b
h(c)

#
.
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In the limit L ! •, we can evaluate the above integral using the saddle-point
approximation, such that the free energy is given by

bFM =
Nb

4 Â
a

m2
a +

Nb

4 Â
b

q2
b � NbF̃. (9.37)

Taking partial derivative with respect to all ma and qb, we obtain the self-consistent
equations

ma =
Â h(a) exp

h
Âc

bmc
2 h(c) + Âd

bqd
2 ’c 6=d h(c)

i

Â exp
h
Âc

bmc
2 h(c) + Âd

bqd
2 ’c 6=d h(c)

i , (9.38)

and

qb =
Â ’c 6=b h(c) exp

h
Âc

bmc
2 h(c) + Âd

bqd
2 ’c 6=d h(c)

i

Â exp
h
Âc

bmc
2 h(c) + Âd

bqd
2 ’c 6=d h(c)

i , (9.39)

respectively, for a, b = 1, 2, 3, 4. The outer summations above are over h(1), h(2), h(3), h(4) =
±1. The quantity ma corresponds to the magnetization of the a-th layer,

ma =
1
N

*

Â
i

s(a)
i

+
. (9.40)

while qb corresponds to

qb =
1
N

*

Â
i

’
c 6=b

s(c)
i

+
. (9.41)

The procedure outlined above can be straightforwardly generalized to higher (in-
teger) index n > 2. If we assume, by symmetry, that the solution satisfies m1 = m2 =
... = m2n = q1 = ... = q2n = m 2, then the self-consistent equations simplify to

m =
cosh(bm)2n�1 sinh(bm) + sinh(bm)2n�1 cosh(bm)

1 + cosh(bm)2n + sinh(bm)2n (9.42)

One can verify that Eq. (9.42) always admits m = 0 as a solution, which minimizes
FM at high temperature; it also admits the solution m = 1, which minimizes FM at
T = 0, and the transition between the two is first-order.

We solve Eq. (9.42) numerically and compute Mn for n 2 {2, 3, 4, 5, 6, 7, 8} (see
Fig. 9.5). In the limit n ! •, Eq. (9.42) reduces to m = tanh(bm), which is exactly
the self-consistent equation for the infinite-range model. This implies that Mn ! 0
as n! •, as expected.

Furthermore, Dx and Dzz can be computed directly from Eq. (9.19) and (9.21),
respectively, using the free energy in Eq. (9.31). We plot them along the SREs in
Fig. 9.5.

Similarly to the 3D Ising ferromagnet, and contrary to the 2D case, the cusp (and
maximum) of M2 occurs well within the ferromagnetically ordered phase. In fact,
the behavior of M2 along with Dx and Dzz are very similar to the 3D case. Interest-
ingly, the stabilizer bound to the magic is exactly met by Dx for any T larger than the

2The symmetry between ma and qb may not be immediately obvious, but it can be seen as follows:
for each site i in the layer a, define spin s(a)

i = ’c 6=a s
(c)
i . After this change of variable, we obtain

qa = 1
N

D
Âi s(a)

i

E
and mb = 1

N

D
Âi ’c 6=b s(c)

i

E
. Namely, the role of ma and qb is interchanged after the

change of variable.
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FIGURE 9.5: Magic and stabilizer bounds for the SMF infinite-range
Ising ferromagnet. For each n, we plot n�1

2n Mn/N, which are upper
bounded by Dx and Dzz by Eq. (9.5). The system undergoes a quan-

tum phase transition at Tc = 1.

cusp value. This is because in this regime log ZM,n = 2n log 2, while log Z(b/2) =
log 2 in Eq. (9.19), which implies Mn = 2n

n�1 Dx. By Eq. (9.5), it follows that Dmin =
n�1
2n Mn for any T larger than the cusp value of an index n. For T � 1, all Mn and Dx

vanish, i.e., the states are asymptotically close to the stabilizer state | + + + ...i.

9.4.5 J1-J2 model and first order behaviour

Up to now we considered quantum SMF Hamiltonians that exhibit continuous
phase transitions. Here we investigate what happens at a first order quantum phase
transition by looking at the SMF J1-J2 Ising model on the square lattice, related to a
classical model with energy

Es = �J1 Â
hiji

sisj + J2 Â
hhijii

sisj , (9.43)

where J1, J2 > 0. The first term corresponds to a ferromagnetic Ising nearest-neighbour
interaction, while the second term is an antiferromagnetic interaction across the di-
agonals of the square plaquettes. For an appropriate choice of the system parame-
ters, e.g., when the ratio g = J1/J2 = 0.55, the system exhibits a first-order transi-
tion between a high-temperature paramagnetic phase and a low-temperature stripe
phase at Tc ⇡ 0.772 (setting J1 = 1 as the reference energy scale) [100]. In the stripe
phase, the ground states are fourfold degenerate, and can be understood as two de-
coupled antiferromagnetic ground states.

We also observe a first order phase transition in the associated coupled layered
system ZM, but at a higher temperature T⇤, well into the paramagnetic phase (as in
the 2D Ising ferromagnet, and contrary to 3D and infinite-range). Therefore, in this
system we expect two discontinuities in the first derivative of M2 with respect to T:
One at the quantum phase transition (Tc), where the slope is positive on both sides
and approximately doubles across it; the other at T⇤, where the slope changes sign
abruptly, giving rise once again to a maximum in M2, where a cusp occurs.

In Fig. 9.6 we also compare M2 with the bounds provided by the paramagnetic
(Dx, asymptotically accurate for T ! •) and stripe (Dstripe, asymptotically accurate
for T ! 0) phases. The latter appears to be remarkably close for all T < T⇤.
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FIGURE 9.6: Magic and stabilizer bounds for the SMF 2D J1-J2 Ising
model. The top panels show the behaviour of hEi and hEMiM, and
the bottom panel shows the SRE density M2/N (same system sizes).
The vertical dashed lines indicate the location of the quantum phase
transition, whereas the vertical dotted lines indicate the location of
the transition in the coupled layered system ZM (resulting in a cusp

in the magic M2).

9.4.6 Antiferromagnetic triangular Ising model

We now proceed to a more exotic model where the quantum SMF Hamiltonian
is related to the classical antiferromagnetic triangular Ising model [160, 161], with
energy

Es = Â
hiji

sisj, (9.44)

where the spins si live on the sites of a triangular lattice, i = 1, . . . , N. The model fea-
tures an extensive ground state degeneracy with algebraically decaying correlations
at T = 0, while it is disordered at all temperatures T 6= 0 [160].

We first show that the classical system described by ZM also features an extensive
ground state degeneracy. To this end, we provide a lower bound on the zero-point
entropy by explicitly constructing an extensive set of states with lowest energy. To
do so, let us divide the triangular lattice on each layer into three sublattices. Let us
then fix the spins on two of the sublattices to 1 and �1, respectively, with the same
choice for all four layers. One can then straightforwardly verify that the spins on the
remaining sublattice on each layer can be chosen arbitrarily without affecting the
energy EM of the system, and that the latter is indeed minimised. The number of
such states is 24N/3, which implies

SM(0) � 4N
3

ln 2 . (9.45)

As one can straightforwardly think of other configurations that minimize the energy,
this bound is not tight.

We find that the corresponding ZM features a phase transition that appears to be
first-order, as displayed in Fig. 9.7, albeit of a less strong nature than in the cases
discussed previously. Once again, M2 exhibits a cusp at the transition point T⇤ of
the classical system described by ZM.
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transition in the coupled layered system ZM (resulting in a cusp in

the magic M2).

Unlike in the other models considered so far, in this case the ground state at T = 0
is not a stabilizer state. We note that the configurations with the three sublattice
structure given above is also known as the clock state, which arises as the quan-
tum ground state of the quantum triangular Ising antiferromagnet at small magnetic
field [162–165]. While it is not the exact ground state for T = 0, it constitutes a signif-
icant part of the ground state. Thus, we compare M2 with Dclock(|yi) = D(|yi, |fi)
where |fi is the clock state defined above, which is a stabilizer state. Dclock is ob-
tained in a similar way as Dzz (see Sec. 9.3.2). At T = 0, Dclock is given by

Dclock(T = 0) = S(0)� N
3

ln 2 , (9.46)

where S(0) ' 0.3383 N is the zero-point entropy of the antiferromagnetic triangular
Ising model [160]. On the other hand, M2 is given by

M2(T = 0) = 4S(0)� SM(0) . (9.47)

This is obtained by setting T = 0 in Eq. (9.13). In this case, the observation that
4Dclock is strictly larger than M2 can be attributed to the fact that the zero-point
entropy SM(0) is strictly larger than 4N

3 ln 2. In turn, this is also a manifestation
of the fact that the ground state of the classical system described by Z(T) is not a
stabilizer state for T = 0.

9.4.7 Edwards-Anderson model

Finally, we consider an example of a disordered system, where the quantum SMF
Hamiltonian is related to the Edwards-Anderson (EA) model, with energy

Es = �Â
hiji

Jijsisj , (9.48)

where the spins si live on the 3D cubic lattice. Here, the couplings Jij are inde-
pendently drawn from a Gaussian distribution with zero mean and unit variance.
The system is known to undergo a continuous transition from the high-temperature
phase to the low-temperature spin glass phase at Tc ⇡ 0.95 [166].
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FIGURE 9.8: Magic and stabilizer bounds for the 3D SMF EA model.
The top panels show the behaviour of hEMiM (left) and of the specific
heat Cv,M (right), and the bottom panel shows the SRE density M2/N
(all for the same set of system sizes). The vertical dashed lines indi-
cate the location of the quantum phase transition, whereas the vertical
dotted lines indicate the location of the transition at T⇤ in the coupled
layered system ZM (resulting in a maximum in the magic M2). The
results are averaged over 100, 50, and 30 realizations for linear sizes

L = 6, 8, 10, respectively.

This model has a unique ground state for any realization of Jij (up to global spin
flip). For system sizes up to L = 10, the exact ground states and their energy can be
readily obtained using the McGroundstate server [167].

We show the energy hEMiM, the specific heat Cv,M and the magic M2 in Fig. 9.8.
Again, the maximum occurs well into the paramagnetic phase, at the transition point
of the coupled layered system ZM. Unlike in the previous cases, where the first order
behaviour of the ZM transition was self-evident because of the noticeable discontinu-
ity in hEMiM, the situation is less clear-cut here. While the maximum of the specific
heat appears to grow slower than N, suggesting a second order transition, we are
unable to identify a clear scaling of the specific heat within the accessible system
sizes. We further compute equilibrium energy histograms at different temperatures
around T⇤, shown in Fig. 9.9. The behaviour closely resembles a trade off between
two different peaks, whose positions are approximately temperature-independent
(although we are unable to see the minimum in between them scale to zero as a
function of system size, within the systems accessed in this work). Overall, we sug-
gest that the transition in this model is weakly first-order.

In Fig. 9.8 we also compare M2 with bounds from Dx and DGS, where DGS is ob-
tained from the overlaps with the exact ground state for each realization, computed
by thermodynamic integration as discussed in Sec. 9.3.2, using the McGroundstate
server [167] to obtain the exact ground state energy. In this case, the bounds are
somewhat higher than encountered in previous cases. Nevertheless, the crossing
between Dx and DGS still occurs close to the maximum of M2.

Finally, we investigate the nature of the low-temperature phase of ZM. A natural
candidate is a spin glass phase, accompanied by replica symmetry breaking (RSB),
akin to the low-temperature phase of the 3D EA model. To detect RSB, we compute
the spin overlap

q =
1
N

N

Â
i=1
hsa

i s
b
i i , (9.49)
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corresponding to the 3D EA model, in thermodynamic equilibrium
at different temperatures for a system of size L = 12. The vertical
dashed lines are guides to the eye tracking the (same) location loca-

tion of the two peaks across the panels.

where a and b represents two copies of the system with the same disorder. We show
the spin overlap in the coupled system ZM in Fig. 9.10. It can be seen that the spin
overlap is vanishing in the high-temperature paramagnetic phase, while it becomes
non-zero in the low-temperature phase, signifying RSB.

9.5 Conclusions

We introduced a way to compute the SRE [19] with integer Renyi index n > 1
in terms of wavefunction coefficients in many body systems, that make it amenable
to efficient computation using Monte Carlo sampling. We applied this approach
to generalized Rokhsar-Kivelson systems whose Hamiltonians allow a stochastic
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FIGURE 9.10: Spin overlap hqiM for the coupled layered system ZM
corresponding to the 3D EA model, for system sizes L 2 {4, 6, 8}.
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matrix form decomposition [144]. Thanks to the known correspondence between
ground states of these systems and associated classical statistical mechanics prob-
lems, we have been able to express the SRE in terms of classical free energy differ-
ences, which can be efficiently computed by thermodynamic integration. Crucially,
temperature plays the role of a tunable parameter in the quantum Hamiltonians, al-
lowing us to drive these systems across quantum phase transitions and study the
behaviour of their SRE. With this approach we were able to study the SRE of large
high-dimensional systems, unattainable using existing tensor network-based tech-
niques, and in some cases obtaining explicit analytical results.

We applied this insight to a range of quantum many body SMF Hamiltonians, en-
compassing the Ising ferromagnet in 1D, 2D, 3D, and infinite dimensions; the J1� J2
model on the square lattice (exhibiting a first order transition); the triangular Ising
antiferromagnet (fully frustrated, devoid of ordering); and the Edwards-Anderson
model on the cubic lattice (which undergoes a glass transition). Generally, we ob-
served that the behaviour of the SRE is relatively featureless across quantum phase
transitions in these systems, although it is indeed singular in its first or higher order
derivative, depending on the first or higher order nature of the transition. We found
that the maximum of the SRE generically occurs at a cusp away from the quantum
critical point, where the derivative suddenly changes sign. Curiously, the cusp ap-
pears to occur in the disordered phase in two dimensions, and in the ordered phase
in higher dimensions, suggesting that it may be altogether unrelated to the ordering
behaviour of the quantum system.

We further compared the SRE to the logarithm of overlaps with specific stabi-
lizer states, that are asymptotically realised in the ground state phase diagrams of
these systems. We find that they display strikingly similar behaviors, which in turn
establish rigorous bounds on the min-relative entropy of magic.

