
Master in High Performance Computing

Optimizing the LIGO Summary
Pages Pipeline

Supervisor(s):

Gabriela González,

Irina Davydenkova

Candidate:

Iara Naomi Nobre Ota

Abstract

The LIGO summary pages are web-based graphical summaries of the performance of the
LIGO gravitational wave detectors and their many subsystems. These pages are essential
for the ongoing monitoring and noise characterization efforts. Therefore, it is crucial to
optimize the pipeline that generates these pages. In this work, we present a new workflow
for the LIGO Summary Pages pipeline, which takes advantage of the High-Throughput
Computing (HTC) paradigm to parallelize the processing and creation of the webpages.
The new workflow was implemented by subdividing the process into smaller components
that can be executed independently and concurrently on small compute nodes. With
this new workflow, each process runtime was reduced to a median runtime of 10 ±5
minutes.

Acknowledgement

I am grateful to Professor Gabriela González, my supervisor at LSU, for her guidance
and support throughout this work. I am also thankful for the invaluable opportunity to
contribute to the LIGO collaboration under her mentorship. I would also like to express
my gratitude to Dr. Irina Davydenkova, my supervisor at ICTP/SISSA, for her ongoing
support, enlightening lectures during my time at ICTP, and for overseeing the MHPC
program.

I am indebted to my colleagues at LIGO and LSU for their collaborative assistance.
A special acknowledgment goes to Evan, Joe, and Robert from the Detector Charac-
terization computing group, whose indispensable support significantly influenced the
development of this work.

I would like to thank Dr. Ivan Girotto for directing the MHPC program and Manuela
for her support during my time at ICTP. Moreover, I appreciate all the lecturers whose
contributions enriched my learning experience during the program.

Heartfelt appreciation goes out to both old and new friends who made my time in Italy
and in the USA more enjoyable, providing invaluable support along the way.

Finally, my deepest thanks to my parents, André and Inês, and my siblings Laura, Nádia
and Iuri for their love and support. I am deeply grateful to Bruno for all his love, care
and friendship throughout this entire period.

The completion of this thesis was made possible through the support of the ICTP Train-
ing and Research in Italian Laboratories (TRIL) program and I acknowledge support
from the LIGO Scientific Collaboration, the Louisiana State University, the University
of Wisconsin-Milwaukee and National Science Foundation grant PHY-2110594.

Table of contents

1 Introduction 1
1.1 LIGO Summary Pages . 2

2 High-throughput computing 4
2.1 HTCondor overview . 5

2.1.1 Condor jobs . 5
2.1.2 Condor DAGs . 7
2.1.3 Running a pipeline periodically 8

3 LIGO Summary Pages Pipeline 10
3.1 Current workflow . 10

3.1.1 Parallelizing the workflow . 11
3.2 Results . 17

3.2.1 Benchmark setup . 18
3.2.2 RAM usage . 19
3.2.3 Results benchmark . 21

4 Conclusions 25

References 27

I

1 Introduction

Gravitational Wave astronomy is a new and rapidly developing scientific field. Ini-
tially theorized by Einstein’s General Theory of Relativity, the gravitational waves
passing through Earth were first directly detected in 2015 by the Laser Interferometer
Gravitational-Wave Observatory (LIGO). Today, a network of detectors has been estab-
lished, including the LIGO facilities, the Virgo detector in Italy, and Japan’s KAGRA
detector. Together, these detectors form the LIGO-Virgo-KAGRA (LVK) collaboration,
actively working to detect and understand gravitational waves.

The Theory of General Relativity describes gravity as curvature in spacetime, and grav-
itational waves are oscillations of spacetime. The gravitational radiation is transversal,
meaning that the oscillations occur in the plane orthogonal to the wave propagation
direction. The intensity of the deformations induced by a passing gravitational wave is
determined by the properties of the source and the separation between the source and
the observer.

Laser interferometers are instruments capable of detecting gravitational radiation by
measuring the interference pattern of a laser beam as waves pass through the detectors.
Figure 1.1 illustrates the principle of these instruments. A laser beam is split into two
orthogonal beams, reflected by mirrors, and then recombined. The mirrors are separated
by the same distance 𝐿 from the beam splitter, and the laser beam is tuned to interfere
in a known pattern after bouncing back to the photon detector. When a gravitational
wave passes through the detector, it causes the arms to stretch and squeeze, resulting in a
difference in the interference pattern. This difference can be related to the gravitational
waveform.

At a distance far away from the source, a gravitational wave will induce to an object
with a length of 𝐿 a length variation of Δ𝐿/𝐿 ∝ 𝐺 ̈𝐼/(𝑐4𝑟) [1], where 𝐺 represents
the Gravitational constant, 𝑐 denotes the speed of light, ̈𝐼 is the second time derivative
of the source’s quadrupolar moment, and 𝑟 is the separation between the source and
the object. The factor 𝐺/𝑐4 ∼ 10−45s2/(m kg) indicates that the distortions caused by
gravitational radiation are extremely small and the detections rely on “violent” events
that create substantial disturbances in the quadrupolar moment. An example of such
an event is the merger of binary compact systems, such as black holes and neutron stars.
To date, these are the only systems detected by the LKV collaboration [2].

The first LIGO observation, GW150914 [3], involved a binary black hole merger with
initial black hole masses 𝑚1 ∼ 36𝑀⊙ and 𝑚2 ∼ 31𝑀⊙, where 𝑀⊙ is the Solar mass,

1

Laser source

Mirror

Photon detector

Beam
 sp

litt
er M

irror

Figure 1.1: Laser interferometer diagram

and a distance of approximately 440 Mpc. The fractional length variation of LIGO’s
arms, which have a length 𝐿 = 4 km, was Δ𝐿/𝐿 ∼ 10−21, which is the same order
of magnitude as the ratio between the radius of a proton and the radius of the Earth.
Therefore, laser interferometers are exceptionally sensitive detectors, and a thorough
understanding of noise sources is essential for the operation of these instruments.

