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1 Introduction

The study of generalized global symmetries [1–6] is undergoing a surprising evolution.
Recent progress has taken us beyond the paradigm of group-like symmetry to “categorical”
symmetry, the structure of which is encoded in a fusion (higher-)category. A particularly
interesting class of such symmetries are those which are “non-invertible.” Non-invertible
symmetries have long been known in (1 + 1)-dimensions [7–25], but it was not until fairly
recently that they were realized in higher-dimensional theories, with several different
constructions now known [26–63].1 This paper continues the study of non-invertible
symmetries in a particular class of supersymmetric (3 + 1)d theories, namely those of class
S [106, 107].

A particular way of realising non-invertible symmetries, which we will heavily use in
this paper, is by half-space gauging [27]. Let us illustrate the technique in the specific case
of SU(2) N = 4 super-Yang Mills (SYM) theory. We begin by defining an operation σ

which gauges the Z(1)
2 one-form symmetry of the SU(2) theory in half of space-time, with

Dirichlet boundary conditions at the interface. As discussed in [26, 27], this gives rise to an
interface between the SU(2) and SO(3)+ theories, both at the same value of the Yang-Mills
coupling τYM. Because the theories on the left and the right of the interface are in general
distinct, σ itself does not correspond to a defect in a single theory. However, N = 4 SYM
is known to enjoy an SL(2,Z) duality, which in particular contains an S-duality operation
denoted by S. This operation acts on the global form SU(2) in the same way as σ, and also
acts on the coupling. Composing the two operations gives the configuration in figure 1.
From this we see that the combined transformation NS := Sσ gives rise to a symmetry in
the SU(2) theory, as long as we choose the couplings on both sides to match, i.e.

τYM = −1/τYM ⇒ τYM = i . (1.1)

Since it involves a half-space gauging, this symmetry is non-invertible by construction.
For this particular non-invertible symmetry, there is known to be an alternative

construction: namely, we can gauge an invertible symmetry with mixed anomaly in the
1For further constructions of generalised symmetries in higher-dimensional theories see e.g. [64–105].
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SU(2)[τYM] SO(3)+[τYM] SU(2)[− 1
τYM

]

σ S

⇒
SU(2)[τYM] SU(2)[− 1

τYM
]

NS

Figure 1. At τYM = i, the SU(2) theory has a non-invertible defect NS, which can be understood
as the composition of a defect σ implementing gauging of the Z(1)

2 one-form symmetry, together
with an invertible S defect.

SO(3)− theory at τYM = i [26]. In general, if one begins with a theory with invertible,
anomalous symmetries and then does appropriate topological manipulations (in practice,
discrete gaugings) to obtain a non-invertible symmetry in a different global variant of the
theory [26], the resulting non-invertible symmetry is referred to as non-intrinsic [35]: one
can always find a different global variant of the theory in which the consequences of the
non-invertible symmetry can be reinterpreted in terms of those of an invertible one. In the
context of class S, a particular family of such non-intrinsic non-invertible symmetries was
identified in [39].

In contrast, non-invertible symmetries which cannot be related to anomalous invertible
symmetries via topological manipulations are referred to as intrinsically non-invertible
symmetries. One of the main goals of this work is to classify non-invertible symmetries of
general theories of class S, and to establish criteria for when they are intrinsic. Perhaps
unsurprisingly, we will find that intrinsic non-invertibility is the generic situation.

Since all of the relevant tools for the study of general class S can be developed already
at the level of 4d N = 4 theories, we will now describe this case in full detail. The reader
who has studied this introduction should have no trouble following the more technical
discussions of the main text.

1.1 Global variants of su(p) SYM

In a general 4d N = 4 theory, one can try to identify non-invertible symmetries descending
from the S and ST transformations at τ = i and e 2πi

3 . This exercise was carried out in [35]
for all gauge algebras, including the exceptional and non-simply-laced cases, with one
family of exceptions: the theories su(N) for N > 4. The reason that this set of theories
is the most difficult is that in this case the one-form symmetry, and likewise the number
of global variants, grows with N . Thus the straightforward technique of enumerating
global variants and identifying combinations of {S,T, σ, τ} (with σ introduced previously
and τ corresponding to stacking with appropriate SPT phase) leaving a particular variant
unchanged is no longer tractable. However, if we restrict to N = p prime, then it turns
out that significant progress can be made. This was hinted at in [35], and will be discussed
from a completely different perspective now.

From now on we restrict to N = p prime. It will prove useful to first understand how
the number of global variants grows with p. To specify a global variant we must specify
the charge lattice, as well as the invertible phases with which we stack. Let us begin with
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the former. In order to specify the charge lattice, we begin by choosing a single non-trivial
point (e,m) ∈ Zp × Zp (all physically realized charge lattices must contain the trivial point
(0, 0)), and then allow all other points (e′,m′) which satisfy the mutual locality condition [4]

em′ −me′ = 0 mod p . (1.2)

Note that it suffices to specify only a single point. One might have naively expected that,
after specifying the initial point (e,m), there could be multiple choices (e′1,m′1) and (e′2,m′2)
for the second point, which would give different charge lattices. But for p prime this is not
the case: if (e′1,m′1) and (e′2,m′2) satisfy the mutual locality condition with (e,m), then
they are also mutually local to one another, and hence the charge lattice is independent of
the choice of the second point.2

Furthermore, to specify the lattice we may restrict to pairs (e,m) such that e and m
are coprime, i.e. gcd(e,m) = 1. Indeed, say that we instead try to specify the lattice by a
point (ẽ, m̃) such that gcd(ẽ, m̃) = d. Then there exist coprime integers (e,m) such that
(ẽ, m̃) = d(e,m), and we see that (ẽ, m̃) and (e,m) are mutually local,

ẽm−mẽ = d(em−me) = 0 . (1.3)

Thus the lattice specified by (ẽ, m̃) contains (e,m), and is in fact identical to the one
specified by (e,m).

Of course, since we are working modulo p we must be careful about what we mean
by coprime. For example, though the pairs (1, 2) and (2, 1) both involve coprime integers,
as elements of Z3 the two can be related by (1, 2) = 2 · (2, 1). To avoid overcounting, we
must therefore mod out by the multiplicative group Z×p , which is of order p− 1 (it does not
contain the zero element).

We may now count the number of allowed charge lattices, which is the number of
coprime pairs (e,m) modulo Z×p . In general, the number of k-plets (n1, . . . , nk) such that
ni are all mutually coprime and coprime to N is counted by the Jordan totient function

Jk(N) = Nk
∏
p|N

(
1− 1

pk

)
. (1.4)

In the current case we have k = 2 and N = p prime, so the number of coprime pairs is
simply J2(p) = p2 − 1. Dividing by Z×p then gives the number of allowed charge lattices,
namely J2(p)

p−1 = p+ 1.

2Concretely, we begin by assuming that e 6= 0 mod p and consider the mutual locality conditions

em′1 −me′1 = 0 mod p , em′2 −me′2 = 0 mod p .

Multiplying the first equation by e′2 and the second equation by e′1, and then subtracting the two gives

e(e′2m′1 − e′1m′2) = 0 mod p .

Thus (e′1,m′1) and (e′2,m′2) are mutually local as well. If on the other hand e = 0 mod p, then m 6= 0 mod p

(since we must specify a non-trivial point) and we may repeat the argument by first multiplying by m′2 and
m′1 and then subtracting.
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For each charge lattice, we may further stack with k copies of the invertible phase3

2πk
p

∫
p+ 1

2 B ∪B , k = 0, . . . , p− 1 (1.5)

where B is the background gauge field for the Z(1)
p one-form symmetry. The theories with

different k count as different global variants. We thus arrive at the final count for the
number of global variants d(p) for su(p) SYM, namely

d(p) = p× J2(p)
p− 1 = p(p+ 1) . (1.6)

1.2 Modular orbits of global variants

We now notice a small “coincidence,” namely that4

d(p) = p(p+ 1) = |SL(2,Zp)|
|Z×p |

. (1.7)

What this means is that each global variant of su(p) SYM can be labelled by a ray-matrix
M ∈ SL(2,Zp). Given one such label, we may act on it with a modular transformation
S,T ∈ SL(2,Z) to obtain a unique new ray-matrix M ′. In fact, transitivity of the group
SL(2,Zp) assures us that every global variant can be obtained in this way — in other words,
there are no disconnected modular orbits for su(p) SYM.5 With this in mind, we choose
our labels as follows. We first choose one global variant to assign the identity matrix; for
concreteness we take this to be PSU(p)0,0 (which for p = 2 is SO(3)+,0).6 We then label
each other global variant by the particular element of the modular group that is needed to
map from PSU(p)0,0 to that global variant,

F (S,T) : M 7→ F (S,T)TM , F (S,T) ∈ SL(2,Z) , (1.8)

in the conventions
S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
(1.9)

For example, for p = 2 we obtain the labelling shown in figure 2.
The topological operations σ and τ generate SL(2,Zp) and should likewise be realizable

as a matrix action on the global variants, but they should not act on the left, lest they fail
to commute with the modular transformations. Instead, the topological operations act on
the global variants from the right,

G(σ, τ) : M 7→MG(σ, τ) , G(σ, τ) ∈ SL(2,Zp) , (1.10)

with σ and τ given by the same matrices as S and T respectively, as may be checked in the
explicit example of su(2) in figure 2.

3For p = 2 this should be replaced by πk
2

∫
P(B) with P(B) the Pontryagin square of B.

4This formula can also be found in [5]. We will give a geometric interpretation of it later on.
5See [108] for similar, more refined statements.
6The first subscript denotes the discrete theta angle, while the second subscript denotes the number of

copies of the invertible phase (1.5) that are stacked with the theory.
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SU(2)0(
0 1
1 0

)
τT

SU(2)1

(
0 1
1 1

)

SO(3)+,0(
1 0
0 1

)
τ

SO(3)+,1

(
1 1
0 1

)

SO(3)−,0(
1 0
1 1

)
τ S

SO(3)−,1

(
1 1
1 0

)

S T

S T

σ

σ

σ

Figure 2. Labelling of global variants of su(2) SYM by matrices in SL(2,Z2)/Z×
2 = SL(2,Z2).

They are defined such that modular transformations S and T act from the left. The subscript 0, 1
denotes the number of copies of the invertible phase π

2
∫
P(B) that we stack with.

There are two main takeaways from this discussion, both of which will generalize to
other class S theories:

1. Every global variant can be mapped to every other by the action of both S,T ∈ SL(2,Z)
and σ, τ ∈ SL(2,Zp).

2. Every action of the modular group F (S,T) can be undone by an appropriate topological
manipulation G(σ, τ). This is true independent of the global variant M under
consideration.

As we have mentioned before, the first of these implies that there are no disconnected
components in the orbit of S,T ∈ SL(2,Z), nor in the orbit of σ, τ ∈ SL(2,Zp). On the
other hand, the second of these means that, for any F (S,T) leaving a certain value of the
coupling fixed (i.e. F (S,T) = S or ST in the current case), we will always get a symmetry
by dressing with the appropriate topological manipulation G(σ, τ). This statement holds
regardless of the global variant under consideration. The topological manipulation will
generically contain factors of σ which make the symmetry non-invertible, and so we see
that non-invertible symmetries are, in some sense, the norm.

From this point of view, instead of asking “For what global forms M do we have a non-
invertible symmetry?” we should really ask “For what global forms M do we not have a non-
invertible symmetry?” In other words, we ask if/when the non-invertible symmetry becomes
invertible. By point 1 above, we see that if any single global variant has an invertible symme-
try, then the potential non-invertible symmetry in all other global variants is non-intrinsic.

