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MODULI SPACES OF Z/kZ-CONSTELLATIONS OVER A2

MICHELE GRAFFEO

ABSTRACT. Let p : Z/kZ — SL(2,C) be a representation of a finite abelian group and let ©8°" c
Homgy(R(Z/kZ),Q) be the space of generic stability conditions on the set of G-constellations.
We provide a combinatorial description of all the chambers C ¢ 8" and prove that there are
k! of them. Moreover, we introduce the notion of simple chamber and we show that, in order
to know all toric G -constellations, it is enough to build all simple chambers. We also prove that
there are k - 28-2 simple chambers. Finally, we provide an explicit formula for the tautological
bundles % over the moduli spaces .# for all chambers C ¢ ©%°" which only depends upon
the chamber stair which is a combinatorial object attached to the chamber C.
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0. INTRODUCTION

Given a Gorenstein singular variety X, a crepantresolution is a proper birational morphism
Yy 5 X
where Y is smooth and the canonical bundle is preserved, i.e. wy = e*wy.

It was proven by Watanabe in [29] that the singularities of the form A”/G, where G C
SL(n, C) s a finite subgroup, are Gorenstein. Their crepant resolutions appear in several fields
of Algebraic Geometry and Mathematical Physics, for example see [4, 17, 25] and the refer-
ences therein.

Even though, in general, crepant resolutions may not exist, their existence is guaranteed in
dimension 2 and 3: see [9] for dimension 2, and see Roan [26, 27], Ito [16] and Markushevich
[20] for dimension 3. In particular, the 3-dimensional case was solved by a case by case analy-
sis, taking advantage of the fact that the conjugacy classes of finite subgroups of SL(3, C) were
listed, for example in [31].

More recently, in [3], Bridgeland, King and Reid proved in one shot that a resolution always
exists in dimension 3. The resolution that they proposed is made in terms of G-clusters, i.e. G-

equivariant zero-dimensional subschemes Z of A" such that H(Z, 0,) = C[G] as G-modules
1
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(Definition 1.1). In particular, in [3] it was proved that there exists a crepant resolution
G-Hilb(A%) — A%/G

where G-Hilb(A3) is the fine moduli space of G-clusters. Notice that this result had already
been obtained for abelian actions by Nakamura in [22].

In [7] Craw and Ishii generalized the notion of G-cluster to that of G-constellation, i.e. a
coherent G-sheaf Z such that H°(A”,.Z) = C[G] as G-modules (Definition 1.4). Moreover, in
the case of G abelian the authors in [7] introduced a notion of 8-stability for G-constellations
(Definition 1.8), following the ideas in King [18]. They proved that, for any abelian subgroup
G c SL(3,C) and for any crepant resolution Y 25 A8 /G there exists at least a generic stability
condition € and an isomorphism .# 2, ¥ such that the composition ¢ o ¢ agrees with the
restriction

My —>A3/G

of the Hilbert—-Chow morphism, to the irreducible component .#j of the fine moduli space of
0-stable G-constellations containing free orbits. Moreover, they conjectured that the same is
true for any finite subgroup of SL(3, C). Recently, this conjecture has been affirmatively solved
by Yamagishi in [30].

It turns out that the space of generic stability conditions ©8" C O is a disjoint union of con-
nected components called chambers. Moreover, in each chamber C, the notion of stability is
constant, i.e. for any 8,60’ € C, a G-constellation is 0-stable if and only if it is 8’-stable.

In this paper I will focus on the 2-dimensional abelian case, i.e. the case when G c SL(2,C)
is a finite abelian, and hence cyclic, subgroup. In the literature the singularity A%/G is some-
times called the A|g|—; singularity. This case is particularly simple from the point of view of
the resolution because we know, from classical surface theory, that there is a unique minimal
crepant resolution. Therefore, all the moduli spaces .#j are isomorphic as quasi-projective
varieties. As a consequence, in order to distinguish two chambers it is enough to study their
universal families % € Ob Coh(.# x A?). The first main result in the paper is the following.

THEOREM 4.17. If G C SL(2, C)is a finite abelian subgroup of cardinality k = |G|, then the space
of generic stability conditions ©&" is the disjoint union of k! chambers.

The result in Theorem 4.17 can be also recovered, via different arguments, from the theory
developed by Kronheimer in [19] (See also [5, Chapter 3-§3] for the algebraic interpretation),
but the approach to the abelian case here is different and it helps to prove the other results.

In order to prove Theorem 4.17, I will give an exhaustive combinatorial description of the
toric points of the spaces .#j in terms of very classical combinatorial objects, namely skew
Ferrers diagrams. Such diagrams are standard tools in many branches of mathematics, e.g.
enumerative geometry, group theory, commutative algebra etc (for example [2, 12, 21]).

Next, I will introduce the notion of simple chamber (Definition 5.8) and I will show that, for
any indecomposable G-constellation .7, there exists at least a simple chamber C such that
Z is O-stable for all 8 € C. This property makes simple chambers useful, because knowing
them is the same as knowing all the G -constellations. In order to define simple chambers, I
will need to construct chamber stairs (Definition 5.2), combinatorial objects that I will use to
encode all the data of a chamber C.

The second theorem I prove is the following.
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THEOREM 5.15. If G C SL(2, C) is a finite abelian subgroup of cardinality k = |G|, then the space
of generic stability conditions ©8°" contains k - 2¥~2 simple chambers.

Finally, in Theorem 6.5 I will give a commutative algebra construction that allows one to
write an explicit formula for the tautological bundle

Ry € Ob COh(J/lg),

i.e. the pushforward of the universal family % € ObCoh(.#y x A?) via the first projection.
This construction can be easily implemented using some software such as Macaulay2 [14].
Moreover, it provides a realization of all the moduli spaces .#y as a G-invariant subvariety
of Quot!g,l (A?) where # € ObCoh(A?) is an ideal sheaf dependent only upon the chamber
C such that 8 € C (see Corollary 6.8). This solves, in 2-dimensions, a problem related to the
one raised by Nakamura in [22, Problem 6.5.] and it also implies that to give a chamber is
equivalent to give its chamber stair (Definition 5.2).

This paper gives some contributions to the solution of several open problems regarding the
subject, and provides some techniques that seem to be applicable to more general situations,
such as some non-abelian, even 3-dimensional, case for example following the ideas in [23,
24].

After providing, in the first section, some technical preliminaries and some known facts, I
will devote the second section to a brief description of the singularity A?/G and to its minimal
resolution.

In the third section I will prove that the toric G-constellations are completely described in
terms of G -stairs, which are certain diagrams whose definition I will give in Definition 3.19.

The following sections (4 and 5), are devoted to the proofs of the two main theorems, while
in the last section I will give the above mentioned commutative algebra construction.
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1. PRELIMINARIES

Given a finite group G and a representation p : G — GL(n,C), we have an action of G on
the polynomial ring C[x;, ..., x,], given by

G xC[xq,...,x,] — Clxy,...,x,]

(8, p) pop(g)™!

where p and p(g)~! are thought respectively as a polynomial and a linear function. Out of
this, we can build the quotient singularity

A"/G =SpecC[xy,..., x,]°

whose points parametrize the set-theoretic orbits of the action of G on A” induced by p.
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Given a representation p : G — GL(n,C), a p -equivariant sheaf (or a p -sheaf in the sense
of [3]) is a coherent sheaf % € ObCoh(A") together with a lift to .# of the G-action on A"
induced by p, i.e. for all g € G there are morphisms A? : Z — p(g)*Z such that:
o 2] =idg,
* Mg =PEI0)oAF,
where 1 is the unit of G. In particular, this induces a structure of representation on the vector
space H(A", ) as above

G x H(A", 7) HO(A", 7)

(8,8) ———— (A7) o p(g)(s).

Whenever the representation is an inclusion G ¢ GL(n, C) we will omit the representation
and we will talk about G -equivariant sheaf (or G -sheaf).

Definition 1.1. Let G ¢ GL(n,C) be a finite subgroup. A G -cluster is a zero-dimensional sub-
scheme Z of A” such that:

e the structure sheaf 0, is G-equivariant, i.e. the ideal I, is invariant with respect to
the action of G on C[x;,..., x,], and

e if preg : G — GL(C[G]) is the regular representation, then there is an isomorphism of
representations

" :HO(Z: ﬁZ) - (C[G]:
i.e. p is an isomorphism of vector spaces such that the following diagram:

G XHO(Z’ﬁZ) HHO(Z»WZ)
idg x¢ ¥

G xC[G] ——— C[G]

where the horizontal arrows are the G -actions, commutes.

We will denote by Hilb%(A") the fine moduli space of G-clusters and, by G-Hilb(A") the
irreducible component of Hilb® (A") containing the free G -orbits.

Recall that, for all n > 1 and for all G c SL(n, C) finite subgroup, the singularities of the form
A" /G are Gorenstein (cf. [29]).

Theorem 1.2 ([3, Theorem 1.2]). Let G c SL(n,C) be a finite subgroup where n = 2,3. Then,
the Hilbert-Chow morphism

Y :=G-Hilb(A") 5 A" /G =: X
is a crepant resolution of singularities, i.e. wy = *wy.

Remark 1.3. The Hilbert-Chow morphism ¢ mentioned in Theorem 1.2 is a G -equivariant
version of the usual Hilbert-Chow morphism

z :Hilbl®l(A") — Sym/®I(a™).

In particular £ can be thought of as the restriction of € to the G-invariant subvariety G-Hilb(A") C
Hilb/Cl(A™).
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A natural generalization of the concept of a G-cluster is given in [7], and it is achieved by
consider coherent 0, » -modules which are not necessarily the structure sheaves of zerodimen-
sional subschemes of A".

Definition 1.4 ([7, Definition 2.1]). Let G c GL(n,C) be a finite subgroup. A G -constellation
is a coherent 0, .-module Z on A" such that:

e 7 is G-equivariant, i.e. there is a fixed lift on & of the G-action on A", and
e there is an isomorphism of representations

¢ :HYA", Z)— C[G].

Remark 1.5. Since a G-constellation Z is a coherent sheaf on the affine variety A", some-
times, by abuse of notations, we address the name G-constellation to the space of global
sections HY(A", Z) as well as .Z and, sometimes, we treat a G-constellation as if it were a
C[xy, ..., x,]-module, meaning that we are working with the space of its global sections.

Remark 1.6. The G-equivariance hypothesis implies that the support of a G -constellation is
aunion of G -orbits. Moreover, for dimensional reasons, the only constellations supported on
a free orbit Z are isomorphic to the structure sheaf 0.

Remark 1.7. Recall that (see, for example, [12, chapters 1 and 2]), given a finite group G and
the set of isomorphism classes of its irreducible representations

Irr(G) = {Irreducible representations}/iso,

there is a ring isomorphism
U:RG)> P zp,
pelr(G)
where (R(G), ®) is the Grothendieck group of isomorphism classes of representations of G,
and the ring structure (on both sides) is induced by tensor product ® of representations. More-
over Irr(G)={p1, ..., p;} is finite, and we have the correspondence:

R(G) Ll

N
@IZPi
i=

C[G] —— (dimpy,...,dimpjy).

