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We introduce a novel approach to evaluate the nonstabilizerness of an N-qubits matrix product state
(MPS) with bond dimension χ. In particular, we consider the recently introduced stabilizer Rényi entropies
(SREs). We show that the exponentially hard evaluation of the SREs can be achieved by means of a simple
perfect sampling of the many-body wave function over the Pauli string configurations. The sampling is
achieved with a novel MPS technique, which enables us to compute each sample in an efficient way with a
computational cost OðNχ3Þ. We benchmark our method over randomly generated magic states, as well as
in the ground-state of the quantum Ising chain. Exploiting the extremely favorable scaling, we easily have
access to the nonequilibrium dynamics of the SREs after a quantum quench.
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Introduction.—Quantum advantage [1,2] relies on har-
nessing a quantum system’s exponential complexity to
surpass classical computing limitations, potentially enabling
efficient solutions to NP problems [3–5]. Entanglement is a
fundamental feature accounting for this complexity, thus
making necessary to exploit it proficiently in any quantum
computation. Indeed, quantifying entanglement in many-
body systems is a long-standing research focus, with various
well-established measures, such as purity, entanglement
entropy, negativity, and mutual information [6–9].
Nevertheless, entanglement is not the sole resource

requiring quantification to discriminate between easy and
hard to simulate quantum states. Indeed, several states
despite encoding extensive entanglement can be efficiently
simulated on a classical computer. These states are part
of the stabilizer states [10], defined as quantum states
exclusively achievable using Clifford unitaries from the
computational basis state j0…0i [11–16].
The Clifford group represents a class of unitary trans-

formations that maps strings of Pauli operators over N
qubits into other Pauli strings [15,17]. Because of this
structure, stabilizer states can be compactly represented
classically, and Clifford operations can be efficiently
executed using this representation [11,12].
Therefore, to measure the hardness of simulating a

quantum state, regardless its entanglement, it is essential
to define a quantity that considers the amount of non-
Clifford operations required for state preparation [18,19].
This quantity has been dubbed nonstabilizerness or quan-
tum magic.
Several measures of nonstabilizerness have been pro-

posed so far in quantum information theory [20–22], as for
instance the robustness of magic [21]. Nevertheless they
are typically hard to compute [23]. As a matter of fact,
quantifying nonstabilizerness beyond a few qubits remains

a major challenge. Recently the stabilizer Rényi entropies
(SREs) were introduced in Ref. [24] as a possible way
of quantifying the nonstabilizerness of a quantum state.
However, since they depend on expectation values of all
possible Pauli strings, computing SREs of a generic state is
exponentially costly with the number of qubits. Never-
theless when the N-qubit state admits a matrix product state
(MPS) representation with finite bond dimension χ, the
SREs can be computed as the norm of a “2n replica”
MPS with effective bond dimension χ2n, where n (integer)
represents the Rényi index [25]. Unfortunately, such a
norm can be computed at a cost OðNχ6nÞ, thus having an
unfavorable scaling with the bond dimension. For any
practical purpose, this makes the approach unfeasible for
n > 2 [26].
To overcome such limitations, we propose a new method

which exploits the probabilistic nature of the SREs. The
algorithm relies on a novel and efficient MPS sampling
in the Pauli basis, reminiscent of some well-established
MPS techniques [27,28]. The sampling is perfect since we
directly obtain samples from the target probability distri-
bution, without Markov chains. By sampling over N Pauli
strings realizations, we are able to estimate the SREs with a
computational cost scaling as OðNNχ3Þ. We first bench-
mark our approach over a set of random realization of
MPS states with large bond dimension. We then study the
nonstabilizerness in the ground state of the quantum Ising
chain, showing a prefect agreement with the free-fermions
calculation. Finally, we use our method to compute for the
first time the nonequilibrium dynamics of the SREs after a
quench. We consider the Ising model with or without a
longitudinal field and show how the confinement of the
excitations [29], hugely affecting the entanglement dynam-
ics, may play a role also in the time evolution of the SREs.
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Preliminaries.—Let us consider a quantum system
consisting of N qubits. We identify the Pauli matrices by
fσαg3α¼0, with σ

0 ¼ 1, and with σ ¼Q
N
j¼1 σj∈PN a generic

N-qubits Pauli strings where PN ¼ fσ0; σ1; σ2; σ3g⊗N . For
a pure normalized state ρ ¼ jψihψ j, the SREs [24] are
given by

