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Abstract
In this note, we study necessary and sufficient conditions for the existence of a Spin(n + 1)-
dimensional cobordism that supports a non-singular and non-degenerate pseudo-Riemannian
metric of signature (2, n − 1), which restricts to a non-singular time-orientable Lorentzian
metric on its boundary. The corresponding cobordism groups are computed.
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1 Introduction andmain results

Reinhart [26] and Sorkin [28] determined necessary and sufficient topological conditions for
a compact (n + 1)-manifold W to admit a non-singular time-orientable Lorentzian metric
gL inducing a Riemannian metric on its boundary ∂W = M1 � M2. In particular, a pair
((W ; M1, M2), gL) satisfying such properties is known as an SO(1, n)0-Lorentzian cobor-
dism (Definition 41) and the existence of the Lorentzian metric gL onW has been completely
characterized by Reinhart and Sorkin by means of the Euler characteristics of W and of the
closed n-manifolds M1 and M2. These objects have been studied extensively throughout
the years by several mathematicians and mathematical physicists, including Chamblin [3],
Geroch [9] Gibbons–Hawking [10], Reinhart [26], Sorkin [28] and Yodzis [40].

An interesting question is whether two given topological and geometric properties can
co-exist on a given cobordism (W ; M1, M2). Let us think for a second about the third-
dimensional case to fix ideas. Any two closed oriented 3-manifolds are the boundary of some
compact Spin 4-manifold since the third Spin-cobordism group is trivial [23]. The results of
Reinhart and Sorkin that were just mentioned also guarantee the existence of a SO(1, 3)0-
Lorentzian cobordism between any two closed oriented 3-manifolds. The latter cobordism,
however, need not support a Spin-structure. Gibbons–Hawking [10] showed that the Kervaire
semi-characteristic (see Definition 9) of ∂W = M1 � M2 is the only topological obstruction
for a SO(1, 3)0-Lorentzian cobordism to admit a compatible structure of a Spin-cobordism.
Smirnov–Torres [27] generalized their results to arbitrary dimensions and computed the
corresponding Spin(1, n)0-Lorentzian cobordism groups.

In this paper, we extend these results further into the pseudo-Riemannian realm and occupy
ourselves with the study of the following objects.

Definition 1 An SO(2, n − 1)0-pseudo-Riemannian cobordism between closed smooth ori-
ented n-manifolds M1 and M2 is a pair

((W ; M1, M2), g) (2)

that consists of
(A) a cobordism (W ; M1, M2),
(B.1) a non-singular indefinite metric (W , g) of signature (2, n − 1) such that
(C.1) its restriction to the boundary ∂W = M1 � M2 gives rise to non-singular time-

orientable Lorentzianmetrics (M1, gLM1
) and (M2, gLM2

); please see Sect. 3 for an explanation
on our notation.

In the sequel, we focus on the case where the cobordism of Item (A) is a Spin-cobordism
and require for the Spin-structures on the boundary components to be induced by the Spin-
structure on the cobordism. In thise case, we call (2) a Spin(2, n − 1)0-pseudo-Riemannian
cobordism between M1 and M2 and say that M1 is Spin(2, n − 1)0-cobordant to M2.

A prototype example of a Spin(2, n − 2)0-pseudo-Riemannian cobordism is as follows.

Example A Let (X , g) be a closed Riemannian (n − 2)-manifold of dimension at least two,
take the 2-disk D2 with polar coordinates (r , θ) ∈ D2, and consider the compact pseudo-
Riemannian n-manifold

(D2,−dr2 − r2dθ2) × (X , g) (3)

with the indefinite product metric of signature (2, n − 2). Furthermore, if X admits a Spin-
structure, then (3) is a Spin(2, n − 2)0-pseudo-Riemannian cobordism with boundary the
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Lorentzian (n − 1)-manifold

(S1,−dθ2) × (X , g). (4)

While some partial results on Spin(2, 2)0-pseudo-Riemannian cobordisms have been
obtained by Alty–Chamblin in [1], there is no systematic study of these objects avail-
able in the literature. The goal of this paper is to fill such gap. In our first main
result, we provide an almost complete topological characterization for the existence of a
Spin(2, n−1)0-pseudo-Riemannian cobordism ((W ; M1, M2), g); seeRemark 55. TheEuler
characteristic of a manifold X is denoted by χ(X) and the Kervaire semi-characteristic of an
odd-dimensional manifold Y is denoted by χ̂Z/2(Y ); see Definition 9.

Theorem B Let {M1, M2} be closed smooth Spin-cobordant n-manifolds.
• Suppose n �≡ 1, 5, 7 mod 8. There exists a Spin(2, n−1)0-pseudo-Riemannian cobor-

dism ((W ; M1, M2), g) if and only if

(1) The Euler characteristic of every connected component of M1 and M2 is trivial for n
even

(2) χ̂Z/2(M1) = χ̂Z/2(M2) for n odd.

• Suppose n ≡ 1 mod 4. If χ̂Z/2(M1) = χ̂Z/2(M2), there exists a Spin(2, n −
1)0-pseudo-Riemannian cobordism.

• Suppose n ≡ 7 mod 8. There is a Spin(2, n − 1)0-pseudo-Riemannian cobordism
without any further assumptions.

The main ingredients of our proof of Theorem B are results of Atiyah [2], Frank [5],
Hirzebruch–Hopf [12], Matsushita [22], Thomas [33–39] on the existence of 2-distributions
of the tangent bundle of an oriented smooth manifold along with work of Gibbons–
Hawking [10], Kervaire [15], Kervaire–Milnor [16], Lusztig–Milnor–Peterson [20] and
Smirnov–Torres [27] relating the Euler characteristic of a Spin-cobordism with the Kervaire
characteristic of its boundary.

InSect. 4,wedefine the correspondingSpin(2, n−1)0-cobordismgroups,whichwedenote
by �

Spin
2,n−1. We build on Milnor’s computations of Spin-groups in low dimensions [23] in

order to determine them. Along with Theorem B, the task yields the following depiction of
the cobordisms of Definition 1 in terms of simple topological invariants. We also compute
the cobordism groups.

