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We present a comprehensive study of Parker-type bounds on magnetic monopoles with arbitrary
magnetic charge, including minicharged monopoles and magnetic black holes. We derive the bounds based
on the survival of galactic magnetic fields, seed magnetic fields, as well as primordial magnetic fields.
We find that monopoles with different magnetic charges are best constrained by different astrophysical
systems: while monopoles with a Dirac charge are tightly constrained by seed galactic magnetic fields,
minicharged monopoles are strongly constrained by primordial magnetic fields, and magnetic black holes
by the density of dark matter. We also assess the viability of the various types of monopoles as dark matter,
by studying whether they can cluster with galaxies hosting magnetic fields.
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I. INTRODUCTION

Magnetic monopoles have long been a topic of intense
study since Dirac showed that their existence is consistent
with quantum electrodynamics [1]. This discovery was
followed by ’t Hooft [2] and Polyakov [3] who found
classical soliton solutions that correspond to monopoles.
Such solitonic monopoles can be produced during phase
transitions in the early universe [4–6] and are an inevitable
prediction of theories of grand unification. The magnetic
charge of monopoles is constrained by the Dirac quantiza-
tion condition as eg ¼ 2πn, n∈Z. For this reason, exper-
imental searches over the years have mostly focused on
monopoles with a charge g ∼ 2π=e. However recently a
number of theoretical works have considered monopoles
possessing a wide range of charges.
Minicharged monopoles with g ≪ 2π=e can be realized

by having a physical Dirac string. Such configurations
can arise, for instance, from a kinetic mixing between the
Standard Model photon and a dark massive photon, in
which case the monopole’s charge under the visible
magnetic fields is proportional to the mixing parameter
[7–12]. Going to very large masses, magnetically charged
black holes can be seen as giant monopoles with small

charge-to-mass ratio. The phenomenology of black
holes with magnetic charge has recently been discussed
in [13–20]. Such black holes are interesting as they cannot
Hawking evaporate beyond extremality, leading to the
possibility for primordial black holes with very small
masses to survive until today. Both minicharged monopoles
and magnetic black holes have also been considered as
interesting candidates of dark matter.
The relic abundance of magnetic monopoles is con-

strained by the requirement that they do not exceed the
critical density of the universe [5,21,22]. However, even
stronger constraints can be obtained from the magnetic fields
present in the universe. The idea behind this is that magnetic
fields lose energy by accelerating monopoles, hence requir-
ing their survival imposes an upper bound on the monopole
abundance. This was first proposed by Parker, who derived
an upper bound on the monopole flux inside our Galaxy
from the survival of the Galactic magnetic fields [23–25].
This so-called Parker bound was subsequently extended
by considering a seed magnetic field of our Galaxy [26].
Intergalactic magnetic fields [27–30], on the other hand, may
not directly yield Parker-type bounds. This is because the
accelerated monopoles do not effectively dissipate their
kinetic energy in the intergalactic voids, and thus can end
up returning the energy to the magnetic field. However, if the
intergalactic fields have a primordial origin, as suggested by
various studies (see, e.g., [31] for a review), the monopoles
could have shorted out the magnetic fields in the early
universe by transferring the magnetic energy into the cosmic
plasma. Parker-type bounds from primordial magnetic
fields have thus been derived based on the fields’ survival
during the radiation-dominated epoch [32] and the reheating
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epoch [33]. We also note that strong magnetic fields can
give rise to monopole pair production through the mag-
netic dual of the Schwinger effect [34–36]. Lower bounds
on the monopole mass have been obtained by analyzing
this effect on the surface of magnetars [12,37], in heavy-
ion collisions at the LHC [37,38], and in primordial
magnetic fields [33,39].
Direct searches for monopoles mainly rely on the

detection of an induced electric current in superconduct-
ing rings [40], or of the energy released into calorimeters
from the interactions of a crossing monopole with the
charged particles of the material [41,42]. However, it is
extremely difficult to apply these methods to minicharged
monopoles due to the sensitivity of the detectors and the
selecting algorithms used in the experiments. For mag-
netic black holes, their very large masses combined with
the constraint from the critical density of the universe
restrict their flux on Earth to be extremely tiny; hence
they are also minimally constrained by direct searches.
We should note that a subclass of GUT monopoles can
catalyze nucleon decay, and searches based on this
process have been performed; however whether monop-
ole catalysis happens depends on the details of the model.
Thus, the possibility of deriving indirect bounds from
astrophysical observations is even more compelling for
monopoles possessing charges that are very different
from the Dirac charge.
In this work we present a comprehensive study of Parker-

type bounds on the flux of magnetic monopoles with
arbitrary charge, including minicharged monopoles and
magnetically charged black holes. We derive the flux
bounds based on the survival of galactic magnetic fields,
seed magnetic fields, and primordial magnetic fields, by
clarifying the range of applicability of each bound along the
way. We find that, depending on the type of monopoles, the
strongest bound arise from different astrophysical systems.
In particular, we show that while seed galactic magnetic
fields impose tight bounds on monopoles with a Dirac
charge, minicharged monopoles are strongly constrained
by primordial magnetic fields, and magnetic black holes by
comparison with the dark matter density. We also derive
conditions for monopoles to be able to cluster with galaxies
hosting magnetic fields, based on which we examine
whether the various types of monopoles can provide viable
dark matter candidates.
This paper is organized as follows. In Sec. II we revisit

bounds from galactic fields and extend them to monopoles
with arbitrary charge. In Sec. III we review the evolution of
primordial magnetic fields in the presence of monopoles
and derive bounds based on the survival of primordial
fields. In Sec. IV we make a comparison of the different
Parker bounds. In Sec. V we investigate how the bounds
apply to extremal magnetic black holes. We then conclude
in Sec. VI. Appendix is dedicated to a study of monopole
dynamics in galactic magnetic fields.

Throughout this work we use Heaviside-Lorentz units,
with c ¼ ℏ ¼ kB ¼ 1, and use MPl to denote the reduced
Planck mass ð8πGÞ−1=2. We denote the monopole’s mass
by m, and the amplitude of the magnetic charge by g. The
charge of a Dirac monopole is written as gD ¼ 2π=e ≈ 21.

II. BOUNDS FROM GALACTIC
MAGNETIC FIELDS

In this section we revisit the Parker bounds on the
monopole flux from galactic magnetic fields [23,24] and
seed fields [26]. We extend the previous computations to
allow for the monopoles to carry arbitrary magnetic charge,
and we also clarify the range of applicability of the bounds.
Let us consider a generic galaxy hosting magnetic

fields, that are amplified by dynamo action with a time-
scale τgen. After the dynamo saturates, the magnetic field
is assumed to stay nearly constant, and we represent the
time period between saturation and today by τsat. All cases
with τsat being comparable to or smaller than τgen describe
a similar situation where the fields have been growing
until very recent times. Hence, without loss of generality
we impose τsat ≥ τgen.
Monopoles within a galaxy are accelerated by the

magnetic fields. We model the fields such that they exist
in a region of size R, which is further divided into cells of
uniform field. The size of each cell, i.e., the magnetic field’s
coherence length, is denoted by lc (< R). We further
assume that the field strength B is the same in all cells,
but the direction of the field is uncorrelated from one cell to
the next. The average energy gain per monopole after it has
passed through N uncorrelated cells is derived in the
Appendix as

ΔEN ∼

8>><
>>:

N
4

ðgBlcÞ2
mðγi−1Þ for N ≪ 8

�
mðγi−1Þ
gBlc

�
2
;ffiffiffi

N
2

q
gBlc for N ≫ 8

�
mðγi−1Þ
gBlc

�
2
;

ð2:1Þ

where γi is the initial Lorentz factor of the monopole upon
entering the first cell.1 In the first line the energy gain is
smaller than the initial kinetic energy, i.e., ΔEN <
mðγi − 1Þ, while in the second line the monopole has been
sufficiently accelerated such that ΔEN > mðγi − 1Þ. If
mðγi − 1Þ ≪ gBlc, the energy gain is given by the second
line from the first cell. For the first line of (2.1) to describe
well the average behavior of a set of monopoles, the
product of the number of monopoles p and the number

1It would be very interesting to study more realistic models
where the directions of magnetic fields are not completely
random; this should realize a more efficient acceleration of
monopoles and thus yield stronger flux bounds. The analysis
here also neglects the effect of the galaxy’s gravitational potential,
as well as the possibility that the monopoles spend ample time in
galactic regions without magnetic fields.
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of cells N each monopole passes through need to be large
enough such that

pN ≫ 16

�
mðγi − 1Þ

gBlc

�
2

: ð2:2Þ

The second line of (2.1) works for p ≫ 1.

A. Do monopoles cluster with a galaxy?

If monopoles are bound in a galaxy, they would be
moving with the virial velocity vvir (≪ 1). However since the
monopoles, on average, are constantly accelerated in galactic
magnetic fields, they will eventually acquire a large enough
velocity to escape from the galaxy. Considering that the
escape velocity is not much larger than the virial velocity, let
us estimate the timescale for the monopoles to escape from
the galaxy as the time it takes for the monopoles’ velocity to
become larger than vvir by a factor of order unity.
If mv2vir=2 ≪ gBlc, then the monopole is accelerated to

the escape velocity within a single cell. Then it suffices to
consider a uniform magnetic field, in which the velocity
varies as Δv ¼ gBΔt=m while the monopole is nonrela-
tivistic. Hence we can estimate the escape time as

τesc ∼
mvvir
gB

: ð2:3Þ

On the other hand if mv2vir=2 ≫ gBlc, the monopoles pass
through multiple cells before reaching the escape velocity.
The two limiting expressions in (2.1) represent the regimes
where the monopole velocity has barely/significantly
increased from its initial velocity. The escape velocity is
acquired in between the two regimes, when the number of
cells passed through is

Nesc ∼ 2

�
mv2vir
gBlc

�
2

: ð2:4Þ

Hence the escape time is

τesc ∼
Nesclc
vvir

∼
2m2v3vir
g2B2lc

: ð2:5Þ

The escape time for both cases mv2vir=2 ≪ gBlc and
mv2vir=2 ≫ gBlc can collectively be written as

τesc ∼max

�
mvvir
gB

;
2m2v3vir
g2B2lc

�

∼max

�
107 yr

�
m

1017 GeV

��
g
gD

�
−1
�

B
10−6 G

�
−1
�
vvir
10−3

�
;