1.3 Invariant global forms

We now focus on the identification of global forms with invertible symmetries. A symmetry
F (S,T) is invertible in the global form M if it acts as7

F (S,T)TM = λMτn , λ ∈ Z×p , n ∈ Zp . (1.11)
7We could also allow for operations such as rescaling of the background fields, but since we will set the

background fields to zero in a moment anyways we do not elaborate on these here.
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The factor of λ is allowed since M is in the first place defined only modulo Z×p . The factor
of τn captures potential anomalies of the invertible symmetry. If we are only concerned
with whether or not a symmetry is invertible, and not whether it is anomalous, then it
suffices to set all background gauge fields to zero, in which case the factor of τn drops
out, and we may redefine the label M to be simply the first column of the matrix M we
were using before (e.g. SU(2)↔

(0
1
)
, SO(3)+ ↔

(1
0
)
, SO(3)− ↔

(1
1
)
). We are then left with a

simple eigenvalue equation

F (S,T)TM = λM , λ ∈ Z×p . (1.12)

The global form M has an invertible symmetry if and only if this equation is satisfied.
Let us begin by fixing to F (S,T) = S. In this case the possible eigenvalues λ are given

by the characteristic polynomial

det(S− λ1) = λ2 + 1 = 0 mod p . (1.13)

We must now ask if this equation admits a solution in Z×p . The answer to this question is a
standard result in the theory of quadratic residues — the number of solutions is given by

# solutions =
{

1 p = 2
1 + (−1)

p−1
2 otherwise

(1.14)

Whenever a λ in Z×p exists, there automatically exists a vector with coefficients in Zp
satisfying (1.12), and hence an invariant global form. For p = 2 we see that there is one
solution, and hence one global form which is invariant under S. This is none other than the
SO(3)− theory, which is indeed invariant under S [4].8 For p ∈ 4N+ 1, we see that there are
two global forms left invariant, and otherwise there are no global forms left invariant. Thus
only for p > 2 and p 6∈ 4N + 1 is the S symmetry (dressed with the appropriate topological
manipulation G(σ, τ)) intrinsically non-invertible.9

We may carry out a similar analysis for F (S,T) = ST. In this case the possible
eigenvalues λ are given by the characteristic polynomial

det(ST− λ1) = λ2 − λ+ 1 = 0 mod p . (1.15)

We again ask for which p this admits a solution in Z×p . The answer is given by

# solutions =


0 p = 2
1 p = 3

1 + (−3|p) otherwise
(1.16)

where (n|p) is the Legendre symbol. We conclude that there is no global form left invariant
for p = 2, one global form left invariant for p = 3 (identified as the PSU(3)1 theory in [35]),

8Recall that we are turning off the background fields for this analysis. In the presence of background
fields SO(3)− transforms under S by an invertible phase, indicating a mixed ‘t Hooft anomaly between the
invertible S symmetry and the Z(1)

2 one-form symmetry.
9A similar statement can be found in appendix C of [29].

– 6 –



J
H
E
P
0
5
(
2
0
2
3
)
2
2
5

p 2 3 5 7 11 13 17 19 23 29
S intrinsic? 7 3 7 3 3 7 7 3 3 7

ST intrinsic? 3 7 3 7 3 7 3 7 3 3

Table 1. For any p, there are global variants such that S and ST give rise to non-invertible
symmetries (upon appropriate dressing with topological manipulations G(σ, τ )). We may then ask if
these non-invertible symmetries are intrinsic or not. This may be answered by asking if there exist
global forms left invariant by S or ST. The results are shown for the first few primes.

two global forms invariant for p ∈ 3N + 1, and none otherwise. Thus only for p > 3 and
p 6∈ 3N + 1 is the ST symmetry (dressed with the appropriate topological manipulation
G(σ, τ)) intrinsically non-invertible.

We have now understood the full spectrum of invertible modular symmetries in the
global variants of N = 4 su(p) SYM for any prime p. This in particular tells us whether
non-invertible symmetries descending from S and ST can be intrinsic. We summarize the
results for the first few primes in table 1.

1.4 Higher-dimensional point of view

The 4d N = 4 theories that we have been discussing thus far are the simplest examples
of theories of class S. In particular, they can be obtained by compactifying the type ap−1
6d (2,0) theory on a torus. An important point, to be elaborated on further in the main
text, is that the 6d (2,0) theory is not actually a well-defined theory, but rather a “relative
theory,” i.e. a theory living on the boundary of a non-trivial TFT in 7d [109–111].

It may come as a surprise that the 4d N = 4 theories, which are well-defined, can be
obtained via torus compactification of the 6d (2,0) theory, which is relative. In particular,
when the coupled 6d-7d system is compactified on a torus, one obtains a coupled 4d-5d
system, and one might worry that this indicates that the 4d theory is relative as well.
This however is not the case. To see this, note that the theory in the 7d bulk W7 is given
schematically by

S7d = p

4π

∫
W7

c ∧ dc , (1.17)

which upon compactification on T 2 with H1(T 2,Zp) generated by the usual A,B cycles gives

S5d = p

2π

∫
W5

b ∧ db̂ (1.18)

for b :=
∮

A c and b̂ :=
∮

B c. In section 5, this BF theory will be seen to be closely related to —
though not in general identical to — the Symmetry TFT (SymTFT) of the 4d N = 4 theory.

Crucially, unlike the 7d CS theory, the 5d BF theory admits topological boundary
conditions. It is this fact which allows the 4d N = 4 theory to be well-defined — indeed,
one may place the 5d BF theory on an interval with a topological boundary condition on
one end and the dimensionally-reduced 6d (2,0) theory on the other end, and then shrink
the slab to obtain a well-defined 4d N = 4 theory. In this picture, the choice of global
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structure of the 4d N = 4 theory (e.g. SU(2) versus SO(3)+ versus SO(3)−) is captured by
the choice of topological boundary.

The way that these topological boundary conditions are realized in 7d is by taking
the 7d manifold to be of the form W7 = V3 ×X4, where ∂V3 = T 2 and the product is not
necessarily trivial. A particularly simple class of three-manifolds V3 with torus boundary
are solid tori, i.e. genus-1 handlebodies. As will be discussed in section 5, the number of
distinct genus-1 handlebodies (at the level of homology over Zp) is given by p+ 1, matching
precisely with the number of distinct charge lattices of the 4d N = 4 theory. We may
further consider inserting charge q ∈ Zp Wilson surfaces along the non-contractible cycle of
the solid torus, which capture the background gauge fields for the one-form symmetry as
well as the possible stackings with SPT phases. We thus obtain a picture in which the choice
of handlebody and longitudinal Wilson surfaces determines completely the 5d topological
boundary conditions, and hence the global variant of the 4d N = 4 theory.

In this higher-dimensional language, the question of intrinsic versus non-intrinsic non-
invertible symmetry becomes a question of whether the isometries of T 2 extend to isometries
of the solid torus V3. When the isometries do extend, then all non-invertible symmetries
are non-intrinsic, and the BF theory given in (1.18) is the full SymTFT for the boundary
theory (at least, the full SymTFT capturing the one-form symmetry). On the other hand,
when the isometries do not extend, the non-invertible symmetries are intrinsic, and the
SymTFT is not (1.18), but rather a gauging of this theory by an outer autormorphism
symmetry, as discussed in [59]. Since this automorphism symmetry shuffles the fields b and
b̂, the 7-dimensional realization of it should shuffle the A- and B-cycles of the torus. In
other words, this additional discrete gauging in 5d corresponds to a sum over geometries in
7d. Obtaining the full SymTFT for theories with intrinsically non-invertible symmetries
thus involves a (topological) quantum gravity computation in higher dimensions.

Let us close by saying that the theory obtained by gauging the outer automorphism
symmetry of the BF theory is not in general a gauge theory, even for a higher-group
symmetry [112]. In general, it is a difficult question when exactly the result is a gauge
theory, or more precisely a Dijkgraaf-Witten (DW) theory. By recalling that a symmetry is
non-intrinsically non-invertible if and only if the SymTFT is a DW theory [59], our previous
results on intrinsic non-invertiblity (summarized for example in table 1) immediately allow
us to answer this question:

Theorem 1. Gauging the ZEM
2 electro-magnetic duality symmetry acting as F = S in

(4 + 1)d Z(2)
p gauge theory gives a spin Dijkgraaf-Witten theory if and only if p ∈ 4N + 1.

and likewise

Theorem 2. Gauging the Z3 traility symmetry acting as F = ST in (4 + 1)d Z(2)
p gauge

theory gives a spin Dijkgraaf-Witten theory if and only if p = 3 or p ∈ 3N + 1.

The reader who is mainly interested in this higher-dimensional perspective may skip to
section 5, which is largely self-contained.
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1.5 Goals and organization

The main goal of this paper is to extend the analysis above to a more general family of class
S theories.10 As will be reviewed in section 2, class S theories are obtained by reducing the
6d (2,0) theory of type g ∈ {a, d, e} on a Riemann surface Σg,n of genus g with n punctures.
In this work we will mainly focus on the subset of theories obtained by taking the 6d (2,0)
theory to be of type ap−1 with p prime, and with no punctures n = 0. We will denote the
resulting theories by T p,g,0L [Ω], where Ω is the period matrix for the Riemann surface and L
is a partial label of the global variant, to be discussed more below. In the case of g = 1, the
theories T p,1,0L [τYM] are precisely the N = 4 su(p) theories discussed above, with coupling
τYM and global variant labelled by L.

The first step in identifying (non-)invertible symmetries will be to identify the points Ω
such that the Riemann surface has an enhanced symmetry. This is analogous to identifying
the points τYM = i or e 2πi

3 at genus 1. Once we have obtained these points, together with
the generators F ∈ Sp(2g,Z) of the enhanced symmetries, the second step is to identify a
topological manipulation G which can undo the action of this symmetry on the global form
(but not on the period matrix).

At genus 1, we saw that for any F and global variant M , there always existed a
topological manipulation G which could undo the action of F on M , thereby turning F
into a (potentially non-invertible) symmetry of the global variant M . In that sense, the
second step just mentioned was actually unnecessary. At higher genus, we will see that
effectively the same is true. There are several steps to proving this:

1. Show that the full set of topological manipulations G form Sp(2g,Zp),

2. Show that the global variants of genus g class S are labelled by elements in Sp(2g,Zp)
(modulo some appropriate factor),

3. Show that the global variants are acted on from the left by F ∈ Sp(2g,Z), and from
the right by G ∈ Sp(2g,Zp).

These statements will be the subject of section 2.
Having done this, we may then simply focus on the first task, namely identification of

the points of enhanced symmetry on a genus g Riemann surface. As one might imagine,
this exercise has already been carried out in the math literature up to genus 5 [117–122],
and we will borrow results from there. The math results also include the characteristic
polynomials of the generators of the enhanced symmetries, which allow us to evaluate the
number of global forms in a way similar to that described above.

In section 3 we carry out the analysis at genus 2 in significant detail, in order to illustrate
the many new features that arise at g > 1. In section 4 we do a similar, somewhat abridged,
analysis for genus g = 3, 4, and 5. Finally in section 5, we give a higher-dimensional
perspective on all of the above results, including a geometric origin of the topological
boundary conditions and condensation defects of the 5d SymTFT.

10Previous works studying global variants and invertible symmetries of class S theories include [94, 113–116].

