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Non-equilibrium gap-collapse near a first-order Mott transition

Matteo Sandri1 and Michele Fabrizio1

1 International School for Advanced Studies (SISSA), and CRS Democritos,
CNR-INFM, - Via Bonomea 265, I-34136 Trieste, Italy

(Dated: October 12, 2018)

We study the non-equilibrium dynamics of a simple model for V2O3 that consists of a quarter-
filled Hubbard model for two orbitals that are split by a weak crystal field. Peculiarities of this model
are: (1) a Mott insulator whose gap corresponds to transferring an electron from the occupied lower
orbital to the empty upper one, rather than from the lower to the upper Hubbard sub-bands; (2)
a Mott transition generically of first order even at zero temperature. We simulate by means of
time-dependent Gutzwiller approximation the evolution within the insulating phase of an initial
state endowed by a non-equilibrium population of electrons in the upper orbital and holes in the
lower one. We find that the excess population may lead, above a threshold, to a gap-collapse and
drive the insulator into the metastable metallic phase within the coexistence region around the Mott
transition. This result foresees a non-thermal pathway to revert a Mott insulator into a metal. Even
though this physical scenario is uncovered in a very specific toy-model, we argue it might apply to
other Mott insulating materials that share similar features.

PACS numbers: 71.10.Fd, 71.30.+h, 64.60.Ht

I. INTRODUCTION

Mott insulators are potentially promising candidates
that might enable scalability below the size of conven-
tional semiconductor solid state devices.1 In fact, Mott
insulators can typically revert to metals, e.g. under pres-
sure, suddenly releasing the large amount of conduction
electrons that were earlier Mott localized. Therefore one
may envisage that an external stimulus, like a voltage
bias or an intense optical pulse, could eventually drive
a Mott insulator into a metal with a very large carrier
concentration.

Experimental attempts performed so far are indeed en-
couraging, see e.g. Refs. 2 and 3. On the contrary, theo-
retical calculations in the simplest model for a Mott insu-
lator, namely the half-filled single-band Hubbard model,
are not equally promising. For instance, the simulated
time evolution of a photo-excited Mott insulator, with
holes in the lower Hubbard band and electrons in the up-
per one, shows that the injected energy effectively heats
the system, which relaxes to a thermal steady-state the
slower the stronger the interaction.4–6 In other words,
the Mott-Hubbard sub-bands persist and simply spec-
tral weight is transferred from the lower to the upper,
just as if temperature rises, though small deviations from
the expected thermal behavior are observed.4,7 Moreover,
theoretical simulations of the dielectric breakdown of a
single-band Mott insulator with gap EGap in the presence
of a static electric field E point towards a conventional
Landau-Zener mechanism, i.e. tunneling between lower
and upped Hubbard bands over a distance ∼ EGap/E,
not dissimilar to conventional band insulators.8–13

These results are evidently a bit disappointing, all the
more so since they are not even in full accordance with
experiments.3,14 A simple escape route, which we shall
follow here, is to abandon the half-filled single-band Hub-
bard model as the prototypical model to describe dielec-

tric breakdown in real Mott insulators. Indeed, we note
that the Mott insulating materials where the dielectric
breakdown has been experimentally observed so far, at
least to our knowledge, all have a charge gap that is
either of charge-transfer origin, like NiO,15 Cu2O,16 or
cuprates,17,18, or it is an inter-band gap between Mott-
localized occupied orbitals and unoccupied ones, all shar-
ing the same atomic d-character, like VO2,19 or V2O3.3

In none of these cases the charge gap is therefore the gen-
uine Mott-Hubbard gap that refers to the same element
and same orbital. The natural question is therefore if
and how this feature affects the off-equilibrium response
to external perturbations that could drive those materials
metallic.

We shall try here to elucidate this question in a very
simple model that we originally introduced to reproduce
qualitatively the physics of V2O3,20 and which does de-
scribe a Mott insulator with a charge-gap between occu-
pied and unoccupied orbitals. Specifically, we shall study
by means of the time-dependent Gutzwiller approxima-
tion the temporal evolution of a non-equilibrium initial
state characterized by an excess population of particle-
hole excitations, where holes lie in the lower Hubbard
band of the occupied orbital while particles sit in the
unoccupied conduction orbital. Our aim is to ascertain
whether the non-equilibrium initial condition only causes
heating, hence leaves well defined and separated con-
duction and valence bands, although the former slightly
occupied and the latter slightly emptied, or rather the
system evolves into a non-thermal and possibly metallic
phase.

The paper is organized as follows. In Sec. II we in-
troduce the model and discuss its equilibrium phase dia-
gram. In Sec. III the peculiar equilibrium properties are
invoked to envisage a non-equilibrium pathway able to
drive the Mott insulator into a metastable metal. We
briefly sketch the time-dependent Gutzwiller approxima-
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tion in Sec. IV and study the outcome of the aforemen-
tioned non-equilibrium protocol in Sec. V, both in the
paramagnetic and antiferromagnetic sector. Finally, Sec.
VI is devoted to conclusions.

II. THE MODEL AT EQUILIBRIUM

The model we shall consider is a two-band Hubbard
model that we originally designed to capture the main
physics of vanadium sesquioxide V2O3.20 We believe,
however, that this model is simple enough to provide
information of more general validity, even beyond the
physics pertaining to V2O3.

Specifically, we assume on each site of a two-
dimensional square lattice two orbitals that are split by a
crystal field. Each site is occupied on average by a single
electron. In addition, we include a Hubbard repulsion
that penalizes configurations where the on-site occupa-
tion is different from one, and intra- and inter-orbital
hopping elements between nearest neighbor sites. We do
not include any Coulomb exchange splitting, which would
implement Hund’s rules, because it is ineffective for con-
figurations with a single electrons thus we expect it would
only add unnecessary complications. The Hamiltonian is

H =

2∑
a=1

∑
kσ

εk c
†
akσcakσ +

∑
kσ

γk
(
c†1kσc2kσ +H.c.