Theorem C Let {M1, M2} be closed smooth Spin n-manifolds.
• If n = 3, there is a Spin(2, 2)0-pseudo-Riemannian cobordism ((W ; M1, M2)) if and

only if χ̂Z/2(M1) = χ̂Z/2(M2). There is a group isomorphism

�
Spin0
2,2 → Z/2. (5)

• If n = 4, there is a Spin(2, 3)0-pseudo-Riemannian cobordism ((W ; M1, M2), g) if and
only if all the connected components of M1 and M2 have trivial Euler characteristic and they
have the same signature σ(M1) = σ(M2). There is a group isomorphism

�
Spin0
2,3 → Z. (6)

• If n = 6, there is a Spin(2, 5)0-pseudo-Riemannian cobordism ((W ; M1, M2), g) if and
only if all the connected components of M1 and M2 have trivial Euler characteristic. There
is a group isomorphism

�
Spin0
2,5 → {0}. (7)
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• If n = 7, there is a Spin(2, 6)0-pseudo-Riemannian cobordism ((W ; M1, M2), g) with-
out any further assumptions. There is a group isomorphism

�
Spin0
2,6 → {0}. (8)

The last result to be presented in this introduction contains a myriad of examples of the
cobordisms of Definition 1; cf. [27, Corollary G].

Theorem D Let M be a closed connected smooth n-manifold that Spin-bounds and whose
Euler characteristic is zero, let n ≥ 5. For any finitely presented group G, there exists
a closed smooth Spin n-manifold M(G) such that π1M(G) = G and a Spin(2, n − 1)0-
pseudo-Riemannian cobordism ((W ; M, M(G)), g).

The proof of Theorem D follows from Theorem B and a well-known argument to
construct closed high-dimensional stably-parallelizable n-manifolds with prescribed fun-
damental group [13, Theorem A].

We have organized the paper as follows. In Sect. 2 we present some background material
for the convenience of the reader. It includes a description of the topological constructions
that are used in the paper as well as background existence results on indefinite metrics. A
discussion on the co-existence of Spin-structures and indefinite metrics on our cobordisms
can be found in Sect. 3. The cobordism groups are defined in Sect. 4. Section5 contains a
comparison between the cobordisms of Definition 1 and Lorentzian cobordisms. Section6
contains a discussion and open questions on expressing our main results in the language
of tangential structures of Galatius–Madsen–Tillmann–Weiss [6] as Ebert did in [4] for
Reinhart’s work on Lorentzian cobordisms [26]. This section arose from a suggestion of
Oscar Randal–Williams. The proofs of our main results are given in Sect. 7. For background
results, the reader is directed to Atiyah [2], Chamblin [3], Gibbons–Hawking [10], Milnor
[23], O’Neill [25], Reinhart [26], Smirnov-Torres [27], Steenrod [29], Stong [30], Thom
[32], Thomas [34–36, 38, 39].

All manifolds in this paper are assumed to be C∞-smooth and Hausdorff. All pseudo-
Riemannian metrics in this paper are assumed to be time-orientable and non-degenerate.

2 Background results

2.1 Kervaire semi-characteristic and spin-structures

The following fundamental invariant of odd-dimensional manifolds was introduced by Ker-
vaire [15].

Definition 9 The Kervaire semi-characteristic of a closed (2k + 1)-manifold M is

χ̂Z/2(M) =
k∑

i=0

bi (M;Z/2) mod 2 (10)

where bi (M;Z/2) denotes the i th Betti number of M with Z/2-coefficients.

There is a relation between the Euler characteristic of an even-dimensional manifold with
boundary and the Kervaire semi-characteristic of its boundary in the presence of a Spin-
structure as observed by Geiges [8], Gibbons–Hawking [10], Kervaire [15], Kervaire-Milnor
[16], Lusztig–Milnor–Peterson [20] and Smirnov-Torres [27].
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Theorem 11 Let W be a compact even-dimensional manifold with non-empty boundary
∂W �= ∅. The identity

χ(W ) + χ̂Z/2(∂W ) ≡ 0 mod 2 (12)

holds provided either

• W is stably-parallelizable [15] or
• W is 2q-dimensional for q �≡ 0 mod 4 and admits a Spin-structure [8, Lemma 8.2.13],

[27, Lemma 6].

The value of the Kervaire semi-characteristic is independent of the choice of field of
coefficients for manifolds that admit a Spin-structure [20]; see [2, Remark p. 16].

2.2 Double of a compact manifold and its Euler characteristic and Kervaire
semi-characteristic

Let W be a compact oriented n-manifold with non-empty boundary ∂W = M . The double
2W of W is the closed smooth oriented n-manifold

2W = W ∪M W , (13)

where corners have been smoothed out. It can also be described as the boundary

2W = ∂(W × [0, 1]). (14)

The computation of the Euler characteristic of (13) and its signature, whenever it is defined,
are immediate and we record them.

Lemma 15 The Euler characteristic of the double (13) is

χ(2W ) = 2χ(W ) − χ(∂W ). (16)

Suppose W is 4q-dimensional. The signature of 2W satisfies

σ(2W ) = 0. (17)

A result of Zadeh [41] is useful for the computation of the Kervaire semi-characteristic
of (14).

Proposition 18 Let W be a Spin compact 2q − 1 oriented manifold with q �≡ 0 mod 4. The
Kervaire semi-characteristic of the double 2W satisfies

χ̂Z/2(2W ) = 0. (19)

The proof of Proposition 18 follows fromTheorem 11 and the fact that 2W is the boundary
of the Spin-manifold W × [0, 1].

2.3 Existence of 2-distributions

Let us now discuss existence results of subbundles of the tangent bundle of a manifold that
are directly related to the existence of pseudo-Riemannian metrics.

Definition 20 LetW be an oriented n-manifold. A 2-distribution V is a non-singular field of
tangent 2-planes, i.e. an oriented 2-plane sub-bundle of TW .
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Remark 21 Anoriented rank 2 vector bundle over amanifold is determined up to isomorphism
by its Euler class [29]. It follows that a 2-distribution on W with trivial Euler class satisfies
Span(W ) ≥ 2, where Span(W ) is the maximum number of everywhere linearly independent
and nowhere vanishing vector fields on W .

