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1 Introduction

General relativity (GR) is notoriously non-renormalisable at the perturbative level [1, 2].
Though this is not the only reason why a quantum theory of gravity remains elusive, it
still represents an important technical impediment. To circumvent the issue, Hořava [3]
proposed a field theory of gravity in which power-counting renormalisability is manifest
thanks to the addition, to the action of gravity, of terms that are higher-order in spatial
derivatives. This choice improves the ultra-violet (UV) behaviour of propagators while
ensuring that no ghosts are introduced; but it comes at the cost of breaking diffeomorphism
invariance and, locally, Lorentz invariance. In the following years, several improvements
to the original idea have been proposed, including a “healthy” extension known as non-
projectable Hořava gravity [4–6], in which diffeomorphism invariance is restored via the
introduction of an irrotational, unit-norm, timelike vector field — the so-called æther.
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There are now strong indications — refs. [7–12] and references therein — that this version
of the theory is perturbatively renormalisable: if this property is confirmed, non-projectable
Hořava gravity will represent an example of a consistent quantum theory of gravity in four
spacetime dimensions.

At low energies, one can neglect all but the lowest-dimensional operators. The theory
thereby obtained has an action of the form

S = − 1
16πG

∫
d4x
√
−g

[
R+ λ(∇aua)2 + β∇aub∇bua + αaaaa

]
, (1.1)

where aa = ub∇bua is the æther’s acceleration and α, β, λ are three dimensionless cou-
plings. This action coincides with that of Einstein-æther theory [13, 14], when the æther is
constrained to be hypersurface-orthogonal [15, 16] — this justifies the choice of terminology
for ua. However, since hypersurface orthogonality restricts the number of physical degrees
of freedom, the theory specified by eq. (1.1) goes by its own name: khronometric theory.

The parameters α, β, λ are tightly constrained by observations [17]: |β| . 10−15

and either |α| . 10−7 with λ unconstrained or |α| . 0.25× 10−4 with λ ≈ α/(1 − 2α).
Moreover, λ > 0 to avoid ghosts. Since α and β seem both very small, one may at times
consider a “minimal theory” in which they are set to zero exactly, while λ remains free.

Due to hypersurface orthogonality, the æther can be expressed as

ua = ∇aT
N

with N =
√
∇bT∇bT , (1.2)

and T a scalar field called khronon. The khronon’s level sets are three-dimensional,
everywhere-spacelike hypersurfaces that provide a time foliation with a preferred status.
The existence of a preferred foliation — or equivalently of a preferred reference frame, in
this case the one provided by the æther — is a direct consequence of the Lorentz-violating
nature of Hořava gravity, and it opens the door to the existence of modified dispersion
relations. Indeed, khronometric theory allows for superluminal propagation of signals and
even contains an instantaneous mode that travels at infinite speed.

In such a context, it would be natural to expect that the notion of black hole had
no meaning. Surprisingly, the theory does admit black hole solutions [18–27]. The moral
equivalent of the event horizon is the so-called universal horizon (UH): a compact constant-
khronon surface that traps modes of any speed — even the instantaneous one. When the
spacetime is stationary, meaning that there exists a Killing vector field χa that is timelike
at infinity, the UH is characterised by the conditions [28]

ua χ
a

∣∣∣∣
UH

= 0 and aa χ
a

∣∣∣∣
UH
6= 0 . (1.3)

UHs are thus different, in general, from the more familiar Killing horizons (KHs) — defined
as null hypersurfaces on which χaχa = 0. Note that, although KHs are not causal horizons
and play no particular role in theories with broken Lorentz invariance, eq. (1.3) implies
that if a UH exists a KH must too: since ua is always timelike and χa is timelike at infinity,
uaχ

a = 0 entails that χa must become null somewhere.
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Known black hole solutions harbour a spacetime singularity at their centre, exactly as
their general-relativistic counterparts do. One can conjecture, however, that these singular-
ities might be “cured” by properly taking into account all the higher-dimensional operators
that define the full theory. In this scenario, the end state of gravitational collapse would
be more appropriately described by a non-singular (or regular) configuration, consisting of
a non-singular metric and a non-singular æther flow. Solutions of this kind are however
still lacking, and their derivation is probably going to be challenging.

On the other hand, a lot is known about singularities (and how to avoid their formation)
in the context of purely metric theories of gravity: it is thus natural to wonder whether
this know-how could guide the search for non-singular configurations in Hořava gravity. In
particular, if one assumes that pseudo-Riemannian geometry provides a good description of
the spacetimes resulting from quantum gravitational regularisation at late times, Penrose’s
singularity theorem [29] can be used to compile a classification of all the non-singular
geometries that gravitational collapse could result in [30, 31]. This approach is purely
geometric and therefore largely theory-agnostic.

Surprisingly, the resulting list of viable spacetimes is remarkably short. In essence,
once a trapping horizon is formed somewhere in the spacetime, there are only two options
for avoiding an inner singularity: either the geometry is endowed with an “inner” trapping
horizon; or the singularity is replaced by a wormhole mouth, which is “hidden” behind the
trapping horizon. Note that, while in the former case the spacetime is simply connected,
the latter case is characterised by the existence of a minimum radius that renders the
spacetime topologically different. For this reason, we will refer to these alternatives as
connected and non-connected regularisation, respectively. The only way to avoid either of
them is to prevent the formation of the trapping horizon altogether. In principle, one can
still consider both connected and non-connected configurations without horizons: while a
connected horizonless object is a star (though possibly of an exotic kind), a non-connected
one is a traversable wormhole.

The analysis of [30] was performed under the assumption of Lorentz invariance but
it can be extended to the framework of Lorentz-breaking theories [32]. Despite some
technical subtleties, the main result carries over: non-singular configurations are either
simply connected or non-connected; and they might display a universal trapping horizon
(the moral equivalent of the trapping horizon) or not — but if they are connected and with
horizon, a second universal inner horizon must exist.

Such classification is best suited for describing dynamical situations, namely the col-
lapse of some energy density leading to the formation of a compact object. In particu-
lar, [30, 32] assume global hyperbolicity and therefore do not admit, for instance, stationary
simply connected regular black holes. Yet, if the evolution of the geometry is characterised
by a timescale that is much longer than any other relevant timescale, a stationary non-
singular spacetime might provide an approximate description that is sufficiently accurate
for phenomenological purposes.

This line of reasoning has given rise to a thriving industry, fuelled by recent obser-
vational achievements, aimed at constructing models of non-singular geometries. Models
of simply connected regular black holes have a longer history, dating back to the work of
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Bardeen in 1968 [33], and are therefore more abundant in the literature — see e.g. [34–36]
end references therein. Several (though fewer) instances of wormholes whose mouths are
hidden behind an horizon exist as well [37–43].

Only very recently [44], it was realised that the same models can describe horizonless
objects too: typically, horizons only exist when the parameters that specify the model
fall within a given range; but when they do not, the corresponding geometries are still
perfectly viable. In particular, the connected regular black holes are counterparts of com-
pact stars that usually have a de Sitter core and are therefore instances of gravastar-like
objects [45, 46].

These models, which are usually constructed ad hoc and without referring to physically
well-motivated theories, implicitly assume that all the relevant information concerning the
geometry is encoded in the metric. In theories like Hořava gravity, in contrast, the preferred
foliation has a crucial, genuinely physical role that is not entirely played by the metric.