In our work we were able to make some progress in understanding the behaviour
of the magic and its maximum in many body quantum (SMF) systems, throughout
their phase diagrams, in terms of partition functions and thermodynamic properties
of associated classical problems, and by comparing it with overlaps of asymptotic
stabilizer states. One wonders whether further progress could be made using field
theoretic approaches for the associated classical problems, in particular #-expansions
just above 2D or just below 3D to shed light on the location of the SRE maximum
with respect to the quantum phase transitions. We shall leave these and other inter-
esting open questions for future work.

As we discussed at the end of Sec. 9.4.2, our results for the 2D SMF Ising ferro-
magnet straightforwardly extend to the toric code [168] and SMF variations thereof [157],
which are some of the simplest examples of Z2 lattice gauge theories. It will be in-
teresting to consider other quantum SMF Hamiltonians constructed from classical
systems that exhibit an emergent gauge symmetry, such as dimer [169, 170], (spin)
ice [171–173] and vertex models in general. Simulating these systems in their low
temperature phases typically requires the use of loop updates, which pose a non-
trivial challenge for the partition function ZM introduced in Sec. 9.3.1, and is beyond
the scope of the present work.
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Chapter 10

Nonstabilizerness via matrix
product states in the Pauli basis

In this chapter, we demonstrate how, for states represented by matrix product
states (MPS), several nonstabilizerness measures can be cast in the language of ten-
sor networks (TN) [42, 174–178], whose contractions can be approximated using
standard algorithms. More concretely, we represent the Pauli spectrum of the state
as an MPS, cf. Fig. 10.1 (a,b). This allows one to compute not only the SRE, but
also Bell magic, which has so far not been quantified in large systems, as it is too
costly to compute by existing methods. For the SRE in particular, we express it as a
two-dimensional tensor network as shown in Fig. 10.1 (c), thereby enabling approx-
imate contraction using established MPS methods. Furthermore, we explain how
our framework leads to efficient computation of stabilizer nullity, a genuine nonsta-
bilizerness monotone, which in turn allows us to identify the stabilizer group of the
state. We benchmark our method through various examples, including the quantum
Ising chain, the XXZ chain, and random Clifford circuits with nonstabilizer states in-
put. We further applied our method to compute Bell magic in a scrambling circuit
(see Fig. 10.1 (d)) recently experimentally implemented in Rydberg atom arrays [7].
Reaching system sizes beyond the current experimental capabilities, our method can
thus be used to verify and benchmark future experiments.

10.1 MPS in the Pauli basis

Let us consider a system of N qubits in a pure state |yi given by an MPS of bond
dimension c:

|yi = Â
s1,s2,··· ,sN

As1
1 As2

2 · · · AsN
N |s1, s2, · · · sNi (10.1)

with Asi
i being c⇥ c matrices, except at the left (right) boundary where As1

1 (AsN
N ) is a

1⇥ c (c⇥ 1) row (column) vector. Here si 2 {0, 1} is a local computational basis. The
state is assumed right-normalised, namely Âsi

Asi†
i Asi

i = 1. Let us define the binary
string ↵= (a1, · · · , aN) with aj 2 {00, 01, 10, 11}. The Pauli strings are defined as
P↵ = Pa1 ⌦ Pa2 ⌦ · · ·⌦ PaN where P00 = I, P01 = sx, P11 = sy, and P10 = sz. We define
the Pauli vector of |yi as |P(y)i with elements h↵|P(y)i= hy|P↵|yi/

p
2N . Also

known as the Pauli spectrum [34], this was recently studied in the context of many-
body systems [21]. When |yi has an MPS structure as in Eq. (10.1), the Pauli vector
can also be expressed as an MPS as follows

|P(y)i = Â
a1,a2,··· ,aN

Ba1
1 Ba2

2 · · · BaN
N |a1, · · · , aNi (10.2)
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FIGURE 10.1: (a) Definitions of tensors used for the construction of
Pauli-MPS. (b) Construction of Pauli-MPS. (c) The SRE represented
as the contraction of a two-dimensional tensor network. (d) The ad-
ditive Bell magic in a scrambling circuit recently experimentally real-
ized in Ref. [7]. The red dashed line indicates the highest value of the

additive Bell magic experimentally measured in Ref. [7].

where Bai
i = Âs,s0 hs|Pai |s0iAs

i ⌦ As0
i /
p

2 are c2 ⇥ c2 matrices, as shown in Fig. 10.1.
Note that the MPS is normalized due to the relation 1

2N Â↵hy|P↵|yi2 = 1 which holds
for pure states. Moreover, it retains the right normalization, due to the identity
1
2 Âa Pa(·)Pa = 1 Tr[·]. Consequently, the entanglement spectrum of |P(y)i is given
by l0i,j = lilj for i, j = 1, 2, · · · , c, where li is the entanglement spectrum of |yi, and
hence the von Neumann entropy is doubled. Note also that the coefficients of |P(y)i
in the Pauli basis (10.2) are real, since the Pauli operators are Hermitian for spin-1/2
systems, although the local tensors Bi are not necessarily real.

Since the Pauli operators provide an orthonormal basis in the space of Hermitian
operators, one can expand the density matrix as |yihy| = 1

2N Âffhy|P↵|yiP↵. There-
fore, the Pauli spectrum is simply the coefficients of |yihy| in the basis of Pauli op-
erators, i.e., the Pauli basis. As we show below, the MPS representation in the Pauli
basis provides a powerful and versatile tool to compute various measures of non-
stabilizerness. Specifically, we will consider the measures SRE [19], stabilizer nullity
[34], and Bell magic [37]. We refer to Sec. 6.4 for their detailed definitions and prop-
erties.

10.2 Replica Pauli-MPS

The replica method in MPS was introduced to compute the SRE of MPS in Ref. [25].
While exact, for practical purposes, the original formulation performed inferiorly
with respect to Pauli sampling methods due to the extremely high cost with respect
to the bond dimension [23, 27, 28]. Indeed, evaluating the SRE for an integer index
n > 1 required a computational cost of O

�
c6n�, rendering it impractical for even the

simplest case n = 2, where previous computations were restricted to c = 12 [23, 25].
Note that sampling methods have their own limitations, as the number of samples
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has to scale exponentially 1. Here, we show that the MPS in the Pauli basis can be ex-
ploited to significantly reduce the cost of the replica trick, opening doors for its use
in practical application and making it superior also compared to sampling methods
in terms of computational efficiency and scalability.

To do so, we define a diagonal operator W whose diagonal elements are the com-
ponents of the Pauli vector, h↵0|W|↵i = d↵0,↵h↵0|P(y)i. The MPO form of W reads

W = Â
↵,↵0

Ba1,a01
1 Ba2,a02

2 · · · BaN ,a0N
N |a1, · · · , aNiha01, · · · , a0N | (10.3)

where Bai ,a0i
i = Bai

i dai ,a0i
. Applying n� 1 times W to |P(y)i, we obtain |P(n)(y)i= Wn�1|P(y)i,

which is a vector with elements h↵|P(n)(y)i= hy|P↵|yin/
p

2Nn. We denote the local
tensors of |P(n)(y)i by B(n)ai

i . We have

1
2Nn Â

↵

hy|P↵|yi2n = hP(n)(y)|P(n)(y)i (10.4)

and 2

Mn =
1

1� n
log hP(n)(y)|P(n)(y)i � N. (10.5)

The exact bond dimension of |P(n)i is min
�
c2n, 4N/2�, i.e., for large systems it

grows exponentially with the order n, as the cost in Ref. [25]. However, by inter-
preting it as the repeated application of a MPO W onto an MPS, we can sequentially
compress the resulting MPS after every iteration, and keep the best description of
the resulting state as a MPS with some upper-bounded bond dimension cn. This
can be done with standard tensor network routines used, e.g., in the simulation of
time evolution [179, 180]. These methods allow us to monitor the error of the trun-
cation, for example, by doing convergence analysis 3.

The Pauli-MPS itself can also be approximated with a bond dimension cP < c2.
The computational cost of this compression is O

�
c2

Pc2 + c3cP
�
. This is particularly

advantageous for states with exponentially decaying entanglement spectrum (e.g.
in gapped phases), in which case cP can be truncated to a value much smaller than
c2. Assuming cP⇡ c, this results in the overall cost of O

�
Nc4�. By comparison, the

computational cost of direct Pauli sampling is O
�

NNSc3� [23, 27], where NS is the
number of samples. Consequently, our method becomes superior compared to the
latter when NS &c. Since NS typically grows exponentially with N for the estima-
tion of M2, our method offers significant efficiency gains for large N, for states with
bounded c. Although this is at the cost of introducing an approximation, conver-
gence can be controlled by monitoring truncation error, a standard practice in tensor
networks. On the other hand, if c scales exponentially (e.g. in volume-law phases),
our method may become too expensive compared to sampling.

1The required number of samples is polynomial for M1, and hence its estimation is efficient. How-
ever, it has been shown in Ref. [23] that M1 is not a good measure of nonstabilizerness, unlike Mn for
n � 2.

2We note that, since |P(n)(y)i is real, the computation of the norm does not require complex conju-
gation.

3Notice that we aim to compute the same object as the method in Ref. [25], namely the expectation
value of 2n replicas of Pauli operators. The computational advantage of our approach stems from
reorganizing the order of contractions and applying a controlled approximation. Notice also that the
physical dimension in our approach is constantly 4, while Ref. [25] requires a physical dimension of
22(n�1), which grows exponentially with n.
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We benchmarked the method in the XXZ chain, whose Rényi-2 SRE could not be
computed accurately for N > 30 in the previous study [23] In addition, as a concrete
application, we calculated the SRE in the quantum Ising chains, HIsing =�Âhi,ji sx

i sx
j �

h Âi sz
i , previously considered in Refs. [25, 28, 43, 109]. We obtain the ground states

using DMRG with c = 40 and compute the SRE using replica Pauli-MPS, imposing
a truncation error threshold of e = 10�9. Fig. 10.2 shows the derivatives of the SRE
around the critical point h = 1. We observe that the second derivative appears to
diverge at the critical point, mirroring the results of Ref. [29] for Rokhsar-Kivelson
states. These results further solidify the role of nonstabilizerness as a useful diag-
nostic tool for identifying criticality in quantum systems [25, 28, 29, 181]. Note that
calculating derivatives with sampling-based approaches become increasingly chal-
lenging with the derivative order due to the presence of statistical errors.

We further notice that the norm of |P(n)(y)i can be interpreted as the contraction
of a two-dimensional tensor network (see Fig. 10.1 (c)). This allows for alternative
strategies to perform the contraction. For example, one can perform the contrac-
tion in the transversal (space) direction [182–184]. To do so, we first contract the
2n tensors in the first site to form a transfer matrix with 2n indices, each with bond
dimension c2. Then, we iteratively absorb the tensors on the right to the transfer ma-
trix, up until the rightmost tensors. Without compression, the cost of this contraction
scheme is O

�
c4n+2�, which is cheaper than the exact contraction in the direction of

Rényi index, or the contraction in Ref. [25]. Of course, the contractions can also be
done approximately by representing the transfer matrix as an MPS. Whether or not
this would yield a better performance compared to the approximate contraction in
the direction of Rényi index is an intriguing question that we leave for future re-
search avenue.

In the case of translation-invariant (TI) MPS in the thermodynamic limit, we can
compute the SRE by introducing the transfer matrix

t = Â
a

B(n)a ⌦ B(n)a

= Â
a

(Ba)⌦2n.
(10.6)

Here, we recall that B(n)a is the local tensor of |P(n)(y)i, which is site independent
for TI MPS. The transfer matrix t is identical to the one introduced in Ref. [25],
however the local tensors that build t differ. In particular, with our approach, the
transfer matrix can be viewed as an MPO with physical dimension c2 and constant
bond dimension of 4, i.e., the MPO satisfies an area law. The calculation of the SRE is
then reduced to the computation of the dominant eigenvalue of t. This can be done
by approximating the dominant eigenvector |Li as an MPS, and performing power
iteration or Lanczos algorithm by repeated MPO-MPS multiplication.

10.3 Generalization to Matrix Product Operator

The technique presented above can be straightforwardly adapted to matrix prod-
uct operators (MPO), which represent mixed states. We consider a density matrix O
of N qubits represented in the following MPO form:

O = Â
s,s0

Us1,s01
1 Us2,s02

2 · · · UsN ,s0N
N |s1, · · · , sNihs01, · · · , s0N | (10.7)
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FIGURE 10.2: (a) The first and (b) second derivative of the SRE den-
sity m2 = M2/N in the ground states of the quantum Ising chain as a

function of the transverse field h.

with Usi ,s0i
i being c⇥ c matrices, except at the left (right) boundary where Us1,s01 (or

UsN ,s0N ) is a 1⇥ c (c⇥ 1) row (column) vector.
The Pauli vector |P(O)i can be obtained in a similar way as in MPS, namely

|P(O)i = Â
↵

Va1
1 Va2

2 · · · VaN
N |a1, · · · , aNi (10.8)

where Vai
i = Âa,bha|Pai |biU

a,b
i /
p

2 are c⇥ c matrices. The procedure above can be
seen as MPO version of the method recently discussed in Ref. [185] to obtain Pauli
vector representation from the full density matrix. Notice that, unlike in the MPS
case, in this case the bond dimension remains the same. Indeed, the transformation
above is simply a local basis transformation from the computational basis to the
Pauli basis. Note also that the norm of |P(O)i is Tr

⇥
O2⇤, which is generally different

from 1. Using |P(O)i, one can compute the SRE in the same way as in the MPS case.
However, we note that the SRE is only faithful for pure states. Nevertheless, we
expect that this technique could be useful, e.g., to compute the mana [17, 120, 186],
which is a good nonstabilizerness measure for mixed states.

