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Abstract

Ring polymers display several noteworthy properties arising from their non-linear topology,

which are absent in linear chain systems. Rings are of great interest in materials science as

they offer opportunities for creating new soft materials that harness topological constraints

to achieve unconventional features. Moreover, they have significant implications in biology,

as they connect to the physical behavior of chromosomes within cell nuclei. In this Thesis,

we investigate their physics, in particular from the point of view of topological constraints, by

using large-scale computer simulations.

First, we focus on melts of non-concatenated and unknotted ring polymers; in this case,

theoretical models predict that the permanent topological constraints force the rings to double-

fold onto compact and segregated tree-like objects. Yet, recent numerical investigations have

shown that rings overlap and thread each other. We show how to reconcile these two pictures

and provide new measurements that support the tree-like structure of the rings. At the same

time, we provide evidence attesting to the fundamental role of threadings in the dynamics of

melts of rings, which are not predicted by current theories.

In the second part of the Thesis, inspired by the recent experimental synthesis of DNA-

based topological networks, we develop a computational model with which we explore how

to fine-tune the topology of self-assembled polymer networks through several experimentally

controllable parameters. We also consider the impact of geometric confinement on network

synthesis, which we find can be exploited to bias the synthesis towards polymer networks that

are softer under mechanical stress. Then, we also show how entanglements in polymer melts

arise from the topological interactions in the system.

Finally, inspired by recent efforts to account for the active processes shaping both the

structure and dynamics of biological filaments, we study how the role of entanglements is

influenced in melts of active linear chains. We find that both the statics and dynamics of the

chains are affected by the activity of the chains. Significantly, in contrast to passive systems,

we do not find any sign of reptation in the chains’ relaxation dynamics, which we interpret as

the result of intra-chain entanglements becoming less detrimental to the relaxation of active

chains.
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Introduction

Polymers are ubiquitous in our daily lives, playing pivotal roles in the material industry,

with plastics and rubber as paramount examples, and also in biology, where DNA, RNA, and

proteins stand out as the most notable biopolymers, serving as the very foundation of life

as we understand it. In many notable contexts, polymers are often found in concentrated

conditions (melts) whose rheological and mechanical properties are profoundly influenced by

the microscopic entanglements arising from the impossibility of nearby polymer filaments to

cross each other. These constraints, referred to as topological constraints, are transient for

linear chains, affecting only their dynamical properties. In contrast, there are systems where

topological constraints are quenched from their initial preparation and profoundly influence

the system’s behavior.

A notable example is constituted by melts of non-concatenated and unknotted ring poly-

mers, which have obtained significant attention over the past four decades. Although not a

new subject, this area of research continues to draw interest for several reasons: not only do

many aspects concerning the structure and dynamics remain not fully understood, but melts

of ring polymers are also inherently connected to chromosome biology during interphase.

Current theories describe rings as double-folded tree-like objects. While these models ac-

curately describe several properties of these systems, they fail to account for some crucial

features revealed by numerical simulations. In particular, it has been shown that rings in the

melt are not exactly double-folded, and even if they are compact, they overlap significantly

with each other forming threadings, the interpenetration of a ring through the effective surface

of another ring. Simulations have shown that these constraints introduce novel and significant

properties absent in linear systems.

Motivated by these reasons, part of my PhD Thesis is dedicated to the studying of such

systems, focusing on the complex interplay between the postulated double-folding and forma-

tion of threadings. In particular, the first part of Chapter 1 is dedicated to a careful review

of the state of the art of the subject. Then, Chapter 3 is dedicated to presenting numerical

simulations of melts of non-concatenated and unknotted rings with varying bending rigidity.

These simulations allow us to reconcile the previously mentioned dichotomy.

v
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On the other hand, recent advancements in the synthesis of topologically complex mate-

rials, such as polycatenanes composed of interlocked polymer rings, have demonstrated the

potential of manipulating topology to fine-tune the mechanical properties of polymeric ma-

terials. In this context, inspired by biology, where topology and entanglement in DNA are

commonly manipulated by a family of enzymes called topoisomerases, Olympic DNA networks

have been experimentally realized. These networks consist of topologically interlinked DNA

rings and are synthesized by exploiting the strand crossing action of topoisomerases. Re-

markably, this system exhibits different viscoelastic behavior dependent on the action of the

enzyme. In particular, by blocking its activity, the system assumes the characteristics of a poly-

mer network with mechanical properties relying on the topology of the interlocked DNA rings.

However, topology, arising from random strand crossings between DNA filaments, cannot be

controlled and can only be indirectly inferred from rheological measurements. Therefore, in

this context, the modeling and simulations of such systems can help in guiding the synthesis

of networks with desired properties. For these reasons, part of this Thesis will deal with the

development and the applications of a new computational model for describing and character-

izing such polymer systems. In particular, in the second part of Chapter 1, we review recent

experimental realizations of topologically complex ring assemblies and we frame the interest in

such systems in the context of my PhD work. In Chapter 4, we introduce tools derived from

Knot Theory which are useful when dealing with topologically complex systems. Finally, in

Chapters 5, 6, and 7, we develop the computational model and apply it to study the physics of

ring polymers with unconstrained topology. In these chapters, we explore various experimen-

tally tunable parameters, such as polymer chain length, bending rigidity, system geometry, and

their impact on the resulting topology of the network. Moreover, in Chapter 6, we derive an

explicit relationship between the system’s topology and its entanglement properties, addressing

a long-standing problem in polymer physics.

The last chapter 8 deviates substantially from the rest of the Thesis, and it deals with

active polymers. Active polymers, and in general active matter, represent a very active field

of research in statistical physics. Active systems are out-of-equilibrium systems, consisting

of units that can consume energy to move or perform mechanical work, with living systems

providing a prominent example of active matter. The tight connection with biology has led to

the application of active matter concepts in the description of several biological phenomena,

such as cell migration, bacterial motility, and bird flocking.

More recently, significant attention has been drawn by active polymers due to their rel-

evance in biology, since many biological filaments, e.g., DNA, RNA, cytoskeleton filaments,

etc., are subject to various non-equilibrium processes. To date, many of the investigations

have focused on single active chain systems, while few studies, and all limited to the case of
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low activity, have focused on the case of chains in melt. For this reason, the last chapter is

dedicated to preliminary investigations dealing with melts of active linear chains. Here, we

explore how the presence of non-conservative forces acting along the backbone of the polymer

chains impacts the statics and dynamics of such systems and how the role of entanglement

changes in active systems.

The material presented in this Thesis is based on the following published papers:

• Ubertini, Mattia Alberto, and Angelo Rosa. ”Computer simulations of melts of ring

polymers with nonconserved topology: A dynamic Monte Carlo lattice model.” Physical

Review E 104.5 (2021): 054503 [1].

• Ubertini, Mattia Alberto, Jan Smrek, and Angelo Rosa. ”Entanglement length scale

separates threading from branching of unknotted and non-concatenated ring polymers

in melts.” Macromolecules 55.23 (2022): 10723-10736 [2].

• Ubertini, Mattia Alberto, and Angelo Rosa. ”Topological Analysis and Recovery of

Entanglements in Polymer Melts.” Macromolecules 56.9 (2023): 3354-3362 [3].

• Ubertini, Mattia Alberto, and Angelo Rosa. ”Spatial Organization of Slit-Confined

Melts of Ring Polymers with Nonconserved Topology: A Lattice Monte Carlo Study.”

Macromolecules (2023) [4].

The last chapter is based on an ongoing project in collaboration with Dr. Emanuele Locatelli

from University of Padova.





Chapter 1

Topological effects in (linear vs ring)

polymer melts: state of the art and

open questions

In this chapter, we briefly introduce and review the theory of polymer melts. We will start

from the established results obtained for linear chains which will be used to make the compar-

ison for the case of interest of my PhD work: non-concatenated and unknotted rings in melt.

We will comment on what is already known as well as on open problems which remain to be

tackled.

In the second part of the chapter, we review a more recent area of study of polymer

physics, namely, topologically complex ring assemblies. We comment on some recent experi-

mental findings concerning this area and we frame the interest on such systems in the context

of my PhD work.

1.1 Polymer melts

Polymers are large molecules consisting of many elementary units called monomers, which

are connected through bonds. Monomers are characterized by excluded volume interactions

which synthesize the fact that they cannot overlap. The sum of the excluded volume inter-

actions and the typical short bond lengths make the polymer chains to be uncrossable. The

uncrossability constraints are usually termed as topological constraints.

While for linear open chains, it is easy to see that these constraints are only transients,

ring polymers are permanently affected by these constraints. Topological constraints influence

1
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Figure 1.1: Schematic representation of the correlation length, ξ, in a polymer solution. The

correlation length ξ sets the the typical scale of interpenetration between different chains. If a

chain has spatial extension smaller than ξ then their properties are not affected by the presence

of the other chains. Image adapted from [5]

already the behavior of diluted ring polymers [6], yet, the most notable topological effects [5]

arise for both systems (for linear chains only for dynamical properties) when one considers so-

lution of polymer chains at high concentration, i.e., polymer melts. Polymer melts are systems

at a density so high that the typical scale at which the polymer chains start to interpenetrate,

the so-called correlation length ξ [5] (see Fig. 1.1), is smaller or equal than the scale of the

typical thermal fluctuations [5].

1.2 Linear chains

1.2.1 Statics

As mentioned briefly in the previous section, the dynamic nature of topological constraints

in linear polymer melts allows chains to relax or disentangle by sliding past each other, while

preventing them from crossing. Notably, prior to the concept of entanglement (Sec. 1.2.2),

Flory and Huggins [7, 8] developed a mean field lattice model that accurately predicted the

scaling of linear chain sizes in solution. This model considers the interplay, at a mean field level,

between intra-chain repulsions and inter-chain interactions. It correctly accounts for the fact

that, at high concentrations, inter-chain interactions screen the intra-chain repulsions, leading

to a vanishing excluded volume interaction for long chains, approximated as1 vexcl ∼ 1/N ,

1The excluded volume parameter, vexcl, summarizes the net two-body interaction between monomers [5].

If vexcl > 0, monomers repel each other; vexcl < 0, monomers attract each other; vexcl = 0, the short

range steric repulsion cancels exactly the attractive interactions, resulting in the chains adopting nearly ideal

conformations. Typically, the value of vexcl is influenced by the property of the solvent in which the polymer

is placed [5].
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Figure 1.2: (a) Schematic representation of linear chains in the melt. (b) The effective tube of

the red polymer chain according Edward’s theory [13, 14]. Dotted line indicates the primitive

path lying at the centre of the tube. (c) Topological approaches for the definition of polymer

entanglement [13, 15–22] view the entanglements in terms of an infinite series of polymer

knots or links.

where N represents the number or monomers units of the polymer chain. Consequently, under

typical conditions, the equilibrium properties of linear chains are minimally affected by topology

and entanglement (see Sec. 1.2.2).

Edwards [9] later provided explicit confirmation of the Flory-Huggins conjecture by demon-

strating that linear polymers in the melt follow ideal statistics, with the mean size of chains,

R, described by the power-law behavior:

R ≈
√
`KL . (1.1)

Here, `K [5] (see Sec. 2.2.1) represents the Kuhn length of the fiber, while L = N〈b〉 is the

contour length of the polymer, where 〈b〉 is the average bond length of the chain. These

fundamental findings have been extensively validated by simulations [10–12].

1.2.2 Entanglement length

The dynamics of linear polymers in a melt can be understood as the slow reptation flow of

each chain through the network of topological obstacles, known as entanglements, which are

formed by the surrounding chains. The tube model [13, 14], developed by Edwards, represents

the key framework for studying the rheology of polymer melts. This model summarizes the

collective effects of the surrounding chains on a reference chain by confining it within an

effective tube-like region (see Fig. 1.2 (b)), where the primitive path lies at the center line
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(see Fig. 1.2 (b)). The size of the tube is determined by the tube diameter, denoted as dT ,

which is given by

dT ≈
√
Le`K . (1.2)

The equation follows from Eq. 1.1 and Le corresponds to the entanglement length in bond

units (or Ne in monomer units, with Le = Ne〈b〉). Le represents the typical length of a

polymer strand with spatial span of dT . Finally, the primitive path (see Fig. 1.2 (b)), can be

thought as comprising Z = L/Le segments, each with linear size of dT . Consequently, the

average contour length of the primitive path, Lpp, is given by:

Lpp = dTZ . (1.3)

Thus, Le marks the transition from the non-entangled to the entangled regime. Polymer

strands below Le are not constrained by topological obstacles and undergo random thermal

motion, longer strands are heavily affected by the fact that they have to move through the

tube. In principle, by knowing Le one would be able to predict the viscoelastic properties of

such entangled systems [5, 13, 14]. Consequently, extensive research has been conducted to

understand the relationship between the microscopic parameters characterizing these systems

and Le.

Theoretical scaling relationships of the entanglement length Le in terms of `K and the

number density of Kuhn segments2, ρK , have been derived for the two typical limiting regime

of polymer melts. In the “loosely” entangled regime, ρK`
3
K < 1, Le exceeds `K resulting in a

random walk behavior between entanglement points. In this case, Lin [23] and Noolandi [24]

independently proposed a conjecture, for which the number of the entanglements in a cube

of size dT should be a universal constant ρed
3
T ' 20, where3 ρe is the entanglement number

density and ' 20 ≡ OKN is the universal overlap number of entanglement strands inferred

from rheological experimental data, also known as the Kavassalis Noolandi overlap parameter.

From this, it follows:
Le
`K
'
(

20

ρK`K

)2

. (1.4)

In the opposite regime of tightly entangled melts, ρK`
3
K � 1, Le is smaller than `K . In this

regime, the relationship of Le and ρK`
3
K was determined by Semenov [25] from a geometrical

argument: the area described by the transverse fluctuations of a filament of length Le must be

traversed, on average, by another filament acting as an obstacle. In particular, by definition,

2The number density of Kuhn segments is defined as ρK ≡ ρ/NK , where ρ represents the monomer number

density of the system, and NK the number of monomers in a Kuhn segment. Assuming a system made up by

M chains with N monomers each in a volume V , then ρ ≡ MN
V , while NK ≡ `K

〈b〉 .
3Similarly to ρK , ρe ≡ ρ/Ne.
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two consecutive entanglement points are at polymer contour distance of Le, then one can

show that the area spanned by the deflection of a polymer filament of length Le, along the

mean primitive path, is A ' L
3/2
e /`K [25, 26]. Then, by requiring that the volume spanned

by the tube between the two entanglement points is pierced by one filament alone, one get

ρALe ' 1. By combining these two relationships, the scaling of Le in terms of ρK`
3
K can be

obtained:

Le
`K
'
(

1

ρK`3K

)2/5

. (1.5)

On the other hand, there exists a physics-motivated method known as primitive path

analysis (PPA) [20, 27, 28] which has proved successful in the estimation of Le and through

which the two different scaling have been confirmed. PPA builds upon the core idea of

the tube model [14], which suggests that linear chains can be coarse-grained down to their

minimal path while still respecting the topological constraints. This approach offers an intuitive

understanding of the microscopic nature of entanglements. In simple terms, PPA effectively

averages out the random thermal motions that characterize the polymer chain at microscopic

scales . dT , allowing the polymer chain to assume the conformation of the primitive path

itself.

The implementation of PPA in a modern computer simulation is quite straightforward [29,

30]. Initially, the chain ends are fixed in space. Then, by disabling the intra-chain interactions

while preserving the inter-chain ones so to enforce the uncrossability constraint, the system

is gradually cooled towards T = 0. Through energy minimization, the bond lengths decrease

to zero, pulling the chains taut. By analysing the final conformations of the chains [29], it

was shown that the “minimized” polymers consists of a series of straight segments sharply

bending at entanglement points (see Fig. 1.3). These conformations agree with the fact

that the primitive path is a random walk with lK ' dT (Eq. (1.3)). Thus, PPA yields the

instantaneous primitive paths, enabling the determination of the entanglement length Le from

the bending statistics of paths.

Interestingly, by starting from the hypothesis, supported by extensive analysis, that PPA is a

way to renormalize a loosely to a tightly entangled system, a unified view of the entanglement

has been derived [31]. This concept serves as the foundation for deriving both Eq. (1.4)

and Eq. (1.5) within the same theoretical framework, by simply considering opposite limits of

ρK`
3
K . Finally, in the same work [31], a very accurate semi-empirical formula that interpolates

between the two entanglement regimes have been found:

Le
`K
≈
(

1

cξρK`3K

)2/5

+

(
1

cξρK`3K

)2

. (1.6)
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Figure 1.3: Result of the primitive-path analysis of a melt of 200 chains of N + 1 = 350

beads. Here, the primitive path of one chain (red) is shown together with all of those it is

entangled with (blue). The primitive paths of all other chains in the system are shown as thin

lines. From the image one can notice that at the entanglement points, the red chain sharply

bends while it attains straight conformations along non-entangle regions. Image adapted from

[27]

Here, cξ = 0.06 is a fitted parameter. In my works, the entanglement lengths, Le, of the

different systems studied have been estimated by using Eq. (1.6).

At the same time, the notion of uncrossability and in general of topological constraints are

addressed in the realm of knot theory and substantial efforts have been devoted to establishing

mathematical theories that connect the topology of the melt with the effective parameters

characterizing the tube model [13, 15–22]. In these works, the main idea is that one can

quantify the topological constraints, to which polymers are subject in the melt, by means

of suitable topological invariants (see Chapter 4), which measures the presence of knots,

links and higher order topological structures (see Fig. 1.2). Then, from these topological

indicators one should be able to infer the entanglement properties of the melt. However, the

full characterization of entanglements in polymer melts would, in theory, require an infinite

set of topological invariants [16, 18], and analytical theories are challenging to develop [32],

resulting in limited applicability at present.

1.2.3 Dynamics

Building upon Edwards’ tube model, de Gennes [34] developed the reptation model sim-

plifying the complex motion of polymer chains in the melt, into the motion of a single chain
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x/σ

y/σ

Figure 1.4: Two dimensional visualization of consecutive conformations of a linear chain with

N = 800 in melt, sampled equidistantly on time, for a total time τ � τrelax, obtained via

molecular dynamics simulations. Chain snapshots at later times are drawn darker in color with

the final chain conformation in black. From the image it is clear that, for times much smaller

than τrelax (Eq. (1.10)), the chain dynamics is restricted to a tube like region. Image adapted

from [33]

confined within a network of fixed obstacles. In this model an entangled chain diffuses in

a curved path along its confining tube (see Fig. 1.2 (a),(b) and Fig. 1.4), reminiscent of a

snake’s movement (and from here the name reptation).

The chain is free to diffuse up to the tube diameter, dT , until it encounters topological

constraints. The time taken to diffuse up to dT is referred to as the entanglement time4, τe.

For τ < τe, the chain is free to diffuse and its dynamics is described by the Rouse model

[5, 14]. The Rouse model describes the dynamics of a single polymer. In its simplest form,

only consecutive monomers along the polymer chain are interconnected by harmonic springs,

and monomers dynamics is described by the set of coupled overdamped Langevin equations

(see Sec. 2.1.1), which for the i-th monomer reads:

γ
d~xi
dt

= −k (2~xi − ~xi+1 − ~xi−1) + ~ηi . (1.7)

Here, γ is the friction coefficient of the monomer, k represents the stiffness of the harmonic

springs and ~ηi is a Gaussian noise with moments: 〈~ηi〉 = 0, 〈~ηi(t)~ηj(t′)〉 = 6γkBTδi,jδ(t− t′)
where δi,j and δ(t − t′) are the Kronecker delta and Dirac delta function. The Rouse model

can be solved analytically in terms of the Rouse modes which diagonalize the set of coupled

4τe is usually computed numerically as the time such that g1(τe) ≡ 2d2T [35] (see Eq. (1.13) for the

definition of the mean square displacement of single monomer g1).
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differential equations (Eq. (1.7)). Then, one can show that the first Rouse mode corresponds

to the polymer’s centre of mass and derive that its diffusion coefficient, D, is:

D =
kBT

Nγ
. (1.8)

The longest relaxation time of the system, τRouse, corresponds to the time the polymer take

to diffuse of its own size and it corresponds to:

τRouse =
R2

D
∼ N1+2ν . (1.9)

In the present case (see Eq. (1.1)) ν = 1/2 and τRouse ∼ N2.

Then, for τ > τe the chain diffuses along the tube. The one-dimensional curvilinear

displacement along the tube axis is unconstrained and for this reason is well described by

Rouse-like dynamics. This implies that the curvilinear diffusion coefficient, Dc, is given by

Eq. (1.8). From this, we can derive the relaxation time of the chain, τrelax, which represents

the time required for the chain to diffuse along the tube of length Lpp (Eq. 1.3) escaping from

its initial topological constraints:

τrelax ≈
L2
pp

Dc

=
γ〈b〉`K
kBT

N3

Ne

=
γ〈b〉`K
kBT

N2
eZ

3 . (1.10)

Thus, τrelax scales with the cube of the number of entanglements (Z) in contrast with Eq. 1.9,

highlighting the role of topological constraints in slowing down the chain’s relaxation. This

slowdown is also manifest in the asymptotic three-dimensional diffusion coefficient of the chain,

D, which can be estimated by considering that, at τrelax, the chain has diffused over its own

size:

D ≈ R2

τrelax
≈ kBT

Neγ
Z−2 . (1.11)

Finally, from the reptation model, one can derive the full power-law dependencies of the mean

square displacement of the centre of mass, as a function of time5 (Eq. (2.18)), g3(τ):

g3(τ) = 〈(~rCM(t+ τ)− ~rCM(t))2〉 ∝


τ τ < τe

τ 1/2 τe < τ < τrelax

τ τ > τrelax

(1.12)

The τ 1/2 dependency arises from the chain’s one-dimensional diffusion along the tube, which

undergoes a random walk in space.

A similar line of reasoning can be applied to derive the scaling behavior of the single

5We properly introduce this quantity as well as g1 (Eq. 1.13) in the next chapter in Sec. 2.2.2
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monomer mean square displacement (Eq. (2.17)), g1(τ):

g1(τ) = 〈(~r(t+ τ)− ~r(t))2〉 ∝



τ 1/2 τ0 < τ < τe

τ 1/4 τe < τ < τRouse

τ 1/2 τRouse < τ < τrelax

τ τ > τrelax

(1.13)

where τ0 represents the microscopic time-scale of the monomer, and τRouse ∝ N2 (see Eq. 1.9).

The reptation model has been amply validated by simulations from which the tube-confined

dynamics has been visualized (see Fig. 1.4). Moreover, the scaling behavior of the mean square

displacements observed in simulations [35] agree with the one predicted in Eqs. (1.12) and

(1.13)6.

1.3 Joining chain ends: ring polymers

When the end monomers of the polymer chains are connected, topological interactions

assume a crucial role, since the resulting topological state remains quenched for the entire

course of the system. In concentrated solutions, the simplest example is represented by melts

of non-concatenated and unknotted ring polymers, where the uncrossability constraint signifi-

cantly restricts the conformational space accessible to the chains. As a result, unique features

emerge that are absent in the linear case. The study of such systems is of great interest

due to their relevance to chromosomes [37, 38]. In particular, the stability of chromosome

territories during interphase [39] is in stark contrast with the mixing that chromosomes would

undergo if they were well represented by an equilibrated melt of linear chains (see Fig. 1.5).

Interestingly, based on an estimated time of ' 500 years a human chromosome would take to

disentangle, Rosa and Everaers [37] realized that human chromosomes do not escape topolog-

ical constraints, and for this reason, they can be effectively modelled as an equilibrium melt

of non-concatenated and unknotted rings whose topology is, indeed, quenched and which are

known to segregate forming territories. Moreover, melts of non-concatenated and unknotted

rings have drawn interest due to the glassy-like behavior arising from the nonlinear topology

of the chains [40–43] that causes rings to mutually thread each other (see Fig. 1.12): the

importance of all this will be discussed in Sec. 1.3.3.

6It is worth mentioning that simulations and experiments [35, 36] revelead some deviation from the theory.

An example is in the scaling τrelax ∼ Z3.4 exceeding the theoretical prediction of 3 (see Eq. (1.10)). This

discrepancy can be reconciled by considering additional physical mechanisms non included in the model, such

as tube-length fluctuations and constraint release effects [5].
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Figure 1.5: Left, experimental image of chromosome territories in a fibroblast cell nucleus re-

produced from [39]. Middle, territorial segregation in an equilibrated melt of non-concatenated

unknotted rings. Right, mixing of melt of linear chains at equilibrium. Middle and right images

are results from molecular dynamics simulation [44]. Image adapted from [38].

The physics of ring polymer melts poses many significant challenges, and many fundamen-

tal aspects of these systems remain poorly understood. The explicit inclusion of constraints

through suitable topological invariants in physical theories [45–49] proves to be mathematically

arduous, if not entirely intractable, especially in the context of dense, multi-chain systems.

Consequently, the existing physical models proposed thus far [50–55] employ suitable approxi-

mations to address the constraints, rendering the problem more approachable. However, these

models inevitably require supplemental validation through experiments or numerical simula-

tions.

For these reasons, in the following sections, a series of models and results will be pre-

sented and commented in light of numerical and experimental results, which have helped in

the understanding and advancement of the problem.

1.3.1 Statics

Topological constraints reduce the conformation space of unknotted and non-concatenated

rings and as a consequence, an effective topological exclusion volume between rings, of purely

entropic origin, arises [56]. Based on this idea, Cates and Deutsch [50] were the first to tackle

the problem of how rings should fold in melt. They developed a Flory theory in which the

free energy of the system is given by the sum of two terms: i) the free energy cost due to

topological interactions of a ring, with size R, with overlapping rings, scaling as ∼ ρR3/N

(in 3-dimensions), ii) the free energy cost of for compressing a polymer in a size R, scaling as

N/R2 [5]. By balancing these two terms they obtained the scaling for the typical ring’s size
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Figure 1.6: (a) Two-dimensional representation of a ring in a grid of fixed obstacles. (b) Map-

ping of the double-folded rings onto its corresponding lattice-tree. Image adapted from [52].

R:

R ∼ N2/5 . (1.14)

Thus, rings in the melt would not be ideal, ν = 2/5, and they would be more compact than

linear chains. The authors argued that further corrections to the free energy can considered

taking into account higher order interaction terms, scaling as ∼ (ρR3/N)
α

with α ≥ 1. These

corrections lead to a scaling exponent which depends on α as:

ν =
1 + α

2 + 3α
(1.15)

taking any value in the interval 1/3 ≤ ν ≤ 2/5.

A distinct approach was developed later by Grosberg with his annealed lattice-tree model

[57], which is based on earlier works [51, 52], where the problem of a ring in an array of fixed

obstacle was studied (see Fig. 1.6 (a)). There, it was shown that the ring, in order to avoid

crossings with the obstacles, would assume a double-folded randomly branching configuration

and it can be effectively mapped to a randomly branching tree (also known as lattice animal)

(see Fig. 1.6 (b)). Building upon these ideas, Grosberg assumed that non-concatenated and

unknotted rings in the melt would indeed assume similarly double-folded configurations above

some characteristic length scale, marking the onset of topological constraints. Assuming such

length scale being the same entanglement length, Ne, valid for melt of linear chains (see

Sec. 1.2.2), at scale smaller than Ne, rings are ideal R ∼ N1/2, above they assume double-

folded configurations. Then, above Ne, the whole system can be mapped into a corresponding

melt of annealed lattice-trees. From this assumption, he developed a Flory theory in terms of
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the ring’s spatial size R and the mean path length of the backbone of the corresponding tree

(see thick black line in Fig. 1.7), Ltree. In its model, the free energy is characterized by two

terms: i) an elastic free energy ∼ R2/Ltree penalizing stretching of the tree to size R larger

than the size of an ideal randomly branching tree, and ii) a second term, ∼ L2
tree/N , derived

in [58] corresponding to the entropic free energy of random branching. From the minimization

of the free energy, one finds the scaling exponents describing the characteristic power-law

behaviors as a function of N/Ne ≡ Z & 1 of the following observables:

(i) The mean ring size as a function of the ring mass:

〈R〉 ∼ dT Z
ν , ν = 1/3 ; (1.16)

(ii) The mean path length on the backbone of the tree (Fig. 1.7, thick black line) as a

function of the ring mass:

〈Ltree〉 ∼ dT Z
ρ , ρ = 5/9 ; (1.17)

(iii) The mean ring size as a function of the mean path length:

〈R〉 ∼ d
1−νpath
T 〈Ltree〉νpath , νpath = 3/5 . (1.18)

Eq. (1.16) means that rings (i.e. the equivalent trees) behave like compact, space-filling objects

while Eq. (1.18) expresses the fact that linear paths follow self-avoiding walk statistics [57].

Notice also that Eq. (1.18) follows directly from Eqs. (1.16) and (1.17), since νpath = ν/ρ.

Thus, to sum up, Grosberg model starts from the assumption that rings in the melt assume

double-folded conformations above the entanglement length scale Ne and they can be effec-

tively treated as annealed lattice-trees. Then, by building a Flory theory for the correspondent

melt of annealed lattice-trees, he showed that rings are compact ν = 1/3 and the underlying

tree-backbone follows self avoiding walk statistics νpath = 3/5.

Another very popular and accurate model is the so called fractal loopy globule (FLG) [55]

developed by Rubinstein and co-workers. The model is based on earlier computational obser-

vations for rings in the melt showing that the overlap parameter, number of segments of a

given length sharing a common volume, remains close to the Kavassalis Noolandi parameter

(see Sec. 1.2.2), OKN ' 20, for any subsection of the rings of length n exceeding the en-

tanglement length, n/Ne > 10 [59]. From this result, the theory conjectures that the rings

overlap on all scales above Ne in a self-similar manner with the the same overlap parameter

' 20. Then, being OKN = ρ
N
R3, with ρ

N
representing the chain number density and R the

ring’s mean spatial extension, it directly follows that:

R ∼ N1/3 , (1.19)
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Figure 1.7: Schematic picture of a single ring polymer conformation (green line) which double-

folds around its tree-like backbone (thick black line). The crosses (×) represent the lattice of

topological obstacles as introduced by [51, 52]. In the theory of Grosberg [57] they represent

the topological constraints created by the surrounding rings in the melt. The lattice spacing

is of the order of the tube diameter dT , and the polymer contour length inside each unit cell

is ≈ Le.

and this holds for any subsection of the rings of length Ne < n < N , while below Ne, as for the

Grosberg theory, R ∼ N1/2. The self similar structure of the rings (see Fig. 1.8), as loops on

loops, is “somewhat analogous” to a randomly branched structure, where the loops of the FLG

are viewed as the branches. The authors assert that the loops are not perfect double-folded,

but do not elaborate on the double-folded structure further, except that the number of loops

n(r) of size r has to decrease reciprocally to their pervaded volume r3: n(r) ∼
(
R
r

)3
.

The difference between the FLG and the lattice-tree models, from the structural point of

view is in the branching statistics, manifested in the structure of the mean (primitive) path7.

While in the lattice-tree model the scaling of the size of a segment of the ring with the corre-

sponding primitive path is governed by the exponent νpath on scales above Ne (eq. 1.18), in

the FLG, the scaling is more complicated because it takes into account “tube dilation”. The

tube dilation means freeing of the constraints imposed by the other surrounding segments due

7Note that here the terms primitive path and tree backbone are used interchangeably, because they have

the same meaning for linear polymers – the shortest end-to-end path of the chain to which its contour can

be contracted without crossing other chains. In rings, there are no ends and therefore such equivalence is, to

say the least, not clear. The tree backbone, governing the stretching and branching of the ring is a properly

weighted average of all possible path lengths in the tree structure (see [60] for details), while the primitive

path of the ring is measured in [55] with a method analogous, but not identical, to primitive path analysis [29].
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dT

Figure 1.8: Schematic representation of a conformation of a ring (black line) in the melt

according to the fractal loopy globule (FLG) model. The circles of different colors indicate the

length scales where loops of various sizes overlap with similar size neighbors (dimmed in the

background) at the same overlap parameter OKN . Figures adapted from [55].

to their motion, hence effectively increasing the length scale between constraints, making it

time-dependent Ne(t). In the FLG model, if the segment is shorter than Ne(t) its primitive

path is just straight, hence the size of the segment scales linearly with the length. If the

segment is longer than Ne(t), its size scales with the exponent ν = 1/3 equal to that of

the whole ring. The analysis of the primitive paths in [55] reports that they do not observe

the scaling of the size of the primitive path with its length with the exponent νpath = 3/5.

Yet their analysis focuses on rather flexible system only and the reported dependence broadly

and smoothly crosses over from the exponent 1 to 1/3 (hence visiting all the intermediate

exponents).

From an experimental standpoint, a few studies [61–63] have attempted to estimate the

scaling behavior of ring sizes with respect to molecular weight. These studies indicate a com-

pact structure for the rings, with scaling exponents yielding values of ν ' 0.4. However, it is

important to note that these investigations primarily focused on chains with moderate lengths

corresponding to only few entanglements.

On the numerical side, early works [64, 65] supported the first theoretical estimates of

ν ' 0.4. However, simulations involving larger ring sizes [44, 66, 67] demonstrated that

asymptotically, for Z & 15, the exponent converges to ν = 1/3. Furthermore, robust numeri-

cal evidence [59] has shown that ring polymers in a melt can be effectively mapped onto melts

of interacting lattice-trees, providing support for the model proposed by Grosberg. These
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Figure 1.9: Example of the minimal surfaces spanned by two threaded rings. Image adapted

from [69]

findings suggest that rings tend to adopt a compact conformation in line with the annealed

lattice-tree model of Grosberg and the FLG model of Rubinstein. However, it is worth noting

that direct reconstruction of a tree-like structure, which would corroborate the lattice-tree

model of Grosberg, has not been reported in these studies. Detecting and quantifying the

hypothesized branch structure that characterizes ring conformations in a melt remains, there-

fore, a challenge.

Early large-scale simulations revealed that even though rings exhibit a compact nature,

they often overlap significantly with each other protruding through themselves. To this end,

new observables have been developed in order to detect and quantify the openings of the rings

in the melt. This is the case of the measure of loop openings proposed in [68], in which the

mean-square “magnetic” radius was first introduced and defined as

〈R2
m〉 =

1

π
〈
∣∣∣ ~A∣∣∣〉 , (1.20)

where, inspired by the analogy to the classical electrodynamics of the magnetic far field gen-

erated by a loop carrying a constant electric current,

~A ≡ 1

2

N∑
i=1

~ri × (~ri+1 − ~ri) =
1

2

N∑
i=1

~ri × ~ri+1 (1.21)

is the (oriented) area enclosed by the ring. In [68], it was shown that R2
m obeys the same power

law of the mean spatial size of the ring itself: R2
m ∝ Z2/3. There, they argue that one possible

explanation for the scaling would be that the rings open O(1) loop of the same order of the

rings size themselves, yet no direct evidences of this folding pattern have been explicitly shown.

Another example is the minimal surface, minS, spanned by a ring polymer (see Fig. 1.9) which

was introduced [69, 70] as a quantitative tool for measuring the “exposed” area that each ring
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Figure 1.10: Two dimensional visualization of consecutive conformations of a ring chain with

N = 1600 in melt, sampled equidistantly on time, for a total time τ � τrelax, obtained via

molecular dynamics simulations. Chain snapshots at later times are drawn darker in color

with the final chain conformation in black. From the image, one can see that rings motion

is isotropic in space and not constrained in a tube-like region as in the case of linear chains.

Image adapted from [33]

offers to its neighbors. There, it was shown that minS ∝ Nx with x ' 1.03, which would

suggest that rings are, indeed, characterized by an underlying quasi double-folded structure.

We recall that local opening below Ne are possible within the Grosberg model (see Fig. 1.7),

then assuming that each section of rings Ne participate to a local opening of ' d2T , it would

follow: minS ' d2TZ in agreement with their analysis. Moreover, besides the absolute value

of the surfaces, the pipeline developed in [69] allows to precisely triangulate the area exposed

by the rings: in this way, one can precisely quantify ring-ring interpenetration (see Fig. 1.9),

referred to as threadings (see Fig. 1.12). This has been done in [69, 71] where they have

shown that threadings become increasingly present as ring size increases. In Chapter 3, we will

employ such tools for the characterization of non-concatenated and unknotted ring polymers

in melt.

1.3.2 Ring dynamics

Ring polymers do not posses ends, which leads to their inability to perform reptation as

linear chains do. Large-scale simulations of melts of ring polymers [33] have confirmed this

observation finding that at short timescales, unlike linear chains that diffuse within a tube-like

region (see Fig. 1.4), ring polymers exhibit unrestricted spatial fluctuations (see Fig. 1.10).

In the next section, we recapitulate the general results for ring dynamics according to the
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annealed lattice-tree model of Grosberg discussed in Refs. [53, 60] and we compare them to

the ones of the FLG of Rubinstein [55]. In order to quantify chain dynamics we consider as for

linear chains (see Sec. 1.2.3), the single monomer mean-square displacement (see Eq. 1.13),

g1(τ), and the mean-square displacement of the ring centre of mass (see Eq. 1.12), g3(τ).

Dynamics in the annealed lattice-tree model For time scales τ . τe and length scales

. dT monomer motion is not affected by entanglements and we expect the characteristic

Rouse-like [5] behavior, g1(τ) ∼ τ 1/2 and g3(τ) ∼ τ .

On larger time scales τ & τe, mass transport along the trunk is, by assumption, the

dominant relaxation mode of the chain (see Fig. 1.11): in particular, each one of the O(Zρ)

branches (Eq. (1.17)) protruding from the trunk acts as a “reservoir” exchanging a single

polymer mass of equivalent contour length ∼ Le on the time scale ∼ τe with its neighbors.

The displacement associated to a single mass exchange, projected along the trunk, is of the

order of ∼ dT
Z

; since each of them happens randomly the curvilinear mean-square displacement

of the centre of mass of the chain after τe is:

〈(∆Ltree)
2〉 ∼

(
dT
Z

)2

Zρ = d2T Z
ρ−2 ,

while the total relaxation time of the chain is given by

τr ∼
〈Ltree〉2

〈(∆Ltree)2〉/τe
∼ τe Z

2+ρ . (1.22)

Per self-similarity of the branched structure, the mass z(τ) of ring sections which have relaxed

up to time τ with τe . τ . τr can be obtained by inverting Eq. (1.22), i.e.

z(τ) ∼
(
τ

τe

)1/(ρ+2)

. (1.23)

By using Eq. (1.16) this is equivalent to the mean-square displacement:

g1(τe . τ . τr) ∼ d2T

(
τ

τe

)2ν/(ρ+2)

. (1.24)

Similarly, the mean-square displacement, g3, of the centre of mass of the chain results from

the sum of the (independent) random motions of the z(τ) ring sections which have relaxed

up to time τ , i.e.

g3(τe . τ . τr) ∼
g1(τ)

Z/z(τ)
∼ d2T

Z

(
τ

τe

)(2ν+1)/(ρ+2)

. (1.25)
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Figure 1.11: Schematic representation of the relaxation process within the annealed lattice-

tree picture. (a), as in Fig. 1.7, a ring conformation in the lattice of topological obstacles

is represented with its underlying lattice-tree backbone, the trunk (thick black line), which is

ramified in further branches. (b), a schematic representation of the relaxation process acting

via diffusion of the branches between the nodes of the trunk, the total weight of the branches

for the specific conformation are reported inside the nodes.