The goal of this paper, therefore, is to construct explicit examples of non-singular
geometries, connected and non-connected, in the context of low-energy Hořava gravity.
Such examples will be “regularisations” of a known singular solution that represents a black
hole in the phenomenologically viable branch of the theory; they will consist of a metric
and an æther flow, both of which will be free of singularities. They will not constitute
solutions of khronometric theory in vacuum, nor with any simple form matter; yet, they
will display all the key features that are expected for exact non-singular solutions of both
khronometric theory and the full Hořava gravity. In particular, these configurations will
exhibit pairs of inner/outer UHs, hidden wormholes and (gravastar-like) compact stars
with de Sitter core — all features that, to our knowledge, have never been described before
in this context. We hope our work will inform the search for regular black hole solutions
in a promising candidate theory of quantum gravity; and spur further investigations into
the phenomenology of gravity theories with broken Lorentz invariance.

Non-singular black holes have been searched for, but not found, in (2 + 1) projectable
Hořava gravity in [47]. Spherical stars in Einstein-æther and khronometric theory have
been investigated in [48], while examples of wormholes are given in [49, 50]; however, the
æther flow considered in these references is often assumed to be parallel to the Killing
vector: our analysis is therefore substantially different.

The paper is structured as follows. Section 2 is an introduction to the singular solution
we take as a starting point for constructing our non-singular geometries. Such geometries
are introduced in section 3 and characterised in the following sections. In particular, sec-
tion 4 investigates horizons (Killing and universal); section 5 describes the causal structure;
section 6 quantifies the deviations away from the vacuum of the khronometric theory. Fi-
nally, section 7 reports our conclusions. We also include appendices A and B, which provide
further details on the non-singular configurations.

– 4 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
9

2 A (singular) black hole solution

The equations of motion obtained by varying eq. (1.1) with respect to δgab and δT can be
written as:

Gab = 0 , (2.1)

∇a
(Aa
N

)
= 0 . (2.2)

Eq. (2.1) is the equivalent of the Einstein’s equation, indeed one can write Gab = Gab−Tæ
ab,

withGab the Einstein’s tensor and Tæ
ab the stress-energy tensor (SET) of the æther. Eq. (2.2)

is the equation of motion of the khronon: the vector Aa is built out of ua and its derivatives
and is orthogonal to the æther uaAa = 0. To include matter, one can add the matter action
Smat to eq. (1.1). This yields source terms that appear on the right-hand side of eqs. (2.1)
and (2.2).

In this paper, we will investigate spherically symmetric and static spacetimes, and
assume that the same symmetries extend to the æther field. This implies the existence of a
Killing vector χa, timelike at spatial infinity, along which both the metric and æther are Lie-
dragged. Adopting in-going Eddington-Finkelstein coordinates, we can generically write
the metric and the æther as

ds2 = F (r) dv2 − 2 dv dr −R2(r) dΩ2 , (2.3)
ua∂a = A(r)∂v + y(r)∂r . (2.4)

These equations define the variables that we will be using for the remainder of the
paper: F (r) and R(r) parametrise the metric degrees of freedom, while A(r) and y(r) are
the two non-zero components of the æther.

Note that, since the æther has unit norm, the following relation holds:

y = −1−A2F

2A . (2.5)

With these notations, the projection of the æther along the Killing vector is

ua χ
a = 1 +A2F

2A . (2.6)

An exact solution is known for α = 0 [26].1 In our coordinates, it is given by2

F = 1− r0
r
− β r

4
æ
r4 , R(r) = r , (2.7)

A(r) = 1
F (r)

−r2
æ
r2 ±

√
F (r) + r4

æ
r4

 , (2.8)

1Another exact solution can be found for β + λ = 0.
2Reference [26] only reports the plus sign, although the equations of motion actually allow for both.

However, the square root, with its sign, coincides with ua χ
a, which must become negative upon crossing

the universal horizon [51]. Hence, the choice of [26] is in fact ill-behaved at the universal horizon; all their
conclusions still stand, despite this clarification.
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where r0 is twice the Arnowitt-Deser-Misner (ADM) mass of the spacetime (measured in
appropirate units) and ræ is another, a priori independent, integration constant. Depend-
ing on the relative magnitude of r0 and ræ, the quantity

F (r) + r4
æ
r4 (2.9)

may become negative, thus rendering A(r) ill-defined. One can further check that this
quantity coincides with (ua χa)2, hence its zeroes correspond to UHs. Only when the
parameters satisfy

ræ = r0
4

( 27
1− β

)1/4
(2.10)

does the solution describe a black hole with one universal horizon located at

rUH = 3
4r0 ; (2.11)

when ræ is larger than this value no UHs exist, when instead it is smaller the æther flow
is ill-defined. Assuming this fine-tuned choice, as we will do for the rest of the paper, one
can write

ua χ
a = 1

r2

(
r − 3

4r0

)√
r2 + r0

2 r + 3r2
0

16 . (2.12)

The signs have been chosen so that this quantity tends to one at spatial infinity but changes
sign upon crossing the universal horizon — as it must [51]. This corresponds to choosing
the plus sign in eq. (2.8) outside of the UH and the minus inside.

The UH has an associated surface gravity that sets the temperature of the analogue
of Hawking’s radiation, in a way similar to the surface gravity of horizons in GR (see
e.g. [51–53] and references therein). It is defined as

κUH = −1
2aa χ

a , (2.13)

which on the singular solution evaluates to

κsing.
UH = 2

√
2

3
√

3r0
√

1− β
. (2.14)

The metric also exhibits a Killing horizon (KH), associated with the zero of F (r).
Clearly, when β = 0 the metric reduced to that of Schwarzschild and the KH is located at
rKH = r0. More generally, one can write F (r) = 0 as

r3(r − r0)−
[ 27

256
β

1− β r
4
0

]
= 0 ; (2.15)

hence, one can deduce that the KH moves towards larger values of r as β increases (we
always assume β < 1), i.e. rKH ≥ r0. Thus, the KH always encloses the UH. The equation
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does not have any more roots. Note that A(r) is well-behaved at the KH, as can be verified
by expanding close to r = rKH:

A(r) = 1
F ′ (rKH) (r − rKH)

[
r2

KHF
′ (rKH)

2r2
æ

(r − rKH)
]

+O
(
(r − rKH)2

)
(2.16)

= r2
KH

2r2
æ

+O
(
(r − rKH)2

)
. (2.17)

This metric is singular at r = 0, as one can check e.g. by evaluating the Kretschmann
scalar:

RabcdR
abcd = 12r

2
0r

6 + 10βr0r
4
ær

3 + 39β2r8
æ

r12 . (2.18)

The components of the æther also seem ill-defined at that point, although this statement
relies on the choice of coordinates. To check that the æther flow is in fact singular at
r = 0 one should characterise it in terms of scalar quantities. Since the æther constitutes
a timelike non-geodesic congruence, a rather natural choice is to describe it in terms of its
optical scalars:3 the expansion, the square of the symmetric shear and the square of the
antisymmetric twist. Further details can be found in appendix A.