MnðρÞ ¼
1

1 − n
log

X

σ ∈PN

1

2N
Tr½ρσ�2n: ð1Þ

To understand the relation with usual Rényi entropies, one
has to observe that the non-negative real-valued function
ΠρðσÞ ¼ ð1=2NÞTr½ρσ�2 sums to 1 [24], and therefore can
be interpreted as a probability distribution on the set of
Pauli strings. ThusMnðρÞ ¼ ð1−nÞ−1 logPσ∈PN

ΠρðσÞn−
N log2, apart from a constant, does coincides with the
n-Rényi entropy of the distribution ΠρðσÞ, and it reduces to
the Shannon entropyM1ðρÞ ¼−

P
σ∈PN

ΠρðσÞ logΠρðσÞ−
N logð2Þ for n → 1. It has been shown that SREs have the
following properties [24], accordingly, being a good
measure of nonstabilizerness: (i) Mn vanishes for stabilizer
states whereas is positive for other states; (ii) are invariant
under Clifford unitaries; (iii) are additive. Moreover, they
grow extensively with the system size N, thus making it
possible to define nonstabilizerness density mn ¼ Mn=N
[25]. A violation of monotonicity for the SREs with 0 ≤
n < 2 has been reported for systems undergoing measure-
ments in the computational basis [30].
Computing the SREs in Eq. (1) requires the evaluation

of the expectation value of a generic power ΠρðσÞn−1 [or
logΠρðσÞ for n ¼ 1] over the probability distributionΠρðσÞ
itself. This suggests a natural way to estimate the SREs,
based on a sampling from ΠρðσÞ.
Conditional sampling.—The task of sampling from the

set of the Pauli strings σ, which has size D ¼ 4N , may
appear as exponentially hard. To overcome this difficulty,
we rewrite the full probability in terms of conditional and
prior (or marginal) probabilities as

ΠρðσÞ ¼ πρðσ1Þπρðσ2jσ1Þ � � � πρðσN jσ1 � � � σN−1Þ; ð2Þ

where πρðσjjσ1 � � � σj−1Þ ¼ ½πρðσ1 � � � σjÞ=πρðσ1 � � � σj−1Þ�
is the probability that the Pauli matrix σj occurs at position
j given that the string σ1 � � � σj−1 has already occurred at
positions 1…j − 1, no matter the occurrences in the rest of
the system (i.e., marginaliing over all possible Pauli strings
for the reaming qubits jþ 1…N). Specifically, one has
πρðσ1 � � � σjÞ ¼

P
σ ∈PN−j

ð1=2NÞTr½ρσ1 � � � σjσ�2. In other
terms, the conditional probability at the step j, i.e.,
πρðσjjσ1 � � � σj−1Þ, can be thought as the probability
πρj−1ðσjÞ of getting σj in the partially projected state

ρj−1 ≡
ρjσ1���σj−1

πρðσ1 � � � σj−1Þ1=2
; ð3Þ

where we have defined the state ρjσ1���σj−1 ≡2−N
P

σ∈PN−jþ1
×

Tr½ρσ1 � � �σj−1σ�σ1 � ��σj−1σ where, in the Pauli matrices
decomposition of ρ, we are only keeping the contribution
with fixed σ1 � � � σj−1. Notice that such state is not normal-
ized, however Tr½ρ2j−1� ¼ 1, and the probability that the
remaining string σ ∈PN−jþ1 occurs is exactly given by
πρðσjσ1 � � � σj−1Þ. From the definition in Eq. (3), we can
easily get the recursive relation ρj ¼ πρj−1ðσjÞ−1=2ρj−1jσj .
Thanks to that, we can generate the outcomes (and the
probabilities of that outcome) by iterating over each single
qubit, and sampling each local Pauli matrix according to
the conditional probabilities. Once a local outcome occurs,
the state is updated accordingly, and the iteration proceeds
until all qubits are sampled. At the end of this procedure,
as a result of Eq. (2), we generated configurations σ with
probability ΠρðσÞ. In order for this method to be computa-
tionally affordable, we need an efficient way of (i) evaluating
the conditional probabilities; (ii) updating the state according
to the local outcome. In the following section we show that
these conditions are met whenever the state admits a MPS
representation.
MPS iterative algorithm.—We consider a pure state

jψi represented in the MPS form [31–33] jψi ¼P
s1;s2;…;sN A

s1
1 A

s2
2 � � �AsN

N js1; s2;…; sNi, with A
sj
j being

χ × χ matrices, except at the left (right) boundary, where
As1

1 (AsN
N ) is a 1 × χ (χ × 1) row (column) vector. Here

jsji∈ fj0i; j1ig is a local computational basis. The state is
assumed right normalized, namely,