At large times τ & τr the whole chain is simply diffusing (g1(τ) ∼ g3(τ) ∼ Dch τ) with the

chain diffusion coefficient given by Dch ∼ 〈Rg〉2/τr, with 〈Rg〉 ∼ dT Z
ν (see Eq. (1.16)). By

fixing the numerical coefficients for smooth crossovers, the complete time behaviors for g1 and

g3 are then given by the respective expressions:

g1 ∼ d2T ×



(
τ
τe

)1/2
, τ . τe

(
τ
τe

)2ν/(ρ+2)

, τe . τ . τr

Z2ν−ρ−2 τ
τe
, τ & τr

(1.26)

and

g3 ∼ d2T ×



1
Z
τ
τe
, τ . τe

1
Z

(
τ
τe

)(2ν+1)/(ρ+2)

, τe . τ . τr

Z2ν−ρ−2 τ
τe
, τ & τr

(1.27)
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Comparison with the fractal loopy globule As mentioned in the previous section, the

FLG model [55] takes into account the tube dilation which means that the constraints imposed

by the other surrounding segments vanish due to their local motion: the more the monomers

diffuse over space, the more constraints cease to be present, leading to a bigger tube diameter,

hence a time-dependent Ne(t) increasing over time.

In particular, in the model, the time-dependent characteristic loop plays an important role.

This is defined as the ring section containing g(t) monomers such that its spatial extension is

equal to the root-mean-square displacement of its centre of mass:

r(g, t) ≡
√
g3(g, t) . (1.28)

Here, g3(g, t) indicates the mean square displacement of the centre of mass restricted to

sections of the polymers containing g monomers. Instead, r(g, t) represents the average

spatial size of the characteristic loop made up by g(t) monomers.

In [55], they develop a method to compute the time-dependent ring primitive paths by

averaging the position of the monomers of the chains over the time interval t. From the

t-dependent primitive paths, they estimate the time dependence of the tube diameter, dT (t),

finding that dT (t) increases as a function of time, i.e., a dilating tube diameter. They compare

these results with the estimates of r(g, t) conveying that dT (t) ' r(g, t), which implies that

Ne(t) ' g(t).

More generally, one can imagine partial dilation of the tube, which can be expressed through

the relation: Ne(t) ' g(t)θ with 0 ≤ θ ≤ 1. θ serves as parameter quantifying the dilation,

with θ = 1, there is complete dilation, while θ = 0 there is no dilation Ne(t) = Ne independent

of time.

Besides this important difference, the theory relies on the same concept of self-similar

dynamics of the annealed branching trees discussed for the Grosberg’s model. Following

similar reasoning as shown for the Grosberg model dynamics, in [55], they make predictions

for the g1 and g3 as a function of the parameter θ:

g1(τ) ∼ τ

2
2
ν+ 1−θ

νpath
+θ
, (1.29)

and

g3(τ) ∼ τ

2ν+1

ν

(
2
ν+ 1−θ

νpath
+θ

)
, (1.30)

for times τe ≤ τ ≤ τr.

By setting θ = 0, the Grosberg predictions are obtained (Eq. (1.26) and Eq. (1.27)).

Setting θ = 1, one finds the prediction of the FLG model. Anyhow, the predictions of the two

models regarding the exponents governing the dynamics of g1 and g3 are quite similar to each
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Figure 1.12: Schematic representation of ring polymers in melt. Encircled regions denote

threadings. The relaxation process described schematically in Fig. 1.11 is hindered by their

presence since blobs cannot diffuse anymore freely along the backbone but they have to wait

for them to disappear.

other. The single monomer mean square displacement, g1(τ), scales as: i) g1(τ) ∝ t0.26 for

the lattice-tree model and ii) g1(τ) ∝ t0.29 for FLG one. Instead, the centre of mass mean

square displacement, g3, goes respectively as: g3(τ) ∝ 0.65 and g3(τ) ∝ 0.71.

Thus, the FLG and the annealed lattice-tree model, are very close in the predictions of the

scaling of mean square displacements and these predictions are in agreement with experimental

and numerical estimates [33, 55, 72].

Failure of the models Even if the two models are in good agreement with results obtained

for the mean-square displacements through simulations and experiments, it turns out that both

models underestimate the scaling of the diffusion coefficient, D, with N . This is computed as

D ∼ R2/τrelax, where the relaxation time τrelax can be derived as a function of the parameter

θ [55]:

τrelax ∼ τe(N/Ne)
2+(1−θ)ν/νpath+θν , (1.31)

which gives

D ∼ N−2+ν(2−θ−(1−θ)/νpath) . (1.32)

Thus, for the annealed lattice model of Grosberg (θ = 0 and νpath = 3/5), D ∼ N−1.89, while

for the FLG model (θ = 1), D ∼ N−1.67. However, experimental and numerical estimates

suggest that the scaling is approximately D ∼ N−2.34 [33, 55, 72]. This discrepancy might be
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attributed to the fact that both systems neglect the role of threadings, penetration of a ring

through the surface of another ring, in the dynamics. In both models, the ring dynamics is

based on the self-similar relaxation arising from the diffusion of blobs along the rings. However,

the presence of threadings (see Fig. 1.12 and Fig. 1.9) could hinder such relaxation process

since the blobs cannot diffuse anymore freely along the backbone. Hence, this mechanism can

slow down the dynamics and it might be the cause of the discrepancy observed in the scaling

of D. However, incorporating threadings into the models is challenging, and currently, there

is no straightforward method to account for their dynamic role.

1.3.3 Open questions

Upon reviewing the current state of knowledge, it is apparent that several unanswered

questions persist regarding the static and dynamic properties of non-concatenated and un-

knotted rings in a melt. The annealed lattice-tree and the FLG model, when compared with

numerical and experimental data, demonstrate accurate predictions for both the static and

dynamic characteristics except for the scaling of τrelax (Eq. (1.31)) and D (Eq. (1.32)). The

failure in predicting such scalings may be caused by the main notable limitation of these mod-

els: the neglect of the role of inter-ring threadings in the relaxation dynamics of the rings. In

particular, the annealed lattice-tree model explicitly forbids them by assuming perfect double-

folding of the ring backbone. On the contrary, even if, according the FLG model, threadings

are not prohibited, they are simply neglected by assuming the self-similar dynamics discussed

in Sec. 1.3.2. Thus, the overlook of their dynamical implications may explain the differences

registered in the scaling exponent governing the diffusion coefficient and relaxation time seen

between theory and simulations/experiments.

Furthermore, studies have shown that inter-ring threadings can form a network of topolog-

ical obstacles. The formation of a network of threadings seems to be responsible for the glass

transition showed by melts of rings when a fraction of the rings in the system are immobilized

[41, 42], a phenomenon that is completely absent in the linear counterpart. Moreover, since

the fraction of rings needed to induce the transition has been shown to decrease with N , it

has been conjectured that long enough rings would become a glass, yet no simulations have

clearly proved this point. Moreover, threadings undoubtedly have physical implications when

the melt is driven out-of-equilibrium, such as in elongation flows [73], where the spontaneous

formation of supramolecular chains made up by multiple rings connected by tight threadings

causes an enhancement in the viscosity of the system. Another notable example is with induced

asymmetry in local monomer mobilities [43], where the mixed composition of the rings made

up of monomers with different mobilities induces the formation of clusters of rings that fail to
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relax due to the presence of long-lived threadings. For these reasons, it is crucial to advance

our understanding of the presence and role of threadings, as well as their relationship with the

possible double-folded structures assumed by the rings according to the Grosberg model.

Additionally, both the annealed lattice-tree and the FLG are models working at length-scales

beyond the entanglement lengths Le and dT . However, it remains unclear whether these length

scales are identical to those introduced for linear chains (as discussed in Sec. 1.2.2).

As part of my PhD work, I focused on the interplay between the double-folding of the

ring backbone and threading-like interactions between different rings. By performing exten-

sive large-scale simulations of systems of non-concatenated and unknotted rings with variable

bending rigidity, I showed that rings are double-folded at and beyond the entanglement length

scale Le. Interestingly, we found that double folding is enhanced by the stiffness of the poly-

mer fiber in such a way that most of the double folding features seen for stiffer rings are

completely lost for the fully flexible case. This finding could explain why no indication of a

tree-like structure was found in [55], where polymers comparable to the flexible ones studied

in my work were examined. In addition, the analysis suggests that the tree-like backbone has

a self-avoiding walk tree-backbone as for the Grosberg model [57]. At the same time, I showed

that rings open their surfaces hosting numerous threadings. We reconciled this observation

with the double-folded model by observing that threadings are localized at a scale of ≤ dT ,

thus causing little openings. Interestingly, all the threadings-related quantities are controlled

by the entanglement length Le, as also shown in [71]. Yet, in this work, we show that small

protrusion of length L . Le are system dependent and they have to be taken into account to

restore universality for quantities like the minimal surface of the rings [69]. Even if localized,

threadings are numerous, they grow with the size of the ring polymers, and they can be much

longer than Le, thus relevant for the dynamics. For this reason, by analyzing the dynamical

behavior of such systems, focusing on the results of numerical experiments involving partially

pinned systems [41, 42], I showed that the observed dynamical features cannot be reconciled

within the current models, necessitating explicit consideration of threadings in the theories.

1.4 Violating the topological constraints

In my PhD work, I also focused on characterizing the physics of the opposite system

described earlier, namely, randomly knotted and concatenated rings in the melt. These studies

aimed to address the question of what happens when concentrated solutions of ring polymers

can perform strand-crossing, hence overcoming the topological constraints. Characterizing

such systems is a challenging task because it involves introducing new observables capable

of distinguishing whether ring polymers are knotted or concatenated. Mathematical topology
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Figure 1.13: Illustration of the strand-passage mechanism between DNA filaments (green and

violet filaments) mediated by the TopoII enzyme. During the reaction, the enzyme open the

green chain, it makes the violet chain cross the green one, and finally the cut green segment

is sealed. Image adapted from [93].

provides a natural framework for distinguishing knots and links, involving the computation

of complex topological invariants. Consequently, only a limited number of analytical findings

exist for simpler systems, such as the probability of knotting in a self-avoiding walk [74] or the

linking of closed curves in pairs [75–77]. For a more comprehensive discussion, we refer to the

reviews [77, 78]. Due to the limited applicability of analytical theories, numerical approaches

have become the standard method for investigating such problems. However, most existing

numerical studies have primarily focused on a couple of rings or dilute solutions of polymers [56,

79–81]. In contrast, I have focused on characterizing both the statics and the dynamics of

ring polymers, which can overcome topological constraints, in melt condition, a problem also

explored in [82–85]. In the following section, I will provide a brief explanation of the significance

of this problem and discuss the current understanding in the field.

1.4.1 Topological polymeric materials

The synthesis of polymer materials characterized by topologically complex motif, as knots

and links, has opened new routes for fine-tuning the mechanical properties of polymeric ma-

terials. This is for instance the case of the so called smart materials like polycatenanes and

polyrotaxanes [86, 87], which consist of interlocked components resulting from precise and

orchestrated ring-closure reactions. These components possess internal degrees of freedom

and mobility that define the unique conformational space of the molecule. Still limited by

the experimental constraints, a series of recent computational works on linear-catenanes [88–

92] have shed new lights on the interesting mechanical properties of such systems arising from

the “mechanical” bonding rather than the usual covalent bond.

Interlocking and topology manipulations take place also in the realm of biology occupying
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Figure 1.14: Schematic representation of a random “Olympic” gel as obtained in [93]. Here,

due to the strand-crossing between nearby polymer filaments, ring polymers are randomly

knotted and concatenated with neighbored chains.

a prominent role in the organization of the long DNA molecules which constitute the genomes

of many organisms. For instance, in eukaryotic nuclei in normal cell conditions (interphase)

the cm-long filament of DNA of each chromosome is densely packed into a corresponding

µm-sized “territory” [37, 94]. In this situation, tight confinement may result in an “excess”

of entanglements which may be detrimental [95] at the later stage of cell division: a specific

class of enzymes, the topoisomerases [96] and in particular the type II topoisomerase (here-

after, TopoII), removes the entanglement [97] between two nearby DNA strands by cutting

one strand, moving the other through the cut and ligating the broken strand back. Recently,

inspired by such biological mechanism, the Spakowitz’s group at Stanford [93] showed that the

strand crossing action performed by TopoII is capable of “fluidizing” concentrated solutions of

unknotted and unconcatenated DNA rings. Moreover, by blocking the activity of the enzyme,

the once free rings become permanently linked with each other: under these conditions, the

DNA solution becomes equivalent to a so called “Olympic” gel, a polymer material, first the-

orized by P.G. de Gennes [98, 99], which is maintained together by topological bonds and not

by chemical cross-links as in the case of traditional gels [5]. Such “Olympic” gels, differently

from polycatenanes which are synthesised following chemical precise routes, are characterized

by an interlocking pattern that is the result of random strand-crossing of nearby DNA rings,

consequently, there is no control on the topology of the resulting network. Estimates of the
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linking of the network can be just indirectly inferred from rheological measurements as in [93].

For this reason, theoretical and numerical works [82–85] take an important role in the under-

standing of the properties of these complex systems. As a result of these investigations, a new

understanding of the factors that can influence the network topology, hence the mechanical

properties, has been developed. These works have also biological implications since there exist

systems as the kinetoplast DNA characterizing the organization of the mitochondrial DNA of

certain protozoa [100–102] which can be modeled [81] as an “Olympic” gel.

The most interesting feature showed by the material synthesised in the Spakowitz’s exper-

iment is the possibility to bend polymer topology to produce materials capable of switching

from liquid-like to more solid-like behavior. From their results, it is clear that the dynamical

nature of the action of TopoII plays an important role as it was shown that the fluidization of

the DNA system was taking place at the typical time-scale of action of TopoII (' 1s). Then,

it seems clear that, at least for the dynamics, the kinetic features of TopoII may be relevant.

Moreover, it is not known, a priori, whether or not the competition of the internal relaxation

time-scales of the polymers and the time-scale of action of the enzyme can be important

also for the statics, resulting in different topological networks based on their respective values.

Nonetheless, studies focusing on the formation of an “Olympic” gel from a solution of polymer

non-concatenated and unknotted rings [81–85], as in the case of the experiment, have always

overlooked on the role of the kinetics of the enzyme within their computational models.

1.4.2 Open questions

Unlike the case of non-concatenated and unknotted rings, this area is relatively new and less

explored. As mentioned earlier, there is currently no model that considers the kinetics of the

enzyme responsible for strand-crossing in polymer filaments. Therefore, it appears necessary

to develop a model that accounts for this aspect. For this reason, part of my work has dealt

with the development of a suitable computational model that incorporates the kinetics of

the strand-crossings between nearby polymer filaments. Once the model was developed, I

conducted extensive computer simulations to study and characterize the dynamics and statics

of the system. The interplay between the relaxation time-scale of the polymer chains and

the time-scale of the enzyme was found to be crucial in understanding the overall dynamics

of the system. Furthermore, I explored the influence of various parameters on the resulting

network of concatenated rings. Specifically, I investigated the effects of chain length, bending

rigidity, and confinement on the system’s topological properties. By exploring these factors, we

reached a deeper understanding of how they shape the structure and behavior of such systems.

Finally, by highlighting the connection between the ensemble of randomly concatenated and
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knotted rings with the one of linear chains in the melt, I addressed the long-standing problem

of the definition of the entanglement length Le from the internal topology of the melt (see

Sec. 1.2.2).



Chapter 2

Materials and methods

This chapter outlines the numerical methods employed for investigating the polymer sys-

tems under study. We also present the observables we have commonly used for characterizing

the statics and dynamical properties of such systems.

2.1 Polymer modeling and simulation

In my PhD work, I have focused on modelling and simulating dense polymer solutions.

In particular, I have studied melts of ring polymers because of the interesting features they

provide due to their non-linear topology. As discussed in the previous chapter, these systems

hold significance in both the realms of biology, such as the folding of chromosomes within

cells, and materials science, with the recent synthesis of topological materials composed of

interlocked ring polymers: for all these reasons, rings necessitate a deeper understanding of

their characteristics.

The significance of the minimal polymer modelling employed in this Thesis lies in the uni-

versal behavior exhibited by polymers, as elucidated by De Gennes [98]: despite differences

in chemical composition, many polymer systems share identical properties when appropriately

scaled using system-specific units. Consequently, to comprehend the macroscopic behavior of

these systems, it is often unnecessary to delve into an atomistic definition of the system.

A prime example is the case of polymer chains in melt conditions, which exhibit similar

rheological behaviors [103] when typical observables are expressed in terms of appropriate en-

tanglement units: so, we express contour lengths as Z = L/Le, spatial distances in terms

of the ”tube diameter,” dT , and time in units of the entanglement time, τe (see Sec.1.2.2

for details). Hence, the study of complex polymer materials can be approached by matching

them with simpler polymer models possessing equivalent degrees of entanglement [103]. It is

27
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crucial to recognize that chain entanglement arises from the inability of polymer filaments to

pass through one another, resulting from both the exclusion volume of monomers and chain

connectivity. As a consequence, there is no necessity for intricate and fine-grained models.

Instead, suitable coarse-grained polymer models suffice, where monomers interact through a

strong and short-range repulsive force, and consecutive monomers are connected in a manner

that prevents neighboring polymer filaments from interpenetrating.

There are two primary families of numerical approaches that have emerged and are widely

employed for the investigation of polymeric systems.

The first category is off-lattice methods, distinguished by the absence of a requirement for

monomers to reside on a regular grid. In these approaches, monomers undergo evolution either

through Monte Carlo methods or by integrating their dynamics “continuously” in time. One

prominent off-lattice coarse-grained polymer model is the Kremer-Grest (KG) model [35, 104].

In this model, monomers are represented as hard spheres connected by nonlinear springs, effec-

tively capturing the connectivity and liquid-like arrangement observed in polymer melts. The

behavior of polymers in the KG model is studied through numerical integration of Langevin

dynamics. The versatility of molecular dynamics simulations allows for a wide range of in-

vestigations using the KG model, spanning from the properties of synthetic polymers to their

biological counterparts. We briefly discuss off-lattice dynamics and the KG model in Sec. 2.1.1,

for a more detailed discussion about KG coarse-grained models and their applicability we refer

to [35, 103, 105].

The second family of models employed in the study of polymeric systems consists of

on-lattice polymer models, where monomers are located exclusively at the vertices of a conve-

niently chosen regular lattice (like the simple cubic, FCC, etc.). In this case, the evolution of

the system is simulated using Monte Carlo methods. In these models, excluded volume effects

are implemented simply by prohibiting more than one monomer from occupying the same lat-

tice site. Chain connectivity is typically enforced by requiring consecutive monomers on the

polymer backbone to occupy neighboring lattice sites, effectively preventing bond intersections

and strand-crossing. As a result, the interaction between monomers typically occurs through

a localized delta-like potential, which enforces the non-overlapping criterion. The locality of

the interactions represents the main computational advantage of on-lattice methods over off-

lattice methods, which instead require calculating inter-monomer distances, an operation that

scales approximately as (number of monomers of the system)2.

While numerous on-lattice methods have been developed over the years (for a compre-

hensive discussion, we refer to the review by Kremer and Binder [106]), only a few of them

exhibit numerical efficiency in simulating polymer chains at high concentrations. Most Monte

Carlo methods, relying on global moves, encounter challenges when a significant portion of
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lattice sites become occupied. In contrast, methods based on local displacements of individual

monomers prove to be highly efficient. Moreover, since the Monte Carlo moves consist of lo-

cal jumps, the motion developed during the course of the simulation can be used for studying

the dynamic properties of the polymer system. The most-known models used for simulating

polymers in melt conditions are: i) the “bond fluctuation model” proposed by Carmesin and

Kremer [107, 108], and ii) the “elastic lattice polymer model” developed by Hugouvieux et

al. [109], based on Rubinstein’s Repton model [110]. Both models have been extensively uti-

lized and have demonstrated remarkable efficiency in simulating the coarse-grained dynamics

of concentrated polymer melt solutions. In Sec. 2.1.2, a detailed description of the “elastic

lattice polymer model” will be provided, being the model employed in most of this Thesis.

2.1.1 The Langevin equation and the Kremer and Grest model

The polymer systems under investigations are usually immersed in a solvent. Yet, explicit

simulations taking into account also the solvent molecules are computationally prohibitive as

one would need to solve the equation of motions of million of atoms [104]. For this reason,

in standard polymer simulations, the interactions with the solvent molecules are taken into

account effectively by coupling the polymeric system to a heat bath at some temperature T .

The dynamics of a system, which is coupled to a heat bath, is well described by the Langevin

dynamics, whose equation of motion, for the generic i-th monomer, reads:

m
d2~xi
dt2

= −γ d~xi
dt
−∇Uint + ~ηi. (2.1)

Here, apart from the the deterministic force, arising from monomers interactions (given by

−∇Uint), the equation accounts for a viscous force, −γ d~xi
dt

with γ representing the friction

coefficient, and a random force, ηi, modeling implicitly the interactions with solvent molecules.

Here, the stochastic spatial components of the random force ~ηi are Gaussian variables with

zero mean

〈ηi,α〉 = 0 (2.2)

and variance

〈~ηi,α(t)~ηj,β(t′)〉 = 2kBTγδ(t− t′)δi,jδα,β . (2.3)

Then in this context, molecular dynamics simulations consist in integrating the set of coupled

Langevin equations “continuously” in time. Finally, it is important to note that by integrating

Langevin dynamics, the simulated trajectory samples the canonical ensemble, in which the

number of monomers of the system, the volume and temperature are fixed and constant

throughout the course of the simulation.
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The modeling of the system resides in the choice of the functional form of the interaction

potential, Uint, and its parameters. A widely used model for polymer simulations is the one

introduced by Kremer and Grest [35, 104], which has become the standard for studying generic

polymer properties through molecular dynamics simulations. The model describes interactions

between the beads as a sum of two potential: Uint = ULJ + UFENE.

Excluded volume interactions are accounted for all pairs of monomers (belonging to the

same chain or to two different chains) of the system via the shifted and truncated Lennard-

Jones (LJ) potential, ULJ,:

ULJ(r) =

4ε
[(

σ
r

)12 − (σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc

(2.4)

where σ represents the monomer size, and ε is the interaction strength, and they are usually

both set to 1 defining respectively the unit of length and energy. Finally, r represents the

distance between the two monomers, and rc = 21/6σ is the cutoff distance, corresponding to

the minimum of the potential. In this way, only the repulsive interaction of the LJ potential

is accounted.

In addition to ULJ, consecutive monomers along the same polymer chain interact via a

bonding potential defined by the finitely extensible non-linear elastic potential (FENE):

UFENE(r) = −1

2
κR2

0ln
(
1− (r/R0)

2
)

(2.5)

where κ = 30ε/σ2 is the spring constant, while R0 = 1.5σ is the maximum extension of the

bond. It is worth noting that given the form of the FENE potential, the bond length, b, is a

fluctuating quantity. In particular, with the standard parameter values m = σ = ε = kBT = 1,

b ' 0.97 and fluctuations are small preventing strand-crossings [35, 104].

In Chapter 8, we employ molecular dynamics simulations to investigate systems of linear

chains out-of equilibrium, and in this case simulations have been done using LAMMPS, a

widely used molecular dynamics simulator [111].

2.1.2 Elastic lattice polymer model

The “elastic lattice polymer model”, to which we will refer also as kinetic Monte Carlo

(kMC) algorithm, developed in [109] is derived from the concept of the repton model intro-

duced by Rubinstein [110], and it has been widely used in many domains. Its first application

was for the study of block copolymers [109], later has been applied for the investigation of

dense solutions of non-concatenated and unknotted rings [68, 112] and for studying the prop-

erties of the so-called fractal globule [113]. Moreover, it has been employed in biological
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(v) (iii)(ii)

Figure 2.1: Two-dimensional illustration of the lattice polymer model with topology-preserving

moves. Monomers (filled dots) occupy the spatial positions of a regular lattice (empty dots)

and two nearest neighbor monomers are connected by a black line representing the polymer

bond between them. For two nearest neighbor monomers occupying the same lattice site, the

bond connecting them (the arcs) makes a unit of “stored length”. Lattice positions connected

by the double arrows are examples of MC allowed moves: (i) a unit of stored length unfolding

to a normal bond; (ii) a bond folding into a unit of stored length; (iii) a Rouse-like move.

Lattice positions connected by the double arrows with the cross are examples of MC forbidden

moves: (iv) three consecutive monomers along the chain occupying the same lattice site; (v)

two non-consecutive monomers along the chain occupying the same lattice site, hence violating

the excluded volume constraint.

contexts specifically in simulating chromatin behavior within the nucleus [114–117].

The specific implementation we employ is based on the work by Hugouvieux et al. [109].

In line with the approach presented in that work, we implement the model on the three-

dimensional face-centered cubic (FCC) lattice. The choice of the FCC lattice is motivated by

its increased number of nearest neighbors and a smoother range of bond angles compared to

the simple cubic lattice. Moreover, differently from the simple-cubic and body-centered cubic

lattices, moving from one lattice point to another one can be made in an arbitrary number

of steps. In this implementation, the lattice spacing corresponds to our chosen unit of length

and is denoted as a.

In this model, illustrated in Figure 2.1 in two dimensions for simplicity, consecutive monomers

along the polymer chain can either reside on nearest neighbor lattice sites or occupy the same

lattice site. However, no more than two consecutive monomers are allowed to share the same
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lattice site due to excluded volume effects. This arrangement gives rise to two possible bond

lengths: b = a when monomers are on neighboring lattice sites and b = 0 when two consecu-

tive monomers occupy the same lattice site. The latter case is referred to as a ”stored length”

unit, which imparts elasticity to the polymer. The total contour length L of a polymer with

N bonds is given by L = N〈b〉, where 〈b〉 represents the average bond length. This numerical

trick makes the polymer elastic.

To model polymers with varying flexibility, we introduce a bending energy term to the

Hamiltonian, described by the following cosine potential term:

Hbend

kBT
= −κbend

L/a∑
i=1

cos θi ≡ −κbend
L/a∑
i=1

~ti ·~ti+1

|~ti||~ti+1|
. (2.6)

Here, κbend represents the bending stiffness which influences the Kuhn length (see Fig. 2.2),

`K (see Sec. 2.2.1), of the polymer fiber, and ~ti ≡ ~ri+1 − ~ri is the oriented bond vector

between monomers1 i and i + 1 having spatial coordinates ~ri and ~ri+1. Importantly, since

bond vectors are obviously ill-defined when two monomers form a stored length, the sum in

eq. (2.6) is restricted to the effective bonds of the chains.

The dynamic evolution of the polymer chains is implemented through two types of Monte

Carlo (MC) moves that preserve the chain’s topology. These moves involve randomly selecting

a monomer from one of the chains in the system and attempting to displace it to one of the

nearest neighbor lattice sites. There are two scenarios for the destination lattice site (see

Fig. 2.1):

• The destination lattice site is empty, this move is an example of Rouse-like move [5, 14],

consisting in a local, lateral displacement of the chain.

• The lattice site is occupied by only one of the nearest neighbor monomers along the

chain. This move is a reptation-like move [5, 14], essentially the move produces mass

drift along the contour length of the chain, as occurring in reptation dynamics (see

Sec. 1.2.3 in Chapter 1).

Chain connectivity is preserved by requiring that neighboring monomers along the chain either

reside on nearest neighbor lattice sites or on the same lattice site (maximum 2 per lattice

site). Then, by means of these MC moves, the topology of the system is rigorously preserved.

Moreover, we accept the moves, based on the Metropolis-Hasting criterion [118], based on

the probability associated with the bending energy term described by Eq.(2.6):

P (x′, x) = min

(
1, e
−Hbend(x′)−Hbend(x)

kBT
)

)
. (2.7)

1For ring polymers, it is implicitly assumed the periodic boundary condition along the chain N + 1 ≡ 1.
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κbend = 0 κbend = 1 κbend = 2

Figure 2.2: Example of melt of linear chains made up by N = 320 monomers and simulated

according to the kMC algorithm described. The polymer’s color transitions from blue to red

from one chain’s end to the other. As κbend grows, linear chains become more elongated, and

larger sections of the filaments adopt straight conformations.

Here, x and x′ denote respectively the current and proposed configurations of the polymer,

which differ for the position of the monomer chosen to be moved, while P (x′, x) repre-

sents the probability of accepting the move. Thus, if a MC move lowers the bending energy

Hamiltonian Eq. (2.6), the move is always is accepted, i.e., e
−Hbend(x′)−Hbend(x)

kBT > 1, and

P (x′, x) = 1 (Eq. (2.7)). Instead, if a MC move would increase the bending energy, i.e.,

P (x′, x) = e
−Hbend(x

′)−Hbend(x)
kBT < 1, a random number 0 ≤ r ≤ 1 is generated and the move if

is accepted if r < P (x′, x). The whole protocol assures that the MC moves are accepted with

probability P (x′, x) and this ensures that the simulation sample the canonical ensemble [119]:

P (x) ∼ e
−Hbend(x)

kBT . For this reason, being the bending energy term given by Eq. (2.6), as

κbend increases, straighter conformations (minimizing the bending potential) are promoted

(see Fig. 2.2) enhancing the rigidity of the polymer chain.

It is useful to make the following conceptual distinction concerning how these MC moves

effectively implement classical polymer dynamics [5, 14, 98]. The selected monomer which is

displaced towards an empty or a single-occupation site (or, a Rouse-like move) may, in general,

change the local chain curvature and, hence, depend on the bending energy term Eq. (2.6).

Conversely, a unit of stored length traveling along the chain (or, a reptation-like move) is

not affected by the curvature because Eq. (2.6) is, again, strictly restricted to the effective

bonds of the chains. Overall, as explained in detail in [112], the stored length method ensures

that the algorithm remains efficient even when it is applied to the equilibration of very dense

systems.

Finally, systems in bulk can be simulated by enforcing periodic boundary conditions, then

the unfolded coordinates of the polymers can evolve over the images of the primitive box.

Conversely, confined systems can be simulated by restricting the polymers from crossing the

walls of the unit box. In this Thesis, both bulk systems (Chapters 3, 5 and 6) and systems un-



34 CHAPTER 2. MATERIALS AND METHODS

der confinement (Chapter 7), particularly under slit-like confinement, have been investigated.

For the latter case, periodic boundary conditions are enforced along the x and y directions,

while the box is non-periodic along the z direction, featuring two impenetrable walls.

As already discussed, the “Rouse”-like and “reptation”-like moves strictly maintain the

topology of the polymer chains and cannot implement strand-crossing events between nearby

polymer filaments. For this reason, the initial part of my PhD work focused on developing a

set of MC moves capable of randomly crossing nearby polymer filaments. The details of these

new moves will be provided in Chapter 5, where we will describe their implementation and their

impact on melts of ring polymers. In general, these moves aim to expand the capabilities of

the polymer model and enable the study of more complex polymer systems with intertwining

strands.

2.2 Characterizing polymer systems

In this section, I provide a concise introduction to key quantities commonly utilized for

characterizing the statics and dynamics of polymer systems.

All the quantities will be defined with respect to polymers consisting of N + 1 monomers,

N bond (N +1 in case of rings), where the average bond length is represented by 〈b〉, and the

total contour length is denoted as L ≡ N〈b〉. The thermal or ensemble average for the generic

observable O is denoted by 〈O〉, and unless otherwise specified, is intended to be calculated

across all the polymers in the system and all possible system realizations.

2.2.1 Statics

Polymer conformations and static properties are of great interest because they dictate the

physical properties of the polymers. In the following, I will briefly introduce the standard static

observables that I have used to characterize the polymer systems I investigated. Threading-

related observables used in Chapter 3 will be directly introduced and discussed there.

Polymer size Polymer typical size, R, which, as seen in the previous chapter, is one funda-

mental aspect of interest in polymer physics, is usually characterized by using the end-to-end

distance vector, denoted as ~Ree, defined as:

~Ree ≡ ~rN − ~r0 , (2.8)
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where ~r0 and ~rN denote the position of the chain-ends. For symmetry: 〈~Ree〉 = 0, and the

first non-vanishing moment is the mean-square end-to-end distance, 〈R2
ee〉.

〈R2
ee〉 = 〈~R2

ee〉 . (2.9)

It is easy to show [5] that, for an ideal chain, 〈R2
ee〉 obeys the following power law:

〈R2
ee〉 = `KL , (2.10)

where `K is the Kuhn length [5] of the polymer fiber. The Kuhn length plays a crucial role as it

represents the characteristic length scale at which the correlations between bond directions in

a polymer are lost. It is important to note that the relationship expressed in equation 2.10 also

holds for linear polymers in melt, as discussed in the previous chapter (refer to Sec. 1.2.1).

The Kuhn length of a polymer depends on the microscopic parameter characterizing the

interactions between monomers, thus, `K is not known a priori. It is usually estimated by

exploiting Eq. 2.10, by examining the ratio of the mean square end-to-end distance to the

polymer’s contour length.

In addition to 〈R2
ee〉, another measure that is commonly used to quantify the spatial

extension of a polymer is the mean square gyration radius, denoted as 〈R2
g〉. This quantity

represents the average square distance of a monomer from the center of mass of the chain. It

is defined as:

〈R2
g〉 = 〈 1

N + 1

N∑
i=0

(~ri − ~rCM)2〉, (2.11)

where ~ri represents the position of the i-th monomer and ~rCM ≡ 1
N+1

∑N
i=0 ~ri is the center of

mass of the chain.

Understanding how these quantities scale with the length of the polymer, expressed by the

relation:

〈R2〉 ∼ L2ν , (2.12)

is of particular interest because ν identifies the specific universality class which the polymer

belongs to [5, 98]. In the case of ideal chains, the exponent ν takes the value of 1
2

(see

Eq. (2.10)). Linear chains in the melt exhibit ideal statistics, leading to the same exponent

ν = 1
2

(as discussed in sec 1.2.1). On the other hand, ring polymers in the melt are more

compact than their linear counterpart with ν = 1/3 (see Sec. 1.3.1).

Polymer shape In addition to the spatial extension of polymers, there is also significant in-

terest in understanding their average shapes. Interestingly, despite the isotropy of space, poly-

mers tend to adopt more prolate shapes due to entropic reasons [120]. Then, the anisotropy in
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polymer conformations can be characterized by computing the symmetric 3×3 mean gyration

tensor Qij = Qji (i, j = x, y, z) defined as:

Qij =
1

N + 1

N∑
m=0

(rm,i − rCM,i) (rm,j − rCM,j) . (2.13)

Here, rm,i is the i-th Cartesian component of the spatial position of monomer m and ~rCM is

the center of mass of the chain. The three ordered mean eigenvalues 〈λ21〉 ≥ 〈λ22〉 ≥ 〈λ23〉 of

the gyration tensor Q quantify the mean spatial elongation of the polymer along its principal

axes. Instead, the trace of Q, trQ =
∑3

i 〈λ2i 〉, corresponds to the mean-square gyration radius

of the polymer chain (as given by Eq. 2.11). Spherical objects are characterized by:

〈λ21〉 = 〈λ22〉 = 〈λ23〉 =
R2
g

3
. (2.14)

Thus, anisotropy is quantified by analyzing the ratios between the eigenvalues. The larger

these ratios, the more anisotropic the polymers are. In [44], simulations were conducted on

melts of linear chains comprising N = 800 monomers, resulting in2 〈λ21〉
〈λ23〉

= 11.9 and
〈λ22〉
〈λ23〉

= 2.7.

In the same work, melts of ring chains of N = 1600 monomers where considered, yielding
〈λ21〉
〈λ23〉

= 5.2 and
〈λ22〉
〈λ23〉

= 2.0. The comparison of the ratios indicates that ring polymers possess

a lower degree of anisotropy and are more spherical compared to linear chains.

Bond-vector correlation function The properties of polymer conformations can also be

studied by examining the decay of correlations between bonds along their backbone. One

common approach to analyze this is by calculating the bond-vector correlation function, c(` ≡
n〈b〉) :

c(` ≡ n〈b〉) ≡ 〈
~t(n′) ·~t(n′ + n)〉
〈~t(n′)2〉

. (2.15)

Here, ~t(n′) is the n′ oriented bond vector defined as: ~t(n′) ≡ ~rn′+1 − ~rn′ .
In the case of ideal polymers, the correlation function exhibits an exponential decay: c(`) ∼

e−`/lp with the decay length given by the persistence length, lp [5]. The persistence length

is associated with the polymer’s bending rigidity and is directly linked to the Kuhn length

as lp = lK/2. In polymer melts, the correlation hole effect3 leads to an effective long-range

coupling between the bond vectors in linear chains. This results in a power-law decay of the

2A random walk is characterized by
〈λ2

1〉
〈λ2

3〉
= 12 and

〈λ2
2〉

〈λ2
3〉

= 3. Linear chains in melt assume similar

conformations to the ones obtained by random walks.
3The correlation hole indicates the fact in a melt, since density fluctuation is small, the concentration of

other chains near a reference chain is reduced due to the volume taken by the reference chain. This leads to

an effective repulsive interaction between monomers in melt [121, 122].
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Figure 2.3: Left, HiC map of human chromosome 14 at a resolution of 1 Mb. The intensity

of red indicates the probability of contact between two chromosome loci. Right, contact

probability computed from HiC maps averaging over all the human chromosomes. Image

adapted from [123].

correlation function: c(`) ∼ `−α, with α = 3/2 [121, 122]. On the other hand, polymer rings

exhibit a distinct correlation function with a non-monotonic behavior, absent in the linear

case. Specifically, it is characterized by an anti-correlation well [59, 66, 68], which is also in

agreement with the concept of double folding (see Sec. 1.3.1).

Contact probability The mean contact probability, p(`), provides access to the properties

of folding and packing in polymers. It represents the probability that two monomers, sepa-

rated by a contour length ` = n〈b〉, are within a suitable, short-range “contact distance”.