3 Regularisations of the singularity

As mentioned in section 1, there are only two qualitatively different ways of avoiding,
i.e. “regularising”, the central singularity: we have referred to these alternatives as con-
nected and non-connected regularisation. The connected regularisation corresponds to a
physical scenario in which gravity effectively becomes weaker and “turns off” at r = 0.
Metrics that exhibit such behaviour can be built by modifying a singular solution (typi-
cally Schwarzschild) in a simple way. The non-connected regularisation instead does not
correspond to a weakening of gravity. On the contrary, gravity becomes so strong that it
induces a change in the topology of spacetime. As a consequence, a finite region containing
r = 0 gets excised from the spacetime: this alternative is therefore characterised by the
existence of a minimal length scale corresponding, roughly speaking, to the radius of the
smallest sphere centred at r = 0. Despite the different topology, metrics portraying this
scenario can be built by modifying a singular solution too.

To be explicit and as clear as possible, in the following we will explore two specific
examples, one connected and one not. Most of the qualitative considerations, however,
hold true in general.

Appendix B reports further details, using a characterisation in terms of two-
dimensional congreunces in order to make contact with the language of [32].

3.1 Connected regularisation

A simple way to construct a simply connected non-singular metric, starting from a singular
one, is to upgrade the parameter r0 to a function of the radius r0(r). Remarkably, when this

3The term “optical scalars” is usually reserved for null geodesic congruences. We are abusing this
terminology, hopefully without confusion.
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replacement is performed on eq. (2.7) and eq. (2.8), the resulting æther becomes regular
too. Explicitly, the metric components of eq. (2.3) and the æther one of eq. (2.4) become

F (r) = 1− r0(r)
r
− β r

4
æ(r)
r4 , R(r) = r , (3.1)

A(r) = 1
F (r)

−r2
æ(r)
r2 + 1

r2

(
r − 3

4r0(r)
)√

r2 + r0(r)
2 r + 3r2

0(r)
16

 , (3.2)

ræ(r) = r0(r)
4

( 27
1− β

)1/4
. (3.3)

The function r0(r) is arbitrary, except for a minimum set of requirements [34–36, 54]: it
should be “well-behaved”, in the sense that it should not introduce new singularities (this is
guaranteed if e.g. r0(r) > 0); it should not spoil asymptotic flatness, i.e. limr→∞ r0(r) = 2M
with M the ADM mass; and, crucially, it must be r0(r) = O

(
r3) close to r = 0. This last

requirement makes the components of the metric manifestly regular at the origin and
prevents divergences in any scalar polynomial built out of the Riemann tensor and the
metric. Expanding close to r = 0, one has

F (r) = 1− cr2 +O
(
r3
)
, (3.4)

showing that the geometry of the inner core is asymptotically de Sitter (anti-de Sitter) if
c > 0 (c < 0) or Minkowski if c = 0.

The components of the æther are now manifestly regular, too. In particular,

A(r) = 1 + c

2r
2 +O

(
r3
)

and y(r) = O
(
r3
)
, (3.5)

i.e. in the limit r → 0 the æther coincides with the Killing vector, up to corrections of
order O

(
r2). This is precisely the trivial æther flow that one would expect in a maximally

symmetric space. The first derivatives of F (r) and A(r) are similarly well-behaved close
to r = 0, which ensures that all the optical scalars characterising the æther congruence are
regular too — details can be found in appendix A.

Note, incidentally, that the geometry described by eq. (3.1) is certainly non-singular,
in general, only for r ≥ 0. If one allows the coordinate r to become negative, one might still
encounter spacetime singularities [55, 56] — in the form of divergences in the curvatures
or in the sense of geodesic incompleteness. In order to interpret eq. (3.1) as a non-singular
black hole, therefore, one must limit the domain of r to [0,+∞). Clearly, this is coherent
with the interpretation of r as a radius, and with the fact that r = 0 is, at any given v, a
point (i.e. a degenerate, zero-radius sphere).

Many explicit forms of r0(r) have been proposed and the corresponding metrics have
been extensively studied: all of them are characterised by at least one additional parameter,
usually carrying the dimensions of a length, upon which r0(r) depends continuously. Often,
r0(r) reduces to a constant for some particular values of the parameters (typically zero).
In this limit, the regularisation is undone.

– 8 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
9

In what follows, we will present calculations for a particular choice of r0(r) introduced
by Hayward [57],

r0(r) = 2M r3

r3 + 2M`2
(3.6)

(we have called ` the additional parameter; note that r0 = 2M for ` = 0), but the fea-
tures we will describe are generic: other well-studied examples, e.g. the Bardeen [33] or
Dymnikova [58] metrics, yield very similar results.

3.2 Non-connected regularisation

Many instances of wormhole exist in the literature (see e.g. [59]). In the past, the attention
has mostly focused on “traversable” wormholes, i.e. wormholes with a timelike mouth
that can be traversed in both directions. However, there has been recently a growing
interest towards “hidden” wormholes, i.e. wormholes whose mouths are shielded by trapping
horizons. In the presence of a single outer horizon such mouth is not traversable, being
spacelike, and indeed the metric can be more precisely characterised as a “black-bounce”
being endowed with a minimum radius.

The example that we investigate here is a very simple black-bounce geometry proposed
by Simpson and Visser [37]. The original metric is a slight modification of the Schwarzschild
one, formally obtained by replacing any instance of r with

√
r2 + `2. When this trick is

applied to the singular solution eqs. (2.7) and (2.8), the metric components of eq. (2.3) and
the æther one of eq. (2.4) take the form

F (r) = 1− r0√
r2 +`2

−β r4
æ

(r2 +`2)2 , R(r) =
√
r2 +`2 , (3.7)

A(r) = 1
F (r)

− r2
æ

r2 +`2
+ 1
r2 +`2

(√
r2 +`2− 3

4r0

)√
(r2 +`2)+ r0

√
r2 +`2

2 + 3r2
0

16

 . (3.8)

We are still assuming ræ = 271/4(1−β)−1/4(r0/4), without r-dependence, as in the singular
solution.

In this example, regularity is manifest, since all components of both the metric and
the æther approach a finite non-zero limit as r → 0. (Details on the æther’s optical scalars
can be found in appendix A.) Notably, R(r) = `+O

(
r2), meaning that, at any given time

v, r = 0 is not a point; rather, it is a sphere of surface area 4π`2. It is therefore clear how
this example could be generalised: any other R(r) that attains a finite value in r = 0 works
as fine — provided one writes F (R(r)) and A (R(r)).

Since the metric and the æther are invariant under r → −r, one can extend the
domain of the coordinate r to (−∞,+∞). Hence, the geometry should be interpreted as
representing a wormhole whose asymptotically flat ends are at r → +∞ and r → −∞ and
whose mouth, a sphere of surface area 4π`2, is located at r = 0. We will often call “our
universe” the (r > 0)-patch and “other universe” the (r < 0)-patch.
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It is useful to express eqs. (3.7) and (3.8) in terms of a new coordinate % =
√
r2 + `2.