Following the ideas in [18], the above mentioned properties allow one to introduce a notion
of stability on the set of G-constellations. Given a finite subgroup G c SL(n,C) (where n =
2,3), the space of stability conditions for G-constellations is

©= {0 € Homz(R(G),Q)| O(C[G])=0}

Definition 1.8. Let 8 € © be astability condition. A G-constellation % is said to be 8 - (semi)stable
if, for any proper G -equivariant subsheaf 0 ¢ & ¢ .%, we have

O(H (A", &) > 0.

=)
A stability condition 0 is generic if the notion of #-semistability is equivalent to the notion of
0-stability. Finally, we denote by @8 c @ the subset of generic stability conditions.

Definition 1.9. A G-constellation & is indecomposableif it cannot be written as a direct sum
F = éal 52 5)2,

where &}, &, are proper G -subsheaves, and it is decomposable otherwise.
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Remark 1.10. Ifwe think ofa G -constellation as its space of global sections, a G -constellation
F =H%Z,A")is indecomposable if it cannot be written as a direct sum

F = El @ Ez,
where E;, E, are proper G-equivariant C[x, ..., X, ]-submodules.

Remark 1.11. If Z is decomposable, then it is not 8-stable for any stability condition 0 €©.
Since, for our purpose, we are interested in indecomposable G -constellations, whenever
not specified a G -constellation will always be indecomposable.

Remark 1.12. If Z c A" is a free orbit, then 0, does not admit any proper G-subsheaf. There-
fore, it is 6-stable for all 8 € ©.

Definition 1.13. Let 8 € O% be a generic stability condition. We denote by .#y the (fine)
moduli space of 6-stable G-constellations.

The theorem below brings together results from [7, 3, 30].

Theorem 1.14. The following results are true for n =2, 3.

e The subset ©5°" C © of generic parameters is open and dense. It is the disjoint union
of finitely many open convex polyhedral cones in © called chambers.

e For generic 0 € ©%", the moduli space -/ exists and it depends only upon the cham-
ber C c ©8" containing 0, so we write ./ in place of #y for any 8 € C. Moreover,
the Hilbert-Chow morphism, which associates to each G -constellation Z its support
Supp(Z), e: M — A" /G, is a crepant resolution.

o (Craw-Ishii Theorem [7]) Given a finite abelian subgroup G c SL(n,C), suppose Y 5
A" /G is a projective crepant resolution. Then Y = _# for some chamber C c ©® and
€ = g¢ Is the Hilbert-Chow morphism.

o (Yamagishi Theorem [30]) Given a finite subgroup G c SL(n,C), suppose Y ZAn /G
is a projective crepant resolution. Then Y = /¢ for some chamber C C ©.

e There exists a chamber C; C ©8°" such that ./, = G -Hilb(A").

We will adopt the same notation as [7] for the universal family of C-stable G -constellations,
namely % € Ob Coh(.#¢ x A"), and for the tautological bundle Z :=(7_4,. )* Uc.

Remark 1.15. The hypothesis of Theorem 1.14, Remarks 1.6 and 1.12 imply, together with the
third point of Theorem 1.14, that if we denote by Uz = .# ¢ \ Exc(e¢) the complement of the
exceptional locus of the Hilbert-Chow morphism then, for any two chambers C,C’ c ©8°?,
then there is a canonical isomorphism of families over A" /G-schemes

OZZC |UC xAN OZ[C/ ‘UC/ xAN

o~

UC x A" UC/ XAn,

i.e. there exists a unique isomorphism ¢ : Uc — U such that the diagram

U d Ue

A"/G

~ ; *
commutes and GZ/C|UCxM = (p xidyn) “ZZC/|UCM”.
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In particular, any U; parametrizes the free orbits of the G -action as the complement of the
singular locus of A” /G does.

2. THE TWO-DIMENSIONAL ABELIAN CASE

In this section we introduce some notation that we will use throughout the rest of the paper.
Moreover, we give a very brief description of the singularities A;—; and of their respective
resolutions.

Throughout all the section, we fix a finite abelian subgroup G c SL(zn, C).

2.1. The action of G. Whenever G c SL(n,C) is a finite abelian subgroup, it is well known
that its irreducible representations are 1-dimensional and that the group G and the set Irr(G)
are in bijection. Moreover, the map ¥ in Remark 1.7 is such that

RG) —— @ Zp
pelr(G)

CIG] — (1,...,1).

In particular, in dimension 2, it is well known that all finite abelian subgroups G c SL(2,C)
are cyclic. Moreover, for any k > 1, there is only one conjugacy class of abelian subgroups
of SL(2,C) isomorphic to Z/kZ. In what follows we will choose, as representative of such
conjugacy class,
S )
2.1 ZIkZ=G =gk = c SL(2,C),
0 &k
where & is a (fixed) primitive k-th root of unity.
We adopt the following notation for the irreducible representations of G:

Pi: Z/kZ— C*
Irr(G) = i=0,....k—1 }.

8k—¢& ;C
Sometimes, we will identify Irr(G) with the set {0, ..., k — 1} according to the bijection p ; — j.
Notice that, one may also identify (Irr(G), ®) with the abelian group (Z/kZ,+), but in what
follows we will mostly deal with Irr(G) as a set of indices, hence we will ignore the natural

group structure on it.

2.2. The quotient singularity A?/G and its resolution. The singularity obtained in this case
is the so-called Aj_; singularity;, i.e.

Ay =A%/G.

This is a rational double point. It is well known that it has a unique minimal, in fact crepant,
resolution Y - Aj_; whose exceptional divisor is a chain of kK —1 smooth (—2)-rational pro-
jective curves.

Asaconsequence of Theorem 1.14 and of the uniqueness of the minimal model of a surface,
for any chamber C, there is an isomorphism of varieties ¢ : .#¢ — Y such that the diagram

Mc L4 Y
N /
A1
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commutes. What changes between two different chambers C, C’ is that they have different
universal families %, %, € Ob Coh(Y x A?).

3. TORIC G-CONSTELLATIONS

This section is devoted to the study of toric G-constellations, i.e. those G-constellations
which, in addition to being G -sheaves, are also T?-sheaves. As it usually happens when deal-
ing with T?-modules, we will see that the C[x, y]-module structure of a toric G-constellation
is fully described in terms of combinatorial objects, namely the skew Ferrers diagrams.

This way of proceeding in the description of a T?-module is not new, and it is actually
adopted very often in the literature; for example in the study of monomial ideals (see [2]) or,
more generally, in the study of T?-modules of finite length (see [21]).

Although many statements can be generalized to higher dimension, from now on we will
focus on the 2-dimensional case.

3.1. The torus action. Recall that A? is a toric variety via the standard torus action:

T2 x A2 A?

(3.1)
(01,02),(x,y) — (01 x,0,-y).

Notice that, under our assumptions, G is a finite subgroup of the torus T?. Hence, the
action of T? commutes with the action of the finite abelian (diagonal) subgroup G c T?.

This implies that, given a §-stable G-constellation .Z and an element o € T?, the pullback
o*7 is a f-stable G-constellation. Indeed, o* induces an isomorphism between the global
sections of 0*Z and .Z and hence, dim H°(A?, 0* %) = k. Moreover, o*. is still a G -sheaf if
we define, for all g € G, the morphisms A‘g’*g 10T — gto* T as

o*F _ x2T

/lg =0*A g
Such morphisms are well defined because o* and g* commute, i.e. g*o*F = o*g*Z for all
(g,0) € G x T?. Finally, we have to check that c*.7 is -stable. This follows from the fact that
both the groups G € T? act diagonally and, as a consequence, if & C 7 is a proper G -subsheaf
and .

HA%,8)=Dp;,
j=1

as representations, then o*§ c o*% is a proper G-subsheaf and

)
HA%,0*6)=Pp;,
j=1

as representations.

Definition 3.1. As explained above, the torus T? acts on ./, for any chamber C. We say that
a (indecomposable) G-constellation .7 is toric if it corresponds to a torus fixed point.

Remark 3.2. A G-constellation .7 is toric if and only if it admits a structure of T?-sheaf. In-
deed, if 7 is a torus fixed point one possible T?-structure is obtained from the following as-
sociations

T? x HY(A%, ) —— HOY(A%,.7)

1

(o,p) ———— poo—,
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for o € T? acting on A? as in (3.1). We stress that the T?-equivariant structure on .Z is not
unique. Indeed any such structure can be twisted by characters of T?.

Definition 3.3. We say that a G-constellation % is nilpotent if the endomorphisms x- and y-
of the C[x, y]-module H°(A?, &) are nilpotent.

Remark 3.4. A G-constellation .7 is supported at the origin 0 € A? if and only if it is nilpotent.
This follows from the relation between the annihilator of a C[x, y]-module and the support
of the sheaf associated to it (see [10, Section 2.2]). Moreover, Theorem 1.14 implies that nilpo-
tent C-stable G-constellations correspond to points of the exceptional locus of the crepant
resolution ..

Remark 3.5. Given a G-constellation F = H°(A?,.Z), we can compare its structures of G-
representation and of C[x, y]-module. Looking at the induced action of G on C[x, y], it turns
out that, if s € p; via the isomorphism F = C[G] then:

X-SE€Pit1
and,

y-S€pPi1-

Proposition 3.6. If F = H°(A2,.7) is a nilpotent G -constellation then the endomorphism x y -
is the zero endomorphism.

Proof. The G-constellation F is a k-dimensional C-vector space. Let us pick a basis

{UOr---) Uk—l}

of F such that, foralli =0,..., k—1, v; € p; under the isomorphism F = C[G]. Asin Remark 3.5,
foralli=0,...,k—1, we have:

X-Vi€Pit1y
and,

Y Vi€EPi
where the indices are thought modulo k. In other words,

x - v; € Span(v;, ;) and y - v; € Span(v;_;).
Therefore, we get:
xy-vi€Span(v;), Vi=0,...,k—1
i.e.
xy-v;=aq;v;, witha; €C, Vi=0,...,k—1.

Now, the nilpotency hypothesis implies that @; =0 foralli =0,...,k—1. O

Remark 3.7. If a G-constellation F = H°(A?,.7) is toric, then it is also nilpotent. Indeed,
following the same logic as in the proof of Proposition 3.6 we have

xk~vl~=a,-vl~,withal~€(C, ‘v’i=0,...,k—1,

but torus equivariancy implies a; =0 forall i =0,..., k—1.
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3.2. Skew Ferrers diagrams and G -stairs. The advantage of working with toric G-constellations
is that their spaces of global sections can be described in terms of monomial ideals whose data
are described by means of combinatorial objects.

We can associate, to each element of the natural plane N2, two labels: namely a monomial
and an irreducible representation. We achieve this by saying that a polynomial p € C[x, y]
belongs to an irreducible representation p; if

VgeG, g-p=pigp

i.e. p is an eigenfunction for the linear map g- with the complex number p;(g) as eigenvector.
In particular, with the notations in Section 2.1, the monomial x’ y/ belongs to the irreducible
representation p;_; of the abelian group G, where the index is tought modulo k. According
to this association, we can define the representation tableau J; as

To={(i, j,t)eN* xIrr(G) | i— j=1 ( mod k )} c N* xIrx(G).

N
k
PR G e (220 i
1 2 0 1
R e AR
k—1 0 k—2 k—1
1 X xk-1 xk
or 0 1 | I k—1 0 | N
0 1 = k=1 k k+1

FIGURE 1. The representation tableau ;.