Mathematically, this can be expressed as:

〈pc(`)〉 =

〈
1

N + 1

N∑
i=0

Θ(rc − |~ri − ~ri+n|)
〉
. (2.16)

Here, Θ(x) is the Heaviside step function and rc represents the “contact distance”. In all my

works, rc = a, with a the unit lattice distance.

Due to the fractal nature of polymers, the contact probability follows a power law decay:

〈pc(`)〉 ∼ `−γ. The exponent γ is universal, implying that polymers belonging to the same

universality class share the same value γ. In the case of ideal polymers and linear chains in

melts, γ = 3/2. However, polymer rings in the melt exhibit a lower exponent, approximately

γ ' 1.1 [44]. This indicates that rings are more compact compared to linear chains in the

melt.

The value of γ is of great interest from a biological point of view because it can be measured

experimentally using the HiC technique [123], which determines the contacts pattern of DNA
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loci within the chromosomes (see left Fig. 2.3). Based on the the chromosome’s contacts,

the contact probability in Eq. 2.16 has been computed (see right Fig. 2.3) and, remarkably,

experimental estimates of γ for human and mouse chromosomes [123, 124] align closely with

the value observed for rings. As discussed also in 1.3, this finding suggests that human

chromosomes cannot be modelled as a melt of linear chains. For the time-scales of interest

of chromosomes, topological constraints can be considered permanent [37], chromosomes do

not disentangle and for this reason they can be effectively modelled as a melt of polymer rings

which recapitulates the chromosomes main features: i) topological constraints are permanent,

ii) they are segregated and iii) they form territories.

2.2.2 Dynamics

Understanding the diffusion of individual monomers and the overall polymer in space is

crucial for comprehending the rheological properties of a polymer system under investigation.

Here, I briefly introduce the quantities that are usually used to study the dynamical properties

of polymer systems, which, in part, have already been discussed in Sec. 1.2.3 and Sec. 1.3.2.

The single monomer mean square displacement, g1(τ), is defined as:

g1(τ) = 〈(~r(t+ τ)− ~r(t))2〉 . (2.17)

Here, ~r(t) represents the position of a reference monomer at time t, and the average has to

be intended over all the monomers of the systems and over time t.

The single monomer mean square displacement is usually characterized by a sub-diffusive

behavior at short times ∼ tα with α < 1 [5, 14]. This behavior arises due to the incomplete

equilibration of instantaneous stresses along the entire polymer chain. The value of α depends

on the specific system under investigation. For ideal polymers, α = 1/2 [5, 14], while linear

chains in the melt display two distinct sub-diffusive behaviors, with α = 1/4 and subsequently

α = 1/2 (refer to Sec. 1.2.3). Ring polymers in the melt exhibit instead a single subdiffusive

regime with α ≈ 0.26− 0.29 (refer to Sec. 1.3.2).

The diffusion of the entire polymer in space is typically captured by the mean square

displacement of the center of mass, g3(τ):

g3(τ) = 〈(~rCM(t+ τ)− ~rCM(t))2〉 . (2.18)

Here ~rCM(t) represents the position of the polymer’s center of mass at time t, and the average

has to be intended over all the polymers of the system under study and over time.

Differently from g1(τ), ideal polymers are characterized by a purely diffusive centre of mass

motion, i.e., g3(τ) ∼ τ , since no external forces act on the polymers. Instead, melts of linear
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chains (Sec. 1.2.3) display three regimes: free diffusion up to the entanglement time τe, sub-

diffusion with α = 1/2 for τe < τ < τrelax, and subsequent diffusion. Similarly, ring polymers

in the melt exhibit the same three regimes, with the intermediate regime characterized by

α = 0.65− 0.71 (refer to Sec. 1.3.2).

Another useful dynamical quantity is represented by the single monomer mean square

displacement, g2(τ), in the frame of the centre of mass of the corresponding chain, which is

defined as:

g2(τ) = 〈((~r(t+ τ)− ~rCM(t+ τ))− (~r(t)− ~rCM(t)))2〉 . (2.19)

As before, ~r(t) and ~rCM(t) represent respectively the positions of the reference monomer and

the centre of mass of the polymer chain at time t, and the average has to be taken respect to

all the monomer of the system and over time.

At long timescales, when τ � τrelax, it can be observed that g2(τ) ≈ 2〈R2
g〉, where 〈R2

g〉
is the mean square gyration radius of the polymer (see Eq. 2.11). Hence, the plateau of g2(τ)

can be utilized to quantify the relaxation of the system. In all my works, all the simulated

systems display the corresponding plateaus, which demonstrates that equilibration has been

reached for all the cases considered. Accordingly, the time scale to reach the corresponding

plateau corresponds to the portion of the simulated trajectory that has been discarded from

the computation of averages of any considered observable.





Chapter 3

Unknotted and Non-concatenated Ring

Polymers in Melt

The content of this Chapter1 focuses on a computational study of unknotted and non-

concatenated ring polymers in melt conditions. The aim of this investigation is to better

understand the relationship between the theoretical postulated double folding of the polymer

backbone in melt (see Sec. 1.3.1) and previous conflicting numerical evidences that pair of

rings thread each other (see Secs. 1.3.1 and 1.3.3). The results are discussed in light of the

current theories developed to describe such system.

The chapter is structured as the following: in the brief introduction (Sec. 3.1), we will

recapitulate the current understanding on the physics of unknotted and non-concatenated ring

polymers in melt conditions, which is also discussed in detail in Sec. 1.3. Then, in Sec. 3.2,

we will briefly present the details of the lattice polymer model employed for the simulations

introduced in Sec. 2.1.2 and derive the relevant length and time scales of the investigated

polymer melts. Finally, in Sec. 3.3, we will present the main results for both the statics and

the dynamical properties of the rings. In Secs. 3.3 and 3.4 we will present and discuss how

the tree-like models can be reconciled with the threading features. We will also indicate mea-

surements that can help to discriminate between the different models and discuss the common

deficiency of all of them.

1The material described in this Chapter has been published in: M. A. Ubertini, J. Smrek, and A. Rosa,

Macromolecules (2022) [2]

41
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3.1 Introduction

As already discussed in Sec. 1.3, topological constraints emerging from the mutual un-

crossability between distinct chain segments dominate the viscoelastic behavior of polymer

systems in high-density (melt) conditions [5, 14, 98]. In contrast to linear chains where topo-

logical constraints are transient, a significant interest lies in situations where polymers are

prepared in a well-defined topological state that remains fixed as polymers diffuse and flow.

The simplest example in this respect, and the central topic of the present chapter, is the case

of melts of unknotted and non-concatenated ring polymers. This particular class of polymer

solutions has been extensively studied for several decades, theoretically and numerically [33,

44, 50–55, 57, 59, 60, 66, 68, 69, 71, 73, 125–132] as well as experimentally [63, 72, 133–

136]. Researchers have shown that there exist intriguing conceptual connections between

melts of ring polymers and, for instance, chromosomes [37, 38] and a polymer glass based

on the nonlinear topology of the chains [40–43]. However, due to the inherent complexity of

the problem, several fundamental aspects regarding the physics of ring polymer melts remain

poorly understood, primarily because of the mathematical challenges in dealing with topologi-

cal constraints [45–49]. Consequently, the existing physical models proposed so far [51–55, 57]

incorporate suitable approximations to address these constraints, making the problem more

tractable. However, these approximations necessitate further validation from experiments or

numerical simulations. As extensively discussed in Sec. 1.3, currently, the most prominent

models developed for studying such system are represented by: i) the annealed lattice tree

model [57] and ii) the fractal loopy globule (FLG) [55].

The lattice tree model (see Sec. 1.3.1) assumes that rings in the melt double fold on

branched tree-like conformations (see Fig. 1.7). On the other hand, according to the FLG

model, ring conformations are characterized by a fractal arrangement of ”loops on loops,”

resembling a randomly branched structure where the loops of the FLG correspond to the

branches. Both models predict, in agreement with numerical results [44, 66, 67], that the

mean linear size or gyration radius, 〈Rg〉, scales with the total contour length of the chain, L,

as:

〈Rg〉 ∼ dT

(
L

Le

)1/3

, (3.1)

for L larger than the the entanglement length, Le, and with dT , the tube diameter of the

melt (see Sec. 1.2.2 for the definitions of the quantities). As discussed in the Sec. 1.3.1, the

lattice-tree model and the FLG model exhibit differences in terms of their branching statistics,

which are reflected in the structure of the mean (primitive) path (see Fig. 1.7), Ltree. In the

lattice-tree model, on scales above Le, the scaling of the size of a segment of the ring with

its corresponding primitive path follows: R ∼ L
νpath
tree with νpath = 3/5 (Eq. (1.18)). On the
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other hand, in the FLG model, if a segment is shorter than Le, its primitive path is a straight

line, resulting in linear scaling of the segment’s size with its length. For segments longer than

Le, their size follows the exponent ν = 1/3, which is equivalent to the scaling behavior of the

entire ring.

As for the dynamics, the predictions of the exponents of the centre of mass mean square

displacement, g3(τ), and single-monomer means square displacement, g1(τ), are very similar

to each other and close to both numerical and experimental results see Sec.1.3.2. Interest-

ingly, as discussed in Sec. 1.3.2, both the FLG and the annealed lattice-tree model theories

underestimate the exponent of the diffusion coefficient with respect to the values obtained

from simulations [33, 55] and experiments [72]. Specifically, the FLG model underestimates

the exponent by 0.67, while the lattice-tree model underestimates it by 0.45.

While seemingly accurate for many aspects, both models do not take into account the

possibility of ring-ring interpenetrations (or, threadings) [68, 71]. In the lattice tree model,

rings are perfectly double folded (Fig. 1.7), in the FLG, even if possible, the role of threadings

is overlooked in the relaxation process of the rings. Recent studies [60, 68, 71] have quantified

ring-ring interpenetrations and have shown that they become increasingly present as ring size

increases. Moreover, it has been shown that threadings have physical consequences as they

hinder the diffusion of the threaded rings [60] slowing down their relaxations. Finally, it has

been shown that threadings give rises to a series of interesting effects when melts are driven

out-of-equilibrium (see discussion in Sec. 1.3.3), such as in an elongation flow [73] or for an

induced asymmetry in the local monomer mobilities [43].

From a broader perspective, it remains unclear if the entanglement scales Le and dT (see

Sec. 1.2.2) are the only relevant ones for melts of rings or if, and up to what extent, they

are influenced by the local bending rigidity or Kuhn length [5] `K of the chain. In fact, the

value of Le is measured from a linear melt (e.g. by primitive path analysis [29]) and the

length scale is only assumed to be applicable for rings (with the same polymer model) as

well, although no direct method to find the value explicitly from the rings is known. Recent

theoretical works [59, 68, 126] seem to suggest that both systems are characterized by the

same Le. Some recent comparison of crazing in linear and ring glasses suggests [137, 138]

that Le(rings)/Le(linear) ≈ 4, but its role in equilibrium ring melts, as well as its connection

to `K , has not been thoroughly investigated.

All these aspects (double-folding/branching, threadings, entanglement scales) are clearly

all related to each other and, yet, how they mutually influence each other remain poorly un-

derstood.

In this chapter, we will show results concerning these questions.
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3.2 Polymer model and numerical methods

3.2.1 Melts of rings: simulation details

Bulk properties of dense solutions of M closed (ring) polymer chains made of N monomers

or bonds per ring have been studied. By construction, rings are unknotted and non-concatenated.

We simulated values

N ×M = [40× 1000, 80× 500, 160× 250, 320× 125, 640× 62] ,

with fixed total number of monomers = 40, 000 (for computational convenience, the total

number of monomers for N = 640 is slightly less). All these systems have been studied for

the bending stiffness parameters κbend = 0, 1, 2 (Eq. (2.6)). In addition, we have also simulated

melts with N×M = [234× 171, 236× 58] for κbend = 1 and N×M = [104× 385, 104× 64]

for κbend = 2: once rescaled in terms of the corresponding entanglement units, Z ≡ N/Ne,

these two set-up’s have the same number of entanglements per chain Z ≈ 8 of N = 640 with

κbend = 0.

Bulk conditions are implemented through the enforcement of periodic boundary conditions

in a simulation box of total volume V = L3
box. Similarly to previous works [68, 112], melt

conditions correspond to fix the monomer number per fcc lattice site to (i) ρsite = 5
4

= 1.25

for N ≤ 320 and (ii) ρsite = 31
25

= 1.24 for N = 640: respectively, since the volume occupied

by the fcc lattice site is = a3√
2

[139], the monomer number per unit volume are given by (i)

ρ = 5
4

√
2 ' 1.77a−3 for N ≤ 320 and (ii) ρ = 31

25

√
2 ' 1.75a−3 for N = 640. Accordingly,

we fix Lbox = 20
√

2a for all N ’s.

Finally, our typical runs amount to a minimum of 7 × 106 up to a maximum of 3 × 108

kMC time units where one kMC time unit is τMC = NM : these runs are long enough that

the considered polymers have attained proper structural relaxation measured by monitoring

the plateau of the single monomer time mean square displacement, g2(τ) (Eq. 2.19), in the

frame of the centre of mass of the corresponding chain (see Fig.3.1).

In table 3.1, relevant quantities of the polymer systems simulated are reported as a function

of κbend.

Finally, it is worth noticing that the introduction in our polymer model of the bending energy

term in the kinetic Monte Carlo algorithm, described in Sec. 2.1.2, is inspired by the work of

Cates [66]. There it is shown that by simulating stiffer polymers a significant enhancement in

the interchain overlap occurs, this enables the attainment of the asymptotic regime Eq. (3.1),

even with relatively moderate chain sizes and, consequently, reasonable computational times.
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Figure 3.1: Single monomer time mean-square displacement, g2(τ) (Eq. (2.19)), in the frame

of the centre of mass of the corresponding chain. The horizontal lines are for the stationary

values, = 2〈R2
g(N)〉 reported in Table 3.2. The dashed black lines correspond to the initial

Rouse behavior where g2(τ) ∼ g1(τ) (see Sec. 2.2.2 for more details).

3.2.2 A closer look to the bending stiffness

It is worth discussing in more detail the consequences of the energy term, Eq. (2.6).

On the fcc lattice, the angle θ between consecutive chain bonds is restricted to the five

values = 0◦, 45◦, 90◦, 135◦, 180◦. For ideal polymers (i.e., in the absence of the excluded

volume interaction), the angles θi in Eq. (2.6) are obviously not correlated to each other. This

implies that the distribution function Pideal(κbend; cos θ) of the variable cos θ follows the simple

Boltzmann form:

Pideal (κbend; cos θ) =
1

Z N(cos θ) eκbend cos θ , (3.2)

where N(cos θ) represents the total number of lattice states for two successive bonds with

given cos θ and Z is the normalization factor. In polymer melts, excluded volume interactions

induce an effective long range coupling between bond vectors and the distribution function

Pmelt(κbend; θ) is expected to deviate from Eq. (3.2): for instance, one can immediately see

that the angle = 180◦ (i.e., cos θ = −1) is possible for ideal polymers but strictly forbidden

in the presence of excluded volume interactions.

The distributions Pmelt(κbend; θ) for the different κbend’s and in comparison to Pideal(κbend; θ)

are given in Fig. 3.2 (square-solid vs. circle-dashed lines, respectively). Corresponding mean

values 〈cos θ〉 for the different κbend’s and for open linear chains and closed rings are summa-

rized in Table 3.1: the values for the two chain architectures are very similar, with differences

in the range of a few percent.
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Figure 3.2: Distribution functions Pmelt (κbend; cos θ) (square-solid lines) of the cosine of the

angle θ between consecutive bonds along the polymer chain in ring melts for different values

of the bending stiffness parameter κbend. The curves are compared to the results for ideal

rings, Pideal (κbend; cos θ) (Eq. (3.2), circle-dashed lines).

3.2.3 Polymer length and time scales

In this section, a detailed derivation of the relevant length and time scales characterizing

our polymer melts is provided (they are summarized in Table 3.1). Being the system simulated

at fixed monomer density ρ, the values of these parameters depend only on the bending stiffness

parameter κbend.

Average bond length, 〈b〉 – One can observe that 〈b〉 is slightly decreasing with κbend:

arguably, this is the consequence of the progressive stiffening of the polymer fiber on the fcc

lattice which privilege less kinked conformations through the reduction of the effective total

contour length of the chain.

Kuhn length, `K – By modulating the bending constant κbend, it is possible to fine-tune

the flexibility of the polymers (Eq. (2.6)). The latter is quantified in terms of the Kuhn length

`K , namely the unit of contour length beyond which the chain orientational order is lost [5,

14] (see Sec. 2.2.1 for more details). For linear chains, `K is defined by the relation [5, 14]:

`K ≡ lim
`→∞

〈R2(`)〉
`

, (3.3)

where 〈R2(`)〉 is the mean-square end-to-end distance between any two monomers along the

chain at monomer number separation n or contour length separation ` ≡ n〈b〉. In order to

determine the Kuhn length of our polymer chains, we have simulated melts of M = 125 linear

chains with N = 320 monomers per chain at the same monomer density ρ = 5
4

√
2 ' 1.77a−3

and for κbend = 0, 1, 2 and, after equilibration, we have computed numerically Eq. (3.3). As

shown in Fig. 3.3 (symbols), the chains become increasingly stiffer with κbend as expected by
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κbend acc. rate 〈cos θ〉lin 〈cos θ〉ring 〈b〉/a `K/a ρK`
3
K Le/a Ne dT /a τe/τMC(×104)

0 0.069 0.187 0.171 0.731 1.440 2.679 58.738 80.379 3.755 15.0

1 0.048 0.476 0.447 0.696 2.194 5.920 20.708 29.764 2.752 5.2

2 0.036 0.670 0.635 0.669 3.393 13.620 8.759 13.088 2.226 2.8

Table 3.1: Values of physical parameters characterizing the melts of polymers studied in this

paper. a is the unit distance of the fcc lattice and the monomer number per unit volume

is ρa3 ' 1.77 (Sec. 3.2). (i) κbend, bending stiffness parameter (Eq. (2.6)); (ii) acceptance

rate of the kMC algorithm; (iii, iv) 〈cos θ〉lin/ring, mean value of the cosine of the angle

between two consecutive bonds along the linear/ring polymer (Eq. (2.6)); (v) 〈b〉, mean bond

length; (vi) `K , Kuhn length (Eq. (3.3)); (vii) ρK`
3
K , number of Kuhn segments per Kuhn

volume [140]; (viii) Le, entanglement length (Eq. (1.6)); (ix) Ne ≡ Le/〈b〉, number of bonds

per entanglement length; (x) dT =
√
`KLe/6, diameter of the effective tube confining polymer

chains in melt; (xi) τe, entanglement time.

displaying plateau-like regions for large `’s. The heights of these plateaus are obtained by best

fits to corresponding constants on the common interval ` ∈ [150, 200] (Fig. 3.3, dashed lines),

they provide the values of the corresponding `K ’s which are used in this work (see Table 3.1).

Entanglement length, Le, and tube diameter, dT – The entanglement length Le marks

the crossover from entanglement-free to entanglement-dominated effects in polymer melts

(see Sec. 1.2.2 for a detailed discussion). The entanglement lengths Le, for the different

κbend, are directly estimated from Eq. 1.6, from which we extract extract Le/`K and the

corresponding number of monomers per entanglement length, Ne ≡ Le/〈b〉. One can observe

(see Table 3.1) that Ne decreases by approximately one order of magnitude by the apt fine-

tuning of κbend. This means that rings with the same contour length but stiffer will become

increasingly entangled [66]. Finally, by using the definition (Eq. (1.2)) for dT one can compute

the tube diameters of polymers of different bending stiffnesses. Notice (Table 3.1) that, by

changing chain stiffness, dT moves from smaller to comparable to `K meaning that we are

effectively able to explore the mentioned crossover from loosely to tightly entangled melts (see

discussion in 1.2.2).

Unless otherwise said, we will express chain contour lengths L in units of the entanglement

length Le and, to this purpose, we introduce the compact notations [59, 68]:

Z ≡ L

Le
≡ N

Ne

, (3.4)

z ≡ `

Le
≡ n

Ne

, (3.5)
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Figure 3.3: (Symbols) Ratios of the mean-square end-to-end distance, 〈R2(`)〉/`, to the

corresponding monomer contour length separation ` for linear chains in melt and for the

different bending stiffness parameters κbend (see legend). (Dashed lines) Best fits of the

plateau-like behaviors on the contour length interval ` ∈ [150, 200] (see Eq. (3.3) and the text

for details).

where Ne corresponds to the number of monomers Le/〈b〉 of an entanglement length and

Z and z are the number of entanglements of the polymer chain and the polymer sub-chain

of contour lengths L and `, respectively. Accordingly, variables such as the polymer mean-

gyration radius 〈Rg〉 or the mean-magnetic radius 〈Rm〉 (see definitions eqs. (2.11) and (1.20),

respectively) are expressed in units of the tube diameter dT (Eq. (1.2)).

Entanglement time, τe – Entanglements affect the motion of the chains on time scales τ

larger than a the entanglement time, τe, which can be computed numerically from simulations

(see Sec. 1.2.3), as g1(τe) = 2d2T , where g1(τ) is the monomer time mean-square displacement

(Eq. (2.17)) and dT is the tube diameter (Eq. (1.2)). For consistency with the definitions for

Le and dT , notice that g1(τ) has been calculated on the same dynamic simulations of melts

of linear chains used for calculating `K . Moreover, in this work, as Le and dT being the main

units respectively of polymer lengths and distances, τe is the main unit of time.

3.2.4 Computing the ring minimal surface

As discussed at the end of Sec. 1.3.1, the minimal surface spanned by a ring [69, 70]

represents a powerful tool to measure the openings of the rings surfaces, which has been used

to quantify deviations of the ring’s conformation from the double folded picture of Grosberg.

Moreover, this observable allows to precisely detect interpenetration between couple of rings.

Here, we briefly summarize the salient numerical aspects of the procedure used to obtain

the minimal surface, the interested reader will find a complete overview on minimal surfaces
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for melts of rings in the mentioned references and also in [71].

The search for the minimal surface of a ring polymer is based on a suitable minimization

algorithm which works as the following. Essentially, the algorithm is based on successive

iterations of triangulations evolving under surface tension by moving the free vertices: each

triangle in the initial triangulation is made of two successive monomer positions and the center

of the mass of the ring, then it is refined (by subdividing each edge into two edges, creating

therefore four triangles out of one) and the surface area minimized by the surface tension flow

with restructuring of the mesh. Finally, the algorithm stops when the relative surface area

does not change by more than 0.1% over a few tens of additional steps of the minimization

procedure. Similarly to the eye of a needle pierced by a thread, the single minimal surface

of a given ring can be pierced or threaded by the other surrounding polymers in the melt: in

particular, once the minimal surfaces of the rings in the melt are determined, it is possible to

define in a precise and robust manner what amount of the total contour length of any given

ring passes through the minimal surface of another ring.

Notice that the computation of the minimal surfaces have been performed by Jan Smrek

co-author of the work.

3.3 Results

3.3.1 Ring structure

Ring size In order to characterize the ring structure, we consider the more standard chain

mean-square “gyration” radius (see Eq. (2.11)), 〈R2
g〉, and the mean-square “magnetic” ra-

dius (see Eq. 1.20), 〈R2
m〉, which, as discussed in Sec. 1.3.1, has been introduced in [68] as

a measure of the oriented area enclosed by one ring. Both quantities are an expression of

the average (square) ring size, yet they have different meaning: in particular, Eq. (1.20) was

introduced to detect and quantify the presence of open loops inside the ring (see discussion

in Sec. 1.3.1).

Numerical values of 〈R2
g〉 and 〈R2

m〉 for melts of rings with different flexibilities are sum-

marized in table 3.2. Fig. 3.4 (l.h.s panel) shows these quantities, rescaled (filled symbols) by

the corresponding tube diameters dT and as a function of the total number of entanglement

Z = L/Le, see Table 3.1 for specific values of dT and Le. For further comparison, we have

also included the results for 〈R2
g〉 obtained from Monte Carlo simulations (bond-fluctuation

model) of melts of rings by Müller et al. [66] (open symbols) and the universal curves (solid
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Figure 3.4: On the left, the scaling behavior of the mean-square gyration radius, 〈R2
g〉, and

the mean-square magnetic radius, 〈R2
m〉, of ring polymers as a function of Z = L/Le, of

the chain. Error bars are smaller than the symbols size. The empty symbols reproduce the

ring data by Müller et al. [66], with different symbols for the different Kuhn lengths used

in that work (by employing their notation: σ/κBT = 0(�), 1(◦), 2(�), 3(O), from flexible to

increasingly stiffer chains). The solid grey lines are for the on-lattice rings on the fcc lattice

studied in [68]. On the right, 〈R2
g〉/〈R2

m〉: ratio of the mean-square gyration radius to the

mean-square magnetic radius as a function of Z of the chain. Notice the weak increasing of

the ratio with Z (the straight line is obtained by best fit of the data to a simple power-law).

grey lines) from the “hierarchical crumpling” 2 method by Schram et al. [68]. The excellent

matching between these old data sets and the present new data validates our methodology:

the average ring size covers the full crossover from Gaussian (∼ Z1) to compact (∼ Z2/3)

behavior. This is particularly evident for the stiffest rings (κbend = 2) whose reduced flexibility

“helps”, in agreement with Müller et al. [66], reaching the asymptotic behavior.

The data for the mean-square magnetic radius 〈R2
m〉 rescale equally well and, as noticed

in [68], with the same large-Z behavior
√
〈R2

m〉 ∼ dT Z
1/3. However a closer look to the ratio

〈R2
g〉/〈R2

m〉 (see Fig. 3.4 r.h.s panel) reveals significant, albeit extremely slow (O(Zγ) with

γ ≈ 0.07), power-law corrections which were not noticed in the previous study [68]: instead,

a similar result was already described in [66] where, however, the authors employed a different

definition for the area spanned by a ring which was based on the 2d projection of the chain

onto a random direction.

Minimal surfaces The universal behaviors of the two quantities 〈R2
g〉 and 〈R2

m〉 characterize

the chain as a whole yet, in principle, there could be other length scales below Le which produce

no effect on these quantities but affect and become visible in others. We look then at the

average behavior of the ring minimal surface (hereafter, minS), a concept introduced [69–

2“Hierarchical crumpling” consists on a two step process: first equilibrated conformation of ring polymers

in the melt are made to grow in a fractal manner, and then are locally relaxed at a time-scale τe.
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Figure 3.5: Mean minimal surface area, 〈minS〉, of ring polymers as a function of the total

number of entanglements, Z, of the chain. The ◦- and ×-symbols (see legend) are for the

two chosen resolutions in the triangulation procedure at the basis of the calculation of the ring

minimal surface (see Sec. 3.2.4 for details). For the higher resolution, we take two additional

refining steps before the minimization procedure stops. Error bars are smaller than the symbols

size. The power laws (dashed lines) correspond to best fits to the data.

71] to quantify the “exposed” area that each ring offers to its neighbors (see Sec. 3.2.4 for

technical details). Surprisingly, our data (collected in table 3.2) demonstrate that this is not

the case (see Fig. 3.5): in fact 〈minS〉 ∼ Z for the different flexibilities in agreement with

previous results [69] for off-lattice simulations, but the three data sets – contrary to 〈R2
g〉 and

〈R2
m〉 (Fig. 3.4) – do not collapse onto each other after rescaling in terms of entanglement

units Z and d2T . Notice that this finding – which looks even more surprising given that both,

〈R2
m〉 and 〈minS〉, are in the end two measures of the ring effective area – is robust and

independent of the triangulation resolution employed to calculate the minimal surface of the

rings (“◦-symbols” vs. “×-symbols” in Fig. 3.5). Note also that 〈minS〉 is normalized by d2T

which should correct for the different “elementary areas” due to different local structure of

the polymer model3.

Threadings statistics We tried to find the reason for this discrepancy. In an earlier pa-

per [71] it was shown that the minimal surface of each ring can be pierced (threaded) a certain

number of times by portions of surrounding rings, but that it is necessary to distinguish care-

3Note also that normalization by the other microscopic length scale, `K , would not imply a collapse either,

in fact it would make it even worse as `K grows with κbend (see table 3.1).
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N M 〈R2
g〉 〈R2

m〉 〈minS〉 〈Λ2
1〉 〈Λ2

2〉 〈Λ2
3〉

κbend = 0

40 1000 3.3007± 0.0007 1.8937± 0.0008 11.60± 0.05 2.1160± 0.0007 0.8280± 0.0003 0.35669± 0.00008

80 500 6.304± 0.004 3.447± 0.004 25.6± 0.2 4.052± 0.004 1.560± 0.001 0.6912± 0.0003

160 250 11.76± 0.02 6.19± 0.02 55.6± 0.4 7.56± 0.02 2.891± 0.005 1.310± 0.001

320 125 21.48± 0.08 11.0± 0.1 119.7± 1.2 13.74± 0.07 5.29± 0.02 2.447± 0.005

640 62 38.6± 0.2 18.9± 0.2 256.2± 2.8 24.7± 0.2 9.37± 0.05 4.47± 0.01

κbend = 1

40 1000 4.133± 0.001 2.262± 0.002 12.82± 0.07 2.772± 0.001 0.9778± 0.0004 0.38363± 0.00008

80 500 7.915± 0.008 4.09± 0.01 28.6± 0.2 5.220± 0.006 1.893± 0.002 0.8028± 0.0004

160 250 14.52± 0.02 7.19± 0.05 61.9± 0.6 9.43± 0.02 3.506± 0.007 1.573± 0.002

234 171 19.97± 0.06 9.70± 0.04 94.3± 0.8 12.95± 0.03 4.834± 0.008 2.223± 0.002

320 125 25.8± 0.1 12.38± 0.07 132.3± 1.4 16.67± 0.08 6.28± 0.02 2.936± 0.006

640 62 44.3± 0.5 20.5± 0.3 279.7± 3.3 28.1± 0.4 10.73± 0.09 5.20± 0.03

κbend = 2

40 1000 5.600± 0.006 2.935± 0.005 14.8± 0.1 3.998± 0.004 1.199± 0.002 0.4030± 0.0003

80 500 10.82± 0.02 5.15± 0.03 33.0± 0.3 7.45± 0.02 2.426± 0.007 0.946± 0.002

104 385 13.56± 0.02 6.27± 0.02 44.1± 0.4 9.21± 0.01 3.092± 0.004 1.261± 0.001

160 250 19.4± 0.2 8.66± 0.06 70.7± 0.7 12.87± 0.07 4.50± 0.02 1.943± 0.006

320 125 33.2± 0.3 14.2± 0.1 148.7± 1.8 22.0± 0.3 7.90± 0.07 3.65± 0.02

640 62 54.9± 1.4 22.4± 0.4 308.8± 3.5 35.6± 1.3 12.9± 0.2 6.36± 0.06

Table 3.2: Conformational properties of melts of ring polymers with bending stiffness κbend.

N : number of monomers per chain; M : number of chains in the melt; 〈R2
g〉: mean-square

gyration radius Eq. (5.1); 〈R2
m〉: mean-square magnetic radius Eq. (1.20); 〈minS〉: mean

minimal surface; 〈Λ2
α〉: mean value of the α-th eigenvalue (α = 1, 2, 3) of the gyration tensor

Gαβ Eq. (3.10); The reported values with the corresponding error bars have been rounded to

the first decimal digit. The data for 〈minS〉 are for a coarse resolution of the triangulation

procedure adopted to calculate the minimal surface of a ring polymer (see Ref. [69] for the

technical details). A finer triangulation gives essentially the same values (“◦-symbols” vs.

“×-symbols” in Fig. 3.5) which we have not reported explicitly in this Table.
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fully the contributions from chain contour lengths z = `/Le . 1 (shallow threadings) from

the others. For each ring piercing the minimal surface of another ring, we define [71] the

threading contour length Lti as the contour length portion of the ring comprised between the

two consecutive penetrations i-th and i + 1-th which allow us to assign Lti unambiguously

to either “side” of the other ring’s minimal surface. Based on Lti , we consider the following

observables:

1. The mean number of rings threaded by a single ring, 〈nt〉.

2. The mean relative amount of contour length of a ring on one side of another ring’s

minimal surface with respect to the other side:

〈Q〉 ≡
〈

Lsep

L− Lsep

〉
, (3.6)

where the so called separation length [69, 71],

Lsep = min

( ∑
i=even

Lti ,
∑
i=odd

Lti

)
, (3.7)

quantifies for the total contour length of one of the two complementary portions (the

other has contour length L − Lsep) obtained by the passage of the penetrating ring

through the minimal surface of a penetrated ring: i.e., Q = 1 simply means that the

penetrating ring is half split by the penetrated surface.

3. The mean number of times any ring penetrates the minimal surface of any other ring,

〈np〉.
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Figure 3.6: Statistics of threadings by minimal surfaces as a function of the total number

of entanglements, Z, of each ring in the melt. The data (circles) shown in the l.h.s panels

(respectively, (up-triangles) in the r.h.s panels) have been obtained by including threading

lengths Lt of any size (resp., Lt ≥ Le). Error bars represent the error of the mean calculated

from 100 uncorrelated snapshots. (Top) 〈nt〉: mean number of rings threaded by a single ring.

(Middle) 〈Q〉: mean relative amount of contour length piercing one ring minimal surface side

with respect to the other (Eq. (3.6)). The dashed (black) line on the r.h.s. panel corresponds

to the best fit to the data. (Bottom) 〈np〉: mean number of times a ring penetrates the

minimal surface of any other single ring.

These different quantities may be computed by taking into account all possible threading

segments or by excluding the shallow ones namely, as said, those whose contour lengths are

shorter than the entanglement length Le. Noticeably, in the first case there is no evidence

for universal collapse (Fig. 3.6, l.h.s. panels) in any of these quantities. On the contrary

(Fig. 3.6, r.h.s. panels), universal collapse is observed after removing the contribution of

the short threading filaments: this points to the fact that the same shallow threadings are

responsible for the lack of universality observed for 〈minS〉 (Fig. 3.5).
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Figure 3.7: On the left, distribution functions of distances, d, between subsequent piercings on

the minimal surfaces of rings with N = 640 and different flexibilities. Clearly the distributions

are exponential. The mean values are 〈d〉 = 1.87, 2.1 and 2.33 (in units of lattice site a) for

kbend = 0, kbend = 1 and kbend = 2 respectively. Interestingly, in contrast to the tube diameter

dT , 〈d〉 grows with the stiffness. On the right, mean minimal surface area, 〈minS〉, of ring

polymers as a function of the total number of entanglements, Z, of the chain after subtracting

the “contribution” to the area by short (or, shallow) threadings with contour length L < Le.

To support this idea, we measured the mean distance 〈d〉 between two bonds involved in

the threading. We find that 〈d〉 . dT (see the values, the corresponding distribution functions

in Fig. 3.7 l.h.s. panel), which strongly supports the fact that threadings occur on scales below

the entanglement scale. We still find some cases when 〈d〉 > dT , but these are exponentially

rare (see Fig. 3.7 l.h.s. panel). Moreover, based on this observation, it is reasonable to assume

that each shallow threading contributes ∼ d2T to the average 〈minS〉. Consequently, one can

estimate the non-universal contribution to 〈minS〉 by assuming that each shallow threading

span an area ∼ d2T and there are on average4 ∼ 〈np〉L<Le〈nt〉L<Le/2 of such threadings

spanning the minimal surface of each ring. As expected, the removal of the non-universal

contribution to 〈minS〉 restores universality almost completely (see Fig. 3.7 r.h.s. panel).

Additionally, restricting the discussion to the universal behaviors, we see that 〈Q〉 decreases

with Z, i.e. less material enters the minimal surface of a ring. Yet, the mean number of times,

〈np〉, any ring penetrates the minimal surface of any other single ring increases: notice that

these two apparent contradictory features can be easily reconciled by supposing that while

retracting from each other (i.e. decreasing 〈Q〉), rings may at the same time pierce each

4〈nt〉L<Le and 〈np〉L<Le are (as in Fig. 3.6 but here restricted to shallow threadings) the mean number

of rings threaded by a single ring (which equals the mean number of threadings received by a single ring) and

the mean number of times a ring penetrates the minimal surface of any other ring, while the “1/2”-factor

takes into account the fact that a single threading loops counts as twice in terms of contacts on the minimal

surface.
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Figure 3.8: Bond-vector orientation correlation function (Eq. (3.8)), c(z), as a function of

the number of entanglements z = `/Le along the chain. Lines of equal color are for the

same chain stiffness (see legend), full colors are for the longest rings (N = 640) while lines

in fainter colors are for chains of shorter contour lengths (see arrow’s direction). The long-

dashed lines correspond to the exponential decay typical of linear polymers with local stiffness,

namely c(`) = (〈cos θ〉ring)`/〈b〉, where the values for 〈cos θ〉ring are reported in table 3.1. The

short-dashed line is the analytical function for an exactly double-folded polymer filament of

contour length = 2Le (see the text for detail).

other more frequently by the increased propensity to form branches at the entanglement scale.

Overall, this agrees with the results in [71] for off-lattice dynamic simulations of melts of

rings5.

Double folding signatures According to the lattice-tree model (Sec. 1.3.1), the contour

length of each ring above the entanglement length Le should double-fold along a branched

(i.e., tree-like) backbone. We seek now specific evidences of this peculiar organization.

As the first of these signatures, we look at the bond-vector correlation function [59, 66,

68], which has been introduced in Sec. 2.2.1, and defined as:

c(`) ≡ 〈
~t(`′) ·~t(`′ + `)〉
〈~t(`′)2〉

. (3.8)

Contrary to the known monotonous decaying behavior typical of linear polymers (solid lines vs.

long-dashed lines in Fig. 3.8) c(`) is manifestly non-monotonic, showing an anti-correlation

5Notice, however, that in [71] the scaling behavior for Q follows: 〈Q〉 ∼ Z−0.31, distinct from the one

measured here (〈Q〉 ∼ Z−0.51, see middle right panel in Fig. 3.6). This apparent discrepancy is due to the

fact that in [71] the mean value 〈Q〉 includes the contribution of the shallow threadings: in fact, their removal

gives identical results to the ones of the present work (data not shown).
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Figure 3.9: Mean contact probabilities, 〈pc(`)〉 (see Eq. (3.9)), as a function of the “effective”

ring contour length ζ ≡ z(1 − z/Z). The arrow points at the levelling of the curves around

z ≈ 1. Inset: local differential exponent ≡ d log〈pc〉
d log ζ

. Color code is as in Fig. 3.8.

well whose minimum becomes more pronounced and locates around z = `/Le ≈ 1 with the

increasing of the chain stiffness. By using the function ~t(`) = (0,+1, 0) for 0 < ` < Le

and ~t(`) = (0,−1, 0) for Le < ` < 2Le as a toy model for an exactly double-folded polymer

filament of contour length = 2Le, it is easy to see that c(z = `/Le) = (1− 3/2z)/(1− z/2)

for 0 < z < 1 and c(z) = −1 for 1 ≤ z < 2, i.e. c(`) displays an anti-correlation minimum

at z = 1 or ` = Le (short-dashed line in Fig. 3.8). A deep anti-correlation well is particularly

visible in short rings (at given κbend) while in larger rings the effect is smoothed, arguably

because thermal fluctuations wash out such strong anti-correlations.