)
+
∑
i

[
−∆

(
n1i − n2i

)
+
U

2

(
n1i + n2i − 1

)2]
, (1)

where a = 1, 2 labels the two orbitals, εk = −2t
(

cos kx+

cos ky
)

is the standard nearest neighbor tight-binding en-
ergy, U parametrizes the on-site repulsion and ∆ > 0
the crystal field splitting. We include an inter-orbital
hopping γk = −4t′ sin kx sin ky, where we hereafter set
t′ = 0.3 t, with a symmetry such that the local single-
particle density matrix remains diagonal in the orbital
indices 1 and 2. Such choice is made because we want to
require that the occupation of each orbital is not a con-
served quantity and yet that both orbitals are irreducible
representations of the crystal field symmetry.

Let us first briefly discuss the possible phases dis-
played by the model Eq. (1) in connection with the rel-
ative strengths of the Hamiltonian parameters, which
we sketch in Fig. 1 and locate in the zero-temperature
phase-diagrams shown in Fig. 2, where magnetism is not
allowed, and in Fig. 3 in the more realistic magnetic case.
In the atomic limit, leftmost side in Fig. 1, the single
electron occupies the lowest orbital. When the hopping
is turned on, the orbitals broaden into two bands that
we shall assume hereafter overlap so much that both
are occupied; the uncorrelated model thus describes a
quarter-filled two-band metal. Switching on the interac-
tion U brings two distinct effects. On one side the repul-
sion between occupied and unoccupied states effectively
increases the crystal field splitting; a phenomenon that

hopping Hubbard U Hubbard U

FIG. 1: (Color online) Phases displayed by the model Eq.
(1). From the left: in the isolated site the electron occu-
pies the lowest orbital. When sizable hopping is switched
on, the model describes a quarter-filled two-band metal. If
we now turn on interaction, the coherent bandwidth shrinks
and meanwhile the crystal field splitting increases, so that
the higher band gradually empties, until only the lowest one
remains populated, actually half-filled. A further increase of
U will then drive this band across a Mott metal-to-insulator
transition, with lower and upper Hubbard bands.

can be well described also within any independent parti-
cle scheme, as e.g. mean-field theory. Such approximate
schemes are however unable to capture another impor-
tant interaction effect that is the bandwidth shrinking,
which reduces the band overlap hence enhances further
the strength of the crystal field. The crystal field splitting
growth and the bandwidth shrinking gradually empty the
higher band and eventually leave only the lowest band
populated, actually half-filled, second to last drawing in
Fig. 1. A further increase of U can then drive the lowest
half-filled band towards a Mott insulating phases, likely
accompanied by the emergence of magnetism.

The actual phase diagram at T = 0 that we previously
obtained by the Gutzwiller approximation, see Ref. 20,
is shown in Fig. 2 as function of the crystal field ∆ and
Hubbard U , using W = 8t as energy unit . The left
panel is the case in which we artificially force the solu-
tion to stay paramagnetic (PM). It agrees qualitatively
and to some extent also quantitatively well with more re-
liable dynamical mean-field theory (DMFT) calculations
by Poteryaev, Ferrero, Georges and Parcollet.21

On the contrary, there are not DMFT results to com-
pare with in the physical case in which we allow the solu-
tion to spontaneously order magnetically, in our case an-
tiferromagnetism is actually favored. This corresponds to
the right panel in Fig. 2. Here only a first order transition
from a two-band paramagnetic metal to a one-band anti-
ferromagnetic Mott insulator is found by the Gutzwiller
approximation. Although both phase diagrams in Fig. 2
span a wide range of crystal field values, we shall here
concentrate only in the small-∆ region, see red dots in the
figure, which we believe is more representative of V2O3.
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FIG. 2: (Color online) T = 0 phase diagram for the model
Hamiltonian (1) obtained by the Gutzwiller approximation
in the paramagnetic sector (left panel) and antiferromagnetic
one (right panel). PM stands for paramagnetic while AFI
for antiferromagnetic insulator. The red dots represent the
values of ∆ and U that we shall consider in the dynamics.
The energy unit is W = 8t, where t is the orbital-diagonal
hopping. (From Ref. 20).

Two aspects that characterize the model Eq. (1) at
T = 0 and small ∆ are worth to be highlighted in com-
parison with the single-band Hubbard model. In the
Mott insulator, while the lower band is split as usual into
a lower and upper Hubbard sub-bands, the unoccupied
band actually undresses from correlations, so that the
lowest charge excitation corresponds to transferring an
electron from the lower Hubbard band to the lesser cor-
related valence band.20,21 Moreover, when magnetism is
allowed, the one-band metal phase is predicted to disap-
pear at zero temperature leaving a direct first-order phase
transition between a paramagnetic two-band metal and
an antiferromagnetic Mott insulator.20 In other words,
on the insulating side close to the Mott transition a
metastable paramagnetic metal phase is expected to ex-
ist even at zero temperature, an interesting feature that
foreshadows the possibility to stabilize such a phase un-
der non-equilibrium conditions, for instance by an exter-
nal bias as in the phenomenological model proposed in
Ref. 3 to explain experimental data.