– 9 –



J
H
E
P
0
5
(
2
0
2
3
)
2
2
5

For the reader’s convenience, we also include four appendices. In appendix A we give
explicit matrix representations for the generators of all enhanced symmetries for genus 2
Riemann surfaces. In appendix B we review various arithmetic facts that are necessary for
determining when a global form is invariant under an enhanced symmetry. In appendix C,
we review some basic facts about handlebodies necessary for understanding the passage
from the 6d-7d system to the 4d-5d system. Finally in appendix D we give an alternative
form for the condensation defects CF (X4), first introduced in section 5.4, implementing
automorphism symmetries of the 5d TFT.

2 Non-invertible symmetries for class S theories

The main goal of this work is to identify the spectrum of invertible versus non-invertible
symmetries in certain theories of class S. To introduce our notations we begin with a brief
review of the class S construction.

2.1 A review of class S

The class S construction begins with a 6d (2,0) theory of type g ∈ {a, d, e} on a closed,
compact six-manifold X6, which is reduced on a genus g Riemann surface with n punctures
Σg,n to obtain a four-dimensional theory on X4 ⊂ X6. Despite naive expectations, the
four-dimensional theories obtained in this way depend on more data than just the Riemann
surface Σg,n and the algebra g. The origin of this additional data lies in the fact that the 6d
(2,0) theory is not itself a well-defined theory (at least not for the cases of g = ap−1, which
will be the focus of this work), but rather a relative theory [109, 110]. This means that the
6d (2,0) theory should be thought of as living on the boundary of a non-trivial bulk TQFT
on a seven-manifold W7 with ∂W7 = X6. This seven-dimensional TQFT was identified as a
certain Wu-Chern-Simons theory in [111]. The basic setup is illustrated in figure 3.

In this picture, the 6d (2,0) theory is identified with a state |aN−1〉 in the Hilbert space
of the bulk TQFT. In order to specify this state, one must first fix a basis for the Hilbert
space, which is specified by a maximal isotropic sublattice L ∈ H3(X6,ZN ) [113]; details
will be given in section 5.1. For the present purposes it suffices to say that a maximal
isotropic sublattice is a maximal set of M3 ∈ H3(X6,ZN ) such that

〈M3,M
′
3〉 = 0 , M3,M

′
3 ∈ L , (2.1)

where 〈·, ·〉 is the standard intersection pairing of 3-cycles in 6d.
In the context of class S, we are interested in six-manifolds of the form X6 = Σg,n×X4.

In this case the group H3(X6,ZN ) splits via the Künneth formula,

H3(X6,ZN ) ∼= H1(Σg,n,ZN )⊗H2(X4,ZN ) , (2.2)

subject to the additional assumption (which we will make throughout) that H1,3(X4,Z) are
trivial. There is an analogous splitting of the maximal isotropic sublattice L as

L = L⊗H2(X4,ZN ) , L ⊂ H1(Σg,n,ZN ) . (2.3)
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|aN−1〉

7d TQFT

Figure 3. The 6d (2,0) theory of type aN−1 should be thought of as a state |aN−1〉 in the Hilbert
space of a non-trivial 7d TQFT. This TQFT does not admit topological boundary conditions.

We will likewise split M3 ∈ H3(X6,ZN ) into elements γ ∈ H1(Σg,n,ZN ) and M2 ∈
H2(X4,ZN ) via M3 = γ ⊗ M2, on which the 6d intersection pairing decomposes as a
product

〈M3,M
′
3〉 = 〈γ, γ′〉 × (M2,M

′
2) . (2.4)

Here the pairing 〈γ, γ′〉 is the usual (antisymmetric) intersection pairing between 1-cocycles
on Σg,n, whereas (M2,M

′
2) is a symmetric pairing between 2-cocycles in four dimensions.

As first discussed in [113], in order to specify the four-dimensional theory we must
specify not only the Riemann surface Σg,n on which we compactify, but also a lattice
L ∈ H1(Σg,n,ZN ). This corresponds to the specification of the particular charge lattice of the
four-dimensional theory. Without specifying L, the four-dimensional theory remains relative.

Furthermore, to fully specify the 4d theory we should also specify a particular repre-
sentative of the non-trivial classes of L⊥ ⊗H2(X4,ZN ), with L⊥ := H1(Σg,n,ZN )/L. The
choice of representatives in L⊥ determines the SPT phases with which the 4d theory is
stacked, while the choice of elements in H2(X4,ZN ) determines the background fields for
the corresponding one-form symmetries. In total, we will denote the representative by B.
The geometric origin of this extra data will be explained in section 5.

The well-defined four-dimensional theory obtained by specifying the above additional
data will be denoted by T N,g,nL [Ω,B] where Ω is the period matrix of Σg,n, capturing the
coupling constants of the theory. The argument B collectively represents the data about
background fields for the one-form symmetries of the theory, and will be suppressed unless
important to the discussion. When we want to discuss the class S theory without specifying
the global variant (the analog of N = 4 su(N) SYM) then we will drop the L subscript and
write T N,g,n[Ω].

Let us briefly review the example of the a1 6d (2,0) theory on Σ2,0 = T 2. It is well-
known that this gives 4d N = 4 a1 super-Yang Mills. Taking the homology of the torus to
be spanned by the usual A and B cycles,

H1(T 2,Z2) = {1, A, B, A + B} , 〈A,B〉 = 1 (2.5)

we identify three maximal isotropic sublattices,

LA = {1, A} , LB = {1, B} , LA+B = {1, A + B} . (2.6)
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From this we expect three distinct charge lattices for the 4d theory, which we denoted in
the introduction by

LA ↔ SU(2) , LB ↔ SO(3)+ , LA+B ↔ SO(3)− . (2.7)

The data about invertible phases is then given by specifying a representative for the non-
trivial class of L⊥. For example, we have L⊥A = {[1], [B]}, where the class [1] := {1,A} and
[B] := {B,B + A}, and the SPT phase is specified by choosing the particular representative
B (giving SU(2)0) or B + A (giving SU(2)1).

One of the main utilities of the 6d point of view is that it is now easy to see how the
global variants map into one another under Montonen-Olive duality transformations of
the 4d N = 4 theory. Indeed, the Montonen-Olive duality group is realized in the class
S construction as the modular group SL(2,Z) of the Riemann surface T 2, which can be
generated by operations T and S acting on the elements of H1(T 2,Zp) via,

T : A→ A , S : A→ B ,
B→ A + B B→ −A . (2.8)

Alternatively, when realized on the vector (B,A)T , these take the form of matrices

T =
(

1 1
0 1

)
, S =

(
0 −1
1 0

)
. (2.9)

We thus see that the S operation exchanges LA and LB, and hence the SU(2) and SO(3)+
charge lattices, whereas it leaves LA+B, and hence the SO(3)− charge lattice, unchanged.
On the other hand, T leaves the SU(2) charge lattice unchanged, whereas it exchanges the
SO(3)+ and SO(3)− charge lattices. Tracking the action of S and T on the representatives
of L⊥ allows us to reproduce the results in figure 2.

2.2 Non-invertible symmetries and the modular group

We may now generalize the construction of non-invertible symmetries in 4d N = 4 theories,
reviewed in the introduction and figure 1, to arbitrary class S theories T p,g,nL [Ω]. Our
starting point will be the application of an element F of the relevant modular group
Mod(Σg,n, p). For the case of no punctures, i.e. n = 0, this is Mod(Σg,0, p) = Sp(2g,Zp).
An element of the modular group will in general act on L and Ω, but will never act on
p, g, or n. Having done a modular transformation, the next step is to do an appropriate
topological operation G := G(σ, τ), to be explained below, which acts on L but not on Ω.
The situation is then as in figure 4.

In order to have a non-invertible symmetry, we require the existence of a solution to
the following equations

GF (L) = L , F (Ω) = Ω . (2.10)

The second equation is conceptually straightforward, and amounts to identifying the fixed
points of the modular group. The former instructs us to look for a topological manipulation
G which can undo the action of F on the global variant L. We distinguish between three
conceptually distinct cases:
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T N,g,nL [Ω] T N,g,nF (L) [F (Ω)] T N,g,nGF (L)[F (Ω)]

F G

⇒
T N,g,nL [Ω] T N,g,nGF (L)[F (Ω)]

NF

Figure 4. When GF (L) = L and F (Ω) = Ω admit solutions, then the composite NF := FG gives
a non-invertible symmetry of the class S theory.

• F (L) = L and G trivial: in this case the symmetry is invertible and non-anomalous.11

• F (L) = L and G(L) = L with G non-trivial: in this case F again corresponds to an
invertible symmetry, but the partition function transforms by a counterterm which is
removed by G. In other words, F is invertible and anomalous.

• F (L) 6= L: in this case the symmetry is non-invertible. There are two subcases:

– When F (L) 6= L, but there exists at least one L′ ∈ H1(Σg,n,ZN ) such that
F (L′) = L′, then the symmetry is non-intrinsically non-invertible.

– When F (L) 6= L, and there is no L′ ∈ H1(Σg,n,ZN ) such that F (L′) = L′, then
the symmetry is intrinsically non-invertible.

The constraints in (2.10) were already discussed in detail in the case of (g, n) = (1, 0)
in the introduction. In that case, we observed that for N = p prime, given an F and Ω
satisfying F (Ω) = Ω, there always existed a G which could undo the action of F on any
global variant L. Hence any such F automatically gave a symmetry, regardless of the global
form, with the (non-)invertibility stemming from whether G contained discrete gaugings σ.
We will now see that this is again the case for class S theories of type T p,g,0L [Ω]. The first
step in showing this is to understand the spectrum of global variants of theories of class S.

2.3 Global variants of theories of class S

We restrict to the case of N = p prime and no punctures n = 0, and denote the generators
of H1(Σg,0,Zp) as AI and BI for I = 1, . . . , g, with intersection pairing

〈AI ,AJ〉 = 〈BI ,BJ〉 = 0 , 〈AI ,BJ〉 = δIJ . (2.11)

This intersection pairing is preserved by matrices F acting as(
~B
~A

)
→ F

(
~B
~A

)
(2.12)

11Here we are referring to mixed anomalies between F and the one-form symmetry; there could still be
self-anomalies of F , along the lines of [123–125].
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as long as the matrices satisfy

F TIF = I , I =
(

0 −1g×g
1g×g 0

)
. (2.13)

The matrices F should have integer entries so that they map properly normalized cycles
amongst themselves, and hence the F are matrices in Sp(2g,Z).

It will be useful for us to assign to each element AI and BI a 2g-vector,

vB1 =
(

1
02g−1

)
, vB2 =

 0
1

02g−2

 , . . . , vBg =

0g−1
1
0g

 ,

vA1 =

 0g
1

0g−1

 , vA2 =

0g+1
1

0g−2

 , . . . , vAg =
(

02g−1
1

)
,

where 0n represents an array of n copies of 0. Likewise vmAI+nBJ = mvAI +n vBJ . In terms
of these vectors the intersection pairing may then be represented as

〈AI ,BJ〉 = vTAI I vBJ . (2.14)

A maximal isotropic sublattice L is spanned by precisely half of the above generators,
i.e. g distinct elements γi for i = 1, . . . , g. We may then unambiguously label such an L by a
2g× g matrix whose g columns are the 2g-vectors corresponding to each of the generators of
the lattice. We denote this 2g× g matrix by KL = (vγ1 , . . . , vγg). Similarly, the background
gauge-field is specified by a representative B of L⊥ ⊗H2(X4,Zp), which can be labelled
by a 2g × g matrix KB, where now the coefficients of the vector take values in H2(X4,Zp).
Given a particular global variant, specified by L and the representative of L⊥⊗H2(X4,Zp),
we may assign to it a 2g × 2g matrix,

ML,B := (KL KB) . (2.15)

A useful fact is that the matrices obtained in this way are elements of Sp(2g,Zp).
Indeed, denoting the generators of L⊥ by γi+g for i = 1, . . . , g, we have

MT
L,B IML,B =

(
KT
L

KT
B

)
I (KL KB) =


vTγ1Ivγ1 . . . vTγ1Ivγ2g

. . .
vTγ2gIvγ1 . . . v

T
γ2gIvγ2g

 = I , (2.16)

where in the last step we have used the presentation of the intersection pairing in (2.14),
together with isotropicity and maximality of L.