The following result collects several foundational theorems on the existence of 2-
distributions on oriented and Spin-manifolds due to Atiyah [2], Frank [5], Hirzebruch–Hopf
[12], Matsushita [22] and Thomas [33–39].

Theorem 22 Let X be a closed connected oriented n-manifold.
• [5], [12, 4.5], [21, Theorem 2], [2, Theorem 3.1]. Suppose n ≡ 0 mod 4 and that the

signature satisfies σ(X) = 0. There is a 2-distribution on X if and only if

χ(X) ≡ 0 mod 4.

• [36, Theorem 1.3]. Suppose n ≡ 1 mod 4 and that X admits a Spin-structure. There
is a 2-distribution on X with Euler class 2v for each class v ∈ H2(X;Z) if and only if

wn−1(X) = 0 and χ̂Z/2(X) = 0,

where wn−1(X) is the (n − 1)nth Stiefel–Whitney class of X. Moreover, if X admits a 2-
distribution, then χ̂Z/2(X) ≡ 0 mod 2 [2, Theorem 4.1].

• [36, Theorem 1.1, Corollary 1.2]. If n ≡ 3 mod 4, then there is a 2-distribution on X
with Euler class 2v for each class v ∈ H2(X;Z).

Theorem 22 is a key ingredient in the proofs of our main results. The following technical
lemma is used to build a Spin(2, n − 1)0-pseudo-Riemannian cobordism whenever a given
Spin-cobordism (W ; M1, M2) satisfies χ(W ) = χ(M1) = χ(M2) = 0 and Span(W ) ≥ 2.

Lemma 23 Let (W ; M1, M2) be a cobordism between closed orientable n-manifolds such
that the Euler characteristic of every connected component of W , M1 and M2 is trivial.
Suppose furthermore that there exist two everywhere linearly independent vector fields
X , Y ∈ X(W ). Then we can find two everywhere linearly independent vector fields
X̃ , Ỹ ∈ X(W ) such that X̃ |∂W is the exterior normal to the boundary ∂W.

Proof Without loss of generality, we assume the cobordism W to be connected. Indeed, if
this is not the case we can just build the vector fields X̃ , Ỹ ∈ X(W ) from the statement on
each connected component. We start by proving the lemma in the case in which both M1 and
M2 are connected.

Fix a Riemannian metric g on W . Let X , Y ∈ X(W ) be as above and let νi be a tubular
neighbourhood of Mi inside W for i = 1, 2 respectively. In the following, we will make
use of the identification Mi × [0, 1] ∼= νi , with Mi × {1} corresponding to the submanifold
Mi ⊂ νi . Let X̄ ∈ X(W ) be a vector field satisfying the following conditions:

(1) X̄ |W\(ν1�ν2) = X |W\(ν1�ν2), i.e. X̄ coincides with X outside the disjoint union of the
collar neighbourhoods of the boundary components of W ;

(2) X̄ |∂W is the outward-pointing normal vector field;
(3) X̄ has finitely many singular points in ν1 � ν2.

Notice that such a vector field can always be built out of X . We can assume without loss of
generality that all the singular points of X̄ are contained in the disjoint union of two small
closed balls Bi ⊂ νi for i = 1, 2 (see [24, Chapter 4]).

Our first aim is building out of Y a new vector field Ȳ ∈ X(W\(B1 ∪ B2)) with the
following properties:
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(1) Ȳ |W\(ν1�ν2) = Y |W\(ν1�ν2), i.e. Ȳ coincides with Y outside the disjoint union of the collar
neighbourhoods of the boundary components of W ;

(2) X̄ , Ȳ are everywhere linearly independent on W \ (B1 � B2).

Let us build Ȳ by first extending the restriction of Y to W \ (ν1 � ν2) to the complement of
a small ball B1 inside the tubular neighbourhood ν1, the procedure in ν2 will be analogous.
Without loss of generality, we can suppose X̄ to be unitary outsideW\(B1� B2)with respect
to the metric g. The vector field X̄ defines an isotopy between the linear span of X̄ |M1×{0}
inside TW |M1×{0} and the one of X̄ |M1×{t} inside TW |M1×{t} ∼= TW |M1×{0} for every t
sufficiently small. Such isotopy can be extended to an ambient isotopy of the total space of
the bundle TW |M1×{0} consisting of vector bundle isomorphisms (by adapting the proof of
Hirsch’s Isotopy extension theorem in [11]). This allows us to define Ȳ on (M1×[0, t̄))\ B1,
where t̄ is the maximum t ∈ [0, 1] such that B1 ∩ (M1 × {t}) �= ∅. In particular, we can
suppose without loss of generality that B1 ∩ (M1 × {t̄}) consists of one single point {pt}.
Since X̄ |M1×{t̄} is isotopic to the outward-pointing normal and linearly independent with
respect to Ȳ on (M1 × {t̄})\{pt}, up to a slight perturbation we can regard Ȳ |(M1×{t̄})\{pt}
as a tangent vector field on M1 \ {pt}. Since χ(M1) = 0, Poincaré-Hopf’s theorem (see
[24, Chapter 6]) allows then to define Ȳ globally on ν1\B1. Indeed, Ȳ |(M1×{t̄})\{pt} can be
extended to a tangent vector field to M1 × {t̄} with an isolated zero at {pt} of trivial index,
up to scaling the vector field in a neighbourhood of {pt} by using a smooth function which
is constantly equal to one in a collar of such neighbourhood and vanishes exactly at the point
{pt} ∈ M1 × {t̄}. Hence, up to homotopy, we can assume that Ȳ |(M1×{t̄})\{pt} is constant in
a small neighbourhood of {pt} inside M1 × {t̄} and hence we can extend Ȳ first to a tangent
vector field to the slice M1 × {t̄} and then to the whole ν1 \ B1 as done before in the collar
M1 × [0, t̄).