As a second signature, we look at the mean contact probability [123], 〈pc(`)〉, between

two monomers at given contour length separation `, introduced in Sec. 2.2.1, and defined as:

〈pc(`)〉 =

〈
1

N + 1

N∑
i=0

Θ(rc − |~ri − ~ri+n|)
〉
, (3.9)

where Θ(x) is the usual Heaviside step function and the “contact distance” rc between two

monomers is taken equal to one lattice unit, a.

Reducing finite ring size effects by plotting 〈pc〉 in terms of the variable [130] ζ ≡ z(1 −
z/Z), the data, from the different rings, form three distinct curves according to their Kuhn

length (Fig. 3.9). Notably these curves display the asymptotic power-law behavior ∼ ζ−γ with

scaling exponent γ close to 1, as reported in the past [38, 44, 59]. At the same time, the stiffer

chains with κbend = 2 display a short, yet quite evident, levelling of the contact probability

curves around z ≈ 1 (see arrow’s direction) which is clearly compatible with double-folding on

the entanglement scale.

However, we show now that the most compelling evidence for double-folding comes from
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Figure 3.10: Left panel, scaling behavior of the mean-square eigenvalues 〈Λ2
α=1,2,3〉 of the

gyration tensor as a function of the total number of entanglements, Z = L/Le, of the chain.

Notice the large finite-size corrections to scaling for the smallest eigenvalue 〈Λ2
3〉 and its

behavior ∼ Z2ρ ∼ 〈Ltree〉2. Error bars are smaller than the symbols size. Right panel, mean

eigenvalues, 〈Λ2
1〉 and 〈Λ2

2〉, of the gyration tensor Eq. (3.10) as a function of the smallest

eigenvalue 〈Λ2
3〉. The dashed lines are the predicted limits of small and large length scales.

examining the average polymer shape. To this purpose, we introduce the 3 × 3 symmetric

gyration tensor G, discussed in Sec. 2.2.1, whose elements are defined by:

Gαβ =
1

2N2

N∑
i=1

N∑
j=1

(ri,α − rj,α) (ri,β − rj,β) , (3.10)

where ri,α with α = x, y, z are the Cartesian components of the spatial position of monomer

i. The three order eigenvalues, Λ2
1 ≥ Λ2

2 ≥ Λ2
3, quantify the spatial variations of the polymer

along the corresponding principal axes, i.e. the instantaneous shape of the chain. Since, these

quantify the spatial variation of the polymer we expect, similarly to 〈R2
g〉 (Fig. 3.4), a scaling

curve for each 〈Λ2
α〉 in universal units Z and dT and, for Z � 1, 〈Λ2

α=1,2,3〉 ∼ 〈R2
g〉 ∼ d2TZ

2ν .

In general our data (see Fig. 3.10 l.h.s. panel) reflect well this trend, except for the smallest

mean eigenvalue 〈Λ2
3〉 which displays systematic deviations from the asymptotic behavior which

persist for chain sizes well above the entanglement threshold Z ≈ 1. Interestingly, these

deviations are quantitatively consistent with the scaling properties of rings being double-folded

on an underlying tree-like structure (Sec. 1.3.1): in fact, according to Fig. 3.10 (l.h.s. panel)

and for the given mean path length 〈Ltree〉 ∼ Zρ (Eq. (1.17)) of the “supporting” tree, we

can write the expressions:

〈Λ2
i=1,2〉 ∼ Z2ν ∼ 〈Ltree〉2νpath , (3.11)

〈Λ2
3〉 ∼ Z2ρ ∼ 〈Ltree〉2 , (3.12)
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κbend = 0 κbend = 1 κbend = 2

Figure 3.11: Example of ring’s conformations in melt with N = 640 for the different κbend

studied. The polymer’s color transitions from blue to red from one chain’s end to the other,

which are joined to form the rings. For the flexible case, κbend large openings are visible, these

openings starts to close as κbend increases. Double folded like conformations are clearly visible

for κbend = 2.

where the latter is equivalent to assuming local stiff behavior at small contour length separa-

tions. Eqs. (3.11) and (3.12) are just equivalent to:

〈Λ2
i=1,2〉 ∼ 〈Λ2

3〉νpath , (3.13)

with νpath = 3/5 (Eq. (1.18)). Our data are well described by Eq. (3.13), see Fig. 3.10 (r.h.s

panel), before the crossover to the asymptotic regime, 〈Λ2
i=1,2〉 ∼ 〈Λ2

3〉, takes finally place.

Notice that the value of νpath agrees well with that of the annealed tree model [57]. Note

also that here we observe the exponent clearly only for the stiffest system. This might explain

why the work [55] that analyzed only simulations [44] with low stiffness (roughly, between our

κbend = 0 and κbend = 1 in terms of Le) reports that they do not see νpath (there measured

as the scaling of the chain primitive path with the contour length).

In conclusion, the universal scaling features of the static quantities and the bond correla-

tions reveal double-folded tree-like structure on scales above Le (see Fig.3.11), with indications

(〈Λ2
3〉) that the trees are of the annealed tree type [57]. Conversely, the non-universal features

(〈minS〉) and threading analysis show that the trees are threaded on scales smaller than the

tube diameter dT , hence reconciling the tree picture with that of the threaded conformations.

At the same time the “depth” of threadings can be (Fig. 3.6) longer than Le, giving hints on its

relevance for the dynamic features. Therefore, in the next section we explore the consequences

of the double-folding and threadings on the dynamic properties of the melts.
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Figure 3.12: Monomer time mean-square displacement, g1(τ) (Eq. (2.17)), and chain center

of mass time mean-square displacement, g3(τ) (Eq. (2.18)). Symbols of the same color are

for the same number of monomers N , and the corresponding number of entanglements Z

per chain is indicated in the legends. The dashed black lines correspond to the dynamic

predictions of the lattice tree model, eqs. (1.26) and (1.27) with ν = 1/3 (Eq. (1.16)) and

ρ = 5/9 (Eq. (1.17)). The dashed red line in the top-right panel corresponds to the theoretical

prediction of the FLG model [55] by Ge et al..

3.3.2 Ring dynamics

Comparison with the models As briefly discussed in Sec. 1.3.2, the lattice-tree model

predicts universal dynamic chain behavior for length scales & dT and time scales & τe. Recent

numerical works employing off-lattice molecular dynamics simulations [33] and lattice mod-

els [132] agree well with these predictions.

In order to compare the dynamic behavior of the present systems to the results of the

lattice-tree model (namely, Eqs. (1.26) and (1.27) with ν = 1/3 (Eq. (1.16)) and ρ = 5/9

(Eq. (1.17))), we look then at the monomer mean-square displacement, g1(τ), and the center

of mass mean-square displacement, g3(τ), and plot them in properly rescaled length and time

units by using the values of the parameters dT and τe reported in table. 3.1.

Fig. 3.12 demonstrates the correctness of the rescaling procedure and, in line with previous

works [33, 132], the good agreement between our simulations (symbols) and the lattice-tree

predictions (dashed black lines), in particular for melts of rings with κbend = 2 and Z ≈ 50.

Notice though that our data match well also the predictions of the FLG model [55] by Ge et

al. (dashed red line in the top-right panel), since the two scaling exponents (0.29 vs. 0.26,
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Figure 3.13: Effects of random pinning on chain dynamics. Chain center of mass time

mean-square displacement, g3(τ) (Eq. (2.18)), at different pinning fractions, fp, and chain

flexibilities, κbend (see legends). Results correspond to melts with the same number of entan-

glements, Z ≈ 8, per individual chain.

respectively) are within 10% of each other and, hence, beyond the present accuracy of our

data.

The role of threadings in the dynamics Finally, we investigate the implications of thread-

ing and double-folding for ring dynamics.

The formation of topological links via threadings has been hold responsible of the unique

rheological properties of melts of rings as, for instance, the unusually strong extension-rate

thickening of the viscosity in extensional flows [73]. Notably, it was conjectured [40] that inter-

ring threadings should form a network of topological obstacles which, by percolating through

the entire melt, should sensibly slow down the relaxation of the system, not dissimilar from

what happens in those materials undergoing the glass transition.

While direct proof of this topological glass is currently missing, recently Michieletto and

others [41, 42] gave indirect evidence of this through the following numerical experiment: they

froze (pinned) a certain fraction fp of rings in the melt and reported that the dynamics of the

remaining ones is considerably reduced if not frozen at all. In corresponding melts of linear

chains this effect is not seen, so they attributed the observed slowing down to the presence of

threadings present in rings but absent in linear chains.

In the numerical experiments discussed here, while double-folding is “enhanced” (Sec. 3.3.1)

by the chain local stiffness, long threadings, with Lt > Le , which should be the ones affecting

the dynamics of the system, result to be universal. At this level, it is unclear what is the

impact of these features on the dynamics and whether or not they can be distinguished.

To get some insight into this question, we have taken inspiration from the mentioned pin-

ning numerical experiments [41, 42] and performed additional simulations of melts of rings for

κbend = 0, 1, 2 with the same number of entanglements Z = 8 (to ensure the same large-scale

behavior, see Fig. 3.4) and for ring pinning fractions fp from 0 (i.e. no pinning) to 70%. Then
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kbend = 0 kbend = 1 kbend = 2

Figure 3.14: Network representation of ring melts with the same number of entanglements,

Z ≈ 8, per individual chain and for different chain flexibilities κbend (see legends). Each node

of the network represents a given ring of the melt and the bond between two nodes means

that one of the two ring is threading the (minimal surface of the) other (see the discussion in

Sec. 3.2.4). For constructing the networks, we have included threading lengths Lt > Le for

which universal scaling behavior emerges (see Sec. 3.3.1).

we monitored the mean-square displacement, g3(τ), of the center of mass of the non-pinned

rings.

As shown in Fig. 3.13, our results are consistent with the proposed picture: more flexible

rings (κbend = 0, left panel) which we have interpreted as less double-folded are already com-

pletely frozen at fp ' 30 − 40% while the stiffer (and comparably more double-folded) rings

(κbend = 2, right panel) require fp ' 60− 70%.

Finally, we see that this is compatible with a network of percolating topological constraints.

To this purpose, we represent the melts as networks where each node corresponds to a ring

and we draw a link between two nodes (i.e., rings) whenever the minimal surface of one of

the two rings is pierced by a threading segment of the other ring of contour length Lt > Le

(i.e., we neglect the shallow threadings). A picture of these networks is shown in Fig. 3.14:

it is seen that, at increasing chain stiffness, the fraction of rings globally connected through

threadings sensibly decreases with chain stiffness, from6 ∼ 93% for κbend = 0 to ∼ 74% for

κbend = 1 and κbend = 2, i.e. the network of threadings is percolating less through the stiffer

melts. Notice that this decrease corresponds roughly to the fractional amount (≈ 20%) of

rings which need to be additionally pinned in the stiffer systems compared to κbend = 0 in

order to get complete freezing (Fig. 3.13).

To summarize, flexible melts showing higher propensity to shallow threadings (Fig. 3.6)

are more strongly affected by the pinning, pointing to a possible dynamical role of the shal-

low threadings. In contrast – yet consistent with the pinning fraction – the deep threadings

6In principle, these percentages may be affected by finite-size effects due to the limited number of chains

of our melts. Nonetheless, runs with smaller (and, arguably, more finite-size dependent) systems give similar

values (data not shown here). Consequently, our conclusions should be fairly robust.
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in flexible melts form more connected networks in comparison to the stiffer melts seemingly

suggesting that these alone are the relevant ones in the pinning experiment. The latter result

is however surprising, because the deep threadings were found to behave universally for the

systems with different stiffness (see Fig. 3.6).

Another view on the results of our pinning experiments shows that the threading con-

straints are a relevant physical feature that needs to be taken into account to refine models

for the ring dynamics. As discussed in Sec. 1.3.2, the ring relaxation time with (θ = 1, FLG

model) or without (θ = 0, lattice tree model) the tube dilation can be written [55] as

τrelax ∼ τe(N/Ne)
2+(1−θ)ν/νpath+θν .

Notably, the pinning of a large fraction fp of rings must stop the dilation, because the pinned

chains around a mobile ring cannot move, hence impose constraints at all times. The plateau

of the g3 that we observe indicates a divergence of the relaxation time, but the FLG as

well as the lattice models give a finite prediction for the relaxation time even for inhibited

dilation θ = 0. Indeed this is the consequence of neglecting of the threadings. Although

the FLG model is built on the full tube dilation in the melt, and therefore, its comparison

to the pinning with a limited dilation is problematic, its general formulation (see Eq. (1.31))

allows to consider a partial (θ < 1) or no tube dilation. Last but not the least, the fact that

both the lattice-tree and the FLG model underestimate the scaling exponent of the diffusion

coefficient with N in comparison to simulations and experiment: a similar underestimation

of the scaling exponent of the diffusion coefficient is found in linear melts when compared

to a näıve reptation theory [14]. The agreement between the theory and the experiment is

restored when contour length fluctuations and tube dilation are incorporated (see discussion

at the end of Sec. 1.2.3). In the rings, the FLG model already includes the tube dilation, yet

the prediction of the exponent does not agree with the experiment, which indicates that this

is due to the neglect of the threadings. Another explanation of the discrepancy might be the

correlation hole effect as indicated in [72]. Whether this is independent of threadings remains

to be elucidated.

3.4 Discussion and conclusions

The conformational properties of unknotted and non-concatenated ring polymers in dense

melts represent one of the remaining unsolved challenge in polymer physics.

In this chapter, in particular, we have focused on which properties of the rings can be

interpreted as signatures of the hypothesis proposed long ago [51–53] that the polymer fiber

double-folds around a branched (lattice-tree) path. In this respect, global observables like the
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polymer mean-square gyration radius or the mean-square magnetic radius (〈R2
g〉 and 〈R2

m〉,
Fig. 3.4) are very useful for model validation but otherwise offer little insight.

On the contrary, robust evidence for double-folding comes by exploiting the mean polymer

shape (Fig. 3.10). The 3 principal axes of the polymer are very different in size and, for

relatively moderate polymer lengths, they are not at the same “point” of the crossover to

asymptotic behavior: in particular, on the studied range where the largest and the smallest

axes are not proportional to each other, we have shown that their functional relation is in

quantitative agreement with the lattice-tree model. This argument is proposed here for the

first time, and it could be useful to revise data relative to other polymer models at its light.

Additional signatures of double-folding on polymer contour lengths z = `/Le . 1 become

manifested also in the characteristic negative well of the bond-vector orientation correlation

function (Fig. 3.8) and in the “softer” slope of the mean contact probability 〈pc(`)〉 (Fig. 3.9)

displayed before the asymptotic ∼ `−1 power-law behavior takes effectively place. Intriguingly,

the reported 〈pc(`)〉 for chromatin fibers measured in conformation capture experiments [123]

displays the same systematic two-slope crossover [141] for ` . 105 basepairs, i.e. below

the estimated [37] entanglement length of the chromatin fiber. Notice that, in this respect,

the formulated hypothesis that such “shoulder” in the contact probability derives from active

loop-extrusion [141] provides a dynamic explanation about how (double-folded) loops can

form, otherwise it is not needed per se in order to explain the observed trend in the contact

probabilities.

Overall it is worth stressing that these features, that we interpret as manifestations of

double-folding, can be made explicit only by introducing some (even if only moderate) bending

penalty to the polymer elasticity (see Fig. 3.11).

Using minimal surfaces we confirm (Fig. 3.5) that rings may reduce their threadable surfaces

via double-folding on the entanglement scale and that the piercings of the minimal surface

occur only on the scale below the entanglement tube radius. Yet, the threading loops can be

numerous and their length can exceed the entanglement length, but these threading features

(Fig. 3.6 and Fig. 3.7) evaluated on length scales larger than one entanglement length behave

universally. The universal behavior shows the applicability and the relevance [137] of the

(linear) entanglement scale to ring polymer melts.

From the point of view of ring dynamics, we have reported that single monomer and global

chain motions are in good agreement (Fig. 3.12) with the theory stating that the dominant

mode of relaxation is mass transport along the mean path of the underlying tree. Yet the

threading constraints can cause divergence of the relaxation time if a fraction of rings is

immobilized – a feature not predicted by the theories. On this point, in a recent work [142],

thanks to a new experimental techniques which allows the preparation of topologically pure,
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high molecular weight ring polymers, first hints on the possible breaking of the self-similar

dynamics have been shown. In the work, experiments and simulations of highly entangled ring

chains up to Z = 229 show slow, non-power law stress relaxation dynamics contrasting the

power-law behavior predicted by both the lattice tree and FLG models. Thus, revisiting the

theories to incorporate threading constraints might also help to get full understanding on the

ring polymer dynamics and clarify if the conjecture on the existence of topological glass in

equilibrium is valid.





Chapter 4

A brief review on Knot Theory

In the previous chapter, we have investigated systems with “trivial” topology, i.e., non-

concatenated and unknotted rings. However, as discussed in the introductory Chapter 1, a

significant portion of my work focused on systems of topologically concatenated and knotted

polymer rings. In this context, an important part of the work involved characterizing these

systems from a topological standpoint. Specifically, one of the goals was to determine the

propensity of the chains to form knots and, if so, what type of knots they exhibited, as well

as the nature and arrangement of the ring concatenations.

The study of topology in polymer systems is a long-standing problem, as knotting is a

naturally arising phenomenon in sufficiently long polymers for both closed and open chains1.

Unfortunately, due to the complexity of the problem, only a limited number of analytical

findings exist. One of the main results is represented by the probability of knotting in a self-

avoiding walk [74], which was proved to tend to 1 exponentially fast with the length of the

polymer, implying that long enough polymers become surely knotted. Besides the mathemati-

cal charm knots possess, they are important as they affect the statics and dynamical properties

of the hosting polymers [143, 144]. Moreover, knots are relevant in the realm of biology, as

biopolymers such as DNA are sufficiently long to become self-entangled and form knots [143]

and experimental works proved this point, as in the case of DNA in some viruses [145] or in the

case of yeast circular chromosomes [146] which were found to be knotted. Regarding linking

and concatenations, it has been shown that these rule the mechanical properties of entangled

polymer systems,[15–17, 147]. Even in this case, these concepts are biologically relevant as

the mitochondrial DNA of some protozoa, the kinetoplast DNA is organized in terms of a

1In this regard, we need to specify that rigorous definitions of knots exist only for closed structures and in

the rest of the chapter this will be the case of interest. However, in general, spontaneous formation of knots

can arise also for open chains, but while for closed chains a knot is permanent, for open chains the knot can

diffuse towards the end-chains and consequently can disappear.

67
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(a) (b) (c)

Figure 4.1: Examples of unknotted and knotted polymer configurations extracted from sim-

ulations presented in Chapter 6 and their corresponding possible diagram representations. (a)

Top, an unknotted polymer ring, bottom, corresponding knot diagram representation. (b)

Top, an example of polymer configuration displaying the trefoil knot (31 in Rolfsen conven-

tion [149]); bottom, equivalent diagrammatic representations of a trefoil knot: left, minimal

representation with K = 3, the other two present a higher number of crossing points which

can be removed by using the type-1 Reidemeister move (see Fig. 4.2). (c) Top, an example of

polymer configuration displaying a composite knot (31#31 according to Rolfsen convention)

formed by two trefoil knots; bottom, its diagrammatic representation.

network of thousands of concatenated circular DNA molecules [100].

For all these reasons, it is clear the need for a detailed topological characterization of

systems of concatenated and knotted polymer rings to understand their dynamical and me-

chanical properties. However, this task is not straightforward and relies on tools derived from

Knot Theory. In the following sections, I introduce and comment briefly on concepts and

quantities that have proven useful for my work, while for a detailed account of this topic, I

refer the interested reader to [148].

4.1 What is a knot?

Mathematically, a knot is an embedding of a circle in the Euclidean space, S1 → R3.

Two knots are considered equivalent if one can be transformed into the other through smooth

deformations that do not involve cutting or self-intersecting the knot itself. Knots are typi-

cally studied through their two-dimensional projections (see Fig. 4.1), or knot diagrams, onto
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Type I

Type I

Type II

Type III

Figure 4.2: Representation of the three Reidemeister moves.

a plane. A knot diagram represents a closed two-dimensional curve characterized by a finite

number of intersection points called crossings. However, it is important to note that multiple

planar diagram representations can correspond to the same knot, differing only by smooth de-

formations known as Reidemeister Moves [148] (see Fig. 4.2). Then, a fundamental problem

in knot theory is to determine when different planar diagrams represent the same knot.

Notably, for the same reason above, a knot may exhibit various knot diagrams with dif-

ferent numbers of crossings, some of which can be eliminated through smooth deformations

(see Fig. 4.1 (b)), while others cannot. Thus, an essential concept in knot representation is

the knot’s minimum crossing number, K, which represents the smallest number of crossings

in any planar diagram of the considered knot that cannot be removed. The simplest knot,

known as the trefoil knot, has K = 3 (see Fig. 4.1 (b)). On the other hand, the unknot, or

trivial knot, has K = 0, as any of its planar diagram representations can be transformed into a

simple non-self-intersecting circle (see Fig. 4.1 (a)). Moreover, knots can be distinguished

in irreducible or composite. While irreducible knots are indecomposable (see Fig. 4.3 for the

list of irreducible knots up to K = 7), composite knots are just the sum of two or more

irreducible knots, (see Fig. 4.1 (c)).

In this work, knots are named following the Rolfsen convention [149], where a knot is

denoted as Ki, with K representing the minimum crossing number and the subscript i serv-

ing as an enumerative index to distinguish different knots at the same crossing number. For

instance, the trefoil knot is represented as 31. Composite knots are expressed as a collection

of their constituent prime knots: for instance, the composite knot formed by two trefoil knots

is written as 31#31.

All the aforementioned concepts also apply to multicomponent systems known as links. A
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Figure 4.3: List of all irreducible knots up to K = 7 named following Rolfsen convention [149].

Image adapted from List of Knots”.

link is characterized by the number of individual components it comprises. An n-component

link consists of n circles. Then, an n-component link is considered equivalent to the unlink

if, through smooth deformations, its planar diagram can be transformed into a collection of

non-mutually crossing knots.

Similar to knots, links are distinguished based on their minimum crossing number, K. The

link with the smallest number of crossing is the 2-chain link with K = 2 also known as the

Hopf link (see Fig. 4.4 (a)).

Additionally, links can be classified as irreducible (Fig. 4.4 (a),(c)) or composite (Fig. 4.4

(b)). Irreducible links cannot be expressed as a sum of lower-order chain links, while an n-chain

composite links can be written in terms of a sum of m-chain irreducible links with m < n,

e.g. a 3-chain link made up by two Hopf links (Fig. 4.4 (b)).

As for knots, links are named following the Rolfsen convention. According to the conven-

tion, an n-chain link is denoted as Kn
i , where K represents the minimum crossing number,

the superscript n represents the number of components of the link, the subscript i is an enu-

merative index to differentiate between different n-chain links at the same crossing number.

Composite links are written as a collection of their constitutive irreducible links. The simplest

composite link is the 3-chain link formed by two Hopf links 21#21 (see Fig. 4.4 (b)).

https://en.wikipedia.org/wiki/Prime_knot
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(a) (b) (c)

Figure 4.4: Examples of concatenated polymer configurations extracted from simulations

presented in Chapter 6 and their corresponding diagram representations. (a) Top, a Hopf

link, 22
1 in Rolfsen convention, bottom, corresponding diagrammatic representation. (b) Top,

a composite link, 22
1#22

1, formed by two successive Hopf links, bottom, its diagrammatic

representations. (c), Top, an example of an irreducible 3-chain link known as the Borromean

rings, bottom, its diagrammatic representation.

4.2 Polynomial invariants

As stated before, knot theory aims to find a way to distinguish inequivalent knots or links

(for the rest of the section we will use generically knots for both, if needed, we specify). To

this end, a set of polynomial invariants have been developed in the course of the last 100 years.

These quantities correspond to knot invariants in the form of polynomials whose coefficients

encode properties of the corresponding knot. From the knot-diagram representation, one can

compute the associated polynomial which, most importantly, is invariant under Redemeister

moves. Ideally, each different knot would correspond to a different polynomial, in this situation

the polynomial is said to be complete.

4.2.1 Alexander polynomials

The first polynomial to be discovered in 1928 was the Alexander polynomial [77, 148, 150,

151]. For each given closed curve featuring a knot (see Fig. 4.5) the correspondent Alexander

polynomial ∆(t) of the variable t can be obtained as the following:

• Give an orientation to the curve.

• Classify the crossings as positive or negative by a right-hand rule.
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(a) (b) (c)

Figure 4.5: (a) Arcs values for computation of the Alexander polynomial. (b) Labelling of

the crossings and the arcs for a trefoil knots, 31. (c) Corresponding Alexander matrix. In

the illustrated case, by taking as the principle minor the one at the bottom-left corner and

multiplying by t2, one obtains ∆(31, t) = t2 − t+ 1. Image adapted from [77].

• The crossings divide the curve into four arcs. At each crossing, there is an overcrossing

arc, an incoming arc, and an outgoing arc. Number the arcs and the crossings.

• Write the matrix with rows corresponding to the crossings and columns corresponding

to the arcs, with arc parameters as shown in Fig. 4.5 (a).

• The Alexander polynomial ∆(t) can be computed by taking any principal minor and

multiplying or dividing it by suitable powers of t and 1− t to obtain a polynomial that

does not contain any negative powers and which has a constant term.

For its simplicity, the Alexander polynomial is widely used for distinguishing different knots;

however, it is not a complete invariant [148]. Namely, there exist different knots sharing the

same Alexander polynomial, such as the 820 knot and the composite 31#31 knot. Moreover,

the Alexander polynomial does not distinguish the unknot [148], meaning that there are known

examples of nontrivial knots with the trivial Alexander polynomial equal to 1.

4.2.2 Jones polynomials

In 1969, approximately 40 years after the discovery of the Alexander polynomial, Conway

proved that the Alexander polynomial satisfies a so-called skein relation (see Eq.(4.2) for the

case of Jones polynomial): this consists in an equation that relates the polynomial of a link with

polynomials of other links obtained by changing the crossings of the original knot diagram. In

1984, Vaughan Jones discovered a new kind of polynomial, which after him was named Jones

polynomial [152]. The Jones polynomial can be constructed by exploiting the skein relation
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L+ L− L0

Figure 4.6: Three knot diagrams that are identical except at this crossing obeying the skein

relation Eq. (4.2).

expressed in Eq. (4.2). In particular, the Jones polynomial, V , is a polynomial in the variable

t and is defined in terms of two properties:

• the Jones polynomial of the unknot is 1:

V (unknot) = 1 (4.1)

• the Jones polynomials of three diagrams that are identical except for one crossing of

two lines (see Fig. 4.6) satisfies the skein relation:

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0 . (4.2)

Here, V (L+), V (L+) and V (L0) are the Jones polynomials corresponding to the three

different knot diagrams which are identical except in one crossing point where they

appear as in Fig. 4.6.

Through the skein relation, the Jones polynomial of any knot can be iteratively defined as

in Fig. 4.7. The Jones polynomial is more powerful in distinguishing knots compared to the

Alexander polynomial, but it is not a complete invariant as well. Moreover, it is not known

whether the Jones polynomial distinguishes the unknot, but for links, there are known families

of nontrivial links with a trivial Jones polynomial.

In my works, I have used both polynomials. In Chapter 5 to detect knots (not links) in the

configurations of randomly concatenated and knotted polymers, I have computed the corre-

sponding Alexander polynomials using Kymoknot [153], a software developed for this purpose.

In all the others, we have resorted to the Jones polynomials, which have been computed using

the python package Topoly. In this case, the Jones polynomials have been computed to detect

and categorize knots, 2-chain links, and 3-chain links.

It is worth stressing two points. First, computing these polynomials is computationally
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= =

L+

L− L0

L+ L−

==
L0

Figure 4.7: Illustration of the calculation of the Jones polynomial for the Hopf link. We start

by exploiting the skein relation focusing on the L+ encircled crossing. The diagram with the

substituted L0 crossing corresponds to the unknot, V (unknot) = 1. Instead, the one with

L− corresponds to the 2-chain unlink diagram, V (unlink) has to be calculated. By applying

again the skein relation, one obtains V (unlink) = −
(
t−1/2 + t1/2

)
. It follows that the Jones

polynomial of the Hopf link is V (Hopf) = −t
(
t
(
t−1/2 + t1/2

)
+ (t−1/2 − t1/2)

)
= −t5/2−t1/2.
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Figure 4.8: Positive and negative crossing patterns. Based on this labeling, the GLN of any

link diagram can be computed.

expensive and not so straightforward. For Jones polynomials, the computation involves re-

cursively applying the skein relations on knot diagrams as in Fig. 4.7, and the complexity

increases with the complexity of the diagram. Alexander polynomials are relatively easier to

obtain since they can be computed as the determinant of a matrix (see example in Fig. 4.5)

[77, 151]. Second, one would like to associate the computed polynomial with a known knot,

which can be done by comparing the computed polynomial with the table of the polynomials

of the known knots. In the case of Topoly, knots up to 12 crossings and links up to 9 crossings

have been tabulated. Therefore, more complex structures cannot be distinguished using this

tool.

4.3 Gauss linking number

One of the most well-known and widely used invariants for 2-chain links is the Gauss linking

number (GLN). The GLN quantifies the linkage between two closed curves R1 and R2 and

can be computed as [77, 78]:

GLN ≡ 1

4π

∮
R1

∮
R2

(~r2 − ~r1) · (d~r2 ∧ d~r1)
|~r2 − ~r1|3

, (4.3)

where, respectively, ~r1 and ~r2 represent the spatial coordinates for points on the oriented

contour lines formed by R1 and R2 and d~r1 and d~r2 are the corresponding infinitesimal

increments. For a closed curve, GLN is always an integer number and returns the semi-sum

of the signed crossings of the diagram [78] (see Fig. 4.8). Thus, once given an orientation

to the link diagram, one can associate value c = 1 or c = −1 to each crossing based on the

right-hand rule (see Fig. 4.8 and Fig. 4.9), then

GLN =
1

2

∑
i=1

ci . (4.4)

Therefore, the GLN represents the number of times (with a positive or negative sign, depend-

ing on the orientations of the curves) that each curve winds around the other. However, since
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(a) (b)

Figure 4.9: Illustration of the calculation of the Gauss linking number using the signed cross-

ings for two non-equivalent links. (a) Top, a Hopf link realization, bottom, its diagrammatic

representation with signed crossings based on the labelling in Fig. 4.8. Hence, the GLN of a

Hopf link is = 1. (b) Top, a Whitehead link realization; bottom, its diagrammatic representa-

tion with signed crossings. In this case, the GLN is = 0 as the unlink.

it just deals with crossings, many 2-chain links share the same GLN, hence, it is less sensitive

with respect to the polynomials previously presented. Furthermore, while it is true that 2-chain

links with GLN 6= 0 are concatenated, the converse is not necessarily true. For example, the

Whitehead link (see Fig 4.9 (b)) has GLN = 0.

Despite its limitations, the GLN has found extensive use in detecting concatenations be-

tween polymer rings. This is primarily because of its computational convenience when com-

pared to polynomial invariants [77, 78, 81, 154]. Moreover, topological approaches to the

definition of the entanglement properties in melts [15–17, 147] have employed the GLN. This

is because GLN is an explicit function of polymer conformations (see Eq. 4.3), which makes

it more amenable for analytical computations with respect to the other topological invariants.

In this work, we have numerically computed Eq. (4.3) for polymer rings, which are mod-

eled as discretized closed paths on a 3d face-centered cubic (FCC) lattice (see Sec. 2.1.2), by

employing the algorithm developed by Klenin and Langowski [155]. The algorithm exploits the

fact that the oriented contour lines R1 and R2 in Eq. 4.3 consists of a collection of straight

segments2 R1 =
⋃N
i=1 γi and R1 =

⋃N
i=1 γ

′
i. In this situation, Eq. 4.3 turns into a double sum

2Here N is the number of bonds of the polymer.
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(a)
(b)

(c)

(d)

(cb)
(ca) (db)

(da)
(cb)

(ca) (db)
(da)⃗rab

⃗rcd

Figure 4.10: (a) Illustration of the observation directions that limit the solid angle needed

to compute the Gauss integral Ωij. (b) The corresponding solid angle. Image adapted from

[155].

over the segments of the paths:

GLN =
1

4π

N∑
i=1

N∑
j=1

∫
γi

∫
γ′j

(~r2 − ~r1) · (d~r2 ∧ d~r1)
|~r2 − ~r1|3

=
N∑
i=1

N∑
j=1

Ωij

4π
. (4.5)

Here, ~r1 represents a point belonging to the segment γi while ~r2 belongs to γ′j, Ωij is the

Gauss integral contribution coming from segment γi and γ′j. Then, labelling the end points

of the segment γi a and b, and the one of the segment γ′j c and d, these corresponds to the

vectors ~rab and ~rcd (see Fig.4.10 (a)). Ωij has to be computed and this is done by realizing

that its absolute value, |Ωij|, corresponds to the solid angle which includes all the observation

directions such that ~rab and ~rcd form an apparent crossing [155] (see Fig.4.10 (a,b)). The

solid angle Ω̃ij is delimited by the planes (c, d, a), (c, d, b),(a, b, d) and (a, b, c) and its value

is equal to the area of the quadrangle on the unit sphere having the centre in the origin of the

solid angle. The area of the quadrangle can be directly computed as a sum over its angles:

|Ωij| = α + β + γ + δ − 2π . (4.6)

To compute the angle, one defines the versor:

~n1 ≡
~rac ∧ ~rad
|~rac ∧ ~rad|

~n2 ≡
~rad ∧ ~rbd
|~raxd ∧ ~rbd|

~n3 ≡
~rbd ∧ ~rbc
|~rbd ∧ ~rbc|

~n4 ≡
~rbc ∧ ~rac
|~rbc ∧ ~rac|
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and then: 
α = π

2
+ arcsin (~n1 ·~n2)

β = π
2

+ arcsin (~n2 ·~n3)

γ = π
2

+ arcsin (~n3 ·~n4)

δ = π
2

+ arcsin (~n4 ·~n1)

(4.7)

As final step, to introduce the crossing sign, since Ωij = |Ωij| if the two segments form a

right-handed crossing, i.e. (~rcd ∧ ~rab) ·~rac > 0, and Ωij = −|Ωij| otherwise, Ωij is defined as:

Ωij = |Ωij|sign ((~rcd ∧ ~rab) ·~rac) . (4.8)



Chapter 5

Monte Carlo method for lattice

polymers with non-conserved topology

In this chapter1, we present the work aimed at the development of a suitable computational

polymer model which take into account the dynamical topological rearrangement of melts of

ring polymers through a generic strand-crossing mechanism.

The chapter is organized as follows. In Sec. 5.1, we explain the significance of the problem.

In Sec. 5.2, we describe the polymer model, the numerical details of the algorithm, its compu-

tational cost and summarize the relevant length scales of the polymer melts. In Sec. 5.3, we

present the main results of the work. Finally, in Sec. 5.4, we discuss an effect related to the

efficiency of the strand crossing mechanism that may be tested in experiments employing DNA

rings. The material presented here is complemented by additional figures in the Appendix A.

5.1 Introduction

In dense polymer liquids and melts, the local Brownian motion of each polymer chain is

subject to long-lived topological constraints (a.k.a. entanglements) imposed by the presence

of the other chains (see Sec.1.2.2). Polymer chains under typical dense conditions become

mutually entangled because they are effectively uncrossable to each other [5, 14]. In recent

years, direct “manipulation” of entanglements in single chain molecules has opened new routes

to fine-tune the mechanical properties of polymeric materials. This is for instance the case of

the so called smart materials like polycatenanes and polyrotaxanes [86, 87], which are made

of interlocked components whose internal degrees of freedom and mobility shape the unique

conformational space of the molecule, which can be artificially synthesised following precise

1The material described in this Chapter has been published in: M. A. Ubertini and A. Rosa, Physical

Review E (2021) [1]
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chemical routes [86, 87].

Interestingly, a similar system has been recently synthesised following a complete different

approach. This is the case of the work of the Spakowitz’s group at Stanford [93], which repre-

sents the first synthesis of a so-called Olympic hydrogel (see Fig. 1.14), consisting of a polymer

network made up by interlocked polymer rings, and first theorized by de Gennes [98, 99]. In

the experiment, the synthesized Olympic hydrogel is made up by DNA plasmid rings [93],

which interlock to each other through the action of the enzyme2 topoisomerase-II (TopoII).

There, it was showed that the “strand crossing” mechanism induced by the continuous action

of TopoII relaxes (“fluidizes”) the topological constraints dominating the viscoelastic behav-

ior of concentrated solutions of entangled DNA rings. Moreover, by blocking the activity of

the enzyme, the once free rings become permanently linked with each other and under these

conditions the DNA solution becomes equivalent to an Olympic gel.

Olympic gels constitute a fascinating class of soft materials due to their remarkable theoret-

ical [82–85], biological (the kinetoplast DNA of certain protozoa [100, 102] can be modeled [81]

as an Olympic gel) and even pharmacological [156] applications. The fundamental difference

between an Olympic gel and a traditional gel is that the former is maintained together by

topological bonds and not by chemical cross-links [5].

Undoubtedly, one of the most interesting feature of the synthesised Olympic gels of

Spakowitz’s experiments is the possibility to control polymer topology and entanglements

to switch from liquid-like to more solid-like features. As discussed in Sec 1.4.1, the dynamical

nature of the action of TopoII plays an important role for the definition of these effects, yet

all polymer models developed for dealing with topological complex polymer assemblies have

overlooked this feature. For this reason, in this chapter, I present a new computational model,

which generalizes the efficient Monte Carlo scheme for lattice polymers described in Sec. 2.1.2

taking into account the kinetic nature of the strand-crossing mechanism. Then, building on

this, I present the results of extensive numerical simulations describing the formation of linked

networks of ring polymers in melt conditions.