P
sj A

sj
j ðAsj

j Þ† ¼ 1.
Following the conditional sampling prescription described
in the previous section, we start from the first term of the
expansion in Eq. (2). This can be written as

πρðσ1Þ ¼
1

2N

X

σ ∈PN−1

hψ jσ1σjψihψ�jσ�1σ�jψ�i; ð4Þ

where we used the fact that the Pauli matrices are
Hermitian. In terms of the operators Λσi ¼ 1

2
σi ⊗ σ�i and

Λi ¼ 1
2

P
σi
ðσi ⊗ σ�i Þ, each acting on the local Hilbert

space given by a spin and its replica, the previous equation
reads πρðσ1Þ ¼ ½hψ j⊗ hψ�j�Λσ1Λ2 � � �ΛN ½jψi⊗ jψ�i�. Now,
the following property can easily be proven

½hs0ij ⊗ hr0ij�Λi½jsii ⊗ jrii� ¼ δs0i;r0iδsi;ri ; ð5Þ

meaning that Λi is just two copies of the identity operator
connecting the spin jsii and its replica (whose local
computational basis is now indicated as jrii∈ fj0i; j1ig).
Using Eq. (5) together with the right normalization of the
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MPS, the computation of Eq. (4) reduces in the following
local tensor contraction

πρðσ1Þ ¼
1

2

X

s1;s01;r1;r
0
1

�
A

s0
1

1

��Ar0
1

1 ðσ1Þs01s1ðσ�1Þr01r1A
s1
1

�
Ar1

1

��;

ð6Þ

which is represented in Fig. 1 by means of the standard
tensor network graphical notation [31,32].
After evaluating πρðσ1Þ for σ1 ∈ fσ0; σ1; σ2; σ3g, one can

extract a sample from this distribution, obtaining the first
element of the string. The information about the partially
projected state Eq. (3) is encoded in an effective environ-

ment matrix L ¼ ½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πρðσ1Þ

p �Ps1;s01
ðAs0

1

1 Þ�ðσ1Þs01s1A
s1
1 .

The calculation of the next terms of Eq. (2) and the
extraction of the remaining σi proceeds following the
same line. The full sampling recipe is summarized in
the Algorithm 1, and graphically supported in Fig. 2.
Extension of the Algorithm to mixed states is discussed in
the Supplemental Material [34].
Sampling error.—We now discuss the statistical errors of

the sampling algorithm, and their scaling with the system

size N. We first consider the case of estimating the n-SRE,
with n > 1. As we saw, the estimation of qn ¼P

σ ∈PN
ΠρðσÞn is achieved by a statistical average over

the samples fσμgNμ¼1, that means using the estimator

q̃n ¼ 1=N ·
PN

μ¼1ΠρðσμÞn−1. Afterwards, we evaluate the

density of nonstabilizerness as m̃n ¼
�
Nð1 − nÞ�−1×

log q̃n − log 2. Notice that q̃n is an unbiased estimator of
qn, since q̃n ¼ qn [̄ indicating the average over the un-
correlated samples, each distributed according to ΠρðσÞ].
The fluctuations of q̃n are characterized by its variance,
which can be easily evaluated as Var½q̃n� ¼ Var½Πn−1

ρ �=N .
For every n > 1, one has Var½Πn−1

ρ � < 1 and thus we can
upper bound the variance of the estimator obtaining
Var½q̃n� < const=N , where const is a constant of oð1Þ,
whose value is independent of the size D ¼ 4N of the
support of ΠρðσÞ. This means that the statistical error on q̃n
can be reduced arbitrarily by increasing the number of
samples, no matter the system size N. However, since the
uncertainty on m̃n propagates (at first order) as δm̃n ∝
δq̃n=q̃n and both q̃n, δq̃n are exponentially vanishing

with N for typical probability distributions, ðδm̃nÞ2 ∼
ð1=N ÞVar½Πn−1

ρ �=ðΠn−1
ρ Þ2 is generally exponentially

increasing with N [35]. Nevertheless, for the physical
states we have examined, the estimation error δm̃n is
always under control for reasonable values of N (see
the next section and Supplemental Material [34] for further
details). For n ¼ 1 we evaluate q1 ¼

P
σ ∈PN

ΠρðσÞ×
logΠρðσÞ via the estimator q̃1 ¼ 1=N ·

PN
μ¼1 logΠρðσμÞ.