Notice that the labeling with the representation is superfluous because the first projection
N2 - gg - N2

is a bijection. In any case, this notation is useful to keep in mind that we are dealing with the
representation structure as well as with the module structure.
In summary, the representation tableau has the property that

moving to the right “increases" the irreducible representation by 1 (mod k)
moving up “decreases" the irreducible representation by 1 (mod k).

Definition 3.8. A Ferrers diagram (Fd) is a subset A of the natural plane N? such that
(N’NA)+N? c(N2\ A)
i.e. there exist s >0 and #y > --- > t; > 0 such that
A={(i,j)|i=0,...,sand j=0,...,1;}.

Remark 3.9. In the literature there is some ambiguity about the name to be given to such
diagrams. Indeed, sometimes, they are also called Young tableaux and, by Ferrers diagrams,
something else is meant (for some different notations, see for example [12, 1]). In any case,
we will adopt the notation in [8].
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Pictorially, we see s consecutive columns of weakly decreasing heights. An example is de-
picted in Figure 2.

N

FIGURE 2. An example of Fd where s =3,1,=3,1, =2,1 =2,13=0.

Remark 3.10. We briefly recall that, starting from a Ferrers diagram A, we can build a torus-
invariant zero-dimensional subscheme Z of A?. Indeed, if B = N?\ A is the complement of
A, then

IZ:{xblyb2 }(bl,bz)eB}

is the ideal of the above mentioned subscheme Z c A?. In particular, the C[x, y]-module
structure of H°(A?, 0,)=C[x, y]/1, is encoded in the Fd, by saying that a box, labeled by the
monomial m € C[x, y], corresponds to the one-dimensional vector subspace of H°(A?, 0,)
generated by m, and

moving to the right in the Fd is the multiplication by x
moving up in the Fd is the multiplication by y .

Definition 3.11. LetT c N? be a subset of the natural plane. We will say thatT is a skew Ferrers
diagram (sFd) if there exist two Ferrers diagrams I3, T, C N? such that T =T, \ L.
Moreover, we will say that a sFd I is connected if, for any decomposition

r=nulL
as disjoint union, there are at least a box in I} and a box in I, which share an edge.

Lemma 3.12. Let A, A, C N? be two Ferrers diagrams and letT C N? be the skew Ferrers dia-
gramT = A; \ A,. Consider, fori=1,2, the ideals

Iy, =({x"y™ eClx, y]| (b1, b)) eEN* N 4; }).
Then, the isomorphism class of the torus equivariant C[x, y]-module
My =1y,/1a,N 1y, =14,/ 1p,04,

is independent of the choice of Ay, A,. Equivalentely, for any other choice of A, Ay, c N? such
thatT = Ay \ Ay, the torus equivariant C[x, y]-modules My and Ly, /14, are isomorphic.

Proof. The fact that M1 does not depend on the decomposition I' = A; \ A, follows noticing
that, if we pick another decomposition I' = A} \ A3, then the isomorphism of C-vector spaces

Lpy [ 14, N Iay — Iy [1gy N Ly,

which associates the class x*y# +1I 4, N1, to the class x* yP+1 4, NIy, is an isomorphism of
C[x, y]-modules. O
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Now, instead of focusing just on subsets of the natural plane N2, we introduce more struc-
ture by looking at subsets of the representation tableau.

In some instances, we will need to work with abstract sFd’s obtained forgetting about the
monomials.

Definition 3.13. A G -sFdis asubset A C 7; of the representation tableau whose image 732 (A),
under the first projection

N2 - 9(; - Nz,
is a sFd.

An abstract G -sFd is a diagram I' made of boxes labeled by the irreducible representations
of G that can be embedded into the representation tableau as a G -sFd.

Example 3.14. Consider the Z/3Z-action on A? defined in (2.1). In Figure 3 are shown an
abstract G-sFd and two of its possible realizations as G -sFd.

0 k,yi, iy
0 0
Ly | xy? 4y3 | x5y8
1 2 1 ) : A
y Xy xty? 5.2
L |- 2L ] y2| Xy
2|0 ST
2 0
k,x,, x°
1 1 -

FIGURE 3. An abstract Z/3Z-sFd and two of its possible realizations as Z/3Z-
sFd.

On the other hand, the diagram in Figure 4 is not an abstract G -sFd.

2|
0|2
FIGURE 4.

Remark 3.15. Given any subset Z of the representation tableau and any monomial x%y®
we will denote by x?y? - = the subset of the representation tableau obtained by translating
= « steps to the right and 8 steps up. Notice that this is compatible with the association
N? « {monomials in two variables} as explained in Remark 3.10.

Lemma3.16. If.7 is a torus equivariant G -constellation then there exists a basis{vy, ..., Vp_1}
of F = H%(A?, 7) such that
(1) foralli=0,...,k—1, we havev; € p;,
(2) foralli=0,...,k—1, the sections v; are semi-invariant functions with respect some
character y; of T2, i.e. (a, b)- v; = yi(a, b)v; for all(a, b) € T?,
(3) foralli=0,...,k—1,
x-v; €{vi11,0},
Y- v € {Ui—lr 0}
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Proof. We can always pick a basis {7, ..., Ux_;} which satisfies (1) and (2). Moreover, it follows
from Remark 3.5 that:
{x -  Span(¥j..1),
Y - U; € Span(v;_p),
where the indices are thought modulo k. The fact that % is toric implies that there are no
“cycles”, i.e. there areno 1 < s < k and

i=1,...,5,
(ij kj hj, o)) €I(G)x N> x C* | i ;ij, for j# j/,
kithj,>0
where the indices are thought modulo s, such that
(ead,  =aiy ),
(e)ed, =o',
(3.2) 3 :
(x)f1 5 =0y,
(%)% 7, =o,(y )",

Indeed, x and y are semi-invariant functions with respect to the characters

TZ Ax C*

(a,b) —— a

and
TZ Ay (C*
(a,b) —— b

of the torus T?. Then, if we act on both sides of the Equations (3.2) with some (a, b) € T?, we
get:

Ax@, by (a, b)(x)o 0, =012y (a, b2y, (a, b)(y) 1,
Axla, bYeyi(a, b)(x) 20, = 022y (@, b) yi(a, b)(y)s Ui,
(3.3) ] :
Axl@, bYe1yi (@, b)(x )10 =02y (a, by (a, b)(y- )T,
Axla, b)Y yi(a, b)(x )Ty =0 Ay (a, b)" y; (a, )y ) 7y,

Now, the System (3.3) is equivalent to:

akiy;(a,b)=b"y,(a,b),
a2y, (a,b)=b"y, (a,b),

ak1y; (a,b)=b"y; (a,b),
aksy; (a,b)=bM"y, (a,b),

which is equivalent to

(3.4) akirt=+ks = pht-+hs vy p)eT?.
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Finally, the only solution of Equation (3.4) is
kl:'”:ks:hl:”':hszo’

which contradicts the hypothesis k; + h;,; >0foralli=1,...,s.

We are now ready to build the requested basis. Let {w, ..., wy} C {,..., Ur_;} be aminimal
set of generators of the C[x, y]-module F, i.e. the set

{wj+m-FeF/m-F|j=1,..,t}
is a basis of the C-vector space F /m-F. Let us also denote by F;, for j=1,...,¢, the submodule
generated by w;. We start by taking, for all j =1,...,/, as basis of F; the set
sz{x“yﬁwj |aoﬂ =0}.

The problem is that in general the union of all B;’s is not a basis of F because there can be

some relations xw; = uy? w ;i fori# jand u € C*\1. The fact that there are no cycles implies

that we can re-scale all the elements in each B; obtaining new B j so that U§ jisabasis of F
J

that verifies properties (1), (2), (3). O

Proposition 3.17. Given a, possibly decomposable, torus equivariant G -constellation F =
HO(A?,.7), there is (at Ieast) one G -sFd whose associated C[ x, y]-module is a G -constellation
isomorphicto F.

Remark 3.18. If we find one G -sFd with the required property, then there are infinitely many
of them. Indeed, a special property of the representation tableau is that translations enjoy
some periodicity properties.

LetT be a G-sFd, then:

(1) multiplication by x has period k, i.e there is an isomorphism of C[x, y ]-modules
M= My p
which induces an isomorphism of representations between M and M ,« r;
(2) multiplication by y has period k, i.e there is an isomorphism of C[x, y ]-modules
My = Myir
which induces an isomorphism of representations between My and My «.r;
(3) multiplication by x y is anisomorphism, i.e there is an isomorphism of C[ x, y ]-modules
My — Miyr
which induces an isomorphism of representations between My and M, .

In particular, all these G-sFd’s correspond to the same abstract G-sFd.

Proof. ( of Proposition 3.17). Let {vy, ..., Vp_1} be a C-basis of F with the properties listed in
Lemma 3.16, and let { w; = v, | j=1,...,s} be a minimal set of generators of F as a C[x, y]-
module (see the proof of Lemma 3.16). Denote by F;, for j =1,..., s, the C[x, y]-submodule of
F generated by w;. We can represent each F; by using diagrams of the form shown in Figure 5,
where the integers k; and h; are defined by

kj:max{a}(x')“wj;éo}

and
hjzmax{a|(y')“wj760},
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Vij=h;

Vij—2

Vij—1

Wi | Vij1 | Vig2 | oo |Vij+k;

FIGURE 5.

and they are well defined because any toric G-constellation is nilpotent by Remark 3.7.

The C[x, y]-module structure of F; is encoded in the fact that the multiplication by x (resp.
y) sends the generator of a box (i.e., the generator of the corresponding vector space) to the
generator of the box on the right (resp. above). If there is no box on the right (resp. above)
this means that the multiplication by x (resp. y) is zero.

Now, we have to glue these diagrams to form the required G -sFd. We glue them along boxes
with the same labels. First, notice that, if, for some j # j’ and r,t > 1, we have (x-)" wj =
(x)'wj,ie. ij+r=i;+t modulo k, then

(x) w;=(x) wjy =0.

Indeed, if r < t (the case r > ¢ is analogous) then, a representation argument (see Proposi-
tion 3.6) tells us that w; = (x)"w i~ which, whenever (x-)"w; # 0, contradicts the minimal-
ity of the generating set {w;,..., w,}. Analogously, if, for some j # j’ and r,t > 1, we have
(y) w;=(y) wj,then (y-)"w;=0.

Now we show that, if, for some j # j" and r, t > 1, we have (x) wj= (y-)‘wj/, then r = k;
and ¢ = hj. Suppose, by contradiction, that there exists 1 < r < k; such that(x-)"w; = (y)? wjr
(thecasel1<t<h i is similar). In particular, the minimality assumption implies ¢ > 1. Since
r < k;, by definition of k;, we have (x-)" *lw; #0. Therefore, we get

0£(x) Mwi=x-((x) w)=x-y" wp=(xy)y " wp=0

which gives a contradiction.

We show now that there are no “cycles". Explicitly, suppose that, up to reordering the v;s,
and consequently the w!s, we have already glued ¢ diagrams of the form depicted in Fig. 5
to a diagram of the form shown in Figure 6. Then, we want to show that there is no gluing
(x)* wy; = o(y-)" w, for some o € C*, i.e. no gluing of the first and the last boxes of the above
diagram. The presence of this cycle would translate into the following system of equalities

(x)fw = ()" wy,

(x)* w, =(y)s ws,

(x 1wy =(y)wy,

() w,  =oly ),

which cannot be verified by any toric G -constellation as explained in the proof of Lemma 3.16.
So far we have proven that each connected component of the required G-sFd have the
shape depicted in Figure 7.
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v w,=xkrw,

w, ‘

| ] ]

y hy wlzka wy_,

Wy—y ‘

xkew,

Wy

FIGURE 6.