We have

ds2 = F (%) dv2 − 2δ(%) dv d%−R2(%) dΩ2 , (3.9)

ua∂a = A(%)∂v + y(%)
δ(%)∂% , (3.10)

where
δ(%) = dr

d% = %√
%2 − `2

(3.11)

and

F (%) = 1− r0
%
− β r

4
æ
%4 , R(%) = % , (3.12)

A(%) = 1
F (%)

[
−r

2
æ
%2 + 1

%2

(
%− 3

4r0

)√
%2 + r0

2 %+ 3
16r

2
0

]
. (3.13)

The new coordinate % has a simple physical interpretation: it is the aerial radius, i.e. sur-
faces of constant % (and v) are spheres with area 4π%2. In this coordinate, the components
of the metric and of the æther look identical to those of the singular case, except for δ;
however, % can never reach zero, since min(%) = % (r = 0) = ` > 0, and the geometry thus
remains free of spacetime singularities. There is now a coordinate singularity at the throat
% = `, hence this coordinate system can only describe one of the two universes at a time.

4 Horizons

The regularised metrics introduced above, similarly to the singular solution, exhibit KHs
located at the solutions of F (r) = 0. These horizons are still surfaces of infinite red-
shift/blueshift for matter that is minimally coupled to the metric and uncoupled to the
æther. However, because of the breaking of local Lorentz invariance, they are not causal
horizons since the presence of superluminal signals affects the causal structure [60]. As
mentioned above, in khronometric gravity the role of causal horizons is instead played by
UHs (see e.g. the relative discussion in [60] and references therein).

Nonetheless, it is easy to see that in the configurations we are exploring these structures
are tightly related. Indeed, for both kinds of regularisation (as for the singular case) one
can write

(ua χa)2 = F (r) + f(r) with f(r) > 0 , (4.1)

so, since both ua χa and F are positive at infinity, ua χa can reach zero only in a region in
which F (r) is negative. This means that UHs must necessarily lie in a “trapped region”
— as one would call it in GR. Hence, the presence of a UH implies the existence of a
KH that encloses it. Moreover, F (r) must be positive at r = 0 in the connected case and
at r = −∞ in the disconnected case. This entails that KHs have to come in pairs and
therefore, generically, UHs have too.

Thus, non-singular black hole geometries typically exhibit a nested structures of Killing
and universal horizons. In the following subsections we will describe this structure in detail
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Figure 1. Plot of Hayward’s choice of r0(r) for three values of the parameter `. Intersections with
the straight (dashed) black line correspond to UHs (KHs) in the minimal theory α = β = 0.

for the specific examples that we are exploring, but the above considerations can be proven
to be general by exploiting the notion of the degree of a map. Moreover, in appendix B
we present an alternative, local characterisation of UHs in terms of the expansions of two
congruences, in a language that makes contact with [32].

4.1 Connected regularisation

We start by setting β = 0, for simplicity. KHs are given by r = r0(r) and UHs by
4r/3 = r0(r). Whether these equations admit solutions or not is a model-dependent
question. When r0(r) is that of eq. (3.6), for example, the answer depends on the value of
the parameter `.

As an illustration, in figure 1 we plot Hayward’s r0(r) for three values of `; the plot
also reports two straight lines, with slope equal to one (dashed line) and 4/3 (solid line)
respectively: the intersections of r0(r) with these lines determine the horizons. When `

is small, we can count two intersections with the dashed line and two with the solid one.
Hence, this configuration presents two KHs and two UHs; coming from infinity, they are
met in the following order: outer KH, outer UH, inner UH, inner KH. As ` is increased,
the curve relative to r0(r) moves towards the bottom-left corner of the picture: inner and
outer horizons thus approach each other. They keep approaching until the two UHs merge
into a single, degenerate UH; this happens at a threshold value of ` = M/2 above which
no UH exist. Similarly, the KHs keep approaching until they merge into a degenerate KH
and then disappear: this second threshold corresponds to a higher value of ` = 4M/(3

√
3).

Therefore, we can distinguish three qualitatively different regimes: a non-singular black
hole regime, characterised by an inner/outer UH pair (as well as an inner/outer KH pair);
an intermediate regime in which there are two KHs but no UHs; and a star-like regime with
no horizons. Although technically a black hole is present only in the first regime, an object
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in the intermediate regime would still appear “almost black”, given that low energy modes
would linger for an extremely long time at the KH before being able to escape to infinity.

Reinstating the parameter β does not greatly distort this picture, since its only effect
is that of displacing the KHs. Eq. (2.15) remains valid upon replacing r0 with r0(r), so
increasing the value of β shifts the outer KH outwards. The inner KH, instead, moves
inwards. That is, increasing β has the effect of pushing KHs further apart; this is the
opposite effect one has by increasing the regularisation parameter `, which instead pushes
KHs closer together. The location of UHs is unaffected by β.

In the black hole regime, the universal horizons each have a surface gravity. Plugging
eq. (3.2) in the definition eq. (2.13), we get

κUH = 4− 3r′0(r)
3
√

6r0
√

1− β

∣∣∣∣∣
UH

, (4.2)

which should be evaluated at each of the UHs. Note that when r′0 = 0 we recover the result
for the singular solution eq. (2.14).

In the black hole and in the intermediate regime, the horizon radii provide an intuitive
way of telling the “size” of the compact object. It would be useful to extend this notion
to the star-like regime by defining an appropriate effective radius. A particularly simple
choice is to pick the unique r? for which F ′(r?) = 0. This is the radius of maximum (metric)
redshift and thus quantifies the compactness of the star. Moreover, in the limit in which
` approaches (from above) the threshold value for the KH’s formation, r? approaches the
(degenerate) horizon radius.

Explicitly, we have

F ′ = −
(
r0
r

)′ [
1 + 4 27

256
β

1− β

(
r0
r

)]
, (4.3)

hence F ′ = 0 reduces to
r0(r)− rr′0(r) = 0 , (4.4)

independently on β. For Hayward’s choice, we find

r? =
(
4M`2

)1/3
. (4.5)

4.2 Non-connected regularisation

As in the previous case, the existence and location of horizons is, strictly speaking, a
model-dependent question. In the simple example that we are considering, the answer is
determined by the only free parameter `. The discussion becomes particularly simple if
one resorts to the coordinate %.

KHs are solutions of
%3(%− r0)−

[27
56

β

1− β r
4
0

]
= 0 , (4.6)

which is formally the same as eq. (2.15). Call %KH the (unique) solution; in the r coordi-
nates, this corresponds to

r2
KH = %2

KH − `2 . (4.7)
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Hence, for ` < %KH the spacetime has one KH per each universe, located at r = ±rKH
with rKH =

√
%2

KH − `2; when instead ` > %KH the spacetime has no KHs; the limiting case
` = %KH corresponds to the two horizons coinciding with the wormhole mouth, which in
this case is null. Similarly to the simply connected configuration, one can easily check that
increasing ` makes the KH shrink, while increasing β makes it larger.

For what concerns the UHs, instead, they are located at

%UH = 3
4r0 . (4.8)

That is, when ` < 3r0/4 there is one UH per each universe, located at r = ±rUH with
rUH =

√
%2

UH − `2; when instead ` > 3r0/4 there are no UHs. As before, the equality
corresponds to a degenerate case for which the mouth of the wormhole coincides with the
UH. Analogously to the previous case, increasing ` makes the UH shrink while β has no
effect at all; note that rUH < rKH.