Conversely, every element of Sp(2g,Zp) defines a global variant. However, not all
matrices denote distinct global variants. Given a lattice L spanned by g elements γi for
i = 1, . . . , g, it is clear that linear transformations of these elements give rise to equivalent
bases for L. Similar statements hold for L⊥, which is spanned by γi+g for i = 1, . . . , g. In
contrast, transformations which mix the generators of L and L⊥ change the global form,
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and do not give redundancies. The total set of redundancies is then given by block diagonal
matrices

(
Q 0
0 Q′

)
acting on (γ1, . . . , γ2g)T . By linearity of the labels vγ , these matrices act

in the same way on vγ , and hence we have the identification under right-multiplication

ML,B ∼= ML,B

(
Q 0
0 Q′

)
. (2.17)

Importantly, the matrices Q and Q′ appearing here are actually not independent — instead,
Q and Q′ are constrained to satisfy Q′QT = 1g×g such that the resulting matrix is symplectic.
We conclude that each redundancy is given by a single element in GL(g,Zp).

In summary, we expect that the total number of global variants of type ap−1 class S on
Σg,0 is

d(g, p) := |Sp(2g,Zp)|
|GL(g,Zp)|

. (2.18)

In the particular case of g = 1, this reduces to d(g, 1) = |SL(2,Zp)|/|Z×p | = p(p + 1),
reproducing the result in (1.7). More generally, we have

d(g, p) = pg
2

g∏
m=1

p2m − 1
pg − pm−1 = p

1
2g(g+1)

g∏
m=1

(pm + 1) , (2.19)

where the first equality follows from the known formulas for the orders of the finite groups,
and the second equality follows from some elementary algebra. This formula admits a simple
physical interpretation: the factor ∏g

m=1(pm + 1) counts the number of maximal isotropic
sublattices of H1(Σg,0,ZN ), while the factor p 1

2g(g+1) counts the number of invertible phases
that can be stacked with the four-dimensional theory.12

2.3.1 An example

Let us give a concrete example before moving on. Consider the case of (g, p) = (2, 2).
We may begin by considering the maximally isotropic lattice L = span{A1,A2}. The
corresponding 4× 2 matrix KL is then

KL = (vA1 vA2) =
(

0 0 1 0
0 0 0 1

)T
. (2.20)

The orthogonal lattice L⊥ = H1(Σ2,0,Zp)/L admits four explicit choices of basis vectors,
{B1,B2}, {B1 + A1,B2}, {B1,B2 + A2}, and {B1 + A1,B2 + A2}, with respective matrices
KB given by

KB =
(

1 0 0 0
0 1 0 0

)T
,

(
1 0 1 0
0 1 0 0

)T
,

(
1 0 0 0
0 1 0 1

)T
,

(
1 0 1 0
0 1 0 1

)T
. (2.21)

12The latter follows from noting that all SPT phases are of the type
∫
Bi ∪Bj , with i, j = 1, . . . , g. There

are 1
2g(g + 1) distinct combinations, and we can allow for between 0 and p− 1 copies of each.
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The four corresponding global variants are thus labelled by the following 4× 4 matrices,

ML,B =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1

 ,


0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

 , (2.22)

each of which is easily confirmed to be an element of Sp(4,Z2). A similar exercise can be
done for the remaining choices of L.

Of course, we are always free to change our choice of bases such that e.g. L =
span{A1 + A2,A2} instead of span{A1,A2}, and this should not change the global form. On
the other hand, mixing between elements of L and L⊥ will change the global form. Thus
the redundancy in the 4× 4 matrices given above is by right-multiplication

ML,B ∼= ML,B

(
Q 0
0 Q′

)
(2.23)

with Q and Q′ both 2 × 2 matrices in GL(2,Z2). Requiring that the matrix is always
symplectic fixes Q′ in terms of Q, as discussed above.

We note in closing that in our notation, for all (g, p) the global form with L =
span{B1, . . . ,Bg} and L⊥ = span{A1, . . . ,Ag} is assigned the identity matrix in Sp(2g,Zp).

2.4 Modular orbits of global variants

In the previous subsection, we showed how to assign to each T p,g,0[Ω] a distinct matrix in
Sp(2g,Zp)/GL(g,Zp). The action of the modular group Sp(2g,Zp) on the global variants
follows from this definition. Indeed, recall that any F ∈ Sp(2g,Zp) acts as in (2.12), namely
via left-multiplication

F :
(
~B
~A

)
7→ F

(
~B
~A

)
. (2.24)

On the other hand, the vectors vAI , vBI transform like a basis of charge vectors for the
one-cycles, that is13

F : (v~B , v~A) 7→ F T (v~B , v~A) . (2.25)

This means that by construction modular transformations act via left-multiplication by F T
on the matrix ML,B labelling the global form. By transitivity of Sp(2g,Zp), we see that
every global variant must be connected to every other via modular transformations — i.e.
there are no disconnected modular orbits.

On the other hand, the topological manipulations G ∈ Sp(2g,Zp) commute with
modular transformations, and act on the global forms from the right. This fact, together
with the fact that the transformations G span Sp(2g,Zp), will be made more apparent in
section 5. Thus in general we have the transformations

ML,B → F TML,BG . (2.26)
13For example, at genus 1 we have T : A 7→ A and vA =

(0
1

)
. In order to obtain the appropriate T transform

of vA, we must take TT vA = ( 1 1
0 1 )T

(0
1

)
= vA, as opposed to TvA = vA + vB.
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From this we may draw two important conclusions:

1. Every global variant can be mapped to every other by the action of both the modular
group and the topological manipulations.

2. Every action F of the modular group can be undone by an appropriate topolog-
ical manipulation G. This is true independent of the global variant ML,B under
consideration.

The problem of identifying (non-)invertible symmetries is thus reduced to the identification
of points of enhanced symmetry for Σg,0.

3 Non-invertible symmetries for genus-2 class S

We now begin our analysis of points of enhanced symmetry for the case of genus 2. For
pedagogy we will work with explicit matrix representations of all group elements here. For
higher genus somewhat more abstract techniques will be required.

3.1 Genus 2 and the modular group Sp(4,Zp)

We work with the basis of H1(Σg,0,Zp) given above, namely {AI ,BI} for I = 1, . . . , g
satisfying (2.11). For general g the first cohomology group of Σg,0 is given by H1(Σg,0,R) =
R2g, and admits a splitting into Dolbeault cohomology groups H1(Σg,0,R) = H(1,0)(Σg,0)⊕
H(0,1)(Σg,0). A canonical basis of H(1,0)(Σg,0,Z) is given by holomorphic (1,0)-forms ωI for
I = 1, . . . , g, with periods normalized as∮

AI
ωJ = δIJ . (3.1)

In terms of these forms we may define the period matrix Ω of Σg,0,∮
BI
ωJ = ΩIJ . (3.2)

The matrices F ∈ Sp(2g,Z) then act on Ω as

F : Ω 7→ (AΩ +B)(CΩ +D)−1 , F =
(
A B

C D

)
. (3.3)

At genus 2, the period matrix is a 2× 2 matrix

Ω =
(
τ1 τ2
τ2 τ3

)
, det(Im(τi)) > 0 , Tr(Im(τi)) > 0 . (3.4)

Note that the limit of τ2 → 0 is a degeneration limit in which the genus-2 Riemann surface
splits into two genus-1 Riemann surfaces with complex structure moduli τ1 and τ3. Indeed,
we have an embedding of the corresponding modular groups SL(2,Z)× SL(2,Z) ⊂ Sp(4,Z).

Each value of the period matrix Ω corresponds to a certain choice of couplings for
the corresponding four-dimensional class S theory, and in certain limits one may have a
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Figure 5. Two weakly-coupled limits for class S on Σ2,0, with the corresponding generalized quivers.
The trivalent junctions represent Tp theories, while the circle represent ap−1 gauge nodes.

Lagrangian description of the theory as a (generalized) quiver theory, as shown in figure 5.
In the separating limit mentioned in the previous paragraph, in which e.g. the tube in the
top left side of figure 5 is stretched infinitesimally thin and infinitely long, one retrieves
two copies of the appropriate ap−1 N = 4 theory, which have the non-invertible symmetries
studied in [35]. More generally, the points at which non-invertible symmetries arise will be
strongly-coupled and non-Lagrangian.

For the purposes of this section it will be useful to have an explicit matrix representation
of the modular group Sp(4,Z), which is given by

Sp(4,Z) = 〈T1, T2, S12, W 〉 , (3.5)

in terms of the following four generators,

T1 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

, T2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

, S12 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

, W =


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 .
These generators act on the basis of one-cycles as,

T1


B1
B2
A1
A2

 =


B1 + A1

B2
A1
A2

 , T2


B1
B2
A1
A2

 =


B1

B2 + A2
A1
A2

 , S12


B1
B2
A1
A2

 =


A1
A2
−B1
−B2

 ,

W


B1
B2
A1
A2

 =


B1 + A2
B2 + A1

A1
A2

 . (3.6)

We see that T1 and T2 act as separate T transformations on the two sub-tori, whereas
S12 acts as a simultaneous S transformation on both tori. The W transformation is an
intrinsically genus-2 transformation.
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Order Subgroup Generators Ω

10 Z10 φ
(

ε ε+ε−2

ε+ε−2 −ε−1

)
24 (Z2 × Z6) o Z2 M1,M2,M3

i√
3( 2 1

1 2 )

Z12 × Z2 C,M4
(
ρ 0
0 i

)
32 (Z4 × Z4) o Z2 M5,M6,M7

(
i 0
0 i

)
48 GL(2, 3) M7,M8

1
3

(
1+2i

√
2 −1+i

√
2

−1+i
√

2 1+2i
√

2

)
72 Z3 × (Z6 × Z2) o Z2 M7,M9,M10

(
ρ 0
0 ρ

)
Table 2. Singular moduli of Sp(4,Z) occurring at isolated values of Ω. Here we have defined
ρ := e

2πi
3 and ε := e

2πi
5 .

3.2 Fixed points of Sp(4,Z)

With an explicit basis of generators for Sp(4,Z), we may now search for elements admitting
fixed points in their action on Ω. As one might have anticipated, these results have already
been obtained in the mathematics literature [117–119]; here we simply quote them. There
are two qualitatively distinct classes of fixed loci:

Isolated loci. The first type of fixed loci are those of dimension zero, i.e. isolated fixed
points. This is the only case which occurred at genus 1, where the fixed loci were the
isolated points τYM = i and e 2πi

3 . The list of all such isolated fixed points, together with the
stabilizing subgroup of Sp(4,Z), are collected in table 2. An explicit matrix representation
for the generators φ, C, and Mi for i = 1, . . . , 10 is given in appendix A.14

Let us make some comments about these fixed points. First, the fixed points at
Ω =

(
ρ 0
0 i

)
,
(
i 0
0 i

)
, and

(
ρ 0
0 ρ

)
correspond to degeneration limits of the genus-2 Riemann

surface. The (non-)invertible symmetries corresponding to these points are the same as those
discussed in the introduction up to an additional symmetry corresponding to permutation
of the two genus-1 Riemann surfaces. In particular, the question of intrinsic versus non-
intrinsic invertibility as a function of the prime p is the same as before. Thus we do not
discuss these cases here.