10.4 Bell magic

Next, we consider Bell magic [25], that has recently been experimentally mea-
sured in Ref. [7]. To compute Bell magic, we first evaluate the self-convolution of
|P(2)(y)i:

|Q(y)i = Â
a1,a2,··· ,aN

Ca1
1 Ca2

2 · · · CaN
N |a1, · · · , aNi (10.9)

where Cai
i = Âb,g db�g,ai B

(2)b
i ⌦ B(2)g

i . The MPS |Q(y)i, which has physical dimen-
sion 4 and exact bond dimension c8, stores the probability distribution that can be
obtained by Bell difference sampling [20]. As before, we can compress |Q(y)i to
keep the computational cost manageable. Its tensor network representation is shown
in Fig. 10.3. Then, the additive Bell magic is given by

Ba = � log hQ(y)|L⌦L⌦ · · ·⌦L|Q(y)i (10.10)

where ha0|L|ai= 1 if [Pa, Pa0 ] = 0 and ha0|L|ai=�1 otherwise.
We have benchmarked the additive Bell magic calculations in the Ising and XXZ

chains, where we find similar behavior to that of the SRE in both cases. Furthermore,
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(b)(a)

FIGURE 10.3: Tensor network representation of Bell magic.
.

we computed Bell magic in a state prepared by a quantum circuit recently realized
in Ref. [7], shown in Fig. 10.1 (d). We verify that the additive Bell magic increases as
a function of the number of CCZ gates applied.

10.5 Stabilizer nullity and stabilizer group

Here, we show that stabilizer nullity [34] can be calculated using MPS in the Pauli
basis. The key insight is that stabilizer nullity can be expressed as a particular limit
of the SRE 4:

n = lim
n!•

(n� 1)Mn. (10.11)

This is evident from the definition of SRE, where taking the limit n!• effectively
eliminates all Pauli strings except those for which hy|P↵|yi= ±1, i.e., those within
the stabilizer group Stab(y).

Algorithm 2 Stabilizer nullity via Pauli-MPS

Input: Pauli vector |P(y)i and threshold e
Output: Stabilizer nullity n

1: |P0i |P(y)i
2: T0 k|P0ik
3: k 1
4: repeat
5: |Pk�1i |Pk�1i/Tk�1
6: Wk diag(|Pk�1i)
7: |Pki Wk|Pk�1i
8: Tk k|Pkik
9: k k + 1

10: until |1� Tk/Tk�1| e
11: n N + 2 log2 Tk.

From Eq. (10.11) and Eq. (10.5), we see that the nullity can be obtained by ap-
plying W repeatedly to |P(y)i. Furthermore, one can apply the trick employed in
the exponential tensor renormalization group [187] to reach the large n limit ex-
ponentially faster. The idea is to iteratively construct a new diagonal MPO Wk
after each iteration, based on the current MPS |Pki. We monitor the MPS norm
Tk = k|Pkik=

p
hPk|Pki, which is related to the nullity by n = limk!• N + 2 log2 Tk,

4We stress however that, unlike the SRE, stabilizer nullity satisfies strong monotonicity. Indeed,
while Ref. [23] proves that the SRE is not a strong monotone for any finite index n, their argument does
not extend to the limit n! •.
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and convergence is achieved when the change in Tk falls below a threshold e. The
scheme is summarized in Algorithm 2. The final MPS is the fixed point |G(y)iwhich
satisfies W•|G(y)i=

p
2n�N |G(y)i 5.

The rate of convergence of the algorithm is determined by the “magic gap” [188],
defined as

MG(|yi) = 1� max
↵,hy|P↵|yi6=±1

|hy|P↵|yi|, (10.12)

through the following upper bound [189]

|nk � n|  3 log2

h
1 + (1�MG(|yi)2k+1�22n)

i
. (10.13)

Here, nk is the approximate nullity obtained if the algorithm is terminated at the k-th
iteration. One can verify that

nk = log2

(

Â
↵

|hy|P↵|yi|2k+1

2N

)
� 2 log2

(

Â
↵

|hy|P↵|yi|2k

2N

)
. (10.14)

Based on the upper bound in Eq. (10.13), approximating the nullity with a fixed
error requires k = O

⇣
log2

n
� log2[1�MG(|yi)]

⌘
iterations. It can also be shown that nk

monotonically increases with k:

nk+1 � nk =

 
log2

(

Â
↵

|hy|P↵|yi|2k+2

2N

)
� 2 log2

(

Â
↵

|hy|P↵|yi|2k+1

2N

)!

�
 

log2

(

Â
↵

|hy|P↵|yi|2k+1

2N

)
� 2 log2

(

Â
↵

|hy|P↵|yi|2k

2N

)!

= log2

(

Â
↵

|hy|P↵|yi|2k+2

2N

)
+ 2 log2

(

Â
↵

|hy|P↵|yi|2k

2N

)
� 3 log2

(

Â
↵

|hy|P↵|yi|2k+1

2N

)

= log2

8
><

>:

⇣
Â↵ |hy|P↵|yi|2k+2

⌘ ⇣
Â↵ |hy|P↵|yi|2k

⌘2

�
Â↵ |hy|P↵|yi|2k+1�3

9
>=

>;

� 0.
(10.15)

The last line follows by applying Hölder’s inequality to the term inside the logarithm
in the second-to-last line. Consequently, nk provides a rigorous lower bound to the
nullity for each k.

Thus, the time complexity of the algorithm is O
�

N log(n)c4
max

�
, where cmax is the

maximum bond dimension across iterations 6. The linear scaling with N surpasses
existing methods utilizing Bell difference sampling [35, 36], that can be applied di-
rectly to an MPS through perfect Pauli sampling [23, 27] with cost O

�
N3 + N2c3�.

Our algorithm thus establishes a new state-of-the-art for states efficiently repre-
sented by MPS.

5One can see |G(y)i as the Pauli vector of r(•), whose Pauli expectation values are 1 if
hy|P↵|yi= ±1, and 0 otherwise. r(•) is thus a (normalized) projector onto the stabilizer group of
|yi.

6Our numerical data consistently show that the bond dimension is non-increasing after each itera-
tions, although we were not able to provide a proof. This also implies that cmax never exceeds c2.
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FIGURE 10.4: We show � log2 k|Pkik at iteration k in the outputs of
random Clifford circuits with NT = N/2 number of T gates and cir-
cuit depth (a) D = N/4 and (b) D = 10. After sufficiently many itera-
tions, � log2 k|Pkik flows to (N� n)/2, denoted by the dashed lines

for each system with the same color.
.

The information about the stabilizer group of |yi can be extracted from |G(y)i,
since we have

h↵|G(y)i =

(p
2n�N , if P↵|yi = ±|yi

0, otherwise .
(10.16)

The unsigned generators of the stabilizer group can be extracted using perfect MPS
sampling [190] on |G(y)i. The protocol is equivalent to learning a stabilizer state
by Bell sampling [101], which can be done efficiently in O

�
N3� time. Once all the

unsigned generators are found, the signs of the generators can be extracted from
|P(y)i. In this way, the generators of the stabilizer group can be determined in
O
�

N2(N � n) + N(N � n)c2
G
�

time, where cG is the bond dimension of |G(y)i.
To benchmark our algorithm, we consider T-doped states |+i⌦N�NT |Ti⌦NT , for

|+i= |0i+|1ip
2

and |Ti= T|+i. Notably, for product states, the MPS |Pki for each k
remains a product state, allowing for highly efficient nullity computation. We then
apply a random Clifford circuit of depth D, which preserves the nullity n = NT. The
Clifford gates are drawn randomly from the set {S, H, CNOT, CZ} in each layer. The
two-qubit gates are applied only to nearest-neighbors. Fig. 10.4 (a) shows conver-
gence of� log2 k|Pkik for D = N/4 and NT = N/2, which according to the algorithm
above should flow to N�n

2 as k!•. For this calculation, we imposed a fixed trunca-
tion error threshold e = 10�6. For N = 80, the bond dimension of |yi reaches c = 32,
while cP reaches cP = 1024. We see that convergence occurs rapidly (within 10 iter-
ations) in all cases. For shallow circuits with constant depth D = 10, we were able
to perform simulations up to N = 1048576 (220), as shown in Fig. 10.4 (b). Here,
the maximum bond dimension of |yi is c = 16. We have verified that the compu-
tational time approximately grows linearly with N. The total CPU time was 1.5
days for N = 1048576 with 10 iterations 7. This demonstration represents a signifi-
cant leap forward by orders of magnitude in computing genuine nonstabilizerness
monotones, compared to the previous attempts [185, 191] limited to O(10) qubits.
These results would also be extremely challenging to reproduce using approaches
based on Bell sampling [35, 36], due to its unfavorable scaling with system size.

7The initial iterations, where the bond dimensions are the largest, require the most computational
resources. The bond dimensions grow smaller with each iteration, resulting in significantly faster
computations in the subsequent iterations.
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10.5.1 Learning states prepared with few non-Clifford gates

Learning the stabilizer group of a state has previously been used as a first step to
learn the full description of states prepared with few non-Clifford gates [35, 36, 192],
i.e., states with small n. In this section, we detail how to perform this task within our
MPS framework.

Let |yi be a pure state of N qubits whose stabilizer group is generated by m Pauli
strings sjP↵j for j = 1, 2, · · · , m and sj = ±1. We will make use of the algebraic
structure of T-doped stabilizer states [192]:

|yihy| =
1

2N

l

Â
i=0
hy|P�i |yiP�i

m

’
j=1

(I + sjP↵j), (10.17)

where P�i for i = 0, 1, · · · , l are referred to as the bad generators, and P�0 = I.
Therefore, to fully characterize the state |yi, it is sufficient to learn its stabilizer group
and the bad generators. In the main text, we have detailed how to learn the stabilizer
group from |G(y)i obtained from Algorithm 2. The next step is to learn the l bad
generators. One possible approach involves constructing a Clifford circuit C such
that C|yi = |fi ⌦ |xi, where |fi is a state of n qubits and |xi is a computational basis
state of N� n qubits [193]. The bad generators can then be learned directly from the
Pauli vector of |fi. However, applying a Clifford ciruit to an MPS in general leads
to a significant increase in the bond dimension of the MPS. It is thus preferable to
perform the task in a way that avoids explicit application of a Clifford circuit.

We achieve this by iteratively extracting the bad generators with large expectation
values. First, we project out the stabilizer group from the Pauli vector: |P0(y)i =
|P(y)i �

p
2N�nW•|P(y)i. Then, we repeat Algorithm 2 to obtain a fixed point

|G(2)(y)i encoding a union of left disjoint cosets P�1Stab(y)[ · · ·[ P�l2
Stab(y). The

Pauli strings P�1 , · · · , P�l2
are those with the second-largest expectation values (in

magnitude) in the Pauli spectrum of |yi. This process repeats, each time project-
ing out previously found bad generators and using Algorithm 2 to identify the next
cosets of Pauli strings with large expectation values. The procedure stops when the
Pauli vector is finally empty. In the end, we will have a set of fixed points |G(n)(y)i,
each encoding the bad generators with the n-th largest expectation values (in mag-
nitude) in the Pauli spectrum of |yi. Then, similarly as the stabilizer generators, the
bad generators can be learned using perfect MPS sampling on each |G(n)(y)i. The
total time complexity to obtain the fixed points is O

�
lN log(n)c4

max
�
. Importantly,

this allows us to directly access the full content of the Pauli spectrum. Learning the
generators themselves then takes O

�
l
⇥
N2(N � n) + N(N � n)c2

G
⇤�

. Since l < 4n,
our algorithm learns the generators of the state efficiently for n = O(log N).

Note that, while the MPS form itself is already an efficient classical description of
a state, the description in terms of the stabilizer group could be useful, e.g., for sim-
ulating Clifford circuits. Furthermore, with the knowledge of the stabilizer group,
one can construct a symmetric MPS in the Pauli basis, potentially leading to efficient
MPS simulations of Clifford circuits.

10.6 Conclusions

We have proposed a new MPS framework in the Pauli basis in order to inves-
tigate nonstabilizerness in quantum many-body systems. We discuss how several
measures of nonstabilizerness, including the SREs, stabilizer nullity, and Bell magic
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can be efficiently approximated within our approach, and we demonstrated its use-
fulness in several scenarios, from ground states of spin chains to quantum circuits.

In terms of future investigations, it would be interesting if our MPS approach
could facilitate analytical treatment of the SRE by exploiting its simple representa-
tion as a two-dimensional tensor network. Furthermore, we expect that our method
would be useful to understand the role of nonstabilizerness in hybrid quantum cir-
cuits, a topic explored in recent works [194, 195]. Notably, our method allows for
the efficient computation of stabilizer nullity, which is a strong monotone, and is
thus suitable to characterize nonstabilizerness in such scenarios. Finally, it would be
fascinating to explore the applicability of our framework to compute nonstabilizer-
ness measures that require optimization, such as the stabilizer fidelity [196] and the
robustness of magic [18].
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Chapter 11

Magic transition in
measurement-only circuits

Despite its crucial role in achieving quantum advantage, little is known about
magic transitions in monitored random quantum circuits. Recent studies have pro-
vided evidence for the existence of magic transitions in different contexts [108, 194,
195, 197]. In particular, Refs [194, 195] investigated magic transitions in the context of
monitored Clifford circuits doped by T gates. We recall that Clifford gates along with
the T gate form a universal gate set for quantum computation. Thus, such T-doped
Clifford circuits interpolate between classically simulable and universal circuits, and
the above works found that the two limits are separated by a transition in magic. In
Ref. [194], Bejan et al computed the magic using Pauli-based computation [198] that
essentially maps the quantum dynamics to a magic state register subject to mutu-
ally commuting measurements. They found cases where magic and entanglement
transitions coincide, but also others with a magic transition in a volume-law entan-
gled phase. Instead in Ref. [195], Fux et al studied both magic and entanglement
transition using matrix product states (MPS) simulations, providing evidence that a
transition in magic can occur independently of one in entanglement. However, both
studies have some limitations. Ref. [194] only computed a proxy of magic which
can increase under Clifford operations, while the results presented in [195] may suf-
fer systematic errors due to MPS truncation. As such, a proper characterization of
magic transition using a true measure of magic remains an outstanding challenge.

Investigating magic transitions in quantum circuits presents significant challenges
compared to entanglement transitions. While large-scale simulations of entangle-
ment transitions often rely on efficiently simulable Clifford circuits, these circuits
are inherently incapable of hosting magic transitions. In this paper, we introduce
and study the magic in a measurement-only circuit consisting of Clifford and non-
Clifford measurements, depicted in Fig. 11.1. Here, differently from previous stud-
ies, magic is injected through the non-Clifford measurements. We show that the
magic dynamics in this circuit is efficiently simulable, employing any measure of
magic that is additive for all tensor products of single-qubit states. This allows us to
perform large-scale simulations to study the magic transition in this circuit, which
can be viewed as a result of the competition between Clifford and non-Clifford mea-
surements.