107 yr

�
m

1017 GeV

�
2
�

g
gD

�
−2
�

B
10−6 G

�
−2
�

lc
1 kpc

�
−1
�
vvir
10−3

�
3
�
: ð2:6Þ

The escape time decreases as B is amplified, given that
the other parameters do not change as much as B.
Monopoles can thus stay clustered with a galaxy if the
escape time is longer than the time elapsed since the
magnetic field achieved its present-day strength B0, i.e.,

2

τescjB¼B0
> τsat: ð2:7Þ

Let us assume hereafter that the timescale of dynamo is
comparable to or larger than the time it takes for a particle
with virial velocity to cross the magnetic field region of the
galaxy,

τgen ≳ R
vvir

∼ 107 yr

�
R

10 kpc

��
vvir
10−3

�
−1
: ð2:8Þ

From this it follows that τsat > lc=vvir, indicating that
monopoles that obtain the escape velocity within a single
cell cannot stay clustered until today. Hence for monopoles
to be clustered, mv2vir=2 ≫ gBlc is a necessary condition.
An even stronger condition is obtained by substituting (2.5)
into (2.7), which yields a lower bound on the mass of
clustered monopoles as

m≳ 1018 GeV

�
g
gD

��
B0

10−6 G

��
lc

1 kpc

�
1=2

×

�
τsat

1010 yr

�
1=2

�
vvir
10−3

�
−3=2

: ð2:9Þ

Considering for instance the Milky Way, for which
the typical parameters of the magnetic field and virial
velocity are shown on the right-hand side as the reference
values [43–45], monopoles with a Dirac charge can be

2The derivation of τesc uses the assumption of a constant B,
which breaks down if τesc > τsat. In such cases the exact value of
τesc can be modified from (2.6), but we can still conclude that the
monopoles can cluster with the galaxy. A similar discussion
applies to the magnetic field dissipation time which we derive
later.
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clustered today only if their mass is larger than 1018 GeV.3

Producing such ultraheavy monopoles in the postinflation
universe presents a challenge for monopoles with charge
g ≥ gD to serve as dark matter. This is no longer the case for
minicharged (g ≪ gD) monopoles, which can cluster with
smaller masses.

B. Backreaction from monopoles

We now derive bounds on the flux of monopoles inside
galaxies by studying the backreaction from the monopoles
on galactic magnetic fields.

1. Unclustered monopoles

We start by considering monopoles that are not trapped
inside a galaxy but pass through it. The incident flux
of such unclustered monopoles on a galaxy is equivalent to
the flux inside the galaxy, from monopole number con-
servation.4 Writing the flux per area per solid angle per time
as F, and modeling the magnetic field region of the galaxy
by a sphere with radius R, then the number of monopoles
passing through the magnetic region per time is 4π2R2F.
(The extra power of π is from integrating over the solid
angle on one side of the surface of the magnetic region.)
Each monopole crosses roughly N ¼ R=lc cells as it
traverses the magnetic region, and on average gains

energy of ΔEN¼R=lc . In turn, the magnetic field loses
energy at a rate,

ĖB ∼ −4π2R2FΔEN¼R=lc : ð2:11Þ

Comparing this with the total magnetic field energy,
EB ¼ ð4πR3=3ÞðB2=2Þ, the timescale for the magnetic
field to be dissipated is computed as

τdis ¼
EB

jĖBj
∼max

8<
:2mðγi − 1Þ

3πg2Flc
;

B

3
ffiffiffi
2

p
πgF

ffiffiffiffi
R
lc

s 9=
;; ð2:12Þ

where we substituted (2.1) into ΔEN¼R=lc . Here γi is
understood as the Lorentz factor of the monopoles with
respect to the galaxy, upon galaxy entry.
The backreaction from the monopoles has little effect on

the magnetic field evolution if the field amplification by
dynamo proceeds at a faster rate,

τdis > τgen: ð2:13Þ

This condition should hold throughout the galactic history
for negligible backreaction,5 and it translates into an upper
bound on the monopole flux,

F ≲max

�
10−16 cm−2 sec−1 sr−1

�
m

1017 GeV

��
g
gD

�
−2
�

lc
1 kpc

�
−1
�

τgen
108 yr

�
−1
�
γi − 1

10−6

�
;

10−16 cm−2 sec−1 sr−1
�

g
gD

�
−1
�

B
10−6 G

��
R
lc

�
1=2

�
τgen

108 yr

�
−1
�
: ð2:14Þ

The first (second) line sets the bound when m is larger
(smaller) than the threshold value,

m̂∼1017GeV

�
g
gD

��
B

10−6G

��
lc

1kpc

��
R
lc

�
1=2

�
γi−1

10−6

�
−1
:

ð2:15Þ

Monopoles with masses smaller than this exit the galaxy
with a velocity much larger than their incident velocity vi.
By using the expression (2.1) for ΔEN in the above

derivation, it was implicitly assumed that the monopoles
each pass through at least one cell within the dissipation
time τdis. Moreover for small-mass monopoles which
gain energy as ΔEN ∝

ffiffiffiffi
N

p
[cf. second line of (2.1)],

we assumed that the time it takes for the monopoles to
cross the entire magnetic region is shorter than τdis. These
two assumptions are automatically satisfied when the
condition (2.13) holds along with

τgen ≳ R
vi

∼ 107 yr

�
R

10 kpc

��
vi

10−3

�
−1
: ð2:16Þ

3A similar bound can be obtained by requiring the gravitational
acceleration of a monopole with virial velocity on a circular orbit
at the radius of the galaxy (v2vir=rg), to be larger than the magnetic
acceleration (gB0=m). This yields

m≳ 1018 GeV

�
g
gD

��
B0

10−6 G

��
rg

10 kpc

��
vvir
10−3

�
−2
: ð2:10Þ

4The velocity and number density upon entering the galaxy can
each be different from those inside the galaxy, however their
product remains constant. Here we do not consider initially
unclustered monopoles becoming clustered, or vice versa. We
also neglect monopole-antimonopole annihilation.

5This guarantees negligible backreaction even after the dy-
namo saturates, if τgen also sets the timescale for the magnetic
field’s deviations from the saturation value to decay. However
since the field amplification lives on a finite supply of energy of
the galaxy, one may instead require τdis > τsat, giving a stronger
bound.
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In other words, the flux bound (2.14) applies without
modification under (2.16).
It should also be noted that for the first line of (2.1) to

well describe the mean behavior of monopoles, the
monopole number needs to be large enough to satisfy (2.2).
The total number of unclustered monopoles passing
through the magnetic region before the field is dissipated
is p ¼ 4π2R2Fτdis. Using also the first term in the far right-
hand side of (2.12) for τdis, and N ¼ R=lc for the number of
cells each monopole crosses, then (2.2) yields an upper
bound on the monopole mass,

m≲1063GeV

�
B

10−6G

�
2
�

R
10 kpc

�
3
�
γi−1

10−6

�
−1
: ð2:17Þ

The condition (2.2) is not necessary when τdis is given by
the second term in (2.12), however even in this case the
monopole number p ∼ BR5=2=gl1=2c should be larger
than unity for the derivation of the flux bound to be valid.
This requires

B≳ 10−52 G

�
g
gD

��
lc

1 kpc

�
1=2

�
R

10 kpc

�
−5=2

: ð2:18Þ

This condition is equivalent to requiring that m̂ given
in (2.15) is smaller than the upper mass limit of (2.17). The
conditions (2.17) and (2.18) seem rather weak, however
they can become important when considering systems with
extremely weak B, or when constraining extremely massive
monopoles such as magnetic black holes.
The magnetic field energy taken away by the monopoles

can, in principle, later be returned to the field. Then τdis
would only correspond to the half-period of the energy
oscillation between the magnetic field and monopoles,
and the flux bound would be invalidated. However it was
pointed out in [24,25] that for monopoles with charge of
g ∼ gD, the galactic magnetic fields cannot be maintained
in this way since the oscillations are subject to Landau
damping, and also because the oscillations would give
features of the field that do not match with observations. It
would be important to analyze whether Landau damping is
effective with minicharges, g ≪ gD. We leave this for future
work. We also note that for unclustered monopoles, they
may fly away from the galaxy before returning the energy
to the field.

2. Clustered monopoles

Monopoles that are bound in a galaxy move with the
virial velocity vvir, and hence each monopole crosses
approximately N ¼ vvir=lc cells per unit time. The energy
the monopoles steal from the magnetic field per time per
volume is thus

ρ̇B ∼ −nΔEN¼vvir=lc ; ð2:19Þ

where n is the number density of clustered monopoles.
While a monopole is clustered, its energy follows
ΔEN ∝ N as shown in the first line of (2.1), with
γi − 1 ≃ v2vir=2. Taking the ratio with the magnetic energy
density ρB ¼ B2=2, and noting that the flux is written as
F ¼ nvvir=4π, the dissipation timescale is obtained as

τdis ¼
ρB
jρ̇Bj

∼
mv2vir

4πg2Flc
: ð2:20Þ

This matches up to an order-unity factor with the first
expression in (2.12) for unclustered monopoles,6 after the
replacement vi → vvir. Hence the requirement of negligible
backreaction on the magnetic field, τdis > τgen, yields a flux
bound that is similar to the first line of (2.14), but with
v2vir=2 instead of γi − 1.
The derivation assumes that the monopoles pass through

at least one cell before their backreaction becomes relevant,
i.e. τdis > lc=vvir. This is automatically satisfied under
τdis > τgen and the condition (2.8). From (2.8) it also
follows that the lower mass limit (2.9) for clustered
monopoles is larger than the threshold mass (2.15) where
the flux bound for unclustered monopoles switches its
behavior, if vi ¼ vvir. The flux bound also requires a
monopole number large enough to satisfy (2.2), which
yields a mass limit similar to (2.17).
Here we ignored the possibility of the monopoles

escaping from the galaxy before dissipating the magnetic
field, while in Sec. II A we ignored the monopoles’
backreaction on the magnetic field. By combining the
discussions, however, we can say that clustered monop-
oles need to satisfy both the flux bound and the mass
bound (2.9). Otherwise, either the galactic magnetic field
is dissipated, the monopoles are ejected from the galaxy,
or both.7

C. Monopole energy loss in interstellar medium
and radiative emission

In our analysis, we neglected the monopole’s interaction
with the interstellar medium and radiative energy loss. Here
we provide a rough estimate of the effects and show that
they are negligible.