Once we have built such Ȳ ∈ X(W\(B1 ∪ B2)), we can assume (up to composing with
a self-diffeomorphism of the cobordism W , which we may assume to be connected) that
X̄ , Ȳ are linearly independent outside a little ball B ⊂ ν1. In particular, we can choose such
diffeomorphism to fix a small collar of the boundary ∂W and to send both B1 and B2 into
B. Moreover, we can assume without loss of generality that the restrictions of X̄ , Ȳ to the
complement of such ball B are orthonormal with respect to the fixed Riemannian metric.
Poincaré–Hopf’s theorem together with the vanishing of the Euler characteristic ofW implies
that the map

∂B → Sn

sending each point x ∈ ∂B to X̄(x) is of zero degree and is therefore null-homotopic.
Hence, we can suppose that the restriction X̄ |∂B is the constant vector field ∂

∂t under the
identification ν1 ∼= M1 × [0, 1], where t parametrizes the unit interval. In this way, X̄ can be
extended to the whole interior of B by setting it to be constantly equal to ∂

∂t , defining a global

vector field X̃ ∈ X(W ) with the desired properties. In particular, X̃ |∂W = X̄ |∂W coincides
with the outward-pointing normal by construction. Moreover, we can assume without loss
of generality that the projection on the unit interval [0, 1] parametrizing the collar ν1 is a
height function with just one maximum tM and one minimum tm for the sphere ∂B. Up to
isotopy, Ȳ |M1×{t} can be seen as a tangent vector field to M1 × {t} for any t ∈ [tm, tM ]. The
fact that χ(M1) = 0 will then allow us to extend Ȳ to a vector field Ỹ ∈ X(W ) by using
Poincaré-Hopf’s theorem, as it was already done in the construction of Ȳ inside ν1\B1. This
finishes the proof of Lemma 23 in the case where M1 and M2 are connected.

In the case in which M1 and M2 are not necessarily connected, the vector field X̄ ∈ X(W )

is built in the same way as in the case where these manifolds are connected. Denote by
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{Mi, j : j = 1, 2, . . . , ki } the connected components of Mi for i = 1, 2. Without loss of
generality, the singular points of X̄ ∈ X(W ) are now contained in the union of closed balls
{Bi, j ⊂ ν(Mi, j ) : j = 1, . . . , ki } for i = 1, 2. For the purpose of defining the vector field
Ȳ on the complement of these balls, it is enough to apply Poincaré–Hopf’s theorem to each
connected component Mi, j using our hypothesis that χ(Mi, j ) = 0. In order to build the
vector fields X̃ , Ỹ ∈ X(W ), we collect all points at which X̄ , Ȳ are not linearly independent
inside a closed ball B ⊂ ν(M1,1) and proceed as it was done in the connected case. This
concludes the proof of Lemma 23. ��

2.4 Existence of indefinite metrics

We now recall some basic definitions and existence results of pseudo-Riemannian metrics
with non-trivial signature on manifolds. It is well known that the existence of a Lorentzian
metric on a manifold is equivalent to the existence of a nowhere vanishing vector field, i.e.
a nowhere vanishing section of its tangent bundle [25], [27, Lemma 1]. Sub-bundles of the
tangent bundle of a manifold yield other indefinite metrics [25, 29], and the role in this note
of the existence results on 2-distributions that were described in Sect. 2.3 is explained in the
following lemma; cf. [29].

Lemma 24 Let W be a n-manifold. There is a pseudo-Riemannianmetric (W , g) of signature
(p, q) if and only if there is a decomposition of the tangent bundle

TW = ξ ⊕ η, (25)

where ξ and η are vector sub-bundles of rank p and q, respectively. Moreover, these sub-
bundles can be chosen such that ξ is time-like and η is space-like.

In particular, there is a non-singular indefinite metric of signature (2, n − 2) on a n-
manifold W if and only if there is a 2-distribution V ⊂ TW.

The vector sub-bundle ξ from the decomposition (25) is called a time-like sub-bundle
of maximal rank. Recall that a pseudo-Riemannian manifold (W , g) of signature (p, q) is
called time-orientable if there exists an orientable time-like sub-bundle of maximal rank.

The following result will be used to construct a non-singular pseudo-Riemannian metric
of signature (2, n − 2) on the double 2W whenever there is such a metric on W , which
restricts to a Lorentzian metric on ∂W .

Theorem 26 Let W be a n-manifold with non-empty boundary ∂W. The following statements
are equivalent.

(1) There is an indefinite metric (W , g) of signature (2, n− 2) such that its restriction to the
boundary g|∂W is a Lorentzian metric;

(2) There is a rank 2 sub-bundle ξ ⊂ TW and a line bundle η′ ⊂ ξ |∂W such that η′ is
transversal to the zero section ∂W of ξ |∂W ;

(3) There is a rank 2 sub-bundle ξ ⊂ TW and a nowhere vanishing section ν : ∂W → ξ |∂W
that is everywhere outward pointing.

Proof We begin by showing that the implication (1)⇒ (2) holds. Lemma 24 implies the
existence of a decomposition

TW = ξ ⊕ η
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with ξ, η ⊂ TW sub-bundles of rank 2 and n − 2 (respectively), and such that g is negative-
definite on ξ andpositive-definite onη. Since g′ := g

∣∣
∂W is aLorentzianmetric by hypothesis,

Lemma 24 implies the existence of a further decomposition

T
(
∂W

) = ξ̃ ⊕ η̃

where ξ̃ is a time-like rank 1 vector sub-bundle of T
(
∂W

)
, while η̃ can be chosen to be

space-like.
We will prove that the map

p′ : ξ̃ → ξ
∣∣
∂W

given by the composing the inclusion of the bundle ξ̃ in TW with the projection

p : TW = ξ ⊕ η → ξ.

is a bundle monomorphism. Let x ∈ ∂W and consider a non-zero vector v ∈ ξ̃x . We will
show that w := p′(v) ∈ ξx is non-zero as well. Indeed, suppose that w ∈ ξx is the zero
vector. Then (after composing with the inclusion ξ̃x ⊂ TW ) we would have v ∈ ηx and thus
g|TxW (v, v) > 0. This is a contradiction.

Then, the image of ξ̃ under the bundle map p′ : ξ̃ → ξ |∂W defines a line sub-bundle
ξ1 ⊂ ξ

∣∣
∂W , yielding a further decomposition

ξ
∣∣
∂W = ξ1 ⊕ ξ2.