FIGURE 7.

Moreover, if we forget about the reordering, each box contains a label v; whose index in-
creases by one when moving to the right or downward in the diagram. Since we have chosen
v;ep;fori=0,...,k—1, this diagram fits in the representation tableau (see Section 3.2), i.e.
itis an abstract G-sFd. After performing all possible gluings, we obtain a number of abstract
G-sFd’s Ay, ..., A,, whose shape is drawn in Figure 7.

The last thing to do is to show that we can realize Ay, ..., A,, as subsets I3, ..., T}, of the
representation tableau to get a G-sFd, i.e. in such a way that

is a sFd. This can be done in many ways and we explain one possible way to proceed.
We start by realizing A;,...,A,, as disjoint G-sFd’s I3, ...,I;,. This can always be done be-
cause, as we observed, A;,...,A,, are abstract G-sFd’s and, from any choice of realizations
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Ti,...,T,, of them as non-necessarily disjoint G-sFd’s, we can obtain disjoint I}, ..., T,,, by per-
forming the translations described in Remark 3.18.
At this point, we have m disjoint G-sFd’s as described in Figure 8, where just the labels of

D(-/\xYZySZ D(-/\x'fmy‘sm

0
Ho H o Ho
= = . Mo,
o xmyh o xeyh o
H H Ho

I‘1 rZ I‘m

FIGURE 8.

m
the boxes we are interested in are shown. The problem is that, in general, the union Ul‘i is
i=1

m
not a G-sFd, i.e. 2 (U Fl-) is not a sFd. In order to solve this problem, we have to perform

i=1
some translations, and a possible choice of G-sFd is

FZUTI',

i=1

where
i—1 m
_ kXa; kX5,
Ii=x /= y =+ .T; fori=1,...,m.
The proof that I is a G-sFd is now an easy check. O

As a byproduct of the proof, we also get that any G -sFd associated to a toric G -constellation
has a particular shape.

Definition 3.19. We say that a a connected G-sFd T is a stair if

(m,n)enmpD)=>(m+1,n+1),(m—1,n—1) ¢ mp(T).

Moreover,

a G -stair is a stair made of k boxes,

an abstract (G -)stair is an abstract G -sFd whose realization in the representation tableau
is a (G -)stair,

given a stair T, the (anti)generators of I' are the boxes positioned in the (top) lower
corners of I (see Figure 9),

a substair is any (possibly not connected) subset of a stair.
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generators [

/T antigenerators

FIGURE 9. Generators and antigenerators of a stair.

Remark 3.20. If 7 is any torus equivariant G -constellation, and I'; is any G-sFd associated
to Z, then I'z is connected, i.e. it is a G-stair, if and only if & is indecomposable, i.e. if it is
toric.

In this case we will refer to the upper left box as the first box and we will refer to the lower
right box as the last box. In this a way, we provide of a total order the boxes of a G -stair and,
consequently, we provide of a total order also the irreducible representations of G.

Remark 3.21. The set of generators of a stair I' corresponds to a minimal set of generators of
the C[x, y]-module M associated to T, i.e. m,..., m; € Mr such that

{mi+m'Mr€Mr/m’Mr|i=1,...,S}

is a C-basis of M/m-Mr. Antigenerators correspond to one dimensional C[x, y ]-submodules
of Mr, i.e. they form a C-basis of the so-called socle

(OIMFm):{mEMrlm’mZOGMF}.

Since each irreducible representation of G appears once in a G-stair L, sometimes, with
abuse of notation, we will say that an irreducible representation is a (anti)generator for L.

Definition 3.22. Given a connected G-sFd I', we denote respectively by h(I') and w(T) the
height and the width of T, i.e. the height and the width of the smallest rectangle in N? con-
taining 7y (T).

Moreover, the height and the width, h(F) and w(F), of a toric G-constellation & are re-
spectively the height and the width of any G-stair which represents 7.

4. THE CHAMBER DECOMPOSITION OF ©® AND THE MODULI SPACES . ¢

This section is devoted to the proof of the first main result (Theorem 4.17). In the first part of
the section we analyze the toric points of .# and the corresponding G -constellations. Then,
we show how to construct 1-dimensional families of nilpotent G-constellations. Finally, in
the last part, we give the proof of the first main result.
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4.1. The crepant resolution ./ and its toric points. As noticed in Section 2.2, the crepant
resolution ./ ¢, 2 /G does not depend on the chamber C, i.e. for all C, C’ € @8°" different
chambers, there exists a canonical isomorphism ¢ : /% — ./ ¢ such that the diagram

/

J/lc 7 //ZC

A%/G

commutes.
The varieties A%, A?/G and ./ are toric (see for example [6, Chapter 10] or [11, Chapter
2]) and we can rewrite the diagram

AZ

|7

Mo —5 A2/G

in terms of fans as follows:

(0,1)

éc

A2/G

(k,—k +1) (k,—k+1).

In particular, .# is covered by the k toric charts U; =~ A2, for j =1,..., k, associated to the
maximal cones of the fan for .# - showed above.
Let us identify A?/G with the subvariety of A3

A*/G={(a,B,7)eA®|ap—1" =0},

and let us put (toric) coordinates a;, ¢; on each U; for j =1,..., k. Then, we can encode the
diagram above into the following k diagrams

A? (x,5)
B
Ui A?2/G (%, y%xy)

k—j+l _k—j _j-1 j
e alT !

(@j,¢j) ——— (a; ; 1 clac))

for j =1,..., k. In this way, we obtain some relations between the coordinates x, y on A and
the coordinates aj, ¢; on U;, namely

a: = xjyj_k,

J
k—j+1

4.1 .
( ) Cj:xl_]y
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Formally, these are relations between regular functions x, y,a;, ¢; € Cla;, ;] - ® o Clx, y]
X,y

. 2 = i j
defined on U; %G A= Spec(((C[a], ¢! C[x?y]c Clx, y])red).

Remark 4.1. The toric points of ./ are the origins of the charts U; and they correspond to
the toric C-stable G-constellations. Indeed, the torus T?/G acts on ./ making it into a toric
variety, as described at the beginning of this section, and this toric action coincides with the
action

T2 x Mo —— Mc
(0,[F]) — [0*7].

This is a consequence of the universal property of .#. Notice that, outside the exceptional
locus of ./, i.e. on the open subset of free orbits, a direct computation is enough to show
that the two actions agree.

Hence we have a total order on the toric G-constellations over .#, in the sense that the
first toric G-constellation is the G-constellation over the origin of U;, the second one is the
G -constellation over the origin of U,, and so on.

Remark 4.2, Let T be a G-stair. Then there exists a unique o € Irr(G) such that
y-o=0andx-c®p_;=0

inT. In particular, the representation o corresponds to the first box of I'. This representation
is important because, if we want to deform in a non-trivial way the G-constellation % asso-
ciated to I keeping the property of being nilpotent, there are only two ways to do it, namely
to modify the C[x, y ]-module structure of Z by imposing

y-o=A-00p_;, AeC*
or
xX-o®p_1=u-o, ueC.
Indeed, if y -0 = A -0 ® p_; is not zero, then the nilpotency hypothesis implies
1
X-o®p_ :ny-azo,

and the other case is similar. Comparing this with the proof of Lemma 3.16 one can show that
letting A (resp. w) varying in C* all the G-constellations so obtained are not isomorphic to
each other (as G-constellations). In particular A, u are coordinates on a chart of .# around
Ir.

As a consequence of the above remark, we obtain the following lemma.

Lemma 4.3. If 7 is the toric G -constellation over the origin of the j-th chart of some /M,
then we have

b(F)=k—j+1
or, equivalently

w(F;) = j.
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[ xayh
o

H] [] x7y?®
Hd
FIGURE 10.

Proof. Letl; C J; be a G-stair for 7. In particular, it has the form in Figure 10 where just the
labels of the boxes we are interested in are shown. Recall, from Section 3.2, that, if we write
the skew Ferrers diagram 7y (Fj) = A\ B as the difference of two Ferrers diagrams A and B,
then i = Mrj, where

14

Iy
Mp =4
DA

and Iy, Ip are as in the proof of Lemma 3.12. Now, if we deform .#; as in Remark 4.2, by using
the parameters a, ¢; € C, we get relations:

x-x”yaza]-x“yﬁ

y-xtyl=cixy®
and, the relations (4.1) tell us that
(r—a+1,6—B)=(F),—h(F)+1)=(j,j—k)eN

(@a—7,B—06+1)=(—(Z)+1,h(Z)=(1—j, k—j+1)eN?

which completes the proof. O

Remark 4.4. Lemma 4.3 implies that any two toric G-constellations of the same height (or
equivalently width) cannot belong to the same chamber, i.e. they cannot be 8-stable for the
same generic parameter 6 € ©8" simultaneously.

4.2. One dimensional families.

Definition 4.5. Given a toric G-constellation # and its abstract G-stair I'z, its favorite condi-
tion is the stability condition 84 € © defined by:

(—2 if p; is a generator and it is neither the first nor the last box of T'z,
—1 if p; is a generator and it is either the first or the last box of 'z,
(07)i =12 ifp;isan antigenerator and it is neither the first nor the last box of 'z,

1  if p; is an antigenerator and it is either the first or the last box of I'z,

0  otherwise
Moreover, the cone of good conditions for 7, is the cone:

Oz ={0 08" | F is O-stable }.
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Remark 4.6. It is worth mentioning that the favorite condition 8 of a toric G-constellation
Z can be understood as the stability condition determined by an appropriate flow on a cer-
tain quiver as explained in [28, §6].

Definition 4.7. Let T be a stair and let I” C T be a substair. We say that an element v €T” is

e aleftinternal endpoint of T” if there exists w € \I" such that x-w = v orif y-v e '\I";
e a right internal endpoint of I" if there exists w e [\TI"such that y-w=vorifx-v e
r\T".

Moreover, we say that

e aleft (resp. right) internal endpoint is a horizontal left (resp. right) cutif y -v €T\ T’
(resp. there exists w € T \T” such that y - w = v);

e a left (resp. right) internal endpoint is a vertical left (resp. right) cut if there exists
weTl\T"suchthat x- w=v (resp. x-v el \T");

Remark 4.8. If & is a G-constellation and 'y is a G-stair for &, then a substair I' C I'z cor-
responds to a G-equivariant C[x, y]-submodule & of Z if and only if it has only vertical left
cuts and horizontal right cuts. Moreover, if T is connected and 64 is the favorite condition of
Z, then,

1 ifT has one internal endpoint,

Qgﬁ(gr) = {

2 ifT has two internal endpoints.

Remark 4.9. Let & be a toric G-constellation with abstract G-stair I'z and let & < % be a
subrepresentation, i.e. a G-invariant linear subspace, whose substair Iy C Tz is connected.
Then, if [ has two horizontal cuts or two vertical cuts and 64 is the favorite condition of 7,
we have

0,(8)=0.

Remark 4.10. The following properties are easy to check for a toric G-constellation Z:

o favorite conditions are never generic,

e the G-constellation Z is 0 4-stable,

e there exist generic conditions 6 € ©8" such that . is 0-stable, i.e. the cone of good
conditions © 4 is not empty.