6This is because in both (2.20) and the first expression
of (2.12), monopoles gain energy as ΔEN ∝ N, and the
number of cells crossed per unit time by all the monopoles in
the magnetic region is ∼4π2FR3=lc.7We may guess what happens by comparing the energy
required to eject all monopoles from the galaxy per volume,
ρej ∼ nmv2vir=2, and the magnetic energy density today, ρB ¼
B2
0=2. The former is larger if mF ≳ B2

0=4πvvir. This threshold
matches with the value of mF where the mass lower limit (2.9)
and flux upper limit (2.14) becomes equal, up to a factor of
∼τsat=τgen.
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Considering for simplicity a monopole moving more or
less along a magnetic field line, its energy gain from the
magnetic field per unit length is

�
dE
dx

�
mag

∼ gB: ð2:21Þ

For instance for a charge g ¼ gD and field strength B ¼
10−6 G, the energy gain is ðdE=dxÞmag ∼ 10−2 eV cm−1.
Monopoles lose energy in the interstellar medium by

ionization and atomic excitation of the constituent neutral
particles. The energy loss can be evaluated from the Bethe–
Bloch formula considering monopoles as particles with a
velocity-dependent electric charge, q ¼ gv [46]. This gives,
at the order-of-magnitude level,

−
�
dE
dx

�
ion

∼
e2g2nm
me

; ð2:22Þ

where nm is the number density of atoms in interstellar
space and me is the electron mass. Assuming nm ¼ 1 cm−3

[47] and g ¼ gD, the energy loss is −ðdE=dxÞion ∼
10−14 eV cm−1, which is completely negligible with respect
to the energy gain from the magnetic field. Other electro-
magnetic processes that induce energy loss of monopoles
in matter include pair production and photonuclear inter-
actions, however both contributions are subdominant com-
pared to the ionization effect for γ < 104 [48]. There can
also be energy loss through bremsstrahlung radiation in
collisions; however this effect is inversely proportional
to the monopole mass [48], so we expect it also to be
subdominant.
Monopoles lose energy also by emitting radiation as they

are accelerated by the galactic magnetic field. The energy
loss by this process can be described by the magnetic dual
of the Larmor formula, which for a nonrelativistic monop-
ole accelerated as v̇ ∼ gB=m yields,

−
�
dE
dt

�
rad

∼
g4B2

m2
: ð2:23Þ

Assuming B ¼ 10−6 G, g ¼ gD, m ¼ 100 GeV, and a
monopole velocity v ¼ 10−3, the energy loss per unit
length is −ðdE=dxÞrad ∼ 10−25 eV cm−1. Here we consid-
ered the smallest monopole mass admitted by the bound
from [38] to maximize the energy loss, however it is still
negligible compared to the energy gain from the mag-
netic field.
We expect the main results of this section to be generic,

however it would be important to analyze energy losses in
more realistic models of the distribution of the interstellar
medium, and also to perform a systematic study in the full
parameter space. We leave these for the future.

D. Summary of bounds from galactic magnetic fields

We have seen that the bounds on the flux of clustered
and unclustered monopoles inside galaxies are collectively
described by (2.14), given that the dynamo timescale,
monopole mass, and magnetic field respectively satisfy
(2.16)–(2.18). For unclustered monopoles γi in these
expressions denotes the initial Lorentz factor with respect
to the galaxy, while for clustered monopoles it is given by
the virial velocity as γi − 1 ¼ v2vir=2. Clustered monopoles
further need to satisfy the lower bound on the mass (2.9) in
order to stay clustered until today.
The flux bound (2.14) at large m increases with m

whereas it is independent of B, and vice versa at small m.
Considering present-day magnetic fields, whose amplitude
in spiral galaxies is typically of B0 ∼ 10−6 G, one repro-
duces the results of [24] (see also [11,13]). However, the
bound applies throughout the history of a galaxy, and
thus the bound at low masses can be improved by studying
galaxies in the past when their magnetic fields were weaker.
Strong bounds are obtained from the initial seed field for
galactic dynamo [26],8 although there is a huge uncertainty
in the seed field ranging typically between 10−30 G≲ B≲
10−10 G [43–45]. We also note that increasing lc and/or g
improves the flux bound, as well as the lower mass limit for
clustered monopoles.
In Fig. 1 we show the flux upper bound (2.14) as a

function of the monopole mass, with the magnetic charge
varied as g ¼ gD (red), 10−3gD (purple), 10−6gD (blue). The
solid lines denote bounds from the magnetic field in the
present Milky Way, taken as B ¼ 10−6 G. The dashed lines
show how the bound improves by considering a seed field
of B ¼ 10−11 G. The dotted vertical lines represent the
lower mass limit (2.9) of clustered monopoles in the
Milky Way. Here the other parameters are taken as
lc ¼ 1 kpc, R ¼ 10 kpc, τgen ¼ 108 yr, τsat ¼ 1010 yr,
and γi − 1 ¼ 10−6.
In the plot we also show bounds from the requirement

that the density of monopoles ρM does not exceed the dark
matter density ρDM. Using ρM ¼ mn for nonrelativistic
monopoles with n being the number density, the require-
ment translates into an upper bound on the monopole flux
F ¼ nvi=4π as,

F ≤
ρDMvi
4πm

≈ 3 × 10−17 cm−2 sec−1 sr−1
�

m
1017 GeV

�
−1
�

vi
10−3

�

×

�
ρDM

1.3 × 10−6 GeV cm−3

�
: ð2:24Þ

8The results in [24,26] are slightly different at the high mass
end where the bound is independent of B; this is because the two
works use different values for the other parameters such as lc, and
also different rounding methods.
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The flux of unclustered monopoles is bound by setting the
dark matter density to the average value in the universe,
ρDM ≈ 1.3 × 10−6 GeVcm−3 [49]; this is shown in the plot
as the gray solid line. On the other hand, the abundance
of clustered monopoles should be compared to the local
dark matter density in galaxies; the gray dotted line shows
the bound using the value in our Milky Way, ρDM ≈
0.4 GeVcm−3 [50].
One sees in the plot that for clustered monopoles, the

bound from the local dark matter density (which scales
as ∝ m−1) is stronger than that from the survival of
galactic fields (∝ m) for most of the mass range where
the monopoles can be clustered. This can be shown
explicitly by comparing the mass meq where the two upper
bounds [(2.24) and the first line of (2.14)] become equal, to
the lower limit on the mass mcl for clustered monopoles
[cf. (2.9)]; their ratio is

meq

mcl
∼ 10

�
B0

10−6 G

�
−1
�

τgen
108 yr

�
1=2

�
τsat

1010 yr

�
−1=2

×
�
vvir
10−3

��
ρDM

0.4 GeVcm−3

�
1=2

: ð2:25Þ

This shows that meq and mcl are not too different in the
Milky Way whose magnetic field and dark matter param-
eters are typically given by the reference values in the right-
hand side. This means that if monopoles can cluster with
our Galaxy and their density does not exceed that of dark

matter, then they almost automatically satisfy the Parker
bound from Galactic fields.9 In the literature the Galactic
Parker bound has often been analyzed for constraining
monopoles as a dark matter candidate; however most such
studies focus on parameter regions where the monopoles
actually cannot cluster with our Galaxy and hence obvi-
ously cannot serve as dark matter.

III. BOUNDS FROM PRIMORDIAL
MAGNETIC FIELDS

In this section we extend the computations for the bounds
from primordial magnetic fields derived in [32,33] to allow
for the monopoles to carry arbitrary magnetic charge.
Magnetic monopoles are accelerated by the primor-

dial magnetic fields and the fields consequently lose
their energy. If the interaction between the monopoles
and the charged particles of the primordial plasma is
sufficiently strong, the energy of the primordial mag-
netic fields is eventually transferred to the primordial
plasma. From the requirement that the primordial
magnetic fields survive until today, we get a bound
on the abundance of monopoles. On the other hand, if
the interaction between the monopoles and the primor-
dial plasma is weak, then the energy oscillates between
the monopoles and the magnetic fields. This modifies
the time evolution of the magnetic fields [32], however
it does not lead to a dissipation of the fields. Thus a
bound on monopoles is obtained if their interaction with
the primordial plasma is sufficiently strong at least for
some period in the early universe.
We first describe the evolution of the primordial mag-

netic fields in the presence of monopoles with arbitrary
magnetic charge from the end of magnetogenesis to the
epoch of eþe− annihilation, when the number of charged
particles in the universe becomes drastically reduced. Then,
we derive bounds on the monopole abundance from the
survival of the primordial magnetic fields. We consider a
Friedmann-Robertson-Walker (FRW) background space-
time: ds2 ¼ dt2 − a2dx2.
In our analysis we suppose that the process of magneto-

genesis terminates at the end of inflation or during the
reheating phase. Thus, we study the dynamics of the
primordial magnetic fields during the reheating epoch
when the energy density of the universe is dominated by
an oscillating inflaton field, and the subsequent epoch of
radiation domination. We define Tdom as the temperature
at the end of reheating when the universe becomes
dominated by radiation (the subscript “dom” denotes
quantities computed at this time). We use the subscript
“end” to denote quantities computed at the end of

FIG. 1. Upper bound (2.14) on the monopole flux as a function
of mass, from the survival of Galactic magnetic fields
(B ¼ 10−6 G, solid lines) and seed fields (B ¼ 10−11 G, dashed).
The magnetic charge is varied as g ¼ gD (red), 10−3gD (purple),
10−6gD (blue). The lower mass limit (2.9) for monopoles to
stay clustered with the Galaxy is shown by the vertical dotted
lines with different colors corresponding to different g. Other
parameters are fixed to lc¼1 kpc, R ¼ 10 kpc, τgen ¼ 108 yr,
τsat ¼ 1010 yr, and γi − 1 ¼ 10−6. Also shown are bounds from
requiring the density of monopoles not to exceed that of dark
matter, for unclustered (gray solid) and clustered (gray dotted)
monopoles.