The remaining three fixed points are intrinsically genus 2. The first fixed point is
Ω =

(
ε ε+ε−2

ε+ε−2 −ε−1

)
with ε = e

2πi
5 , which leads to an enhanced Z10 symmetry of the

Riemann surface. This is the direct analog of the Z6 symmetry at τYM = e
2πi

3 at genus-
1.15 Similarly at Ω = i√

3( 2 1
1 2 ) we have an enhanced (Z2 × Z6) o Z2 symmetry, and at

Ω = 1
3

(
1+2i

√
2 −1+i

√
2

−1+i
√

2 1+2i
√

2

)
an enhanced GL(2, 3) symmetry. The latter is in fact the most

symmetric (connected) genus-2 Riemann surface, known as the Bolza surface.
We should point out here that unlike for 4d N = 4 SYM, the enhanced symmetries can

now be non-Abelian. This can give rise to non-Abelian fusion rules involving non-invertible
14Note that the same results can be found in [126].
15More generally, for every genus g there is an isolated point at which there is an enhanced Z4g+2 symmetry.
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Order Subgroup Generators Ω
8 Z2 × Z4 C,N1

(
i 0
0 τ3

)
D8 M7, N2

(
τ1

1
2

1
2 τ1

)
D8 M7, N3

(
τ1 0
0 τ1

)
12 Z2 × Z6 C,N4

(
ρ 0
0 τ3

)
D12 N5, N6

(
τ1

1
2 τ1

1
2 τ1 τ1

)
Table 3. Singular moduli of Sp(4,Z) occurring along complex one-dimensional loci.

Order Subgroup Generators Ω

4 Z2 × Z2 C,P1
(
τ1 0
0 τ3

)
Z2 × Z2 C,M7 ( τ1 τ2

τ2 τ1 )

Table 4. Singular moduli of Sp(4,Z) occurring along complex two-dimensional loci.

defects, as will be discussed further in section 5.4. Note that while non-Abelian non-
invertible fusion rules were identified previously for triality defects in [29], the non-Abelian
fusion rules here are of a slightly different nature: in particular, the fusion rules continue to
be non-Abelian even modulo condensation defects. In the language of [34], the fusion rules
are non-Abelian even at the level of local fusion.

Extended loci. Unlike for genus 1, at higher genus there can also be entire loci of fixed
points. At genus 2, these can be of complex dimension 1 or 2. We list the former in table 3,
and the latter in table 4. Of these, the ones at Ω =

(
i 0
0 τ3

)
,
(
τ1 0
0 τ1

)
,
(
ρ 0
0 τ3

)
, and

(
τ1 0
0 τ3

)
correspond to degeneration limits, and will not be discussed further. Let us now comment
on the remaining fixed loci.

First there are two loci of complex dimension one Ω =
(
τ1

1
2

1
2 τ1

)
and

(
τ1

1
2 τ1

1
2 τ1 τ1

)
which

have enhanced symmetries that are respectively D8 and D12. Second, there is a complex
dimension two locus Ω = ( τ1 τ2

τ2 τ1 ) with an enhanced Z2×Z2 symmetry. Note that the existence
of such loci suggests the possibility of having continuous families of theories, parameterized
by either 1 or 2 complex couplings, all of which have non-invertible symmetries. This is in
contrast to the case of 4d N = 4, for which the non-invertible symmetries only emerged at
isolated points τYM = i and e 2πi

3 .

3.3 Invariant global forms

By the results of section 2.3, we know that each geometric symmetry F gives rise to a
symmetry of T p,2,0L [Ω], regardless of the choice of global variant L. Depending on L, the
topological manipulation G which is required to undo the action of F on L may involve a
discrete gauging, and hence may give rise to a non-invertible symmetry. Indeed, this is the
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generic situation. What remains is only the question of whether the non-invertible symme-
tries are intrinsic or not. We now answer this question. We warn that the following analysis
is somewhat technical; the reader only interested in the answer can refer to tables 5 and 6.

To answer the question of intrinsic non-invertibility, we search for global forms which
are invariant under F . The existence of such global forms will depend delicately on the
value of p. For an invariant global form ML,B to exist, we must have

F TML,B = ML,B P χ(τ) , P =
(
Q 0
0 Q′

)
, (3.7)

where Q and Q′ are elements of GL(2,Zp) and the matrix Q′ is completely determined
in terms of Q by the equation Q′QT = 1g×g, as explained around (2.17). The reason for
allowing the matrix P on the right-hand side is that ML,B is, in the first place, defined only
up to such transformations. The term χ(τ) is a topological manipulation involving only
invertible τ operations (and potentially automorphisms of the one-form symmetry), which
captures ‘t Hooft anomalies of the invertible symmetry. As in the genus-1 analysis in the
introduction, we will set the background fields to zero, which will allow us to drop the χ(τ)
operation and reduce ML,B to the 2g × g matrix KL. We thus aim to solve

F TKL = KLQ , Q ∈ GL(g,Zp) . (3.8)

The question is now whether any solution to this equation exists. For genus-1, the corre-
sponding equation was a standard eigenvalue equation (1.12), and we could understand
the existence of solutions by simply trying to solve the characteristic polynomial modulo p.
The current case is somewhat more involved.

Given a matrix Q over an algebraically closed field (such as C) we may always do a
similarity transformation to put Q in Jordan normal form, i.e. Q = B−1JB. A matrix J in
Jordan normal form is a block diagonal matrix ⊕i Ji where each block Ji has the form

Ji =



λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0

...
0 0 . . . 0 λi


, (3.9)

i.e. it is an upper-triangular matrix with a single number λi on the diagonal and ones on
the superdiagonal. For the case of Q being a 2× 2 matrix, there are two possible Jordan
decompositions,

J =
(
λ1 0
0 λ2

)
,

(
λ1 1
0 λ1

)
. (3.10)

In the current case we are concerned with Q defined over the finite field Zp, which in
general is not algebraically closed. However, by lifting to the splitting field Zp[λi], it is
again always possible to put Q in Jordan normal form (of course, if the λi are all valued in
Zp, then the splitting is possible in Zp itself). We may thus write

Q = B−1JB , Q ∈ GL(g,Zp) , B, J ∈ GL(g,Zp[λi]) . (3.11)
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In order for Q to be an element of GL(g,Zp), we require det(Q) = det(B−1JB) = det(J) ∈
Z×p . Thus even though the entries of J may not in general be valued in Z×p , the product of
the diagonal entries must be valued in Z×p .

The quantities λi above are related to the modular transformation F as follows. We
begin by rewriting (3.8) as

F T K̃L = K̃LJ , K̃L := KLB
−1 . (3.12)

Writing K̃L = (ṽ1, ṽ2) at genus 2, we then have

F T (ṽ1, ṽ2) = (λ1ṽ1, λ2ṽ2) , F T (ṽ1, ṽ2) = (λ1ṽ1, ṽ1 + λ1ṽ2) (3.13)

for the two choices of J in (3.10). Either way, this tells us that all λi must be eigenvalues
of F .

A further simplifying feature is that F is always the generator of a finite group, meaning
that F k = 1 for appropriate k. In the case that J is diagonal, this tells us that

(ṽ1, ṽ2) = (F T )k (ṽ1, ṽ2) = (λk1 ṽ1, λ
k
2 ṽ2) (3.14)

and hence that the λi must be k-th roots of unity. On the other hand, if J is a non-trivial
Jordan block, this tells us that

(ṽ1, ṽ2) = (F T )k (ṽ1, ṽ2) = (λk1 ṽ1, λ
k
1 ṽ2 + kλk−1

1 v1) (3.15)

The first equation in this pair would imply λk1 = 1, upon which the second would imply
that kλk−1

1 v1 = 0 mod p. Since neither λ1 or v1 can be trivial, we conclude that having a
non-trivial Jordan block is only possible if p|k.

Once we have identified a J satisfying the above properties, it is guaranteed that there
will exist a matrix KL with coefficients in Zp satisfying (3.8) — this follows since the entries
of KL satisfy a set of linear equations with coefficients in Zp, which always admit solutions
in Zp. However, it is not clear that the matrices obtained in this way will have columns
spanning an isotropic sublattice. For KL to correspond to a legitimate global form, we must
verify this. Here it is useful to note two facts:

1. If we write KL = (v1, v2) and K̃L = (ṽ1, ṽ2), then the vectors v1, v2 span an isotropic
subspace if and only if ṽ1, ṽ2 do. To prove e.g. the forward direction, we assume that
KL is isotropic, i.e.

KT
LIKL = 02×2 , (3.16)

which then implies that

K̃T
LIK̃L = (KLB

−1)TIKLB
−1 = (B−1)TKT

LIKLB
−1 = 02×2 . (3.17)

The reverse direction follows analogously.

2. Let v1, v2 be two eigenvectors of F with eigenvalues λ1, λ2. Since F is symplectic we
have

vT2 Iv1 = vT2 F
TIFv1 = (Fv2)TIFv1 = λ1λ2v

T
2 Iv1 , (3.18)

or in other words (λ2λ1 − 1)vT2 Iv1 = 0 mod p. This means that the span of v1 and v2
is necessarily isotropic unless λ1λ2 = 1 mod p.

– 22 –



J
H
E
P
0
5
(
2
0
2
3
)
2
2
5

Using these two facts, we will be able to identify the solutions KL corresponding to legitimate
global forms.

To summarize the discussion above, in order to identify invariant global forms we begin
by identifying the eigenvalues of F , which is done by solving the characteristic equation.
Not all of the eigenvalues will be elements of Z×p . We choose pairs of eigenvalues which
are conjugates (i.e. such that λ1λ2 ∈ Z×p or λ2

1 ∈ Z×p ) and construct all possible J , subject
to the constraint that J can only have non-trivial Jordan blocks if p divides the order of
F . Each such J will give rise to a generalized eigenvalue equation as in (3.8). There will
always exist a matrix KL with coefficients in Zp satisfying this equation, but to ensure
that this matrix corresponds to a legitimate global form we must check that its columns
span an isotropic sublattices. This may equivalently be done by checking isotropicity of the
solutions K̃L to (3.12).

We now apply this procedure for each of the symmetries mentioned above.