Moreover, given a chamber C, we have:

c= () oz

[9]6//5C

For example, one can prove the third property using the openness of the nonemptyset {8 €@ | 7 is strictly 8-stal
and the denseness of ©8°". However, we give here an alternative proof of this fact as in what
follows we shall need a similar argument.
Let p; be anyirreducible representation, we denote by 7, the G -equivariant C[x, y ]-submodule
of 7 generated by p; and, we denote by I[,, C I'» the abstract substair and G -stair correspond-
ingto 7,, and 7 respectively.
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Consider an ¢ € © with the following properties:

=0 if p; is an antigenerator,
£ <0 if p; is neither a generator nor an antigenerator,
Vei=— > & ifp;isagenerator,
pj€lp,\pi)
Z &; <1

P generator

Then, for any subrepresentation & <.%, we have

e(&)>— Z g;>—1.
pi generator
Hence, the G -constellation & is (04 + €)-stable. Indeed, Remark 4.8 implies that, given an
indecomposable proper G-equivariant C[x, y]-submodule we have

(05 +£)(&)> 0.

On the contrary, if & is not indecomposable then it is a direct sum of indecomposable com-
ponents and (64 + €)(&) > 0 follows by the additivity of 64 + ¢ on direct sums.

We conclude by noticing that © \ ©8°" is a union of hyperplanes and so, there is at least a
choice £ € © such that 84 + ¢ is generic.

We will see in the proof of Theorem 4.17 that there is an easier way, which does not involve
any ¢, to prove that ©4 is not empty.

Definition 4.11. An abstract linking stair is an abstract stair made of 2k boxes obtained from
an abstract G-stair I in either of the following ways:

(1) (decreasing linking stair of I') take two copies of I' and make a new abstract stair by
gluing the right edge of the last box of one copy to the left edge of the first box of the
other copy;

(2) (increasing linking stair of I') take two copies of ' and make a new abstract stair by
gluing the lower edge of the last box of one copy to the upper edge of the first box of
the other copy.

A linking stair is a realization of an abstract linking stair as a subset of the representation
tableau.

Remark 4.12. An abstract linking stair contains exactly k different abstract G -stairs.

Proposition 4.13. LetI be the abstract G -stair of a G -constellation & and let L be its abstract
decreasing linking stair. Consider any G -stair I’ C L and its associated G -constellation F'.
Then, the following are equivalent:

(1) there exists at least a chamber C such that both & and 7’ belongto C, i.e. © 2NO 4, #
0,

@ h(F)=H(F)-1,

(3) the substairT’ C L has a horizontal left cut.

In particular, ' is the G -constellation next to F in ./ as per Remark 4.1.

Example 4.14. Figure 11 describes the situation via an example. Here, we are considering the
7./9Z-action on A? given in (2.1).
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r
- L
1 ;
6|7
L 8 0
1
’ ; 23]4]
— rnrr
0
1
2 -----
hr)=6,  b(I)=5,
Y L
3 4 E E m(l’):4, m(r/)=5
____________________ 5 7 5
F : 6 7
18

FIGURE 11. The abstract linking stair L of an abstract G-stair I' and a substair
I of L which satisfies the hypotheses of Proposition 4.13.

Proof. (of Proposition 4.13). We start by introducing some notation.

Let Z, 7’ be two G-constellations. Given a proper subrepresentation & < Z (resp. &’ <
Z'), we denote by &’ (resp. &) the corresponding subrepresentation &’ < Z’ (resp. & < F).
Here, by “corresponding” we mean that, since & is a subrepresentation of the regular repre-
sentation C[G] of an abelian group, it decomposes as a direct sum of distinct indecomposable
representations & = ?p i;- Then, we denote by &’ the subrepresentation of Z’ = C[G] given

by the same summands:
&= Sp;..
j J
In particular, for all 8 € ©, the two rational numbers
0(&) and 6(&")

are the same. Moreover, we denote by I'c C T (resp. Iz, C I”) the substair associated to & (resp.
&N.

Notice that, given a proper G-equivariant C[x, y]-submodule & < %, the subrepresenta-
tion &’ is not necessarily a C[x, y]-submodule of Z’. We are now ready to proceed with the
proof.

(2)<=(3) We omit the easy proof.

(D=(3) Suppose by contradiction that I” C L has a vertical left cut. Then, by Remark 4.8, the
subrepresentation & < 7 is a C[x, y]-submodule because, in T, the substair I NI’
has a vertical left cut by hypothesis and its last box is not internal. At the same time,
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again by Remark 4.8, &/, < 7 is the complement of a C[x, y]-submodule, because
its first box is not internal and it has a vertical right cut. Hence,

CcOzN0O4 C {0(€Fﬂf’)> 0}0{—9(601“01“/) > 0} =0,

which contradicts (1).
In order to prove statement (1), we need to show that

Oz NOg #0.

We start by identifying the proper indecomposable G-equivariant subsheaves § < .7
(resp. & < ') such that also &’ (resp. &) is a proper G-equivariant subsheaf of
(resp. 7).

Let &’ < 7’ be a proper indecomposable G-equivariant submodule of .Z’; we con-
sider three different cases.

Case 1. Both the first and the last box of the substair Iz, C I’ are internal endpoints.
Then, the same happens for I'; C I'. This is true because I' has a vertical right cutin L,
by the construction of a decreasing linking stair (see Definition 4.11), and hence, the
right internal endpoint of Tz, in I/, which is a horizontal cut by Remark 4.8, is different
from therightinternal endpoint ofI'in L. Therefore, both internal endpoints of Iz, cor-
respond to internal endpoints of ¢ of the same respective nature. As a consequence,
the subrepresentation & is a proper, non necessarily indecomposable, G-equivariant
submodule of Z.

Case 2. The substair Iz, has only the vertical left cut in I, and hence, its last box coin-
cides with the last box of I”. In particular, this box is not the right internal endpoint of
I'in L. We have to study the nature of the internal endpoints of I'x. Notice first that it
is enough to study the right internal endpoint of T because, if T has still left internal
endpoint, then it is a vertical left cut. Let p; be the label on the last box of I”, then, the
label on the horizontal left cut of I” (i.e. its first box) is p;;;. Now, since, by hypothesis
(3), the box labeled by p;,, is a horizontal left cut of I” C L, the box labeled by p; in T
has to be a horizontal right cut for the substair I'c. Therefore, Is has only vertical left
cuts and horizontal right cuts, and so, by Remark 4.8, & is a proper, non necessarily
indecomposable, G-equivariant submodule.

Case 3. The substair I;; C I” has only the horizontal right cut, i.e. its first box coin-
cides with the first box of I”. First of all notice that, as for the first analyzed case, the
right internal endpoint of Tz, in I, which is a horizontal cut by hypothesis, is different
from the right internal endpoint of I' in L, which is vertical by definition of decreasing
linking stair. Therefore, the box of I with the same label as the horizontal right cut of
Iz, is an internal endpoint of [z and it is a horizontal right cut. Finally, the first box of
I in L is a left internal endpoint for Tz, and so it is a horizontal left cut by point (3) of
the statement. As a consequence, I'x has two horizontal cuts.

In summary, if & < Z’ is a proper indecomposable G-equivariant submodule of
Z’ such that Iy, has a vertical left cut, then also & < Z is a proper, non necessarily
indecomposable, G-equivariant submodule. While, if T¢, < I” has only the right hori-
zontal cut, then I; has two horizontal cuts.

Following the same logic, if § < .7 is a proper indecomposable G -equivariant sub-
module of Z such that Iy has a horizontal right cut, then also &’ < %’ is a proper, non
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necessarily indecomposable, G-equivariant submodule. While, if I < I has only the
left vertical cut, then Iz, has two vertical cuts.

We are now ready to exhibita 6 € 8" such Z and .Z’ are 0-stable. Let 85 and 04
be the respective favorite conditions for # and Z’ and let 8 = 04 + 6% be their sum.
Then, both Z and .Z’ are 0-stable. Indeed,

- if & < Z is a proper indecomposable G-equivariant C[x, y]-submodule of .7

such that also &” is a C[x, y]-submodule of Z’, then

0(8)=07(8)+02/(8)=02(8)+05/(6)>0

follows from the fact that 7 is 64 -stable and .7’ is 04, -stable (see Remark 4.10);
- if &’ < Z’ is a proper indecomposable G-equivariant C[x, y]-submodule of %’
such that I, has two horizontal cuts, then

0(6")=02(6")+02/()=02(8)+02/(6)=02/(8)=1>0

follows from the fact that #’ is 64, -stable (see Remark 4.10) and from Remarks 4.8

and 4.9;
- if & < Z is a proper indecomposable G-equivariant C[x, y]-submodule of .Z
such that Iz, has two vertical cuts, then

0(8)=02(8)+02/(8)=02(8)+05/(6")=02(8)=1>0

follows from the fact that Z is 84 -stable (see Remark 4.10) and from Remarks 4.8
and 4.9;

- if§& < F (resp. & < F')isaproper decomposable G -equivariant C[x, y ]-submodule,
then

0(&)>0

follows by applying the previous points to the indecomposable components of &
and from the additivity of 6.

The last issue here is that, in general, such 6 is not generic, i.e.

0€BzNO4 \NOzNOg,.

In order to solve this problem, we can perturb 84 and 84, the same way as as we did in
Remark 4.10 thus obtaining a generic 0 €©4 NO.. Consider the stability conditions
¢, ¢’ €O defined as follows:

=0 if p; is an antigenerator of 'z,
/ . . .
£;=0 if p; is an antigenerator of I'z/,
£ <0 if p; is neither a generator nor an antigenerator of 'z,
£;<0 if p; is neither a generator nor an antigenerator of 'z,
\ gi=— Y. & ifp;isageneratorofly,
pi€ldp;Np;)
!/ _ / . .
gi=— > ¢ i if p; is agenerator of 'z,
P i€l \p1)
> g+ > £ <1,
\ p; generator of I'y p; generator of ['z/

where, asin Remark 4.10, [,, cT (resp. 1";_ c I') is the substair associated to the C[x, y |-
submodule of Z (resp. Z’) generated by the irreducible subrepresentation p;.
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Now, if
0=(07+2)+(05 +¢
then # and Z’ are 0-stable, and ¢ and ¢’ can be chosen in such a way that 0 is generic.
As a consequence Q4 NO 4, # .

O

We will see, in the proof of Theorem 4.17, that there is an easier way to prove that © z N© 4,
is not empty. By following the same logic, one can prove a similar statement for the increasing
linking stairs.

Proposition 4.15. LetT be the abstract G -stair of a G -constellation &# and let L be its abstract
increasing linking stair. Consider any G -stairI” C L and its associated G -constellation F’.
Then, the following are equivalent:

(1) there exists at least a chamber C such that both & and 7’ belongto C, i.e. © 2NO 4, #
0,

@) b(F)=h(F)+1,

(3) the substairT’ C L has a vertical right cut.

In particular, 7 is the G -constellation next to Z' in ./ ¢ in the sense of Remark 4.1.

4.3. Counting the chambers.

Remark 4.16. Propositions 4.13 and 4.15 provide a way to build 1-dimensional families of
nilpotent G-constellations. In particular, each of this families corresponds to some excep-
tional line in some .# . Moreover, the two gluings described in the definition of linking stair
are nothing but the two possible ways of deforming a toric G-constellation keeping the prop-
erty of being nilpotent described in Remark 4.2. This implies that the families coming from
Proposition 4.13 and Proposition 4.15 are exactly the 1-dimensional families of nilpotent G-
constellations appearing in the moduli spaces ..