The study of entanglement transitions has benefited significantly from the con-
struction of linear combinations of entanglement measures [199–203]. Motivated by
this success, we initiate a parallel investigation in the context of magic. We analyze
the mutual magic and topological magic, which will be defined according to some
partitioning of the system (see Fig. 11.2(b)). Quantifying magic in mixed states,
which arise when considering subsystems, is notoriously difficult compared to pure
states. For qubits, there are currently no known computable measures for mixed
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states. Despite the general difficulty, we can demonstrate that in our specific setup,
the magic of subsystems exhibits a simplified form, allowing us to leverage existing,
robust measures of magic.

With constant density of non-Clifford measurements per time step, our results
demonstrate that the magic scales extensively with no distinctive features near the
percolation critical point. However, mutual magic serves as a clear indicator of the
transition, showcasing a distinct peak at the critical point. Specifically, it displays
a logarithmic divergence with system size in one dimension and an area-law scal-
ing in two dimension, analogous to entanglement entropy. Further analysis using
topological magic enables precise finite-size scaling, allowing us to extract critical
exponents which are found to match the bond percolation values. On the other
hand, with vanishing non-Clifford measurement rate, we found that the magic satu-
rates to a constant, in agreement with previous studies. Finally, we discuss a specific
scenario where the dynamics of mutual magic is exactly identical to the entangle-
ment dynamics. Overall, our work provides a genuine understanding of the non-
trivial dynamics of magic and its linear combinations, which importantly utilizes
true measures of magic.

The rest of the chapter is structured as follows. In Sec. 4.1, we introduce the quan-
tum circuit with Clifford and non-Clifford measurements. In Sec. 11.2, we present a
classical simulation of the circuit. In Sec. 11.3, we discuss the magic properties of the
circuit and introduce mutual magic and topological magic. In Sec. 11.4, we present
our numerical results in both one- and two-dimensional lattices. In Sec. 11.5, we
briefly comment on the connection to the participation entropy and then conclude
in Sec. 11.6.

11.1 Model

Consider a system with spin-1/2 degrees of freedom in every site i. Each spin is
represented by Pauli matrices sa

i with a = {x, y, z}. The quantum circuit is defined
by projective measurements of observables O, and the action of such a measurement
is given by

M[O]|yi =
Pl|yip
hy|Pl|yi

, (11.1)

which is the post-measurement state after measurement of the discrete eigenvalue
l of O with probability Pr(l) = hy|Pl|yi. Here, Pl denotes the projector onto the
corresponding eigenspace. We are interested in measurements of the observables
s̃x

i (q) = e�iq/2sz
i sx

i eiq/2sz
i and sz

i sz
i+1. The angle q, which can vary in space and time,

will play an important role on the behavior of magic, as discussed further below.
The eigenvectors of s̃x

i (q) are |±qi = |0i± eiq |1i. The projectors associated with the
two measurements are

Ps̃x

l =
1
2

(1 + ls̃x) (11.2)

Psz
i sz

i+1
l =

1
2
�
1 + lsz

i sz
i+1

�
, (11.3)

with the set of outcomes l 2 {+1,�1}. Each time step comprises one row of Mzz
measurements followed by a row of Mx measurements. Each edge e = (i, i + 1) is
measured by the observable sz

i sz
i+1 with probability 1� p and each site i is measured

by the observable s̃x
i (q) with probability p (see Fig. 11.1 (a)). Given the state |y(t)i
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(b) 

t 

(a) 

FIGURE 11.1: Measurement-only quantum circuit with two types
of competing measurements in (a) one-dimensional and (b) two-
dimensional lattices. Gray boxes on edges denote measurements Mzz
on adjacent spins and violet circles denote measurements Mx on a
single spin. Each time step comprises one row of Mzz measurements

followed by a row of Mx measurements.

at time t, the new wave function at t + 1 is given by

|y(t + 1)i = Mx Mzz|y(t)i (11.4)

with measurements
Mx = ’

i
Mx

i Mzz = ’
i

Mzz
i . (11.5)

For any realization of such a circuit there is an ensemble of quantum trajectories
of pure states, where each trajectory is labeled by the sequence of measurement out-
comes. We are interested in the long time limit of magic averaged over both quantum
circuit realizations and quantum trajectories.

11.2 Classical simulation

For the circuit described above, it can be shown that the state of the system can
always be described as a tensor product of “rotated Bell clusters” (RBCs) defined as
states that can be written as

|mi+ eiq |mi , (11.6)
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where m = ’i sx
i m, as depicted in Fig. 11.1(b). To see this, let us consider the

example of two-qubit:

• Measuring s̃x
1 (q) in the two-qubit RBC

|00i+ eij |11i
=(|+q0i+ ei(j�q) |+q1i) + (|�q0i � ei(j�q) |�q1i)

(11.7)

yields either |+qi ⌦ (|0i + ei(j�q) |1i) or |�qi ⌦ (|0i � ei(j�q) |1i) with equal
probability. Notice that all the states are RBCs. The number of clusters in the
state is increased by one.

• Measuring sz
1 sz

2 in the product state

(|0i+ eij1 |1i)⌦ (|0i+ eij2 |1i)
=(|00i+ ei(j1+j2) |11i) + (eij2 |01i+ eij1 |10i)

(11.8)

yields either |00i+ ei(j1+j2) |11i or |01i+ ei(j1�j2) |10i with equal probability.
Notice that all the states are again RBCs. This process can be seen as a merging
of RBCs.

Generalization to higher number of qubits is straightforward.
Consequently, the circuit can be efficiently simulated by a classical stochastic pro-

cess. The state of the system is characterized by vectors s 2 NL
0 and b 2 ZL

2 . The
nonnegative integer si 2 N0 encodes that site i belongs to an RBC with label si.
Moreover, an RBC labeled by n is associated with a phase pn. Let An = {qi} be the
set of sites that belongs to the RBC n. The state of the RBC reads

|biii2An
+ eipn

���bi

E

i2An
(11.9)

Since the state is simply a product states of RBCs, the vectors s 2 NL
0 , b 2 ZL

2 and the
phase pn for each RBC completely specify the state. Moreover, they can be updated
very efficiently, as we shall discuss in detail below.

We will provide the update rule for the two types of measurements. Here, sites
that are not mentioned remain unchanged.

• Measurement of s̃x
i (q). The outcome is l = ±1 with equal probability. Set

s0i := next(s). Here, next(s) = min(n 2 N0 \ s) returns the smallest integer
that is not currently used as a cluster label in s. Set b0i = 0, p0si

= ps0i
� (�1)bi q +

dl,�1p, and p0s0i = q + dl,�1p.

• Measurement of sz
i sz

j . The outcome is l = ±1 with equal probability. Set s0l = si
for all sites l with sl = sj. There are two cases:

– l = 1� 2bi � bj. Set p0si
= psi + psj .

– l = 2bi� bj� 1. Set b0l = 1� bl for all sites l with sl = sj. Set p0si
= psi � psj .

Notice that the dynamics of the the vectors s and b are not affected by the angles
q. Thus, they are identical also to the stabilizer case when all q = 0, whose entan-
glement transition has been studied in Ref. [204] (see also [205]). Setting nonzero
q is however crucial to induce nontrivial magic dynamics. In the following, we
perform the simulation of the circuit using the update rules above. We have also
benchmarked our results numerically against MPS simulations [25, 26].
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OBC 

Rotated Bell Cluster 

PBC (b) 

(a) 

FIGURE 11.2: (a) Sketch of rotated Bell cluster. (b) Schematics of par-
titions: in the left part we show the partition for an open chain for
the calculation of topological magic in Eq. (11.13). In the right part
we show the partition for periodic boundary condition for the calcu-

lation of mutual magic in Eq. (11.11).

11.3 Magic measures

The fact that the states at each time step are composed of RBCs offers a significant
advantage for quantifying magic. To see this, consider an RBC with size LB. We can
define a Clifford unitary consisting of CNOT operations

C = CNOT1,2CNOT2,3 . . . CNOTLB�1,LB . (11.10)

Applying C to the RBC |yi = |bi + eiq
���b
E

results in the state C |yi = (|b0i +
eiq |1� b0i) ⌦ |c2i ⌦ · · · ⌦ |cLBi, where ck = bk�1 � bh. In other words, RBCs can
be transformed to a product state of a single-qubit magic state and stabilizer states
by applying Clifford unitaries. This observation is crucial because magic measures
must be invariant under Clifford unitaries and composition with stabilizer states
[17]. It follows that the magic within the original circuit can be determined solely by
considering the tensor product of these single-qubit magic states. This significantly
simplifies the task of calculating magic in such circuits.

Our analysis extends to investigating the magic of subsystems rA = TrAc [|yihy|],
where Ac is the complement of A. The key point is that partially tracing an RBC
yields a classical mixture of two computational basis states, irrespective of its phase.
Therefore, the reduced density matrix has the form of a tensor product of pure RBCs
and classical mixtures. Since such a classical mixture is a mixed stabilizer state, the
magic of rA can again be reduced to the magic of tensor-product of single-qubit pure
magic states.

The above observations pave the way for efficient magic calculations in these cir-
cuits. Since the magic of the entire system boils down to the magic of single-qubit
pure magic states in a tensor product structure, we can leverage magic measures that
exhibit a key property: additivity for all tensor products of single-qubit states. Such
measures exist [19, 34, 196, 206, 207], including those whose original definitions in-
volve minimization procedures, and are thus generally difficult to compute beyond
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a few qubits. Importantly, this includes bona fide, strong measures of magic for both
pure states and mixed states, such as the relative entropy of magic [17]. Hereafter,
we will use M to denote any measure of magic that is additive for all tensor prod-
ucts of single-qubit states. For any M, the magic of the full state is simply given by
the total sum of the magic of individual RBCs, measured by M.

For a magic measure M, we will consider the “mutual magic”, defined in a sub-
system A as

IM(A) = M(|yi)�M(rA)�M(rAc). (11.11)

We will use the notation IM(`) to denote the case A = {1, ..., `}. This quantity can be
viewed as the amount of magic that resides in the correlations between subsystems.
A similar quantity has been studied previously in the context of mana [50, 181] and
SRE [28, 33, 119], where it was shown that such mutual-information-like quantity is
able to detect the transition when the full-state magic does not show any features at
the transition.

In terms of RBCs, IM(A) is given by the sum of the magic of RBCs with support
both in A and Ac. This interpretation offers a physical picture of mutual magic as
entanglement modulo stabilizer contributions. In particular, it immediately follows
that it is upper bounded by the entanglement entropy 1:

IM(A)  S(A). (11.12)

Finally, in order to distinguish the magic content between different phases, we
will consider the topological magic defined as

Mt
topo = M(rABC) + M(rB)�M(rAB)�M(rBC), (11.13)

for systems with open boundary condition. Here, the system is divided into three
non-overlapping parts A, B, and C. Such linear combination was first introduced in
the context of entanglement by the name of “generalized topological entanglement
entropy” [208, 209] to probe symmetry-breaking orders. The latter has also been con-
sidered in the context of measurement-induced entanglement transition [200, 202].
In our setup, Mt

topo is given by the sum of the magic of RBCs with support in A, B
and C.

11.4 Numerical results

11.4.1 Magic in (1+1)D circuits

We will focus on the case of fixed q = p/4. In this case, the possible phases of the
RBCs become restricted to multiples p/4. If the phase is a mutiple of p/2, the state
is a stabilizer state. If it is not, then it is equivalent to the canonical T state, up to a
Clifford unitary. We will denote the magic of a T state as MT. Applying the update
rule in Sec. 11.2, one can see that any RBC of even size is a stabilizer state, while
an RBC of odd size has the magic equal to MT. This simplification allows for faster
simulations by solely tracking the parity of the sizes of the RBCs.

We now present our numerical results. We start with the initial product state
|y(0)i = |+qi⌦L and run the circuit for 2L time steps for the system to reach the
steady state. We then average the quantities of interest over 104 � 105 trajectories.
We show the magic and the mutual magic in Fig. 11.3 as a function of p for systems

1Here, we assume that M is upper bounded by one for single-qubit states, which is typically the
case (or can be made so after rescaling).



Chapter 11. Magic transition in measurement-only circuits 170

0.0 0.5 1.0
p

0.00

0.25

0.50

0.75

1.00
M

/M
T

L

(a)

L = 128

L = 256

L = 512

L = 1024

L = 2048

0.0 0.5 1.0
p

0.00

0.25

0.50

0.75

1.00

I M
(L

/2
)/

M
T

(b)

L = 128

L = 256

L = 512

L = 1024

L = 2048

FIGURE 11.3: (a) Magic density M/MT
L and (b) mutual magic of half

subsystem IM(L/2)/MT with periodic boundary condition.

with periodic boundary condition. Here, we only consider even L, such that M
vanishes for p = 0 as the state is a global (stabilizer) Bell cluster. If L is odd, the
state becomes a global RBC, whose magic is M = MT. For p = 1, the state is
a tensor product of T states, such that the magic is given by M/L = MT. Our
numerical results show that the magic scales extensively at any nonzero p, as shown
in Fig. 11.3(a). However, around the percolation transition at pc = 0.5 [210], the
magic appears rather featureless. Instead, the transition is clearly identified using
the mutual magic, which appears to diverge with L (see Fig. 11.3(b)). This behavior
is reminiscent of entanglement entropy, which grows logarithmically at pc = 0.5 [63,
204, 211]:

S(`) =
c̃
3

log2


L
p

sin
⇣
`

p

L

⌘�
+ g, (11.14)

where c̃ = 3
p

3 ln(2)/(2p) ⇡ 0.573, and g is a non-universal constant. We thus
postulate that the mutual magic follows similar scaling:

IM(`) =
c̃M
3

log2


L
p

sin
⇣
`

p

L

⌘�
+ g0. (11.15)

We show the scaling of IM(`)� IM(L/2) at pc in Fig. 11.4(a), which confirms the hy-
pothesis in Eq. (11.15). Indeed, we observe that IM(`)� IM(L/2) ⇡ c̃M

3 log2
⇥
sin

�
`p

L
�⇤

,
where c̃M ⇡MTc̃/2.