9It would be interesting to understand whether meq ∼mcl
holds for generic galaxies hosting magnetic fields, by studying
the relation between the dark matter density and the dynamo
action.
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magnetogenesis.10 In the absence of any source, the
energy density of primordial magnetic fields ρB redshifts
simply as radiation, ρB ∝ a−4. The magnetic field ampli-
tude thus redshifts as B ∝ a−2, since ρB ¼ B2=2.
The existence of intergalactic magnetic fields with

strength B0 ≳ 10−15 G (we use the subscript “0” to denotes
quantities in the present universe), and coherence length
of Mpc scale or larger has been suggested by gamma ray
observations [27–29]. Such scales have always been out-
side the Hubble horizon during the period from the end of
inflation to eþe− annihilation. Thus, since the distance
crossed by the monopoles during the period of interest is
smaller than the correlation length of the fields, we treat
the fields as effectively homogeneous. In this paper we
use 10−15 G ≃ 2 · 10−17eV2 as the reference value for the
intergalactic magnetic field strength today.
Under the above assumptions, the evolution of the

energy density of primordial magnetic fields in the pres-
ence of monopoles is described by the equation:

ρ̇B
ρB

¼ −Πred − Πacc; ð3:1Þ

where an overdot denotes a derivative with respect to
physical time t. Here Πred and Πacc are the dissipation rates
of the magnetic field energy due to redshifting and
monopole acceleration:

Πred ¼ 4H; ð3:2aÞ

Πacc ¼
2g
B
nv; ð3:2bÞ

where H ¼ ȧ=a is the Hubble rate, n is the physical
number density of monopoles, and v is the velocity of
the monopoles. We neglect the production of monopole
pairs by the magnetic fields through the Schwinger effect
[33–36,39]. Thus, we assume that the comoving number
density is constant in time,11 i.e., n ∝ a−3. The expression
for the ratio Πacc=Πred then can be written as:

Πacc

Πred
¼ g

2BH
nv: ð3:3Þ

We require the condition Πacc=Πred ≪ 1 to hold during
the period from the end of magnetogenesis, t ¼ tend, to
eþe− annihilation. This condition corresponds to having

negligible backreaction on the primordial magnetic fields
from the monopole acceleration. In order to rewrite such a
condition as a bound on the monopole abundance, in the
next section we study the evolution of the monopole
velocity in the early universe.

A. Monopole dynamics in primordial magnetic fields

We now describe the motion of monopoles accelerated
by a homogeneous magnetic field in the presence of a
primordial plasma.
For the analysis we suppose the plasma to be at rest in the

coordinate system ðt; xiÞ. We also ignore monopole veloc-
ities perpendicular to the direction of the magnetic field
because such velocity components decay away. Further
ignoring random thermal velocities, the motion of monop-
oles with magnetic charge g and mass m can be described
by the equation [33]:

m
d
dt

ðγvÞ ¼ gB − ðfp þmHγÞv: ð3:4Þ

The term fp is proportional to the cross section of the
interaction between the monopoles and the charged par-
ticles in the plasma. When the particles in the plasma
are relativistic and in thermal equilibrium, fp can be
expressed as [6]:

fp ∼
e2g2N c

16π2
T2: ð3:5Þ

Here T is the temperature of the plasma and N c is the
effective number of relativistic and electrically charged
degrees of freedom in thermal equilibrium including also
the contributions of the spin and the charge of the scatterers.
In Eq. (3.4), the expansion of the universe can be seen as an
additional frictional term proportional to the Hubble rate.
In [33] the solution of the equation of motion has been
studied for magnetic monopoles with Dirac charge
gD ¼ 2π=e. Here we are interested in generalizing the
results to generic magnetic charges.
Depending on the parameters one of the two frictional

terms becomes dominant and eventually the monopoles
achieve a terminal velocity. If the Hubble friction is the
dominant term, i.e. mHγ ≫ fp, the terminal velocity is set
approximately by:

ðγvÞH ∼
gB
mH

: ð3:6Þ

The expression is directly proportional to the magnetic
charge of the monopoles. Thus, smaller magnetic charge
corresponds to smaller vH.
On the other hand, when the drag force by the interaction

with the plasma is dominant, i.e. mHγ ≪ fp, and the

10Notice that in [33] we referred to the time at the end of
magnetogenesis as ti, instead of tend. Moreover, we used n to
denote the number density of monopole-antimonopole pairs,
while in this paper we will use it for the total number density of
monopoles and antimonopoles, i.e., n → n=2.

11See [39] for detailed discussions on monopoles produced by
the primordial magnetic field itself.
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monopoles move at nonrelativistic velocities, the terminal
velocity corresponds to:

vp ¼
gB
fp

∼
16π2B

e2gN cT2
: ð3:7Þ

Since the interaction rate with the particles of the plasma is
proportional to g2 and the monopole acceleration by the
magnetic field to g, the velocity vp scales as vp ∝ g−1.
Due to the γ factor in front of the Hubble friction term,

for relativistic monopoles (γ ≫ 1) the drag force due to the
expansion of the universe tends to become dominant. In this
case the terminal velocity of the monopoles corresponds to
the value of vH shown in Eq. (3.6). However, in the case
when the monopoles move at relativistic velocities and
mHγ ≪ fp, the monopole velocity rapidly decreases to
nonrelativistic values and eventually starts to follow the
terminal velocity vp [33].
In Fig. 2 we plot the time evolution of γv [Figs. 2(a)

and 2(b)] and of the ratio Πacc=Πred normalized by the
monopole number density today [Figs. 2(c) and 2(d)]. The
time evolution of γv is obtained by numerically solving
the equation of motion Eq. (3.4) with an initial condition of
vend ¼ 0. The time evolution of Πacc=Πred is obtained by
substituting into Eq. (3.3) the numerical solution of
Eq. (3.4). For the plots we assume Hend ¼ 1011 GeV,

Hdom ¼ 10−6 GeV (i.e. Tdom ∼ 106 GeV), and fix the
number of relativistic (charged) degrees of freedom as
g� ¼ N c ¼ 100 throughout the displayed epochs. The
magnetic field strength is taken such that it approaches a
present-day strength of B0 ¼ 10−15 G.
In Figures 2a and 2c, the results are shown for a

magnetic charge g ¼ 10−3gD and for different values of
the monopole mass. The value of the magnetic charge has
been chosen in order to cover a wide range of possible
behaviors of the monopole velocity which we will explain
in the following sections. Each value of the mass is
associated to a differently colored solid curve; from bottom
to top, red: m ¼ 1019 GeV, orange: m ¼ 1016 GeV, green:
m¼1013GeV, blue:m¼1010GeV, purple:m ¼ 107 GeV.
The purple curve disappears when it is behind the blue
curve. In Fig. 2(a), the dashed gray line shows γv with v
substituted by vp given in Eq. (3.7). This corresponds to the
terminal velocity set by the plasma when vp ≪ 1, and it
overlaps with the blue and purple lines in the right part of
the figure.
In Figs. 2(b) and 2(d), the results are shown for a mass

m ¼ 1011 GeV and for different values of the magnetic
charge. As in the previous case, the value of the mass has
been chosen in order to show the various behaviors of the
monopole velocity. Each value of the charge is associated
to a differently colored solid curve; from top to bottom,

FIG. 2. Time evolution of the monopole velocity in primordial magnetic fields (upper panels) and the normalized dissipation rate of the
magnetic fields due to monopole acceleration (lower panels). The Hubble scales at the end of magnetogenesis and at the onset of
radiation domination are taken respectively as Hend ¼ 1011 GeV and Hdom ¼ 10−6 GeV. The present-day magnetic field strength is
taken as B0 ¼ 10−15 G. The numbers of relativistic (charged) degrees of freedom are fixed to g� ¼ N c ¼ 100. In the left panels, the
charge of the monopole is fixed to g ¼ 10−3gD while the mass is varied as m ¼ 1019 GeV (red), 1016 GeV (orange), 1013 GeV (green),
1010 GeV (blue), 107 GeV (purple), from bottom to top. In the right panels the mass is fixed tom ¼ 1011 GeVwhile the charge is varied
as g ¼ gD (red), 10−3gD (orange), 10−6gD (green), 10−9gD (blue), 10−12gD (purple), from top to bottom. The dashed colored curves in the
upper panels show the terminal velocity set by the friction from the cosmological plasma.
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red: g ¼ gD, orange: g ¼ 10−3gD, green: g ¼ 10−6gD, blue:
g ¼ 10−9gD, purple: g ¼ 10−12gD. In Fig. 2(d) the orange
curve disappears when it is behind the red curve. In
Fig. 2(b), the dashed curves show ðγvÞp for different
charges, indicated by the colors. The red and orange
dashed curves overlap with the corresponding solid
curves in the right part of the plot. The blue and purple
dashed curves are not shown because a terminal velocity set
by the friction with the plasma cannot be defined in those
cases, being vp ≫ 1.
In the figures the monopole velocity follows vp in

Eq. (3.7) shown as the dashed lines, otherwise it follows
vH in Eq. (3.6) (except for at the left edges of the plots
where H ∼Hend

12). This indicates that one of the two
terminal velocities always gives an attractor solution for the
monopole velocity. One also sees from the figures that the
velocity can make a transition from vH to vp as the universe
expands, but not vice versa. The transition can be smooth as
for the blue curve in Fig. 2(a), but can also take the form of
a sudden jump as for the purple curve in Fig. 2(a).

B. Radiation-dominated epoch

We start by analyzing the backreaction of monopoles on
primordial magnetic fields during the radiation-dominated
epoch. Neglecting the time dependence of g�ðsÞ and N c,
then during radiation domination the Hubble rate redshifts
as H ∝ a−2, and the temperature of the plasma as T ∝ a−1.
These, together with B ∝ a−2, render both vp and vH
constant in time. The monopoles during radiation domi-
nation thus move with a constant velocity.
Whether the monopole velocity during radiation domi-

nation follows vp or vH depends on the monopole proper-
ties and the magnetic field strength. This is illustrated in
Fig. 3 in the m − g plane, where we took the field strength
such that it becomes B0 ¼ 10−15 G today. The numbers
of relativistic (charged) degrees of freedom are fixed to
g� ¼ N c ¼ 10.75. The purple curve shows where the
plasma and Hubble frictions in the monopole’s equation
of motion Eq. (3.4) are comparable, i.e. fp ¼ mHγH. In the
red region the plasma friction is dominant (fp ≫ mHγH)
and the monopole velocity is given by vp. On the other
hand, in the blue region the Hubble friction is dominant
(fp ≪ mHγH) and the velocity is given by vH.
The balance condition fp ¼ mHγH is rewritten using

Eqs. (3.5) and (3.6) as

�
e2g2N cT2

16π2

�
2

∼ ðgBÞ2 þ ðmHÞ2: ð3:8Þ

This can be solved for the magnetic charge, and the solution
g ¼ gmin is approximated by:

gmin ∼

8>><
>>:

16π2

e2N c

B
T2 for m ≪ 16π2

e2N c

B2

HT2 ;�
16π2

e2N c

mH
T2

�
1=2

for m ≫ 16π2

e2N c

B2

HT2 :
ð3:9Þ

For g > gmin the monopole velocity approaches vp, and
for g < gmin it approaches vH. In other words, gmin sets the
minimum charge for a monopole during radiation domi-
nation to lose its kinetic energy mainly through its
interaction with the plasma. The expressions of Eq. (3.9)
describe the two asymptotic behaviors of the purple curve
in the figure. In the first line the balance condition is
realized for relativistic velocities (ðγvÞH ≫ 1), while the
second line is for nonrelativistic velocities (ðγvÞH ≪ 1). In
the figure, the dashed gray line shows where ðγvÞH ¼ 1,
with ðγvÞH < 1 on its right side. One actually sees that the
dashed gray and purple lines intersect at the point where
the purple line bends. We also note that the first line of
Eq. (3.9) corresponds to the charge that gives vp ¼ 1; this is
depicted in the figure by the dashed black line. In the region
below this line the expression Eq. (3.7) yields vp > 1,

FIG. 3. Velocity of monopoles accelerated by primordial
magnetic fields during radiation domination. The solid purple
curve shows the combination of the monopole mass and charge
for which the friction term due to the interaction with the
primordial plasma, fp, is comparable to the friction term due
to the expansion of the universe, mHγH. In the red region above
the curve the monopole velocity is controlled by the plasma
friction, fp ≫ mHγH. In the blue region below the curve the
velocity is controlled by the Hubble friction, fp ≪ mHγH. The
dashed gray line shows where ðγvÞH ¼ 1. The dashed black
horizontal line shows where vp ¼ 1. Here we assume B0 ¼
10−15 G and g� ¼ N c ¼ 10.75.