The surface gravity of the UH has a particularly simple form:

κUH = κsing.
UH

√
1− `2

%2
UH

, (4.9)

where κsing.
UH is the surface gravity for the singular solution written in eq. (2.14). Thus, for

` = %UH = 3r0/4 the UH is “degenerate” and the black hole is extremal, in the sense that
its UH’s surface gravity vanishes.

5 Causal structure

In a Lorentz-violating theory of gravity like khronometric theory, the causal structure is
not determined by null rays. Rather, the theory exhibits a preferred foliation, specified
by constant-khronon surfaces: it is the embedding of the leafs of the foliation into the
four-dimensional spacetime, therefore, that defines the causal structure.

Due to spherical symmetry, the khronon does not depend on the angles in either of the
spacetimes we constructed. Hence, we can visualise the causal structure by simply plotting,
in an appropriate (time-radius) plane, the surfaces of constant khronon. The most natural
definition of time is given in terms of the null coordinate v as

dt∗ = dv − dr ; (5.1)

this is a (Killing-)“horizon-penetrating” time. The more familiar time t, given by dt =
dv − dr/F , would not be appropriate, since the components of the metric and of the
æther are singular at the KHs when expressed in terms of it.

In addition, we plot the flow of the æther, written in its covariant form. Since the
æther is by definition orthogonal to constant-khronon hypersurfaces, the information pro-
vided by these plots and by those representing constant-khronon surfaces is not independent
but complementary. We report both, hoping this will benefit the reader.
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Figure 2. Hayward non-singular black hole: æther flow (left) and constant-khronon surfaces
(right). Black solid lines mark universal horizons, dashed lines Killing horizons; the dotted line
signals the star’s effective radius. The first row depicts the case with outer and inner KHs and
UHs, the middle row the case with only two KHs, the bottom row the case of an ultracompact,
horizonless, object. The insets are a zoom-in to the small-r region.

5.1 Connected regularisation

The causal structure corresponding to the Hayward-like regularisation is summarised in
figure 2. Each row corresponds to a different value of ` and therefore to a different regime:
the top row represents a non-singular black hole, the second row the intermediate regime
and the third row the star-like regime.

The left-hand panel displays the flow of ua, written in the (t∗, r) coordinates: the
horizontal component of the arrows is ur = y while the vertical one is ut∗ = ua χ

a. The
right-hand panel, instead, presents constant-khronon lines.

At large r, the æther is almost vertical, i.e. aligned with the Killing vector, and
constant-khronon lines are also lines of constant t∗. As one approaches to smaller r,
however, the æther tilts inwards. Nothing remarkable happens at the outer KH, whose
location is depicted for reference only. At the outer UH, instead, the æther is horizontal
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while the constant-khronon lines exponentially recede away from the UH — i.e. they peal
off, in an amount that is controlled by the surface gravity, exactly as null rays would do at
a trapping horizon. Note that behind the outer UH the æther points downwards, meaning
that it flows in the opposite direction with respect to the Killing vector.

Moving to yet smaller r, the æther becomes horizontal again at the inner UH. The
constant-khronon lines instead pile up exponentially at the UH — as null rays would do
at an inner trapping horizon. Inside the inner UH the æther points again in the same
direction as the Killing vector. Note that nothing remarkable takes place at the inner KH.
Close to r = 0, the flow becomes identical to that of large r, i.e. to that of flat space.

5.2 Non-connected regularisation

The æther flow and constant-khronon lines for the black-bounce-like regularisation are
displayed in figure 3. As before, each row corresponds to a different regime: the first to
a black bounce with UHs, the second to one with KHs but no UHs and the third to one
without horizons.

The æther, which is aligned with the Killing vector at infinity, tilts inwards as one
moves closer to r = 0. At the UH it becomes horizontal, it flows in the opposite direction
until it becomes horizontal again at the UH in the other universe and then returns aligned
with the Killing vector at r = −∞. The constant-khronon curves pile off the UH in our
universe and pile up at the UH in the other universe. Note that the KHs and the throat
look like any other location to the æther.

6 Deviations from vacuum, or the effective SET

As already mentioned in the Introduction, section 1, the non-singular configurations we are
describing are supposed to be solutions of the full Hořava action, and in this sense cannot
be expected to be vacuum solutions of its low-energy version — khronometric theory.

Nevertheless, it is still instructive to study the extent to which our configurations fail
to be (vacuum) solutions. Our strategy is inspired by the analysis of non-vacuum solutions,
since any metric and æther flow can be seen as solutions of the equations of motion with an
appropriate matter content (in this case, one that couples to the metric and to the æther).
For this reason, we will speak of “effective sources” and use terms such as “energy density”
and “pressures”. It should be clear, however, that this is merely a choice of terminology and
we are not postulating the existence of any physical of form matter. Indeed, such density
and pressures can be seen as components of an effective SET induced by the higher-order
terms of the Hořava action. Understanding whether this is actually the case is a crucial
but open question, given the daunting task of manipulating such extra terms.

Thus, in the following we will characterise the form and distribution of such effective
sources, in order to better understand the regular geometries we are proposing. In par-
ticular, we will show that these sources are sizeable only in the proximity of the would-be
singularity and decay very rapidly as one moves to larger radii. For all practical purposes,
therefore, the spacetime surrounding our regular objects can be considered vacuum and
their phenomenology can thus be studied using standard tools of general relativity.
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Figure 3. Black bounce: æther flow (left) and constant-khronon surfaces (right). Black solid lines
mark universal horizons, dashed lines Killing horizons; the dotted line signals the mouth. the first
row depicts a black bounce with a UH and a KH per side, the second row represents a configuration
with just one with KHs per side but no UHs, the third row portraits a naked (without horizons)
traversable wormhole.

Let us start by noticing that the equation of motion for the khronon eq. (2.2) can be
written as

1
N
J = 0 with J = [∇aAa − aaAa] . (6.1)

The lapse N can be chosen (almost) arbitrarily, since it depends on how the khronon is
parametrised; the scalar quantity J instead only depends on the æther and can be computed
unequivocally. Thus, J will be the khronon’s effective source.

Similar considerations hold for the Einstein’s equations eq. (2.1). Since the components
of Gab clearly depend on the choice of coordinates, one first needs to find a coordinate-
independent way of characterising the source. One way to achieve this goal would be
to compute its eigenvalues, which are scalars under general coordinate transformations.
When the eigenvalues are real, they can be interpreted as energy density and principal
pressures of some non-perfect fluid. Unfortunately, while this characterisation works for
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the Einstein’s tensor, it fails for the SET of the æther, since there are regions in the
spacetime where the eigenvalues are complex (i.e. the æther’s SET is of Type IV in the
Hawking-Ellis classification [61]).