2Topoisomerase-II [96] is an enzyme which act between two nearby DNA filaments (see Fig. 1.13, by

cutting one strand, moving the other through the cut and ligating the broken strand back, effectively producing

“strand-crossing” events.
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5.2 The polymer model: simulation protocol, length scales,

methods

5.2.1 The kinetic Monte Carlo algorithm

We employ the kinetic Monte Carlo (MC) algorithm described in 2.1.2 on the three-

dimensional FCC lattice with lattice spacing = a corresponding to our unit of length, and we

model solutions of ring polymers with excluded volume interactions.

The core of the algorithm is based on the elastic lattice polymer model inspired by the

Rubinstein’s [110] repton model and developed in [109, 112] which has been described in

Sec. 2.1.2. The model is sketch in Fig. 2.1. Here, we just recall that the bond length b

between nearest neighbor monomers takes then two possible values, = a or = 0: in the latter

case the bond is said to host a unit of stored length. For a polymer with N bonds, the total

contour length L ≡ N〈b〉 < Na where 〈b〉 is the average bond length.

The dynamic evolution of the chains is implemented by combining two kinds of MC moves,

which we classify based on the effects they produce on the global topology of the chain: (i)

topology-preserving moves, and (ii) topology-changing by stochastic strand crossing moves.

5.2.2 Topology-preserving moves

The first set of MC moves is as in the original lattice model [109, 112]: by construction,

these moves preserve the overall topological state of the system and they have been discussed

in Sec. 2.1.2. These moves are also summarized in Fig. 2.1.

5.2.3 Topology-changing (strand crossing) moves

Here, we are interested in studying melt of ring polymers where topology changes are

induced over time. In particular we consider the basic mechanism of strand crossing (hereafter,

SC) involving a pair of nearby polymer filaments, similar to the action triggered by the enzyme

TopoII in DNA rings solutions [93]. The original [109, 112] lattice model does not include

such feature: we show here that it is however possible to remove this “constraint” and we

describe the simplest possible MC move capable of inducing a single crossing between two

nearby polymer strands. These polymer strands may either belong to the same chain (intra-

chain SC) or they can stay on two distinct chains (inter-chain SC).

The new move (which is also one of the main contributions of this work3) is explained

3A similar move was introduced in [113] with the purpose of accelerating the equilibration of long polymer

chains on the FCC lattice and investigating the structural stability of the so called fractal globule [123]. The
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With strand crossing

No strand crossing

Figure 5.1: Illustration of Monte Carlo moves for strand crossing. On each pair (red/orange

(color) or dark/light gray (b/w)) of ring polymers we identify those portions (the thicker

strands) of contour length = 2a whose central monomers (the bigger dots) are one lattice site

far apart. The two strands can be “transformed”, such that the original central monomer of

one strand turns into the central monomer of the other strand (l.h.s. panels vs. r.h.s. panels)

and viceversa, without violating the chain connectivity constraint. In some cases (e.g., as in

the top row) this operation does not lead to strand crossing, in others (e.g., as in the bottom

row) it does. We list all cases (12 in total) leading to strand crossing and implement them in

our MC algorithm. The configurations in the bottom row constitute an example of a linking

(left → right) or an unlinking (right → left) event.
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with the help of the two examples in Fig. 5.1. Take the two distinct polymer strands, each

of effective contour length = 2a, which are illustrated, in each panel of the figure, as the

thicker portions of the two closed curves. The two segments are chosen with the constraints

that the corresponding central monomers (the bigger dots): (i) are positioned at lattice site

distance = a and (ii) one can switch position with the other and be then reconnected to the

other chain with no violation of polymer connectivity and preserving the contour length. By

exhaustive search, we have then compiled the list of all possible (36 in total) swapping moves

compatible with these constraints. By closer examination, we verify that 24 of them do not

produce SC (essentially the two chain strands remain on parallel planes even after swapping,

see the polymer configurations in the top row in Fig. 5.1), while the remaining 12 moves

effectively lead to a single SC (as in the polymer configurations in the bottom row in Fig. 5.1).

The successful SC has been verified by looking at the variation, |∆GLN| = +1, of the Gauss

linking number GLN (see definition, Eq. (4.3)) relative to the piecewise closed curves formed

by the triplets of monomers involved in the MC swapping move.

The implementation of this move in the kinetic MC algorithm is as the following. We

pick randomly two polymer strands of effective contour length = 2a, then check whether

they belong to the set compatible with a SC and, if so, we swap the corresponding central

monomers. When the two involved strands belong to the same ring the move is introducing

knots in the chain (Sec. 6.3.1), while on two separate rings it will induce the formation of links

(Sec. 5.3.2).

5.2.4 Simulation details

We have considered bulk solutions of M closed (ring) polymer chains, each chain made of N

monomers or bonds. With values N×M = [40× 5120, 80× 2560, 160× 1280, 320× 640, 640× 320]

each system contains a fixed number of monomers = 204800. In this work, we have considered

flexible chains (κbend = 0 in Eq. (2.6)).

Bulk conditions are implemented through the enforcement of periodic boundary conditions

in a simulation box of total volume V = L3, where the linear sizes of the box, L, has been fixed

based on the monomer number per fcc lattice site = 1.23 corresponding to melt conditions [68,

112]. As specified in Chapter 3, the volume occupied by the fcc lattice site is = a3√
2

[139],

hence, the monomer number per unit volume of the system is = 1.23
√

2 ' 1.74a−3.

We have studied and compared structure and dynamics for different set-up’s as in the exper-

authors’ choice, however, does not necessarily modify topology (which is, instead, the main concern here)

and the paper did not address questions like the physical consequences of using different strand crossing rates

(Sec. 5.2.4).
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〈b〉/a `K/a ρK`
3
K Le/`K Ne

0.74 1.48 2.82 36.95 73.9

Table 5.1: Values of physical parameters for melts of ring polymers on the FCC lattice with

unit distance = a and monomer number per unit volume = 1.74 derived as in Sec. 3.2.3: (i)

〈b〉, mean bond length; (ii) `K , Kuhn length (Eq. (3.3)); (iii) ρK`
3
K , number of Kuhn segments

per Kuhn volume [140]; (iv) Le, entanglement length (Eq. (1.6)); (v) Ne ≡ Le/〈b〉, number

of bonds per entanglement length.

iment of Spakowitz:

• Ring polymer melts with non-conserved chain topology. Here, the topological state of

the system changes in time according to the SC mechanism. Therefore, the MC scheme

includes the whole set of dynamic moves described in Sec. 5.2.2 and Sec. 5.2.3.

• Ring polymer melts with conserved chain topology. Here, only topologically preserving

moves (Sec. 5.2.2) are included. Since now topology can not relax the choice of the initial

state is crucial. The following two options have been considered: (i) Equilibrated melts

of unknotted and non-concatenated or (for brevity and as in Ref. [68]) untangled rings.

(ii) Equilibrated melts of permanently catenated rings, corresponding to the equilibrated

polymer conformations obtained at the end of the simulations with non-conserved chain

topology. The name anticipates some properties of the rings (catenation and linking)

that will be discussed in depth in Sec. 5.3.2.

• For additional comparison, we have also considered ideal (i.e., no excluded volume and

no topological interactions) rings.

At each MC time step, monomers are picked at random and time is measured in MC units of

τMC ≡ N ·M . For polymer solutions with non-constrained topology (Sec. 5.2.3) one needs to

specify also the rate, λSC, at which SC’s occur. In principle, this rate is a free parameter of

our model that we must tune. For the typical experimental conditions described in the work

by Spakowitz et al. [93], it was estimated that the action rate of TopoII on DNA rings is close

to its intrinsic rate of O(1s−1) and ≈ 104 times slower than the mean diffusion time of a single

DNA persistence length4.

Then, by considering that our polymers are flexible (see table 5.1), we take here one SC

4We estimated such time from the experimentally reported curves of the frequency dependent shear modulus

G∗(ω) [93] of the system. In particular, from the scaling behavior, G∗(ω) ∼ ωα, it is possible to locate the

crossover between the regime in which the system’s relaxation process is dominated by the thermal bend
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(b)

N = 640

(a)

Figure 5.2: Time mean-square displacements of (a) single chain monomers (Eq. (2.17)), g1,

and (b) the chain center of mass (Eq. (2.18)), g3, for rings with N = 640 monomers. In both

panels, the lines for (i) melts of untangled rings (red, solid), (ii) rings with active SC’s (orange,

dashed) and (iii) permanently catenated rings (yellow, dot-dashed) visibly depart (circle) from

each other at the imposed SC time scale λ−1SC/τMC = 104 (see Sec. 5.2.4).

move (modeled according to Sec. 5.2.3) each 104 MC time steps (i.e., λ−1SC = 104 τMC) with

only topology-preserving moves. Notice that the algorithm makes the implicit assumption

that the enzyme TopoII is immediately available for the reaction, i.e. the SC process is

intrinsically reaction-limited. Nonetheless, we will also discuss (see Sec. 5.4) smaller values of

λSC corresponding to “less efficient” TopoII.

Fig. 5.2 shows that the algorithm generates the correct dynamics. By taking the longest

rings with N = 640, the diffusive monomer (panel (a)) and chain (panel (b)) motions for the

three cases of melts of (i) untangled rings, (ii) rings with active SC’s and (iii) permanently

catenated rings nicely superimpose on each other on time scales shorter than the SC time scale

λ−1SC, i.e. ring dynamics on these time scales is not sensitive to SC’s, and deviate above λ−1SC.

Importantly, this test confirms that the local segment dynamics is not significantly altered by

the presence of SC’s (see Sec. 5.2.5 for more details on this point).

5.2.5 Comparison to other simulation methods

In this section, we review some computational work having significative overlap with (i)

our method of creating strand crossings and (ii) the consequent formation of linked gels from

melts of entangled rings.

fluctuations of individual semiflexible chains, for which G∗(ω) ∼ ω3/4 [5], to the one dominated by the

fluctuations of a flexible Rouse polymer, G∗(ω) ∼ ω1/2 [5]. Since such crossover is in correspondence with

the mean diffusion time of a single DNA persistence length, one can easily estimate such time from G∗(ω).
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In two papers [157, 158], Schaffer introduced and studied the physical properties of a Monte

Carlo model for polymer dynamics where monomers have distinct positions on the simple cubic

lattice and bonds are allowed to fluctuate by inclusion of the first, second and third nearest

neighbors of each monomer. Chain dynamics proceeds by random monomer displacements

which respect bond constraints and excluded volume. Then, topological constraints between

different chains are switched on/off by allowing/forbidding chain conformations with bonds

which may cross at their midpoints. Using these simple rules, the model was applied first

to melts of linear chains [157, 158] and later on to melts of untangled rings and rings with

SC’s [159]. Our results for ring structure (see Sec. 5.3.1) and dynamics (see Sec. 5.3.2)

substantially confirm the results reported in [159].

An approach very similar to Schaffer’s was then employed by Lang and coworkers in a series

of more recent papers [82–85]: specifically, the authors complemented the bond fluctuation

model on the FCC lattice [160, 161] with a set of diagonal moves (the so called “x-traps” [162])

which enforce the temporary overlap of polymer bonds and hence possible SC’s. The model

was used to study the conformational properties of Olympic gels, however the dynamics of the

gel was not discussed.

The philosophy at the basis of these two models is the same: letting random overlaps

between bonds as the first, necessary, step for strand crossings to occur. However (quoting

Schaffer [157]) this procedure suffers from the inconvenience that “the local density is not

guaranteed to be the same ... because the noncrossing simulations exclude a small fraction

of configurations (those in which bond midpoints overlap) that are included in the crossing

simulations”. At the same time, albeit small, the chain local mobility changes in moving

from noncrossing to crossing simulations (see [157], Fig. 5) and the corresponding single-

mononomer time mean-square displacements g1(τ) do not coincide at short time scales (see

[157], Fig. 8) where we expect the effects of SC’s to be small.

For the completeness of the discussion, it is worth mentioning that the preservation of

the local density may indeed be a problem that one has to deal with also in classical off-

lattice simulations. Related to that, in Ref. [81] Michieletto and coworkers used classical

Brownian dynamics simulations of a bead-spring polymer model to construct model Olympic

gel conformations for the DNA kinetoplast. In this study, entanglements were removed by (i)

switching off the non-bonded monomer-monomer interactions of the system, (ii) letting the

system to equilibrate and (iii) slowly turning interactions on again. However, as demonstrated

by Auhl et al. [163], this procedure must be performed with extreme care, especially when

applied to dense polymer solutions as it may lead to considerable artifacts if the system is not

let to equilibrate properly.

Clearly both the above discussed problems (the non preservations of the local density and
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P(X
)

Figure 5.3: (a) Mean-square gyration radius of ring polymers, 〈R2
g(N)〉, as a function of the

number of bonds, N (for detailed values at each N , see Table A.2 in Appendix A). Different

colors / line styles are for different polymer ensembles (color code / line style for untangled

rings, rings with SC and permanently catenated rings are as in Fig. 5.2), and dashed lines

correspond to theoretical asymptotic behaviors. (b) Distribution functions of gyration radius,

P (Rg/
√
〈R2

g〉), in the different ring ensembles and for the largest chains (N = 640). The

up-triangles correspond to the Minato and Hatano’s exact analytical result for ideal rings [164].

chain mobility) are absent in our work, see Figs. 5.1 and 5.2(a). At the same time, the protocol

allows for easy calibration of the relevant SC parameter λSC (Sec. 5.2.4) whose effects, to our

knowledge, are considered here (see Discussion, Sec. 5.4) for the first time.

5.3 Results

5.3.1 Single-chain structure

Ring size

We have studied first how the polymer mean-square gyration radius Eq. 2.11, 〈R2
g(N)〉,

scales as a function of N:

〈R2
g(N)〉 ∼ N2ν . (5.1)

The results for the different ensembles are summarized in Table A.2 in Appendix A and plot-

ted in Fig. 5.3(a). As discussed in the chapter 3 and in agreement with refs. [44, 59, 68],

topological constraints in untangled melts are ineffective below N . Ne where Ne ≈ 74 is

the total number of monomers per entanglement length (see Sec. 3.2.3). Above Ne, the

mutual topological constraints between nearby rings let the chains to deviate from the ideal

behavior 〈R2
g(N)〉 ∼ N2 · 1/2 and to become more compact: in particular here we report
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the scaling 〈R2
g(N)〉 ∼ N2 · 0.4, which describes [50] the slow crossover to the asymptotic

compact regime 〈R2
g(N)〉 ∼ N2 · 1/3 [57, 59]. In the presence of active SC’s the rings swell

again, 〈R2
g〉 ∼ N2 · 1/2, and reach a steady state which does not change further after the SC

mechanism is switched off and rings become permanently catenated (overlying dashed and

dot-dashed lines in Fig. 5.3(a)).

It is interesting to point out that, while the reported scaling exponent ν = 1/2 is the

same of ideal chains, rings structure remains nonetheless non-ideal. To show that, we have

computed the complete distribution function, P ( Rg√
<R2

g>
), of the gyration radius and com-

pared their shapes in the different ensembles (see Fig. 5.3(b)). First, ideal rings (dotted

line in Fig. 5.3(b)) are remarkably well described by the analytical expression (up-triangles in

Fig. 5.3(b). Second, untangled rings (solid lines in Fig. 5.3(b)) show systematic deviations

from the ideal behavior which are especially visible for small and large Rg’s. Third, rings with

active SC’s and permanently catenated rings have, as expected, the same P ( Rg√
<R2

g>
) (dashed

and dot-dashed lines in Fig. 5.3(b)): the curves are consistent with ideal behavior only for

large Rg’s, while for small Rg’s they confirm the non-ideal nature of rings and highlight the

incomplete screening of excluded volume at short scales.

Contact probabilities

We investigate the physics of polymer self-interactions, and consider the mean contact

probability, 〈pc(`)〉L Eq. (2.16), between pairs of monomers separated by n bonds (equivalent

to the mean contour length ` = n〈b〉, see Table 5.1) for rings of total mean contour length

L ≡ N〈b〉.
In agreement with Ref. [130], finite-chain effects can be reduced and the universal shape

of 〈pc(`)〉L in the large-L limit can be demonstrated by plotting the curves for different L’s

in terms of the variable Λ = `(1 − `/L). It is then useful to discuss the scaling behavior of

〈pc(`)〉L by introducing the local exponent:

γ(`) ≡ d log〈pc(`)〉L
d log Λ

. (5.2)

Fig. 5.4 shows results for 〈pc(`)〉L (main) and the corresponding γ(`) (inset) for rings with

N = L/〈b〉 = 640 in the different ensembles. Asymptotically, ideal rings, rings with SC’s and

permanently catenated rings converge all to the ideal value γ = −3
2

while untangled rings show

γ ' −1.2 consistent with the mean filed prediction : γ = νd [38] with ν ' 0.4 (Fig. 5.3) for

these systems. On the contrary, and quite interestingly, the small scale behavior of γ(`) (see

inset in Fig. 5.4 for Λ . 100) for rings with SC’s is strongly non ideal, in agreement with the

similarly non ideal behavior seen for the corresponding chain size distributions (Fig. 5.3(b)).
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Figure 5.4: Monomer-monomer mean contact probability 〈pc(`)〉L as a function of `(1− `/L)

and for the largest simulated rings (N ≡ L/〈b〉 = 640) in the different ensembles. We define

two monomers to be in contact if their distance is ≤ one lattice unit. (Inset) Local scaling

exponent γ(`), defined as the logarithmic derivative of 〈pc(`)〉L (Eq. (5.2)). Dashed horizontal

lines correspond to theoretical asymptotic behaviors. Color code / line style are as in Fig. 5.3.

Knot statistics in ring polymers with SC’s

Topological constraints in untangled melts make the chains more compact with respect to

the ideal case, a situation which is radically altered in the presence of active SC’s (Fig. 5.3(a)).

SC’s act in the same way regardless the two strands are on the same or on different rings (see

Sec. 5.2.3): for this reason they change both, single-chain topology by forming knots and

inter-chain topology by forming links (studied in Sec. 5.3.2).

As explained in Chapter 4, knotted curves can be classified based on the number of irre-

ducible crossings, K, they present when one tries to smoothly deform the curve so as to force

it to lie on a plane. However, as discussed in Chapter 4, a more detailed classification of knots

can be carried out by means of suitable topological invariants. Here, we employ the so called

Alexander polynomial of knots discussed in Sec. 4.2. In particular, we have used the open

package KymoKnot [153] to detect and classify the knots which form in our polymer chains

through SC. Then, for simplicity, we have used the sole number of irreducible crossings, K,

for knot classification. An example of a model ring conformation entrapping a trefoil knot is

given in Fig. 5.5(a).

Fig. 5.5(b) shows the probability, P (N ;K), that N -monomer rings have given knot type

K = 0 (the unknot), K = 3 (the trefoil, i.e. the simplest non trivial knot) and so on for knots

of increasing complexity. Knots of complex shapes are in general rare (the trefoil dominates),

yet their frequency increases [77, 151] steadily with N and for N = 640 we are even able to
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Figure 5.5: (a) Model conformation of a ring polymer (in red) entrapping a trefoil (K = 3)

knot (highlighted in white). (b) Probability distribution function, P (N ;K), of knots with

K crossings in N -monomer rings (different symbols and line styles correspond to different

N ’s) undergoing continuous SC’s. Rings with N = 40 do not knot during the simulation.

The two insets show plots (in lin-lin (left) and log-log (right) representations) of the knotting

probability Pknot, Eq. (5.3), as a function of N (symbols) and the corresponding best fit to

power-law behavior (line, Eq. (5.4) with Eqs. (5.5) and (5.6)).

detect a few, and quite complex, knotted structures up to 11 crossings.

Then we consider the cumulative knotting probability, defined as

Pknot(N) ≡
∑

K=3,4,...

P (N ;K) = 1− P (N ;K = 0) . (5.3)

In [82], Lang and coworkers showed that for catenated N -monomer rings in solution P (N ; kt =

01) ' exp(−N/N0), where N0 is some characteristic (and model dependent [165]) polymer

length scale. The exponential character of P (N ;K = 0) matches the known mathematical

result [77, 165] that the probability of the unknot in ideal, closed lattice polygons decays

exponentially with the chain contour length, and it implies that Pknot(N) has a concave shape

when displayed in a lin-lin plot. Our data for Pknot(N) do not seem to reflect this behavior,

they are better described instead by the simple power law (see symbols vs. line in the l.h.s.

inset (lin-lin plot) and r.h.s inset (log-log plot) of Fig. 5.5(b)):

Pknot(N) =

(
N

Nknot

)αknot

, (5.4)
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with5

Nknot = 2203± 433 , (5.5)

αknot = 1.9± 0.2 . (5.6)

Of course it is possible that the quadratic behavior, Eqs. (5.4) and (5.6), is just a cross-over

to the “∼ 1−exp(−N/N0)” behavior and that we can not detect the latter because polymers

of higher N ’s need to be considered. Yet, it is interesting to notice that the value αknot ≈ 2

(Eq. (5.6)) has a simple interpretation: it mirrors the enforced mechanism where knots form

“cooperatively” due to random SC’s between pairs of polymer strands.

In conclusion, to assess the validity of Eq. (5.4) systematic (and computationally much

more expensive) simulations of polymers of higher N ’s need to be done: in particular, since

Pknot(N)→ 1 for large N , we expect rings with N & Nknot to be always knotted on average.

5.3.2 Structure and dynamics of ring polymers with SC’s

Physical links

The physical links between any given pair of rings have been quantified in terms of the

corresponding Gauss linking number defined in Eq. (4.3), GLN. In particular, we employ

the efficient algorithm by Klenin and Langowski [155] for the evaluation of Eq. (4.3) (see

Sec. 4.3). We recall that physically GLN represents the number of times (with “+” or “−”

sign, depending on the reciprocal orientations of the curves) that each curve winds around the

other. An example of a pair of linked rings (with GLN = 1) is given in Fig. 5.6(a).

First, we compute the probability to find a pair of rings with given |GLN|, P (N ; |GLN|),

as a function of the polymer length N . Here, we focus just on |GLN|, because P (N ; GLN) is

symmetric around GLN = 0 (see Fig. A.1 in Appendix A). Results are plotted in Fig. 5.6(b).

We find6 that for |GLN| ≥ 1, P (N ; GLN) follows the exponential decay:

P (N ; GLN) ∼ e−|GLN|/GLN0(N) . (5.7)

The “decay length” GLN0(N) as a function of N (for the specific values, see Table A.3 in

Appendix A) is well described by the power law behavior (see symbols vs. line in the l.h.s inset

5Here, mean values and corresponding error bars for Nknot and αknot are calculated by averaging distinct

estimates of these parameters. These estimates were obtained by separate best fits of the data to Eq. (5.4)

in the linear-linear and log-log representations. The same procedure was used for Nlink and αlink (Eq. (5.8)).
6Notice that since GLN has been computed between all possible ring pairs. For this reason, the value for

P (N ; GLN = 0) does depend on the total number of chains in the sample (in an infinite system, there is an

infinite number of unlinked chains). Conversely, two chains are linked only if they are spatially close to each

other and so each value P (N ; GLN ≥ 1) is expected to correspond to “bulk” properties.
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Figure 5.6: (a) Pair of model ring conformations connected by a link with Gauss linking

number (Eq. (4.3)) GLN = 1. (b) Probability distribution function, P (N ; |GLN), of the

absolute value, |GLN|, of the Gauss linking number between pairs of N -monomer rings. The

two insets show plots (in lin-lin (left) and log-log (right) representations) of the decay length

GLN0 vs. N (symbols, Eq. (5.7)) and best fit to power-law behavior (line, Eq. (5.8) with

Eqs. (5.9) and (5.10)). Color code, line styles and symbols are as in Fig. 5.5(b).

(lin-lin plot) and r.h.s. inset (log-log plot) of Fig. 5.6(b)):

GLN0(N) =

(
N

Nlink

)αlink

, (5.8)

with

Nlink = 5277± 239 , (5.9)

αlink = 0.363± 0.005 . (5.10)

The reported value for αlink, close to the scaling exponent ν of the gyration radius of the

ring (Fig. 5.3(a)), is consistent with the intuitive picture that two rings link to each other

if the spatial distance between the corresponding centers of mass is of the order or smaller

than Rg(N) ∼ Nν (Eq. (5.1)). Since GLN0(N ≈ Nlink) ≈ 1, Nlink is intuitively close to

the polymer length scale N∗ described in Ref. [82] which physically marks the crossover to

the regime in which any ring is concatenated with all the overlapping rings. Although the

polymer model adopted here and the one by Lang et al. are not the same and a quantitative

comparison is difficult, our Nlink (Eq. (5.9)) and Lang et al.’s N∗ [82] are similarly large, in

particular of the order of a few thousands bonds.

By using the results on the Gauss linking number, we consider (i) the mean number

of chains linking to a single ring, 〈L(N)〉, and (ii) the mean ring fraction, 〈Mcc(N)〉/M ,

belonging to the largest connected component of chains in the melt. The results are shown
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Figure 5.7: (a) Mean ring fraction in the largest connected component, 〈Mcc(N)〉/M (black

line, left y-axis), and mean linking degree, 〈L(N)〉 (grey line, right y-axis) as a function of

N . (b) Frequency of observing a ring linking to, respectively, L = 0, 1, ...,M − 1 other rings

(symbols) in comparison to the binomial function (lines, Eq. (5.11)) for random graphs. Color

code and symbols are as in Fig. 5.5(b).

in Fig. 5.7(a). 〈L(N)〉 increases linearly [82] with N and the largest (≈ 10) attained value

is consistent with the characteristic number of 10− 20 chains [55, 59] protruding the volume

occupied by a single ring in melt. We see that for 〈L(N)〉 & 2, i.e. when one ring is connected

on average to two (or more) other rings, a single giant network is obtained (see also Fig.A.2

in Appendix A for instantaneous snapshots of the networks for different N ’s).

It is interesting to notice that, in agreement with previous studies [81, 85], the network

of connections has the structure of a random graph, hence the frequency of observing a ring

linking to, respectively, L = 0, 1, ...,M − 1 other rings is accurately described (symbols vs.

lines in Fig. 5.7(b)) by the binomial function:

P (M, plink;L) =

(
M − 1

L

)
pLlink (1− plink)M−1−L . (5.11)

Eq. (5.11) is equivalent to the probability that a single node in a random graph made of

M nodes is connected to L other nodes, with plink(N) = 〈L(N)〉/(M − 1) (see values in

Table A.3 in Appendix A) representing the linking probability or the fraction of distinct node-

to-node links out of the M(M − 1)/2 total possible combinations. As in [81], the onset of a

single fully connected polymer network can be then interpreted as the percolation transition

on the graph, signifying that on average each node can be reached from any other node by

walking on the graph.



94 CHAPTER 5. MONTE CARLO METHOD WITH NON-CONSERVED TOPOLOGY

Figure 5.8: Time mean-square displacement, g3(τ), of the center of mass of N -monomer rings

in melt. (a) Melts of untangled rings. (b) Melts of rings in the presence of SC’s. (c) Melts

of permanently catenated rings. The insets display Ng3(τ)/τ as a function of τ . Curves of

different colors and with different symbols (color code and symbols are as in Fig. 5.5(b)) are

for different N ’s (see legends).

Single chain and network dynamics

We analyze first polymer dynamics in the different ensembles. To this purpose, as in the

previous chapter, we consider the mean-square displacement of the centre of mass of the chain

(Eq. (2.18)), g3, as a function of time τ . Unconstrained motion implies that g3(τ) ∝ τ/N

in the long-time regime. Fig. 5.8(a) shows that this is not the case for untangled rings, in

agreement with the original simulations by Schram and Barkema [112]. Conversely, introducing

SC’s into the system (Fig. 5.8(b)) removes the constraints and accelerates the dynamics to

the extent that g3(τ) is now proportional to 1/N (Fig. 5.8(b)). Then, by the right amount of

SC’s, it is possible to “fluidize” [93] the entanglements induced by the presence of uncrossable

strands and in this way to enhance the dynamics of the polymer system.

In agreement with that, by again turning off the SC activity and then “quenching” the

topology, polymer dynamics slows down dramatically (Fig. 5.8(c)) up to the complete arrest

(evident in the saturation of g3(τ) at large times). Slow-down for N = 40 and N = 80 is due

to the the fact that rings have linked into multi-chain structures (Fig.A.2(a, b) and Fig.A.3(a,

b) in Appendix A) which tend to move slower. Starting from N = 160 (Fig.A.2(c, d, e) and

Fig.A.3(c, d, e) in Appendix A) rings are locked together into a single, giant structure and,

therefore, unable to perform large scale diffusion, hence the reported saturation. This effect

confirms experimental reports [93] of a rubber-like plateau in the storage modulus of TopoII-

inactivated solutions of catenated DNA rings. Accordingly, the relative motion displayed by

rings with N = 160 (line with “N” symbols, Fig. 5.8(c)) is the consequence of the fact that

a non negligible amount of unconcatenated rings is still undergoing random diffusion (see

Fig.A.2(c) and Fig.A.3(c) in Appendix A). Notice that these dynamic effects appear on time
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Figure 5.9: Time auto-correlation function χ(τ) for two rings remaining linked on time scale

= τ in the presence of SC’s (Eq. (5.12)). The vertical dotted line corresponds to the time

scale λ−1SC = 104τMC for SC. The “?’s” mark the positions of the polymer self-diffusion times

τd(N) (see Table A.1 in Appendix A). Color code and symbols are as in Fig. 5.5(b).

scales larger than the imposed (Sec. 5.2.1) time scale λ−1SC = 104τMC for SC’s: on time scales

τ . λ−1SC, the three ensembles show the same subdiffusive behavior ∼ τ 0.85 characteristic [112]

of untangled rings.

To complement the analysis on ring dynamics (Fig. 5.8) in the presence of active SC’s, we

characterize now the interplay between ring motion and the “fluidization” [93] process induced

by the SC mechanism from the point of view of the formed polymer network. To this purpose,

we introduce the characteristic function C link
ij (t) = 1/0 between the pair of rings i and j being

linked/unlinked at time t, and calculate the corresponding time auto-correlation function:

χ(τ) ≡ 〈C
link
ij (t+ τ)C link

ij (t)〉
〈C link

ij (t)2〉 , (5.12)

where the average is taken over all possible pairs i and j.

The results for rings made of N monomers are shown in Fig. 5.9. Qualitatively, we identify

three regimes: (i) Below the SC time scale λ−1SC = 104τMC, χ(τ) displays power law decay. (ii)

This is followed by a second regime which, by increasing N , becomes slower than the first one

and attains a quasi-plateau. Intuitively, this is due to the fact that on such time scales both

linking and unlinking events may happen, while at times τ < λ−1SC we expect on average only

a single unlinking event. (iii) Finally, on time scales larger than the ring self-diffusion time

τd(N) (corresponding to the time scale for the polymer to spread over a distance the size of

its own mean gyration radius, g3(τd(N)) ≡ 〈R2
g(N)〉, see Table A.1 in Appendix A), the two

rings occupy, on average, distinct regions in space and χ(τ) decays as an exponential. The

“persistent” regime (ii) valid for long chains is particularly noteworthy, because it suggests



96 CHAPTER 5. MONTE CARLO METHOD WITH NON-CONSERVED TOPOLOGY

10 3 10 2 10 1 100 101 102
1

SC / d

1

2

3

4

D
SC

/D
un

ta
ng

le
d

N = 40
N = 80
N = 160
N = 320
N = 640

Figure 5.10: Asymptotic diffusion coefficient of rings with active SC’s normalized to the

corresponding values in untangled melts as a function of the inverse of the SC rate, λ−1SC / τd(N),

normalized to the ring self-diffusion time in untangled melts (see Table A.1 in Appendix A).

Color code and symbols are as in Fig. 5.5(b).

that with SC’s at work rings coalesce into a “dynamic” gel-like structure.

5.4 Discussion

Our melts of rings with active SC’s form transient networks (Fig. 5.9) which, in spite of

the non negligible amount of introduced linking (Fig. 5.6), move faster than in the untangled

case (Fig. 5.8, panel (a) vs. panel (b)). Physically this happens because SC’s operate at

a reasonably fast rate (λ−1SC = 104 τMC, see Sec. 5.2.1), guaranteeing rapid linking/unlinking

events which maintain rings only “loosely” entangled with each other.

By the same argument one may imagine that, by opportunely slowing down the SC rate λSC,

it ought to be possible to create systems of interlocked rings where topologically constraints

are temporary yet long-lived [166]: as a consequence, now chain dynamics is expected to be

slower than in untangled melts 7. Intuitively this situation can be realized by choosing λ−1SC to

be of the same order or larger than the self-diffusion time τd of rings in untangled melts since,

supposedly, during this time scale a single polymer has interacted with the chains to which it

is effectively able to link.

To validate this idea, which may be also tested experimentally, for instance by resorting to

DNA rings [93], we performed new simulations for the same melts of rings but with the two

7Notice that since, in the absence of the SC mechanism, rings must follow untangled dynamics, this is

equivalent to say rings diffusivities display non-monotonous behavior as a function of λSC.
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(a)

N = 640

(b)

Figure 5.11: (a) g3(τ)/τ : time mean-square displacement of the centre of mass of rings with

N = 640 monomers normalized to time τ . (b) χ(τ): time correlation function for two rings

remaining linked on time span τ in the presence of SC’s (Eq. (5.12)). Different colors and

symbols are for different SC rates λSC (see legend).

different rates λ−1SC = 105 τMC and λ−1SC = 106 τMC, i.e., ten and one hundred times slower than

the previous one. We have then estimated the asymptotic diffusion coefficients of the rings,

DSC, by best fits of the terminal behaviors of the corresponding mean-square displacements,

g3(τ)/τ (see Fig.A.5 in Appendix A), normalized to time τ .

The results (normalized to the corresponding values for untangled melts, Duntangled) vs.

the inverse of the SC rate, λ−1SC / τd(N), normalized to the polymer self-diffusion times in

untangled melts are shown in Fig. 5.10. The plots confirm our expectations: slow SC rates

result in melts with slower relaxation dynamics compared to the untangled case. Notice that

while the precise value of the SC rate affects the dynamics of the melt, static quantities like

the gyration radius of the ring or the Gauss linking number (see, respectively, Figs.A.5 and

A.6 in Appendix A) do not change for the different set-up’s.

It is also worth noticing that, even in those cases where SC accelerates the asymptotic

chain dynamics w.r.t. the untangled case, detailed analysis of g3(τ)/τ shows a regime where

the action of SC’s makes the rings temporarily slower (Fig. 5.11(a), the “λ−1SC = 106τMC”-curve

vs. the untangled case for N = 640 and on time scales τ/τMC . 105). On the same time

scales, the time auto-correlation function χ(τ) for link dynamics (Eq. (5.12), see corresponding

lines in Fig. 5.11(b)) becomes increasingly slower with λ−1SC, demonstrating that the observed

polymer slow down compared to the untangled case is the consequence of persistent links

between rings.
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5.5 Conclusions

In this chapter, we have presented part of my PhD work, which was primarily motivated by

recent experiments [93] employing the enzyme TopoII to induce “fluidization” of the topologi-

cal constraints arising in entangled solutions of DNA rings. To this end, we have developed of

a new dynamic Monte Carlo computational scheme for polymer chains which takes explicitly

into account the action of the enzyme by controlling the rate at which two nearby polymer

strands are able to cross through each other. Interestingly, the strand-crossing scheme, as

developed here, has been applied recently in [117] to model chromatin organization in cell

nuclei.

In this chapter, after the detailed description of the model, we have presented its first

application to ring polymers made of N monomers and in melt conditions, and we discuss how

the strand crossing mechanism influences both the static and the dynamic properties of the

chains.

At stationary conditions ring polymers swell with respect to the untangled (i.e., unknotted

and unconcatenated) case and stay non-ideal (Fig. 5.3). On the other hand, they tend to

become increasingly knotted (Fig. 5.5) and to form a macroscopic network of linked chains

(Fig. 5.6 and Fig. 5.7).

On the dynamics side, we show (Fig. 5.8) that the ability to produce strand crossings make

polymers faster and that large rings tend to “glue” together into a permanent gel as soon as

crossings are not let anymore. Yet an acceleration of the dynamics is not true in general, but

only when the rate for strand crossings is fast enough. In the opposite case the dynamics of

the melt may be even slower than the untangled case (Fig. 5.10), a prediction which might be

tested by using, again, DNA rings in the presence of TopoII.

We conclude on a technical remark. Notice that the model presented here is for flexible

chains (Sec. 3.2.3) while polymers in general, and DNA in particular [167], are typically semi-

flexible i.e. locally stiff [5]. In the next chapter, we will discuss on how the bending penalty

term, under the form of eq.(2.6) can change the properties of the polymer network.



Chapter 6

Topology and entanglement in dense

polymer systems

In this chapter1, we investigate the microscopic nature of the entanglement in dense poly-

mer systems. We prove in particular, that entanglements in polymer systems arise from the

topological interactions between polymers under the form of knots and links. One of our

key contributions is establishing a precise relationship between the entanglement length, Ne,

the phenomenological parameter at the basis of the tube model by Edwards (see Sec. 1.2.2),

and the overall topology of the polymer melt. Interestingly, our findings reveal that the en-

tanglement properties of the system can be accurately captured by considering 2-chain links

exclusively.

The chapter is structured as the following: in Sec. 6.1 we introduce and frame the interest

of the problem. In Sec. 6.2 we present the details of the simulated polymer systems and we

explain the shrinking algorithm developed for the calculation of the ring minimal path coupled

to the topological characterization of the systems and finally we illustrate the idea behind

the Z1-algorithm used for the calculation of the entanglement length. In Sec. 6.3 we present

the main results of our work, while in Sec. 6.4 we provide some discussion and conclusions

regarding the fundamental connection between knots, 2-chain and 3-chain links and the en-

tanglement length of the polymers. Additional figures have been included in the

Appendix B.

1The material described in this Chapter has been published in: Ubertini & Rosa, Macromolecules (2023) [3]

99
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6.1 Introduction

As already discussed in the first chapter, the viscoelastic behavior of concentrated solutions

or melts of linear polymer chains can be understood assuming [5, 14, 98] slow reptative flow

of each chain through the network of topological obstacles (entanglements) formed by the

surrounding chains. According to this picture, entanglements confine each chain within an

effective tube-like region of diameter dT ≈ 〈b〉nK
√
Ne/nK where 〈b〉 is the mean bond length,

nK is the Kuhn length of the polymers (in monomer units 2) accounting for the fiber stiffness

while the topological entanglement length Ne is the characteristic, material-dependent [168–

170], length scale marking the crossover from non-entangled to entangled polymer behavior.