In order to finish the proof of the implication (1)⇒(2), it will be enough to prove the
transversality condition ξ2 � ∂W . We proceed by contradiction and suppose that there is a
point x ∈ ∂W such that (ξ2)x ⊂ Tx∂W . This implies that (ξ2)x = 〈v〉 is generated by a
non-zero vector

v = v1 + v2 ∈ ξ̃x ⊕ η̃x

where v1 ∈ ξ̃x and v2 ∈ η̃x . Since p′ is an isomorphism and v /∈ (ξ1)x , we have that
v1 = 0, while the fact of v being time-like implies that also v2 is trivial, a contradiction. This
concludes the proof that the implication (1)⇒ (2) holds.

We now prove that the implication (2)⇒ (3) holds. Let n̂ : ∂W → TW
∣∣
∂W be an outward-

pointing vector field. For all x ∈ ∂W , there is a decomposition

TxW = Tx
(
∂W

) ⊕ Span
(
n̂(x)

)
.

Moreover, from the decomposition TxW = Tx (∂W ) ⊕ η′
x we have that

n̂(x) = vx + wx ,

where vx ∈ Tx
(
∂W

)
and wx ∈ η′

x . Note that the condition of n̂ being outward pointing
trivially implies that wx �= 0 for all x ∈ ∂W . In particular, the map

n : x �→ wx

defines a nowhere vanishing section of ξ
∣∣
∂W . Sincewx /∈ Tx

(
∂W

)
at every point by construc-

tion, we have that n is either everywhere outward pointing or everywhere inward pointing. In
the latter case, we can simply consider −n as the desired section. This concludes the proof
that the implication (2)⇒ (3) holds.

To finish the proof of Theorem 26, we proceed to show that the implication (3) ⇒ (1)
holds. We can use the given 2-distribution ξ to construct a pseudo-Riemannian metric g on
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Table 1 Summary on Span X

n = dim X Necessary and sufficient conditions for Span(X) ≥ 2

n ≡ 0 mod 4 σ(X) ≡ 0 mod 4, χ(X) = 0

n ≡ 1 mod 4 wn−1(X) = 0, χ̂R(X) = 0

n ≡ 2 mod 4 χ(X) = 0

n ≡ 3 mod 4 Span X ≥ 2 is always true

W of signature (2, n−2)with ξ ⊂ TW being time-like. We consider also a rank 2 space-like
sub-bundle η ⊂ TW complementary to ξ . The everywhere outward-pointing vector field
n : ∂W → ξ

∣∣
∂W spans a trivial sub-bundle ξ1 ⊂ ξ

∣∣
∂W . Hence, we have a decomposition

ξ
∣∣
∂W = ξ1 ⊕ ξ2. Clearly, we may assume that ξ2 ⊂ T

(
∂W

)
. We thus have a decomposition

T
(
∂W

) = ξ2 ⊕ η
∣∣
∂W ;

with ξ2 time-like and η|∂W space-like. Such a decomposition allows us to get the desired
Lorentzian metric on ∂W of Item (3). ��

At this point, we are able to formulate the following consequence of Lemma 23 and
Theorem 26 that will be useful for our purposes.

Corollary 27 Let (W ; M1, M2) be a Spin-cobordism between closed Spin n-manifolds. The
following statements are equivalent.

• There is an indefinite metric g such that ((W ; M1, M2), g) is a Spin(2, n− 1)0-pseudo-
Riemannian cobordism and g is induced by a 2-distribution of trivial Euler class;

• There exist everywhere linearly independent vector fields X, Y ∈ X(W ) and the Euler
characteristic of every connected component of W , M1 and M2 is trivial.

We will make use of the necessary and sufficient conditions for a closed n-manifold X
to admit two everywhere linearly independent vector fields, with the purpose of building a
Spin(2, n − 1)0-pseudo-Riemannian cobordism out of a Spin-cobordism as in Corollary 27.
These conditions have been obtained by Thomas [39, Table 2, pp. 652] and are summarized
in Table 1.

Proposition 28 Let W be an orientable n-manifold with non-empty boundary ∂W = M1 �
M2, where the Euler characteristic of every connected component of M1 and M2 is trivial.

• Suppose that n �≡ 3 mod 4 and that the Euler characteristic of every connected compo-
nent of W is trivial. If n ≡ 1 mod 4, assume further that W admits a Spin-structure. There
are non-singular Lorentzian metrics (2W , gL ) and (W , gLW ) such that the latter restricts to
a Riemannian metric on ∂W. Moreover, there are indefinite metrics (2W , g) and (W , gW )

of signature (2, n − 2) that arise from a 2-distribution with trivial Euler class and such that
the restriction of gW to ∂W yields a non-singular Lorentzian metric.

• If n ≡ 3 mod 4, such pseudo-Riemannian metrics exist on 2W and W without any
other assumptions.

The proof of Proposition 28 is a straight-forward application of results of Reinhart [26,
Theorem 1], Lemma 23 and Table 1.
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3 Spin structures on pseudo-Riemannian cobordisms and their
structure groups

Let us justify now the notation Spin(2, n − 1)0 in our definition. Let X be a orientable
compact n-manifold. If X admits a pseudo-Riemannian metric (X , g) of signature (p, q)

with p + q = n, then it is well known that the structure group of its tangent bundle T X can
be reduced to O(p, q) [29], where O(p, q) is the indefinite orthogonal group of signature
(p, q)

O(p, q) = {A ∈ R
n×n | AT Ip,q A = Ip,q}, (29)

and Ip,q is the diagonalmatrixwith the first p diagonal entries equal−1 and the lastq diagonal
entries equal+1. It is easy to see that if A ∈ O(p, q), then det A = ±1. In particular, if (X , g)
is orientable, the structure group can be further reduced to SO(p, q), namely to the group
of indefinite orthogonal matrices of signature (p, q) with positive determinant. Such group
has two connected components [7]; the connected component of the identity is denoted by
SO(p, q)0. One can prove that the structure group of the tangent bundle T X can be reduced
to SO(p, q)0 if (X , g) is time-orientable [7]. As for the definite case, we have a double cover
of SO(p, q)0 by the Spin(p, q)0 group (see [19] for the definitions) which satisfies a short
exact sequence of groups

0 → Z/2 → Spin(p, q)0
Ad−→ SO(p, q)0 → 0. (30)

Definition 31 Let X be a orientable compact n-manifold with a time-oriented pseudo-
Riemannian metric g of signature (p, q), where p + q = n. Let πSO : F(X) → X be
the principal SO(p, q)0-bundle of oriented orthonormal frames of (X , g). A Spin(p, q)0-
structure on X is a principal Spin(p, q)0-bundle πSpin : F̃(X) → X with a 2-fold cover
� : F̃(X) → F(X) such that the diagram

Spin(p, q)0 F̃(X) X

SO(p, q)0 F(X) X

Ad � Id
πSO

(32)

commutes.