However, since in the framework of Hořava gravity there exists a preferred foliation and
therefore a preferred observer, it makes sense to characterise the deviations from vacuum
as measured by such observer. Hence, we compute the projection

ρ(u) = Gabuaub , (6.2)

which we could interpret as the energy density measured by an observer that is comoving
with the æther. We then pick another vector sa that is spacelike, outward-pointing, of unit
norm and orthogonal to ua and use it to define a radial pressure as

p(s) = Gabsasb . (6.3)

We use
sa∂a = A∂v + w∂r with w = +1 +A2F

2A . (6.4)

Finally, we could define a tangential pressure in an analogous way, or simply as

p⊥ = −Gθθ = −Gφφ . (6.5)

Since the parameters α, β, λ enter the action as coupling constants, all the scalars
that we have just introduced share the same simple structure. Consider ρ(u) as an example:
it can be written as

ρ(u) = ρ
(u)
G + αρ(u)

α + βρ
(u)
β + λρ

(u)
λ . (6.6)

Here, ρ(u)
G derives from the Einstein’s tensor while each of ρ(u)

α , ρ
(u)
β , ρ

(u)
λ derives from the

operators that appear in the action multiplied respectively by α, β and λ. Clearly, each
of them still depends on β (and on `), since the explicit form of the metric and of the
æther does; but not on α nor λ. We will use analogous notations for the decompositions
of p(s), p⊥ and J , with the only difference that J has no “JG” part. One can check that
p

(s)
α = −p⊥α in all the cases that we consider.

A remark is in order, at this point. The singular geometry of eqs. (2.7) and (2.8) is a
solution of the equations of motion only for α = 0. Indeed, as will be made explicit in the
next two subsections, the effective sources proportional to α generically do not vanish — not
even in the limit `→ 0, in which the singular geometry is retrieved. Hence, one might worry
that allowing α 6= 0 in the analysis of the non-singular configurations is not consistent.

Here, however, we choose to keep α 6= 0. The reason is that, in the absence of some
custodial symmetry that protects it against running, the higher-order operators in the
action of Hořava gravity will generically affect the value of α (as well as that of β and λ) at
the level of the effective field theory. Hence, we cannot presume it to be zero at this stage.

Still, at low energies, the effect of higher-order operators is negligible and the value of
α is the one set by (low-energy) observations: α . O

(
10−4) — cf. section 2. One should

bear in mind, therefore, that at large distances the effective sources proportional to α are
highly suppressed.
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6.1 Hayward’s effective sources

Here, we remain agnostic on the specific choice of r0(r) for as long as possible; however, the
explicit results are often cumbersome and not particularly enlightening. For this reason,
we specialise to Hayward’s choice and discuss, in particular, the asymptotic behaviour of
the effective sources.

Khronon’s equation. One finds that Jβ = Jλ; clearly, these are zero when ` = 0. Jα
instead is non-zero even in the limit in which the regularisation parameter vanishes, since
the singular solution we started with is an exact (vacuum) solution only for α = 0. The
explicit expressions are not particularly enlightening and we hence omit them here. We
can however get useful insights by looking at their asymptotic behaviour.

At infinity, we find

J = αJα + (β + λ)Jβ,λ

= α

[
−6
√

3
√

1
1− β

M4

r5 +O
(
r−6

)]
+ (β + λ)

[
540
√

3
√

1
1− β

M3`2

r6 +O
(
r−7

)]
. (6.7)

The different scaling between Jα and Jβ,λ is not surprising, since the former does not vanish
in the ` → 0 limit — as previously argued. In any case, it is easy to see from the above
expression that the effective source vanishes rapidly as one moves away from the object.

The sources may be large at intermediate radii, but become very small in the opposite
limit, small r, and vanish exactly at r = 0. Indeed, expanding around this point, we find

J = α

[
27
√

3
4

√
1

1− β
r5

`6
+O

(
r6
)]

+ (β + λ)
[
27
√

3
√

1
1− β

r3

`4
+O

(
r4
)]

. (6.8)

Hence, the connected non-singular configuration is almost a solution of khronometric
theory at very large and very small distances from the centre.

Einstein’s equations. Plugging in the Ansätze eqs. (3.1) and (3.2), we find a series of
additional identities:

ρ
(u)
G = −p(s)

G , p⊥λ = p
(s)
λ (6.9)

ρ
(u)
G + βρ

(u)
β = r′0

r2 + βρ
(u)
λ , p

(s)
G + βp

(s)
β = −r

′
0
r2 + βp

(s)
λ , p⊥G + βp⊥β = −r

′′
0

2r + βp⊥λ (6.10)

Hence, we can write

ρ(u) = r′0
r2 + (β + λ) 27r2

0
128(1− β)

[
r′0
r2

]2
+ αρ(u)

α , (6.11)

p(s) = −r
′
0
r2 − (β + λ) 27r2

0
128(1− β)r5

[
2r(r′0)2 + r0(rr′′0 − 2r′0)

]
+ αp(s)

α , (6.12)

p⊥ = −r
′′
0

2r − (β + λ) 27r2
0

128(1− β)r5

[
2r(r′0)2 + r0(rr′′0 − 2r′0)

]
− αp(s)

α (6.13)

The expressions of ρ(u)
α and p(s)

α are slightly more involved and we omit them here.
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Focusing on Hayward’s choice, we can read off the asymptotic behaviours. At large r
we have

ρ(u) =
[

12M2`2

r6 +O
(
r−9

)]
+(β+λ)

[
243M6`4

2(1−β)r12 +O
(
r−15

)]
+α

[
M2

2r4 +O
(
r−5

)]
, (6.14)

p(s) =−
[

12M2`2

r6 +O
(
r−9

)]
+(β+λ)

[
243M5`2

2(1−β)r9 +O
(
r−12

)]
+α

[
M2

2r4 +O
(
r−5

)]
, (6.15)

p⊥=
[

24M2`2

r6 +O
(
r−9

)]
+(β+λ)

[
243M5`2

2(1−β)r9 +O
(
r−12

)]
−α

[
M2

2r4 +O
(
r−5

)]
. (6.16)

Clearly, these effective sources display “tails” that extend, in principle, up to infinity;
the tails however decrease very rapidly, hence for all practical purposes the spacetime
surrounding the object can be considered empty. Further note that, as anticipated, these
sources do not vanish in the limit ` → 0 because of the terms ∝ α. This is simply due to
the fact that the singular configuration is a solution only for α = 0.

At r = 0, the following expansions hold:

ρ(u) =
[ 3
`2

+O
(
r3
)]

+ (β + λ)
[

243r6

128(1− β)`8 +O
(
r7
)]

+ α

[ 3
`2

+O(r)
]
, (6.17)

p(s) = −
[ 3
`2

+O
(
r3
)]
− (β + λ)

[
243r6

64(1− β)`8 +O
(
r7
)]

+ α

[
r2

2`4 +O
(
r3
)]

, (6.18)

p⊥ = −
[ 3
`2

+O
(
r3
)]
− (β + λ)

[
243r6

64(1− β)`8 +O
(
r7
)]
− α

[
r2

2`4 +O
(
r3
)]

. (6.19)

Note that the Einstein’s tensor presents a de Sitter form.
Focusing on the minimal theory (α = β = 0), the analytic expressions become more

tractable. We report them for completeness:

ρ
(u)
G = −p(s)

G = 12M2`2

(r3 + 12M`2)2 , p⊥G = −24M2`2(M`2 − r3)
(r3 + 2M`2)3 , (6.20)

ρ
(u)
λ = 243M6`4r6

2(r3 + 2M`2)6 , p
(s)
λ = p⊥λ = 243M5`2r6(r3 − 2M`2)

2(r3 + 2M`2)6 ; (6.21)

and provide their plots in figure 4.
In order to produce the figures, we exploit a self-similarity property that these functions

enjoy: when written in terms of the variable x = r
(
M`2

)−1/3, they only depend on `

through a multiplicative factor, which we can remove. Thus, the curves in figure 4 are `-
independent: the `-dependence can be reinstated by simply rescaling the axes appropriately.