To complete our discussion on the equilibrium proper-
ties of the model Eq. (1), we show in Fig. 3 the T 6= 0
phase diagram at ∆ = 0.025W .20 It comprises three dif-
ferent phases: a two-band paramagnetic metal at small
U , a two-band paramagnetic Mott insulator at large U
and T , and finally an antiferromagnetic Mott insulator
at large U and low T . In this case of finite temperature,
even the higher band gets thermally populated, hence
we generically denote the phases as two-bands. Without
magnetism, the paramagnetic metal is separated from the
paramagnetic Mott insulator by a first order line, shown
in the figure. In our specific two-band model at quarter
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     metal

2-band PM
  insulator
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FIG. 3: (Color online) Finite temperature phase diagram of
the model Eq. (1) obtained by the Gutzwiller approximation
at ∆ = 0.025W . Within the stability dome of the antiferro-
magnetic insulator (AFI), we indicate the first-order line that
would separate the metal from the Mott insulator should mag-
netism be not allowed. The red arrows show the values of U
considered in the dynamics. (From Ref. 20.)

filling, this first order line is not entirely covered by mag-
netism unlike in the single-band case. Indeed, there is
still a segment that emerges from the magnetic dome and
ends up into a second order critical point, closely resem-
bling the phase diagram of V2O3 that was actually the
target material this model was designed for. It is impor-
tant for the following analysis to highlight that also the
Néel transition is here first order. Therefore, when the
coexistence region close to the Néel transition overlaps
with the coexistence region between paramagnetic metal
and paramagnetic insulator, all three distinct phases ex-
ist, although only one is thermodynamically stable while
the other two are metastable. We finally mention that
the qualitative features of the finite-temperature phase
diagram in Fig. 3, specifically the order of the transitions
and the existence of a first-order line above the magnetic
region, agree with more reliable DMFT calculations per-
formed at the same value of crystal field ∆ = 0.025W .20

III. THE MODEL OUT-OF-EQUILIBRIUM

We shall now study the model Eq. (1) in out-of-
equilibrium conditions. The guiding idea is very simple.
We mentioned already that the Hubbard U introduces a
repulsion between occupied and unoccupied states that
effectively enhances the crystal field. For instance, the
center of gravity of the higher band “2” with respect to
the lower band “1” increases within mean-field from 2∆
to

2∆eff = 2∆ +
U

2

(
n1 − n2

)
≡ 2∆ +

U

2
m, (2)
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where n1 and n2 are the average occupations of each
orbital, andm = n1−n2 is hereafter defined as the orbital
polarization. This effect in turns anticipates the Mott
transition, which thus occurs at lower U the higher the
population imbalance m. Vice versa, we can also imagine
that a sudden reduction of m from the m ' 1 value in
the Mott insulating phase, induced for instance by an
intense light pulse, may launch an avalanche process – the
reduced m makes ∆eff smaller, which in turn decreases m
further and so on – thus pushing temporarily the system
in the stability region of the two-band metal.

This is illustrated schematically in Fig. 4, where we
show the T = 0 phase diagram as function of U and of the
orbital polarization m instead of its conjugate variable ∆,
as obtained by the Gutzwiller approximation20,22 in the
paramagnetic sector. In the same figure we also sketch
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Mott insulator

paramagnetic 
      metal

h⌫

FIG. 4: (Color online) Critical U for the Mott transition at
fixed value of the orbital polarization m = n1 − n2. We also
show that hypothetical path of the system under the action
of a light pulse of energy hν.

the following hypothetical experiment. The system is ini-
tially in the T = 0 m ' 1 Mott insulating phase, with
the lower orbital occupied and Mott localized whereas
the upper one empty, see Fig. 1. We then imagine that
a light pulse suddenly transfers a certain amount of elec-
trons from the lower to the upper orbital, thus reducing
the orbital polarization m, as shown in Fig. 4. The sys-
tem is thus temporarily pushed in stability region of the
two-band metal phase. In the subsequent evolution, the
system could either equilibrate back to the insulator with
a thermally reduced orbital polarization, or it could re-
main trapped into a metastable metallic phase with over-
lapping bands. The latter event is indeed not unlikely,
as we may evince by inspection of the energy as function
of m at fixed U and for various ∆’s. In Figs. 5 and 6
we plot for instance such energy at U = 1.875W in the
paramagnetic sector and U = 1.125W in the magnetic
one, respectively. We observe that there is a whole range
of crystal field values where two minima coexist, one at
m ' 1 corresponding to a single band Mott insulator, and
another at smaller m that describes a two-band metal.
The first order Mott transition that we mentioned ear-
lier just corresponds to the energy crossing of these two
minima. It follows that, on the Mott insulating side of

the coexistence region, one cannot exclude the possibility
that, by suddenly reducing the orbital polarization, the
system could be indeed trapped in the metastable metal-
lic solution, as sketched in both Figs. 5 and 6. This is
just the scenario we shall try to uncover.
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FIG. 5: (Color online) Total energy density at U = 1.875W as
function of the orbital polarization m and for different crys-
tal field splittings 2∆ in the paramagnetic sector. The gray
area corresponds to the insulating phase. We observe the
appearance of two minima at small ∆ 6= 0. We also show
the hypothetical out-of-equilibrium process that drives a sys-
tem initially in the stable Mott insulating phase towards the
metastable metal one.
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-0.08
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2∆/W = 0.025
2∆/W = 0.05
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FIG. 6: (Color online) Same as Fig. 5 but allowing for mag-
netism. In this case the gray area corresponds to an antifer-
romagnetic Mott insulator (AFI).

Before presenting our simulation of such a hypothet-
ical out-of-equilibrium metallization, we caution about
an important aspect that we will not be able to cap-
ture correctly. Since we are considering a system artifi-
cially driven into a metastable phase within a coexistence
region around a first order phase transition, nucleation
effects are expected to play a role. However, since we
shall always consider a homogeneous state, we will be not
able to describe nucleation both of the metastable metal
phase and of the stable Mott insulating one. Therefore
we do not expect to describe well long-time relaxation.
This is made even worse by the fact that the approximate
method we use to simulate the non-equilibrium dynamics
does not account for all physical dissipative processes.
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IV. THE METHOD: TIME-DEPENDENT
GUTZWILLER APPROXIMATION

In order to simulate the non-equilibrium dynamics we
shall use the time-dependent Gutzwiller approximation23

(t-GA) that has been extensively discussed elsewhere.
Here we briefly sketch the method in the formulation of
Ref. 22, which the reader is referred to for more details.