The existence of a Spin(p, q)0-structure under these hypotheses does not depend on the
metric. The obstruction for it is merely topological, as the following result exhibits.

Lemma 33 Let X be a compact orientable n-manifold X with a time-orientable pseudo-
Riemannian metric of signature (p, q), with p + q = n. Then X admits a Spin(p, q)0-
structure if and only if it admits a Spin(n)-structure.

Proof In the presence of a pseudo-Riemannian metric of signature (p, q) on X , there is a
splitting of its tangent bundle T X = ξ ⊕η. A result of Karoubi [14, Proposition 1.1.26] says
that the principal SO(p, q)0-bundle F(X) defined above admits a lift to F̃(X) as in (32) if
and only if

w1(ξ) + w1(η) =0 and w2(ξ) + w2(η) = 0. (34)

The claim follows from the properties of Stiefel–Whitney classes. ��
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Corollary 35 Let ((W ; M1, M2), g) be an SO(2, n − 1)0-pseudo-Riemannian cobordism.
Then ((W ; M1, M2), g) is a Spin(2, n−1)0-pseudo-Riemannian cobordism if and only if W
admits a Spin(2, n − 1)0-structure.

4 Spin pseudo-Riemannian cobordism groups

We now discuss the definition of the Spin(2, n − 1)0-pseudo-Riemannian cobordism groups
that appear in the statement of Theorem C. For each integer n ≥ 1, let An be the set
of diffeomorphism classes of closed Spin n-manifolds with the property that all of their
connected components have vanishing Euler characteristic. Define the following relation in
An .

Definition 36

M1 ∼M2 if and only if {M1, M2} are Spin(2, n − 1)0-cobordant.

Proposition 37 The relation in Definition 36 defines an equivalence relation on An.

Lemma 24 is a key ingredient in the proof of Proposition 37, as it gives us tools to glue
different Spin(2, n − 1)0-pseudo-Riemannian cobordisms with mutual boundary connected
components.

Definition 38 The Spin(2, n − 1)0-pseudo-Riemannian cobordism group is the set of the
equivalence classes of the relation in Definition 36 equipped with the disjoint union as group
product and it is denoted by �

Spin0
2,n−1.

The reader might have already noticed that the group operation in Definition 38 cannot
be the connected sum of M1 and M2 as it is the case in cobordisms of other flavors. Notice
that if M1 and M2 are even-dimensional Lorentzian manifolds, their connected sum M1#M2

does not admit a non-singular Lorentzian metric.
The main result of this section is the following theorem.

Theorem 39 The Spin(2, n − 1)0-pseudo-Riemannian groups �
Spin0
2,n−1 are abelian groups.

Moreover, the Cartesian product of manifolds yields a graded ring structure

�
Spin0
2,∗−1 =

∞⊕

n=1

�
Spin0
2,n−1. (40)

The proof of Theorem 39 is a straightforward adaptation of well-known arguments in
cobordism theory [17, 23, 26, 30, 40]. We refer to the ring (40) as the Spin(2, n − 1)0-
pseudo-Riemannian cobordism ring.

5 Comparison of pseudo-Riemannian cobordisms

In this section, we draw a comparison between the pseudo-Riemannian cobordisms of Def-
inition 1 and Spin(1, n − 1)0-Lorentzian cobordisms. The contrast between these objects
sheds light on the topological restrictions imposed by the coexistence of the Spin-structure
with the pseudo-Riemannian structure of the cobordism. We first recall the definition of a
Spin(1, n − 1)0-Lorentzian cobordism.
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Definition 41 A Lorentzian cobordism between closed n-manifolds M1 and M2 is a pair

((Ŵ ; M1, M2), g
L ) (42)

that consists of
(A) a cobordism (Ŵ ; M1, M2),
(B.2) a non-singular Lorentzian metric (Ŵ , gL) with a time-like line field V ,
(C.2) and the boundary ∂Ŵ = M1 � M2 is space-like, i.e. (M1, gL |M1) and (M2, gL |M2)

are Riemannian manifolds, where gL |Mi is the restriction of gL to Mi .
If the cobordism (Ŵ ; M1, M2) of Item (A) is a Spin-cobordism, we say that the cobordism

(42) is a Spin(1, n − 1)0-Lorentzian cobordism.

We keep the discussion at a three-dimensional level for the sake of brevity, although
similar comparisons apply to any dimension. More precisely, we pivot the comparison and
the discussion of the topological restrictions on the following result.

Theorem 43 Gibbons–Hawking [10], Smirnov–Torres [27]. Let {M1, M2} be closed oriented
3-manifolds. The following conditions are equivalent.

(1) There exists a Spin(1, 3)0-Lorentzian cobordism

((Ŵ ; M1, M2), g),

where (Ŵ ; M1, M2) is a Spin-cobordism.
(2) Their Kervaire semi-characteristics satisfy χ̂Z/2(M1) = χ̂Z/2(M2).
(3) There exists a cobordism (Ŵ ′; M1, M2), where Ŵ ′ is a parallelizable manifold with

trivial Euler characteristic.

There is a group isomorphism

�
Spin0
1,3 → Z/2. (44)

While the existence of a Spin-cobordism imposes no restrictions on the boundary 3-
manifold since the third cobordism group �

Spin
3 is trivial [23], the presence of the required

Lorentzian metric on Ŵ forces its Euler characteristic to be χ(Ŵ ) = 0 [26]. For the lat-
ter structure to co-exist with the Spin-cobordism, the Kervaire semi-characteristic of the
boundary 3-manifolds must coincide as indicated by Theorem 11. This invariant gives us the
isomorphism (44).

The corresponding statement for Spin(2, 2)0-pseudo-Riemannian cobordisms is the fol-
lowing.