1.1 LIGO Summary Pages

Assessing the quality of the data obtained from the LIGO interferometers is a crucial
step in signal detection. Various sources of noise, including thermal variations, seismic
fluctuations, and even human activities, can significantly diminish the sensitivity of the
instruments. A meticulous understanding and characterization of these diverse noise
origins is highly important for the operation of these detectors.

The LIGO instruments incorporate a wide variety of sensors, such as photodiodes, mi-
crophones, seismometers and temperature sensors. These sensors’ analog signals are
converted into digital signals, which are then combined to create time series known as
channels. Subsequently, the channels undergo post-processing to extract information
that is analyzed by the scientists. The gravitational wave strain channel detects the
distortions in spacetime, and it is used to reconstruct a passing waveform.

Constant work to enhance the sensitivity of the gravitational wave channel is a significant
step towards improving detections. This involves efforts to comprehend and mitigate

2

the source of noises. Maintaining constant monitoring of the channels is essential for
this goal, as issues detected by one channel could be strongly correlated to an increase
in noise in the gravitational wave channel.

The LIGO Summary Pages provide an overview of key channels, which are analyzed by
scientists on a daily basis. The GWSumm Python [4] package is responsible for processing
the channels and generating webpages. These pages are organized into tabs, each holding
plots and sometimes tables for different groups of processed channels.

The web pages are divided into five distinct categories. Specifically, there are two pages
dedicated to the daily updates of the two LIGO detectors, Hanford and Livingston.
These are the most comprehensive pages, each currently holding 214 tabs. The third
daily page is titled the “Network” page and it has 42 tabs. This page offers information
not only about the LIGO detectors but also includes details from the Virgo detector in
Italy, and the German GEO600, and will soon incorporate information from KAGRA
Japanese detector. Figure 1.2 shows a screenshot of the Network Summary page. The
“Epoch” page encompasses information about the instruments’ performance over an
extended period, summarizing in 9 tabs the current observations run since its beginning.
Furthermore, there’s the Public page [5], which is publicly accessible and provides an
overview of the key detectors’ details. This page comprises 6 tabs for daily updates and
one epoch page for each observing run.

Figure 1.2: Network Summary Page.

Hence, the LIGO Summary Sages require a substantial computing effort. It is not only
crucial to achieve nearly real-time updates, but it also needs to process a substantial
volume of data. The optimization of the Summary Pages pipeline is essential to reduce
the overall time needed for updating critical results obtained from the LIGO detectors.

3

2 High-throughput computing

Numerous scientific challenges require substantial computational resources for their
resolution. High-Performance Computing (HPC) leverages supercomputers and com-
puter clusters to address these challenges, emphasizing the acceleration of computations
through metrics like Floating-Point Operations Per Second (FLOPS). The concept of
High Throughput Computing (HTC) was introduced to acknowledge that many scien-
tific applications prioritize the efficient long-term utilization of computer resources over
raw computational speed [6]. We can also grasp this distinction by referring to the Open
Science Grid’s (OSG) definition of HTC as “the execution of computational work in the
form of numerous, self-contained tasks to optimize their overall completion across avail-
able computing resources” [7], whereas HPC usually concentrates on resource-intensive
tasks demanding tightly coupled parallel processing.

In the field of Gravitational Waves, obtaining the waveform solution for a binary black
hole merger can be likened to an HPC problem. This waveform represents a solution
to the Einstein Field Equations, which, in essence, involves solving ten coupled partial
differential equations in a highly dynamical and non-linear regime. The computational
demands are so substantial that solving the problem for a single binary system may
take several months. The utilization of supercomputers and computer clusters can sig-
nificantly reduce the computational time, making it an HPC challenge. On the other
hand, this challenge can also be viewed through the lens of HTC. Characterizing gravi-
tational waves relies on our understanding of the underlying theory, necessitating a vast
number of simulations. In the long run, our goal is to efficiently utilize the available
resources to run as many simulations as possible, highlighting the HTC aspect of the
problem.

The LIGO Summary Pages pipeline, introduced in Section 1.1, is responsible for pro-
ducing plots from various sensors within the LIGO instrument. This process continues
indefinitely, generating daily pages. While our goal is to generate plots promptly, the
HTC paradigm naturally fits into this pipeline. The plots from different sensors operate
independently of each other and can be readily distributed.

The pages are hosted on the International Gravitational-Wave Observatory Network
(IGWN) Computing Grid [8], maintained in collaboration with OSG. The IGWIN Com-
puting Grid utilizes HTCondor [9], a specialized system for managing workloads that
require significant computation.

4

2.1 HTCondor overview

In this section, we will provide a concise overview of HTCondor, referencing the HTCon-
dor Manual [10] for detailed information. HTCondor enables the definition of discrete
work units that need to be completed, distributing them effectively across the available
resources. It provides advanced scheduling, prioritization, monitoring, and reporting
capabilities. Here we refer to HTCondor simply as Condor.

2.1.1 Condor jobs

In Condor, a job is described as an “atomic unit of work.” Typically, a job can uti-
lize multiple CPU cores, but it executes on a single machine. Condor’s design allows
it to efficiently handle a large number of jobs. Consequently, the initial step in utiliz-
ing Condor involves breaking down the workflow into numerous jobs. These jobs can
be interdependent through input and output files, but they operate asynchronously in
relation to each other.

The condor_submit command is used to submit jobs and requires a submission descrip-
tion file, which contains all the necessary information for Condor to execute the job.
This single submission description file can be used to run the same program multiple
times with different arguments, inputs, outputs, and other parameters. The executable
field in the description file specifies the main program that should be executed.

Consider having a bash script named my_program.sh that needs to run with various
arguments. The list of arguments can be compiled in a file named args.txt. The script
can be submitted through Condor using the following description file:

executable = my_program.sh
arguments = $(args)

log = path/to/logs/job.$(ProcId).log
error = path/to/error/job.$(ProcId).err
output = path/to/output/job.$(ProcId).out

queue args from args.txt

In addition to executing the script with the specified arguments, this process also de-
termines the standard output and error paths, as well as the Condor log, all associated
with the unique job ID. While the example provided is straightforward, it effectively
illustrates the job definition in Condor. Instead of having a single, large task that runs
in parallel, the workflow is divided in such a way that a single executable can be used
to execute the same job multiple times with varying arguments.