Z10. We begin by asking if there exist global forms invariant under the generator φ of the
Z10 symmetry. An explicit matrix form for φ is given in appendix A, from which we obtain
the characteristic equation,

det(φ− λ14×4) = λ4 − λ3 + λ2 − λ+ 1 = 0 mod p . (3.19)

We begin by giving two representative examples before presenting the general solution.
We first consider the case of p = 5, for which the equation above can be rewritten as

λ4 + 4λ3 + 6λ2 + 4λ+ 1 = (λ+ 1)4 = 0 mod p . (3.20)

Thus there exists a single solution λ = −1 mod 5 of multiplicity 4. Since 5 divides the order
|φ| = 10, we are allowed to have a non-trivial Jordan block, and hence the possible choices
for J are

J =
(
−1 0
0 −1

)
,

(
−1 1
0 −1

)
. (3.21)

The determinant of J is automatically in Z×5 since the diagonal entries are. The most general
matrices K̃L satisfying (3.12) for these J are then found to be (up to linear transformations
on the columns),

K̃L =


3 3
1 1
1 1
1 1

 ,


3 3
1 1
1 0
1 4

 , (3.22)

respectively. In the first case, we see that the two columns are identical, and will not span a
maximal sublattice. Hence this does not correspond to a legitimate label for a global form.
In the second case, the two columns are linearly independent, but we must check that they
span an isotropic sublattice, i.e. K̃LIK̃L = 0. One easily confirms that this is the case. We
thus conclude that for p = 5 there is a single global form with an invertible φ symmetry,
labelled by the second matrix in (3.22).
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We next consider p = 11. In this case all four solutions of (3.19) are in Z11, and are
given by

λ = 2, 6, 7, 8 . (3.23)

Because 11 - 10, no non-trivial Jordan blocks are allowed, so there are 6 possible J ,16

J = diag(2, 6), diag(2, 7), diag(2, 8), diag(6, 7), diag(6, 8), diag(7, 8) . (3.24)

The determinant of J is automatically in Z×11 since the diagonal entries are. The corre-
sponding matrices K̃L satisfying (3.12) are found to be

K̃L =


1 5
3 4
5 9
1 1

 ,


1 6
3 9
5 3
1 1

 ,


1 7
3 5
5 4
1 1

 ,


5 6
4 9
9 3
1 1

 ,


5 7
4 5
9 4
1 1

 ,


6 7
9 5
3 4
1 1

 . (3.25)

We must now check which of these has columns spanning an isotropic sublattice, i.e.
K̃T
LIK̃L = 0. As mentioned above, isotropicity is automatic if the eigenvalues of J are not in-

verses, and in the current case we have 6 = 2−1 mod 11 and 8 = 7−1 mod 11. So we need only
check the first and last matrices above, in which case we find K̃T

LIK̃L = 6, 4 mod 11 respec-
tively. We see that these cases are not isotropic, and do not correspond to legitimate global
forms. We conclude that for p = 11 there are four global forms with an invertible φ symmetry.

Having given two explicit examples, we now turn to generic p. We first look for the
number of solutions in Z×p to the characteristic equation. The number of such solutions
turns out to be

# solutions =


1 p = 5
4 p ∈ 10N + 1
0 otherwise

. (3.26)

For generic p ∈ 10N + 1, we see that all four solutions {λ1, . . . , λ4} are in Z×p . One can
furthermore show that these come in inverse pairs, say λ2 = λ−1

1 and λ4 = λ−1
3 . Because

(10N + 1) - 10, it is not possible to have non-trivial Jordan blocks, so there are six choices
for J , namely

J = diag(λi, λj) , 1 ≤ i < j ≤ 4 , (3.27)

all of which have determinant in Z×p since the diagonal entries are in Z×p . The corresponding
matrices K̃L satisfying (3.12) are

K̃L =


p+ λi − 1 p+ λj − 1
(p− 1)λ3

i (p− 1)λ3
j

p− 1 + λi + (p− 1)λ2
i + λ3

i p− 1 + λj + (p− 1)λ2
j + λ3

j

1 1

 . (3.28)

What remains is to check that the columns span an isotropic sublattice. This is automatically
the case if λi and λj are not modular inverses (which is four of the six cases), but must be

16We neglect cases where J is proportional to the identity, since in such cases the columns of K̃L will not
span an isotropic sublattice.
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p 2 3 5 7 11 13 17 19 23 29
φ intrinsic? 3 3 7 3 7 3 3 3 3 3

M1 intrinsic? 7 7 7 7 7 7 7 7 7 7

M2 intrinsic? 7 7 7 7 7 7 7 7 7 7

M3 intrinsic? 7 7 7 7 7 7 7 7 7 7

M7 intrinsic? 7 7 7 7 7 7 7 7 7 7

M8 intrinsic? 7 7 7 3 7 7 7 7 3 7

N2 intrinsic? 7 7 7 7 7 7 7 7 7 7

N5 intrinsic? 7 7 7 7 7 7 7 7 7 7

N6 intrinsic? 7 7 7 7 7 7 7 7 7 7

Table 5. For any p, there are global variants such that the modular transformations in tables 2, 3, 4
give rise to non-invertible symmetries (upon appropriate dressing with topological manipulations
G). We may then ask if these non-invertible symmetries are intrinsic or not. This is answered by
looking for global forms left invariant by the modular transformations. The results are shown for
the first few primes.

checked otherwise. Taking λj = λ−1
i , we find

ṽTi Iṽj = λi(2λi − 1)− λj(2λj − 1) mod p . (3.29)

It is easy to show that the right-hand side can never vanish for λj 6= λi, and hence these
cases do not correspond to legitimate global forms. The remaining four cases do correspond
to legitimate global forms though, and so we conclude that for any p ∈ 10Z + 1 there exist
four global forms with invertible φ symmetry.

We finally turn to the case of p > 5 and p 6∈ 10N + 1. In this case there do not exist
any solutions to the characteristic equation in Z×p . Furthermore, it can be shown that the
product of any two elements which are not inverses of each other does not return an element
of Z×p . Thus there are no J that we can write down with the requisite properties, and hence
no global forms with an invertible φ symmetry. The results so far are summarized in the
first line of table 5.

GL(2, 3). We next consider the case of GL(2, 3). This group is generated by matrices M7
and M8, which are of respective order 2 and 8. The explicit form of the matrices is given in
appendix A, which allows us to compute the relevant characteristic equations

M7 : λ4 − 2λ2 + 1 = 0 mod p , M8 : λ4 + 1 = 0 mod p . (3.30)

These admit the following number of solutions in Z×p ,

M7 : # solutions =
{

1 p = 2
2 otherwise

M8 : # solutions =


1 p = 2
4 p ∈ 8N + 1
0 otherwise
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We begin by analyzing M7. Starting with p = 2, the characterstic equation simplifies to
(λ+1)4 = 0 mod 2 and the only solution is λ = 1. The possibilities for J are J = ( 1 0

0 1 ), ( 1 1
0 1 );

in the first case we have K̃L = ( 1 1 1 1
0 0 1 1 )T , while in the second case we can have either

K̃L = ( 1 1 1 1
0 1 0 1 )T , ( 1 1 0 0

0 1 0 0 )T . It is straightforward to check that K̃T
LIK̃L = 0 mod 2 in all

cases, and hence all correspond to legitimate global forms. Thus for p = 2 there are three
global forms with an invertible M7 symmetry.

Moving on to more general p, there are two solutions λ = ±1 mod p in Z×p . The product
of the remaining two solutions does not give an element in Z×p , so we need not consider
them. Since in general p - 2, there can be no non-trivial Jordan blocks, and the only possible
J are

J = diag(1, 1), diag(1,−1), diag(−1, 1), diag(−1,−1) . (3.31)

The corresponding K̃L take the form

K̃L =


a b

a b

c d

c d

 , a, b, c, d ∈ Zp . (3.32)

Since the eigenvalues are not modular inverses, all such K̃L are isotropic and label legitimate
global forms. In total there are (p+ 1)2 distinct such K̃L, and hence for generic p there are
a total of (p+ 1)2 global forms with an invertible M7 symmetry.

We next turn to M8. The exercise here proceeds in much the same way as before, and
one begins by showing that there is a single global form with invariant M8 symmetry for
p = 2 and four global forms with invariant M8 symmetry for p ∈ 8N + 1. However, we
now encounter a feature that we have not seen in previous examples. In particular, though
there do not exist solutions to the characteristic equation in Z×p for p 6∈ 8N + 1, products of
two of them can give elements of Z×p , and we may use these conjugate pairs to construct
J . Indeed, over C the solutions to the characteristic polynomial are simply λn = e

2πi(2n−1)
8

for n = 1, . . . , 4, and we see in particular that λ1λ4 = λ2λ3 = 1, which is an element in Z×p .
We must thus allow for the following matrices

J = diag
(
e

2πi
8 , e

14πi
8
)
, diag

(
e

6πi
8 , e

10πi
8
)
. (3.33)

Focusing on the first case for instance, we find that the corresponding K̃L is of the form

K̃L =


1 1

1 +
√

2 1 +
√

2
− 1√

2(1− i) − 1√
2(1 + i)

1√
2(1 + i(1 +

√
2)) 1√

2(1− i(1 +
√

2))

 , (3.34)

whose columns satisfy ṽT1 Iṽ2 = 4i(1 +
√

2). We would like this quantity to be zero mod p
so that the columns span an isotropic sublattice, but before that we must first make sense
of what i and i

√
2 even mean in Zp. There are various inequivalent ways to make sense
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p 2 3 5 7 11 13 17 19 23 29
GL(2, 3) intrinsic? 7 7 3 3 7 3 7 7 3 3

(Z2 × Z6) o Z2 intrinsic? 7 7 3 7 3 7 3 7 3 3

D8 intrinsic? 7 7 7 7 7 7 7 7 7 7

D12 intrinsic? 7 7 7 7 7 7 7 7 7 7

Z2 × Z2 intrinsic? 7 7 7 7 7 7 7 7 7 7

Table 6. We call a rank r > 1 group intrinsic if there is no global form such that all generators are
simultaneously invertible. We do allow some of the generators to become invertible, though.

of these quantities: for example, we may demand the existence of elements x and y in Zp
satisfying either

x2 = −1 mod p , y2 = 2 mod p , (3.35)

or
x2 = −1 mod p , y2 = −2 mod p . (3.36)

Considering all of the possibilities and demanding that ṽT1 Iṽ2 = 0 mod p, we find that there
are no invariant global forms if and only if p ∈ 8N+ 7. These results are collected in table 5.

Because the full GL(2, 3) symmetry is generated by both M7 and M8, we can now ask
a somewhat more refined question: are there global forms which are left invariant under
the full GL(2, 3), i.e. under both M7 and M8? We will call the full non-Abelian symmetry
GL(2, 3) intrinsic if there is no global form such that both M7 and M8 are invertible, even
if there are global forms such that one or the other is individually invertible. In order to
understand, for a given p, whether GL(2, 3) is intrinsic or not, we must know more than
just the characteristic equation. Here we turn to a computerized search, which gives the
results in table 6. We see that for e.g. p = 2, 3 there exists a global variant such that the
full GL(2, 3) becomes invertible,17 whereas for p = 5, 7 no such global form exists.

(Z2 × Z6) o Z2. We finally mention the case of (Z2 × Z6) o Z2, which is generated by
the matrices M1,M2, and M3. The characteristic equations of M1 and M2 are identical,
and the characteristic equation for M3 coincides with that for M7 above,

M1,M2 : λ4 + 2λ2 + 1 = 0 mod p ,

M3 : λ4 − 2λ2 + 1 = 0 mod p .
(3.37)

17More concretely, for p = 2 there is one global variant fixed under both M7 and M8,

KL =
(

1 1 0 1
0 0 1 1

)T
,

while for p = 3 there are two global forms fixed by both,

KL =
(

1 0 0 1
0 1 1 0

)T
, KL =

(
1 0 1 1
0 1 1 1

)T
.
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The number of invariant global forms are to be the following

M1,M2 : # invariant forms =
{
p+ 3 p ∈ 4N + 1
p+ 1 otherwise

M3 : # invariant forms =
{

3 p = 2
(p+ 1)2 other p

(3.38)

By an analysis similar to the previous ones, one finds that for all primes p the symmetries
M1, M2, and M3 are non-intrinsic. However, the full group (Z2 × Z6) o Z2 can still be
intrinsic: that is, there exist some primes for which there does not exist a global form
simultaneously invariant under all three of M1, M2, and M3. This is summarized in table 6.