Theorem 45 Let {M1, M2} be closed oriented 3-manifolds. The following conditions are
equivalent

(1) There exists a Spin(2, 2)0-pseudo-Riemannian cobordism

((W ; M1, M2), g).

(2) Their Kervaire semi-characteristics satisfy χ̂Z/2(M1) = χ̂Z/2(M2).
(3) There exists a cobordism (W ′; M1, M2), where W ′ is a parallelizable manifold.

There is a group isomorphism

�
Spin0
2,2 → Z/2. (46)
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The proof of Theorem 45 is given in Sect. 7.1. The reader will notice that while both
4-manifolds Ŵ and W in Theorems 43 and 45 are parallelizable, the Euler characteristic of
the cobordism W need not be zero. The following example is illustrative of the situation.

Example 47 The product of a 2-disk with the round 2-sphere admits a Spin-structure as well
as an indefinite metric of signature (2, 2)

(D2,−dr2 − r2dθ2) × (S2, gS2) (48)

that restrict to a Spin-structure and a Lorentzian metric on the boundary

(S1,−dθ2) × (S2, gS2) (49)

as indicated in Example A. The Euler characteristic of (48) is χ(D2 × S2) = 2 and it does
not admit a Lorentzian metric that restricts to a Riemannian metric on (49). The connected
sum

Ŵ = (D2 × S2)#(S1 × S3)

on the other hand, does support both kinds of non-singular pseudo-Riemannian metrics as
well as Spin-structures that restrict to (49).

The phenomenon displayed in Example 47 occurs for all oriented 3-manifolds.

Corollary 50 Let M1 and M2 be closed oriented 3-manifolds. There is a Spin(1, 3)0-
Lorentzian cobordism if and only if there is a Spin(2, 2)0-pseudo-Riemannian cobordism.

We now elucidate on the reason behind the difference in the obstructions. The existence of
a 2-distribution is not equivalent to the existence of a pair of linearly independent and nowhere
vanishing vector fields as shown in the work of Atiyah [2], Frank [5], Hirzebruch-Hopf [12],
Matsushita [22], Svane [31], and Thomas [33–39] among many others. The existence of a
pair of linearly independent vector fields on a manifold requires for its Euler characteristic
to vanish in the even-dimensional case and for its Kervaire semi-characteristic to vanish in
the odd-dimensional case.

We finish this section with an amendment to [27, Corollary E]. The correct statement is
as follows.

Corollary 51 Let M1 and M2 be closed Spin 4-manifolds. There is a Spin(1, 4)0-Lorentzian
cobordism ((W ; M1, M2), gL) if and only if χ(M1) = χ(M2) and σ(M1) = σ(M2).

6 Tangential structures and spectrum

This section arose from a suggestion of Oscar Randal–Williams to the first named author
of this note. We record and elaborate on a plausible extension of results of Ebert for future
work. Ebert [4, Appendix A] expressed Reinhart’s work on Lorentzian cobordisms in the
terms of tangential structures in the sense of Galatius–Madsen–Tillmann–Weiss [6, Section
5]. In particular, Ebert [4, Theorem A1] has shown that the Reinhart Lorentzian cobordism
groups [26] are isomorphic to the cobordism group π0(MT SO(n)).

Once a comparison with the Spin Lorentzian cobordisms of Gibbons–Hawking [10] and
Smirnov–Torres [27] is drawn, the following question arises immediately.
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Question 1 Can the Spin(1, n)0-Lorentzian cobordism studied by Gibbons–Hawking and
Smirnov-Torres be phrased in terms of tangential structures and, if so, are the corresponding
Spin Lorentzian groups �

Spin
1,n isomorphic to the connected component of the Spin version of

the spectrum π0(MT Spin(n + 1))?

An explanation on the construction of the Spin version of the Thom spectrum MSpin(n)

can be found in work of Svane [31, Remark 1.15]. A definition of the Madsen–Tillmann–
Weiss spectrum T MSO(n) is found in [4, Section 2.4]. Given the topic of this paper, we
state the following version of Question 1 due to Randal-Williams.

Question 2 Randal–Williams. Is it possible to express the existence results onSpin(2, n−1)0-
pseudo-Riemannian cobordism obtained in this note in the language of tangential structures?

An answer to Question 2 in the affirmative would suggest further study on the corre-
sponding cobordism groups. The proposed extensions of Ebert’s results provide answers to
Question 1 and Question 2.

7 Proofs

The proofs of the results that are mentioned in the introduction have the following structure.

7.1 Proof of Theorem 45

We first show the equivalence (1) ⇔ (2) and begin with (1) ⇐ (2). Suppose M1 and M2 are
two closed oriented 3-manifolds whose Kervaire semi-characteristics satisfy χ̂Z/2(M1) =
χ̂Z/2(M2). As it was mentioned in the previous section, the third Spin-cobordism group is

�
Spin
3 = {0} and there is a (connected) Spin-cobordism (Ŵ ; M1, M2). Theorem 11 then

implies that

χ(Ŵ ) + χ̂Z/2(∂Ŵ ) ≡ 0 mod 2. (52)

Thus, we have that

χ(Ŵ ) ≡ 0 mod 2. (53)

Take connected sums of Ŵ with copies of S1 × S3 and S2 × S2 and obtain a manifold

W := Ŵ # k1(S
1 × S3) # k2(S

2 × S2)

which has zero Euler characteristic, by choosing k1 and k2 appropriately. Proposition 28
allows us to conclude the proof of the implication. To show that the implication (1) ⇒
(2) holds, we proceed as follows. Assume that there is a Spin(2, 2)0-pseudo-Riemannian
cobordism ((W ; M1, M2), g) and consider the closed 4-manifold with the indefinite metric
(2W , g2W ) given as the double of (W , g). Applying Theorem22 to 2W we get thatχ(W ) = 0
mod 2 and the Kervaire semi-characteristics of M1 and M2 coincide by (52). We conclude
that the equivalence (1) ⇔ (2) holds. The implication (1) ⇒ (3) follows from W being
an almost parallelizable manifold with non-empty boundary. Such a manifold is stably-
parallelizable, and hence parallelizable [16], [18, §7, §8]. The implication (3) ⇒ (2) follows
from Theorem 11.
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The Kervaire semi-characteristic yields an isomorphism