The location of the horizons in the x coordinate depends markedly on `: for reference,
figure 4 reports an illustrative example. It also reports the location of the star’s effective
radius, which is defined only for ` > 4M/(3

√
3) but has an otherwise `-independent x-

coordinate:
r? =

(
4M`2

)1/3
7→ x? = 41/3 ' 1.59 . (6.22)

The fact that x? does not depend on the regularisation parameter might sound suspicious,
as it seems to suggest that the value of the effective sources at the star’s radius is always
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(a) Energy density and principal pressures deriving
from the Einstein’s tensor.
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(b) Energy density and principal pressures derived
from the æther’s SEMT. These curves should be
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Figure 4. Components of the energy density and the principal pressures, as measured by an
observer comoving with the æther, for the Hayward non-singular configuration in the minimal
theory α = β = 0. The position of the horizons in this coordinate strongly depends on `: the
vertical black lines mark UH (solid) and KH (dashed) for ` = 0.25M ; the dotted line corresponds
to the star’s effective radius (which coincides with the degenerate KH in the extremal case).

the same, irrespective of the value of `. Physical intuition would suggest the opposite:
the sources corresponding to large stars should be “dilute” with respect to those of more
compact stars. Physical intuition does indeed paint the correct picture: the value of each of
the effective sources at the star’s radius is given by a constant (of order one in appropriate
units) divided by `2. So increasing ` does suppress the deviations away from vacuum.

Inspecting the figure, we realise that the effective sources are typically negligible at
the scale of the outer horizon. They are still small, though less so, at the scale of the star’s
radius, and become almost zero very rapidly as one moves outwards. We deduce that most
of the phenomenologically relevant phenomena involving these non-singular objects take
place, for all practical purposes, in vacuum.

6.2 Black bounce’s effective sources

In the non-connected case, we are forced to analyse the specific example provided by the
black bounce spacetime. The analytic expressions are often reasonably compact: when this
is the case, we report them in full. However, as in the previous section, we will put the
emphasis on the more informative asymptotic behaviours of the effective sources.

Khronon’s equation. We find that Jλ = 0 identically. This means that, remarkably,
the khronon’s equation of motion is satisfied in the minimal theory α = β = 0. For the
more general cases, Jα and Jβ can be written as

Jα = r
[
M%2P5(%) + `2P6(%)

]
jα(%) and Jβ = r`2jβ(%) , (6.23)

where jα and jβ do not depend on ` while P5(%) and P6(%) are polynomials of degree five
and six, respectively, in %.
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At infinity, one finds the following expansions:

J = α

[
−6
√

3
√

β

1− β
M4

%5 +O
(
%−6

)]
+ β

[
12
√

3
√

β

1− β
M2`2

%5 +O
(
%−6

)]
, (6.24)

so even in this case the effective sources go to zero very rapidly.
As the expressions in eq. (6.23) make explicit, these functions are O(r) close to r = 0,

for all nonzero values of `. Note that the limit `→ 0 is, as expected, singular.

Einstein’s equations. We find that the term proportional to λ in Gab vanishes identi-
cally: this means that, in the minimal theory α = β = 0, the only deviations from vacuum
come from the Einstein tensor. In other words

ρ
(u)
λ = p

(s)
λ = p⊥λ = 0 . (6.25)

The analytic expression of the effective energy density is

ρ(u) = − `2

8%8

(
8%4 − 32%3M + 27M4

)
+ α

[
M

%2MP4(%) + `2P5(%)
8%8 (4%2 + 4%M + 3M2)

]
, (6.26)

where the Pn are polynomials of degree n in %; note in particular that nothing depends on β
— ρ

(u)
G and ρ(u)

β separately do, but the sum ρ
(u)
G +βρ

(u)
β does not. For the pressures, we find

p(s) = − `2

8%8

(
8%4 + 27M4

)
+ α

[
M2r2 (4%2 + 6%M + 9M2)2

8%8 (4%2 + 4%M + 3M2)

]
, (6.27)

p⊥ = `2(%−M)
%5 − α

[
M2r2 (4%2 + 6%M + 9M2)2

8%8 (4%2 + 4%M + 3M2)

]
; (6.28)

as before, the β-dependence cancels out.
Once again, we focus on the asymptotic behaviour. At infinity

ρ(u) =
[
− `

2

%4 +O
(
%−5

)]
+ α

[
−M

2

2%4 +O
(
%−5

)]
, (6.29)

p(s) = −p⊥ +O
(
%−5

)
= ρ(u) +O

(
%−5

)
. (6.30)

Note that the fall-off rate of the tails is still rather fast. Again, it is easy to see that even
for `→ 0 one does not recover vacuum if α 6= 0. As in the previous case this is simply due
to the fact that only for α = 0 the considered singular BH spacetime is an exact solution
of the field equations in vacuum.

At r = 0, instead, the values of the sources are nonzero and controlled by the regular-
isation parameter `:

ρ(u) = −8`4 + 27M4 − 32`3M
8`6 + α

[
27M4 − 8M`3

8`6

]
, (6.31)

p(s) = −8`4 + 27M4

`6
, (6.32)

p⊥ = `−M
`3

. (6.33)
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Figure 5. Energy density and principal pressures, as measured by an observer comoving with
the æther, for the black-bounce non-singular metric in the minimal theory α = β = 0. The black
vertical lines mark the UH (solid) and KH (dashed), which may be present or not depending on
the value of `. Dotted lines signal the position of the mouth for two choices of `, corresponding
to a hidden (` = 0.25M) and a traversable (` = 2.5M) wormhole respectively. Recall that, since
% =
√
r2 + `2, the region % < ` is unphysical and should be removed; for this reason it is shaded.

For symmetry reasons, the throat is an extremal point (either a local minimum or maxi-
mum) for these functions.

Finally, we again focus on the minimal theory and provide plots of the nonzero sources.
As the analytic expressions make clear, once the coordinate % is employed the dependence
on ` is trivial, since this parameter only enters as a multiplicative factor. For this reason,
we decide to plot, in figure 5, the `-independent part only, as a function of %. For refer-
ence, dotted lines mark the location of the wormhole mouth for two specific choices of `,
corresponding to a hidden and a traversable wormhole respectively.

We remind the reader that, although the plot extends to % = 0, min(%) = `. Hence, for
any given choice `, the region % < ` does not belong to the spacetime and should therefore
be removed: in figure 5 this is rendered by shading. The curves should thus be cut off at
% = ` and joined smoothly with a mirror copy of themselves; moreover, they should be
multiplied by `2.

The upshot of this analysis is that the deviations away from vacuum are sizeable only
in a region close to the mouth, but decay very fast as one moves away from the object.
Therefore, the physics in the surrounding of the black bounce is well described by the
equations of vacuum khronometric theory.