5

Some useful commands include batch_name, which sets a user-defined name,
max_materialize, which limits the number of jobs running concurrently, and
request_cpus, request_disk, and other request_<name> to specify the machine re-
sources required for the job. An extensive list of submission description file commands
is available in the Condor manual [10] 1.

To execute jobs periodically, Crontab commands can be used. They share syntax sim-
ilarities with the Unix cron daemon. In the following example, the command runs
my_program.sh every minute with the same argument, some_argument, and saves the
output to a file named out_<num_job>.out, where each job has a distinct number iden-
tifier. The on_exit_remove command ensures that the job will continue to run.

executable = my_program.sh
arguments = some_argument
on_exit_remove = false
cron_minute = *
cron_hour = *
cron_day_of_week = *
cron_day_of_month = *
cron_month = *
log = log_$$([NumJobStarts]).log
error = err_$$([NumJobStarts]).err
output = out_$$([NumJobStarts]).out
queue

One final crucial command is universe2. This command specifies the execution environ-
ment for the job. The default is the vanilla universe, where jobs run in parallel within the
“pool.” In Condor’s context, “pool” usually refers to a localized collection of resources,
often within a single organization. Another option is to run jobs in the grid, allowing
Condor to operate in the computing grid, which typically spans multiple organizations
and geographical locations. If the job needs to run on more than one machine, such as
MPI jobs, the parallel universe should be used. For jobs running on the machine where
the job is submitted, the local universe is used. Very lightweight jobs can be executed
immediately using the scheduler universe. Additionally, Condor allows jobs to run in
virtual machines and containers, for which the java, vm, container, and docker universes
can be used.

1To enhance the clarity of this presentation, we have altered the channel names in this example. Please
note that the modified channel names are as follows: change L1:GRAVITATIONAL_WAVE_CHANNEL to
L1:GDS-CALIB_STRAIN_NOLINES and L1:RANGE_FRAME to L1:DMT-SNSL_EFFECTIVE_RANGE_MPC for
accurate representation.

2https://htcondor.readthedocs.io/en/latest/users-manual/choosing-an-htcondor-universe.html

6

2.1.2 Condor DAGs

Multiple jobs can be organized within a workflow using a directed acyclic graph (DAG).
In graph theory, a DAG consists of nodes connected by directed edges that do not form
closed loops. In the context of computing, the nodes represent jobs, and the directed
edges signify the dependencies between the jobs. The acyclic nature of a DAG ensures
that a parent job does not depend on a child job.

Consider the following example DAG file named my_dag.dag:

JOB A A.sub
JOB B B.sub
JOB C C.sub
JOB D D.sub
JOB E E.sub
PARENT A CHILD B C D
PARENT B C D CHILD E

The DAG directory for this example should contain the following files before submis-
sion:

A.sub B.sub C.sub D.sub E.sub my_dag.dag

In the structure of the DAG file, the jobs are organized as depicted in Figure 2.1.

A

B

C

D

E

Figure 2.1: DAG example.

In this structure, job C depends on jobs B1, B2, and B3, all of which, in turn, depend on
job A. The DAG file guides Condor in determining the correct order for job submission,

7

considering these dependencies. To execute the DAG, the condor_submit_dag command
is used with my_dag.dag as an argument. Upon successful execution of the DAG, the
following status files will be generated in the DAG directory:

my_dag.dag.condor.sub my_dag.dag.dagman.log
my_dag.dag.dagman.out my_dag.dag.lib.err
my_dag.dag.lib.out my_dag.dag.nodes.log
my_dag.dag.dagman.metrics

*.dagman.out provides detailed logging of the DAG run, *.condor.sub and
*.dagman.log detail the submission job process created by DAGMan and its corre-
sponding log, *.lib.err and *.lib.out contain standard error and standard output
for the DAGMan job process, *.nodes.log provides a consolidated log for all jobs within
the DAG, and *.dagman.metrics presents a summary of DAG statistics.

To monitor running DAGs and jobs, the condor_q command can be used. condor_q
will display the DAG in a single row, indicating the total number of jobs the DAG is run-
ning. For more detailed information about each job’s status, the condor_q -nobatch
command is used. This command displays individual jobs as they run, offering compre-
hensive information about their status.

If a node job within the DAG encounters a failure, DAGMan will proceed with the
execution of all other jobs that are not dependent on the failed node. It is considered a
best practice to assign a single process per submit file. This approach ensures that the
failure of one process does not trigger the failure of other processes, and the retry of a
failed process does not interfere with the execution of successful ones.

2.1.3 Running a pipeline periodically

A pipeline, typically organized using DAGs, can be scheduled to run periodically by
configuring a Condor job. You can create a bash script named dag_executer.sh to
execute the DAG using the condor_dag_submit command, and accompany it with the
following submission description file:

universe = local
executable = dag_executer.sh

batch_name = "Daily Pipeline Run: $(ClusterId)"

log = log_$$([NumJobStarts]).log
error = err_$$([NumJobStarts]).err
output = out_$$([NumJobStarts]).out

8

on_exit_remove = false
cron_minute = 00
cron_hour = 00
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

queue

The decision to run in the local universe is based on the fact that this job is essentially
orchestrating other jobs. Running it locally ensures consistency with user submissions,
but the jobs run in any universe designated for the pipeline. In the above example,
the pipeline is scheduled to run daily at 00:00. Establishing a fixed periodic sched-
ule is a good practice, promoting predictability, resource management, and facilitating
troubleshooting in case of errors.

9

3 LIGO Summary Pages Pipeline

3.1 Current workflow

The GWSumm is a Python package [4] jointly developed by a collaboration between LIGO
and GEO600. It serves the purpose of fetching the data frames associated with instru-
ments’ channels, processing the time series into visual plots and tables, and generating
HTML pages. The main output of a GWSumm process is a tab. Each tab corresponds to
an individual HTML page that includes any variety of plots and other data set by the
user.