12Radiative emission may affect the monopole dynamics
before one of the terminal velocities is reached. However this
also depends on how the magnetic field is initially switched on.
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indicating that the plasma friction does not yield a terminal
velocity for monopoles.
The expressions in Eq. (3.9) are time independent during

radiation, up to mild variations due to the change in the
numbers of relativistic degrees of freedom. The cosmic
temperature and the Hubble rate during the radiation-
dominated epoch are related to the redshift as

T∼1MeV

�
10−10

a=a0

�
; H∼10−15 eV

�
10−10

a=a0

�
2

; ð3:10Þ

where we ignored their mild dependence on g�ðsÞ. For the
number of relativistic charged degrees of freedom, hereafter
we useN c ∼ 10 as a reference value. Combining these with
the magnetic scaling B ¼ B0ða0=aÞ2, one can rewrite
Eq. (3.9) as

gmin∼

8>><
>>:

10−8gD
�

B0

10−15 G

�
for m≪ 102 GeV

�
B0

10−15 G

�
2
;

10−1gD
�

m
1017 GeV

�
1=2

for m≫ 102 GeV
�

B0

10−15 G

�
2
:

ð3:11Þ

The terminal velocities of Eqs. (3.5) and (3.6) can also be
rewritten as,

vp ∼ 10−8
�

g
gD

�
−1
�

B0

10−15 G

�
; ð3:12Þ

ðγvÞH ∼ 10−7
�

m
1017 GeV

�
−1
�

g
gD

��
B0

10−15 G

�
: ð3:13Þ

The monopole velocity during radiation domination
shown in the right parts of Fig. 2 can be understood from
Fig. 3, and by noting that the terminal velocities scale with
the monopole mass and charge as vp ∝ g−1, ðγvÞH ∝ gm−1.
The variation of the velocities in Fig. 2(a) is understood by
moving horizontally in Fig. 3 along g ¼ 10−3gD; for small
m the velocity is set to vp which is independent of m
[cf. purple and blue lines in Fig. 2(a)], while for largem the
velocity is vH which decreases with m (cf. green, orange,
and red lines). On the other hand, Fig. 2(b) corresponds to
moving vertically in Fig. 3 along m ¼ 1011 GeV; for small
g the velocity vH increases with g [cf. purple, blue, and
green lines in Fig. 2(b)], while for large g the velocity vp
decreases with g (cf. orange and red lines).
With constant monopole velocities, the dissipation rate

ratio grows as Πacc=Πred ∝ a. Thus, requiring negligible
monopole backreaction while there are abundant charged
particles in the universe amounts to demanding that this
ratio is smaller than unity at eþe− annihilation, i.e.,�

Πacc

Πred

�
T∼1 MeV

< 1: ð3:14Þ

This also means that the bounds we derive in this
subsection apply as long as the primordial magnetic fields
have been generated before eþe− annihilation.
In the case of g > gmin, the ratio Πacc=Πred is evaluated

by substituting v ¼ vp into Eq. (3.3). Hence the condition
in Eq. (3.14) can be rewritten by using n ¼ n0ða0=aÞ3 as an
upper bound on the present-day monopole number density,

n0 ≲ 10−21 cm−3: ð3:15Þ

We express this condition also in terms of the present-day
monopole flux F ¼ n0v0=4π:

F ≲ 10−14 cm−2 sr−1 s−1
�

v0
10−3

�
: ð3:16Þ

The bound is mainly determined by the temperature and
redshift at eþe− annihilation, and thus is independent of the
amplitude of the magnetic fields and of the mass and the
charge of the monopoles. However, the red region in Fig. 3
where the bound can be applied (g > gmin) becomes smaller
for stronger magnetic fields.
In the case of g < gmin, the monopoles do not efficiently

transfer the magnetic energy to the plasma. Hence their
presence does not lead to the dissipation of primordial
magnetic fields, but can only induce oscillations of the
fields and affect their redshift evolution. In order for
the fields’ redshifting to be unaltered by monopoles, the
condition Πacc=Πred < 1 should hold all the way until
today. However, in order to connect with the bounds we
derived for g > gmin, here let us only require the redshifting
to be unaltered at temperatures T > 1 MeV and impose
Eq. (3.14). We further limit our analysis to nonrelativistic
monopoles, i.e. ðγvÞH ≲ 1, which from Eq. (3.13) is
equivalent to considering masses of:

m≳ 1010 GeV

�
g
gD

��
B0

10−15 G

�
: ð3:17Þ

(We are thus focusing on the region in Fig. 3 on the right
of both the purple and gray dashed lines.) Then the
dissipation rate ratio can be evaluated by substituting v ¼
vH ∼ gB=mH into Eq. (3.3), and the condition of Eq. (3.14)
translates into:

n0 ≲ 10−22 cm−3
�

m
1017 GeV

��
g
gD

�
−2
: ð3:18Þ

The condition in terms of the present-day monopole flux is:

F ≲ 10−16 cm−2 sr−1 s−1
�

m
1017 GeV

��
g
gD

�
−2
�

v0
10−3

�
:

ð3:19Þ
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C. Reheating epoch

During reheating the universe is effectively matter-
dominated, and the Hubble rate redshifts as H ∝ a−3=2.
The final results of this section depend only mildly on
the numbers of relativistic degrees of freedom. Thus, for
simplicity we ignore their time dependences and use g�ðsÞ ∼
N c ∼ 100 in the following analyses. We also assume the
plasma particles to be in thermal equilibrium during
reheating. Under these assumptions, the temperature of
the primordial plasma redshifts as T ∝ a−3=8 [21].
Consequently, the plasma-induced terminal velocity scales
as vp ∝ a−5=4, and the Hubble-induced terminal velocity
scales as ðγvÞH ∝ a−1=2; the redshifting of the former being
faster is related to the fact that the monopole velocity during
reheating can make a transition from vH to vp but not vice
versa [33], as was shown in Fig. 2. Combining this with the
discussion in the previous subsection, we see that monop-
oles make the transition to the vp-branch before reheating
completes if the charge satisfies g > gmin, with gmin given
in Eq. (3.11).
For the case of g > gmin, we define t� as the time

when the plasma friction takes over the Hubble friction,
i.e. fp� ¼ mH�γH� (the subscript “�” stands for quantities
computed at time t�). For t < t� the monopoles move at
the terminal velocity vH, while for t > t� the monopoles
follow vp. The balance of the frictional forces is written

as Eq. (3.8), which can be transformed into an equation
for H� by considering that fp ∝ H1=2 and B ∝ H4=3 during
reheating as:

f2p dom ∼ ðgBdomÞ2
�

H�
Hdom

�
5=3

þ ðmHdomÞ2
�

H�
Hdom

�
:

ð3:20Þ

Considering that the right-hand side is dominated by one of
the terms, this equation can be solved approximately as

H� ∼

8>><
>>:

Hdom

�
fp
gB

�
6=5

dom
for m ≪ m̄;

Hdom

�
fp
mH

�
2

dom
for m ≫ m̄:

ð3:21Þ

Here m̄ is defined as

m̄ ¼
�
g3B3f2p
H5

�
1=5

dom
; ð3:22Þ

however we note that the combination B3f2p=H5 is actually
time-independent during the reheating epoch, up to mild
variations from changes in the numbers of relativistic
degrees of freedom. Using the relations in Eq. (3.10)
computed at tdom, we can rewrite these expressions as

H� ∼

8>><
>>:

105 GeV
�

g
gD

�
6=5

�
B0

10−15 G

�
−6=5

�
Tdom

106 GeV

�
2

for m ≪ m̄;

10−1 GeV
�

m
1017 GeV

�
−2
�

g
gD

�
4
�

Tdom
106 GeV

�
2

for m ≫ m̄;
ð3:23Þ

m̄ ∼ 1014 GeV

�
g
gD

�
7=5

�
B0

10−15 G

�
3=5

: ð3:24Þ

If m ≪ m̄, the balancing of the frictional forces happens
while the monopoles are relativistic, and the monopole
velocity jumps from an ultrarelativistic vH to a mildly
relativistic vp. On the other hand if m ≫ m̄, the balancing
happens while the monopoles are nonrelativistic, and the
velocity transition is smooth. These explain the behavior of
the monopole velocity described at the end of Sec. III A.
The relation H� > Hdom holds if g > gmin. While

monopoles carrying such a charge move at the velocity
vp and transfer the magnetic field energy into the plasma,
the dissipation ratio decreases in time as Πacc=Πred ∝ a−3=4

(this behavior is shown in Figure 2c by the middle parts of
the blue and purple lines). Hence requiring that the fields
survive during reheating amounts to imposing

�
Πacc

Πred

�
�
< 1: ð3:25Þ

Combining this with v ¼ vp and Eq. (3.23) yields a bound
on the monopole abundance,13

13For m ≪ m̄, the ratio Πacc=Πred undergoes a jump shortly
after t� [cf. purple line in Fig. 2(c)]. By plugging v ¼ vp, here we
are approximately evaluating the value of Πacc=Πred after the
jump.
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n0 ≲max

�
10−16 cm−3

�
g
gD

�
−3=5

�
B0

10−15 G

�
3=5

�
Tdom

106 GeV

�
;