We further investigate the magic growth with time, particularly at the critical
point. At criticality, and for timescales significantly shorter than the saturation time,
we postulate,

IM(`, t) =
c̃M,t

3
log2 t + g00 (11.16)

where g00 is a non-universal constant. Fig. 11.4(b) shows the dynamics of IM(L/2)
as a function of time t, which supports the postulate in Eq. (11.16). Remarkably, we
find that c̃M,t = c̃M, mirroring the behavior observed for entanglement in conformal
field theories (CFTs) with dynamical exponent z = 1.

We then turn to open boundary condition and investigate the topological magic
Mt

topo. Here, we set L = 4LA = 4LC = 2LB. The results are shown in Fig. 11.5. It
is clear that Mt

topo tends to 0.5(0) for 0 < p < pc(p > pc) with increasing system
sizes. This is again reminiscent of the behavior of the generalized topological entan-
glement entropy; however, the topological magic does not seem to be quantized to
an integer value. Note that, for p = 0, Mt

topo vanishes since the magic itself vanishes
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The black line denotes a linear fit.
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FIGURE 11.6: (a) Magic density M/MT
L and (b) mutual magic of half

subsystem IM(L/2)/MT with periodic boundary condition and q =
2/L.

(for even L). However, we found that Mt
topo ! 0.5 for any infinitesimal value of p.

This observation can be explained as follows: for p ! 0, a macroscopic Bell cluster
emerges [204], which weight have the same probability of being odd or even, on
general grounds.

We further investigate the finite-size scaling of Mt
topo, using the finite-size scaling

hypothesis:
Mt

topo = f
⇣

L1/n(p� pc)
⌘

, (11.17)

where f (x) is some unknown function, pc is the critical value of tuning parameter p,
and n is the correlation length critical exponent. We found that our numerical data
exhibits excellent data collapse with pc = 0.5 and n = 4/3, expected from 2D bond
percolation.

Let us now consider a different scenario. We introduce a parameter q, such that
the measurement of s̃x is performed at an angle q = p/4 with probability q and
q = 0 (Clifford measurement) with probability 1� q. Note that the previous scenario
corresponds to q = 1. To mimic previous studies [194, 195] where non-Clifford
operations occur at a vanishing rate, we set q = 2/L. The magic behavior is shown
in Fig. 11.6. In contrast to the previous case, the magic no longer exhibits extensive
scaling with system size. Instead, it saturates to a constant value. This observation
confirms the existence of such O(1) magic phase that emerges when non-Clifford
operations are introduced at a vanishing rate. In this case, the mutual magic appears
to play the role of an order parameter, being zero for p > pc and nonzero for p < pc.

11.4.2 Magic in (2+1)D circuits

We extend our analysis to a 2D square lattice, where the model exhibits a con-
nection to three-dimensional bond percolation on the cubic lattice with a critical rate
pc ⇡ 0.75, as numerically determined in Ref. [212]. We will again consider the sce-
nario of fixed q = p/4. Employing a simulation procedure similar to the 1D case, we
simulate systems of size N = L⇥ L with periodic boundary conditions, and we run
the circuit for L time steps to reach the steady state. Fig. 11.7 displays the behavior
of magic and mutual magic (IM(`x ⇥ `y) for a region of size `x ⇥ `y) as a function of
the parameter p. Similar to the 1D scenario, magic remains featureless while mutual
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magic captures the transition at p = pc. However, in the 2D case, the mutual magic
exhibits area-law scaling at the critical point, as shown in Fig. 11.8. This is again
consistent with the behavior of entanglement.

Setting q = 2/N, we again observe a similar behavior as in the 1D case. The
magic and mutual magic are shown in Fig. 11.9. While the total magic saturates to a
constant value, the mutual magic emerges as a clear order parameter, signaling the
phase transition.

11.4.3 Random q

We now discuss the case when the angles q are chosen uniformly at random in the
interval [0, 2p), both in space and time. We will show that the dynamics of mutual
magic can be tuned to be identical to the entanglement.

To this end, we will focus on a specific measure of magic called the stabilizer
nullity [34]. It is simply related to the size of the stabilizer group Stab(y), which is
the group of Pauli strings that stabilize |yi. The stabilizer nullity is defined as [34]

n(|yi) = N � log2 (|Stab(y)|) . (11.18)
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FIGURE 11.9: (a) Magic density M/MT
L and (b) mutual magic of half

subsystem IM(L/2)/MT on 2D square lattice with periodic bound-
ary conditions and q = 2/N.

It is known that n is a strong magic monotone, which is also additive under tensor
product.

Stabilizer nullity has only been formally defined for pure states. To analyze the
mutual magic, we would need to extend it to mixed states. One possible extension
is by using the convex roof construction:

n(r) = min
{pi ,|yii}

Â
i

pin(|yii), (11.19)

where the minimum is taken over all possible convex pure-state decompositions of
r: r = Âi pi |yii hyi|. Note that, the particular extension is not relevant, as long as it
is invariant under composition with stabilizer states (see Sec. 11.3). The convex roof
construction is convenient as it satisfies such condition.

A peculiar property of stabilizer nullity is that it can only take integer values. In
particular, for a single-qubit state, it is zero for the single-qubit stabilizer states, and
one otherwise. In terms of the RBCs, it is zero for an RBC with phase q = kp/2 with
integer k, and one otherwise. With randomly chosen q, the probability of encounter-
ing an RBC as a stabilizer state is essentially zero. This implies that any RBC that has
support in both A and Ac will contribute one to the mutual nullity In(A), that is ex-
actly the same procedure to compute entanglement entropy [204]. We thus conclude
that the mutual nullity in this setup is identical to the entanglement, as claimed.

11.5 Connection to participation entropy

While this work focuses on the magic transition, we find it insightful to explore
the connection with participation (Shannon) entropy, defined as

Spart(|yi) = Â
s

�|hs|yi|2 log2 |hs|yi|2. (11.20)

This quantity measures the spread of the wavefunction across different computa-
tional basis states. In our setup, one can see that it simply counts the total number
of RBCs. This observation allows us to establish an inequality (that holds in our
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circuit):
M  Spart(|yi). (11.21)

Therefore, like magic, the participation entropy is extensive at any nonzero p [213].
Note that the inequality is saturated in the case of random q (see Sec. 11.4.3).

For reduced density matrix rA, the participation entropy is defined as

Spart(rA) = Â
sA

�hsA|rA|sAi log2hsA|rA|sAi, (11.22)

i.e., it is the Shannon entropy of the diagonal elements of rA. We can consider the
Shannon mutual information [114]:

IS(A) = Spart(rA) + Spart(rAc)� Spart(|yi). (11.23)

Previous studies have shown that it exhibits a scaling behavior similar to entangle-
ment entropy [114–118]. In our specific case, it is straightforward to see that the
Shannon mutual information is exactly equal to the entanglement. This model thus
provides an interesting example where the entanglement and Shannon mutual infor-
mation exhibit the same scaling behavior, which can be understood on a microscopic
level.

While the dynamics of entanglement and Shannon mutual information are not
affected by the angles of s̃x, we have seen in Sec. 11.4 that the dynamics of magic
highly depends on them. By adjusting these angles (and potentially using different
measures), we can manipulate the prefactor of the logarithmic scaling observed in
the mutual magic, while the prefactors for entanglement and Shannon mutual infor-
mation remain fixed. This highlights a significant distinction in how magic behaves
compared to the other two resource quantities.

11.6 Conclusions and outlook

In this work, we have introduced a measurement-only circuit which exhibits non-
trivial magic dynamics. Notably, we show that, although the circuit is tuned away
from the Clifford limit, it remains efficiently simulable through a mapping to a clas-
sical stochastic model. This allows for large-scale numerical simulations, revealing a
competition between Clifford and non-Clifford measurements driving a magic tran-
sition between two distinct phases in which magic scales extensively with volume.
These two phases can be distinguished from the topological magic, which takes a
constant nonzero value for p < pc, but vanishes for p > pc. Furthermore, the mu-
tual magic exhibits divergence at p = pc, with logarithmic scaling in 1D and area-law
scaling in 2D, similar to entanglement entropy. In the 1D case, this behavior aligns
with the previous observation in (1+1)D CFT [181]. Our results highlight the intrigu-
ing behavior of specific linear combinations of magic (that draws inspiration from
entanglement), motivating further exploration in generic models.

Interestingly, magic appears to exhibit distinct behavior compared to entangle-
ment and participation entropy, as the latter two are completely independent of the
angles of s̃x. This raises general questions about the relationship between various
quantum resources [111, 112, 214] in a broader class of circuits.

Let us note that, unlike previous studies [194, 195], we find that the magic and
entanglement transitions coincide. Future investigations could explore modifica-
tions, such as correlated monitoring [194], to potentially separate these transitions.
Moreover, our approach readily extends to simulating magic in symmetry-protected
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topological phases [200] and toric code phases [201]. This opens exciting avenues to
explore the role of topology on magic dynamics.
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Chapter 12

Quantifying nonstabilizerness
through entanglement spectrum
flatness

In this chapter, we establish a deep connection between the SRE and the flat-
ness of the entanglement spectrum associated to a subsystem density operator. At
the conceptual level, this connection shows clearly how this resource is associated
with entanglement structure: nonstabilizerness is directly tied to entanglement re-
sponse, a quantum analogue of ’heat capacity’ for thermodynamic systems. At the
very same time, it opens the door for important practical applications. We present a
simple practical protocol for experimentally probing this quantity efficiently using
randomized measurement techniques.

Our main findings are summarized in Fig. 12.1. In Fig. 12.1 (a), we show the
set-up that we use to make the connection between nonstabilizerness and entan-
glement response concrete: we prepare initial states as a product states and evolve
them using random Clifford gates, followed by the measurement of the entangle-
ment spectrum flatness. We find that a state possesses nonstabilizerness if and only
if its entanglement spectrum is not flat. In the second panel (Fig. 12.1 (b)), we il-
lustrate the Clifford orbit of a pure state: its nonstabilizerness is proportional to its
average flatness over the orbit. Finally, in the third panel (Fig. 12.1 (c)), we present
an algorithm for detecting nonstabilizerness and show the probability of success as
a function of their degree of nonstabilizerness.

12.1 Stabilizer Rényi entropy and the flatness of entangle-
ment spectrum

In this section, we establish a connection between the SRE with the flatness of the
entanglement spectrum. In particular, we will show that we can quantify the non-
stabilizerness of an arbitrary pure state by taking the average of the flatness along
its Clifford orbit.

To this end, we will consider a measure of nonstabilizerness called the stabilizer
linear entropy, defined as

Mlin(|yi) = 1� d
��Xy

��2
2, (12.1)

which obeys the following properties: (i) faithfulness Mlin (|yi) = 0 iff |yi 2 STAB,
otherwise Mlin(|yi) > 0, (ii) stability under Clifford operations: 8G 2 Cn we have
that Mlin (G|yi) = Mlin (|yi) and (iii) upper bound Mlin < 1� 2 (d + 1)�1. The rela-
tionship between the second SRE M2 and the linear non-stabilizing entropy follows
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FIGURE 12.1: Summary of the results: (a) A schematic of the method
to quantify the nonstabilizerness of a pure state. We start from a prod-
uct state and then we apply random Clifford gates (both single and
two-qubit gates, see text). After NLayers, the state is fully entangled.
Checking the entanglement spectrum in any bipartition, we can dis-
tinguish whether the initial state possesses nonstabilizerness. (b) In
the upper panel, a sketch of the Clifford orbit of a pure state is shown.
In the lower panel, we show the relation between flatness FA and
nonstabilizerness, quantified by c(d, dA)Mlin. We initialize the system
as a product state |y(0)i = ⌦n

i=1|yii, where |yii = 1p
2

�
|0i+ eiq |1i

�

and n = 14, for different values of q. Then we apply several random
Clifford layers NLayers. In the limit of a very deep circuit, the ratio
approaches 1 as predicted by the theorem as shown in the inset. (c)
Algorithm to determine if a state is a stabilizer state or possesses some
nonstabilizerness. We show the pseudocode in the upper part of the
panel. In the lower part, we show the probability of catching a non-
stabilizerness. We generate product states |y(0)i = ⌦n

i=1|yii, where
|yii = 1p

2

�
|0i+ eiq |1i

�
for n = 12 qubits, and, we fix the number of

Clifford layers NLayers = 100. After performing NR = 1000 realiza-
tions, we compute the probability of success Psuc for different values
of threshold, as a function of the initial value of nonstabilizerness in

the initial state calculated using the second SRE.

easily from the equation below

M2(|yi) = � log [1�Mlin(|yi)] . (12.2)

Let us now discuss the relationship between the SRE and the flatness of the entan-
glement spectrum. Consider a pure state |yi in a bipartite system H = HA⌦HB and
its reduced density operator rA = TrB |yi hy|. The (anti-)flatness of its entanglement
spectrum is defined as

FA(|yi) := Tr
�
r3

A
�
� Tr2 �r2

A
�

(12.3)

One can easily check that FA(|yi) = 0 if the entanglement spectrum is flat, i.e. if the
spectrum la = 1/c for some integer 1  c  min (dA, dB), whereas FA (|yi) > 0
in other cases. Notice that in order for FA(|yi) 6= 0 the state must be either not
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FIGURE 12.2: Numerical simulations of shallow circuits: We pre-
pared the initial state in the volume law phase and we plot the ratio
FA/c(d, dA)Mlin as a function of number of Clifford layers NLayers of
shallow circuit. As shown in the plot, the ratio approaches 1 very fast

verifying Eq. (12.4).

entangled or without any magic. While every linear combination of different mo-
ments would be a sensible measure of (anti-)flatness, the one proposed above is the
most natural one as it is the variance of the corresponding probability distribution
according to itself: if a state s is given in its spectral resolution s = Âi pisi, then
F (s) = Var({pi}) := h(pi � hpip)2ip.

Here, we use the flatness of the entanglement spectrum to quantify or witness
nonstabilizerness of a pure state.