The LIGO Summary Pages, introduced in Section 1.1, are generated using the
GWSumm package. Within the LIGO collaboration, an internal package named
ligo-summary-pages is maintained. This package includes configurations in INI format
that specify which data should be fetched, how it is processed, and how it is presented
on the LIGO Summary Pages website. These configurations are operational within the
detectors’ production environment and constitute the main component of the LIGO
Summary Pages.

The production workflow consists of Condor DAGs that create a single job for each
configuration file. Within the LIGO Summary Pages pipeline, there are five distinct
DAGs in operation.

The “HTML” DAG is responsible for generating the HTML pages. It creates a job that
does not involve data processing. The “Fast” DAG includes the configuration of the main
tabs that require prompt updates. This includes processed data from the gravitational
wave channel and the status of the detectors. The “Slow DAG” encompasses all other
tabs. while these tabs are required for the daily analysis, they are not as critical as the
“Fast” DAG tabs.

The “Rerun” DAG operates on the following day and addresses any potential gaps that
might exist due to latency issues. Lastly, the “Clean” DAG is responsible for removing
cached data stored in HDF5 format that is over 40 days old. This step serves to decrease
the disk space usage. Figure 3.1 provides a visual summary of this pipeline.

As previously mentioned, a single configuration file groups similar tabs together. This
results in certain configuration files fetching hundreds of channel data frames and pro-
cessing tens or even hundreds of plots. This concentration of tasks within a single process

10

Figure 3.1: LIGO Summary Pages pipeline

demands a substantial amount of memory, which imposes limitations on the nodes where
these jobs can be executed.

Due to the high memory usage, the summary pages pipeline operates within the local
universe, specifically making use of the access point allocated to the Detector Character-
ization working group. This login node is equipped with two 2.4 GHz Xeon E5-2630v3
CPUs and 128 GB of RAM. This setup is enough to accommodate the summary pages
processes, but it does imply that most of the jobs must be executed sequentially.

Parallelism among configuration files is possible across different DAGs. This implies
that all five DAGs can be executed concurrently. This clarifies the label “Slow” for the
DAG that covers the majority of tabs. These tabs are processed sequentially, which
considerably delays the completion of the jobs within this DAG.

3.1.1 Parallelizing the workflow

The goal of this project is to minimize the time it takes to generate LIGO Summary
Pages. The strategy to achieve this goal involves breaking down the memory-intensive
configuration files into smaller files. This approach enables the jobs to take advantage
of the numerous available compute nodes.

Having one configuration file for each tab is not an optimal approach. In cases where a
tab executes quickly, the time delay between job submission and the start of execution
could become significant in comparison to the actual execution duration. Therefore, the
first step in the project is assessing which tabs should remain grouped and which ones
should have their own process.

The execution time of a tab should depend on the number of channels it is using and
the type of processing it undertakes on those channels. For instance, generating a
spectrogram, which displays the frequency power as a function of time, requires multiple

11

Fourier transforms of the data and it is significantly more computationally intensive
compared to generating a time series plot of the raw data. To identify which are the
most time-consuming tabs, we can directly analyze the configuration files.

3.1.1.1 Structure of the configuration files

The LIGO Summary Pages configuration files are formatted in INI style. The acronym
INI stands for “initialization”, and INI configuration files are composed of sections which
organize the properties.

Each property is presented in a key-value format, separated by an equal sign:

key = value

Properties may be grouped in sections, although this is not necessary. Sections are
arbitrary groups for the properties, and they are defined using square brackets:

[section_name]
key_1 = value_1
key_2 = value_2

There is no method to explicitly end a section, they either end at the end of the file
or at the introduction of the next section. All the properties defined after the section
declaration are considered associated with that section. If the same [section_name] is
specified in two or more configuration files, the latest loaded file will overwrite the keys
it defines from the other configuration files. In the LIGO Summary Pages context, we
are interested in three main sections: tab, channel and plot.

The tab section is defined using the syntax [tab-<tab_name>], where the tab- prefix
serves as an identifier for GWSumm to recognize this as a tab configuration. <tab_name>
is a customizable string that uniquely designates the particular tab to be generated.

The main configuration keys for dealing with the organization of the tabs’ sections are
the following: the name and shortname, which assign labels to the tab, the parent
key categorizes the tab and also serves to create the dropdown menu in the top of the
page. For example, in the Public Page [5] “Home”, “Summary”, “Environment” and
“Instrument performance” represent parent values.

At a lower hierarchical level, there is the group key, which organizes similar tabs within
a parent dropdown menu. The layout key dictates the arrangement of the plots on the
pages. The states key determines the instrument status displayed on the page.

The plot data is defined using an integer key, determining the display sequence of the
plots. Each integer corresponds to a specific plot. To illustrate, the first plot is 1 =
some plot, the second is 2 = another plot and so forth. This sequential arrangement
allows for a structured presentation of the plots.

12

These properties have various child properties that define specific plot options. These
child properties consist of functions from matplotlib.pyplot and plot parameters.
Each child property is identified by an integer followed by a property name. For in-
stance, the title of the first plot is specified with the key <integer>-title. Other
examples include <integer>-color, <integer>-labels, <integer>-linestyle, and
<integer>-linewidth. It is important to ensure that the values assigned to these child
keys are compatible with the requirements of the Matplotlib library.

The values for the <integer> key can be either the path of a plot or a list of channels
followed by their associated plot type (the plot types will be explained later, as they
constitute a distinct section in the configuration files). By analyzing the <integer> key
within each configuration file, we can determine how many channels are being processed
and the type of plots that a specific configuration is generating.

For every channel listed as a value under the <integer> key, a corresponding entry
should be present in a channel section. Mirroring the structure of the tab section, a
channel section is specified as [channels-<channel_group>]. In this format, the prefix
channels- is recognized by GWSumm as a channel section, while <channel_group> is a
user-selected string that characterizes a group of channels sharing the same configura-
tions.