10−13 cm−3
�

m
1017 GeV

��
g
gD

�
−2
�

Tdom

106 GeV

��
: ð3:26Þ

The first (second) line sets the condition when m is smaller (larger) than m̄ given in Eq. (3.24). In terms of the present
monopole flux, the condition is

F ≲max

�
10−10 cm−2 sr−1 s−1

�
g
gD

�
−3=5

�
B0

10−15 G

�
3=5

�
Tdom

106 GeV

��
v0
10−3

�
;

10−7 cm−2 sr−1 s−1
�
g
gD

�
−2
�

m
1017 GeV

��
Tdom

106 GeV

��
v0
10−3

��
: ð3:27Þ

The bounds in Eqs. (3.26) and (3.27) assume that the
velocity transition happens during the reheating epoch,
and in particular after the primordial magnetic fields are
generated, hence

H� < Hend; Hinf : ð3:28Þ

Here Hinf is the inflationary Hubble rate, which is con-
strained by current observational limits on primordial
gravitational waves as [51]

Hinf ≲ 1014 GeV: ð3:29Þ

Thus the condition of Eq. (3.28) would be violated if H�
becomes very large, for instance due to a large Tdom. We
also note that, going back in time in the reheating epoch,
the magnetic energy grows relative to the total density as
ρB=ρtot ∝ a−1. For magnetic fields generated at the end of
inflation or during reheating, requiring that they have never
dominated the universe yields a constraint on the scale of
magnetogenesis as

Hend ≲ 1022 GeV

�
Tdom

106 GeV

�
2
�
10−15 G

B0

�
3

: ð3:30Þ

For B0 ∼ 10−15 G and g≲ gD, there is a wide range forHend
where both this and (3.28) are satisfied. However this
constraint can become relevant for magnetic black holes,
as we will later see. If the fields are generated after t�,
then the monopole bound becomes weaker; such cases are
studied in [33].
If the charge is as small as g < gmin, the monopole

velocity never approaches vp. We can also derive the
condition for such monopoles not to affect the redshifting
of the magnetic fields during the reheating epoch. In this
case the dissipation rate ratio is nondecreasing during
reheating: It increases as Πacc=Πred ∝ a1=2 while the
monopoles move at relativistic vH, then stays constant

after vH becomes nonrelativistic. Hence we impose the
condition at the onset of radiation domination,�

Πacc

Πred

�
dom

< 1: ð3:31Þ

This condition assumes that the magnetic fields were
produced before the radiation-dominated epoch begins.
We further focus on monopoles that become nonrelativistic
before tdom, which amounts to considering masses satisfy-
ing the condition of Eq. (3.17). This allows us to plug
vdom ∼ ðgB=mHÞdom into Eq. (3.31). One can check that the
upper bound on the present-day monopole number density
thus obtained is the same as the second line of Eq. (3.26),
and the flux bound is the same as the second line
of Eq. (3.27).

D. Summary of bounds from primordial magnetic fields

We have seen that the bounds on the monopole flux from
the survival of primordial magnetic fields are described by
Eq. (3.16) during radiation domination, and by Eq. (3.27)
during reheating. The bounds are valid under the condition
g > gmin, where the minimummagnetic charge gmin is given
in Eq. (3.11). The bound from radiation domination
assumes that primordial magnetic fields are generated
before eþe− annihilation. For the bound from reheating
it is further assumed that the scales of magnetogenesis
Hend, inflation Hinf , and H� given in Eq. (3.23) satisfy the
condition of Eq. (3.28); here Hend is also constrained by
Eq. (3.30), and Hinf by Eq. (3.29).
The flux bound from radiation domination is indepen-

dent of the amplitude of the magnetic fields and of the mass
and the charge of the monopoles, although the minimum
charge gmin depends on the field strength and mass. The
bound from reheating depends on a number of parameters,
and in particular it becomes stronger for larger charges and
lower reheating temperatures.
For monopoles with g < gmin, we derived conditions

for them not to alter the redshifting of primordial

PARKER BOUNDS ON MONOPOLES WITH ARBITRARY CHARGE … PHYS. REV. D 108, 083005 (2023)

083005-13



magnetic fields.14 Focusing on masses satisfying
Eq. (3.17), the condition during radiation domination gives
the flux bound in Eq. (3.19) (assuming magnetogenesis
before eþe− annihilation), and from reheating arises the
bound which takes the same expression as the second line
of Eq. (3.27) (assuming magnetogenesis before the radi-
ation-dominated epoch begins). For these bounds, we stress
that primordial magnetic fields can survive even if they are
violated, however in such cases one needs to take into
account the monopoles in order to assess the cosmological
evolution of primordial magnetic fields.
In Fig. 4 we show the upper bounds on the monopole

flux from radiation domination (thick lines), and from
reheating with Tdom ¼ 100 MeV (thin lines). The magnetic
charge is varied as g ¼ gD (red), g ¼ 10−3gD (purple), and
g ¼ 10−6gD (blue). We have chosen a rather low reheating
temperature just a few orders of magnitude above the scale
of big bang nucleosynthesis, as an optimal value for the
reheating bound. The purple, blue, and red thick lines
overlap in the left part of the plot. Here we assume
v0 ¼ 10−3, and B0 ¼ 10−15 G. The solid parts of the lines
are based on the survival of primordial fields (g > gmin),
while the dashed parts are from the requirement that the
redshifting of the primordial fields is unaltered (g < gmin).
For the masses shown in the plot, gmin is given by the
second line of (3.11), and thus the condition g > gmin can
be rewritten as:

m≲ 1019 GeV

�
g
gD

�
2

: ð3:32Þ

The points in the plot show where this bound is saturated.
We also note that the parameters used for the plot allow
for ranges of values for Hend and Hinf that satisfy the
assumptions in Eqs. (3.28)–(3.30). Moreover, the condition
in Eq. (3.17) is satisfied on the dashed lines.
As shown in the plot, for Tdom ¼ 100 MeV the bound

from reheating is stronger than the bound from radiation
domination at low masses, for g≳ 10−5gD. However for
Tdom ≳ 102 GeV, the bound from radiation domination
becomes stronger than the bound from reheating even at
g ¼ gD. We stress again that the bound from the survival of
primordial fields during radiation domination does not
weaken for smaller charges (although its range of appli-
cability shrinks to smaller masses); this feature makes the
radiation domination bound particularly useful for con-
straining minicharged monopoles.

IV. COMPARISON OF BOUNDS

Let us now compare the various bounds presented in the
previous sections. In Fig. 5 we show the upper bounds on
the flux of magnetic monopoles as functions of the mass,
for different values of the magnetic charge. The solid gray
line shows the cosmological abundance bound in Eq. (2.24)
where ρDM is taken as the average dark matter density in
the universe, i.e. ρDM ¼ 1.3 × 10−6 GeV cm−3, along with
vi ¼ 10−3. The orange line shows the bound based on the
survival of Galactic magnetic fields, using Eq. (2.14) and
Galactic field strength B ¼ 10−6 G, along with the other
parameters as lc ¼ 1 kpc, R ¼ 10 kpc, τgen ¼ 108 yr, and
γi − 1 ¼ 10−6. Using the same set of parameters, the dotted
vertical line shows the lower mass limit in Eq. (2.9) for
monopoles to be clustered with our Galaxy. The pink line
shows the bound from seed Galactic fields, using again
Eq. (2.14) but with the seed field assumed to be
B ¼ 10−11 G; the other parameters are the same as the
orange line. The pink and orange lines overlap on the right
side of the plots. The red line shows the bounds in
Eqs. (3.16) and (3.19) from primordial magnetic fields
during radiation domination. The blue line shows the
bound in Eq. (3.27) from primordial magnetic fields during
reheating, for Tdom ¼ 100 MeV. For the primordial bounds
we assume the present-day amplitude of the primordial
magnetic fields to be B0 ¼ 10−15 G, and monopole veloc-
ity v0 ¼ 10−3; moreover the solid parts of the lines are
based on the survival of the fields, while the dashed parts
are from the requirement that the redshifting of the fields
is unaltered. With B0 ¼ 10−15 G, the smallest charge with
which monopoles can dissipate primordial magnetic fields
is of 10−8gD, cf. Fig. 3. As a value slightly above this,
g ¼ 10−7gD is shown in panel 5d. In panel 5a for g ¼ gD,

FIG. 4. Upper bounds on the monopole flux as a function of
mass, from the survival of primordial magnetic fields during
radiation domination (thick lines) and reheating era (thin lines).
The magnetic charge is varied as g ¼ gD (red), 10−3gD (purple),
10−6gD (blue). The dotted parts of the lines show where the fields
exhibit modified redshifting behaviors, instead of being dissi-
pated. The magnetic field strength is taken such that it realizes a
present-day value of B0 ¼ 10−15 G, and the monopole velocity
today is fixed to v0 ¼ 10−3. The reheating bounds assume a
reheating temperature of Tdom ¼ 100 MeV.

14Monopoles with g > gmin can also affect the magnetic
redshifting, however we did not analyze this case.
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we also show in black the limit from direct searches by the
MACRO collaboration [41].
We see that monopoles with large masses are most

strongly constrained by the cosmological abundance
bound, while those with intermediate to low masses are
mainly constrained by the Parker bounds. Which of the
Parker bounds is most stringent for light monopoles
depends on the charge. In particular, the bound from seed
Galactic magnetic fields is by far the strongest for
monopoles with a Dirac charge, while the primordial
bounds become comparable or even stronger for monop-
oles with small magnetic charges. However we also note
that the seed field bound further improves at very small
masses if the field strength is smaller than B ¼ 10−11 G
used in the plots.
In Fig. 5 we have displayed the various bounds for

comparison purpose. However, we should note that the
target of each bound is not necessarily the same. The
cosmological abundance bound and the primordial bounds

constrain the average monopole density in the universe,
while the Galactic bounds and the MACRO bound con-
strain the local monopole density inside the Galaxy. If
monopoles are clustered with the Galaxy (although this can
happen only in regions on the right of the dotted lines), their
local density can be much higher than the average density;
then the bounds on the local density translate into much
stronger bounds on the average density.
For monopoles that can cluster with the Galaxy,

namely, for masses larger than that indicated by the
dotted lines, the cosmological abundance bound gives
the strongest constraint. The situation is similar even when
comparing with the local dark matter density; see Fig. 1
and the discussion at the end of Sec. II D. In other words,
monopoles that cluster with our Galaxy and whose density
does not exceed that of dark matter almost automatically
satisfy the Parker bounds. Hence monopoles in this mass
region, if they can be produced, is a valid candidate of
dark matter.