The main idea of the time dependent Gutzwiller tech-
nique is to approximate the evolving wavefunction | Ψ(t)〉
in terms of a variational state whose dynamics is set by
requiring the stationarity of the real time action

S(t) =

∫ t

0

dτ 〈Ψ(τ) | i∂τ −H(τ) | Ψ(τ)〉. (3)

One introduces the following ansatz for the wavefunc-
tion23

| Ψ(t)〉 =
∏
R

PR(t) | Ψ0(t)〉, (4)

where | Ψ0(t)〉 is a generic time-dependent variational
Slater determinant, and PR(t) a local time-dependent
variational operator.

In our model, although the inter-orbital hybridization
t′ is finite, hence the two orbitals can mutually exchange
electrons, still the local density matrix is diagonal by
symmetry. It is thence convenient to use as local basis
the Fock space

| R, {n}〉 =
∏
a=1,2

∏
σ=↑,↓

(c†Raσ)naσ |0〉, (5)

where {n} = (n1, n2), and we shall denote the single-
orbital states as na = 0, if the orbital a = 1, 2 is empty,
na = σ, with σ =↑ or ↓, if it is occupied by a single spin-
σ electron, and finally na = 2 if it is occupied by two
electrons.

The linear operator PR(t) can be parametrized in
terms of a set of time dependent variational parameters
ΦR {n}(t) as

PR(t) =
∑
{n}

ΦR {n}(t)√
P

(0)
R {n}(t)

| R, {n}〉〈R, {n}|, (6)

where

P
(0)
R {n}(t) = 〈Ψ0(t) | R, {n}〉〈R, {n} | Ψ0(t)〉, (7)

is the time-dependent occupation probability of the local
state | n〉 in the uncorrelated Slater determinant. Within
the Gutzwiller approximation, the occupation proba-
bility PR {n}(t) in the correlated wavefunction | Ψ(t)〉
turns out to coincide with the variational parameter∣∣ΦR {n}(t)

∣∣2.
In Ref. 22 it was shown that the stationarity of (3)

amounts to solve a set of coupled differential equa-
tions that determine the evolution of the uncorrelated

wavefunction | Ψ0(t)〉 and of the variational parameters
ΦR {n}(t):

i ∂t | Ψ0(t)〉 = H∗
[
Φ̂(t)

]
| Ψ0(t)〉, (8)

i ∂t Φ̂R(t) =
(
ÛR + ∆̂R

)
Φ̂R(t)

+ 〈Ψ0(t) | ∂H∗[Φ̂(t)]

∂Φ̂R(t)†
| Ψ0(t)〉. (9)

With the notation ÔR we indicate the matrix represen-
tation of the local operator OR in the Fock basis (5).

H∗
[
Φ̂(t)

]
is a non-interacting time-dependent Hamilto-

nian that depends parametrically on the variational pa-
rameters ΦR {n}(t). Physically, Eq. (8) describes the
dynamics of the coherent quasiparticles whereas Eq. (9)
that of the incoherent atomic-like excitations, including
the Hubbard bands. These two types of excitations are
only coupled in a mean-field like fashion within the time-
dependent Gutzwiller approximation, a weak point that
makes the method unable to describe all dissipative pro-
cesses of the real dynamical evolution.

In the general case of a Nèel order on a bipartite lat-
tice,24 the effective quasiparticle Hamiltonian H∗ reads

H∗ =
∑
k,σ

{ ∑
a=1,2

εk

[
< (Za(t)) c†kaσckaσ

−i= (Za(t)) c†kaσck+Qaσ

]
(10)

+ γk

[
ZSσ (t) c†k1σck2σ + ZAσ (t) c†k1σck+Q2σ +H.c.

]}
,

with Q = (π, π) the magnetic wave vector. We have
defined the following quantities:

Za(t) = R∗aσ(t)Ra−σ(t), (11)

2ZSσ (t) = R∗1σ(t)R2σ(t) +R∗1−σ(t)R2−σ(t),

2ZAσ (t) = R∗1σ(t)R2σ(t)−R∗1−σ(t)R2−σ(t),

where Raσ are the renormalization parameters that occur
in the Gutzwiller variational approach, whose meaning is

that the Fermi operator cRaσ at site R belonging to the
sublattice A has a coherent quasiparticle content that,
after projection, reads

PR(t)† cRaσ PR(t) → RA,aσ(t) cRaσ ≡ Raσ(t) cRaσ,

(12)
while the quasiparticle content of the operators on sub-
lattice B is obtained simply by recalling that

RB,aσ(t) = RA,a−σ(t) ≡ Ra−σ(t). (13)

A similar relation holds for the variational parameters
ΦR {n}(t), too, so that we shall hereafter drop the label
R and refer always to a generic site in sublattice A.