The primary key in this section is the channels key, whose values constitute a list
of channels. Additionally, this section specifies aspects of the channel data, such as
frametype, unit and frequency-range. Furthermore, some keys in this section es-
tablish specific processing configurations, such as the power spectrum parameters like
stride, fftlenght and overlap.

The final important section in our analysis is the plot section, defined as
[plot-<plot_category>]. Once again, the prefix plot is required by GWSumm, while
<plot_category> is a string defined by the user. The string <plot_category> must
align with the value attributed to the <integer> key in the tab section. It is essential
that the same <plot_category> string is used consistently.

The majority of keys within the plot sections are matplotlib.pyplot functions and plot
parameters. These values are overwritten in case they are defined as a child key for the
<integer> key in the tab section. The main key in this section is the type, which
specifies what kind of plot should be created. Among important values considered here
include spectrum, spectrogram and timeseries.

The code block below gives an illustrative example of how a tab named “Strain” might
be configured 1. This tab would encompass two plots for the Livingston detector. The
first plot displays the power spectrum of the gravitational wave channel, while the second

1To enhance the clarity of this presentation, we have altered the channel names in this example. Please
note that the modified channel names are as follows: change L1:GRAVITATIONAL_WAVE_CHANNEL to
L1:GDS-CALIB_STRAIN_NOLINES and L1:RANGE_FRAME to L1:DMT-SNSL_EFFECTIVE_RANGE_MPC for
accurate representation.

13

plot shows the binary neutron star range. This range represents the furthest distance,
averaged over sky location, at which the gravitational waves emitted from binary neutron
star systems can be detected. This range is computed from the noise present in the
gravitational wave channel.

[tab-strain]
name = Gravitational-wave strain
shortname = Strain
1 = L1:GRAVITATIONAL_WAVE_CHANNEL plot-spectrum
1-label = L1 Strain
1-color = '#4ba6ff'
1-title = r'LIGO Gravitational-wave strain'
1-ylim = 1e-24,1e-19
1-label = L1 Strain

2 = L1:RANGE_FRAME timeseries
2-title = L1 binary neutron star inspiral range
2-yticks = 0,20,40,60,80,100,120,140,160,180
2-yticklabels = %(2-yticks)s
2-ylabel = Angle-averaged range [Mpc]
2-color = '#4ba6ff'
2-all-data = True
2-label = L1 Range

[plot-spectrum]
type = 'spectrum'
xlabel = 'Frequency [Hz]'
xscale = 'log'
ylabel = r'GW amplitude spectral density [strain/%(rtHz)s]'
yscale = 'log'
legend-loc = 'lower right'
legend-fontsize = 11
legend-handlelength = 1

[channels-hoft]
channels = L1:GRAVITATIONAL_WAVE_CHANNEL
unit = 'strain'
frequency-range = 10,5000
asd-range = 1e-24,2e-18
stride = 60
fftlength = 4
overlap = 2

14

[channels-range]
channels = L1:RANGE_FRAME
amplitude-range = 0,180
unit = 'Mpc'

The resulting page generated using this configuration file is displayed in Figure 3.2.

Figure 3.2: Example of a LIGO summary page

3.1.1.2 Breaking down the configuration files

When we divide the configuration files, we consider three critical factors: processing
time, the processed data, and their interdependence. These elements are intricately
linked. For instance, consider a tab that includes a time series, a power spectrum plot,
and a spectrogram for a specific channel. If we contemplate splitting this configuration
by isolating the spectrogram (which is the most time-consuming plot) from the other
plots, it might appear to enable parallelization and faster computation. However, all
these plots access the same data. This results in two processes attempting to retrieve
the same data from the disk, and also leads to increased memory consumption, as the
same data is fetched twice, and potential inefficiency. Although the processing of a
spectrogram is technically independent of the processing of a power spectrum, we treat
them as interdependent because they operate on the same dataset.

Hence, our initial approach in refactoring is to create separate files with non-redundant
channels. This means that the channels key in the [channels-<channel_group>]
section should have unique values for each new configuration file. In most cases, creating
plots for a single channel doesn’t put significant demands on computational resources,
allowing us to include multiple tabs in a single configuration file. Once we’ve identified
the independent channels, we proceed to divide the configuration file to reduce the
computation time to at least under 30 minutes. This often entails splitting the tabs
with the more time-consuming plots into separate files.

15

Additionally, we prioritize the relationships between grouped pages, aiming to ensure
that they are logically organized within the same category. This approach significantly
enhances the maintainability of the code.

3.1.1.3 Identifying the most time-consuming configuration files

While memory usage is the key constraint for running jobs in the vanilla universe, it’s
important to note that job runtimes are directly proportional to RAM consumption.
The most time-consuming jobs, responsible for reading and processing larger volumes of
data, naturally require more memory. Moreover, reducing runtime is a critical aspect of
the pipeline to ensure that no pages lag the updates.

The most straightforward method for identifying the most time-consuming configuration
files is to examine the *.dag.nodes.log of a full-day run DAG, which includes the
running time of each job within the DAG. This file follows a consistent structure for
each job:

000 (<job_id>) YYYY-MM-DD hh:mm:ss Job submitted from host:
<host_information> DAG Node: <job_name>
...
001 (<job_id>) YYYY-MM-DD hh:mm:ss Job executing on host:
<host_information>
...
005 (<job_id>) YYYY-MM-DD hh:mm:ss Job terminated.

(1) Normal termination (return value 0)
Usr 0 hh:mm:ss, Sys 0 hh:mm:ss - Run Remote Usage
Usr 0 hh:mm:ss, Sys 0 hh:mm:ss - Run Local Usage
Usr 0 hh:mm:ss, Sys 0 hh:mm:ss - Total Remote Usage
Usr 0 hh:mm:ss, Sys 0 hh:mm:ss - Total Local Usage

0 - Run Bytes Sent By Job
0 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
0 - Total Bytes Received By Job

...

This structure is maintained for all other jobs within the DAG and is appended to
the same file. The line that starts with 000 provides the name of the job following
DAG Node:, allowing us to associate it with a <job_id> and identify the configuration
file. The line that begins with 005 includes the <job_id> and the runtime details. Of
particular interest is the “Run Local Usage,” which denotes the time it took for the job
to complete.