Theorem: The Stabilizer Linear Entropy Mlin of a pure state |yi) is proportional to the
anti-flatness of the entanglement spectrum averaged over the Clifford orbit:

hFA(G |yi)iCn = c(d, dA)Mlin(|yi) , (12.4)

where h·iCn denotes the average over the Clifford orbit G |yi and the proportionality constant
c(d, dA) ⇠ (d2 � d2

A)d�3 for large d.
Proof.— We need to compute the average of the flatness over the Clifford orbit

G |yi where G 2 Cn, i.e. hFA(G |yi)iCn
. Note that we can write

hFA(G |yi)iCn
= htr

�
r3

G,A
�
iCn
� htr2(r2

G,A)iCn
(12.5)

where rG,A = trB(G |yihy| G†). We can now use the swap trick, i.e. tr
�
O3� = tr

⇣
T(123)O⌦3

⌘

and tr2(O2) = tr
⇣

T(12)(34)O⌦4
⌘

to linearize the above averages over multiple copies
of |yi

hFA(G |yi)iCn
= tr

⇣
TA

(123) h(G |yihy| G†)⌦3iCn

⌘
(12.6)

� tr
⇣

TA
(12)(34) h(G |yihy| G†)⌦4iCn

⌘

where TA
(123) and TA

(12)(34) are permutations acting non-identically on the subsystem
A only. For the first average in the r.h.s. of Eq. (12.6), we use the fact that the Clifford
group is a 3-design [215, 216] and thus

h(G |yihy| G†)⌦3iCn
=

P(3)
sym

tr
⇣

P(3)
sym

⌘ (12.7)
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where P(3)
sym = Âp32S3

Tp3 /3! is the symmetric projector, S3 is the symmetric group
acting on 3 copies of the Hilbert space of n qubits and Tp3 are unitary representations
of permutations p3 2 S3. Therefore, the first term in Eq. (12.6) can be computed as

1

tr P(3)
sym

tr
⇣

TA
(123)P

(3)
sym

⌘
=

Âp2S3

tr P(3)
sym

trA(TA
(123)T

A
p ) trB(TB

p ) (12.8)

where we used the fact that any permutation operator Tp for p 2 S3 obey Tp =
TA

p ⌦ TB
p . For the second average of the r.h.s. of Eq. (12.6), we use the technical

results presented in [217, 218] that shows

h(G |yihy| G†)⌦4iCn
= aQP(4)

sym + bP(4)
sym (12.9)

where Q = d�2 ÂP2Pn P⌦4 and P(4)
sym is the symmetric projector on S4, defined as

P(4)
sym ⌘ Âp42S4

Tp4 /4!. Then we defined

a :=
||Xy||22

(d + 1)(d + 2)/6
� b

b :=
1� ||Xy||22

(d2 � 1)(d + 2)(d + 4)/24
(12.10)

Therefore, the second term in Eq. (12.6) can be computed as

htr2(r2
G,A)iCn

= tr
h

TA
(12)(34)(aQ + bI)P(4)

sym

i

= Â
p2S4

[a trA(TA
p TA

(12)(34)Q
A) trB(TB

p QB)

+ b trA(TA
p TA

(12)(34)) trB(TB
p )] (12.11)

where we used the fact that Q = QA ⌦ QB and QX = d�2
X ÂP2PX

P⌦4
X for X = A, B.

Notice that tr(QTp) are computed in [217] and tabulated in [219]. After a straight-
forward algebra, recalling that Mlin(|yi) = 1� d||Xy||22, one finds:

hFA(trB(G |yi hy| G†))iCn =
(d2 � d2

A)(d2
A � 1)

(d2 � 1)(d + 2)d2
A

Mlin(|yi)

⌘ c(d, dA)Mlin(|yi) (12.12)

which concludes the proof.
Notice that the above result holds true for any bipartition of the system, which

is reflected in the constant c(d, dA). We see that a pure stabilizer state possesses
a flat entanglement spectrum over all its Clifford orbit and anti-flatness is stable
under Clifford operations. Moreover, one can utilize a measurement of anti-flatness
to measure Mlin. The theorem above poses also a relationship between entanglement
and magic. Indeed, without entanglement, there is no anti-flatness in the reduced
density operator. Along the Clifford orbit, entanglement is near-maximal and this is
reflected in c(d, dA). It would be interesting to see whether (for an equal bipartition)
anti-flatness assumes the form FA(|yi) ⇠ g(dA)Purb(rA)Mlin(|yi) or if this relation
only holds for highly entangled states.
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FIGURE 12.3: Algorithm sensitivity: Probability of success PSuc, for
a fixed threshold e = 0.005 and for different NLayers. After collecting
NR = 1000 realizations, we compute the probability of success PSuc,
as a function of the initial value of nonstabilizerness calculated using

the second SRE M2 (|y0i).

12.2 Numerical experiments

As it was shown in [38], SRE can be experimentally measured via randomized
unitaries [220], providing an important handle on the quality of a quantum circuit.
However, SRE is a very expensive quantity to measure, requiring in general expo-
nential resources (though better than state tomography). The result of the theorem
opens the way to a very efficient way to measure SRE. However, things are not so
simple. In the best case scenario, c(d, dA) = O(d�1), which means that one needs
to resolve an exponentially small quantity, thereby requiring again exponential re-
sources - even if with the considerable advantage that operations on a small sub-
set are needed, thus relaxing one of the most challenging requirements of previous
methods. This is because yA is typically very entangled over Cn and therefore FA
is very close to be flat. Another issue is that, for weakly entangled states, direct
exploitation of the theorem is extremely challenging in practice, as we shall demon-
strate numerically in the following. One can intuitively understand that as for very
weakly entangled states there are very few eigenvalues at all in the entanglement
spectrum. As an extreme example, the entanglement spectrum of a product state is
absolutely flat, regardless whether the state possesses any degree of nonstabilizer-
ness. A very long circuit (inevitably, very sensitive to noise) will thus be required in
those cases.

The key insight is that we can get around the requirement of a full Clifford orbit
by (numerically) analyzing the intermediate regime. Approaching volume law one
might be able to see a deviation from a flat spectrum without having to resolve an
exponentially small quantity. If this is true, one would have found a witness for
nonstabilizerness that is efficiently computable and measurable. Moreover, as one
gets into the volume law for the entanglement phase, one should be able to evaluate
accurately the actual value of Mlin, even without averaging over all the Clifford orbit.
Of course, in this case, one still needs to resolve a very small quantity.

We consider an initial state that is a product state of n qubits with linear topology
|y0i = ⌦n

i=1|yii, where |yii = 1p
2

�
|0i+ eiq |1i

�
. This state has initially computable

nonstabilizerness (vanishing for q = 0, p/2). Note that q = p/4 corresponds to the
canonical T-state. The state |y0i is then evolved under a random Clifford circuit of
depth NLayers denoted by UCl = ’

NLayers
k Uk, where Uk contains n� 1 Clifford gates

(Hadamard, phase eip/2 gate and CNOT)[4] between nearest neighbors.
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We are interested in how the entanglement spectrum, that is, the eigenvalues
of the reduced density matrix rA = TrB |yihy| (for dA = dB = 2n/2 and n = 14
qubits) evolves under random Clifford circuit evolution. In Fig. 12.1 (b), we present
the average of the anti-flatness hFAi as a function of the circuit depth NLayers. The
average is obtained from NR = 1000 different realizations and it is calculated for
various values of q. For a small number of Clifford layers, the anti-flatness increases
and exhibits a sharp dependence on q. When the circuit is very deep, the system
explores a very large portion of its Clifford orbit, and the ratio between average
anti-flatness hFAi and c(2n, 2n/2)Mlin approaches 1 (the solid red line in the inset of
Figure 12.1), as predicted by the Theorem.

In Fig. 12.2, we show that one can accurately estimate Mlin even by shallow Clif-
ford circuits provided one starts with volume law entanglement. We again consider
a n = 14 qubit system in a volume law phase by subjecting the initial state |y0i
to NLayers = 1500 Clifford layers, for various values of q. We then plot the ratio
hFAi/c(2n, 2n/2)Mlin as a function of the number of Clifford NLayers. The theoreti-
cal line predicted by the theorem is shown as a solid red line. Notably, we observe
that even for circuits as short as NLayers = 7 Clifford layers, the average anti-flatness
reaches the value predicted by the theorem [221].

12.3 Probing nonstabilizerness through flatness

As we discussed above, one could probe nonstabilizerness by probing flatness,
which is amenable to be measured in experiments [222–225]. However, a naïve ap-
plication of the theorem would result in a very costly procedure. We present an
algorithm that can efficiently witness magic by exploring the Clifford orbit in the
intermediate region between weak and volume-law entanglement [221]. Since mea-
suring nonstabilizerness can be resource-intensive, the concept of witness provides
a scalable approach to assess the accurate implementation of stabilizer operations or
evaluate the fit of quantum hardware for preparing magic states.

The procedure works as follows: (1) Start with |y0i, a pure state. (2) Draw a ran-
dom Clifford gate G and apply it to the initial state: |yGi ⌘ G|y0i. (3) Measure the
entanglement spectrum anti-flatness FA(yG) 1. If the original state |y0i is a stabi-
lizer state, the output of the circuit is still a stabilizer state with zero anti-flatness.
On the contrary, if |y0i has a non-vanishing amount of nonstabilizerness, we ex-
pect that even a modest exploration of the Clifford orbit will result into a non-flat
entanglement spectrum. Therefore, if after a number of Clifford unitaries we mea-
sure FA > 0 we can establish that the initial state possesses nonstabilizerness. The
resulting algorithm is summarized in Fig. 12.1 (c). In this algorithm, we set both
the number of iterations (which determines the number of Clifford layers) and the
threshold for measuring flatness.

Notably, our proposed protocol does not demand an exhaustive exploration of
the Clifford group, which is exponentially large. Instead, our findings in the pre-
vious section demonstrate that a shallow quantum circuit generated by fixing the
number of Clifford layers to a reasonably small value is sufficient for detecting non-
stabilizerness with a high probability. This is illustrated in Fig. 12.1 (c): we show the
probability of success PSuc (for n = 12 qubits) as a function of the initial value of
nonstabilizerness calculated using the second SRE defined in Eq.(6.23). In order to
address the role of errors in the measurement of FA, we introduce a threshold value

1For small partitions, this can be done either via state tomography, or utilizing the random unitary
toolbox [220]
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e for our test. The success probability is defined as the number of times in which
the algorithm gives True as output, thus detecting the nonstabilizerness of the initial
state normalized to the total number of iterations.

Fig. 12.1 panel (c) displays a knee point effect of the probability of success PSuc
as a function of the nonstabilizerness calculated using the second SRE M2, depend-
ing on the threshold value e. While, as argued earlier, away from volume law, the
general behavior of this algorithm requires a numerical analysis, the knee-point can
be explained analytically in a rigorous way through the stabilizer fidelity

Smax(y) = max
s2STAB

| hs|yi |2. (12.13)

by the following proposition:
Proposition: Define Smax(y) := maxs | hs|yi |2 the stabilizer fidelity with s a stabi-

lizer state. Then, if Smax(y) > 1� (e/7)2, i.e. if the state is too close to a stabilizer state,
the success probability is zero, that is, PSuc(e) = 0.

Proof.—
Let us first prove the following lemma.
Lemma: Given a pure state |yi and a bipartition A|B, then we have that the flatness FA

is upper bounded by

FA(y)  7
q

1� Smax(y) (12.14)

Proof.— Notice that for every stabilizer state s we have FA(s) = 0. Then, we have
the following chain of inequalities

FA(y) = FA(y)�FA(s)

= tr
h

T(A)
123 (y⌦3 � s⌦3)

i
� tr

h
T(A)

(12)(34)(y⌦4 � s⌦4)
i

 | tr
h

T(A)
123 (y⌦3 � s⌦3)

i
| + | tr

h
T(A)

(12)(34)(y⌦4 � s⌦4)
i
|


���TA

(123)

���
•

��y⌦3 � s⌦3��
1 +

���TA
(12)(34)

���
•

���y⌦4 � s⌦4
���

1

= 7ky� sk1 = 7
q

1� | hs|yi |2. (12.15)

In the third line, we used triangle inequality. In the fourth line we used the bound
of Schatten p-norms, namely | tr(AB)|  kAkpkAkq for p�1 + q�1 = 1 and chosen
p = • and q = 1. In the last line, we made use of the following inequality multiple
times

���y⌦4 � s⌦4
��� =

���y⌦4 � y⌦ s⌦3 + y⌦ s⌦3 � s⌦4
���

 kyk
��y⌦3 � s⌦3��+ ky� sk

��s⌦3��

=
��y⌦3 � s⌦3��+ ky� sk

 4ky� sk (12.16)

Then choosing in Eq. (12.16) mins2STAB, one obtain Eq. (12.14).
The proposition is now a corollary of the above lemma. Indeed, given the thresh-

old e for the algorithm in Fig. 12.1 panel (c), then if Smax > 1� (e/7)2 then FA(y) <
e and thus PSuc(e) = 0.

The above proposition provides insight into the sensitivity of the algorithm shown
in Fig. 12.1 with respect to the stabilizer fidelity Smax, which is closely linked to the
stabilizer entropy Mlin.
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FIGURE 12.4: Flatness in noisy circuit: (a) We show the average
of the anti-flatness, over NR = 1000 realizations, as a function of
NLayers. We start from an initial STAB state |y0i = 1p

2
(|0i+ |1i).

We inject magic using a modified CNOT gate and the average of the
anti-flatness FA increases after few layers of our circuit. (b) We show
the average of flatness, over NR = 1000 realizations, as a function
NLayers. We initialize the system in the ground state of Toric code,
that is a STAB state, on a 4 ⇥ 2 unit cell (16 spins). We show that
the anti-flatness increases almost linearly with the number of Clifford

layers NLayers. Error bars correspond to a 95% confidence interval.

In Fig. 12.3, we present the probability of success PSuc (for n = 12 qubits) for a
different maximum number of Clifford layers NLayers. We fix the threshold e = 0.005
and we compute the probability as a function of nonstabilizerness calculated by
M2 (|y0i) of the initial state. The plot shows that increasing the number of algo-
rithmic iterations NLayers push the probability of success to 1 for any fixed values of
nonstabilizerness.