Invertible subspaces, extended loci cases. Having exhaustively analyzed the isolated
fixed loci, we now turn to the extended loci. Since the analysis is similar to the one above,
we will be brief.

D8. We begin with the case of D8 generated by the matrices M7 and N2, given in
appendix A. The generator M7 was analyzed previously in the context of the GL(2, 3)
symmetric point, with the conclusion that it is never intrinsic. As for N2, the characteristic
polynomial is given by

N2 : λ4 + 2λ2 + 1 = 0 mod p , (3.39)

which is the same as for M1 and M2.
The number of invariant global forms is found to be

N2 : # invariant forms =
{
p+ 3 p ∈ 4N + 1
p+ 1 otherwise (3.40)

This is obtained roughly as follows. For p ∈ 4N + 1 the element −1 is a quadratic residue,
meaning that there is an element a ∈ Zp such that a2 = −1. The matrix N2 then has
two distinct eigenvalues λ1,2 = ±a. Let the a eigenspace be spanned by v1, v2 and the −a
eigenspace be spanned by u1, u2. It is guaranteed that vT2 Iv1 = uT2 Iu1 = 0, and furthermore
that the bases can be chosen to satisfy vT1 Iu2 = vT2 Iu1 = 0. We then have the following
isotropic lattices: 〈v1, v2〉, 〈u1, u2〉, 〈v1, u2〉, 〈v2, u1〉 and 〈v1 + kv2, u1 + su2〉, where k ∈ Z×p
and s = −k−1(vT2 Ju2)/(vT1 Ju1). There are thus a total of 4 + (p − 1) = p + 3 invariant
global forms. A similar analysis can be performed for p 6∈ 4N + 1.

We can also ask if there are isotropic sublattices invariant under both M7 and N2. The
simplest way to check this is to start with the sublattices invariant under M7 described
around (3.32), and then to check which (if any) of them are invariant under N2. A simple
computation demonstrates that for p > 2, out of the (p+ 1)2 global forms invariant under
M7, there are p− 2 global forms invariant under the whole D8, while for p = 2 there are
two such forms. Thus the full D8 is never intrinsic.
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D12. We next consider the case of D12, generated by N5 and N6. Both generators have
the same characteristic polynomial:

N5, N6 : λ2 − 2λ2 + 1 = 0 mod p , (3.41)

which has one root for p = 2 (λ = 1) and two different roots for prime p > 2 (λ = ±1). The
number of invariant isotropic sublattices (which is also the same for both N5 and N6) is

N5, N6 : # invariant forms =
{

3 p = 2
(p+ 1)2 otherwise (3.42)

We can again ask if there are global forms invariant with respect to N5 and N6
simultaneously. We find the following

# simult. invariant forms =


2 p = 2
7 p = 3

p+ 1 otherwise
(3.43)

from which we conclude that D12 is never intrinsically non-invertible.

Z2× Z2. Finally we consider the case of the Z2×Z2 symmetry spanned by {C,M7}. The
analysis in this case is particularly simple: we have already seen that M7 fail to be intrinsic
for every value of p, while the generator C is obviously never intrinsic, since it leaves
invariant every isotropic sublattice. The combined symmetry is also obviously non-intrinsic.

4 Intrinsic versus non-intrinsic at higher genus

In the previous section we understood in detail the spectrum of (non-)invertible symmetries
for class S theories of genus 2. We now turn to higher genus theories. The special points in
moduli space have been classified up to genus 5 [121, 122], and many examples are known
at higher genera. Our discussion here will not be as exhaustive as before, and will instead
focus on cyclic subgroups of enhanced symmetries.

In the references [121, 122], the stabilizer subgroups at the special points of moduli
space are realized as subgroups of GL(g,C) acting on holomorphic one-forms. Given such a
matrix U = A+ iB with A and B real, we can construct a 2g × 2g matrix

M =
(
A −B
B A

)
. (4.1)

For stabilizer subgroups this matrix is real symplectic, and moreover is similar to an integer
symplectic matrix F . It is this integer matrix which we will analyze.

We warn the reader that the content of this section is rather technical, and the
arithmetically-averse reader may wish to skip directly to section 5. For such readers, let us
simply note here that the content of this section translates to an answer to the following
physical question. Given a (Z(2)

p )⊗2g gauge theory in (4 + 1)d, there is an Sp(2g,Zp) zero-
form symmetry acting via outer automorphisms, and we may gauge certain subgroups of this
symmetry. In general, the result will not be another gauge theory, even for a higher-group
symmetry. The results of this section tell us, for g ≤ 5, when the result is a gauge theory:
namely, this happens whenever there is a non-zero entry in tables 7, 8, or 9.
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4.1 Characteristic polynomials of modular matrices

We start by introducing some relevant machinery. Consider elements F ∈ Sp(2g,Z) leaving
some point in moduli space fixed. Such elements are always of finite order. This implies that
as complex matrices the F are diagonalizable, and moreover that their eigenvalues are k-th
roots of unity. These two facts together mean that the characteristic polynomials PF (x) are
products of cyclotomic polynomials φi(x) with total degree 2g; see appendices B.1 and B.2
for a detailed discussion. Since cyclotomic polynomials of a given degree are limited, there
are relatively few characteristic polynomials at a given genus.

As an example, consider the case of genus 1, for which we are interested in products of
cyclotomic polynomials of total degree 2. There are two possible reducible characteristic
polynomials:

φ1(x)2 = (x− 1)2 = P1(x) φ2(x)2 = (x+ 1)2 = P−1(x) , (4.2)

which are clearly the characteristic polynomials of 1 and −1. There are also two possible
irreducible characteristic polynomials,18

φ3(x) = x2 + x+ 1 = PST(x) , φ4(x) = x2 + 1 = PS(x) , (4.3)

which we recognize as the characteristic polynomials of the ST and S elements of SL(2,Z).
Of special interest to us are the cases in which PF (x) is a single cyclotomic polynomial

φn(x), as opposed to a product thereof. We have just seen that F = S and ST are of this
type, for example. Such matrices F have order n, and as will be explained later serve
as the building blocks for all other cases. Note that the degree of the n-th cyclotomic
polynomial φn(x) is Euler’s totient function ϕ(n), i.e the number of integers less than n
which are coprime to n. However, not all φn(x) such that ϕ(n) = 2g need to be considered:
indeed, a matrix with characteristic polynomial φn(x) generates a cyclic subgroup of order
n, and since the maximum order of cyclic isometries is known to be 4g + 2 by the “(4g + 2)
theorem” [127], only φn(x) with n ≤ 4g + 2 are relevant.

4.1.1 Cyclotomic polynomials over finite fields

Over integers, the cyclotomic polynomials φn(x) are by definition irreducible, i.e. they do
not factorize. On the other hand, over complex numbers they factorize completely, with the
roots being primitive n-th roots of unity exp

(
2πimn

)
with m and n coprime. The situation

over finite fields is somewhat intermediate, in that φn(x) can factorize partially, but not
always completely. We are ultimately interested in prime fields Fp, but it is convenient to
start with an appropriate extension of Fp in which φn(x) does split completely. Over this
field φn(x) has ϕ(n) roots. These roots are not necessarily distinct: if pk is the highest
power of p that divides n, the number of distinct roots is ϕ

(
n
pk

)
,19 and each of these roots

18Note that we could have also considered φ3(−x), but in general for a 2g × 2g diagonalizable matrix M
we have P−M (x) = PM (−x), and hence when considering the action of stabilizer subgroups the matrices
with characteristic polynomials P (x) and P (−x) are identified in Sp(2g,Z)/Z2.

19Another way of saying this is that the group of n-th roots of unity in the splitting field of φn(x) over Fp
has order ϕ

(
n
pk

)
.
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occurs with multiplicity ϕ(pk), i.e. we have

φn(x) =
(
φ n

pk
(x)
)ϕ(pk)

; (4.4)

see appendix B.1 for more details. As we will see below, this fact essentially fixes the Jordan
normal form of all F of interest.

With the above factorization in hand, we now restrict to φn(x) with gcd(n, p) = 1 and
consider how φn(x) can factorize over Fp. The simplest case is when n divides p− 1. In
this case Fp contains a multiplicative element of order n, which we call ω, and φn(x) splits
completely,

φn(x) =
∏
m<n

gcd(m,n)=1

(x− ωm) . (4.5)

This is not the only possible factorization that can happen. Indeed, since gcd(n, p) = 1, the
element p is an invertible element in Zn. If m is the order of p in Zn, then φn(x) can also
split into ϕ(n)

m factors over Fp, all of which have the same degree m.

4.2 Invariant subspaces of modular matrices

We have seen how the characteristic polynomials of F are related to cyclotomic polynomials.
We now explain how to use this fact to identify invariant global forms, i.e. maximal isotropic
sublattices invariant under F . To begin, let us temporarily forget the constraints of
maximality and isotropicity and just identify invariant subpaces in general. It is again
convenient to start by considering F such that the characteristic polynomial (over integers)
of PF (x) is a single cyclotomic polynomial φn(x).

Let us first consider the generic case, in which we are working over a finite field Fp
such that p is not a factor of n. As explained above, in this case the eigenvalues of F
in a suitable extension of Fp are all pairwise distinct and given by the roots of φn(x) as
in (4.5). As a result, over this field the homology of Σg,n splits into eigenspaces, each of
which is one-dimensional, and any invariant subspace can be written as a sum of these
eigenspaces. From this fact we can derive a sufficient condition and a necessary condition
for the existence of non-trivial invariant subspaces.

First for the sufficient condition, when p− 1 ∈ nN all the roots of φn(x) are in Fp itself,
and hence all the eigenspaces described above give a decomposition of H1(Σg,0,Fp). There
are

(2g
d

)
invariant subspaces of dimension d.

The necessary condition comes from the fact that all invariant subspaces are annihilated
by some factor of the characteristic polynomial. All factors of φn(x) over Fp have degree m
where m is the multiplicative order of p in Zn. Hence invariant subspaces of dimension d
exist only if d is a multiple of m, and in that case there are

(ϕ(n)/m
d/m

)
such subspaces.

4.2.1 Invariant isotropic subspaces

The considerations above allow us to understand which subspaces are invariant under the
action of an enhanced symmetry F . But to identify invariant global forms we need to
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identify which of those subspaces have dimension g and are isotropic. Naively there is no
reason to expect that the Jordan decomposition of a matrix F can tell us which of its
invariant subspaces are isotropic, since all similar matrices have the same Jordan normal
form and there is no reason to expect that similarity transformations preserve isotropy.
However, the fact that F preserves the intersection form, together with the restrictions
we have derived using the finite order of F , actually suffices to fix which of the invariant
subspaces are isotropic.