FIG. 5. Upper bounds on the monopole flux as functions of mass, for different values of magnetic charge. Gray: cosmological bound
from comparison with the average dark matter density in the universe. Orange: bound from Galactic magnetic fields of B ¼ 10−6 G; the
lower mass limit for monopoles to stay clustered with the Galaxy is shown by the vertical dotted line. Pink: bound from Galactic seed
magnetic fields of B ¼ 10−11 G. Red: bound from primordial magnetic fields during radiation domination, with present-day strength
B0 ¼ 10−15 G. Blue: bound from primordial magnetic fields during reheating era, with present-day strength B0 ¼ 10−15 G and
reheating temperature Tdom ¼ 100 MeV. For the primordial bounds, the dashed parts of the lines show where the fields exhibit modified
redshifting behaviors, instead of being dissipated. The panel for g ¼ gD also shows the limit from direct searches by the MACRO
collaboration [41] in black. We assume v0 ¼ 10−3 and for the Galactic parameters lc ¼ 1 kpc, R ¼ 10 kpc, τgen ¼ 108 yr, and
γi − 1 ¼ 10−6. See the text for details.
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V. MAGNETICALLY CHARGED EXTREMAL
BLACK HOLES

In this section we apply the bounds from the
survival of magnetic fields to magnetically charged
black holes. In particular, we focus on (nearly) extremal
black holes for which Hawking radiation can be
neglected.
At extremality the charge of a black hole is related to its

mass through the relation:

m ¼
ffiffiffi
2

p
gMPl: ð5:1Þ

Extremal magnetic black holes can be considered as
monopoles with large mass and small charge-to-mass ratio.
Thus, all the bounds we discussed in the previous sections
can basically be applied to magnetically charged black
holes. However, the direct relation between the charge g
and the mass m of Eq. (5.1) changes the mass dependence
of the bounds, as we will show in the following discussion.

A. Bounds from galactic magnetic fields

The bound from galactic magnetic fields in Eq. (2.14) is
rewritten for extremal magnetic black holes as:

F ≲max

�
10−27 cm−2 sec−1 sr−1

�
m

1010 gm

�
−1
�

lc
1 kpc

�
−1
�

τgen
108 yr

�
−1
�
γi − 1

10−6

�
;

10−30 cm−2 sec−1 sr−1
�

m
1010 gm

�
−1
�

B
10−6 G

��
R
lc

�
1=2

�
τgen

108 yr

�
−1
�
; ð5:2Þ

This bound is inversely proportional to the black hole mass.
The first (second) line sets the bound when B is weaker
(stronger) than the threshold value:

B̄ ∼ 10−3 G

�
lc

1 kpc

�
−1
�
lc
R

�
1=2

�
γi − 1

10−6

�
: ð5:3Þ

Since galactic fields are typically weaker than this, the
bound is given by the first line, which is independent of the
field strength. This implies that the bound for extremal
magnetic black holes does not improve by considering seed
fields. We also remark that the conditions in Eqs. (2.17)
and (2.18), which are necessary for the bound to apply, can
be violated for massive magnetic black holes.15

For extremal magnetic black holes that are initially
bound in a galaxy, their escape time is obtained using
Eq. (2.6) as,

τesc ∼max

�
109 yr

�
B

10−6 G

�
−1
�
vvir
10−3

�
;

1013 yr

�
B

10−6 G

�
−2
�

lc
1 kpc

�
−1
�
vvir
10−3

�
3
�
:

ð5:4Þ
Note that the escape time of extremal magnetic black
holes is independent of the mass, and is determined only by
the galactic field properties and the virial velocity. For
galaxies similar to the Milky Way, the second line sets the
escape time, which depends rather sensitively on the
galactic parameters.
The work [13] derived a constraint on the fraction of

extremal magnetic black holes as dark matter by studying

the Andromeda Galaxy, whose parameters were inferred
from [52] and taken as lc ∼ 10 kpc, τgen ∼ 1010 yr, and
vvir ∼ 10−3. It was claimed that the large values of lc
and τgen improve the bound (5.2) compared to the
Milky Way. However, these combined with the
Andromeda’s field strength B ≈ 5 × 10−6 G [52] yield
τesc ∼ 1010 yr, which is comparable to the age of
Andromeda itself. With the uncertainties in the param-
eters, we cannot yet give a definite answer on whether
magnetic black holes can remain clustered with
Andromeda until today. However, the general lesson
here is that if some galaxy appears to give a signifi-
cantly stronger Parker bound on extremal magnetic
black holes than the Milky Way, then it is improbable
that this galaxy can currently host magnetic black
holes. The Parker bound from such a galaxy thus
applies to unclustered black holes.

B. Bounds from primordial magnetic fields

Using the relation in Eq. (5.1), the terminal velocity set
by the Hubble friction in Eq. (3.6) can be rewritten for
extremal magnetic black holes as:

ðγvÞH ∼
Bffiffiffi

2
p

MplH
: ð5:5Þ

Thus, under the condition that the magnetic fields do not
dominate the universe, i.e., ρB=ρtot ∼ ðB=ðMplHÞÞ2 ≪ 1,
the velocity vH is always nonrelativistic, ðγvÞH ≪ 1. From
this it also follows that extremal magnetic black holes
satisfy the mass bound in Eq. (3.17). Notice that ðγvÞH does
not depend on the black hole mass.
With vH being nonrelativistic, the value of gmin is

given by the second line of Eq. (3.11). Consequently,
15If B is below the threshold value (5.3), then (2.17) gives a

stronger condition than (2.18).
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using the relation in Eq. (5.1) the condition g > gmin can be
rewritten as:

m≳ 10−3 gm: ð5:6Þ

Extremal magnetic black holes with such masses are
subject to the flux bound of Eq. (3.16) which is based
on the survival of primordial fields during radiation
domination.
Regarding the bound from the reheating epoch, we saw

for generic monopoles that the second line of Eq. (3.27)
applies at larger masses for which the monopoles are
nonrelativistic upon making the transition from vH to vp.
However for extremal black holes, this instead applies at
smaller masses, m < m̄BH, with the threshold being

m̄BH ∼ 1010 gm

�
B0

10−15 G

�
−3=2

: ð5:7Þ

One can also check that form > m̄BH, the scaleH� which is
given by the first line of Eq. (3.23), is comparable to or
larger than the upper limit for Hend given in Eq. (3.30);
hence the assumption in Eq. (3.28) breaks down. Therefore
only the second line of the reheating bound in Eq. (3.27)
applies for extremal black holes, which is rewritten as

F≲ 10−18 cm−2 sr−1 s−1
�

m
1010 gm

�
−1
�

Tdom

106 GeV

��
v0
10−3

�
:

ð5:8Þ

This bound applies to the mass range 10−3 gm≲m <
m̄BH, given that the magnetogenesis and inflation scales
satisfy the conditions in Eqs. (3.28)–(3.30). At m > m̄BH,
the bound is weaker than in the first line of Eq. (3.27)
as discussed in [33], however we will not analyze this
in detail.
Extremal magnetic black holes as light as m≲ 10−3 gm

(i.e. g < gmin) move at nonrelativistic vH throughout
the early cosmic history. The condition for such black
holes not to alter the redshifting of the magnetic fields
during radiation domination is Eq. (3.19), which is now
rewritten as

F ≲ 10−14 cm−2 sr−1 s−1
�

m
10−3 gm

�
−1
�

v0
10−3

�
: ð5:9Þ

The condition from the reheating epoch has the same
expression as Eq. (5.8).

C. Comparison of bounds

In Fig. 6 we show the upper bounds on the flux of
extremal magnetic black holes. The solid gray line shows
the cosmological abundance bound in Eq. (2.24) with ρDM
taken as the average dark matter density in the universe,

i.e. ρDM ≈ 1.3 × 10−6 GeVcm−3. The dotted gray line
shows the abundance bound with ρDM set to the local dark
matter density in the Milky Way, i.e. ρDM ≈ 0.4 GeVcm−3.
In both of the abundance bounds we also used vi ¼ 10−3.
The orange line shows the bound in Eq. (5.2) from the
survival of Galactic magnetic fields, with the parameters
taken as lc ¼ 1 kpc, R ¼ 10 kpc, τgen ¼ 108 yr, and
γi − 1 ¼ 10−6; this bound is independent of the Galactic
field strength (as long as B≲ 10−3 G), hence the present-
day and seed Galactic fields give similar bounds. We note
that the condition in Eq. (2.17) holds for all the values of the
mass of the black holes shown in the plot, as long as
B≳ 10−11 G. The red line shows the bounds in Eqs. (3.16)
and (5.9) from primordial fields during radiation domina-
tion. The blue line shows the bound in Eq. (5.8) from
primordial fields during reheating for Tdom ¼ 100 MeV.
For the primordial bounds we assume a present-day field
strength B0 ¼ 10−15 G, and velocity v0 ¼ 10−3. The filled
points on the primordial bounds show where the mass limit
of Eq. (5.6) is saturated, and the dashed parts of the lines
show where the fields exhibit modified redshifting behav-
iors, instead of being dissipated. Differently from Figure 4,
the dashed parts of the bounds are now on the lower mass
end. The blue open circle shows the threshold mass m̄BH
given in Eq. (5.7). A reheating bound also exists at
m > m̄BH, however we did not analyze this case and hence
the blue line is truncated at m̄BH. Let us also note that an

FIG. 6. Upper bounds on the flux of extremal magnetic black
holes. Gray solid: abundance bound from comparison with the
average dark matter density in the universe. Gray dotted: abun-
dance bound from comparison with the local dark matter density in
our Galaxy. Orange: bound from Galactic magnetic fields. Red:
bound from primordial magnetic fields during radiation domina-
tion, with present-day strength B0 ¼ 10−15 G. Blue: bound
from primordial magnetic fields during reheating, with present-
day strength B0 ¼ 10−15 G and reheating temperature Tdom ¼
100 MeV. For the primordial bounds, the dotted parts of the lines
show where the fields exhibit modified redshifting behaviors,
instead of being dissipated. Here we assume v0 ¼ 10−3 and for the
Galactic parameters lc ¼ 1 kpc, R ¼ 10 kpc, τgen ¼ 108 yr, and
γi − 1 ¼ 10−6. See the text for details.
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extremal magnetic black hole with a Dirac charge g ¼ gD
has a mass of 7.1 × 1019 GeV. However, lighter extremal
black holes can in principle exist by absorbing mini-
charged monopoles.
The bound from primordial fields during radiation

domination does not depend on the mass of the black
holes, while the other Parker bounds become stronger for
larger masses. Consequently, the radiation domination
bound is much less constraining. The reheating bound,
even with the rather low reheating temperature chosen in
the plot, is weaker than the Galactic bound; this is also seen
in Fig. 5 for the mass-dependent segments of the reheating
and Galactic bounds.
We also see that the abundance bound is stronger than

the Galactic Parker bound, even when considering the local
dark matter density. The Parker bound can in principle be
significantly improved by considering galaxies hosting
magnetic fields with coherence lengths much larger than
the Milky Way; however it is unlikely that magnetic black
holes can be clustered with such galaxies, as was discussed
at the end of Sec. VA. And if magnetic black holes cannot
cluster with some galaxies, then they cannot make up all the
dark matter.