12.4 Noisy Clifford circuit

So far we assumed that Clifford unitaries are ideal. In reality, they have a resid-
ual noise due to the fact that Clifford circuits are fine-tuned. In this situation, it is
more natural to perform error mitigation at the level of channels rather than states.
Consider a simple error model where each two-qubit Clifford U(k) is independently
affected by unitary noise. In particular, every two-qubit gate is transformed as fol-
lows:

Ũ(k) = e�i Âa eaPa
U(k)ei Âa eaPa

(12.17)

where ea is a random number chosen from a Gaussian distribution with average zero
and standard deviation s that represents here the strength of the noise. The choice
of coherent noise is due to the fact that SRE is a proper measure of distillable magic
only for pure states. For mixed states, it still has an important operational meaning
in quantifying resources beyond Clifford [19]: for example, it is the key resource
for establishing the cost of direct fidelity estimation [39], cleansing algorithms and
efficient purity estimation [197]. The study of the effect of incoherent noise is to be
carried out in future work.

Introducing noise to Clifford gates represents a magic-state injection that can be
accurately captured by measuring the anti-flatness FA. In Fig. 12.4 (a) we present
the evolution of the average of the anti-flatness FA for a noisy Clifford circuit with
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n = 14 qubits. We initialize our system in a stabilizer state |yi = 1p
2
(|0i+ |1i)

and then we measure the anti-flatness after every Clifford layer. Moreover, we also
investigate the effect of noise starting from the ground state of the toric code - a
stabilizer code formulated on a square lattice [226–229]. The basic construction of the
toric code is a square lattice with a spin-1/2 degree of freedom on every bond, the
physical qubits. The model is given in terms of a Hamiltonian Ĥ = �Ân An�Âp Bp,
where p runs over all plaquettes and n over all vertices (sites). The ground state of
the toric code is a stabilizer state of the sets {An} and

�
Bp
 

. After applying a Clifford
circuit with a transformed CNOT gate, we measure the anti-flatness FA after every
layer. In Fig. 12.4 (b) we show the evolution of FA for different strengths of noisy s.
It increases almost linearly with the number of Clifford layers. These results quantify
how, upon close inspection of the microscopic imperfections, it is possible to define
an error threshold that is able to discriminate between magic injected by errors along
the Clifford orbit, and intrinsic magic of the original state.

12.5 Conclusions

We have demonstrated how nonstabilizerness of quantum states, while com-
pletely unrelated to entanglement per se, is deeply and exactly related to entan-
glement response, via the entanglement spectrum flatness of arbitrary partitions.
Leveraging on this connection, we have formulated a simple protocol to efficiently
witness and quantify nonstabilizerness in quantum systems, that is applicable to
both atom and solid state settings where local operations and probing are available.
The protocol is particularly efficient for states with volume law entanglement, and
can cope with the inevitable presence of noise, as we demonstrate utilizing both
random states and toric code dynamics. Our results pave the way for witnessing
nonstabilizerness in large scale experiments - a pivotal step to demonstrate compu-
tational advantage -, and motivate further study of nonstabilizerness in quantum
many-body systems, in particular, in connection to critical behavior, where entan-
glement response is expected to be particularly relevant.
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Chapter 13

Nonstabilizerness versus
entanglement in matrix product
states

In this chapter, we study the connection between nonstabilizerness and the bond
dimension of matrix product states (MPSs) [140]. We pursue a two-pronged ap-
proach. First, we investigate the broader question of how these two quantum re-
sources, crucial for realizing states intractable to classical computers, are interrelated
in many-body systems. Both nonstabilizerness and entanglement are known to be
essential for such simulations. Second, we focus on the convergence properties of
magic within the context of MPS simulations. Essentially, for a given variational
simulation with a fixed bond dimension c, we explore how quickly these approxi-
mations converge to the true values.

We address the magic-bond dimension relationship in two distinct, yet equally
intriguing, many-body scenarios: full state magic and mutual magic of ground states
(GSs). These scenarios offer diverse perspectives on the interplay between magic
and entanglement. In the first case, we compare a global property (magic) with
correlations between arbitrary sub-system parts (entanglement). Conversely, mutual
magic examines shared resources between partitions, potentially relevant to field
theory due to the cancellation of all boundary terms inherent to the chosen lattice
regularization.

Our investigations encompass the scaling of full-state magic for critical points
in spin-1 chains, as well as within gapped phases. We observe polynomial scaling
for critical points, while gapped phases exhibit saturation at low bond dimensions,
where sampling errors hinder clear scaling analysis. Notably, the observed poly-
nomial scaling is compatible with a 1/c2 dependence across all cases, suggesting
a convergence rate exceeding that of bipartite entanglement. This holds for both
perfect sampling and Pauli MPS representations.

Subsequently, we leverage mutual magic to study quantities independent of the
UV cutoff, employing Pauli-Markov chains. The findings reveal remarkably fast
convergence for this approach. Surprisingly, Pauli-Markov chains exhibit an in-
verse scaling of autocorrelation time, facilitating sampling at larger system sizes.
However, formulating definitive statements remains challenging due to potential
transition-dependent effects.

Collectively, these findings shed light on the remarkably strong connection be-
tween magic and entanglement within the context of MPS, a connection that appears
robust in different classes of criticality.
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FIGURE 13.1: Schematic representation of the partitions of the chain
considered for the calculation of long-range magic.

FIGURE 13.2: Phase diagram of the S = 1 XXZ chain with uniaxial
single ion-type anisotropy. The three marked points correspond to
the transitions examined in the rest of the paper: (i) Large D-XY (Jz ⇠
�0.183, D ⇠ 0.5); (ii) Haldane-Large D (Jz ⇠ 0.5, D ⇠ 0.635) and (iii)
Haldane-Néel (Jz ⇠ 2.93, D ⇠ 2.6). m1 is computed with perfect Pauli

sampling with NS = 103 samples.

13.1 SRE in spin-1 XXZ chain

We consider a S = 1 XXZ chain with uniaxial single ion-type anisotropy:

H =
N

Â
i=1

[Sx
i Sx

i+1 + Sy
i Sy

i+1 + JzSz
i Sz

i+1] + D
N

Â
i=1

Sz2
i (13.1)

where Sa’s, a = x, y, z, are the spin-1 operators, Jz is the easy-axis anisotropy, and D
is the single-ion anisotropy. The model has a global U(1) symmetry corresponding
to the conservation of total magnetization Âi Sz

i , and here we consider the ground
states at the sector of zero total magnetization. The model displays a rich phase
diagram, as sketched in Fig. 13.2, making it a good playground to explore magic in
phase transitions [92].

For Jz > 0, the model hosts three phases (with increasing D): the antiferromag-
netic Néel order, the symmetry-protected topological (SPT) Haldane phase, and the
large-D trivial phase. The Néel to Haldane transition is an Ising transition, while the
Haldane to large-D transition is a Gaussian transition.

For Jz  0 the model hosts a ferromagnetic phase, the large-D trivial phase and
two different XY phases: for large negative D (XY2) hSx

i Sx
j i and hSx

i Sx
j i decay expo-

nentially, while for small negative D (XY1) they decay with a power law, therefore
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FIGURE 13.3: (a) The SRE density m1 computed via perfect Pauli
sampling for various bond dimensions c. The number of samples
is NS = 104. (b) The entanglement entropy SN/2 for various bond

dimensions c.

they can be regarded as two different phases. The XY to Haldane and XY to large-D
transitions are BKT transitions, while XY to ferromagnetic and large-D to ferromag-
netic are first order transitions.

In what follows, we consider three different transitions that are present in the
model’s phase diagram: Haldane-Néel (Ising transition at Jz ⇠ 2.93, D ⇠ 2.6),
Haldane-LargeD (Gaussian transition at Jz ⇠ 0.5, D ⇠ 0.635) and Large D-XY (BKT
transition at Jz ⇠ �0.183, D ⇠ 0.5) [92].

In terms of quantity, we will consider both the SRE and the long-range magic,
defined as [28]:

Ln(rAB) = M̃n(rAB)� M̃n(rB)� M̃n(rA) (13.2)

where A and B are two separated subsystems and M̃n is the mixed state SRE. The
long-range (or, probably better, mutual) magic is a UV cut-off independent quantity,
similar to the mutual information in the context of entanglement entropies, that has
played a major role in characterizing the distribution of both classical information
and quantum correlations in many-body systems. It is important to say that, similar
to mutual Renyi entropies, Ln will in general not being strictly positive (they will for
the case n = 1/2, as discussed below). Still, from the many-body viewpoint, they
are very appealing quantities, whose connection to physical phenomena has already
been pointed out.

In the following, we will focus on L2(rAB), and drop the subscript for convenient
notation. We will examine two different partitioning scenarios: two connected par-
titions (as B and C in Fig. 13.1); two disconnected partitions, with one positioned at
the boundary and the other one in the bulk of the chain (A and C). In all two cases,
we fix the lengths of the partitions by a fixed ratio of the total number of sites in the
chain, specifically N/4. These situations will be referred to as: case BC and case AC.

The SRE in S = 1 XXZ chain was recently investigated in Ref. [28] using Pauli-
Markov method. It was shown that, while the full-state magic appears rather fea-
tureless at the critical points, long-range magic is able to identify the transitions.

To obtain the MPS approximation of the ground state with a given bond dimen-
sion c, we perform DMRG simulations using the iTensor package [230, 231]. We then
employ three different methods: (1) Perfect Pauli sampling [27], (2) Pauli-Markov
[28], and (3) replica Pauli-MPS [26] to compute the SRE in various scenarios. The
full-state magic is generally linear in the system size N, and thus we will consider
the SRE density mn = Mn/N. Note that, since the phase-space operator A0 com-
mutes with the Hamiltonian of the S = 1 XXZ chain, the ground state SREs coincide
with the mana entropies (see Sec. 8).
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FIGURE 13.4: Scaling of the SRE density m1 with the bond dimension
c in different critical points. The number of samples is NS = 104. The
different panels correspond to different system sizes: (a) N = 128; (b)

N = 256; (c) N = 512 and (d) N = 1024.

For the Pauli-Markov method, due to the presence of U(1) symmetry, a two-site
update scheme is required to sample only the Pauli strings that are compatible with
the symmetry. To this end, we generate the candidate Pauli string P0 by randomly
multiplying the current Pauli string P with either Zi or X†

i Xj. Moreover, we set the
probability to multiply with Zi or Z†

i to be equal, so that detailed balance is satisfied.
Fig. 13.2, obtained utilizing perfect Pauli sampling, illustrates the variation of

m1 within the model’s phase diagram. Notably, magic reaches its peak within the
topological phases (Haldane and XY) and rapidly declines in the trivial phases (Fer-
romagnetic, Large D, and Néel). However, no distinct characteristics are observed
at the critical point, consistently with previous findings [28].

13.1.1 Scaling of full-state magic

We calculate the SRE and study how it scales with the bond dimension of the
MPS. Initially, we utilize perfect Pauli sampling, focusing on the n = 1 SRE, where
the number of samples only needs to scale polynomially with system size to achieve
a desired level of accuracy in estimation. In Fig. 13.3, the SRE density m1 is com-
pared with the entanglement entropy at half chain, SN/2. The graph displays three
distinct transitions: Haldane-Néel, Haldane-Large D, and Large D-XY. We observe
that convergence of non-stabilizerness occurs at smaller bond dimensions compared
to those required for entanglement entropy. Indeed, as shown in Fig. 13.3a, a bond
dimension of c ⇠ 8 is sufficient for an accurate computation of magic density, pre-
senting a significant practical benefit.

Moreover, in Fig. 13.4 and Fig. 13.5, we demonstrate that m1 scales as 1
c2 at critical

points. Fig. 13.4 shows the linear dependence of m1 from 1
c2 for different system sizes

(N 2 {128, 256, 512, 1024}), while Fig. 13.5 provides a detailed view of the largest
system size. The dashed lines in these figures represent the fits performed with the
functional form m1(1/c2) = m0 + c 1/c2. Note that the slope c is size independent in
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FIGURE 13.5: Scaling of the SRE density m1 with the bond dimen-
sion c in critical points at fixed N = 1024. The number of sam-
ples is NS = 104 The different panels correspond to different transi-
tions: (a) Large D-XY transition; (b) Haldane-Large D transition and

(c) Haldane-Néel transiton.

the Large D-XY and Haldane-Neel transitions, while it changes non-monotonically
with N in the Haldane-Large D case. Regarding the intercepts, we expect them
to be size invariant since the SRE is generally linear with size N and what we’re
computing is its density, namely m1 = M1/N. Indeed, this expectation holds true
for the Large D-XY and Haldane-Large D transitions but not for the Haldane-Néel
one, which appears to exhibit a more pronounced finite-size effect.

Moreover, in Fig. 13.6, we show the behavior of m2 as a function of bond dimen-
sion c obtained from Pauli-MPS with bond dimension cP = 2 ⇤ c. In Fig. 13.6a
we show m2 vs c in the three distinct transitions: Haldane-Neel, Haldane-Large F
and Large D-XY. We observed that the convergence of the m2 occurs at small bond
dimension. In Fig 13.6b, we show that m2 scales as 1

c2 at the critical points for sys-
tem size N = 64. In the three different panels, the dashed lines represent the fits
performed with the functional form m2(1/c2) = m0 + c 1/c2.

13.1.2 Mutual information and long-range magic scaling

To evaluate long-range magic we employ the Pauli-Markov sampling technique.
This choice is motivated by the limitations encountered with perfect Pauli sampling
when estimating the quantities defined in Eq.s (7.20), (7.21). Perfect Pauli is efficient
in these two scenarios: when r is a pure state; when r is the reduced density matrix of
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FIGURE 13.6: (a) The SRE density m2 computed via Pauli-MPS for
various bond dimensions c. (b) Scaling of the SRE density m2 with

the bond dimension c in the critical points at fixed N = 64.
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FIGURE 13.7: Mutual information scalings for connected partitions
(case BC). The number of samples is NS = 106. Panel (a): scaling
with the size for different transitions (in log scale). The three circles
correspond to the sizes used for the scaling in the bond dimension c.
The bond dimension here is fixed at c = 20. Panel (b): scaling with
the bond dimension c in the Haldane-Large D transition (Gaussian
transition at Jz ⇠ 0.5, D ⇠ 0.635), for different sizes. The dashed lines

here correspond the value of the mutual information at c = 20.

a partition that falls at the boundary of a larger pure state (both rightmost subsystem,
in that case one should sample with the right-normalized form of the MPS, and
leftmost, where instead one should use the left-normalized form). However, it is not
efficient in the case of two (possibly disconnected) partitions.