We have Var½q̃1� ¼ Var½logΠρ�=N and thus we are inter-
ested in giving an upper bound for Var½logΠρ�. Several
works, e.g., Ref. [8], establish that Var½logΠρ� ≤
1
4
log2ðDÞ þ 1. Thus, in our case, Var½q̃1�≲N2 log2ð2Þ=N

meaning that in the worst scenario the number of samples
has to scale as N2 to reach a given accuracy in the
estimation.

FIG. 1. MPS evaluation of the marginal probability πρðσ1Þ.
Dotted lighter shapes represent conjugate tensors. Contractions
over the auxiliary indices can be easily carried out thanks to the
property in Eq. (5), together with the right normalization of theAi
tensors.

Algorithm 1. Pauli sampling from MPS.

Input: a MPS jψi of size N

1: Put the MPS in right-normalized form.
2: Initialize L ¼ ð1Þ and Π ¼ 1 [see Fig. 2(a)]
3: for (i ¼ 1, i ¼ N, iþþ) do
4: Compute the probabilities πðαÞ ¼ πρðσαjσ1 � � � σi−1Þ for

α∈ f0; 1; 2; 3g as in Fig. 2(b).
5: Generate a random value of α according to πðαÞ
6: Set σi ¼ σα, update Π → Π · πðαÞ
7: Update L as in Fig. 2(c).
8: end for

Output: a Pauli string σ and the probability ΠðσÞ

(a)

(b)

(c)

FIG. 2. The iterative sampling Algorithm 1.
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Numerical experiments.—As a first benchmark of
our algorithm, we consider the T state jTϕi ¼
ðj0i þ eiϕj1iÞ= ffiffiffi

2
p

, with ϕ ranging in ½0; π=2�. A straight-
forward calculation yields to M2ðjTϕihTϕjÞ ¼ − log½ð1þ
cos4ϕ þ sin4ϕÞ=2�, and M1ðjTϕihTϕjÞ ¼ −cos2ϕ×
logðj cos ϕjÞ − sin2ϕ logðj sin ϕjÞ. Both quantities vanish
for ϕ ¼ 0; π=2, while they have a maximum for ϕ ¼ π=4.
We first initialize the system in the product state jψ0i ¼
jTϕi⊗N , which is a MPS of bond dimension χ ¼ 1.
Afterwards, we apply a random Clifford circuit UC of
depth N. In each layer, we randomly choose a sequence of
one-qubit or two-qubit gates extracted from the generators
f1; S ¼ diagð1; iÞ; H ¼ ð1= ffiffiffi

2
p Þð1

1
1
−1Þ;CNOTg [17]. The

final MPS jψi ¼ UCjψ0i has a larger bond dimension
χ ≫ 1, whereas its nonstabilizerness is the same of jψ0i,
since this quantity is invariant under the Clifford group.
Thanks to the additivity of the SREs, the nonstabilizerness
density mnðjψiÞ ¼ MnðjψiÞ=N is equivalent to the non-
stabilizerness of a single T state. We apply our sampling
algorithm on jψi, obtaining the estimation m̃n. Results are
shown in Fig. 3, for n ¼ 1, 2 and size between N ¼ 10 and
N ¼ 70. Notice that for N ¼ 70, the bond dimension
of jψi grows up to χ ¼ 128, depending on the particular
arrangement of the Clifford layers. Values of χ of this order
would be extremely challenging to target with previously
known methods [25], whereas our approach takes only
≈Oð0.1Þ sec =sample on a single node simulation. Notice
that the sampling can be easily parallelized, provided that
the MPS is stored in multiple independent copies. All data
points are in agreement with theoretical predictions within

three error bars [see Fig. 3(a)]. Moreover, a scaling of the
statistical error δm̃n with N at fixed value of N suggests
that the fluctuations do not grow significantly with the
system size, even though in principle we might have
expected them to increase exponentially with N for n ¼ 2.
Afterwards, we consider the quantum Ising model