Then, the mean size or gyration radius 〈Rg〉 of polymer chains with contour length N & Ne

follows the power-law behavior

〈Rg〉 ∼ dT

(
N

Ne

)1/2

∼ 〈b〉nK
(
N

nK

)1/2

, (6.1)

and all the essential structural and dynamical information on the melt can be understood in

terms of the single parameter Ne. As discussed in Sec. 1.2.2, estimating Ne is a challenging

problem [25, 168, 171], although considerable progress has been made (at least in numerical

simulations) in terms of primitive path analysis [20, 27, 28, 30] (PPA).

Alternatively, polymeric entanglements may be also modeled as physical links between

chains [13, 15–22]. Specifically, the idea is “to map” the system of entangled chains to an

equivalent one of randomly entangled (namely, self-knotted and linked) ring polymers and

employ suitable topological invariants [143] in order to identify and then classify – in a math-

ematically rigorous manner! – the total amount of entanglements of the melt and connect

them to the macroscopic viscoelastic behavior.

The connection between the two pictures is, however, not that straightforward: mainly,

the reason is that the complete statistical-mechanical classification of a polymer melt would

require an infinite set [16, 18] of topological invariants in terms of pairs, triples, etc... of loops.

At the same time, efforts have been put towards the development of analytical theories [32]

which turned out to be mathematically hard, involving the mapping of the polymer systems

into complex field theories. Unfortunately this approach has demonstrated feasibility only for

two polymers systems.

Motivated by these considerations, in this chapter we rethink the problem of characterizing

a melt of entangled polymer chains in terms of topological invariants and outline, in a quanti-

2In this chapter, polymer contours are measured in monomer units and termed (for compactness and with

abuse of language) “lengths”: so, nK and Ne are, respectively, the Kuhn and the entanglement length of the

polymer. Conversion to “true” length is obtained by multiplying for the mean bond length 〈b〉
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a) Whitehead link b) Borromean rings

Figure 6.1: Examples of ring polymer structures with Gauss linking number (GLN, see

Eq. (4.3)) equal to 0. (a) Two rings intertwined in the Whitehead link 52
1. (b) Three rings

clustered into the Borromean conformation 63
2. Both conformations have been extracted from

numerical simulations of ring polymer melts after the minimization procedure described in

Sec. 6.2.2. To name the conformations here and in the rest of the text, we have used the

classical nomenclature introduced in Rolfsen’s book (see Secs. 4.1 and 6.2.3).

tative manner, the connection between the latter and the topological entanglement length of

the chains. More specifically, we perform extensive computer simulations of randomly knot-

ted and randomly concatenated ring polymers at dense conditions and different values of the

bending stiffness of the polymer fiber as models for entangled polymer systems.

Then, we get inspiration by PPA and by the recent work of Bobbili and Milner [22],

where melts of randomly linked and knotted ring polymers were simulated and then, trough a

“shrinking” algorithm, the instantaneous primitive paths of the polymer rings were visualized

and entanglement properties of the systems were studied. Similarly, we construct an algorithm

for contracting on lattice the contour length of each ring in the melt to its “primitive” or

“minimal” length which does not violate the topological constraints with the other rings. The

conformational properties of the primitive ring structures are thus explored at the single-ring

level (knots), between any rings’ pair (see the Whitehead link in Fig. 6.1 (a)) and between

any rings’ triplet (see the complex Borromean configuration in Fig. 6.1 (b)). By looking at

the relative abundance of these topological structures as a function of the bending stiffness of

the polymers, we combine them into a proxy for the quantitative prediction of the number of

entanglement lengths, N/Ne, of the polymers.
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κbend/(kBT ) 〈b〉/a 〈cos θ〉 nK

0 0.733 0.186 1.965

1 0.695 0.455 3.157

2 0.663 0.638 5.118

Table 6.1: Values of physical parameters for the ring polymer melts investigated in this paper.

a is the unit distance of the fcc lattice and the monomer number per unit volume is = 5
4

√
2a−3,

as in Chapter 3. (i) κbend, bending stiffness parameter in stat. mech. thermal units kBT ,

where kB is the Boltzmann constant and T is the temperature; (ii) 〈b〉, mean bond length;

(iii) 〈cos θ〉, mean cosine value between two consecutive bonds along the chain; (iv) nK , Kuhn

length.

6.2 Model and methods

6.2.1 Polymer model

Model systems of M randomly knotted and concatenated ring polymers of N monomers

each were prepared based on the kinetic Monte Carlo (kMC) algorithm illustrated in Sec. 2.1.2

complemented with the strand-crossing moves introduced in Chapter 5. Ring conformations

were equilibrated through long runs at the average monomer number per lattice site = 5
4

= 1.25

or unit volume = 5
4

√
2a−3 corresponding to melt conditions (the same of Chapter 3). As

in Chapter 3, we module the Kuhn segment nK through the bending penalty Hamiltonian

H = −κbend
∑N〈b〉/a

i cos θi, consequently chains become locally stiffer with κbend. Table 6.1

summarizes (i) the mean bond length 〈b〉, (ii) the mean cosine value 〈cos θ〉 between two

consecutive bonds along the chain3, (iii) the Kuhn length nK , as a function of4 κbend.

The simulation box of linear size Lbox has periodic boundaries for the enforcement of

bulky melt conditions. By fixing the total number of monomers to the convenient value

= 134, 400, we have that Lbox/a = 30
√

2. In this paper, we have studied polymer melts with

N ×M = (40× 3360, 80× 1680, 160× 840, 320× 420, 640× 210).

As in Chapter 5, we introduce random strand crossing between nearby polymer strands at

the fixed rate of one per 104 kMC elementary steps. In this way, we induce the violation of the

3The values for 〈b〉 and 〈cos θ〉 (see Tab. 6.1) are in excellent agreement with the ones for melts of unknotted

and non-concatenated rings studied in Chapter 3 (see Table 3.1). The local properties of the polymer fiber

are hence not affected by the different topological states of the chains.
4The values in Tab. 6.1 for nK are extracted from corresponding dynamic simulations of linear polymers,

see Chapter 3 for details.
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Figure 6.2: Mean-square gyration radius 〈R2
g〉 for melts of unknotted and non-concatenated

rings (data from Chapter 3) and randomly linked rings as a function of the total number of

monomers per ring, N . Panels from left to right are for bending stiffnesses κbend/(kBT ) =

0, 1, 2 (see label).

topological constraints and obtain equilibrated melts of rings with intra-chain (i.e., knots) and

inter-chain (i.e., links) non-trivial and randomly-generated topologies. By construction then,

the algorithm generates rings with annealed topologies, in other words our ring conformations

represent a thermodynamic ensemble of melts of randomly knotted and concatenated rings at

the given density for different polymer lengths N and bending rigidities κbend.

As for the other Chapters, to ensure proper system equilibration as well as accurate polymer

statistics, we wait for the systems to reach the plateaus in the single monomer mean square

displacement in the reference frame of the centre of mass (Eq. (2.19)), g2. Accordingly, the

time scale to reach the corresponding plateau corresponds to the portion of the trajectory

that has been discarded from the computation of the relative observables (see Fig. B.1 in Ap-

pendix B). The total computational cost of the simulations goes from 2× 106τMC for N = 40

and κbend/(kBT ) = 0 to 7× 107τMC for N = 640 and κbend/(kBT ) = 2. As in the previous

chapters, here, τMC, the MC “time” unit, is equal to N ×M kMC elementary steps.

Violation of topological constraints by random strand crossing induces a massive reorga-

nization of the statistics of polymer chains. As studied in Chapter 5, while unknotted and

non-concatenated rings remain compact with asymptotic mean gyration radius following the

power-law

〈Rg〉 ∼ N1/3 ,

randomly knotted and randomly linked melt of rings swell as

〈Rg〉 ∼ N1/2 ,

i.e., locally they become equivalent to melts of linear chains (see Eq. (6.1) and Fig. 6.2). Fur-

thermore, the distinctive anti-correlation of the bond-vector correlation function (see Eq. (2.15)),
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Figure 6.3: Bond-vector correlation function c(n) (see Eq. (2.15)) as a function of the effective

monomer length, n/Ne, normalized with respect to the entanglement length Ne. The l.h.s.

panel corresponds to melts of unknotted and non-concatenated rings (data from Chapter 3).

R.h.s. panel corresponds to randomly linked rings studied in this chapter. Lines of equal color

are for the same chain stiffness (κbend in units of kBT , see legend), full colors are for the

longest rings (N = 640), while lines in fainter colors are for chains of shorter contour lengths

(see arrow’s direction). The long-dashed lines correspond to the exponential decay typical of

linear polymers with local stiffness, i.e. c(n) = 〈cos θ〉n.

c(n), as a function of the effective monomer length separation, n, along the chain reported in

melts of unknotted and non-concatenated rings (see Fig. 3.8), disappears in randomly linked

systems (see Fig. 6.3), whose behavior is close to the one for linear chains (see dashed lines).

Overall, we may conclude that randomly linked rings reproduce the essential features of

entangled linear polymer chains in melt. In the next, we will use these systems to investigate

the microscopic nature of entanglements by means of the rigorous language of topological

invariants.

6.2.2 Algorithmic pipeline to rings minimal paths

In order to detect and classify topological interactions in equilibrated melts of entangled

rings, we introduce a simple “shrinking” algorithm which takes explicit advantage of the

presence of stored lengths along the contour length of each chain. Specifically, the algorithm

consists in iterating the following steps:

1. We remove away all the stored lengths from the polymers. Of course, this excision

process leads to a reduction of the total contour length of each chain. Notice that –

by construction – this does not lead to violations of the topological constraints, neither

intra-chain ones (such as knots, for instance) nor between different chains (i.e., links).
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shrinking shrinking
Shrinking

Figure 6.4: Left, knotted conformation of a ring with N = 640 monomers before applying the

“shrinking” algorithm. Right, correspondent minimized conformation, here, it is clear that the

knot corresponds to a trefoil (see Sec. 4.1). The polymers color transitions from blue to red

from one chain’s end to the other.

2. After the excision, we perform a short MC run (of the order of 10−100τMC) under global

preservation of topological constraints (i.e., without strand crossing). In general, this

step leads to formation of new units of stored length which, in turns, will be removed

by the next implementation of step (1), and so on.

We apply then these operations, individually, to single chains (Sec. 6.3.1 and see Fig. 6.4), pairs

of chains (Sec. 6.3.2) and triplets of chains (Sec. 6.3.3). In all these cases, the procedure stops

when the number of monomers of each shrinking chain has not changed for 300 consecutive

iterations: in this case, we assume that each chain has reached its minimal shape.

To validate the algorithm, we have tested it first on the “trivial” case of unknotted and

non-concatenated ring polymers in melt. We have thus verified that shape minimization of

rings taken one by one or simultaneous application of the procedure on the whole melt leads

to what is expected based on intuition: that individual rings shrink to single points. Then,

by our algorithm, we may isolate unknotted and non-concatenated configurations from those

with non-trivial topologies.

6.2.3 Classification of knots and links

Following the contour length simplification outlined in Sec. 6.2.2, we have investigated

the statistical abundance of the following topological objects: (i) knots in single ring poly-
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mers (Sec. 6.3.1); (ii) links between pairs of ring polymers (2-chain topological structures,

Sec. 6.3.2); (iii) links between triplets of ring polymers (3-chain topological structures, Sec. 6.3.3).

We do not proceed beyond (iii) because, although in principle the procedure can be applied to

even larger groups of rings, the factorial growth of possible combinations makes the analysis

tediously lengthy from the computational point of view. On the other hand, it will be shown

(Sec. 6.3.4) that this is perfectly adequate to capture the entanglement length Ne.

Notation

In referring to a given knot or link we follow the standard Rolfsen convention [149] as

explained in the Chapter 4. Namely, a knot or a link is defined by the symbol Kp
i where: K

represents the number of irreducible crossings of the knot (or the link), p is the number of

rings which takes part in the topological structure (e.g., p = 2 for links between two rings)

and i is an enumerative index assigned to distinguish topologically inequivalent structures with

the same K and p. For knots in single rings p = 1 is tacitly assumed and, as an example, the

simple trefoil knot is identified by the Rolfsen’s symbol 31.

Topological invariants

As discussed in Chapter 4, non-trivial knots and links can be detected and hence classified

by means of suitable topological invariants [78, 143]. In this chapter, we resort to the Jones

polynomials [172] (see Sec. 4.2) which assign to each knot a distinctive algebraic polynomial.

Specifically, we use the implementation of the Jones polynomials featured in the Python

package Topoly [173] in order to recognize and categorize knots within single ring polymers

and, in this way, benchmark the simplification algorithm of Sec. 6.2.2. Moreover, and as

for links alone 5, we also consider the simpler Gauss linking number (GLN), introduced in

Sec. 4.3 Eq.(4.3): As discussed in Sec. 4.3, while intuitive and easier to compute with respect

to the Jones polynomials, the GLN has nonetheless severe limitations [78]. It is in fact widely

known that, while GLN 6= 0 means that the two rings are linked, the opposite (GLN = 0)

5The shrinking algorithm can be used to isolate structures of linked rings, yet it is easy to realize that

some care has to be taken due to the fact that two or more shrinking rings may be stuck in non-trivial shapes

either because they are effectively linked or because, although not linked, they are both non-trivially knotted.

To remove such a possible ambiguity, we assign two rings a link if the spatial distance between their centers

of mass is < 2Rg where Rg is the mean gyration radius of the chain. For 3-ring link detection, this same

criterion has been applied to each ring pair in the triplet. We also mention that – and only for the purpose of

the detection – before minimization each of the examined structures should be placed at the center of a large

box ensuring that no spurious entanglements emerge as a consequence of the periodic boundary conditions

introduced in the model.
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is not necessarily true. Take for instance the example shown in Fig. 6.1(a), i.e. the so

called Whitehead link 52
1, constituted by two irreducibly linked rings and yet GLN = 0. On

top of that, one may imagine even more complex situations such as the one displayed in

Fig. 6.1(b) (the so called Borromean conformation 63
2) where 3 rings, which are two-by-two

non-concatenated, are irreducibly linked: such structures are, obviously, also not detected by

Eq. (4.3). In the course of the paper (Sec. 6.3), we will show how these structures (which

elude Eq. (4.3)) can be properly detected and, then, how to quantify their impact on the

entanglement properties of the melt.

6.2.4 Calculation of the entanglement length

By following the approach by Bobbili and Milner [22] for molecular dynamics simulations

of a melt of seemingly shrunk and randomly linked ring polymers, we estimate Ne by applying

the recent version (Z1+ [174]) of the Z1-algorithm [28, 175–177]. The Z1-algorithm is based

on the same idea of PPA (see Sec. 1.2.2), but differently from PPA, the minimal paths of

polymer melts are recovered by the implementation of a series of geometrical operations which

transform the entangled polymer chains in a collection of straight segments which are sharply

bent at the entanglement points, then one may estimate Ne as the average length of these

straight segments. In particular, the Z1+ version takes explicitly into account the role of chain

self-entanglements (knots) during the determination of Ne. The effects of it will be discussed

in Sec. 6.3.4.

6.3 Results

In the next, we will describe results concerning the appearances of knots (Sec. 6.3.1)

and links (Secs. 6.3.2 and 6.3.3) in melts of entangled randomly linked rings of different

chain length and bending stiffness. Then (Sec. 6.3.4), we will show how to establish a direct

connection between the topology of links and the entanglement length of the chains. While we

have considered different chain lengths (Sec. 6.2.1), covering the full crossover from loosely to

strongly interpenetrating polymers, for brevity we will present many results only for the most

representative and longest chains with N = 640.

6.3.1 1-chain topological structures, knots

First, we have applied our algorithm (Sec. 6.2.2) to detect knots in single rings and, to

prove its reliability, we have applied the Topoly tool (Sec. 6.2.3) to the simplified ring shape
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Figure 6.5: (Left) Punknot, probability that a ring is unknot as a function of the number of

monomers, N , and for different bending stiffness, κbend. The shrinking algorithm (solid lines)

and Topoly (dashed lines) are in perfect agreement. (Right) 〈Lmin〉, average minimal contour

length of rings with N = 640 monomers as a function of the knot crossing number, K, and

for different bending stiffness, κbend. Each error bar corresponds to the standard deviation

calculated for the ring population at the respective crossing number K. The data are well

described by the simple power-law behavior ∼ K0.81 (dashed line). The generic label “> 12”

follows from the fact that Topoly is unable [173] to recognize properly knots with > 12

crossings.

in order to classify the relative knot type.

As a result, we have always found a non-trivial Jones polynomial in correspondence of

those rings which do not shrink to a point, in other words the shrinking algorithm recovers

knots successfully and map one-to-one to the results obtained by Topoly, see Fig. 6.5 (l.h.s.

panel) for the probability Punknot that a ring is unknot as a function of the monomers number

N and at different bending stiffness κbend.

Overall Punknot is always a decreasing function of the polymer length N , a result in line [178,

179] with other generic polymer models. At the same time, for fixed N , Punknot decreases as

a function of κbend or stiffer rings are more likely to form knots with respect to more bend-

able ones and this difference appears growing with N : this feature seems also quite general

having been reported recently in the context of computer simulations of isolated semiflexible

ring polymers [180] and for linear polymers in melt [181]. Notice, however, that the prob-

ability to observe a knot remains small (for κbend/(kBT ) = 2 and N = 640, this is only

= 1 − Punknot ≈ 14%). Again, this is in qualitative accord with [180] although knots here

seem slightly more likely in the range of values (1− Punknot . 5% in [180]): arguably, this is

the consequence of considering polymers at melt conditions and not isolated chains.

While Jones polynomials (as well as any other topological invariant) inform us on the knot
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type “trapped” within the ring, by our shrinking algorithm we may also quantify the “amount”

of topological entanglement “stored” within a non-trivial knot in terms of the corresponding

“minimal” contour length: in particular, rings hosting “simpler” knots (i.e., low-crossing knots)

shrink more and occupy less primitive length in comparison to more complicate knots.

To show this, we have computed the mean value, 〈Lmin〉, of the ring minimal contour

length as a function of the crossing number K characterizing the hosted knot. In principle

the ring minimal contour length is a random quantity because the shrinking procedures goes

stochastically, on the other hand we see that the fluctuations are, for each knot type, compara-

bly small (Fig. B.2 in Appendix B), i.e. the minimization procedure converges to a well defined

minimal shape, which is connected to the “ideal” knot concept developed in [182]. Notably

〈Lmin〉 is a genuine topological signature, it is almost insensitive to the bending stiffness κbend

(see Fig. 6.5 (r.h.s. panel)) and it grows with the characteristic power-law Kα with α ' 0.81

(dashed line). Interestingly, the same power-law behaviour in relation to the scaling of the

minimal rope length required to tie a non-trivial knot into a flexible rope has been reported

recently [183]: we conclude then that, for a given knotted ring, our minimization algorithm

converges to the corresponding minimal knot structure. Moreover, and again in agreement

with [183], we find that the so called alternating knots, namely knots where crossings alternate

under/over when moving along the filament, display bigger 〈Lmin〉 and are less frequently seen

(Figs. B.2 and B.3 in Appendix B), respectively, for K ≥ 8 only 6) than the non-alternating

ones for the same number of crossings.

6.3.2 2-chain topological structures, links

After having investigated the amount of knots, we turn our attention to the topological

interactions between pairs of rings.

To this purpose, we have devised the following way to distinguish between those links

which have Gauss linking number (Eq. (4.3)) GLN 6= 0 and links with GLN = 0 (such as

the Whitehead link, see Fig. 6.1(a)). A link between two closed chains with GLN = 0 can

be unlinked by performing a certain number of crossings between strands of the same chain,

while the ones with GLN 6= 0 can not be simplified and would remain linked. According to

that, we have applied the shrinking procedure to the two rings in the two distinct manners: (i)

straightforwardly as described in Sec. 6.2.2; (ii) with intra-chain crossing allowed. In this way,

the excess of links between pairs of rings with GLN = 0 can be measured as the “difference”

between (i) and (ii). In order to test the robustness of this procedure, we have computed the

corresponding Jones polynomial for the linked rings which display GLN = 0. In the end, it

6As known from Rolfsen [149], the non-alternating knots start with at least 8 crossings.
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Figure 6.6: (Left) 〈n2link(|GLN|)〉, mean number of 2-chain links per ring with absolute

Gauss linking number |GLN|. (Right) P (K2
i |GLN = 0), fractional population of 2-chain links

K2
i (termed according to the Rolfsen’s convention [149]) having GLN = 0. Here, as well

as in the r.h.s. panel of Fig. 6.7 and Fig. B.3 in Appendix B, error bars are estimated by

assuming the formula for simple binomial statistics for the probability of observing a given

link (knot, in Fig. B.3 in Appendix B) type in the total population. Empty/full circles are for

alternating/non-alternating links while vertical dotted lines separate link classes with the same

number of crossings. The displayed link labels correspond to those links appearing with the

highest frequency in their class of number of crossings K. The generic label “> 9” follows

from the fact that Topoly is unable [173] to recognize properly links with > 9 crossings. In

both panels, data refer to rings with N = 640 and different bending stiffness κbend.

turns out that only the pairs of rings which emerge as non-trivially linked feature non-trivial

Jones polynomials as well.

The mean number of links per chain with absolute Gauss linking number |GLN|, n2link(|GLN|),

for rings with N = 640 and different bending stiffness is shown in the l.h.s. panel of Fig. 6.6

and in Fig. B.4 in Appendix B for the other polymer lengths. We find that links are mainly

simple Hopf links (i.e., |GLN| = 1), while links with GLN = 0 are rare and have frequency

in between that for |GLN| = 2 and |GLN| = 3. More complex links follow an exponentially-

decaying distribution, in agreement with Chapter 5 (see Fig. 5.6).

Finally, there exist many possible types of non-equivalent links for GLN = 0 and we have

further investigated, by the Jones polynomials, which structures emerge and their relative

abundance (Fig. 6.6, r.h.s. panel). As one may see, polymer conformations are dominated by

the Whitehead link (Rolfsen’s symbol: 52
1) which, of course, is the simplest one in terms of

crossings. Nonetheless, we report a remarkably complex spectrum of link types which is very

little affected by the bending stiffness of the chains. In particular, at number of crossings ≥ 7,

we find that the most abundant links result to be the non-alternating ones with probabilities
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Figure 6.7: (Left) 〈n3link〉, mean number of different 3-chain structures per ring. (Right)

P (K3
i |irreducible), fractional population of 3-chain links K3

i (termed according to the Rolfsen’s

convention [149]) belonging to the poly(2)catenane+1-ring and Brunnian classes (see text for

details). These are “irreducible” with respect to the simpler compositions of 2-chain links.

As in Fig. 6.6, empty/full circles are for alternating/non-alternating links while vertical dotted

lines delimit link classes with the same number of crossings. Similarly, the generic label “> 9”

follows from the fact that Topoly is unable [173] to recognize properly links with > 9 crossings.

In both panels, data refer to rings with N = 640 and different bending stiffness κbend.

significantly higher than the alternating ones. The only notable exception is for 9 crossings

where the non-alternating 92
47 occurs with the same frequency of 92

5 and 92
10 which are indeed

alternating: overall, though, all these links are very rare.

6.3.3 3-chain topological structures, links

We consider now topological structures between ring triplets. To fix the ideas, we notice

that 3-chain links can be grouped as the following: in one group those links that can be “re-

duced” in terms of the “composition” of simpler 2-chain structures as those seen in Sec. 6.3.2,

while in the second group we place all the others which can be then called irreducible (see

Fig. 4.4 in Sec. 4.1).

Those belonging to the first group are: (a) poly(3)catenanes, chains made of three rings

in which two non-concatenated rings are connected to a common ring and (b) triangles,

triplets of rings which are two-by-two concatenated. Thanks to the detection of pairwise

links (Sec. 6.3.2) their presence can be efficiently assessed. The presence of these structures

has been amply documented in melts of concatenated rings [81], in particular they can be

identified – subject to the limitations discussed in Sec. 6.3.2 – via the summation of pairwise

concatenations and the relative GLN. On the other hand, irreducible three-chain links – which

fail detection by decomposition into pairwise links – can be divided further in two classes: (c)
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poly(2)catenane+1-ring, structures made of a poly(2)catenane (i.e., a pair of concatenated

rings) plus another ring which is not directly concatenated (in a pairwise manner) with any of

the two’s, and (d) Brunnian links, non-trivial links which become a set of trivial links whenever

one component ring is unlinked from the others (the Borromean conformation in Fig. 6.1 (b)

constitutes the easiest example).

In order to characterize the relative abundance of each of these structures, we have studied

the mean number of different 3-chain links per ring, 〈n3link〉. We find (Fig. 6.7, l.h.s. panel)

that links take part maximally to poly(3)catenane and triangle structures, yet, although rarer,

the other two classes appear in detectable amounts. Notably, as for single knots and 2-chain

links (l.h.s. panels of Fig. 6.5 and Fig. 6.6), abundance of 3-chain structures increases with

chain stiffness. As for the links, within the (c) and (d) classes we have analyzed the different

topological inequivalent concatenated structures with Topoly. Due to the complexity of the

analyzed structures, Topoly is unable to classify them properly in about 50% of the cases after

9 crossings. As for the successfully determined links (Fig. 6.7, r.h.s. panel), we get that the

most abundant links are 63
2 (i.e., the Borromean rings) and 83

9 (which belongs to class (c)).

Again, at fixed number of crossings, the most abundant structures are the non-alternating ones

(83
5, 93

10 and 93
12 are all alternating), thus highlighting the preference towards non-alternating

linked structures.

6.3.4 Quantitative connection to the entanglement length Ne

By applying the shrinking algorithm to the whole melt, topological interactions of any

order are taken into account and, finally, we can assess their contribution to the topological

entanglement length Ne (Eq. (6.1)).

In general, the process of shrinking reduces the contour length of each ring inasmuch the

topological constraints allow. Thus, if a ring is unknotted and non-concatenated it will shrink

to a point and it will be not taken into account since it is assumed to not contributing to the

entanglement length of the chains 7. Conversely, the more the rings are entangled the less

they will shrink. Then we apply (see Sec. 6.2.4 for details) the Z1-algorithm [28, 174–177] on

the shrunk structures and estimate Ne by that.

Fig. 6.8 (main panel, solid lines) shows the values of Ne as a function of N and for the

different bending stiffness κbend. In all cases Ne(N) tends to an asymptotic value (Ne =

[40.(2), 24.(5), 16.(5)] for N = 640 and for κbend/(kBT ) = 0, 1, 2, respectively): interestingly,

by rescaling both x- and y-coordinates by the corresponding asymptotic value the distinct

curves collapse onto each other (Fig. 6.8, inset). Notice also that the characteristic large

7A similar assumption was made in [30] regarding the PPA analysis of polymer networks.
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values of Ne measured at small N are due to the fact that rings are loosely linked, in contrast

at larger values of N rings result to be concatenated into a single percolating network of

concatenated rings (see Fig. B.5 in Appendix B).
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Figure 6.8: Entanglement length, Ne, as a function of the number of monomers per chain,

N , and for different bending stiffness, κbend. Solid and dashed lines are, respectively, after

including/removing self-entanglements (knots) through the Z1-algorithm (see technical details

in Sec. 6.2.4). Inset: x- and y-coordinates of data with self-entanglements normalized by the

corresponding asymptotic value, Ne(N = 640), of the entanglement length.

While, as in Chapter 3, Ne decreases as polymers become stiffer, it is worth comparing these

values to the ones (Ne = [80.37(9), 29.76(4), 13.08(8)]) obtained in Chapter 3 by applying

Eq. 1.6 which is based on theoretical results based on PPA. For κbend/(kBT ) = 0 the Z1 value

is twice the PPA one: this discrepancy was already noticed in previous works [177, 184, 185]

and explained as the consequence of orientational correlations between subsequent primitive

path segments. Interestingly the discrepancy almost disappears in semiflexible melts with

κbend/(kBT ) = 1, 2, suggesting that the corresponding correlations are limited to polymer

chains which are quite flexible on the entanglement scale (loosely entangled [31]).

As for the possible role of self-entanglements (i.e., knots), they influence Ne only marginally

(compare solid and dashed lines in Fig. 6.8), in agreement with the result (Sec. 6.3.1) that

only a small fraction of the rings (≈ 10%) display knots. Nonetheless, when compared to the

similar analysis published in [30] on the role of knots in entangled melts of linear polymers, the

differences reported by us here appear (especially for the more flexible case κbend/(kBT ) = 0)
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Figure 6.9: Number of entanglements per ring, N/Ne, as a function of the mean linking

degree, 〈LD〉, computed (see Eq. (6.2)) by taking into account the contribution from 2-chain

links solely (left) and after including (right) also the contribution of 3-chain links.

slightly stronger. A likely explanation for this result is the possible role of the ring closure: in

fact, we will see (read the discussion in Sec. 6.4) that linear chains of comparable length are

significantly less knotted than their ring counterparts.

Finally we show how to connect, in a quantitative manner, Ne to the linking properties of

the rings (see Secs. 6.3.2 and 6.3.3). To this purpose, we define the ring mean linking degree

〈LD〉 as:

〈LD〉 = 〈 1

M

M∑
i=1

M∑
j=1

χij Cij〉 , (6.2)

where each sum runs over the total number of chains (M , see Sec. 6.2.1) in the melt and

the average is over the sampled configurations of randomly concatenated and knotted rings.

Cij is the M ×M matrix expressing the concatenation status between rings i and j, and it is

defined as

Cij =



0 , if i = j

1 , if i 6= j and form a 2-chain

or a 3-chain irreducible link

0 , otherwise

(6.3)

The “weight” factor χij takes into account the “complexity” of the 2-chain (Sec. 6.3.2) and

the 3-chain (Sec. 6.3.3) links: (i) for 2-chain links, χij = |GLN| or = K
2

depending on whether

GLN 6= 0 or GLN = 0 respectively; (ii) for 3-chain links, χij = K
6

. Here, K is the number of

crossings characterizing the link or, in other words, each crossing of the link contributes 1/2
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to an entanglement point.

Fig. 6.9 (l.h.s. panel) shows that, by only taking into account the contribution of 2-

chain links and in the large-chain limit, Eq. (6.2) accounts remarkably well for the number of

entanglements, N/Ne, of each chain. Further inclusion (r.h.s. panel) of 3-chain links adds

only a small contribution, otherwise it does not improve the agreement significantly.

This is probably the most important result of this chapter: it says that 2-chain links

alone capture almost completely the nature of the entanglement length Ne and that, through

Eq. (6.2), a true quantitative connection between them can be established.

6.4 Discussion and conclusions

Understanding the microscopic nature of topological constraints in melts of polymer chains

is a long-standing, classical [15, 16, 168, 171] problem in soft matter physics. In this chapter,

we have characterized accurately the topological state of melts of randomly knotted and

concatenated ring polymers used as models for (long) linear polymer systems and, then, show

its relationship with the entanglement length Ne of the chains which is the central quantity

of any rheological theory [5, 14, 98]. In particular, we have demonstrated (Fig. 6.9) that the

ring mean linking degree 〈LD〉, which accounts for the mean number of entanglement points

of each chain in the melt, is a prior for the number of entanglements N/Ne which points to

a non-trivial connection between the topology of the chains and the rheological entanglement

of the system. Interestingly, the quantitative matching between 〈LD〉 and N/Ne is already

remarkably accurate only by including the contributions up to the simplest 2-chain linked

structures suggesting that, at least for the chain lengths examined here, links of higher orders

contribute negligibly.

We wish to conclude by discussing more carefully our assumption (see Introduction 6.1)

that ring melts can be used to understand entanglement in linear melts. To this purpose, we

have analyzed the occurrence of knots and links in melts of linear chains with8 N = 320 and

for the same physical parameters (i.e., density and bending stiffness) employed for ring melts.

The comparisons for the unknot probability (Punknot), and the mean number of 2-chain links

with absolute Gauss linking number |GLN| (〈n2link(|GLN|)〉) are reported in Fig. 6.10 (top

and bottom row panels, respectively).

For the same N = 320, knots are clearly less abundant in linear than in ring melts and

we ascribe it to the closure constraint that may enhance knots’ formation in rings compared

8We have considered melts of linear chains with N = 320 and compared their properties to those of ring

melts with N = 640 (see Fig. 6.10). The rationale being that, for contour lengths . N/2, the effect of ring

closure should be less impacting on the properties of the chains.
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Rings
Linear

Figure 6.10: (Top row) Comparing the unknot probability, Punknot, for ring melts (circles /

solid lines, same as in Fig. 2 (left panel) in the main text) vs. the one for linear melts with

N = 320 monomers per chain (open squares, details on the simulation runs can be found

in 3). The abundance of knots in linear melts have been quantified by using Topoly [173],

with the following prescription: (i) each of the two free end monomers of a single linear chain

is connected to a randomly chosen point on a large spherical surface containing the whole

chain; (ii) those added points are joined together through an arc on the sphere; (iii) the Jones

polynomial associated to the now closed curve is calculated. This (stochastic) procedure is

repeated several times, then the knot associated to the chain is the one corresponding to the

most probable Jones polynomial between those calculated for the distinct random closures.

(Bottom row) Comparing the mean number of 2-chain links per polymer with absolute Gauss

linking number |GLN|, 〈n2link(|GLN|)〉, for the same linear melts (open squares / dashed

lines) and for ring melts with N = 640 monomers per chain (circles / solid lines, same as in

Fig. 6.6 (left panel). Notice that the measured GLN (Eq. 4.3) between two linear chains is,

typically, a real – instead of an integer – number: then, to ensure a fair comparison to the

rings’ result, we round the GLN of linears to the corresponding nearest integer.
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to linear chains. On the other hand, 2-chain links with |GLN| = 1 (i.e., the responsible ones

for the topological entanglement length Ne, see Fig. 6.9) are completely equivalent for the

two architectures. Together with the finding (Fig. 6.8) that knots play a marginal role in

determining Ne, this result reinforces the important result of this chapter: that the physics of

the polymer entanglement length Ne can be captured by 2-chain links solely.

Finally, while this chapter is mostly focused on understanding the relation between the

rheological entanglement of the melt and the microscopic topological state of its constituent

chains, model conformations of randomly knotted and concatenated rings can be adopted as

in Chapter 5 to understand the mechanisms of synthesis of so called Olympic gels, namely

polymer gels made of randomly linked rings like the ones now realized by using DNA and

cutting restriction enzymes [93].

In particular, the possibility to perform fine tuning of the fiber parameters allow to foresee in

great detail how one can benefit from the topological properties of the gel and design materials

with certain specificities. For instance, a by-product of the present chapter concerns how the

polymer length, combined with the bending stiffness of the chain, influence the topology of the

resulting structure. Depending on κbend, there is a different critical N for which a percolating

network of concatenated rings appears (Fig. B.5 in Appendix B), in particular longer and

stiffer rings typically produce more robust networks. Moreover, depending on N and κbend the

networks are constituted by a complex zoo of catenation motifs: Hopf links, which are the most

abundant for all considered N and κbend (Fig. 6.6 (l.h.s. panel) and Fig. B.4 in Appendix B),

some more complex links with GLN = 0 (e.g, the Whitehead link) and |GLN| > 1 or links

involving 3-chain structures whose abundances grow with N and κbend (see Fig. 6.6 (r.h.s.

panel) and Fig. 6.7).

These considerations highlight the topological complexity which may arise in Olympic

gels made up by strand-crossing rings as in [93] and how topology can be fine regulated by

controllable external parameters such as N and κbend.





Chapter 7

Olympic networks under

slit-confinement

In this chapter1, we investigate how the geometry of the box, under the form of slit-like

confinement, can influence the properties of systems of randomly knotted and concatenated

polymer rings used for modelling Olympic polymer networks as in Chapters 5 and 6. The

results suggest that confinement can be used to fine-tune the mechanical properties of the

polymer network. In particular, confinement biases the synthesis of networks that are softer

to mechanical stress.

The chapter is structured as the following. After a brief introduction in Sec. 7.1, in

Sec. 7.2 we describe the polymer system under study, introducing the relevant length-scales

with respect to the slit-confinement applied to the system. Then, in Secs. 7.3 and 7.4, we

present and comment the main results of the work providing discussion regarding the role of slit

confinement in shaping both single-chain and inter-chain properties of the resulting polymer

networks. Additional figures have been included in the Appendix C.

7.1 Introduction

As already discussed in Sec. 1.4.1, recent years have witnessed a growing interest in the

design of so called smart materials, such polycatenanes and polyrotaxanes [186, 187], whose

microscopic components are constituted by ring polymers interlocked to each other by topo-

logical links that can be artificially synthesised following precise chemical routes.

In this regard, part of my PhD work, summarized in Chapter 5, was motivated by the

recent synthesis [93] of an Olympic hydrogel, prepared by employing DNA plasmid rings which

1The material described in this Chapter has been published as a preprint: Ubertini, Mattia Alberto, and

Angelo Rosa. Macromolecules (2023) [4].
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interlock to each other through the action of the enzyme TopoII. As discussed in Chapter 5,

the preparation of topological materials with well designed properties is a delicate balance

between many parameters: indeed, several numerical studies [188, 189] as well as the ones

contained in the Chapters 5 and 6 have characterized the topological state of systems made

up of randomly concatenated and knotted polymer rings, and have shown that the resulting

networks can be controlled using experimentally tunable parameters such as the length of the

polymer chain, the density of the polymer solution, and the bending stiffness of the polymer

fiber. So far though, geometric confinement as a way to drive the synthesis of concatenated

ring networks has received considerable less attention. Yet, recent experiments [190] performed

on kinetoplast DNA [191] at varying degree of slit confinement have foreseen the possibility

of exploiting geometric constraints to bias the synthesis of a DNA-based network, similarly to

the one discussed in Ref. [93].

In this chapter, we explore how geometric constraints, under the form of slit confinement,

can affect the structural properties of systems of strand-crossing rings. To this purpose, we

perform extensive dynamical simulations of highly entangled systems of randomly concate-

nated and knotted rings employing the kinetic Monte Carlo algorithm introduced in Sec. 2.1.2

complemented by the strand-crossing moves introduced in Chapter 5, which were used so far

for studying systems at bulk conditions. In this chapter, by varying the degree of confinement,

we quantify its influence on the metric properties of the rings, which present interesting non-

monotonous behaviour, as well as topological ones; in particular, knotting probability is highly

enhanced by reducing the height of the slit, while the linking between the rings is diminished.

These findings suggest that geometric confinement can be used as a powerful tool to control

the topology of the resulting networks and their elastic properties.