We first focus on the mutual information I, obtained by means of the estimator
defined in Eq. (7.21). Results are presented in Fig. 13.7 and Fig. 13.8, for case BC and
AC respectevely. In particular, Fig. 13.7a shows the scaling with size in case BC. We
observe that I(rBC) exhibits logarithmic scaling. This corresponds with the expected
scaling behavior for connected partitions, mirroring that of entanglement entropy in
critical phases, which is well-established result in Conformal Field Theory [232, 233].
However, what differs from entanglement entropy is the scaling of I(rBC) with the
bond dimension c, as illustrated in Fig. 13.7b. We focus on a single transition: the
Haldane-Large D transition, and perform the scaling for N 2 {16, 28, 40}. Notably,
unlike what happens for SN/2, the mutual information converges at a fixed value
from above. What plays a role in this discrepancy are the partitions under exami-
nation. In our study, we analyze a four-partite system, unlike the bipartite case of
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FIGURE 13.8: Mutual information scalings for disconnected parti-
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scaling with the size for different transitions. The three circles cor-
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FIGURE 13.9: Long-range magic scalings for connected partitions
(case BC). The number of samples is NS = 106. Panel (a): scaling
with the size for different transitions. The two circles correspond to
the sizes used for the scaling in the bond dimension c. The bond di-
mension here is fixed at c = 20. Panel (b): scaling with the bond
dimension c in the Haldane-Large D transition (Gaussian transition
at Jz ⇠ 0.5, D ⇠ 0.635), for different sizes. The dashed lines corre-

spond the value of the long-range magic at c = 20.

entanglement entropy. Hence, the information extracted is not directly comparable
to that obtained from the latter. In the case of AC, as depicted in Fig. 13.8a, we
observe that the mutual information I(rBC) remains constant with increasing size,
consistently with previously known results [234]. Fig. 13.8b shows the scaling with
c for the Haldane-LargeD transition and for the same three sizes as in the previous
case. Even in this scenario, we observe a rapid saturation in the bond dimension.

As concerns long-range magic, the numeric results are challenging to interpret
due to statistical error. In Fig. 13.9a and Fig. 13.10a, we display the scaling with
the system size N for case BC and AC, respectively. Comparing with the behavior
of mutual information, long-range magic appears to increase less rapidly for two
connected partitions, while remaining constant for disconnected partitions. Turning
to the scaling with the bond dimension c, depicted in Fig. 13.9b, Fig. 13.10b, we
notice parallels with the behavior of mutual information. However, unlike for the
full-state magic case, we are not able to predict a functional form for the correction
in the bond dimension. Specifically, to estimate the c-dependence, in the previous
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FIGURE 13.10: Long-range magic scalings for disconnected partitions
(case AC). The number of samples is NS = 106. Panel (a): scaling
with the size for different transitions. The two circles correspond to
the sizes used for the scaling in the bond dimension c. The bond di-
mension here is fixed at c = 20. Panel (b): scaling with the bond
dimension c in the Haldane-Large D transition (Gaussian transition
at Jz ⇠ 0.5, D ⇠ 0.635), for different sizes. The dashed lines corre-

spond the value of the long-range magic at c = 20.

section we focused on c � 5. Yet, at these values of c, it is difficult to discern
the scaling, as the fluctuations we aim to fit are of the same order as the error bars
with a sample size of NS = 106. This is because our estimation of long-range magic
comprises a sum of two terms, each associated with its own statistical error, and the
W term defined in Eq. (7.20) is more challenging to estimate. As a consequence,
we cannot predict the precise scaling of long-range magic in c, but we consistently
observe rapid saturation.

13.2 Autocorrelations

In this section we show a detailed analysis of the autocorrelation of the long-
range magic. The normalized autocorrelation function of the stochastic process that
generated the chain for f , denoted as r f (t), can be estimated for a finite set of NS
samples, as

r f (t) = c f (t)/c f (0) , (13.3)

where

c f (t) =
1

NS � t

NS�t

Â
n=1

( fn � µ f )( fn+t � µ f ) (13.4)

and

µ f =
1

NS

NS

Â
n=1

fn . (13.5)

We estimate the integrated autocorrelation time t as

t = 1 + 2
M

Â
t=1

r f (t) (13.6)

for some M ⌧ NS. Extending the sum to NS is inconvenient because, for t � t,
r f (t) diminishes, leading to a situation where noise dominates over signal. Hence,
introducing the cut-off M helps to reduce the variance of the estimator t, at the cost
of adding some bias. A good tradeoff between decreasing variance and introducing
bias can be accomplished by choosing the smallest M that satisfies M � Ct(M),



Chapter 13. Nonstabilizerness versus entanglement in matrix product states 194

10 20 30 40
N

0

2

4

6

�
B

C
I

(a)

10 20 30 40
N

0

20

40

60

80

�
B

C
W

(b) LargeD-XY

Haldane - LargeD

Haldane-Neel

FIGURE 13.11: Integrated autocorrelation times scaling with size N
for connected partitions B, C of length L = N/4 (see Fig. 13.1). (a) In-
tegrated autocorrelation time in the estimation of I(rBC) (Eq. (7.21)).
(b) Integrated autocorrelation time in the estimation of W(rBC) (Eq.

(7.20)).

10 20 30 40
N

0

2

4

6

8

10

�
A

C
I

(a) LargeD-XY

Haldane-LargeD

Haldane-Neel

10 20 30 40
N

0

2

4

6

8

10

�
A

D
I

(b)

10 20 30 40
N

0

50

100

150

�
A

C
W

(c)

10 20 30 40
N

0

50

100

150

�
A

D
W

(d)

FIGURE 13.12: Integrated autocorrelation times scaling with size N
for disconnected partitions of length L = N/4. Panels (a) and (c) refer
to the choice of partitions A and C in Fig.13.1 (one in the boundary
and one in the bulk, with distance N/4 between the two), while (b)
and (d) refer to the choice A and D in Fig.13.1 (both at the boundary,
with distance N/2 between the two). Panels (a) and (b) show the
integrated autocorrelation times in the estimation of I(rAC/AD) (Eq.
(7.21)), while c and d show the integrated autocorrelation times in the

estimation of W(rAC/AD).

tipically with C ⇠ 5. We estimated the autocorrelation times using the emcee library
[235] which employs the iterative procedure outlined in [236] to determine a suitable
window size M.

Note that, for each computation of long-range magic, we make use of two Markov
chains: one for the estimation of I(rAB) defined in Eq. (7.21), the other one for the
estimation of W(rAB), as in Eq. (7.20). The two autocorrelation times are thus not
directly related.

In Fig. 13.11, we show the results for two connected partitions (as B, C in Fig.
13.1). We observe that increasing the size of the system N, tBC

I is always  5, hence
essentially constant. tBC

W is instead decreasing with size.
Fig. 13.12 shows the results for disconnected partitions. We study two possible

scenarios: both partitions at the boundary of the chain (A, D of Fig. 13.1) or one
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FIGURE 13.13: Normalized autocorrelation function of the mutual
information I in case BC, for different sizes. Panel (a): Large D-XY
transition (BKT at Jz ⇠ �0.183, D ⇠ 0.5). Panel (b): Haldane-Large D
transition (Gaussian at Jz ⇠ 0.5, D ⇠ 0.635). Panel (c): Haldane-Néel

(Ising at Jz ⇠ 2.93, D ⇠ 2.6).

at the boundary and one in the bulk (A, C). We observe that again tI is approxi-
mately constant while tW is decreasing with size, for both cases. This decreasing
trend can be understood in terms of our proposal of the candidate string: at each
Markov step we update either a single site or two sites, that are randomly chosen.
The updated sites can then fall in two different partitions. When the two partitions
are disconnected, as the size of the system increases, so does the distance between
the two, making it easier to generate non-correlated Pauli strings. Indeed, when the
two partitions are more distant, namely in the AD case, where they are separated
by a distance N/2, the integrated autocorrelation time tAD

W is always smaller than
the one corresponding to the other scenario tAC

W , where the distance between the
partitions is N/4.

To further illustrate the origin of the above results, in Fig. 13.13, we show the
behavior of the normalized autocorrelation function of the mutual information I for
case BC. Figs. 13.13a, 13.13b and 13.13c correspond, respectively, to the Large D-XY,
Haldane-Large D and Haldane-Néel transitions. Counterintuitively, we observe that
despite the mutual information increasing with size (see Fig. 13.7), the autocorrela-
tion of the Pauli-Markov chain remains constant.

These results demonstrate a remarkable unexpected efficiency of Pauli-Markov
chains when dealing with long-range correlations: indeed, such Markov chains typ-
ically show a dynamical critical exponent between 0 and 1 for full state magic, while
here, the exponent is actually negative - that is, sampling becomes simpler as vol-
ume increases, despite information not necessarily decaying. This feature makes
Pauli-Markov chains potentially interesting to be used in experimental protocols.

13.3 Conclusions

We have investigated the relation between magic and bond dimension in the con-
text of ground states of spin-1 systems, for which the resource theory of magic in
terms of stabilizer Renyi entropies is well under control. We considered both the
full-state magic, a global property, as well as the mutual magic, that characterizes
the magic that resides in the correlations between subsystems. We mostly show
results at critical points, since inside phases, convergence of magic with the bond
dimension is so quick that is hard to characterize.

For full-state magic, we provide extensive numerical evidence that the stabilizer
Renyi entropies converge rapidly with a scaling of 1/c2, significantly faster than
that of entanglement. Then, for mutual magic, we again observed a very mild scaling
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with respect to bond dimension, although we were not able to definitively determine
the correct scaling form. These results lend credence to previous works that used
small MPS bond dimension to study magic.

Additionally, a valuable byproduct of our investigation is the discovery that Pauli-
Markov chains can efficiently estimate mutual information of disconnected subsys-
tems, with the samples exhibiting small autocorrelations. This method - to the best
of our knowledge - largely outperforms traditional methods utilizing exact TN con-
traction.

Overall, this work sheds light on the dependence of magic in MPS with the bond
dimension; the latter is in turn directly linked to entanglement. Given the recent
focus on the interplay between magic and entanglement, an interesting question is
whether these results hold deeper significance, potentially hinting at a more funda-
mental connection between these two resource quantities. It would be intriguing
to perform a similar analysis in the context of different classes of variational wave
functions, such as projected entangled pair and tree tensor network states, where the
bond dimension relation to entanglement is different than in MPSs. Finally, it could
be interesting to investigate how some of the Pauli-based sampling methods might
be suitably modified to measure magic and Renyi entropies experiments, relying on
importance sampling.
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Conclusions and outlook

This thesis explores two different aspects of synthetic quantum matters: quantum
simulation (Part I) and quantum information (Part II).

Part I explores the application of quantum simulation, particularly using Ryd-
berg atom arrays, to investigate novel quantum phases of matter. In Chapter 3, we
analyze the previously observed spin liquids [1, 2] by connecting it to a gauge the-
ory. This connection directly shows that the observed spin liquid phase corresponds
to the deconfined phase of the gauge theory itself, providing a clear-cut theoretical
argument for its origin. Furthermore, in Chapter 4, we classify all possible chiral
spin liquids in chiral Hamiltonians with U(1) global symmetry, that is relevant in
an experimental setup of Rydberg arrays. Such systems have been experimentally
demonstrated in a minimal setup of three sites [3]. Importantly, our analysis using
parton construction [4, 5] shows that chiral spin liquids emerge in physically real-
izable parameter regimes. Finally, in Chapter 5, we explore the emergence of exotic
dipole symmetry and how it leads to interesting phenomena such as slow relaxation
dynamics, in Rydberg arrays and cold atoms. In terms of future investigations, it
would be interesting to investigate Rydberg models in various other lattice geome-
tries, which are immediately available in tweezer arrays [6, 7], in order to look for
more robust spin liquid states, and possibly even different classes of spin liquids
than previously identified. This is particularly interesting as the symmetries of such
synthetic materials are very different from those that arise in, e.g., solid state sys-
tems. Thus, understanding what types of spin liquids these synthetic materials can
stabilize is crucial for future advancements in quantum simulation.

Part II explores the importance of magic, a key quantum information resource,
in understanding complex quantum systems. We develop new techniques based on
Markov chains and tensor networks to compute measures of magic such as the sta-
bilizer Rényi entropy [8] and mana [9, 10], which are detailed in Chapters 7, 10 and
9. Additionally, we introduce the magic analogue of mutual information, dubbed
mutual magic, which is free of boundary effects. Our numerical results reveal that
full-state magic always scales extensively with size, and it does not appear to di-
rectly relate to critical points. However, its derivatives typically display singulari-
ties across the latter: this indicates that magic is strongly sensitive to criticality in a
distinct way compared to entanglement. Furthermore, in Chapter 8, we show that
mutual magic also exhibits signatures of criticality in (1+1)D conformal field theo-
ries in the form of logarithmic divergence, similarly to entanglement entropy [11].
In Chapter 11, we investigate magic transition in a measurement-only circuit model,
which is efficiently simulable despite being tuned away from the Clifford limit. Our
large-scale simulations further confirm the logarithmic scaling of mutual magic at
the critical point. In Chapter 12, we further investigate the relationship between
magic and entanglement, revealing a deep connection between the two. This con-
nection can be leveraged to develop an experimental protocol to efficiently probe
nonstabilizerness in cold atom and solid-state platforms. Finally, in Chapter 13, we
study the dependence of magic with bond dimension, demonstrating that obtaining
converged results for nonstabilizerness is easier than entanglement, making magic
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a potentially more accessible quantity for practical applications. In perspective, a
key next step is to develop other methods to calculate magic, possibly based on
higher-dimensional tensor network such as PEPS or Quantum Monte Carlo. These
advancements will allow us to explore the role of magic in diverse areas like gauge
theory and topological phases of matter, thus providing deeper understanding on
the role of magic in many-body phenomena. Furthermore, in view of the connection
between entanglement and magic, it would be fascinating to explore the potential
advantages in combining simulation techniques based on tensor networks and sta-
bilizer formalism. Finally, while stabilizer Rényi entropies are good measures of
magic [12], they lack the desirable property of strong monotonicity [13]. In light of
this, it is desirable to construct a strong measure of magic, that is also computable in
large systems.
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