The parameters Raσ(t) thus play an important role
as they determine whether or not coherent quasiparticles
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exist. At equilibrium Raσ(t) = Raσ can always be chosen
real and its vanishing signals the onset of the paramag-
netic Mott insulator. Out-of-equilibrium but in the half-
filled single-band model, Raσ(t) can still be chosen real
and oscillates in time around a well defined mean value,23

whose vanishing identifies a dynamical Mott transition.
In the present two-band model, Raσ(t) is unavoidably
complex because its phase has to generate the effective
one-body potential for the quasiparticles that induces the
crystal field splitting as well as the staggered Zeeman
splitting. Indeed, if we write

Raσ(t) = eiφaσ(t) ρaσ(t), (14)

with ρaσ(t) real, we can absorb the phase φaσ(t) into a
unitary transformation, see Eq. (12),

cRaσ → e−iφaσ(t) cRaσ, (15)

for R in the A-sublattice, and instead

cRaσ → e−iφa−σ(t) cRaσ, (16)

for R in the B-sublattice. After such unitary transfor-
mation the quasiparticle dynamics is controlled by a new
Hamiltonian

H̃∗(t) = V∗(t) +
∑
k,σ

{ ∑
a=1,2

εk Z̃a(t) c†kaσckaσ

+γk

[
Z̃Sσ (t) c†k1σck2σ (17)

+Z̃Aσ (t) c†k1σck+Q2σ +H.c.

]}
,

with real hopping parameters Z̃ given by Eq. (11) where
each Raσ is substituted by its absolute value ρaσ. In
addition the new Hamiltonian contains spin, orbital and
sublattice dependent potential

V∗(t) =
∑

R∈A,aσ

φ̇aσ(t)nRaσ +
∑

R∈B,aσ

φ̇a−σ(t)nRaσ.

(18)

It is actually this transformed Hamiltonian H̃∗(t) that
provides a more transparent interpretation of the quasi-
particle dynamics. In particular, the diagonalization
of the instantaneous transformed Hamiltonian may give
sensible indications whether the two bands are instanta-
neously separated by a finite gap. This criterium is how-
ever effective only when magnetism is allowed, in which
case already the transformed Hamiltonian is able to de-
scribe a non-trivial insulator. In fact, magnetic order
opens additional Bragg gaps at the boundary of the re-
duced magnetic Brillouin zone, so that an insulator can
be identified with the case in which the lowest band is
separated by a finite gap from the next higher one, each
band accommodating at most one electron per site in the
reduced zone.

In the paramagnetic case, where the Mott insulator
cannot be inferred from spin-symmetry breaking, the
above criterium is useless. Moreover, since Raσ(t) is com-
plex, it is not even as straightforward as in the single-
band case to identify through its temporal evolution a
dynamical Mott transition. Nevertheless, there are sig-
nals that we believe can be still associated to a dynamical
transition. We observe that, if we write

Φ{n}(t) =
√
P{n}(t) eiϕ{n}(t), (19)

where, as we mentioned, P{n}(t) is the occupation prob-
ability of the local Fock state | n〉 on the correlated wave-
function, through Eq. (9) one realizes that P{n}(t) and
ϕ{n}(t) play the role of conjugate dynamical variables.
In the half-filled single-band model, {n} = (n1), it was
found23 that the time evolution of the phase

2ϕ(t) = ϕ(0)(t) + ϕ(2)(t)−
∑
σ=↑,↓

ϕ(σ)(t), (20)

conjugate to the probability that a site is empty or dou-
bly occupied minus the probability that it is singly oc-
cupied, i.e. P(0)(t) + P(2)(t) − P(↑)(t) − P(↓)(t), reflects
in a very transparent way the dynamical metal-insulator
transition. Indeed, in the metallic state ϕ(t) oscillates
around a mean value, signaling that its conjugate vari-
able is undetermined. On the contrary, in the Mott in-
sulating regime the phase ϕ(t) monotonically increases
with time; its mean value is thus undetermined unlike
the value of its conjugate variable. Since the conjugate
variable is nothing but the double occupancy – at half-
filling the probability of a site being empty must be the
same as being doubly occupied – that change of behav-
ior evidently signals the dynamical counterpart of the
equilibrium Brinkman-Rice metal-insulator transition,25

which is how the Mott transition looks like within the
Gutzwiller approximation.

In our two-band model, we shall start from the Mott
insulator phase, where the lowest orbital “1” is Mott lo-
calized and the highest “2” empty, and try to induce a
non-equilibrium transition into the two-band metal. It is
therefore natural to focus on the same phase variable as
before pertaining just to orbital “1”, which should turn
from being Mott localized to itinerant. In other words,
we shall concentrate on the dynamical evolution of the
phase

2ϕ(t) = ϕ(0,0)(t) + ϕ(2,0)(t)−
∑
σ=↑,↓

ϕ(σ,0)(t), (21)

conjugate to the probability that orbital “1” is empty or
doubly occupied minus the probability that is singly oc-
cupied, with the orbital “2” staying empty. More specifi-
cally, we shall monitor the time evolution of cosϕ(t) with
the belief that, if its time-average vanishes, the system
is still Mott insulating. On the contrary, if the time-
average of cosϕ(t) becomes finite we shall conclude that
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the system has dynamically jumped into the two-band
metal regime.

We just mention that the transformation ϕ → π + ϕ

and cR1σ → −cR1σ reflects a Z2 gauge symmetry of the
Gutzwiller representation26 as well as of the equivalent
Z2-slave-spin representation,27–29 which provides a very
simple interpretation of the Mott transition in the en-
larged Hilbert space exploited by both techniques. In-
deed, the metal phase turns out to correspond to a phase
with spontaneous breaking of the global Z2 symmetry,
and the Mott transition to the recovery of such symme-
try in the Mott insulator.26,29,30

In conclusion, in what follows we shall exploit either
the time-average of cosϕ(t) or the spectrum of the time-

averaged Hamiltonian H̃∗(t) in Eq. (17) to establish if
the system evolves into a metal or insulating state. As
discussed, the choice will depend whether magnetism sur-
vives at long times.
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FIG. 7: (Color online) Time evolution of m(t) (left panel)
and of the orbital “1” renormalization factor |R1|2(t) (right
panel) for different values of mi. In the left panel the order
of the curves from the bottom is mi = 0.1, 0.2, . . . , 0.8, 0.82,
while on the right panel the same order is from the top. In
this as well as in all other figures time is measured in units of
8/W .