H ¼ −
P

i σ
x
i σ

x
iþ1 − h

P
i σ

z
i − g

P
i σ

x
i . For g ¼ 0, this

Hamiltonian can be mapped into a model of free fermions
[36,37], thus allowing the evaluation of the SREs in terms
of ∼4N determinants of matrices involving fermionic
correlators [38]. In Fig. 4, we compare exact results for
mn (n ¼ 1, 2) obtained in the fermionic representation with
MPS estimations, for a system of size N ¼ 14. For the
MPS, we use the density matrix renormalization group
(DMRG) [31] (χ ¼ 32) to find the ground state. MPS data
are in perfect agreement with the exact values, within small
error bars.
Finally, we use our algorithm to estimate the dynamics of

the nonstabilizerness density during an out-of-equilibrium
protocol. In particular, we prepare the system in the fully
polarized state jψð0Þi ¼ j þ � � � þi, where jþi ¼ ðj0i þ
j1iÞ= ffiffiffi

2
p

is the eigenstate of σx with eigenvalue þ1, and
we consider the time evolution generated by the Ising
Hamiltonian, i.e., jψðtÞi ¼ e−iHtjψð0Þi. We set the trans-
verse and longitudinal fields, respectively, to h ¼ 0.5 and
g ¼ 0, 0.25. The latter value corresponds to a phase in
which the system is known to exhibit a dynamical confine-
ment of the excitations [29,39], whereas in the free case
(g ¼ 0) the quasiparticles give rise to a light cone spreading
of correlations [40]. We use the time evolving block
decimation (TEBD) to compute the time evolution of the
post-quench MPS [31,41], with bond dimension up to
χ ¼ 128. Results are shown in Fig. 5 for N ¼ 40. For
g ¼ 0, the nonstabilizerness density seems to saturate
rapidly to a stationary value (see Ref. [42]), although the
half-chain entanglement entropy S ¼ −Tr½ϱN=2 log ϱN=2�, is
still growing linearly with the time t as expected (see the
subplot). In the confined phase g ¼ 0.25, nonstabilizerness
exhibits large and persistent oscillations around a slightly

FIG. 3. (a) Density of nonstabilizerness of jψi ¼ UCjTϕi⊗N for
N ¼ 10, 60, N ¼ 104 and Rényi index n ¼ 1, 2. In the lower
strip we show the deviation from the analytical value Δ ¼
ðmn − m̃nÞ=δm̃n, m̃n being our estimation and δm̃n the propa-
gated statistical error. (b) The error δm̃n as a function of the
system size N for fixed N ¼ 103; 105, and ϕ ≃ π=4.

FIG. 4. Nonstabilizerness density of the Ising ground state
(g ¼ 0) with periodic boundary conditions, for a system of size
N ¼ 14 and Rényi index n ¼ 1, 2. Exact results obtained in the
free fermions representation [38] are compared with MPS
sampling (N ¼ 104).
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lower stationary value, whereas entanglement is strongly
suppressed and approaches a low saturation value.
Oscillations of mn are presumably linked to the presence
of bound states consisting of pairs of domain walls
(mesons). Indeed, we verified that the dominant frequen-
cies of mnðtÞ are the same as those in the order parameter
hσxðtÞi, thus representing the mesons masses [29].
Conclusions.—We have shown that a relatively new

measure of quantum nonstabilizerness, the stabilizer
Rényi entropies [24], can be estimated efficiently in the
MPS framework via a perfect sampling of Pauli strings
operators. Our estimation neither suffers from the expo-
nential growth of the size of the many-body Hilbert space,
nor shows an unfavorable scaling with the MPS bond
dimension. As a matter of fact, we are able to consider
either equilibrium or nonequilibrium wave functions
with MPS bond dimension up to values that were out of
reach by any of the previously proposed methods for
evaluating the nonstabilizerness. Specifically, we applied
our method to evaluate the amount of nonstabilizerness
generated after a quench in the quantum Ising chain, and its
sensitivity to the presence of confinement of excitations.
Although we mainly focused on pure MPS, our algorithm
can be easily adapted to nonpure states obtained from a
MPS tracing out a subsystem consisting of the first or last
qubits.
Our approach paves the way to novel numerical studies

of the nonstabilizerness, possibly providing new character-
izations of the quantum phases of matter, in and out of
equilibrium. In addition, our new Pauli sampling technique
for the MPS can be used to address crucial problems in
quantum many-body theory, as, for instance, the operator
scrambling.
Finally, we mention that an estimation of the SREs

analogous to what we discussed is experimentally achiev-
able in platforms enabling the preparation of duplicate
states jψi ⊗ jψi and joint Bell basis measurements.
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