Figure 3.3 shows the runtimes for each configuration file for a full-day run of the LIGO
Livingston Summary Pages. The total runtime for this period was 14 hours and 57

16

3.2%

3.4%

0.0%

1.3%

1.6%

1.9%

2.0%

2.3%

8.3%

8.3%

7.0%

6.2%

6.1%

5.5%

4.6%

3.9%

Total time: 14h 57min 26s

0

1000

2000

3000

4000

Ru
nt

im
e [

s]

Runtime for each configuration file (Livingston)

Figure 3.3: LIGO Livingston Summary Pages runtimes: Left: runtime percentages of
each configuration file. Right: runtime in seconds of each configuration file.
The dashed vertical line denotes the point where the cumulative runtimes to
the left exceed 50% of the total time. The horizontal dotted line indicates
30 minutes.

minutes. The dashed line on the right bar plot highlights when the runtimes of the
most time-consuming configuration files collectively exceed half of the total runtime,
encompassing 8 out of 46 configurations. Additionally, the vertical dotted line at 30
minutes indicates that these 8 files also surpass the 30-minute mark. This suggests
that the majority of the files do not require any refactorization to run in the vanilla
universe.

3.2 Results

The runtimes displayed in Figure 3.3 provide a valuable overview of the configuration
files that require attention. However, it’s important to note that these runtimes might
be subject to overestimation or underestimation since they are based on a single run.
Furthermore, this run was necessitated by a cluster failure, leading to a full-day sum-
mary page rerun. The process took place on the login node allocated to the Detector
Characterization group, running alongside the other ongoing DAGs that consistently
run on this node.

In the benchmarking process, we use a separate node designated for development pur-
poses. This particular node is equipped with four 3.0GHz Xeon Gold 6154 processors,
providing a total of 72 cores and 1.5TB of RAM. All benchmarked jobs in this analysis
were executed using 8 cores. It is worth noting that the varying factor among these jobs
primarily lies in the configuration files, as the executable used is a GWSumm process.

17

3.2.1 Benchmark setup

To benchmark the jobs effectively, we need to conduct multiple runs for each process
and subsequently calculate the average results. This method ensures statistical reliability
and helps mitigate the impact of outlier results. Multiple runs can be easily managed
using a simple Condor submission description file.

The executable is common to all jobs, which we named run_summary.sh

#! /bin/sh
CONFIG_FILE=$1

This is the path containing the configurations
SUMMARY_CONFIG_PATH=/home/<user>/configurations

Sets up the defaults configurations, common to every configuration
FILES=${SUMMARY_CONFIG_PATH}/defaults.ini,
FILES+=${SUMMARY_CONFIG_PATH}/common/global.ini
Sets up the common configuration file
FILES+=${SUMMARY_CONFIG_PATH}/common/${CONFIG_FILE}.ini,
Sets up the detector specific (Livingston) file
FILES+=${SUMMARY_CONFIG_PATH}/l1/l1${CONFIG_FILE}.ini

define the output directory of the GWSumm process
OUTPUT=/home/<user>/public_html/summary

Run GWSumm in Livingston detector (--ifo L1)
the day 26/08/2023 was arbitrarily chosen
python -m gwsumm day 20230826 --multi-process 12 --ifo L1
--output-dir ${OUTPUT} --config-file ${FILES}

Running ./run_summary.sh <configuration_file_name> will execute GWSummm
for the date 26/08/2023, which was arbitrarily chosen. To perform this process mul-
tiple times and across various configuration files, we have set up the following Condor
submission description file:

running in the local universe to compare from the same machine
universe = local

The executable is common to all configurations
executable = run_summary.sh
the arguments change according to configs.txt
see last line

18

arguments = $(config)

give a name to identify in the job in `condor_q`
batch_name = "$(config) ID: $(ClusterId)"

log = log/$(SUBMIT_TIME).$(config).$(ProcId).log
error = log/$(SUBMIT_TIME).$(config).$(ProcId).err
output = log/$(SUBMIT_TIME).$(config).$(ProcId).out

Limits the number of concurrently executing jobs
max_materialize = 6

get the arguments from configs.txt
runs 15 times the same argument
queue 15 config from configs.txt

configs.txt simply contains a list of the configuration file names. We chose to run the
processes in the local universe to ensure consistent comparisons on the same machine.
The description above will execute each configuration file in configs.txt 15 times, with
a limit of 6 concurrently executing jobs to prevent machine overload. For the original
configuration file, we will set up a special submit file with max_materialize = 1.

3.2.2 RAM usage

The initial configuration file we divided up handled a total of 194 channels, including
194 power spectrum plots and 51 spectrograms. This configuration had 15 distinct tabs
defined within it. To facilitate effective organization, we divided it into groups of 2,
resulting in the creation of 8 new configuration files. This decision was influenced by
the physical location of the sensors associated with each tab. The sensor groups within
the split are geographically separated and independent from one another.

Figure 3.4 depicts the RAM usage of the original configuration (black) and the new
configuration files (colored) over time. To gather this memory data, we utilized the
Memory Profile Python package [11]. The plot is based on information from 30 different
runs for each configuration file, with the thick lines representing the average of the
corresponding curves.

The plot clearly illustrates that the original process experienced a continuous increase in
RAM usage. Each “step” in the RAM usage corresponds to the introduction of a newly
created configuration file. This consistent rise in memory consumption is attributed
to GWSumm accumulating loaded data in memory throughout the process. Our results
demonstrate that a well-structured division of the configuration files can significantly
reduce the RAM usage of a GWSumm process.

19

0 50 100 150 200 250
time [s]

0

2000

4000

6000

8000

10000

RA
M

 [M
iB

]

RAM usage over running time. Page time interval: 60 minutes

Configuration 8
Configuration 7
Configuration 6
Configuration 5
Configuration 4
Configuration 3
Configuration 2
Configuration 1
Original

0 20 40
time [s]

0

1000

2000

RA
M

 [M
iB

]

Figure 3.4: RAM usage report for GWSumm jobs. The black lines represent the original
configuration file, while the colored curves correspond to the eight new con-
figuration files.