V. NON-EQUILIBRIUM DYNAMICS IN THE
GUTZWILLER APPROXIMATION

Our aim is to simulate the out-of-equilibrium pro-
cess described in section III within the time-dependent
Gutzwiller approximation. The first issue is how to ini-
tialize the state after the fast impulse has transferred
electrons from the lower orbital to the upper one. We
make here the adiabatic assumption that such initial
state is the lowest energy one at fixed orbital polariza-
tion mi < meq, where meq is the equilibrium value corre-
sponding to the Hamiltonian parameters. This assump-
tion realizes just the processes depicted in Figs. 5 and

6, where the system is instantaneously endowed with a
value mi of the orbital polarization. Such initial state is
then let evolve according to the equations (8) and (9).

We shall consider separately the case in which the sys-
tem is forced to evolve in the paramagnetic sector and
the more realistic one in which magnetism is allowed.

A. Paramagnetic dynamics

We assume Hamiltonian parameters such that the sys-
tem at equilibrium and at T = 0 is a one-band Mott
insulator not far from the transition to a two-band metal
phase. Specifically we take U = 1.875W and 2∆ =
0.025W (red bullets in Fig. 2), so that at equilibrium
meq = 1. As mentioned, we initialize the state with an
initial orbital polarization mi < meq and study the time
evolution for different mi’s.

0 0.2 0.4 0.6 0.8m
i

0

0.5

1

FIG. 8: Time-average of cosϕ(t) as function of the initial
value of the orbital polarization mi.

In Fig. 7 we show the time evolution of the orbital po-
larization, m(t), and of the quasiparticle residue of the
orbital“1”, |R1(t)|2, for different initial mi’s. We readily
recognize two distinct dynamical regimes. For small val-
ues of mi, i.e. far from the equilibrium value meq = 1,
both the orbital polarization and |R1|2(t) show a damped
oscillatory evolution towards steady-state values. We can
actually distinguish two well separate sets of oscillation
frequencies, the shorter one being almost invisible in the
figure. We observe that mi ' 0.3 corresponds to the
metastable minimum in Fig. 5, which, being a saddle
point of the energy functional E[m], is stationary with re-
spect to the Gutzwiller equations of motion. Even though
we cannot establish a strict correspondence, still the dy-
namics of the orbital polarization m(t) follows that of a
classical particle in a potential E[m]. This foresees that
as mi increases (less energy is injected into the system)
and crosses over the top of the barrier separating the
metallic relative minimum from the insulating absolute
one, the time evolution radically changes. In this case,
in fact, we do not find anymore relaxation to a steady-
state, see for example the case mi = 0.8 in Fig. 7, and
an undamped oscillating mode persists. Finally, when
mi is further increased, see the case mi = 0.82 in Fig. 7,
the dynamics changes abruptly: |R1|2 approaches zero
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and the faster oscillations become more and more visi-
ble. The orbital polarization m(t) displays a less regular
behavior due to the small values of the renormalized hop-
ping parameters that freeze the dynamics of the Slater
determinant. Overall, m(t) does not display significant
deviations from its initial value.

More information can be gained by the behavior of
the phase variable defined in Eq. (21), more specifically
of the long-time average of cosϕ(t), which is shown in
Fig. 8. We observe that the time average is essentially
vanishing for large mi but, below m∗ ' 0.8, abruptly
jumps to a finite value close to one. As discussed earlier,
we take this as signature of a dynamical phase transition
from the Mott insulator at mi ≥ m∗ to the two-band
metal at mi < m∗. The evidence that, for mi ≥ m∗,
m(t) oscillates around a finite value, indicates that the
out-of-equilibrium Mott insulator has to be regarded as
an excited state with electrons in the conduction band
and holes in the valence one.

We highlight that such a metal regime is not compat-
ible with the hypothesis that the energy supplied to the
system simply heats it. Indeed, if we transform, following
the thermalization hypothesis, this excess energy into a
temperature determined by imposing that the total en-
ergy, conserved in the unitary evolution, coincides with
the internal energy at that temperature, we obtain the
points shown in Fig. 9, all of which are inside the Mott
insulating phase.

0.8 1 1.2 1.4 1.6 1.8 2

U/W

0

0.05

0.1

T
/W

2-band PM

  insulator

2-band PM

     metal

FIG. 9: (Color online) Phase diagram temperature T versus
U at ∆ = 0.025W within the paramagnetic sector. The red
triangles indicate the effective temperatures at which our non-
equilibrium state would correspond if thermalization holds,
for values of mi = 0.1, . . . , 0.8.

In other words, the metal regime that seems to be
stabilized during the dynamical evolution is incompat-
ible with thermalization, but it is rather related to the
metastable metallic minimum shown in Fig. 5. There-
fore the evidences seem to confirm the expectations of
section III that, when the Mott transition is first order,
it is possible to stabilize a metastable metal by properly

driving off-equilibrium the Mott insulator.

B. AFM dynamics

We now repeat the same analysis without enforcing
paramagnetism. Specifically, we shall focus here on the
time evolution of an initial correlated AFM state subject
to a sudden redistribution of the orbital polarization, as
sketched in Fig. 6.

In Fig. 6 we have shown the energy E[m] as a function
of the orbital polarization for U = 1.125W . We note
that a PM metallic minimum and an AFI one coexist,
with their respective energies that cross as a function of
the crystal field. We observe that the insulating solution
is not fully polarized, meq 6= 1, since the AFM insulator
within the GA has finite hopping renormalization factors,
so that the inter-orbital hybridization is finite. We do
expect that also in this case a stable paramagnetic metal
can emerge without any thermal counterpart.