An easy combinatorial computation tells us that the maximum number of chambers is k!.
Indeed, if we start by a G-constellation .%; of maximum height h(F) = k, i.e. Z; has one of
the k abstract G -stairs shown in Figure 12, we can construct toric G -constellations %, ..., Z;

k—1 0 k—2
k—2 k—1 k—3
1 2 0
0 1 k—1

FIGURE 12. The abstract G-stairs of maximum height.

with respective abstract G-stairs I; for j =2,..., k by recursively applying the prescriptions in
Proposition 4.13. Precisely, for any j > 1, each I is a connected substair, with horizontal left
cut, of the decreasing linking stair of ;.

To conclude that the maximum number of chambers is k!, we notice that the j-th time
that we apply Proposition 4.13 there are k — j possible G -stairs with horizontal left cut in the
decreasing linking stair of the abstract G -stair of 7.
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Theorem 4.17. IfG c SL(2, C) is a finite abelian subgroup of cardinality k = |G|, then the space
of generic stability conditions ©8°" is the disjoint union of k! chambers.

Proof. Tt is enough to show that, if 71,..., Z are as in Remark 4.16, then there exists a cham-
ber

C=07N0zN-NOg 0,

such that 7 is C-stable for all j =1,..., k. We claim that, if, for all j =1,..., k, the favorite
condition of .7; is 99-]., then

k
0=> 0z ¢C.
j=1

A priori, in order to prove the claim, we need to show both that § is generic and that every .7
is 0-stable. In fact, it is enough to show just that every .7, is 0-stable, because this implies
that .y has k torus fixed-points and, as a consequence, that 6 is generic.

Let & < 7, be a proper G-equivariant indecomposable C[x, y]-submodule of 7; with
substair I, CIz,. Suppose also that &; = EB Ps, where 0 < m < n < k—1. We denote by &;,

fori=1,...,j—1,j+1,...,k, the subrepresentatlon of Z; corresponding to &, i.e.

n
&=Pps, Vi=1,...,j-1,j+1,....k
S=m

Notice that
o if L, has two vertical cuts, then I;, has two vertical cuts for every i > j +1;
o if e, has two horizontal cuts, then I';, has two horizontal cuts for every i < j —1.

This is true because every time we increase (resp. decrease) the index i, we perform a horizon-
tal left (resp. vertical right) cut in the decreasing (resp. increasing) linking stair which does
not affect the vertical left (resp. horizontal right) cut of Iy, (resp. Iy, ).

Hence, foralli=1,...,j—1,j+1,..., k, we have 9%(6"]-) >0 and, as a consequence

0(&;) (9¢ +29¢)(5

i#j

Remark 4.18. The proof of Theorem 4.17 provides an alternative way to prove that

Oz #0
in Remark 4.10 and, that
Oz NOg #0
in the last part of the third point of the proof of Proposition 4.13.
For example, let & be a toric G-constellation with abstract G -stair of height h(Z) = j. We
construct #y,...,#;_1,Zj;1,..., ¥ by recursively applying Propositions 4.13 and 4.15, i.e.
e if i > j, then Z; has, as G-stair, a G -substair, with a horizontal left cut, of the decreas-
ing linking stair of Z;_,,
e if i < j, then Z,; has, as G-stair, a G -substair, with a vertical right cut, of the increasing
linking stair of Z;,;.

Then, if 0 =04+ Za% is the sum of all favorite conditions, we have 0 €© .
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5. SIMPLE CHAMBERS

In this section we firstly introduce the notion of chamber stair. Roughly speaking, itis a stair
that encodes all the data needed to reconstruct a chamber. Then, we define simple chambers,
which are a particular kind of chambers with the property that any toric G-constellation be-
longs to at least one of them. Finally, we prove that there are exactly k -2¥~2 simple chambers.

Remark 5.1. Given a chamber C c ©8" we can make a stair I'; out of it and and we say that
I'c is the chamber stair of C.

Let 71,..., % be the toric G-constellations in .# . As explained in Proposition 4.13 (resp.
Proposition 4.15), the abstract G-stairs I';, I'; 1 of two consecutive G-constellations 7, 7,
are substairs of the same stair L, namely the decreasing linking stair of I'; (resp. the increasing
linking stair of ;). Moreover they have non-empty intersection in L.

Now, if I3, ..., I} are the respective abstract G-stairs of Z,..., %}, we can construct a new
abstract stair [z by gluing consecutive abstract G-stairs along their common parts.

Definition 5.2. The abstract chamber stair of C or the abstract C -stair is the abstract stair I
obtained as described above.

Example 5.3. Consider the case G = Z/5Z. Figure 13 explains how to build an abstract C-stair
starting from the abstract G -stairs of the G -constellations in some chamber C. In particular,

////////

[ e
SR

[eo}

Yok

[a—

\S]

S
—

213/4]0]1]
Ie

FIGURE 13. The abstract C-stair I'; is obtained by gluing, along their common
part, the abstract Z/5Z-stairs I; and I;,; fori =1,...,4.

we have glued the boxes 2l of an abstract G -stair with the boxes:::: of the next abstract G -stair.

Definition 5.4. A chamber stair associated to C or a C -stair is any realization T;; of the abstract
chamber stair I'; associated to C as a subset of the representation tableau.
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Remark 5.5. Let C C ©%°" be a chamber andletT- C 7; be a C-stair. Consider a G-stairI' C I'¢
of width 1(T') = j and the associated G-constellation Zy. Let us also denote by b, b’ €T the
first and the last box of I'. Suppose that 7t is not C-stable. Then, there are two consecutive C-
stable G-constellations # and Z’ with associated respective G-stairs 'z, Tz, C I'- such that
belg and b’ €Ty4..

Therefore, I' is a substair of both the decreasing linking stair L of ' and the increasing link-
ing stair L’ of T'z,. In particular, as a consequence of Propositions 4.13 and Proposition 4.15,
one and only one between the following two possibilities must occur, namely:

w(Z)=j—1,w(Z’')=j, and b (resp. b’) is a left (resp. right) horizontal cut of T'in L,

5.1
©.1 w(ZF)=j,w(Z)=j+1, and b (resp. b’) is a right (resp. left) vertical cut of T in L.

On the other hand, again as a consequence of Proposition 4.13 and Proposition 4.15, if Zr is
C-stable, none of the conditions in (5.1) can hold true, and in this case I has horizontal left
cut and vertical right cut in T..

Summing up, if T c I is a connected G -substair associated to a toric G-constellation Zr
then only the following two cases can occur:

e the G-constellation %y is C-stable and I has a horizontal left cut and a vertical right
cut, or

e the G-constellation %7 is not C-stable and I has two horizontal cuts or two vertical
cuts.

Remark 5.6. Different chambers have different abstract chamber stairs.

First, recall from Remark 5.5 that, as per Proposition 4.13, the G -stair of any toric C-stable
G-constellation has a vertical right cut in the C-stair and a horizontal right cut in the decreas-
ing linking stair of the previous G-constellation.

Suppose that two chambers C and C’ have the same abstract chamber stairI'. In particular,
from the construction of abstract chamber stairs, it follows that C and C’ have the same first
(in the sense of Remark 4.1) toric G-constellation. Suppose that C and C’ differ for the j-th
toric G-constellation. This translates into the fact that, if #; and # ]’ are the respective j-th
G -constellations of C and C’ and l"j,l"]’. are their abstract G-stairs, then

/
I £T).

Let us denote by #;_; the (j —1)-th toric G-constellation of C (and C’) and by T;_, its
abstract G-stair. Then, both T; and F]’. are substairs of the decreasing linking stair L;_; of
I;_; and they have horizontal right cut in L;_, as noticed above. Since, I';_;,I; and 1“]’. are
connected and I';_; NT;,T;_; N 1“]’. #0in L;_,, it follows that:

;UL G Ty UT o [ UL 2T, UT.
Finally, if without loss of generality we suppose

/
Fj_l UF] g Fj_l UF] crT,

then we get a contradiction. Indeed, as noticed at the beginning, I'; has a vertical right cut in
[, but it has to have a horizontal right cutin T;_; Ul"]’. because it is a connected substair of L;_,
which strictly contains I;.
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Remark 5.7. Since the abstract chamber stair [ of a chamber C contains a copy of the ab-
stract G -stairs of the toric C-stable G-constellations, we will think of such abstract G-stairs
as substairs of I'-.

Similarly, given a C-stair T C J; which realize I, we will realize the abstract G-stairs
associated to the G-constellations in C as substairs of Tc..

Definition 5.8. Given achamber C, we say that a toric C-stable G -constellation is C -characteristic
if its abstract G-stair has the same generators as the abstract C-stair, see Definition 3.19.

We say that a chamber C is simple if there is a toric C-stable G-constellation whose ab-
stract G-stair has the same generators of the abstract C-stair, i.e. if there exists at least one
C-characteristic G-constellation.

Example 5.9. An example of a simple chamber is given by the chamber C; in Theorem 1.14,
i.e. the chamber whose associated moduli space is G-Hilb(A?). In particular, the abstract
C;-stair has only one generator, namely p,.

Definition 5.10. Let I be a G-stair and let p; and p; be its first and its last generators.
o The left tail of T is the substair of I' given by

W) ={y*p; | s>0}.
e The right tail of T is the substair of I' given by
tt(r)={x5‘pj |s>0}.
e The tail of T is the substair of I' given by
(1) = I)ueyI).
Similarly one can define left/right tails for abstract G-stairs.

Remark 5.11. Iftwo G-stairs I' and I” have the same generators, then they differ by their tails,
i.e. the following equality of subsets of the representation tableau holds true:

I\t ="\ I

In particular, if a G-stair I' has a tail of cardinality m, then there are m + 1 G-stairs with the
same generators as I'.

In simple words, the other G -stairs are obtained by moving some boxes from the left tail to
the right tail (and viceversa) of I'.

Proposition 5.12. The following properties are true.

(1) Any toric G -constellation is C -stable for some simple chamber C.

(2) Given a simple chamber C, and a C -characteristic G -constellation &, there is an al-
gorithm to produce all the toric C -stable constellations.

(3) IfC is a simple chamber, all the toric G -constellations that admit a G -stair with the
same generators as the C -stair belong to C, i.e. they are C -stable. In particular, they
are C -characteristic.

Proof. LetI( be the abstract C-stair. We prove the first two points in a constructive way. In or-
der to do so, we show that, given a toric G-constellation %, there is a unique simple chamber
C such that Z is C-characteristic.
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Let .7 be a toric G -constellation with associated abstract G-stair I'z of height h(Z)=j. In
order to build a chamber starting from %, we have to first recursively apply Propositions 4.13
and 4.15 j—1 times and k — j times respectively, to obtain k toric constellations

Pt Ti0, T, Fjs1, s T

and, finally, apply Theorem 4.17 to conclude that there exists a chamber C such that the con-
stellations 7y,...,#; 1, F,F1,..., F correspond to the toric points of ./Z.

The condition that the chamber must be simple translates into the fact that, at every step,
no new generators appear. This may be only achieved by performing, every time that we
apply Proposition 4.13 (resp. Proposition 4.15), the first (resp. last) possible horizontal (resp.
vertical) cut in the decreasing (resp. increasing) linking stair.