Figure 3.4 displays the memory profile tabs generated for a 60-minute interval, con-
taining sensor data accumulated over this duration. It is important to note that our
system runs daily summary pages, with a 24-hour interval. Figure 3.5 shows the RAM
consumption peak with varying data durations. The rightmost scatter points are the
24-hour interval.

In this plot, the solid straight lines represent a linear fit to the points (note that the plot
is in log-log scale, hence the appearance of a different dependency). The data suggests
that RAM usage increases linearly with the considered data interval. Notably, the RAM
usage of the new configurations never exceeds 30% of the peak RAM usage observed in
the original file (depicted as a gray dotted line).

Although the runtime shown in Figure 3.4 may not be the most accurate due to the
memory profiler process, this section demonstrates the effectiveness of splitting a config-
uration file into several smaller ones. This division significantly reduces both memory
usage and runtime, addressing the optimization requirements of the Summary Pages
pipeline.

20

100 101 102 103

Page time interval [s]

103

104

105

RA
M

 [M
iB

]

RAM peak as a function of the page time interval

Configuration 8
Configuration 7
Configuration 6
Configuration 5
Configuration 4
Configuration 3
Configuration 2
Configuration 1
Original
35% Original

Figure 3.5: RAM peak for GWSumm jobs. The black lines represent the original configura-
tion file, while the colored curves correspond to the eight new configuration
files. The dashed gray line indicates 30% of the original (black) configuration
file

3.2.3 Results benchmark

As the maximum RAM usage is the primary constraint for running jobs in the small
compute nodes, we focus on determining the processes’ peak RAM usage. Thus, there
is no need to profile RAM consumption over time. In this section, we benchmark jobs
using the GNU time command, /usr/bin/time, to extract both the peak RAM usage
and the runtime of a job.

Based on the runtimes provided by Figure 3.3, we refactored the most time-consuming
configuration files into smaller files. Each file was individually analyzed with the follow-
ing goals in mind:

1. The runtime should be smaller than half an hour;
2. The peak of RAM should be smaller than 64 GB;
3. The files should be logically separated into related groups of tabs;
4. The files should have similar runtimes and memory consumption.

The logical rearrangement of the files is prioritized for the maintainability of the pipeline.
For example, in Figure 3.4, “Configuration 1” in orange is clearly much lighter than the
other configurations. As explained, the choice was made due to the physical location of
the sensors in each configuration file.

21

Figure 3.6 displays the runtime of the refactored configurations. The eight most time-
consuming configurations, as identified in Figure 3.3, are arranged along the horizontal
axis, numbered in the same order as Figure 3.3. The black points represent the original.
configuration files, while the colored points below represent the new files obtained by
splitting up the originals. The horizontal dashed line represents the 30-minute constraint.
The median runtime of the new configuration files is 601±283 seconds, or 10±5 minutes,
as indicated by the dotted line and gray band in the plot.

1 2 3 4 5 6 7 8
Configurations

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e [
s]

Figure 3.6: Runtime of refactored configurations. The horizontal axis represents differ-
ent configurations, with black points indicating the original configuration and
colored points representing the new refactored configurations. The horizon-
tal dashed line indicates 30 minutes. The dotted line indicates the median
runtime of the new files and the gray band is the standard deviation.

We notice that the differences in runtimes given by Figure 3.3 and Figure 3.6 (black
points) are expected. First of all, the processes run on different machines. While Fig-
ure 3.3 was identified by a run in production in the Detector Characterization node,
Figure 3.3 was obtained on a development node. Moreover, the development node was
not busy when the benchmark was done, while the Detector Characterization node is
always very busy running the Summary Pages pipeline and other tools. Finally, Fig-
ure 3.3 shows a single run, while Figure 3.3 has 15 runs for each configuration file, which
should help identify changes in runtime within the error bars.

Figure 3.7 shows the peak of RAM consumption for the same configuration files as
Figure 3.6. In this case, the dashed horizontal line indicates the 64 GB limit. The
dotted line and gray band indicate the median RAM peak of the new configuration files
and its standard deviation, 44 ± 31 GB. We observe that memory consumption is not
trivially related to runtime, as some processes consume very little memory compared

22

1 2 3 4 5 6 7 8
Configurations

0

25

50

75

100

125

150

175

RA
M

 [G
B]

Figure 3.7: Peak of RAM of refactored configurations. The horizontal axis represents
different configurations, with black points indicating the original configura-
tion and colored points representing the new refactored configurations. The
horizontal dashed line indicates 64 GB. The dotted line indicates the median
RAM peak of the new files and the gray band is the standard deviation.

to others with a similar runtime. A key factor is how much data the process needs to
load. For example, the configuration labeled as 1 in Figure 3.6 and Figure 3.7 had 128
channels, with 76 of them having a 1-second time step while 52 have a 1-minute time
interval. The configuration labeled as 2 is the same configuration presented in detail in
Section 3.2.2, and it has 194 1-minute time interval channels. Therefore, it is expected
that it needed much more memory, as configuration 2 loads and processes more data.

Figure 3.7 also highlights that some of the most time-consuming tabs did not require
much RAM but took a long time to process the data. This implies that the refactoriza-
tion was not necessary to decrease the RAM usage. However, we chose to refactor these
configurations to ensure there is no bottleneck in the pipeline, with one process taking
an extended amount of time to complete.

Finally, we observe that the configurations labeled 5 and 8 did not meet the 64 GB
constraint. These are special cases where it is not possible to further refactor the con-
figuration file to decrease memory usage. The issue arises because these configurations
contain several channels in a single plot, requiring all these channels to be loaded in the
same process and consuming a significant amount of memory. To reduce the memory
consumption of this configuration, the GWSumm package would need to be refactored
to allow the individual data processing of channels in the same plot. Implementing such
features in GWSumm is beyond the scope of this thesis.