We thus generalize the orbital polarization quench of
the previous Section to study the evolution of an initial
T = 0 AFM state at the fixed values of 2∆ = 0.05W and
U = 1.125W , 1.375W and 1.625W (red bullets in Fig. 2).
If we denote with neq

aσ the equilibrium occupation at sub-
lattice A of orbital a with spin σ, the initial nonequilib-
rium state is built by minimizing the Gutzwiller energy
imposing that

ni1σ = α neq
1σ

ni2σ = neq
2σ + (1− α) neq

1σ , (22)

with α < 1 quantifying the deviation from the equilib-
rium value αeq = 1. The state so constructed mimics an
initial excited configuration in which electrons are trans-
ferred from the lower band to the upper one without flip-
ping their spin, thus leaving unaltered the staggered mag-
netization. In other words, the initial magnetization does
not correspond to the optimized one at the given value of
the initial orbital polarization mi. This is evident in Fig.
10 where we plot the energy functional E

[
m,σ], where

both orbital polarization m and staggered magnetization
σ are fixed. The two minima in the Fig. 6 correspond
respectively to a paramagnetic metallic state and to an
antiferromagnetic insulating one, the latter being the ac-
tual absolute minimum. We remark the absence of a
third minimum corresponding to a paramagnetic Mott
insulator, which is unstable at T = 0.

From the figure one can imagine that upon quenching
the orbital polarization beyond the barrier, black dotted
arrow in the figure, m(t) and σ(t) will be attracted to-
wards the metastable paramagnetic metallic minimum,
grey arrow in the figure. Of course this argument is just
qualitative since the energy surface is self-consistently
coupled to the dynamics of all other degrees of freedom
besides m, hence it is not constant in time. Nevertheless,
we find that this näıve expectation is qualitatively cor-
rect. In Fig. 11 we show the evolution of the orbital po-
larization m(t) and of the staggered magnetization σ(t)
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FIG. 10: (Color online) Energy functional at fixed value of
the orbital polarization and of the total magnetization for a
value of 2∆ = 0.05W . The black dotted line represents the
quench in the orbital polarization, while the grey line sketches
an approximate classical dynamics.

for different α’s at the smallest value of U = 1.125W .
We first note that, as in the paramagnetic case, a high
frequency oscillating pattern superimposes on top of a
much slower oscillation. Moreover, a further frequency
scale exists and it is associated to the magnetic order,
as evident in the evolution of σ(t). Upon decreasing α,
i.e. moving away from equilibrium, σ(t) shows indeed a
coherent oscillating mode with an increasing period that
finally diverges around α ' 0.81, above which the order
parameter relaxes to zero. We estimate the frequency as-
sociated with magnetic order by the inverse time-distance
between the first two maxima in the oscillations of σ(t),
which is plotted in the bottom panel of Fig. 11 and van-
ishes linearly at the transition to the PM phase.

In order to better characterize the state towards which
the system flows, we have diagonalized the long-time

limit of the Hamiltonian H̃∗(t) in Eq. (17) and calcu-
lated the gap ∆Egap between the two lowest bands, the
lower one having predominantly the character of orbital
“1” and the upper of orbital “2”. ∆Egap versus α is
shown in Fig. 12. We observe that the gap closes, i.e.
the system turns metallic, below α ∼ 0.9, but there is a
region 0.81 . α . 0.9 when the magnetic order param-
eter is still finite; this state is therefore a SDW metal.
Only below α ' 0.81 the magnetic order melts and the
metal becomes paramagnetic. The existence of a SDW
metal is unexpected since such a phase does not appear
in the phase diagram Fig. 3 at high temperature, which
is suggestive of a non-thermal behavior. Indeed, if we
extract the effective temperature T∗ that would corre-
spond to the initial non-equilibrium condition according
to thermalization, also shown in Fig. 12, we observe that
magnetic order survives well above a temperature corre-
sponding to the equilibrium Néel temperature TN . Even
though the Gutzwiller approximation presumably over-
estimates the effective temperature that corresponds to

a given internal energy, we mention that the non-thermal
persistence of magnetism has been also observed in the
dynamics following an interaction quench of an initial
AFM state for the single band Hubbard model.24,31,32
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FIG. 11: (Color online) Upper panels: Time evolution of the
staggered magnetization σ(t) (left panel) and of the orbital
polarization m(t) (right panel) for different values of α at a
fixed value of U = 1.125W . Lower panel: Inverse of the period
oscillation for the AFM coherent mode as a function of the
quench parameter α.
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FIG. 12: (Color online) Leftmost points: Effective tempera-
ture T∗ in units of the Néel temperature TN extracted accord-
ing to thermalization hypothesis. The blue square points in-
dicate that a magnetic insulator, the purple triangles a SDW
metal, and finally the red circles a PM metal. Rightmost
points: Energy gap ∆Egap between the two lowest bands.
Both T∗ and ∆Egap are plotted versus α. We recall that
αeq = 1 is the equilibrium value, so the smaller α the greater
the deviation from equilibrium is.
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FIG. 13: (Color online) Time-evolution of the orbital polariza-
tion m(t) (upper panel) and of the magnetic order parameter
σ(t) (lower panel) for two different alpha’s at U = 1.625W .
The upper black curves in both panels correspond to α = 0.9,
and the green lower ones to α = 0.7.

Apart from the non-thermal persistence of magnetic
order, the overall dynamical behavior at U = 1.125W is
what we would expect; above a threshold value of the in-
jected energy the antiferromagnetic Mott insulator turns
into a metal as if temperature raises, see the arrow at
U = 1.125W in Fig. 3.