In order to prove the last point, we start by considering a G -constellation % whose abstract
G-stair I'; has the same generators as the C-stair and such that it has empty right tail, i.e.
t(I'z) = (I'z).

Let m = #It(I'z) be the cardinality of the left tail of T'z. The first m times we apply Proposi-
tion 4.13 by performing the first possible horizontal cut we increase the cardinality of t{(T'5)
by 1 and, consequently, we decrease the cardinality of [{(I'z) by 1. In this way we find, as ex-
plained in Remark 5.11, all the toric G-constellations which admit a G-stair with the same
generators as the C-stair and all of them are C-stable by Theorem 4.17. O

Lemma 5.13. LetT be a G -stair. ThenT has at most
k+1
=)

generators.

Proof. The statement follows from the following observation. If a stair has r generators, then
ithas atleast 2r —1 boxes, as shown in Figure 14.

FIGURE 14.

Now, a G-stair has exactly k boxes. Hence,

{k+1J
r<|——|.
2

Example 5.14. Non-simple chambers exist.
As already mentioned in Theorem 1.14, there is a chamber Cg; such that G-Hilb(A?) % _# Co
as moduli spaces. In particular,

Coc{0e€0@|6,<0,0;,>0Vi=1,...,k—1},
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and the abstract G -stairs of its toric constellations are shown in Figure 15.

1

2 2

3 3 3

k-1 k-1 k-1 k-1

0 0 1 0 1| 2 0 1 |- |k-3|k-2 0|1 |- |k-3|k-2|k-1
A Ly, Iy, I,.

FIGURE 15. The abstract G-stairs of the Cg -stable toric G -constellations.

Notice that, for i =1,...,k and j =0,...,k—1, the favorite conditions 6, are defined by
(—2 ifj=0&i#1,k,

—1 ifj=0&(i=1lori=k),

07);j=41 ifj=i—14#0,

1 ifj=i,

0 otherwise.

and that the condition

k
0=

0z, =(-2k+2,2,...,2)
~——
k-1

belongs to C;. More precisely, the moduli space G-Hilb(A?) parametrises all the toric G-
constellations generated by the trivial representation. As a consequence, the abstract G-stairs
Lz, fori=1,..., k, have as only generator the trivial representation.

Let us reverse this property by asking the presence of just one antigenerator, for exam-
ple, the trivial representation. It is easy to see that there is a chamber C(?P whose toric G-
constellations, as requested, have the abstract G -stairs in Figure 16. In particular,

i=1

0

1] (k1] 0

2 1| k-2|k-1] 0

R R 1

k-2 k-3 o 2 [ 3 [ Tkl o

k-1 k-2 k3| - vl a2 [ kelra] o
Ly Ly Ly o Ly | Lz

FIGURE 16. The abstract G -stairs of the Cgp-stable toric G-constellations.

Clc{0eO0|6,>0,0;<0Vi=1,....k—1}.
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We denote the associated moduli space by
G-Hilb®"(A%):= . cor.

Notice that, while Cp}s, is simple, C7j; , is not simple for k > 4 because the number of gener-

ators of the C;ﬁcz-stair is
k+1
k_1>{T‘| Vk>4.

Therefore, as a consequence of Lemma 5.13, there is no CZO/iZ-characteristic G -constellation.

We show, as an example, the abstract chamber stairs of C; and C(?P in the case k =5.

o]

1]

B

3|

410

1

1] 2|
T 31410
3| 1
T 213|410
01‘2‘3‘4‘ 12‘3‘4‘0‘

FIGURE 17. The abstract Cysz-stair and the abstract CZEZ-stair.

Theorem 5.15. IfG c SL(2, C) is a finite abelian subgroup of cardinality k = |G|, then the space
of generic stability conditions ©8" contains k -2¥=2 simple chambers.
Proof. Let A be the set of of possible sets of generators for a G-stair, i.e.
B = {A CTq | there exists a G -stair whose generators are the elements in A } ,

and let ¢ be the set of all G -stairs

4 ={T'cI;|T'isa G-stair}.
Consider the subsemigroup Z of 7;

Z={(ak+7,Bk+71,p0)€T5 |, B,7>0}.

We denote by 2 and ¥ the set of equivalence classes

B=RB|~yz, and Y=Y/ ~y

where, if A;, A, € B (resp. I,I, € ¥), then A; ~; A, (resp. I] ~, I,,) if there exist z € Z such
that

A1=A2+ZOI‘A2=A1+Z (reSp.r1:r2+Z0rr2=rl+Z).
Notice that, if two G-stairs are ~;-equivalent also their sets of generators are ~-equivalent.
However, the contrary is not true.
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FIGURE 18.

Now, the number of simple chambers equals the cardinality of 2. Indeed, Proposition 5.12
implies that the chamber C is uniquely determined by a constellation % whose G -stair is C-
characteristic. More precisely, C is uniquely determined by the generators of any characteris-
tic C-stair I'z. Although there are infinitely many G-stairs corresponding to %, Remark 3.18
tells us that two G -stairs correspond to the same G -constellation if and only if they differ by
an element in Z, i.e. they are ~,-equivalent.

Let ¢, be the set of G -stairs with r generators andlet 4, = ¥,/ ~, be the induced quotient.
We have a surjective map

U:9— R

which associates to each G-stair its set of generators, and this map descends to the sets of
equivalence classes
U:Y— B,

because ~;-equivalent G -stairs correspond to ~-equivalent sets of generators.
Now, 2 decomposes as a disjoint union (see Lemma 5.13) as follows:

Our strategy is to compute ¥(¥,) for every 1 < r < [%J and then sum overall r. Forr =1

we have [¥(%,)| = k. If we impose the presence of r > 2 generators and of a tail of cardinality
j then there are
k—2—j
k- J
2r—3

elements in ¥(%,) which comes from G -stairs with a tail of cardinality j. Indeed, as shown in
Figure 18, we have 2r —1 fixed boxes (generators and anti-generators), j boxes contained in
the tails (dashed areas) and k—2r +1— j boxes left to arrange in 2r — 2 places (dotted areas).
The number of possible ways to arrange the boxes is computed via the stars and bars method'.
In particular, there are

@2r—=2)+(k=2r+1—j)—1\ (k—2—j
k—2r+1—j \2r-3

of them.

IIn amore suggestive way, one can say “‘combinations with repetition of 2r —2 elements of class k—2r+1—j".
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Finally, if we sum over all possible r and j, we get

L
2

—2r+
k—2—

E ( ]) = k252,
2r—3

r=2

O

Remark 5.16. An easy combinatorial computation shows that the set ¢ in the proof of Theo-
rem 5.15 has cardinality k -2%~1, i.e. that there there are exactly k -2¢~! isomorphisms classes
of toric G-constellations.

We conclude this section with two examples which help to understand the notions just
introduced.

Example 5.17. In this example we treat the case G = Z/5Z.

The following picture contains a list of the possible shapes of the abstract chamber stairs
of simple chambers and, in each case, the shapes of the G-stairs associated to the toric G-
constellations belonging to the respective simple chamber.

L B B o

T < >

] & = w -

T < >

1 & & = =

T < >

A

ﬂmﬂw

11
[EEEEE]

T

ST < >

™8 oo

T < >

L m om e

T < >

T R

T < >

e

FIGURE 19. Description of the simple chambers for the action of Z/5Z.

As predicted by Theorem 5.15, the possible shapes for the chamber stairs of simple cham-
bers are 8 = 2572, and there are 5 different ways to label each chamber stair.

Example 5.18. In this example we treat the case G = Z/4Z.
The following picture contains a list of the possible shapes of the abstract chamber stairs

and, in each case, the shapes of the G -stairs associated to the toric G -constellations belonging
to the respective chamber.
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FIGURE 20. Description of the chambers for the action of Z/4Z.

Notice that the first 4 = 2*~2 pictures correspond to simple chambers. Moreover, as pre-
dicted by Theorem 4.17, the possible shapes for the chamber stairs are 6 = (4 —1)!, and there
are 4 different ways to label each chamber stair.

Note also that, after having labeled each box appropriately, the first and last chambers in
Figure 20 correspond to C; and C(?P respectively (see Example 5.14).

6. THE COSTRUCTION OF THE TAUTOLOGICAL BUNDLES Z¢

The quasi projective variety .# is a fine moduli space obtained by GIT as described in [18]
by King. In particular, there exists a universal family % € Ob Coh(.# x A?). The tautological
bundle is the pushforward

Re =Tty ).
It is a vector bundle of rank k = |G| whose fibers are G-constellations and, more precisely,
over each point [#] € ./ the fiber (), #) is canonically isomorphic to the space of global
sections HY(A?, 7).

In this section we give an explicit construction of the tautological bundles % for all cham-
bers C c B%" in terms of their chamber stairs. We will adopt the same notation as in Sec-
tion 4.1.

Notation 6.1. From now on, given a coherent monomial ideal sheaf ¢” C 0., we denote by
A the 0y-module defined by

A= e*m A | Torg, €°m, A .
Lemma 6.2. Suppose that 4 is generated by the monomials x® yP1,..., x% yPs. Then, on
each toric chart U; C Y with coordinates (a;, c;), the sheaf 4 agrees with the sheaf #; asso-
ciated to the Claj, c;]-module:
_ K; c Claj, cj, x,y]
=
KNI KNI

)

where K; and I; are the ideals of Cla;, cj, x, y] given by
Kj:(xalyﬂl,.'.,anyﬂs)

and

k—j+1

_ k—j_ j i—1
Ii=(ajy~/—x!,cjx'" —y ,a;jci—Xxy),
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and the gluings on the intersections U; N U;, for1 < i, j < k, are given by:

N(U;NU;, 56) —5 TW;NU;, )

X X,

y Y
i—j+1 i—j

aj —————a; ¢,

i -
C; a; c;

i+1
] .

Proof. The proof is achieved by direct computation, after noticing that the gluings on the in-
tersections are deduced from the toric description of the toric quasiprojective variety .
given at the beginning of Section 4.1 and, in particular, from Equations (4.1). O

Remark 6.3. Using the the relations given in (4.1), the modules H;, for j =1,..., k, can be
regarded as C[a}, c;]-submodules of the rational function field C(x, y).

Remark 6.4. If x® yA1, ... x% yPs are the generators of some C-stair I and .# is defined as
in Lemma 6.2, all the G-sFd associated to the toric fibers of . are substairs of I-. This is a
consequence of Nakayama’s Lemma together with the following three facts:

Vi=1,..,kVYi=1,..,s x%TlyPtle(K;nI;))+(a; c;))
(6.1) Vj=1,...,k, xalyﬁ1+kG(KjﬁI]-)+(aj,C]-),
ijl,...,k, xasJ’kyﬁsE(Kjﬂlj)+(a]-,cj).

The relations (6.1) follow from the easy observations that
x%yPi(ajci—xy)=ajcix“iyPi —x**yPtl e KN,
yiL x @y B .(ijj—l_yk—j-kl) _ C]_xa1+j—ly/3]+j—1_xaly/j]+k eK;NI;,
KT xS yPs (a;y T — )= a xR y Pkl astk b e k0 T

In this last part of the paper we state and prove the last main theorem. Before to give the
proof, we also state and prove some corollaries and results needed in the proof.