D. Comments on black hole-specific features

In the above discussions we have treated extremal
magnetic black holes simply as very massive monopoles
with charges much larger than the Dirac charge, and
ignored black hole-specific features. However if accretion
disks form around the black holes in galaxies, the
interaction between the disks and the interstellar medium
may affect the acceleration of black holes along the
galactic fields. On the other hand, there has not been
enough time for accretion disks to form in the early
universe [53], hence this should not affect the bounds
from primordial magnetic fields.
Extremal magnetic black holes can also be surrounded

by an electroweak corona, where the value of the Higgs
field varies [13,14]. The presence of electroweak coronas
can also change the interaction between the black holes and
the interstellar medium or the primordial plasma, modify-
ing the Parker-type bounds. We leave detailed studies of
these effects for the future.

VI. CONCLUSION

We carried out a comprehensive study of the Parker-type
bounds on magnetic monopoles with arbitrary charge. We
summarized the bounds from galactic magnetic fields in
Sec. II D, and the bounds from primordial magnetic fields
in Sec. III D. The various bounds were compared in Fig. 5.
We showed that heavy monopoles are mainly constrained
by the dark matter density limit, while intermediate to low
mass monopoles are mainly constrained by the Parker
bounds. Among the Parker bounds, the seed galactic field

bound strongly constrains monopoles with a Dirac charge,
while the primordial bound from radiation domination
can be the strongest for monopoles with small magnetic
charges. This is because the bound from radiation domi-
nation in the low-mass regime is independent of the
monopole charge, while the other Parker bounds become
weaker for smaller charges.
While monopoles with a Dirac charge have to be heavier

than 1018 GeV to be able to cluster with our Galaxy,
minicharged monopoles can cluster with much lighter
masses. For monopoles that can cluster with our Galaxy,
the Parker bounds are generically less constraining than the
bound from the dark matter density. Such monopoles can
thus make up the entire dark matter.
We also studied extremal magnetic black holes, for

which the various bounds were compared in Fig. 6. We
found that extremal magnetic black holes are mainly
constrained by comparison with the dark matter density.
Even stronger constraints can in principle be obtained if
there exist galaxies whose magnetic fields have coherence
lengths much larger than the Milky Way. However the large
coherence lengths also lead to the acceleration of black
holes up to the escape velocity within a rather short time
period, and hence it is improbable that black holes remain
clustered with such galaxies until today. The existence of
galaxies not being able to host magnetic black holes, if
confirmed, would rule out the possibility of magnetic black
holes as a dark matter candidate.
Minicharged monopoles are typically connected by dark

strings, whose tension is set by the mass μ of dark photons;
moreover they appear as minicharged monopoles only at
distances larger than 1=μ (see, e.g., [9,12]). In our analyses
we ignored these effects, supposing that the force from the
background magnetic field is stronger than the string
tension, and that the field’s coherence length is larger than
1=μ. These assumptions can break down depending on
the dark photon mass, in which case our bounds can be
modified. For extremal black holes, some of the Parker
bounds could be modified by the presence of accretion
disks and/or the electroweak corona [13,14]. We leave
detailed considerations of these effects for future analysis.
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APPENDIX: ACCELERATION OF MONOPOLES
IN GALACTIC MAGNETIC FIELDS

Here we study monopole dynamics in galactic magnetic
fields. We divide the magnetic field region of the galaxy
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into cells of uniform field, and analyze the acceleration of
monopoles as they pass through multiple cells.
The equation of motion of a monopole passing through

the Nth cell with uniform magnetic field BN is

m
d
dt

ðγvÞ ¼ gBN; ðA1Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
and v ¼ jvj. (g denotes the ampli-

tude of the magnetic charge, i.e., g > 0, and thus the
monopole here has a positive charge. However the dis-
cussion in this appendix can be applied to negatively
charged monopoles by replacing v → −v.) By integrating
the equation, one obtains the change in the monopole’s
Lorentz factor in the Nth cell as,

γ2N − γ2N−1 ¼
�
gBτN
m

�
2

þ 2gBN · vN−1γN−1τN
m

: ðA2Þ

Here τN denotes the time it takes for the monopole to pass
through the Nth cell, and γN is the Lorentz factor when the
monopole exits the Nth cell and simultaneously enters the
(N þ 1)th cell; the same notation is used for the velocity vN.
For N ¼ 1, then γN−1 and vN−1 in the equation are replaced
by the initial Lorentz factor γi and velocity vi upon entering
the first cell.
We take all cells to have the same size lc and field

strength, i.e., B ¼ jBN j for all N. Thus the kinetic energy
of a monopole changes within each cell by at most ∼gBlc.
If the kinetic energy is initially large such that
mðγi − 1Þ ≫ gBlc, then the energy barely changes in the
first cell. On the other hand, if mðγi − 1Þ ≪ gBlc, the
monopole is quickly accelerated so that upon exiting
the first cell its energy reaches mðγ1 − 1Þ ≃ gBlc, and
thereafter the energy does not change much within each
cell. Hence independently of γi, we can write the crossing
time for the second cell onward as16

τN ∼
lc

vN−1
for N ≥ 2: ðA3Þ

Let us consider nonrelativistic monopoles for the moment.
Then (A2) at N ≥ 2 can be rewritten using (A3) as,

v2N − v2N−1 ¼
v4mag

4v2N−1
þ v2magB̂N · v̂N−1: ðA4Þ

Here a hat denotes a unit vector: B̂N ≡ BN=B and
v̂N ≡ vN=vN . We also introduced

vmag ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2gBlc
m

r
; ðA5Þ

which corresponds to the velocity a monopole initially at
rest obtains after passing through a single cell. From the
discussions above (A3) it follows that v1 ≳ vmag for
general vi.
Supposing for simplicity that the direction of the

magnetic field is uncorrelated from one cell to the next,
the second term in the right-hand side of (A4) sources a
random walk of v2 in each cell. As we are interested in the
mean behavior of the monopoles, let us ignore this term for
now. Then we obtain a recurrence relation of the form17

βN − βN−1 ¼
1

βN−1
; ðA6Þ

where βN ≡ 2v2N=v
2
mag. Since β1 ≳ 1, this recurrence rela-

tion has an approximate solution,

βN ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21 þ 2ðN − 1Þ

q
: ðA7Þ

Hence the exit velocity from the Nth cell is obtained as

v2N ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v41 þ

N − 1

2
v4mag

r
: ðA8Þ

If vi ≳ vmag, the discussions from (A3) onward apply
also toN ¼ 1, then one can make the replacements v1 → vi
and N − 1 → N in the right-hand side of (A8). On the other
hand, if vi ≪ vmag, then v1 ≃ vmag and (A8) becomes

v2N ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þ=2p

v2mag. In both cases, (A8) can be rewrit-
ten at the order-of-magnitude level as

v2N ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4i þ

N
2
v4mag

r
: ðA9Þ

In particular, the net change in the velocity squared in the
limit of small and large N takes the forms,

Δv2N ¼ v2N − v2i ∼

8>><
>>:

N
4

v4mag

v2i
for N ≪ 8

�
vi
vmag

�
4
;ffiffiffi

N
2

q
v2mag for N ≫ 8

�
vi
vmag

�
4
:

ðA10Þ

In the first line the acceleration is tiny such that ΔvN ≲ vi;
this regime exists only if vi ≳ vmag. Eventually the monop-
ole is accelerated as in the second line, where ΔvN ≳ vi.
Let us discuss the second term in (A4) which we

have been ignoring. This sources a random walk behavior
of Δv2 in each cell with step size ≤ v2mag, which after N
cells yields a root-mean-square distance of order

ffiffiffiffi
N

p
v2mag.16The exact value of τN also depends on the shape of the cell

and the incident angle, however the expression (A3) is good
enough for our purpose of obtaining an order-of-magnitude
estimate of the average energy gain.

17Here we are also roughly approximating the mean h1=v2N−1i
by 1=hv2N−1i.
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Now, consider p number of monopoles with initial velocity
vi, each passing through N cells in different parts of the
galaxy. From the central limit theorem, the distribution of
the average ofΔv2N with large enough p is approximated by
a normal distribution with mean (A10) and standard
deviation of

σ ∼

ffiffiffiffi
N
p

s
v2mag: ðA11Þ

The expression (A10) describes well the average behavior
for the set of monopoles if it is much larger than σ. For this,
the second line of (A10) requires only p ≫ 1, while the first
line requires

pN ≫ 16

�
vi
vmag

�
4

: ðA12Þ

For relativistic monopoles (vN ≃ 1), the mean recurrence
relation becomes

γ2N − γ2N−1 ¼
�
gBlc
m

�
2

; ðA13Þ

which yields

γN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ ðN − 1Þ

�
gBlc
m

�
2

s
: ðA14Þ

By following a similar analysis as for nonrelativistic
monopoles, one arrives at results that match at the order-
of-magnitude level with (A10) and (A12), with v2 replaced
by 2ðγ − 1Þ.
In summary, for both nonrelativistic and relativistic

monopoles, the average energy gain after passing through
N cells takes the form

ΔEN ¼ mðγN − γiÞ ∼

8>><
>>:

N
4

ðgBlcÞ2
mðγi−1Þ for N ≪ 8

�
mðγi−1Þ
gBlc

�
2
;ffiffiffi

N
2

q
gBlc for N ≫ 8

�
mðγi−1Þ
gBlc

�
2
:

ðA15Þ

For this to describe well the average behavior of a set of
monopoles, the first line requires a sufficiently large
number of monopoles p such that

pN ≫ 16

�
mðγi − 1Þ

gBlc

�
2

; ðA16Þ

while the second line requires only p ≫ 1.
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