Seemingly, we would expect that at large U the antifer-
romagnetic Mott insulator should instead transform into
a paramagnetic Mott insulator, see again Fig. 3. This
is indeed what happens at U = 1.625W . In Fig. 13 we
show the time evolution of the orbital polarization m(t)
and of the magnetic order parameter σ(t) for two differ-
ent alpha’s, α = 0.9 close to equilibrium and α = 0.7
further from it. We observe that, while at α = 0.9 the
magnetic order parameter stays finite, at α = 0.7 it flows

to zero. The spectrum of the effective Hamiltonian H̃∗(t),
Eq. (17), at large times shows that α = 0.9 still corre-
sponds to a magnetic Mott insulator, with a well defined
gap. In the other case, α = 0.7, we have instead to resort
to the phase variable Eq. (21) to establish whether the
paramagnetic state is metallic or insulating. In Fig. 14
we thus show the time evolution of the renormalization
factor |R1↑(t)|2 for orbital “1” and majority spin and of
the phase angle ϕ(t) defined in Eq. (21). We observe
that ϕ(t) at α = 0.7 decreases monotonically with time,
which we take as indication that the paramagnetic state
towards which the system flows is indeed insulating. We
highlight the different dynamical behavior of the α = 0.9
magnetic insulator, where |R1↑(t)|2 oscillates around a
finite value and |ϕ(t)| does not grow indefinitely.

Therefore, both at small U = 1.125W and large U =
1.625W the non-equilibrium pathway is essentially equiv-
alent to a temperature rise. Quite different is instead the
case when U is closer to the paramagnetic metal to para-
magnetic insulator first order line. Fig. 15 is the same
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FIG. 14: (Color online) Top panel: time evolution of the
renormalization factor |R1↑(t)|2 for orbital “1” and majority
spin for α = 0.9, black top curve, and α = 0.7, green bottom
one, at U = 1.625. Bottom panel: phase angle ϕ(t), Eq. (21),
for α = 0.9, black curve in the top panel, and α = 0.7, green
one in the bottom panel, still at U = 1.625W .

as Fig. 13 but at smaller U = 1.375W , see Fig. 3. We
observe that, as expected, upon decreasing α, i.e. deviat-
ing more from equilibrium, the magnetic order parameter
disappears. However, unlike the case at U = 1.625W , the
phase angle ϕ(t) remains limited in a finite window also
when magnetism melts. From the spectrum of the effec-

tive Hamiltonian H̃∗(t), Eq. (17), we also deduce that
the gap is finite at α = 0.9 but vanishes at α = 0.7. This
result together with the behavior of the phase angle ϕ(t)
suggests that upon moving away from equilibrium, i.e.
reducing α, the antiferromagnetic Mott insulator even-
tually gives up to a paramagnetic metal, which has no
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FIG. 15: (Color online) Same as Fig. 13 but at U = 1.375W .
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counterpart in the equilibrium phase diagram, see Fig. 3.
At first glance this finding might look odd. However, we
earlier remarked that close to the crossing point between
the Néel critical line and the first order line separating at
T > TN the paramagnetic metal from the paramagnetic
insulator, there actually exist three coexisting phases.
Therefore, even though at U = 1.375W the equilibrium
phase diagram only displays either an antiferromagnetic
insulator or a paramagnetic one, a metastable paramag-
netic metal does exist and, as we just showed, can be
accessed by a non-equilibrium pathway.
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FIG. 16: (Color online) Same as Fig. 14 but at U = 1.375W .

VI. CONCLUSIONS

We have studied the out-of-equilibrium dynamics of
a quarter-filled Hubbard model of two orbitals that are
weakly crystal-field split, which we believe captures the
key physical properties of vanadium sesquioxide.

We showed that exciting the Mott insulator by sud-
denly transferring electrons from the lower orbital to the
upper one may lead to a gap-collapse and drive the sys-
tem into a metastable metal phase. Such a peculiar non-
equilibrium pathway has been uncovered by means of the
time-dependent Gutzwiller approximation. Even though
this method suffers from a lack of dissipative channels
that operate in the real dynamics, hence clearly over-
estimates the time the system stays trapped into the
metastable metal, nevertheless we believe that the qual-

itative scenario is correct. The reason is that it simply
derives, and actually could have been predicted in ad-
vance, from general properties at equilibrium that have
been also found by more rigorous DMFT treatments.20,21

Specifically:

(1) The Mott insulator, either paramagnetic or antifer-
romagnetic, is characterized by a minimal gap that
corresponds to transferring electrons from the occu-
pied lower orbital to the empty upper one, rather
than from the lower to the upper Hubbard sub-
bands. Moreover that gap is a dynamical, breath-
ing quantity, in the sense that it determines but it
is in turns determined by the relative occupation of
the two orbitals;

(2) The Mott transition is generically first order even
at zero temperature.

In fact, point (1) implies that a non-equilibrium excess
population of the upper orbital might lead to a gap clos-
ing and temporarily push the system in the metastable
metal phase whose existence on the insulating side nearby
the transition is entailed by point (2).

Although the model is a very specific one, we are con-
vinced that the overall physical behavior might be appli-
cable to the class of Mott insulating materials that dis-
play the two characteristic properties (1) and (2) above.
Such a class presumably includes V2O3 and VO2, and
possibly also some charge transfer Mott insulators. As
a matter of fact, non-equilibrium gap collapse has been
indeed observed recently by pump-probe time-resolved
photoemission in V2O3,33 and also in VO2,34 even though
it is still under debate the relevance of strong correlations
in the insulating phase of VO2.35,36 In addition, the im-
portant role of the first order character of the Mott tran-
sition that we unveiled is consistent with the phenomeno-
logical model introduced in Ref. 3 to interpret the dielec-
tric breakdown observed in several Mott insulators.
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28 S. D. Huber and A. Rüegg, Phys. Rev. Lett. 102,

065301 (2009), URL http://link.aps.org/doi/10.1103/

PhysRevLett.102.065301.
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