Theorem 6.5. Let C C ©%™ be a chamber and let T C I be a C-stair. Suppose thatT: has
s > 1 ordered (see Remark 3.20) generators vy, ..., v; with associated monomials

xalyﬂl, e xO‘Syﬁs eClx, yl.
Consider the ideal sheaf # = (x® yP1, ..., x% yPs)0,., then
Re=Ze*n A/ Torg,, (e*m,.A).
The following corollaries are direct consequences of Theorem 6.5.

Corollary 6.6. On each toric chart U; C ./ ¢ with coordinates(a;, c;), the tautological bundle
R\, agreeswith the sheaf 7¢; associated to the Cla;, c;]-module H; in Lemma 6.2.
]

Corollary 6.7. In the hypotheses of Theorem 6.5, the 0y -module  is locally free of rank |G|.

Corollary 6.8. Let C and % be as in Theorem 6.5. Then, /. can be identified with a closed
G -invariant subvariety of Quotlegl(Az).
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Remark 6.9. Corollary 6.7 is a generalisation of [13, Proposition 2.4.] in the abelian setting.

Remark 6.10. For the trivial ideal K =(1) = C[x, y] Corollary 6.6 recovers Nakamura’s descrip-
tion of the G-Hilbert scheme when G is abelian (see [22]).

Remark 6.11. Notice that, over the origin of the first and the last charts, the 0, -module 74
and the 0y, -module ;. have, as toric fibers, the expected G-constellations .7, and Fy, i.e

(x@yhn) Clx, y]

91 = %01 = (xalyﬂﬁ_k, xa1+1yﬂ1) (xal yﬂﬁ—k, xa1+1yﬁ1)

and
(x% yhs) Clx, y]

Ty = S, = (x@stky B, xasyBtl) = (xactkybs xayBtl)

where 0; € U, is, for i =1, k, the origin.
We prove this only for the origin of Uy, the other proof is similar. We start by showing that

x%yPie (KNI +(ag, ¢p) fori=1,...,s—1.
Notice that, forall i =1,...,s —1, we have

a; 20, B;>Bi.1>Ps=20, a;+k—1>a;,;.
Therefore, we can write:

Cp x@itk—1—=in yﬂi—l—ﬂi+l (x %1 yﬂm )— x% yﬂi

Ckxal+k—1yﬁl—l _ xﬁiy(li —
(x%yP ) (e xk1—y),

which implies
2% yPi e (KNI +(ag, ) Vi=1,...,s— 1.
Now, we have
KNI +(ag, c) = (x® yP)N I+ (ag, o) = (x4 yP) I+ (ag, o) = (x @y P, x5 yPrl ay, ),
which gives

(xasyﬁs) (C[x)y)akrck]

Feo, = .
Ok = (xastkyBs, xas y B+l ar, cp)  (x@stkyBs, xa yBs+l ap, cp)

Definition 6.12. Let K c C[x, y] be the ideal generated by the (ordered) set of monomials
{x%yPi | i=1,...,s}

associated to the generators of some chamber stair I'x and let Ty = {(m,i)e I5; | m€ K } be
the subset of the representation tableau corresopnding to K. Given a monomial m;, € K
corresponding to a box b €Iz C Ik, we say that:

e the property (A;) holds for m,, (or for b) if
x_jyk_j -my, €Tk,

e the property (C;) holds for m;, (or for b) if
xI Ty TRy, e Ty
Lemma 6.13. If the property (A i) (resp. (C;)) holds for a box b €T then it holds also for the

box after (resp. before) b.
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Proof. Let my, = x%yP be the monomial associated to the box b. From Definition 6.12, it
follows immediately that, if the property (A;) (resp. (C;)) holds for b, then it holds for all the
monomials x?y® such that y > @ and & > f8. This proves the Lemma in the case in which the
box after (resp. before) b is on the right (resp. above) b.

We prove the remaining case for the property (C;) and we leave the similar proof for (A;).
We have to prove that, if two monomials of the form x?y#, x®~y# correspond to some suc-
cessive boxes in I'c and the property (C;) holds for x¢ yP then it holds also for x*~'y#. In
other words, we suppose that

my = xa+j—1yﬁ—k+j—1 €K,
and we want to prove that
m, = x@H~2yPok+il ¢ g
Let by, b, be the boxes corresponding to m,, m, and let b be the box corresponding to x*~ 1y 5.

If by € I'x \ I it follows easily that b, € I'y. Suppose b; € I'c and consider the connected
substair I C I'; whose first box is b and whose last box is b;. We have, by construction,

w)=jand h(I)=k—j+2,

which imply that I’ contains k + 1 boxes.

LetI” =T\ {b,} be the connected G -substair of I obtained by removing the last box from
I'and let b’ €T be the last box of I”. Now, by construction, b is a vertical left cut for I in T
and, as a consequence of Remark 5.5 also b’ is a vertical cut. Therefore b’ must correspond
to the monomial m, from which it directly follows

b’ = b, € Tc.
Which implies the thesis. O

Proof. (of Theorem 6.5). 1If we endow the product .# x A? with the G-action defined by

G X M x A? M x A?

(&l p (%, ¥) —— (p,(E x, ELy)).

where g is the (fixed) generator of the cyclic group G (see subsection 2.1), it turns out that
the 0 ;4 .xa2-module A is G-equivariant with respect to this action.

To prove the theorem, we use the description of .#” given in Corollary 6.6. We know from
Remark 1.6 that the tautological bundles 2 and %, agree on the complement U¢ of the
exceptional locus of .. Moreover, we have, as a consequence of the construction of .# and
of Remark 6.10, isomorphisms

~ ~®k
~ ok,

N o
‘%Cluc _‘%CG|UC =My,

Now we show that the fibers of 2 and ¢ over the toric points of ./ are the same G-
constellations. This will be enough to prove the statement, because each chamber is uniquely
identified by its toric G -constellations. We split this part in several steps:

STEP 0 Over each point of p € # the fiber ,17; is a G-equivariant C[x, y]-module and, over
each origin 0; € U; the fibre %j is also T2-equivariant. This follows from the fact
that the ideal K; is generated by monomials and that the ideal I; is generated by G-
eigenbinomials (recall that the group G acts trivially on U;) of positive degrees in the
variables a i Cj-
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STEP 1 All the G-sFd associated to the toric fibers of .# are substairs of the C-stair .. For

STEP 2

(6.2)

STEP 3

(6.3)

this, see Remark 6.4.
Forall j =1,...,k, the j-th torus equivariant G-module 5%]. is indecomposable. Let
I; cIc be the G-sFd associated to Hy; - Then, the G-constellation Hy, is indecompos-
able if and only if I; is connected.

First observe that, for a box b € I; both the properties (A;) and (C;) implies that
the corresponding monomial m;, belongs to (K;N1;)+(a;, ¢;). This is true because, if
my =x%yP, then

A)=> ajxa_fyﬁ”c_f—xayﬁ €K;nIj,
(Cp)=> c¢jx*Hlyp7+i—l_xeaybeK;nI;.

On the other hand, b € I'c \Tj if and only if m;, € (K; N I;)+(a;, ¢;). In particular, by
construction, at least one of the following relations is true.

1) a;jx*JTybpti-i_xaybek;nI;,

@) cjxetiTlyPkriml_yayP e K;n1;,

@) ajcjx*yP1—x%yPeK;nI;.
Notice that b € I implies (see STEP 1) that (3) can not hold true. Therefore, given
b €T¢, itbelongs to I if and only if one among the two properties (A;) and (C;) holds
for b. Now, the connectedness of I; is a consequence of Lemma 6.13.
Let, forall j=1,...,k, m; C ﬁ/ﬂcyoj be the maximal ideal, and let

Fj= %, /mj=Ao; @ (Oyc0,/m))
*‘/tC'Oj

be the fibre of the sheaf ;¢ over the point 0 j- We show now that
din’lc F] =k.

This implies, together with the previous step that, for all j =1,..., k, the G-module
J?(;j is a toric G -constellation. First notice that, by semicontinuity of the dimension
of the fibers of a coherent sheaf (cf. [15, Example 12.7.2]), we have

dimc P} >k.

Let us suppose j > 2, the case j = 1 was shown in Remark 6.11. Let I; C I; be, as
in the previous step, the G-sFd associated to %j, and let x?y# be the monomial in
Clx,y] c Claj,cj, x, y] corresponding to the first box of I';. Then, if the monomial
x%+@yB+P corresponds to a box of I for some a > j and j—k < b < 0, it has the
property (A;). As in STEP 2, Lemma 6.13 implies that x%*%yf*? ¢ T;. Suppose that,
xTyP=*+i-1 e T; for some a+1 < y < a+ j. Then, if we have x”'y# € I; for some
y—j+1<7y’ <7, the following relation

"4 j—1 . fk+j—1 _ 1y
cjxV T yPktml _xryP e KN,

implies that x”" y# € K;jnI;j+(aj,c;). Now, by construction we have a—j+2 <y’ < a+j
and we have fixed j > 2. Thus, ¥’ = « gives the contraddiction x%y# ¢T;.

As a consequence, x7 yP~**i1 ¢ T; foralla + 1 < y < a+ j. Now, thanks to the
connectedness proven in STEP 2, we have
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which together imply
dime Fj = wo(4p,)+b(Hp,)—1 < k.

The equality dim¢ F; = k follows now from Equation (6.3).

STEP 4 Asanimmediate consequence of the previousstep, forall j =1,..., k, the G-constellation
f%}. has width m(%}.) = j, see Lemma 4.3. Hence, for j =1,..., k, they are different to
each other.

Now, the above listed properties imply that ¢ is the tautological bundle 22, of some chamber
C’ c @™ which admits I as C’-stair and this, by Remark 5.6, implies C’ = C. O

Remark 6.14. As expected, in dimension 3 Theorem 6.5 is in general false. For instance, given
the (Z/27Z)?-action over A3 defined by the inclusion

(Z/27)? SL(3,C)
-1 0 0
(L) —— [0 1 o[,
o 0 -1
1 0 0
0,1)—— |0 -1 o[,
o 0 -1

the quotient singularity X = A3/(Z/27Z)? admits four different crepant resolutions ¢; : Y; — X,
fori=1,...,4. All of them are toric and they are described by the planar graphs in Figure 21.

e e e e
Vz/\lh Vz/\lh Uz/\’h %) U1

e U3 € € U3 € € U3 € € U3 €

n Y, Y Y

FIGURE 21. Toric description of the crepant resolutions of A3/(Z/27Z)*.

These diagrams are obtained by considering a fan >; for each resolution Y; then, each sim-
plexin the planar graph is the intersection of a cone in X;, with the plane containing the heads
of the rays that generate X;. Notice that Y; differs from the other resolutions by just one flop

Y, 15 Y; fori=2,3,4.
Now, let g}, for i =1,...,4, be the torsion free Oy,-module defined by

0; = €M, Ops/ Torg, £/, Ops,

where 7 : A3 — X is the canonical projection. A direct computation shows that only &} is
locally free, and, for i = 2,3, 4, the locus where ﬁl fails to be locally free coincides with the line
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flopped by o;. In this setting, it can be shown that the pair (V;, ;) is canonically isomorphic
to the pair ((Z/2Z)?> —Hilb(A3), 2) where 2 is the tautological bundle.

My future project is to work out conditions on an ideal sheaf %" C 0,3 and a crepant reso-

lution Y of A%/G, for G c SL(3,C) finite subgroup, in order to have ¢ locally free and isomor-
phic to Oy3[G].
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