χ̂Z/2 : �
Spin
2,2 → Z/2 (54)

and its generator is S3; see [27, Theorem C]. ��

7.2 Proof of Theorem B

Let us begin by studying the case n ≡ 0 mod 2 and let (W ; M1, M2) be a Spin-cobordism
(which we can assume to be connected), where M1 and M2 are such that all their connected
components have trivial Euler characteristic. Since

2χ(W ) = χ(2W ) + χ(∂W ) = 0

by Lemma 15, Proposition 28 implies that there is a metric g on W for which
((W ; M1, M2), g) is a Spin(2, n − 1)0-pseudo-Riemannian cobordism. Conversely, if
((W ; M1, M2), g) is a Spin(2, n − 1)0-pseudo-Riemannian cobordism, then the pseudo-
Riemannian metric g restricts to a Lorentzian metric on ∂W = M1 � M2 and we have
that all the connected components of M1 and M2 have trivial Euler characteristic.

We now address the cases n ≡ 1, 3, 5 mod 8. If χ̂Z/2(M1) = χ̂Z/2(M2) mod 2, there is
a Spin(1, n)0-Lorentzian cobordism ((W ; M1, M2), gL) by [27, Theorem D], where W has
connected com ponents W1, . . . ,Wk . In particular, we have that for all i = 1, . . . , k

χ(2Wi ) = 2χ(Wi ) = 0.

Being M1 and M2 odd-dimensional manifolds, we also have that all their connected
components have trivial Euler characteristic and we can apply Proposition 28 to obtain
a Spin(2, n − 1)0-pseudo-Riemannian cobordism ((W ; M1, M2), g). Suppose now that
((W ; M1, M2), g) is a Spin(2, n − 1)0-pseudo-Riemannian cobordism and let us restrict
to the case n ≡ 3 mod 8. We have that χ(W ) ≡ 0 mod 2 by Theorem 22. Theorem 11
allows us to conclude that χ̂Z/2(M1) = χ̂Z/2(M2) mod 2.

Consider the case n ≡ 7 mod 8. By [27, Theorem D] there is a Spin(1, n)0-Lorentzian
cobordism ((W ; M1, M2), gL). A result of Reinhart [26] implies that each connected compo-
nent ofW must have trivial Euler characteristic. Hence, Proposition 28 implies the existence
of a Spin(2, n − 1)0-pseudo-Riemannian cobordism ((W ; M1, M2), g). �

Remark 55 The reason for the absence of a complete characterization in the case n ≡ 1
mod 4 of Theorem B is essentially due to the lack of existence results in literature of distri-
butions of tangent 2-planes on closed 4q + 2-dimensional manifolds. In particular, it is not
clear whether the existence of a Spin(2, n − 1)0-pseudo-Riemannian cobordism implies the
existence of a Spin(1, n)0-Lorentzian cobordism. Thus, the missing implication. By inspect-
ing the proof of Theorem B, one realizes that solving this issue is equivalent to giving an
answer to the following open question.

Question Is it possible to find two closed n-manifolds M1, M2 which are Spin(2, n − 1)0-
pseudo-Riemannian cobordant and such that the Euler class of the 2-distribution inducing
the pseudo-Riemannian metric on the cobordism is necessarily non-trivial?

On the other hand, from the proof of Theorem Bwe get that we may ask for Span(W ) ≥ 2
for a Spin(2, n − 1)0-pseudo-Riemannian cobordism whenever n �≡ 1 mod 4. This yields
the following corollary.
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Corollary E Let n be a positive integer with n �≡ 1 mod 4. Let {M1, M2} be two closed
connected Spin(2, n − 1)0-pseudo-Riemannian cobordant n-manifolds. There exists a
Spin(n+1)-manifoldW and two everywhere linearly independent vector fields X , Y ∈ X(W )

such that

• (W ; M1, M2) is a Spin-cobordism;
• X is interior normal to M1 and exterior normal to M2.

In particular, the existence of the Spin-cobordism (W ; M1, M2) and a nowhere vanishing
vector field X ∈ X(W ) as above is equivalent to the existence of a Spin(1, n)0-Lorentzian
cobordism ((W ; M1, M2), g) (see [27]).

7.3 Proof of Theorem C

The three-dimensional case has been addressed in Theorem 45. We argue the four-
dimensional case first; cf. [27, Proof of Corollary E]. Suppose ((W ; M1, M2), g) is a
Spin(2, 3)0-pseudo-Riemannian cobordism. Since (W ; M1, M2) is a Spin-cobordism, it is
in particular an oriented cobordism and therefore we have the condition σ(M1) = σ(M2).
Moreover, the existence of a Lorentzian metric on Mi for i = 1, 2 implies that the Euler
characteristic of each connected component of Mi is trivial. To prove the converse, we argue
as follows. If M1 and M2 are closed Spin 4-manifolds with the same signature, there is a
Spin-cobordism (W ; M1, M2) [32], [17, Chapter VIII]. The existence of an indefinite (2, 3)-
metric on W restricting to a Lorentzian one on the boundary follows from the vanishing of
the Euler characteristics of the connected components of M1 and M2 and Theorem B. The
group isomorphism

�
Spin
2,3 → Z

is given by the signature. In particular, the map [M] �→ σ(M) is well defined, being the
signature an oriented cobordism invariant.

Let us address now the six-dimensional case. The existence of a Spin(2, 5)0-pseudo-
Riemannian cobordism ((W ; M1, M2), g) implies that the Euler characteristic of all the
connected components of M1 and M2 is trivial [32]. The converse follows from results of
Milnor and Thomas. Since the sixth cobordism group is �

Spin
6 = {0} [23], we know that

there is a Spin-cobordism (W ; M1, M2). The conclusion follows again from Theorem B.
The group �

Spin0
2,5 is hence trivial.

In the seven-dimensional case, Milnor observed that�Spin
7 = {0} [23, p. 201] and any two

closed Spin 7-manifolds bound a Spin 8-manifold. The existence of a Spin(2, 6)0-pseudo-
Riemannian cobordism follows from Theorem B, and the group �

Spin0
2,6 is hence trivial. �
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