7.2 Model and methods

7.2.1 Polymer model

We employ the same lattice polymer model used in the previous chapters. Here, in par-

ticular, we consider polymer melts made of M randomly concatenated and randomly knotted

semiflexible ring polymers of N = 320 monomers each. Polymer semiflexibility is taken into

account with the bending potential Hamiltonian (see Eq. 2.6) with κbend = 2. We fixed the

monomer number per fcc lattice site equal to 5
4

= 1.25 as in the previous chapters, and with

the chosen bending parameter, the chain Kuhn segment corresponds, in bulk, to `K/a = 3.4

(see Table 3.1) which is high enough to guarantee that distinct polymers are in an effective

highly entangled state.
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H/a Ĥ M 〈b〉/a
2.12 0.30 420 0.656

3.53 0.50 422 0.658

4.95 0.70 420 0.659

6.36 0.90 427 0.659

7.78 1.10 420 0.660

10.61 1.51 420 0.660

13.43 1.91 422 0.660

17.68 2.51 430 0.660

20.51 2.91 433 0.660

bulk – 420 0.663

Table 7.1: Values of physical parameters for the ring polymer melts investigated in this work.

a is the unit distance of the fcc lattice and the monomer number per fcc lattice site is equal,

as in the previous chapters, to 5
4

= 1.25. (i) H, height of the slit. (ii) Ĥ = H√
〈R2
g〉bulk

, ratio

between the height of the slit and the root-mean-square gyration radius of rings in bulk (i.e.,

no confinement) conditions. (iii) M , total number of simulated chains in the melt. (iv) 〈b〉,
mean bond length. Notice that the values for 〈b〉 between the bulk and the confined rings are

all very close to each other, with a slight increase as confinement decreases.

Simulations are based on the kinetic Monte Carlo (kMC) algorithm introduced in Chap-

ter 5 in which the Topology-preserving moves (see Sec. 2.1.2) are complemented with the

Topology-changing moves (see Sec. 5.2.3) which induce random strand crossings between

nearby polymer filaments at a tunable rate which we set to 104 kMC elementary steps as in

the previous chapters.

Finally, ring polymers are subject to slit confinement. This particular form of constraint is

imposed by forcing the chains to move on the fcc lattice, with periodic boundary conditions

on the xy-plane and hard boundaries in the z-direction placed in z = 0 and z = H. We vary

the height of the box, H, to study different confinement regimes, while adjusting the lateral

box sides Lx = Ly to keep density constant. The degree of confinement is quantified by

the ratio Ĥ = H/
√
〈R2

g〉bulk, expressing the ratio between the height of the slit H and the

root-mean-square gyration radius (Eq. (2.11)),
√
〈R2

g〉bulk/a =
√

49.66 of randomly knotted

and concatenated rings in bulk conditions (Chapter 6).

We investigate system’s behavior from highly confined (Ĥ ' 0.30) to mildly confined
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(a) H /a = 20.51

(b) H /a = 2.12

Figure 7.1: Ring melt conformations under slit-confinement. The figure illustrates the two ex-

treme cases of mild (H/a = 20.51, panel (a)) and tight (H/a = 2.12, panel (b)) confinement,

where H is the thickness of the slit and a the lattice unit (see Sec. 7.2 for details). On the

left part of each panel, the full melt is shown with each ring in a different color to ease the

visualization. On the corresponding right part, a zoom-in view of a typical ring conformation

(in red) alongside the neighboring rings (in faint grey) which the red ring is linked to (see

Sec. 7.3.2).

(Ĥ ' 2.91) regimes and systematically compare the results with the corresponding values in

bulk. Wherever appropriate, we have also compared the systems here with melts of unknotted

and non-concatenated rings in bulk described in Chapter 3.

We simulate M ' 420 chains, comprising a total of N ×M ' 134400 monomers, with

M slightly adjusted to maintain a constant density (see Table 7.1 for specific numbers). Typ-

ical melt conformations (with corresponding zoom-in views of a single-ring and the neighbors

which it is linked to) for the two situations of mild (H/a = 20.51) and tight (H/a = 2.12)

confinement are shown in Fig. 7.1 (panel (a) and (b), respectively).

To assess meaningful chain statistics we follow the same protocol of the previous chapters

simulating the systems long enough in order to obtain plateaus (see Fig. C.1 in Appendix C)

in the single monomer mean square displacement in the centre of mass reference (Eq.(2.19)),

g2. Consequently, the time to reach the plateau correspond to the portion of the trajectory

which has been removed from the computation of the relative observables.
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7.2.2 Notation

As for rings’ metric properties, for some observablesO which can be expressed as a function

of monomers’ coordinates we study separately the contributions O⊥ and O‖, respectively

perpendicular (or, transverse) and parallel to the plane of the slit (which coincides with the

xy-plane see Sec. 7.2.1).

As for rings’ topological properties, we follow the same pipeline described in Chapter 6 for

the topological analysis of the polymer melts. In referring to a given knot or link we employ

the same convention used in the previous chapters, namely, the Rolfsen convention [149].

7.3 Results

7.3.1 Single-chain properties

Rings’ size and shape

First, we characterize the impact of slit confinement on the size and shape of the rings. To

this purpose, for each ring of the system we compute the 3×3 symmetric gyration tensor Qαβ

(see Eq. (2.13). We recall that the mean values of the eigenvalues of Q ordered in descending

order, 〈λ21〉 ≥ 〈λ22〉 ≥ 〈λ23〉, quantify the mean spatial elongations of the polymers on the

corresponding principal axes, while the mean value of the trace of Q, 〈trQ〉 =
∑3

α=1〈λ2α〉, is

equal to the mean-square gyration radius Eq. (2.11), 〈R2
g〉 of the chain.

The results for 〈R2
g〉 and the perpendicular and parallel components, 〈R2

g,⊥〉 and 〈R2
g,‖〉,

are reported in Fig. 7.2. As H decreases, the transverse component 〈R2
g,⊥〉 decreases (green

curve in Fig. 7.2(a)) as expected. Conversely, the parallel component 〈R2
g,‖〉 grows with con-

finement (red curve in Fig. 7.2(a)) because the ring is forced to spread along the plane of

the slit. Together, these two effects produce a characteristic non-monotonic behavior in the

overall 〈R2
g(Ĥ)〉 (blue curve in Fig. 7.2(a)) with the minimum attained around Ĥ ' 0.7, i.e.

where confinement effects are expected to become more pronounced. Interestingly, for high

confinement (Ĥ . 0.3), the rings are markedly larger than the bulk reference (blue dotted

curve in Fig. 7.2(a)). In a previous study [192] of randomly concatenated rings under slit

confinement, the non-monotonic behavior was also observed but the swelling compared to

the bulk state was not seen. We attribute this discrepancy to the fact that, in the previous

work, rings without excluded volume were considered which could have favored more compact

conformations.

Beyond average values, we have also computed the corresponding probability distribu-

tions, P (Rg), P (Rg,⊥) and P (Rg,‖), and represented each of them (see Fig. 7.2, panels (b)
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(a)

(c) (d)

(b)

Figure 7.2: (a) Ring mean-square gyration radius (〈R2
g〉) with its parallel (〈R2

g,‖〉) and trans-

verse (R2
g,⊥) components as a function of the degree of confinement Ĥ. The dashed lines are

for the values of the bulk system (i.e., no confinement). Error bars are smaller than the symbols

size. (b, c, d) Scaling plots for, respectively, distribution functions of the ring gyration radius

(P (Rg/
√
〈R2

g〉)) and of its parallel (P (Rg,‖/
√
〈R2

g,‖〉)) and transverse (P (Rg,⊥/
√
〈R2

g,⊥〉))

components, at different degrees of confinement Ĥ (see legend in panel (b)). The dashed line

in each panel corresponds to the reference distributions in bulk conditions.



7.3. RESULTS 125

0.3 0.5 1 2 3

Figure 7.3: Ratios between the mean eigenvalues (〈λ 2
1 〉, 〈λ 2

2 〉 and 〈λ 2
3 〉) of the ring gyration

tensor Q (Eq. (2.13)) as a function of the degree of confinement Ĥ (see Sec. 7.2.1 for defini-

tion). Dotted lines (∼ Ĥ−2) describe the behavior under strong slit-confinement, in agreement

with the blob-like picture à la de Gennes (see Sec. 7.3.1 for details). Dashed horizontal lines

correspond to the bulk reference values of the three ratios.

to (d)) in the corresponding scaled variable to ease comparison. While the distributions of

the parallel component of the gyration radius are fundamentally unaffected by confinement

(Fig. 7.2(c)), the ones of the normal components (see Fig. 7.2(d)) undergo a significant change

in shape as the confinement becomes stronger, in particular becoming more peaked. Together

these changes produce an interesting effect on the distributions of the full gyration radius

(Fig. 7.2(b)), which are characterized by higher tails for the systems under confinement. This

suggests that, under confinement, rings assume more heterogeneous sizes.

We study then rings’ shapes and anisotropies by looking at the ratios: (i) 〈λ21〉/〈λ22〉, (ii)

〈λ21〉/〈λ23〉 and (iii) 〈λ22〉/〈λ23〉. The first ratio indicates the elongation or “asphericity” of the

ring mean shape, while the other two measure the extent to which rings become effectively

flat due to slit confinement.

Results are shown in Fig. 7.3, where it is clear that at mild confinement Ĥ & 1.5 rings

attain the shame shape of the bulk ones. Conversely, for higher confinement (Ĥ . 0.7) the

ratios to the smallest eigenvalues (blue and red curves in Fig. 7.3) are described by the same

characteristic power-law behavior ∼ Ĥ−α with α = 2 (dotted lines). This exponent can be

derived [193] by the following simple blob scaling argument à la de Gennes [194, 195]: for

tight confinement and since rings obey ideal statistics [1, 3] owing to strand crossings, we do

expect 〈λ 2
3 〉 ∼ H2 ∼ a2gH while 〈λ 2

1 〉 ∼ 〈λ 2
2 〉 ∼ H2(N/gH) where gH is the mean number of

monomers spanning a distance of the order of H. Together these two relations imply α = 2,
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i.e. rings’ flattening is indeed compatible with the scaling picture. At the same time (ratios

〈λ 2
1 〉/〈λ 2

2 〉, green curve), the polymers maintain an elongated shape.

Bond-vector correlation function

We investigate now in more detail how the folding of polymer chains is affected by confine-

ment by looking at the bond-vector correlation function (see Eq.(2.15)) , c(`), as a function

of the polymer contour length `.

As discussed in the chapter 3, this quantity gives useful insight when applied to bulk 3d

melts of unknotted and non-concatenated rings, in particular, as it was shown there, its distinct

anti-correlation is a symptom of the double folding of the polymer chains at the entanglement

scale (dot-dashed line in Fig. 7.4(a) and 3.8). In contrast (dashed line in Fig. 7.4(a) and 6.3),

bulk 3d melts of randomly knotted and concatenated rings exhibit normal exponential decay

behavior and are not characterized by double folding, hence the anti-correlation is absent.

To investigate the impact of confinement on chain folding, we have computed c(`) for the

confined rings. Results (Fig. 7.4) exhibit several noteworthy effects. Firstly (Fig. 7.4(a)), for

confined rings at small `, c(`) decays more slowly than the bulk counterpart. This is reflected

(Fig. 7.4(b)) in the increase of the mean-cosine of the angle between consecutive bond vec-

tors, 〈cos(θ)〉, as confinements increases: in other words, confined rings are slightly stiffer

than the bulk reference and this confinement-enhanced stiffness grows with the confinement.

At the same time, c(`) develops a characteristic anti-correlation that exhibits non-monotonic

dependence on Ĥ: in particular the deepest minimum occurs at Ĥ ' 0.7, i.e. the same value

at which the gyration radius (Fig. 7.2(a)) attains its minimum value. Moreover, the minimum

itself disappears at the highest level of confinement. This peculiar behavior can be explained

by considering the individual contributions of the parallel and transverse components of c(`).

c‖(`) does not exhibit any minima (Fig. 7.4(c)), while c⊥(`) displays a minimum for all values of

Ĥ (Fig. 7.4(d)). The mismatch in the values of `, at which c⊥(`) is minimum while c‖(`) ' 0,

causes the non-monotonicity of the full c(`). The latter goes to zero for similar values of ` for

all Ĥ, demonstrating that correlations grow mildly with the confinement. In contrast, c⊥(`)

shows a minimum for ` close to the thickness of the slit H (Fig. 7.4(d), inset). This is due to

the back-folding of the polymer filaments induced by the hitting with the impenetrable walls

of the slit: of course this effect is more pronounced under strong confinement conditions, i.e.

for H/`K ≤ 1. Thus the minima in c(`) appear when H has similar value to the correlation

length of c⊥(`), indicating the competition between these two length scales.
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(a) (b)

(d)(c)

Figure 7.4: (a) c(`), bond-vector correlation function as a function of the contour length

distance `. Colors are for different confinements, dashed and dot-dashed lines are for bulk

melts and melts of non-concatenated and unknotted rings (see legend). (b) 〈cos(θ)〉, mean

cosine value between two consecutive bonds along the chain as a function of the degree of

confinement Ĥ. (c) c‖(`), contribution to the bond-vector correlation function in the xy-plane

parallel to the slit. (d) c⊥(`), contribution to the bond-vector correlation function orthogonal

to the plane of the slit; in the inset the same quantity is represented as a function of the ring

contour length normalized by the slit thickness, `/H. Colors and symbols in panels (c) and

(d) are as in panel (a).
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Figure 7.5: Mean contact probabilities, 〈pc〉 (Eq. (2.16)), as a function of ξ = ` (1− `/L)

where ` is the contour length separation between monomers and L is ring total contour length.

Colors are for different confinements, dashed and dot-dashed lines are for bulk melts and melts

of non-concatenated and unknotted rings (see legend). Inset: local differential exponent

≡ d log〈pc〉
d log ξ

.

Contact probability

As just shown, confinement alters the metric properties of the polymers. Then, it is natural

to expect that the consequent reorganization of the chains modifies the intra-chain polymer

interactions. To test this hypothesis, we compute the mean contact probability between two

monomers at contour length separation ` = n〈b〉 (see Eq.(2.16)), 〈pc(`)〉.
Results are shown in Fig. 7.5, where 〈pc〉 is plotted, as in the previous chapters, against the

“effective” variable ξ = `(1 − `/L) in order to reduce [130] finite-size effect due to the ring

geometry. First, one can notice that in bulk systems, as we let rings perform strand crossings,

long-distance contacts decrease (dashed line) with respect to melts of non-concatenated and

unknotted rings (dot-dashed line). In contrast, confinement leads to an increase in the tail of

the mean contact probability compared to the bulk reference. Notably, at Ĥ = 0.30, the tail’s

slope is slightly less steep than in the non-concatenated state.

To get more insight, it is interesting to look at the exponent controlling the asymptotic

power-law decay, 〈pc〉 ' ξ−γ (Fig. 7.5, inset). In bulk, strand-crossing rings attain ideal statis-

tics characterized by γ ' 1.5, as confirmed by our previous findings (see Fig 5.4 in Chapter 5).

In contrast, confinement leads to a decrease in γ which becomes close to the same asymptotic

value as the non-concatenated state, γ ' 1.15. Based on mean-field arguments [38], γ = dν

where d is space dimension and ν is the metric exponent of the chain relating [5, 14] the

chain mean linear size to the number of monomers (i.e., 〈R2
g〉 ∼ N2ν). Strand-crossing rings



7.3. RESULTS 129

> Composite

knots

(b)

(a)

> Composite

knots

(b)

(a)

Figure 7.6: (a) Pknot(Ĥ), ring knotting probability (Eq. (7.1)) for knots with K crossings and

as a function of the degree of confinement Ĥ. The dashed line correspond to the value for the

bulk melt. (b) Pknot(Ĥ;K), probability of finding a knot with crossing number K. Colors are

for different confinements, the dashed is for bulk melts (see legend). K = 0 correspond to

the unknot and Pknot(Ĥ;K = 0) = 1− Pknot(Ĥ) is its corresponding probability. Knots with

> 12 crossings cannot be distinguished by Topoly [173]. Composite knots are knots made up

by 2 or more irreducible knots.

in bulk exhibit ideal statistics with ν = 1/2 [1] and they are characterized by γ = 3
2

in three

dimensions. In confined systems, however, the rings cannot fold freely in three dimensions,

effectively reducing the dimensionality of the system and resulting in a decrease in γ.

Knots statistics

In our kMC algorithm two filaments from the same chain can cross and this event may

induce the formation of a knot along the chain. Characterization of knots spectra in confined

systems have been addressed so far mostly for isolated chains [151, 193, 196], while less results

are available for confined systems at melt conditions. To fill this gap, we have investigated

the occurrence of knots by computing the Jones polynomial of each ring of our systems and,

for simplicity, we present our results based on the number of irreducible crossings (denoted by

K). Specifically, we have computed the probability, Pknot(Ĥ;K), of finding a knot with K

irreducible crossings at given confinement degree Ĥ and the cumulative knotting probability:

Pknot(Ĥ) =
∞∑
K=3

Pknot(Ĥ;K) , (7.1)

which gives the probability that a ring in the melt contains a knot (of any type).

As shown in Fig. 7.6(a), Pknot(Ĥ) grows with the confinement and reaches the maximum

value of ' 0.13 for the smallest Ĥ, resulting in an increase of ' 130% compared to bulk



130 CHAPTER 7. OLYMPIC NETWORKS UNDER SLIT-CONFINEMENT

(b)

(a) (b)

(a)

Figure 7.7: (a) Distribution function, P (ρring), of the the number of neighbors per chain ρring.

Inset: mean number of neighbors per ring, 〈ρring〉. (b) Distribution function of the distances

between the centres of mass of neighbour chains, P (dCM−CM | neighbours), as a function of

the variable normalized to twice the root mean-square gyration radius, 2
√
〈R2

g〉, of the rings.

Colors are for different confinements, dashed and dot-dashed lines are for bulk melts and melts

of non-concatenated and unknotted rings (see legend).

reference (dashed line). Both in bulk and in confinement, the most common knot type is the

simplest one, namely the trefoil knot 31. Overall (Fig. 7.6(b)), more complex knots are much

less probable for all Ĥ values, yet their abundance increases with confinement, see Fig. 7.6(b)

for Pknot(Ĥ;K) and Fig. C.2 in Appendix C for the relative population of knot types with K

crossings.

In conclusion, our analysis points out that confinement enhances the probability of knot

formation, yet the overall occurrence of knots (i.e., Pknot) remains relatively low (. 0.13).

7.3.2 Chain-chain correlations

Chain neighbours

The increase of the long-range intra-chain contacts seen in Fig. 7.5 may be indicative

of the fact that confinement reduces the overlap between distinct chains or, in other words,

ring-ring contacts should decrease.

To test this hypothesis, we introduce the variable for the number of neighbors of ring i

(i = 1, 2, ...,M),

ρringi ≡
M∑
j=1
j 6=i

Θ
(

2
√
〈R2

g〉 − |~rCM,i − ~rCM,j|
)
, (7.2)
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where Θ(x) is the Heaviside step function, 〈R2
g〉 is the mean square gyration radius of the

system, and ~rCM,j represents the centre of mass position of the j-th ring. According to

Eq. (7.2), two rings are defined as “neighbor” whenever the spatial distance between their

centres of mass is smaller than the twice the root mean-square gyration radius of the system.

We have measured the distribution function of ρring, P (ρring), and its mean value, 〈ρring〉,
at different confinements and we study these quantities in relation to the distribution of spatial

distances between the centres of mass dCM−CM for neighboring rings, P (dCM−CM | neighbors).

Results are shown in Fig. 7.7, from which it is evident (panel (a)) that 〈ρring〉 decreases

as confinement increases, with 〈ρring〉 being always smaller with respect to the bulk reference

(dashed line) and even smaller (for the tighter confinements Ĥ . 1.5) with respect to the

non-concatenated and unknotted case (dot-dashed line). At the same time (panel (b)), the

distributions of spatial distances dCM−CM demonstrate that neighboring chains tend to overlap

more with each other under stronger confinement.

Taken all together, we can motivate the reason why the inter-chain contacts decrease in

terms of the geometry of the slit. First, confinement can prevent the formation of stacked

conformations along the transverse direction (see Fig. C.3 in Appendix C), and this surely

reduces the inter-chain contacts. Moreover, we observe that, by reducing the width of the slit,

inter-ring distances tend to increase and this is an effect due to the increasing asymmetry of

the slit as confinement increases (see Fig. C.4 in Appendix C).

Links

The reduction of inter-chain contacts should also have consequences on the linking prop-

erties of the confined systems. To explore this aspect, we adopt the approach described in

Chapter 6 and compute: (a) 〈n2link(|GLN|)〉, the mean number of two-chain links per ring

with at absolute Gauss linking number |GLN|, and (b) 〈n3link〉, the mean number of distinct

three-chain links per ring with given chain topology. Results for 〈n2link(|GLN|)〉 are summa-

rized in panel (a) of Fig. 7.8. We notice that ring-ring links are mostly Hopf-like (i.e., with

|GLN| = 1) and that confinement reduces the extent to which the rings are linked, in agree-

ment with the reported trend of neighbors per ring (Fig. 7.7). In general, the participation

in more complex links decreases exponentially but the rate of decay depends on the level of

confinement in the system. Chains under stronger confinement are characterized by a slower

decay, which can be attributed to the fact that neighboring chains penetrate each other more

(see Fig. 7.7(b)). Additionally, links with |GLN| = 0 (i.e., the so-called Whitehead links)

have been found between those with |GLN| = 2 and |GLN| = 3 at all confinements. We

further classify these links by computing their Jones polynomial and determining their relative
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(a) (b)

Figure 7.8: (a) 〈n2link(|GLN|)〉, mean number of links per ring with absolute Gauss linking

number |GLN|. (b) 〈n3link〉, mean number of different three-chain linked structures per ring.

Different colors are for the different confinements, the dashed line is for the bulk system.

abundances (panel (a) in Fig. C.5 in Appendix C). We found that, even in this case, rings

under stronger confinement form more complex links with greater ease.

To examine three-chain links, it is necessary to distinguish between two distinct groups of

links: those that can be reduced to two-chain links and irreducible ones as done in Chapter 6.

As in the previous chapter, the first group include: (a) poly(3)catenanes, chains made of three

rings in which two non-concatenated rings are connected to a common ring, and (b) triangles,

triplets of rings which are all pairwise concatenated. Both (a) and (b) can be detected via

pairwise linking. Instead, irreducible three-chain links cannot be detected via pairwise linking

and can be further divided in two sub-types: (c) poly(2)catenane+1-ring, structures made of

a poly(2)catenane plus another ring which is not directly concatenated (in a pairwise manner)

to any of the other two, and (d) Brunnian links, non-trivial links which become a set of triv-

ial links whenever one component ring is unlinked from the others (the so called Borromean

conformation, the link 63
2, constitutes the easiest example of this kind).

By resorting to the shrinking method described in Chapter 6, we have detected links be-

longing to the last two classes and computed 〈n3link〉 for the different types of three-chain

links (Fig. 7.8(b)). It is clear from 〈n3link〉 that links organize onto a network made almost

entirely via pairwise concatenation both in bulk and in confinement. Irreducible three-chain

links are much more rare and decrease with the degree of confinement, for this reason the next

analysis relative to polymer networks and entanglements has been performed by neglecting

these three-chain links contribution. A detailed topological classification of these structures

has been reported in Fig. C.5(b) in Appendix C, and even in this case three-chain links with

higher crossings seem to be more likely for more confined systems.
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(a)

(b)

(a)

(b)

Figure 7.9: (a) Mean linking degree, 〈LD〉, as a function of the confinement. The horizontal

dotted line represents the bulk value. (b) Distribution functions, P (LD), of the linking degree

as a function of the variable normalized to the corresponding mean value 〈LD〉. Different

colors are for the different confinements, the dashed line is for the bulk system.

Polymer network and entanglements

Concatenated rings give rise to a fully connected polymer network as seen in Chapters 5

and 6. To characterize this network, we use the linking degree, LDi, of ring i,

LDi =
M∑
j=1

χij Cij , (7.3)

previously introduced in Chapter 6. Here the sum runs over the total number of chains in the

melt, and where Cij is the M ×M matrix expressing the concatenation status between rings

i and j, as defined in Eq.(6.3):

Cij =



0 , if i = j

1 , if i 6= j and form a two-chain link

0 , otherwise

(7.4)

The “weight” factor χij takes into account the “complexity” of two-chain links: χij = |GLN|
or = K

2
depending on whether GLN 6= 0 or GLN = 0 respectively, with K representing the

number of crossings of the link.

This quantity is of special interest as we have showed in the previous chapter that the

mean value 〈LD〉 ≡ 〈 1
M

∑M
i=1 LDi〉 is directly connected to the entanglement length of the

melt, Ne, via the relation 〈LD〉 = N/Ne of the systems. To complement this analysis, we

have also computed the distribution of the values LD at the single ring level, P (LD), which
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gives us information about the heterogeneity of the network.

Results are presented in Fig. 7.9. 〈LD〉 (panel (a)) decreases as a function of the con-

finement, up to a reduction of ' 60% with respect to bulk conditions. Then, by looking at

the distribution functions (panel (b)) of the linking degree as a function of X = LD/〈LD〉,
we see that the curves at mild confinements display the same behavior for bulk conditions.

Conversely, tails become stronger for more confined systems. This is in agreement with the

behaviour seen for the distribution functions of the sizes of the rings (Fig. 7.2(b)), where the

tails are higher for stronger confinements. Indeed, fluctuations of ring size may impact on

concatenation, since smaller rings will be less concatenated having less possibility to reach

other rings, while bigger rings can host more contacts and consequently more concatenations.

To sum up, the resulting polymer networks tend to be less concatenated and, at the same

time, more heterogeneous as the confinement become stronger, with the last effect in line with

the fluctuations on the rings’ sizes.

7.4 Discussion and conclusions

Our findings illustrate the impact that slit confinement has on the spatial structure of

randomly concatenated and knotted ring polymers in melt conditions.

At the single-chain level, our investigation shows that as rings flatten with increasing con-

finement they tend to adopt more elongated conformations. At the same time, rings become

slightly more rigid with the confinement, a tendency captured by the increase of the correlation

(〈cos(θ)〉, Fig. 7.4(b)) between consecutive bonds along the chain. We have also demonstrated

that the competition between the Kuhn length of the polymers, `K , and the height of the

slit, H, induces a non-monotonous behavior on the bond-vector correlation function, c(`) (see

Fig. 7.4(a, c, d)). In general, the impact of confinement on ring conformations becomes

particularly pronounced with respect to the formation of long intra-chain contacts as the slit

narrows (see Fig. 7.5), resulting in more compact rings. Finally, these changes have significant

repercussions on the knotting probability which increases with the confinement, and for which

we register an increase of ' 130% compared to the bulk value (see Fig. 7.6(a)).

The effects of slit confinement on the inter-chain statistics is similarly noteworthy. Specif-

ically, as the level of confinement increases, the average number of neighbors per ring, 〈ρring〉,
experiences a considerable decrease (see Fig. 7.7(a)). This is directly connected to the de-

crease of the mean linking degree, 〈LD〉, which displays a total reduction of ' 60% with

respect to bulk conditions.

This finding has relevant implications. Being 〈LD〉 directly related to the mean number of

entanglement strands per ring (see Chapter 6) its decrease as confinement grows means that,
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at fixed monomer density, confinement alone may alter the entanglement properties of the

system making Ne effectively bigger. This would explains recent findings [197, 198] showing

that for both linear chains and rings in two-dimensional melts the resulting dynamical quanti-

ties display a quite surprising Rouse-like behavior [5, 14] which, ultimately, points towards the

effective irrelevance of entanglement effects due to inter-chain interactions. Along the same

lines, it is worth recalling that the elastic plateau modulus G0, which quantifies the stress-strain

relationship of polymeric materials, is related [5] to the total number of entanglement strands

of the melt, G0 ∝ NM
Ne

. In other words our results imply that, as confinement grows, the

resulting polymer network becomes softer (G0 decreases), revealing a fundamental connection

existing between geometric confinement, topology and the mechanical properties of the stored

network. Interestingly, this connection appears to be not limited to only polymer melts but it

seems to be a quite general feature appearing in other notable classes of soft materials like,

e.g., DNA nanostar hydrogels [199].

We conclude by proposing a possible experimental realization of the systems studied in

this work. As discussed in the Introduction, a first experiment [190] on slit-confined kineto-

plast DNA – a naturally-occurring catenated network of DNA rings – at different degrees of

confinement has already been performed. However, there the topology of the kinetoplast was

maintained fixed since the study was focussing on the shape and size rearrangements of the

network once placed under confinement. Our predictions here could be tested in a relatively

simple variant of this experiment in the following way: as in Krajina et al. [93], it would

be sufficient to introduce suitable amounts of the enzyme topoisomerase-II and, by doing

so, promoting cut-and-resealing events in the system that would reshape the DNA network

topology. Then, again as described in [93], by probing the system through microrheology, it

should be possible to measure the mechanical properties of the catenated network and verify

the predicted softening under confinement.





Chapter 8

The role of entanglement for melts of

active polymers

In this chapter, we present some preliminary results in the context of active polymer

systems1. Active polymers are a new class of polymeric systems that do not obey the classic

law of equilibrium statistical mechanics as they are characterized by some mechanism that

breaks the detailed balance condition. In this work, we focus on polymer systems subject to

non-conservative tangential forces, and we compare the static and dynamical properties of an

isolated active linear chain and active linear chains in melt. We show progressive similarity

in numerous observables between these two systems as the activity increases. Interestingly,

we find that, at high activity, entanglements appear to become less relevant for the dynamic

properties of the melt.

The chapter is structured as the following: in Sec. 8.1 I introduce and talk about the

relevance and recent results obtained in the new field of active polymers. In Sec. 8.2, I present

details about the polymer model and simulation employed for the work. Then in Sec. 8.3

and Sec. 8.4 I present and discuss the main results of the work and we provide potential new

outlines worth exploring in the future. Additional figures have been included in the Appendix D.

8.1 Introduction

Active matter consists of systems whose fundamental units can transduce energy into

persistent movement leading to very different features with respect to the passive counter-

parts [200, 201]. Examples of such systems abound in nature, from the macroscopic scale,

where we observe the coordinated flight of bird flocks or fish shoals [202], to the sub-cellular

1The present work is in collaboration with Dr. Emanuele Locatelli from the University of Padova.
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Figure 8.1: Sketch of a polymer made up of active Brownian particles. In this model, monomers

are subject to a force (black arrows in the figure) with constant modulus and with direction

performing rotational diffusion.

level, as seen in the dynamic behavior of the cytoskeleton within cells [200, 201].

Of late, significant attention has focused on a specific subset of active matter – active

polymers [203, 204]. This interest arises from their biological relevance, as many biological

systems feature molecular motors, which serve as prototypical examples of active matter by

converting energy from chemical reactions into motion along biological filaments, such as DNA

or RNA. For instance, DNA polymerase [205] traverses DNA strands during replication, while

ribosomes [205] actively synthesize proteins by sliding along RNA filaments. Experimentally

anomalous diffusion of chromatin loci have been observed [206] and showed to be caused by

non-equilibrium processes related to enzymatic activity. Remarkably, experimental efforts have

already engineered active polymer chains [207–209]. Consequently, the comprehension of the

non-equilibrium statistical mechanics governing active polymer systems poses an important

challenge.

Notably, significant progress has been achieved in theoretically and computationally char-

acterizing isolated active linear and ring polymers [203, 204, 210–213]. Most of these works

have concentrated on single-chain systems, exploring various implementations of activity. As

a first example, polymers made up by Active Brownian Particles (ABP) have been consid-

ered [203, 204] (see Fig. 8.1). In this case, activity is introduced through a propulsive force

with constant modulus and with direction performing rotational diffusion. Conformational and

dynamical properties of such systems have been studied in the absence of excluded volume

interactions analytically within the framework of the Rouse model [5]. Flexible polymers, for

instance, exhibit a monotonous swelling with increasing activity, while semiflexible polymers,

characterized by large persistence lengths, display an initial contraction followed by a subse-

quent swelling, eventually approaching the behavior of their flexible counterparts. In terms of

dynamics, these polymers demonstrate activity-dependent persistent motion and asymptoti-
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i − 1
i + 1

i ⃗F i

Figure 8.2: Sketch of a polymer subject to active tangential forces. Each bead i is subject to

the active force ~Fi (see Eq. 8.1), which is parallel to the vector ~ri+1 − ~ri−1. In this chapter,

we consider polymers subject to this active force.

cally enhanced diffusivity. Remarkably, the diffusion coefficient remains independent of polymer

size, representing a stark departure from the scaling of the diffusion coefficient, D ∼ N−1 [5],

for passive polymers.

Inspired by biology and in particular by the action of molecular motors, as kinesin mo-

tors [214], DNA and RNA polymerases [215], which, while sliding, exert forces on the backbone

of biological filaments, activity has been taken into account also in the form of non-conservative

tangential forces applied to the monomers of the polymer chain (see Fig. 8.2) [211–213, 216,

217]. For these systems, analytical results have been obtained in the absence of excluded

volume interactions for both linear chains [216] and polymer rings [217]. Intriguingly, these

studies have revealed that, for both linear chains and polymer rings, conformational properties

remain unaffected by the level of activity. This is in contrast with simulations of self-avoiding

active polymers done by Locatelli and collaborators [211–213], i.e., where static properties are

heavily dependent on activity. Linear chains [211, 213] shrink as a function of the activity.

Polymer rings [212] are characterized by a complex phase behavior as a function of their sizes

and the level of activity featuring a region in which polymers collapse. In terms of dynamics, in

the absence of interactions linear chains exhibit an increase in polymer diffusivity in line with

ABP polymers. Conversely, polymer rings demonstrate intriguing new dynamics, featuring an

enhanced rotational motion. Self-avoiding active polymers, in the context of linear chains,

exhibit dynamical behavior akin to their ideal counterparts, whereas rings in the collapsed

state manifest arrested dynamics. It is worth noting that these investigations highlight the

important role of interactions within non-equilibrium systems.

However, few studies, and all restricted to the limit of small activity [220–222] have
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Figure 8.3: A system of entangled worms. Depending on the external conditions, e.g., light

and temperature, worms can aggregate forming a blob and can perform directed locomotion.

These systems have been modelled as a solution of active linear chains subjected to tangential

forces [218].Image adapted from [219]

focused on the case of entangled polymer systems, a feature which, as discussed in the first

chapter, is relevant in many contexts as in chromatin organization [37]. Concurrently, the

interest in such systems has grown due to recent experiments [223–225] involving systems of

living worms (see Fig.8.3), which serve as excellent models for investigating entangled active

polymers [219].

For these reasons, this chapter aims to investigate the features of active polymer melts,

drawing comparisons with the extensively studied case of isolated chains. First, we will intro-

duce the polymer model and simulation details used for this work in Sec. 8.2. Subsequently, we

will show results, by first focusing on static quantities Sec. 8.3.1. Then we will show how en-

tanglement is affected by activity, and by presenting the results on the dynamics Sec. 8.3.3., we

demonstrate that it becomes irrelevant to the chains’ relaxation process. Finally, the chapter

will conclude by discussing the results and proposing potential avenues for further exploration

in this evolving field.

8.2 Model and Methods

Differently from the previous chapters, here we employ off-lattice molecular dynamics

simulations (see Sec. 2.1.1) to explore and compare the properties of isolated linear self-

avoiding active polymers and melts of linear active polymers. The choice of the off-lattice

model is because we want to use the well-established polymer model (see Sec. 8.2.1), developed

by Locatelli (collaborator of this work), which already served to characterize the behavior of

isolated self-avoiding active linear chains [211] and isolated self-avoiding active ring polymers

[212].
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8.2.1 The polymer model

Chain connectivity and monomer-monomer interactions in melts of linear chains are ac-

counted for by readaptating the classical polymer model by Kremer and Grest [35] (see

Sec. 2.1.1). Specifically, the interaction parameter, ε, appearing in the purely repulsive LJ

potential (see Eq. (2.4)), is changed to ε = 20 kBT (against the standard ε = 1 kBT ).

Consequently, the spring constant, κ, entering in the FENE bond (see Eq. 2.5) takes the

value: κ = 30ε/σ2 = 600 kBT/σ
2. The choice of the new parameters makes the FENE bond

(Eq. 2.5) stronger and in this way strand-crossings between chains are avoided even in the

presence of active tangential forces [212].

Finally, polymer activity is taken into account by imposing that the i-th monomer of each

chain of spatial coordinates ~ri (for i = 2, ..., N−1, with N being the total number of monomers

of a single chain) is subject to an active force ~Fi [211]:

~Fi = fa
~ri+1 − ~ri−1
|~ri+1 − ~ri−1|

, (8.1)

of constant magnitude fa and instantaneous orientation directed along the tangent to the

polymer chain at ~ri. Notice that, the first and last monomers are (conventionally [211])

excluded by the active perturbation because those monomers have only one, instead of two,

neighbor along the chain.

Following the literature [211] the activity is aptly expressed in terms of the so-called Péclet

number Pe ≡ faσ/kBT which reflects the strength of the activity vs. thermal fluctuations.

Here, we work at different Pe’s by varying the parameter fa. More specifically, we have

considered fa = 1, 5, 10, 20 corresponding to Pe = 1, 5, 10, 20. At the same time, we have

also considered the corresponding passive case with fa = 0.

8.2.2 Simulation details

We consider monodisperse melts of M linear polymer chains, each chain being made

of N monomers. Specifically, up to N = 400 we consider systems resulting in a total of

M×N = 100000 monomers: (M,N) = (1000, 100), (500, 200) and (250, 400). Additionally,

we simulate systems with N = 800 comprising a total of M × N = 200, 000 monomers,

corresponding to M = 250 chains. As in the original work by Kremer and Grest [35], we

maintain a fixed monomer density of ρ = 0.85σ−3 for all values of N .

As mentioned in the introduction, we compare simulation results for active polymer melts

with those for isolated self-avoiding active polymers. For the latter case, we simulate the same

systems as described above, but we turn off the inter-chain excluded volume interactions. This

allows us to effectively simulate replicas of isolated linear chains.
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The static and kinetic properties of chains are studied using fixed-volume and constant-

temperature Molecular Dynamics (MD) simulations (see Sec. 2.1.1) with implicit solvent and

periodic boundary conditions. We integrate the equations of motion using the Velocity Verlet

algorithm, with elementary time step with ∆t = 0.01 τMD in the case of passive polymers

(Pe = 0) and ∆t = 0.001 τMD for all the other cases to prevent strand-crossings. We set

m = σ = κBT = 1 as the units of mass, length, and energy, respectively, then, the unit of

time is τMD = σ(m/kBT )1/2 = 1. Finally, we employ the standard Langevin thermostat with

friction coefficient γ = 20 τ−1MD (see Eq. 2.1). The choice of the value of γ ensures to study

the system in the overdamped regime [226]. Simulations are performed using the LAMMPS

package [111].