7 Conclusions

In this paper, we have presented explicit examples of simply connected and non-connected
regularisations of a static and spherically symmetric black-hole solution in low-energy
Hořava gravity.
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In the simplest settings, these regularisations are minimal deformations of the singu-
lar solution that only depend on one parameter, the value of which determines whether
universal and/or Killing horizons are present. Thus, each of the metrics and æther flows
that belong to the connected class describes a compact object that is either a regular black
hole or an horizonless “star” with (anti-)de Sitter core — depending on the value of said
parameter. Similarly, each of the metrics and æther flows in the non-connected class cor-
responds to a wormhole whose mouth may or may not be hidden behind horizons. To
our knowledge, our examples constitute the first instances of objects of these kinds in the
context of khronometric theory.

Our proposals are summarised in eqs. (3.1) and (3.2) (connected) and eqs. (3.7)
and (3.8) (non-connected). They are not solutions of khronometric theory; however, they
instantiate all of the few physically viable classes of non-singular end states of gravitational
collapse: connected regular black holes and horizonless objects, non-connected hidden and
traversable wormholes. Therefore, if non-projectable Hořava gravity is indeed a UV com-
pletion of khronometric theory, gravitational collapse in the full theory should produce
solutions that are qualitatively akin to the configurations that we have hereby described.

In this frame of mind, the deviations of our configurations from the vacuum of khrono-
metric theory should be interpreted as arising from the contributions of higher-order oper-
ators. Checking directly whether this is the case is probably close to impossible. It seems
important, therefore, to seek indirect ways of validating this conjecture.

Even within the low-energy theory, however, our proposals present several intriguing
features. For instance, when a UH is present both the connected and non-connected con-
figurations represent one-parameter generalisations of the exact solution. Notably, this
additional parameter can be used to trim the surface gravity of the UH, thereby affect-
ing the thermal properties of the black hole. In particular, it seems possible to construct
configurations in which the UH is extremal, i.e. its surface gravity vanishes.

Moreover, connected non-singular black holes necessarily have multiple UHs. Since
the peeling properties of the inner UH are highly reminiscent of those of inner KHs in
GR, which are believed to be unstable (see e.g. [62–64] and references therein), it is
legitimate to wonder whether inner UHs will be subject to a similar instability. Indeed,
while the instability we are referring to — the so called mass inflation — manifests itself
as an exponential growth in the amplitude of perturbations close to an inner horizon in
relativistic physics, non-relativistic settings like ours usually tame such growth due to
the existence of modified dispersion relations which prevent an unbounded accumulation
of energy at inner KHs. This might not be the case for inner UHs, because of what we
said above, and some dynamical behaviour might appear. We think this question deserves
further investigation in the future.

Finally, we note that, both on theoretical as well as phenomenological grounds, the
Lorentz-violating effects in matter should be suppressed by some energy scale higher than
the one associated with Lorentz breaking in Hořava gravity (see e.g. [65] or [66] and ref-
erences therein). This implies that for all practical purposes light rays and test particles,
typically used for BH phenomenology nowadays, essentially move along geodesics of the
metric — regardless of the specifics of the modified dispersion relation.
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Previous studies have shown that the geodesics of the Hayward (as well as Bardeen,
Dymnikova et similia) and black bounce spacetimes are parametrically close to those of the
Schwarzschild metric. In particular, these metrics typically admit an unstable light ring
— whose properties are connected, for instance, to the shape and size of electromagnetic
shadows, or to the frequencies of the longest-lived quasinormal modes — that lies close to
the one of Schwarzschild. (Moreover, in the horizonless regime they can admit another,
stable light ring, located inside the unstable light ring or at the wormhole mouth, which
might be associated to a non-linear instability [67].)

Therefore, when probed at low energies — e.g. employing very long-baseline interfer-
ometry, accretion disk spectroscopy, star dynamics or early inspiral gravitational waves
— these objects represent phenomenologically viable “mimickers” of Schwarzschild black
holes, similar but not identical to their singular counterparts. The search for signatures of
these subtle deviations could then mark the dawn of a new channel for quantum gravity
phenomenology.
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A Optical scalars

A coordinate-independent way to characterise the æther congruence is through the optical
scalars:

expansion θ = ∇aua , (A.1)

shear squared σ2 with σab = ∇(aub) − u(aab) −
θ

3Pab , (A.2)

twist squared ω2 with ωab = ∇[buc] − u[aab] . (A.3)

Other interesting scalars are ua χa and aa χa, as they are associated with properties of the
UHs.

Since the æther is hypersurface-orthogonal, Frobenius’ theorem implies that the twist
vanishes. (Note that ω2 ∝ (u[a∇buc])2.) Moreover

aa χ
a =

√
−a2 = y (ua χa)′ . (A.4)

When evaluated on the Ansatz of eqs. (2.3) and (2.4), one finds

θ = y′ + 2yR
′

R
(A.5)

and a similar, though lengthier, expression for σ2. All this quantities thus depend al-
gebraically on the functions F (r), R(r), A(r) and their first derivatives, in a way that
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renders the following statement manifestly true: when F (r), R(r), A(r) are of class C1

and bounded, all the scalars introduced above are C1 and bounded. We have computed
them explicitly for the singular solution and found that they are ill-behaved at the origin;
and then on the connected and on the non-connected non-singular configurations, checking
that they are indeed well-behaved everywhere — in particular, at the origin, at the UHs
and at the KHs.

B 2D expansions

In order to make contact with the arguments of [32], we complement our analysis with a
discussion on the local characterisation of horizons.

We start by considering a closed, spacelike 2-surface S 2. The subspace of the tangent
space that is orthogonal to the tangent space of S 2 is spanned by two vectors that can
be taken timelike, future-pointing and spacelike, outward-pointing — respectively. In our
case, a simple choice for S 2 is any sphere centred at the origin. The two vectors are then
the æther and the vector sa of eq. (6.4) used to define the tangential pressure.

The induced metric on S 2 is

hab = gab − uaub + sasb (B.1)

and can be used to define the scalars

θ(X) = hab∇aXb with X = {u, s} . (B.2)

These are expansions, but should not be confused with the optical scalar θ, which is defined
in terms of a three-dimensional transverse metric. θ(u) and θ(s), and in particular their
signs, determine whether S 2 is a universal (marginally) trapped surface.

With our Ansätze of eqs. (2.3) and (2.4), we have

θ(u) = 2yR
′

R
and θ(s) = 2(ua χa)

R′

R
. (B.3)

Recall that y < 0. Hence, on the singular solution eqs. (2.7) and (2.8), θ(u) is always
negative, i.e. the future-directed congruence is always converging, while θ(s) has the sign
of ua χa. Thus, ua χa = 0 marks a universal trapping horizon. Note that both expansions
diverge as r → 0, meaning that r = 0 is a caustic. Penrose’s theorem then implies that
this is in fact a singularity, in the sense that the spacetime is not geodesically complete.

On the simply connected configurations of eqs. (3.1) and (3.2) we still have that θ(u) < 0
and that θ(s) has the sign of ua χa, but we know that in this case ua χa = 0 has multiple
roots and in particular it is positive in a neighbourhood of r = 0. Hence there exist multiple
universal trapping horizons. Further note that in this case r = 0 is not a caustic anymore,
since θ(u) → 0 and θ(s) → 1 as r → 0.

In the non-connected configuration the sign of the two expansions depends also on
R′/R, which is positive in our universe but negative in the other. I.e. both congruences
vanish and change sign at the wormhole mouth r = 0.
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