23

While one process still consumes a substantial amount of memory, it doesn’t prevent
the execution of this process in the vanilla universe. However, it limits the number of
nodes on which this process can run, as there are fewer nodes with more than 100 GB
of available RAM.

24

4 Conclusions

The LIGO Summary Pages play a crucial role in the daily work of scientists seeking to
comprehend and mitigate noise sources in gravitational wave observatories. These pages
provide essential plots from thousands of sensors within the detectors, and the speed of
information updates is crucial. In the current pipeline, LIGO Summary Pages processes
run sequentially, taking several hours to update the entire set of pages. In this thesis, we
optimized the most time-consuming processes using the High Throughput Computing
framework.

The idea behind High Throughput Computing involves optimizing the number of outputs
by restructuring processes into small, independent tasks that can run concurrently. The
LIGO Summary Pages pipeline utilizes the GWSumm package [4], a tool designed for
loading and processing gravitational wave data to generate HTML pages. In the pipeline,
configuration files define GWSumm processes and some of these files include multiple pages
with numerous plots, leading to slow and memory-intensive tasks.

We identified the most time-consuming processes by analyzing the log files of the Condor
DAG that runs the pipeline. The first noticeable information we obtained is that most
processes in the pipeline are already small unit tasks, and eight of them represent 50%
of the runtime.

Following the identification of the most time-consuming processes, we refactored each
of these processes one by one. Careful attention was given to ensuring that the new
configuration files remained independent, thus preventing the loading and processing
of the same data in two different jobs. The primary objectives of the refactorization
were to achieve runtimes smaller than half an hour for each job and to minimize RAM
usage. However, maintaining a logical structure for the files was considered extremely
important for maintainability reasons. Each configuration file needed to contain plots of
sensors that serve for similar analysis, and not randomly distributed into configuration
files to ensure a balanced division of resources between jobs.

The eight most time-consuming configuration files were split into thirty-one new files.
The median runtime of the new configuration files is 10 ± 5 minutes, a substantial
improvement compared to the original jobs. Most of the original jobs took more than 30
minutes to run, and the slowest job took almost one hour. In contrast, the slowest job
among the new files now runs in approximately 25 minutes. This optimization allows
all new files to run in parallel, leading to a significant reduction in overall processing
time.

25

The memory consumption of the jobs was considerably reduced. Some of the old jobs
had peak RAM usage exceeding 150 GB. The median peak RAM usage of the new jobs is
44±31 GB, enabling most jobs to benefit from the smaller compute nodes available in the
LIGO clusters. The RAM optimization of two configuration files was not fully achieved
due to the nature of the pages they generated. These pages contain information from
several sensors in a single plot, which forces the process to load a considerable amount
of data. However, this does not prevent the parallel execution of these jobs, as there are
compute nodes with as much as 256 GB of RAM available.

To advance this work, the optimizations implemented in this thesis need to be deployed
to the production environment. Since the LIGO clusters support various tools crucial for
the gravitational wave detectors, determining how to execute the pipeline in the vanilla
universe should involve coordination with cluster administrators to establish prioritiza-
tion for the tools. Therefore, the next phase of the project involves restructuring a DAG
for the pipeline that orchestrates the LIGO Summary Pages pipeline in alignment with
the requirements of the LIGO collaboration.

Further tasks related to this thesis involve the improvement of the GWSumm package. We
showed that some jobs cannot be further split to consume less memory due to their
dependence on several different sensors. Furthermore, we observed that the processes’s
memory consumption can consistently grow with runtime, this is attributed to the im-
plementation of a global variable retaining loaded and processed data in memory until
job completion.

26

References
[1] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford

University Press, 2007. doi: 10.1093/acprof:oso/9780198570745.001.0001
[2] R. Abbott et al., “GWTC-3: Compact Binary Coalescences Observed by LIGO

and Virgo During the Second Part of the Third Observing Run,” Nov. 2021,
Available: https://arxiv.org/abs/2111.03606

[3] R. Abbott et al., “Observation of gravitational waves from a binary black hole
merger,” Phys. Rev. Lett., vol. 116, p. 061102, Feb. 2016, doi: 10.1103/Phys-
RevLett.116.061102. Available: https://link.aps.org/doi/10.1103/PhysRevLett
.116.061102

[4] “Gravitational-wave Summary Information Generator.” https://github.com/gwp
y/gwsumm.

[5] “Gravitational-Wave Observatory Status.” https://gwosc.org/detector_status/.

[6] A. Beck, “High Throughput Computing: An Interview with Miron Livny.” https:
//www.hpcwire.com/1997/06/27/high-throughput-computing-an-interview-
with-miron-livny/, 1997.

[7] “Open Science Grid - OSG.” https://osg-htc.org/about/introduction/.

[8] “IGWN Computing Grid - ICG.” https://computing.docs.ligo.org/guide/dhtc/.

[9] “HTCondor.” https://htcondor.org/.

[10] “HTCondor Manual.” https://htcondor.readthedocs.io/.

[11] “Memory Profiler.” https://github.com/pythonprofilers/memory_profiler.

27

https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
https://arxiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://github.com/gwpy/gwsumm
https://github.com/gwpy/gwsumm
https://gwosc.org/detector_status/
https://www.hpcwire.com/1997/06/27/high-throughput-computing-an-interview-with-miron-livny/
https://www.hpcwire.com/1997/06/27/high-throughput-computing-an-interview-with-miron-livny/
https://www.hpcwire.com/1997/06/27/high-throughput-computing-an-interview-with-miron-livny/
https://osg-htc.org/about/introduction/
https://computing.docs.ligo.org/guide/dhtc/
https://htcondor.org/
https://htcondor.readthedocs.io/
https://github.com/pythonprofilers/memory_profiler

	Introduction
	LIGO Summary Pages

	High-throughput computing
	HTCondor overview
	Condor jobs
	Condor DAGs
	Running a pipeline periodically

	LIGO Summary Pages Pipeline
	Current workflow
	Parallelizing the workflow

	Results
	Benchmark setup
	RAM usage
	Results benchmark

	Conclusions
	References