8.2.3 Choice of initial configurations and check for equilibration

Preparation of melts of linear chains poses no technical problem: up to N = 400, chains

are initially arranged inside the simulation box and the system is passively (i.e., active forces

at this stage are turned off) let towards equilibration (i.e., chains are diffusing from their

original positions for several times their own size). For the case with N = 800, we have first

prepared the system on the lattice and let it partially equilibrate using the kinetic-monte carlo

algorithm employed in the previous chapters of this Thesis, then we have let the system evolve

off-lattice. Being the system highly entangled for the polymer size considered, we did not

manage to equilibrate the system properly, yet the results showed in this chapter have been

checked to be independent of the initial conditions2.

These (partially-)equilibrated conformations are the starting point for the production runs

of systems with active force (Pe ≥ 0).

8.3 Results

8.3.1 Single-chain properties

Rings’ size and shape

Initially, we investigate how activity impacts polymer sizes and shapes. In terms of sizes, we

examine the scaling behavior of the mean square end-to-end distance, < R2
ee > (see Eq. 2.9)

and of the mean-square gyration radius < R2
g > (see Eq. 2.11). Concerning shapes, as in the

previous chapter 7, we compute the 3× 3 instantaneous symmetric gyration tensor Qαβ (see

2For the preparation of the initial conditions, we have employed the conventional Kremer-Grest potential

parameters (see Sec. 2.1.1), specifically, ε = 1 kBT and κ = 30 kBT/σ
2.
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Figure 8.4: (a) Scaling of the mean squared end-end distance, < R2
ee >, as a function of

the polymer size, N , for the different Pe compared with the passive case (Pe = 0), for

isolated (× symbol) and linear chains in the melt (◦ symbol). (b) Distribution functions of

the rescaled end-end distance, P
(√

R2
ee/ < R2

ee >
)

, for both isolated and linear chains in the

melt compared with the Gaussian distribution. Color code as in panel (a).

Eq. (2.13)) and we analyse the mean values of its eigenvalues.

Results for < R2
ee > are reported in Fig. 8.4, and similar results for < R2

g > are reported

in Appendix in Fig. D.1. The passive case (Pe = 0) behaves as expected, isolated linear

chains exhibit swelling compared to chains within the melt, with their sizes scaling differently.

Specifically, the scaling exponent for isolated chains is ν = 0.588 [5], while in the melt, linear

chains follow random walk statistics [5] and their sizes scale with ν = 0.5 (see Fig.8.4 (a)).

Notably, in both systems, as Pe grows, the polymers crumple, a feature already seen for

isolated active linear chains [211]. Remarkably, at high Peclet number ' 10/20, across all

considered polymer lengths N , < R2
ee > for both isolated and melt cases converge to similar

values. Moreover, at high activity, the scaling of < R2
ee > appears to align with ideal behavior,

exhibiting a scaling exponent of ν = 0.5 for both cases. Similar trends and dependencies on

activity are also evident in the mean square gyration radius, R2
g, as illustrated in Fig. D.1 in

the appendix.

By the fact that single chains and chains in melt attain the same average sizes, we have

explored the distribution of the end-end distances for both systems so to check whether this

correspondence extended beyond the average level. Results are presented in Fig.8.4 (b) for

N=800 and in Fig.D.2 for all the other sizes. Notably, distinct deviations from the Gaussian

distribution describing ideal polymers are evident in both systems at low Peclet numbers.

However, as the Peclet number increases, these distributions begin to align closely. This

outcome implies that at elevated activity levels, around Pe ' 10/20, at least concerning
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< λ21 > / < λ23 >

< λ22 > / < λ23 >

X
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Figure 8.5: Ratios between the first two mean eigenvalues < λ21 >, < λ22 > and the smallest

one < λ23 >. Black dashed lines correspond to the asymptotic values of the ratios, respectively

11.9 and 2.7, for equilibrium chains in melt obtained in [44].

< R2
ee >, whether a chain is isolated or in melt appears to have a minimal impact on its

extension.

The crumpling of polymer chains induced by activity points to a significant reorganization

in terms of polymer conformations, and this transformation is, to some extent, summarized by

the ratios of the eigenvalues of the gyration tensor Q: < λ21 > / < λ23 > and < λ22 > / < λ23 >.

Results are contained in Fig. 8.5. Ratios for the passive case of linear chains in the melt are

fairly in agreement with previous measurements obtained for the same system [44], respectively

11.9 and 2.7, which in turn are quite near the ratios one would obtain from a random walk,

respectively 12 and 3 [44]. Instead, isolated linear chains are less spherical in the passive case,

i.e., the ratios are bigger respect to the melt. As activity increases, the ratios decrease for

both systems. However, even at Pe = 20, the difference between the two systems persists,

with active isolated chains appearing less spherical. Intriguingly, while linear chains in the melt

display a decreasing trend in the ratio < λ21 > / < λ23 > with N , single chains, at high activity

levels (Pe ≥ 10), exhibit an increase in this ratio with increasing polymer length. This implies

that longer isolated chains are less spherical than their shorter counterparts.

In summary, both isolated chains and chains in the melt undergo a reduction in size

as activity increases, and for Pe ≥ 10, their mean-square end-to-end distances, < R2
ee >

(and < R2
g >), converge to nearly identical values. This correspondence also holds for their

distribution functions. However, when it comes to polymer shapes, quantified by the ratios of

the eigenvalues of the gyration tensor (see Fig. 8.5), linear chains in the melt tend to adopt

more spherical conformations compared to their isolated counterparts. Nevertheless, both
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Figure 8.6: c(`), bond-vector correlation function as a function of the contour length distance

` for all the Pe > 0 considered and polymer sizes simulated for both isolated (× symbol) and

melt (◦ symbol) cases. Insets display the position of the minima, `min, of c(`) as a function

of the polymer size N

systems become progressively spherical as activity increases.

Tangent correlation function and internal distances

The mean-square end-to-end distance, < R2
ee >, provides a global measure of the poly-

mer extension but cannot reveal multi-scale information, which, as we will see in this section,

contains a more complex pattern with respect to the one shown so far. To this end, we have

computed the tangent-tangent correlation function (see Eq. (2.15)), c(`), as a function of

contour length distance3, `, since, as demonstrated in the previous chapters, it may offer valu-

able insights into polymer folding at various length scales. Simultaneously, we have calculated

the mean square internal distance between monomers4, < R2(`) >, as a function of `. While

< R2(`) > inherently contains the information of < R2
ee >, as < R2 (L = N〈b〉) >=< R2

ee >,

it also offers details regarding the scaling of the distances at different length scales. Particularly

significant is the local logarithmic derivative, ν(`), which can be extracted from < R2(`) >.

This observable informs us about how polymer size scales locally with ` (Eq. (2.12)).

3As in the previous chapters (see Eq. (2.15)), ` ≡ n〈b〉, with n representing the distance in monomer units

and 〈b〉 the average bond length.
4It is worth mentioning that c(`) and R2(`) are deeply connected being c(`) = d2R2(`)

d`2 [122].
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Figure 8.7: Mean-square internal distance, R2(`), as a function of the contour length distance

along the polymer chain ` for all the Pe > 0 considered and the polymer sizes, N , simulated

for both isolated (× symbol) and melt (◦ symbol) systems.

Results for c(`) are presented in Fig. 8.6 for the different Pe ≥ 1 studied for both isolated

and melt systems. The passive case is illustrated in Fig. D.3 (a) in the Appendix D. In all the

active cases, c(`) exhibits an anti-correlation pattern at characteristic length scales denoted as

`min. The value of `min depends on both Pe and the polymer size N and varies depending on

whether the chain is isolated or within the melt. As activity increases, `min decreases, reaching

values approximately around ' 10σ for Pe = 20. Notably, isolated chains display a smaller

`min compared to chains in the melt. This suggests that linear chains, whether isolated or in

the melt, tend to fold into loops (see Chapter 3) at a characteristic contour-length of `min,

with isolated chains forming smaller loops. Even if the minima are deeper for isolated chains,

the correlation decays more rapidly compared to chains in the melt. This indicates that larger

loops are more prevalent in the case of chains in the melt, aligning with the observation that

these chains tend to be more spherical (see Fig. 8.5) compared to their isolated counterparts5.

Moreover, `min exhibits slow power-law growth as Nα (see inset in Figure 8.6), with α within

the range 0.3 < α < 0.4 for all the investigated values of Pe.

Results for < R2(`) > are presented for the active cases in Fig. 8.7 and Fig. D.4, and

for the passive case in Fig. D.3 (b). First, by considering the size-dependent typical scale

5Furthermore, it is important to note that the anti-correlation pattern and dependencies of c(`) on the

polymer size N is a feature completely absent in the passive case (see Fig. D.3).
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No intra-chain  
entanglement 

Full entanglement 

X
Melt
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Figure 8.8: (a) Entanglement length, Ne, as a function of Pe for all the N considered.

Employing the Z1 algorithm, we estimate Ne considering (◦ symbols) or not (O symbols) the

effect of inter-chain entanglements. (b) Knotting probability, Pknot, for both the isolated (×
symbols) and melt (◦ symbols) case as a function of Pe, for all the N considered.

of the loop, `min, we have rescaled the < R2(`) > by the typical size of the loop given by

< R2(`min) > and plotted the ratio as a function of `/`min. By rescaling by these factors, all

the curves for both isolated and melt systems collapse for all6 N up to `/`min ' 1. Initially,

both systems display a regime for ` � `min for which the chains are more persistent than

a random walk being ν(`) > 0.5 (see inset of Fig. 8.7). Then, at `/`min ' 1, the looping,

already highlighted by c(`), gets manifested with a surprisingly low value of ν which further

diminishes with increasing activity. Asymptotically, `/`min � 1, the curves of the two systems

deviate attaining different asymptotic values for ν(∞) (see inset of Fig. 8.7). Interestingly,

these asymptotic values appeared to be independent of the activity level from Pe & 5. Specif-

ically, we find ν(∞) = 0.48 for single chains, and ν(∞) = 0.41 for chains in melt, in both

cases the result is independent of N .

This finding may appear at odds with the observations in Fig. 8.4, where both systems

displayed a scaling behavior of < R2
ee >∼ N at high Peclet values. However, it is crucial to

recognize that the differences between the global and local-scale analyses can be attributed

to the size-dependent properties of the polymer chains (see Figs. 8.6 and D.4). Indeed, the

scaling of < R2
ee > as a function of the polymer’s size, N , is also influenced by the subtle

dependence of `min on N (Fig. 8.6). Moreover, it is worth mentioning that these features

arise due to the presence of activity, since for passive systems the polymer’s size does not alter

the local static properties of the polymer chain (see Fig. D.3).

6Note that, without the rescaling, the curves are not universal and depend on N on almost the whole range

of ` (see Fig. D.4).
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8.3.2 Entanglement and topology

The influence of activity on the conformational properties of polymers in melt naturally

prompts the question of how interactions among the chains are affected too. As shown in the

first chapter (see Sec. 1.2.2), the properties of a polymer chain in melt are well described by

the tube model of Edwards [13, 14]. According to this model, all the interactions between a

reference chain and all the other chains in the melt are effectively summarized by an effective

tube-like region constraining the motion of the test chain. The size of the tube is given by

the tube diameter, dT , which in turn depends (see Eq. (1.2)) on the entanglement length Ne.

In this section, we explore how entanglement, and in particular Ne, is affected by the activity.

To this end, as in Chapters 6, we apply the Z1+ algorithm [174] to compute Ne as

a function of Pe both with and without accounting for intra-chain entanglements (knots).

Moreover, to complement this analysis and to understand the extent of intra-chain entangle-

ment, we have also computed the probability of finding a chain to be knotted. To this purpose,

as in Chapter 6, we compute the Jones polynomials associated with the polymers using the

Python package7 Topoly [173]. While, for the entanglement properties, we analyze just the

linear chains in the melt, for the knotting probabilities we also study the isolated case and

compare the two systems.

The results are presented in Fig. 8.8. In the passive case, for all N , Ne falls within the

range of 30 . Ne . 35, with only slight differences between the estimates accounting or not

the intra-chain entanglements. Turning on the activity makes Ne first drop, i.e., chains are

more entangled with respect to the passive case (except polymers of size N = 100), and then

raise again with Pe. Notably, for the longest size considered, N = 800, we find that Ne results

to be lower with respect to the passive case, even at Pe = 20. This behavior is surprising

because, given that the chains shrink with activity, one would expect that active chains would

interpenetrate less. Yet, we recall that active linear chains assume quite different conforma-

tions with respect to the passive case which may lead to different entanglement behavior. In

particular, it could be that while forming loops, chains get entangled with other chains forming

links, which, as previously established in Chapter 6, are responsible for entanglement in the

melt. Anyway, we do not dig further into the matter as we show in the next section 8.3.3

that entanglements become irrelevant for the chains’ relaxation dynamics in the presence of

activity.

Additionally, two other notable effects are worth mentioning. First, unlike the passive

case, there is a substantial dependence of Ne on N , which aligns with previous observations

regarding the size dependence of structural polymer properties in the active case. Second, a

7See caption of Fig. 6.10 for more details on how knots in open chains are detected in Topoly.
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clear distinction emerges between the estimates of Ne when considering or not knots, absent

in the passive case, which becomes particularly evident at high Pe. This observation aligns

with the increasing knotting probability, Pknot, as a function of Pe for all N (see Fig. 8.8 (b)).

Notably, for N = 800, we observe an increase in Pknot of ' 300% at Pe = 20 respect to

the equilibrium value (Pe = 0). Overall, in both systems, activity enhances Pknot, with linear

chains in the melt exhibiting a significantly higher propensity for knotting compared to the

isolated case.

8.3.3 Dynamics

Finally, we focus on how the activity influences the dynamics of the polymer chains. Pre-

vious works have demonstrated that the diffusion of isolated linear chains is enhanced by the

action of active tangential forces [211, 216, 226]. This enhancement is reflected in the mean

square displacement of the center of mass (Eq. (2.18)), g3, exhibiting first a ballistic regime,

proportional to t2, up to the decorrelation time, denoted as τrelax, of the end-end vector,

~Ree. Beyond this initial regime, it follows an asymptotic diffusive behavior with a diffusion

coefficient, D, that increases with Pe and is independent of the chain length, N , in contrast

with the passive case dependence of D ∼ N−1 [5].

As in the previous studies, we focus on g3 (see Eq.(2.18)) and we estimate τrelax from the

condition:8 g3(τrelax) ≡< R2
ee >. Finally, we also extract the diffusion coefficient, D, from

the asymptotic behavior of g3.

The results are presented in Fig. 8.9. Interestingly, when we divide g3 by < R2
ee > and

plot it as a function of the reduced time x = τMD/τrelax, all the curves, for both isolated and

melt chains, collapse onto the same master curve. The universal dynamics is characterized by

a first regime, x ≤ 1, in which chains undergo a ballistic regime, after which diffusion takes

over. This result is quite surprising, in particular for the melt systems. Indeed, according to

the tube model, for τMD < τrelax, dynamics is expected to be sub-diffusive, i.e., g3 ∼ t1/2,

as a result of the constrained diffusion of the chain along the tube. The absence of such

regime and the universality of the dynamics suggests that the dynamics is entirely governed

by the time-scale τrelax and its associated length-scale < R2
ee >. Consequently, it implies that

entanglement becomes irrelevant for the chain’s relaxation dynamics when chains are subject

to tangential forces, which is in stark contrast to the passive case for which entanglement

significantly affects the chain’s dynamics [5, 14]. Enforcing the last point, we observe that

τrelax scales almost linearly with N in both systems (see inset of Fig. 8.9), which again deviates

8This choice is based on the fact that when the chain moves over distances comparable to its end-end

distance, the end-end vector should decorrelate.
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Figure 8.9: Mean square displacement of the centre of mass, g3, for all the N considered, with

×-symbols corresponding to single-chain systems and ◦-symbols to chains in the melt. Each

panel corresponds to a value of Pe. Here, the mean-square displacement, g3, of any system

is divided by the corresponding < R2
ee > and plotted as a function of τMD/τrelax, with τrelax

defined as: g3(τrelax) =< R2
ee >.

significantly with the slow relaxation in passive melts, i.e., τrelax ∝ N3 [5, 14]. Yet, it is worth

noting that τrelax for melts of active chains differs for a prefactor from the single chain’s one.

However, these differences decrease with Pe.

To conclude this analysis, we present the results regarding the asymptotic diffusion coef-

ficient, D, reported in Fig. 8.10. First, we find that activity enhances the diffusion of both

systems, with D becoming independent of N . In both systems, D grows as a power-law

in Pe, denoted as D ∼ Peα. For single chain and chains in the melt we find9 a value of

αisolated = 0.54 ± 0.05 and αmelt = 1.05 ± 0.03, respectively. The fact that D grows more

rapidly as a function of Pe for melts of chains, in comparison to single chains, aligns with

the decrease in the difference of τrelax between the two systems as Pe increases (see insets of

Fig. 8.9).

Taken together, these results suggest that the dynamics becomes universal, independent

of whether chains are isolated or in melt. In particular, entanglement, which is fundamental

in the passive case, might enter at most in the prefactors of the quantities characterizing such

dynamics as in the case of τrelax and D.

9The estimates on the exponents have been obtained by separately performing power-law fits for all N , and

then by averaging over the N -dependent exponents. The error is the standard deviation of those exponents.
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Figure 8.10: Asymptotic diffusion coefficient, D, as a function of Pe for all the N considered

and for both systems of isolated chains (× symbols) and chains in the melt (◦ symbols). The

exponents of the plotted power-laws have been obtained by separately performing power-law

fits for all N, and then by averaging over the N -dependent exponents. Inset shows the ratio

between the diffusion coefficient of the two systems, Disolated/Dmelt, as a function of Pe for

all the N considered.

8.4 Discussion and Conclusions

In this chapter, we have investigated the impact of activity on the conformational and

dynamical properties of linear chains in the melt and compared these results with the behavior

of isolated linear chains.

Regarding conformational properties, we have demonstrated that chains in the melt exhibit

a size reduction, similar to the isolated case. Intriguingly, at high activity levels (Peclet number

Pe ≥ 10), chains of both systems converge to similar sizes, as evidenced by both < R2
ee >

(see Fig. 8.4 (a)) and by < R2
g > (see Fig. D.1). Moreover, once we look at the scaling of

these global observables, both systems exhibit random walk scaling.

However, when exploring multi-scale observables like c(`) and R2(`), we find a more in-

tricate pattern. Notably, we observe deviations from random walk statistics, particularly for

the formation of loops (see Fig. 8.6) within the chains. Moreover, the asymptotic exponent ν

extracted from R2(`) deviates from the random walk value of ν = 1/2. While the deviation

is small for single chains as we find ν ' 0.48, chains in the melt deviate significantly reaching

a value of ν ' 0.41.

Turning to the dynamics, we find that both systems remarkably exhibit the same dynamics

(see Fig. 8.9) governed by the time-scale τrelax, which scales linearly with N . The values of

τrelax for the two systems differ by a prefactor that decreases with Pe, and for Pe = 20, the

prefactor is ' 2. At long times, τ � τrelax, both systems diffuse with a diffusion coefficient,

D, which increases with Pe (see Fig. 8.10) and is independent on N . As for τrelax, the dif-
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ference in D between the two systems becomes smaller with Pe. In summary, our findings

suggest that multi-chain interactions, such as entanglements, become negligible when chains

are subjected to tangential active forces. These results align with experimental observations

[224] on active worms, which showed a decrease in system viscosity with activity, and a milder

dependence on concentration compared to passive entangled systems.

To conclude, this chapter offers insights into how activity influences generic entangled

polymeric systems. These findings lay the groundwork for more complex models of active en-

tangled polymer systems. For instance, one can consider non-uniform active forces to model

regions of chromosomes with varying levels of activity inside the nucleus [227]. Additionally,

future studies could explore the dynamics of chains where only one chain’s end is subjected to

active forces, akin to the activity observed in the heads of active worms [218]. Finally, out-of-

equilibrium rings in the melt have been studied [43], there the non-equilibrium is due to the

mixed composition of rings made up of monomers with different mobilities. The asymmetry,

as demonstrated, leads to a transition into a glassy state. Thus, it would be interesting to

understand whether this phenomenon is universal or dependent upon the specific mechanisms

employed to induce non-equilibrium conditions within the system.



Conclusions

In this Thesis, I have investigated the role of topology and entanglement in the physics of

ring polymers in melt conditions. First, I have focused on the role of permanent topological

constraints, which are fundamental in the physics of chromatin organization, by studying melts

of non-concatenated and unknotted polymer rings. Then, inspired by the recent realizations

of topologically complex polymer assemblies, I have focused on melts of polymer rings with

unconstrained topology, exploring the relations between several polymer parameters, such as

the polymer contour length and its bending rigidity, and the topology of the systems. Finally,

deviating from the main theme of the Thesis, I have explored the physics of active linear

polymers in melt conditions.

In detail, we have studied the following problems:

• In Chapter 3, we have studied the properties of melts of non-concatenated and unknot-

ted polymer rings at varying bending rigidity. In particular, we have characterized the

conformational properties of such systems addressing the apparent contradiction be-

tween the postulated double-folding of the rings and the formation of threadings, which

implies that rings must be open. Based on extensive numerical simulations, we showed

that most of the threadings are localized at scales smaller than the tube diameter, dT ,

while rings double fold on and above the entanglement length, Ne. This explains why

large-scale ring features are well accounted for by the lattice-tree models. Addition-

ally, through an analysis of the mean polymer shapes, we have established a scaling

relationship between the largest and smallest eigenvalues of the gyration tensor, which

is in quantitative agreement with the lattice-tree theory of Grosberg. Finally, we have

characterized the dynamics of these systems and observed that most aspects are well

accounted by both the lattice tree and the fractal loopy globule models. However, we

have shown that threadings can cause divergence in the relaxation time of a partially

immobilized system. This observation cannot be explained by these models, highlighting

the necessity of incorporating threadings for an accurate description of ring dynamics.

• The aim of Chapter 5 was to create a model suitable for the description of systems
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like the recently synthesized Olympic DNA networks. To this end, we have developed a

polymer lattice model with Monte Carlo dynamics which integrates the strand-crossing

mechanism, allowing for the manipulation of ring topologies. Then, we applied this

model to studying melts of polymer rings with different contour lengths. We have

shown that rings with unconstrained topology (allowing for strand-crossing) swell and

attain ideal statistics. We also have characterized the topology of the melt. At the

single-chain level, we have found that knots are rare even for long entangled chains

(N/Ne ' 10). As for links, we have focused on the characterization of the resulting

network of concatenated rings. We have found that rings form a fully connected network

when, on average, each ring is connected to more than two other rings, which occurs at

N/Ne & 2. As for the dynamics, we have shown the presence of two dynamical regimes

depending on the interplay between the inverse of the strand crossing rate, λ−1SC , and the

self-diffusion time of untangled rings, τd. When λ−1SC < τd, strand-crossing rings relax

faster, and their diffusion is enhanced with respect to the untangled case, consistent

with experimental available observations. Conversely, for λ−1SC > τd, the strand-crossing

mechanism slows down ring dynamics, a prediction that could be experimentally tested.

• In Chapter 6, we have addressed the problem of the relationship between entanglement

and topology in polymer melts. To this end, we have exploited rings with unconstrained

topology as model systems to represent ideal polymer melts. First, we have analysed the

topology and entanglement of the networks of polymer rings as a function of polymer

length and bending rigidity. In particular, we have developed an algorithm that can detect

“topological interactions” at any order and we have applied it for the detection of knots,

2-chain links, and 3-chain links. In parallel, we have estimated Ne of these systems

using the Z1 algorithm. Finally, we have shown that the number of entanglements per

chain, N/Ne, is recovered by the ring mean linking degree, 〈LD〉, demonstrating that

the topology of the melt is directly linked to its entanglement. Moreover, we have

shown that 2-chain links contribution to 〈LD〉 is sufficient to match the estimates of

N/Ne, indicating that higher-order links have negligible influence on the entanglement

properties of the melts.

• In Chapter 7, motivated by recent experiments performed on the Kinetoplast DNA at

varying degree of confinement, we have investigated how geometric constraints can affect

the structural and topological properties of melts of strand-crossing rings. Specifically,

we have explored systems experiencing a range of slit confinements, from highly confined

to mildly confined regimes. We have found that geometric constraints affect deeply both

single-chain and many-chain properties. Notably, as the level of confinement increases,
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the resulting network becomes less interconnected. We argue that this observation sug-

gests the potential use of confinement as a mean to fine-tune the mechanical properties

of Olympic networks. In particular, confinement can bias the synthesis process towards

the creation of softer networks.

• In Chapter 8, motivated by the relevance of active polymers in modeling biological

systems, we have explored how activity, under the form of non-conservative tangential

forces, affects the properties of melts of linear chains in comparison with the single-chain

case. Interestingly, we have observed that the two systems exhibit striking similarity

when focusing on global properties, such as < R2
ee >. However, employing a multi-scale

analysis, we have revealed differences between the two, prominently manifesting in the

form of a distinct scaling exponent, ν. Finally, we have found that active chains in melt

do not display any indication of reptation and their dynamics is similar to the one of

active single chains. In this regard, we have shown that the differences between the

two systems, in the relaxation time, τrelax, and in the asymptotic diffusion coefficient,

D, decrease with increasing activity. All these observations point towards the fact that

entanglement becomes less important with increasing activity.

In conclusion, in my PhD work, I have used computer simulations to address fundamental

questions regarding the spatial and dynamic behaviors of melts of ring polymers. The physics

of these systems is of crucial interest in the design and synthesis of soft materials with non-

conventional mechanical properties while, at the same time, it displays intriguing connections

to the biophysics of chromosome behavior in cell nuclei.

Expanding from the results presented in this Thesis, several questions remain to be ad-

dressed. In particular, the integration of the role of ring-ring inter-threadings is pivotal to

a faithful understanding of the mechanisms behind rings’ dynamics, yet most of its aspects

remain unclear. From the perspective of topological materials, several predictions, such as the

confinement-induced softening or the relationship between rings’ dynamics and strand-crossing

rates, have been obtained and it would be interesting to test them experimentally. Finally,

in the context of active polymers, there are a lot of possible directions to be explored: as an

example, active processes shape chromatin organization and its transcription, then it would

be interesting to construct realistic polymer models of chromatin that can account for these

non-equilibrium effects.
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Appendix A

Supplementary material of Chapter 5

N M Trun [τMC] τd [τMC] N M Trun [τMC] τd [τMC]

Ideal rings Melts of untangled rings

40 100 ' 6.0 · 106 ' 7.0 · 103 40 5120 ' 2.0 · 106 ' 1.0 · 104

80 100 ' 6.0 · 106 ' 7.0 · 103 80 2560 ' 2.0 · 106 ' 3.0 · 104

160 100 ' 6.0 · 106 ' 1.0 · 104 160 1280 ' 2.0 · 106 ' 2.0 · 105

320 100 ' 9.0 · 106 ' 4.0 · 104 320 640 ' 4.0 · 106 ' 7.0 · 105

640 200 ' 1.5 · 107 ' 2.0 · 105 640 320 ' 1.5 · 107 ' 3.0 · 106

Melts of rings with strand crossings Melts of permanently catenated rings

40 5120 ' 2.0 · 106 ' 1.0 · 104 40 5120 ' 2.0 · 106 ' 1.0 · 104

80 2560 ' 2.0 · 106 ' 3.0 · 104 80 2560 ' 2.0 · 106 ' 5.0 · 104

160 1280 ' 2.0 · 106 ' 1.0 · 105 160 1280 ' 7.0 · 106 ' 5.0 · 105

320 640 ' 5.0 · 106 ' 6.0 · 105 320 640 ' 9.8 · 107 –

640 320 ' 1.4 · 107 ' 2.0 · 106 640 320 ' 1.9 · 108 –

Table A.1: Computational cost of MC runs. In interacting systems (melts) M is the total

number of chains, whereas for ideal systems with no excluded volume interactions it represents

the number of single independent runs. (i) Trun: length of the single MC run. (ii) τd: ring

self-diffusion time. Values for permanently catenated rings with N = 320 and N = 640 are

not defined because the corresponding time mean-square displacements of the centre of mass

(g3(τ), Eq. (2.18)) attain the characteristic plateaus for stacked dynamics (see Fig. 5.8(c)).

τMC = N ·M is the Monte Carlo time unit (see Sec. 5.2.4 for details).
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N 〈R2
g〉/a2 Pknot N 〈R2

g〉/a2 Pknot

Ideal rings Melts of untangled rings

40 3.178± 0.002 – 40 3.3334± 0.0004 –

80 6.284± 0.006 – 80 6.361± 0.003 –

160 12.52± 0.02 – 160 11.88± 0.02 –

320 24.9± 0.1 – 320 21.9± 0.1 –

640 50.0± 0.3 – 640 38.1± 0.5 –

Melts of rings with strand crossings Melts of permanently catenated rings

40 3.5093± 0.0005 0 40 3.521± 0.004 –

80 7.088± 0.004 1 · 10−3 80 7.10± 0.01 –

160 14.30± 0.02 6 · 10−3 160 14.36± 0.07 –

320 28.6± 0.1 3 · 10−2 320 29.3± 0.3 –

640 57.6± 0.4 9 · 10−2 640 59± 1 –

Table A.2: Single-chain properties in melts of N -monomer rings. (i) 〈R2
g〉: ring mean-square

gyration radius, expressed in lattice units. (ii) Pknot: mean knotting probability per chain (only

for melts of rings with strand crossings).

N GLN0 〈L〉 plink

40 0.164± 0.004 0.376± 0.001 (7.32± 0.02) · 10−5

80 0.22± 0.01 1.143± 0.003 (4.46± 0.01) · 10−4

160 0.29± 0.01 2.754± 0.004 (2.153± 0.003) · 10−3

320 0.36± 0.01 5.77± 0.01 (9.00± 0.02) · 10−3

640 0.46± 0.01 10.92± 0.08 (3.29± 0.02) · 10−2

Table A.3: Network properties in melts of N -monomer rings with strand crossings. (i)

GLN0: decay length for the probability distribution function of the Gauss linking number,

P (N ; GLN) ∼ e−|GLN|/GLN0(N) (see Fig. 5.6 and Fig.A.1 in Appendix A). (ii) 〈L〉: mean

number of chains linking to a single ring. (iii) plink: mean fraction of pairs of linking rings.
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Figure A.1: Probability distribution function, P (GLN), of the Gauss linking number GLN

between pairs of N -monomer rings. The function is perfectly symmetric around GLN = 0,

which validates the numerical approach (based on Ref. [155]) used to detect GLN.



162 APPENDIX A. SUPPLEMENTARY MATERIAL OF CHAPTER 5

(a) (b)
N = 40, Giant component formed by 8 rings N = 80, Giant component formed by 92 rings

(c) (d)
N = 160, Giant component formed by 1171 rings N = 320, Giant component formed by 636 rings

(e)
N = 640, Giant component formed by 320 rings

Figure A.2: Examples of typical network structures for melts of N -monomer rings with un-

constrained topology. Clusters definition, detection and visualization have been perfomed by

using the Python Networkx package by Hagberg, Schult and Swart [228]. In each panel, blue

dots represent rings and light-red lines represent links between pairs of rings. Thick-red paths

identify the largest clusters of each network. Each picture represents a single snapshot, taken

on the corresponding trajectory of the system.
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(a) (b)

(c) (d)

(e)

Figure A.3: Time mean-square displacement of the chain centre of mass, g3(τ), in melts of

permanently catenated N -monomer rings. Gray lines are for displacements of single rings, the

blue line is the average over the entire ensemble of rings.
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Figure A.4: Time mean-square displacement of the centre of mass of N -monomer rings,

g3(τ)/τ , normalized to time τ . Results for ring melts with unconstrained topology at different

SC rates λSC (see legends) are compared to melts of untangled rings.
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Figure A.5: Mean-square gyration radius, 〈R2
g(N)〉, of ring polymers as a function of the

number of bonds, N . Results for ring melts with unconstrained topology at different SC rates

λSC (see legend).
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Figure A.6: Probability distribution function, P (|GLN|), of the absolute value of the Gauss

linking number |GLN| between pairs of N -monomer rings. Results for ring melts with uncon-

strained topology at different SC rates λSC (see legend).
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Figure B.1: Single monomer mean square displacement, g2(τMC), in the centre of mass

reference frame (Eq. (2.19)) for all the polymer’s sizes, N , and for the three κbend considered

in Chapter 6.
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Figure B.2: Average ring minimal contour length (with error bars), 〈Lmin(Ki)〉, computed for

each knot type. The labels on the x-axis are for each possible knot at the given K; for K ≥ 9,

the labels (starting from 1) appear with regular spacing for reasons of space (except the panel

“K = 12, alternating” where only two knots have been detected). As in Figs. 6.6 and 6.7

in Chapter 6, empty/full circles are for alternating/non-alternating knots. As in the rest of

the Thesis (see Sec. 4.1) knots with K ≤ 10 crossings are named according to the Rolfsen’s

convention, while knots with K = 11 and K = 12 crossings are conventionally [173] split into

alternating, Ka i, and non-alternating, Kn i, ones with the ordered index i ≥ 1 in both cases.

Data with no error bars are for rare knot types, which occur only once in the generated melt

conformations. The results shown here are for rings with N = 640 monomers and different

values of the bending stiffness, κbend.
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Figure B.3: Fractional population (with error bars), P (Ki), computed for each knot type.

Notice that the values on each y-axis have to be multiplied by the power-law reported on the

top left corner of the corresponding panel. Symbols, labels and notation are as in Fig. B.2.

Large error bars are due to the limited size of the relative sample.
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N = 40

N = 160 N = 320

N = 80

Figure B.4: 〈n2link(|GLN|)〉, mean number of 2-chain links per ring with absolute Gauss

linking number |GLN|. Results for rings with N monomers (to be compared to the results for

N = 640 reported in the l.h.s. panel of Fig. 6.6 in Chapter 6).

Figure B.5: (Left) Probability, Punlink, that a ring is not concatenated to any other ring of the

system as a function of N and κbend. (Right) Mean fraction of rings, 〈Mcc〉/M , belonging to

the largest connected component of chains in the melt as a function of N and κbend.
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Figure C.1: Single monomer mean square displacement, g2(τMC), in the centre of mass ref-

erence (Eq. (2.19)), for the different values of slit-confinement, Ĥ, and the bulk reference

considered in Chapter 7.

Figure C.2: Fractional population of each knot type – named according to the Rolfsen con-

vention [149] – at fixed number of crossings K and for the different values of confinement Ĥ

and in bulk conditions (see legend). For K = 11, knots are categorized according the Hoste-

Thistlethwaite table [229] that split them in alternating (Ka i) and non-alternating ones (Kn i),

with the index i used to enumerate the rings separately within each group. Large relative error

bars are due to the limited size of the sample (notice that the values of each y-axis have to

be multiplied by the power-law reported on the top left corner of the corresponding panel).
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Figure C.3: Contour plots for the joint distribution function of the slit-parallel and slit-

transverse (or, slit-perpendicular) components of the distances between the centres of mass of

neighboring rings P (dCM−CM,‖, dCM−CM,⊥ | neighbors). Distances have been rescaled by the

corresponding root-mean-square gyration radius of the rings.
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Figure C.4: Distribution functions of the distances between the rings’ centres of mass,

P (dCM−CM).
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Figure C.5: (a) P (K2
i |GLN = 0), fractional population of two-chain links K2

i (termed ac-

cording to the Rolfsen convention [149]) having GLN = 0. Labels have been put for links

corresponding to peaks of the distributions. (b) P (K3
i |irreducible), fractional population of

three-chain links K3
i (also termed according to the Rolfsen convention [149]) belonging to the

poly(2)catenane+1-ring and Brunnian classes (see main text for details). Topoly fails [173]

recognizing links with > 9 crossings, so these lack categorization. In both panels, vertical

dotted lines delimit areas of links at fixed number of crossings K.
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X
Melt

Isolated

Figure D.1: Mean-square gyration radius, < R2
g >, as a function of N for all the value of

Peclet, Pe, considered for both isolated chains (× symbol) and in the melt (◦ symbol).

Figure D.2: Distribution functions of the rescaled end-end distance, P
(√

R2
ee/ < R2

ee >
)

,

for both isolated and linear chains in the melt for all the N considered compared with the

Gaussian distribution. The same legend of Fig. D.1 applies here.



177

(a) (b)

Figure D.3: (a) Tangent-tangent correlation function, c(`), as a function of contour distance

`, for all the polymer’s sizes, N , simulated for both isolated chains (× symbol) and in the

melt (◦ symbol) at Pe = 0 (passive case). (b) Mean-square internal distance R2(`), as a

function of contour distance ` for all the N simulated for both isolated chains and in the melt

at Pe = 0.

X
Melt

Isolated

Figure D.4: Means square internal distance, R2(`), as a function of `, for all the Pe > 0

considered and the polymer sizes, N , simulated for both isolated (× symbol) and melt (◦
symbol) systems.
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entanglements of a polymer network using knot theory. Phys. Rev. E 64, 012801 (2001).

20. Likhtman, A. E. The tube axis and entanglements in polymer melts. Soft Matter 10,

1895–1904 (2014).

21. Caraglio, M., Micheletti, C. & Orlandini, E. Physical Links: defining and detecting inter-

chain entanglement. Scientific Reports 7, 1156 (2017).

22. Bobbili, S. V. & Milner, S. T. Simulation study of entanglement in semiflexible polymer

melts and solutions. Macromolecules 53, 3861–3872 (2020).

23. Lin, Y. Number of entanglement strands per cubed tube diameter, a fundamental aspect

of topological universality in polymer viscoelasticity. Macromolecules 20, 3080–3083

(1987).

24. Kavassalis, T. A. & Noolandi, J. New view of entanglements in dense polymer systems.

Physical review letters 59, 2674 (1987).

25. Semenov, A. N. Dynamics of concentrated solutions of rigid-chain polymers. Part 1.

Brownian motion of persistent macromolecules in isotropic solution. Journal of the

Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 82, 317–

329 (1986).

26. Odjik, T. On the statistics and Dynamics of Confined or Entangled Stiff Polymers, 1983.

Macromol 16, 1340.



BIBLIOGRAPHY 181

27. Everaers, R. et al. Rheology and microscopic topology of entangled polymeric liquids.

Science 303, 823–826 (2004).
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