To see this, we begin not in Fp but in the field extension which splits the characteristic
polynomial PF (x) = φn(x). We now consider two cases:

First, we consider the generic case in which p is not a factor of n and we take n > 2 since
n = 1, 2 are trivial. Then all of the eigenvalues of φn(x) are distinct. We saw around (3.18)
that two eigenvectors v1 and v2 with eigenvalues λ1 and λ2 can intersect only if λ1λ2 = 1
mod p, i.e. the two eigenvalues are modular inverses of each other. From (4.5), it can be
seen that if λ is an eigenvalue then λ−1 is also an eigenvalue. Since the eigenvector v with
eigenvalue λ does not intersect the complement of eigenvector v′ with eigenvalue λ−1, the
eigenvectors v and v′ must have non-zero intersection, since the intersection form I of Σg,0
is non-degenerate. As a result, if an invariant global form is to exist the polynomial φn(x)
must factorize over Fp as

φn(x) = P (x)Q(x) , (4.6)

where both P (x) and Q(x) have degree 1
2ϕ(n). Over the splitting field of φn(x), both P (x)

and Q(x) split as well, and isotropy requires that if λ is a root of P (x), then λ−1 is a root of
Q(x). As a result, there are far fewer invariant isotropic subspaces than invariant subspaces
in general. For example, in the case when p ∈ nN + 1 where φn(x) splits over Fp, there are(2g
g

)
invariant subspaces of dimension g, but only 2g of them are isotropic.
Next, if p is a factor of n, then for each eigenvalue λ there is a single Jordan block of

size ϕ(pk), where pk is the highest power of p dividing n. The eigenvalues themselves are
roots of φ n

pk
(x). This Jordan decomposition means that for each eigenvalue λ, we can find

ϕ(pk) generalized eigenvectors v(a)
λ such that,

Dv
(0)
λ = λv

(0)
λ ,

Dv
(a)
λ = λv

(a)
λ + v

(a−1)
λ . (4.7)

It can be shown that
〈
v

(a)
λ1
, v

(b)
λ2

〉
is zero unless λ1λ2 = 1 mod p and a + b ≥ ϕ(pk); see

appendix B.3. Unpacking this a bit, if n = pk or n = 2pk, then we obtain a single Jordan
block of size ϕ(n) and there is a single invariant isotropic subspace of dimension d if
d ≤ ϕ(n)

2 = g. This subspace is the span of v(0)
±1, v

(1)
±1, . . . , v

(d−1)
±1 where 1 is the eigenvalue

when n = pk and −1 is the eigenvalue when n = 2pk. There are no invariant isotropic
subspaces of dimension greater than g = ϕ(n)

2 .
If n

pk
> 2, each Jordan block for a given eigenvalue is isotropic and the vector v(a)

λ can
intersect only with v(b)

λ−1 if a+ b ≥ g.
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4.3 Invariant global forms

After the rather technical discussion above, we now determine the global forms left invariant
by matrices F generating isometries of Riemann surfaces. In this subsection we discuss all
possible examples at genus 3, 4, 5 such that the characteristic polynomial is a cyclotomic
polynomial. See appendix B.5 for a discussion of the more general case in which the
characteristic polynomial is a product of cyclotomic polynomials.

4.3.1 Genus 3

We start with the case of genus 3, for which we are interested in cyclotomic polynomials of
degree 2g = 6. There are 4 of them, namely φ7(x), φ9(x), φ14(x), and φ18(x). Since 18 is
larger than the upper limit 4g + 2 = 14 for the order of cyclic subgroups of Sp(2g,Z), no
F can have φ18(x) as its characteristic polynomial. On the other hand, if a matrix F has
characteristic polynomial φ14(x), then the matrix −F has characteristic polynomial φ7(x),
and the invariant subspaces of F and −F are the same. Hence we may focus only on the
cases of φ7(x) and φ9(x).

φ7(x). According to [128], there are two fixed points at genus 3 for which the stabilizer
subgroup has order 7. Defining the matrices

A =

0 1 0
1 0 1
0 1 −1

 , B =


α+α2

1+3α
β+β2

1+3β
γ+γ2

1+3γ
1+2α
1+3α

1+2β
1+3β

1+2γ
1+3γ

α2

1+3α
β2

1+3β
γ2

1+3γ

 , C = diag(1, 1,−1) (4.8)

for α = 2 cos 2π
7 , β = 2 cos 4π

7 , and γ = 2 cos 6π
7 , the two isolated fixed points are given by

Ω7,1 := −1
2A+ iB

(
1− 1

4B
TA2B

) 1
2
BT ,

Ω7,2 := −1
2A(A+ 1) + iB

[(
1− 1

4B
TA2B

) 1
2
BT (A+ 1)BC

]
BT (4.9)

All of the non-identity elements for the symmetry groups at these points have φ7(x) as their
characteristic polynomials.

We begin by considering the generic case for which p is not a factor of 7. This means
that we consider p ∈ 7N + k for k = 1, . . . , 6. Beginning with p ∈ 7N + 1, by the sufficient
condition at the end of section 4.2 we see that Fp is the splitting field of φ7(x) and hence
that 8 invariant subspaces exist. The non-invertible symmetries are non-intrinsic.

Moving on to p ∈ 7N + 2 or 7N + 4, we note that the elements 2 and 4 have degree 3 in
Z×7 , so the polynomial φ7(x) splits into two factors of degree 3, cf. (4.4). The only possible
factorization that can make the corresponding kernels isotropic is φ7(x) = P (x)Q(x) with

P (x) = (x− λ)(x− λ2)(x− λ4) , Q(x) = (x− λ3)(x− λ5)(x− λ6) . (4.10)

Here λ is a primitive seventh root of unity that exists in the splitting field. We want to
determine if P (x) and Q(x) are polynomials over Fp. This is the case if λ+ λ2 + λ4 ∈ Fp,
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p 2 3 5 7 11 13 17 19 23 29
φ7(x) 2 0 0 1 2 0 0 0 2 8
φ9(x) 0 1 0 2 0 2 0 8 0 0

Table 7. The number of invariant global forms for enhanced symmetries F with characteristic
polynomials given by φ7(x) and φ9(x), relevant for genus 3. The F give rise to intrinsically non-
invertible symmetries if and only if the entry above is 0.

which can be shown to happen if there exists a square root of −7 mod p. This is indeed the
case for p ∈ 7N + 2 or 7N + 4. Hence in these cases there are two invariant global forms
given by ker(P (F )) and ker(Q(F )).

In the cases of p ∈ 7N + 3 and 7N + 5 we note that the elements 3 and 5 in Z7 both
generate Z×7 , and hence there are no invariant global forms and the symmetry is intrinsically
non-invertible. Finally for the case of p ∈ 7N + 6 we note that the element 6 has order 2 in
Z×7 , so the polynomial φ7(x) splits into three factors of degree 2. In this case all invariant
subspaces are even-dimensional, and in particular not equal to g = 3. Hence there is no
maximal invariant subspace, and hence no invariant global form.

Having discussed the generic case of p not dividing 7, we now discuss the exceptional
case of p = 7. This is part of the family discussed in [39], where it was seen to have a single
invariant global form. This can be recovered from our analysis in section 4.2.1, which shows
that there is a single Jordan block with eigenvalue 1 in this case. The unique invariant
global form is the span of first three vectors in the Jordan block.

The results so far are summarized in the first line of table 7.

φ9(x). The reference [128] also contains one fixed point with stabilizer subgroup of order
9. Defining the matrices

A =

0 1 0
1 −1 1
0 1 1

 , B = 1
3

−3 + α+ α2 −3 + β + β2 −3 + γ + γ2

−1 + α2 −1 + β2 −1 + γ2

1 + α 1 + β 1 + γ

 (4.11)

for α = 2 cos 2π
9 , β + 2 cos 4π

9 , and γ = 2 cos 8π
9 , the isolated fixed point occurs at the

following value of the period matrix,

Ω9 := −1
2A+ iB

(
1− 1

4B
TA2B

) 1
2
BT . (4.12)

Any generator of the subgroup preserving this value has φ9(x) as its characteristic polynomial.
We begin with the generic case of p not dividing 9. We would naively have to consider

the cases of p ∈ 9N+k for k = 1, . . . , 8, but since p is prime we may skip the cases of k = 3, 6.
Using the same arguments as for φ7(x) above, we find that the symmetry is intrinsically
non-invertible unless p has order 3 in Z×9 . The latter occurs whenever p ∈ 9N + 1, 9N + 4,
or 9N + 7, i.e. when p ∈ 3N + 1. Let λ be the primitive 9-th root of unity in the splitting
field. For p ∈ 3N + 1, a primitive third root of unity exists in Fp and must be λ3. It can be
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shown that

P (x) = (x− λ)(x− λ4)(x− λ7) = x3 − λ3 ,

Q(x) = (x− λ2)(x− λ5)(x− λ7) = x3 − λ6 . (4.13)

Hence P (x) and Q(x) are both polynomials with coefficients in Fp, and they satisfy the
criterion for the corresponding kernels to be isotropic. If p ∈ 9N + 4 or 9N + 7, then these
are the only two invariant global forms. If p ∈ 9N+ 1, then λ ∈ Fp and there are 8 invariant
global forms.

We finally discuss the exceptional case of p = 3. In this case we obtain a single Jordan
block of size 6 and eigenvalue 1, and hence there is a single invariant global form consisting
of the span of the first three vectors in the Jordan block.

The results of the above discussion are given in the second line of table 7.

4.3.2 Genus 4

For genus 4, we are interested in cyclotomic polynomials φn(x) with degree 2g = 8 and
n ≤ 4g + 2 = 18. There are again only two physically distinct possibilities, namely φ15(x)
and φ16(x). The stabilizer subgroups at genus 4 were classified in [121] and contain cyclic
groups of order 15 and 16. The characteristic polynomial of any generator F of these groups
was indeed found to be φ15(x) and φ16(x).

φ15(x). We begin with the case of φ15(x). One can again split the discussion into two
cases: p not being a factor of 15, and p being a factor of 15. We will begin by analyzing the
latter here, i.e. the cases of p = 3 and 5.

For p = 3, the cyclotomic polynomial partially factorizes as

φ15(x) = φ5(x)2 = (x4 + x3 + x2 + x+ 1)2 . (4.14)

Since φ5(x) does not split over F3, the only maximally invariant subspace (i.e. invariant
subspace of dimension 4) is ker(φ5(F )). This subspace is isotropic. This can be seen by
passing to the splitting field of φ5(x) and using the discussion in section 4.2.1, which tells
us that the non-zero intersections are〈

v
(0)
λ , v

(1)
λ4

〉
=
〈
v

(1)
λ , v

(0)
λ4

〉
=
〈
v

(0)
λ2 , v

(1)
λ3

〉
=
〈
v

(1)
λ2 , v

(0)
λ2

〉
= 1 (4.15)

where λ is any the root of φ5(x). On the other hand ker (φ5(M)) = span{v(0)
λ , v

(0)
λ2 , v

(0)
λ3 , v

(0)
λ4 }

and is hence isotropic. Thus there is a single invariant global form.
Next we consider p = 5, for which

φ15(x) = (φ3(x))4 = (x2 + x+ 1)4 . (4.16)

Once again, there is a single candidate for an invariant global form, namely ker(φ3(F )2). It
can be seen to be isotropic using the same argument as for p = 3.
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The generic case when p 6= 3, 5, requires some more involved algebra, which we relegate
to appendix B.4. Here we only summarize the results:

• The only case with intrinsic non-invertible symmetry is p ∈ 15N + 14.

• If p ∈ 15N + 2, 15N + 7, 15N + 8 or 15N + 13 there are two invariant global forms.

• If p ∈ 15N + 4 or 15N + 11 there are four invariant global forms.

• If p ∈ 15N + 1 there are eight invariant global forms.

φ16(x). We next consider the case of φ16(x). The discussion again splits into the generic
case for which p is not a factor of 16, and the exceptional case when p = 2. In the latter
case there is a single Jordan block with eigenvalue 1, and hence a single invariant subspace
spanned by v(0)

1 , v
(1)
1 , v

(2)
1 , and v(3)

1 .
For p > 2, the cyclotomic polynomial always factorizes to some degree. To carry out

the analysis, we start in the splitting field which has a primitive sixteenth root of unity λ.
In the splitting field we may write the cyclotomic polynomial as

φ16(x) = (x− λ)(x− λ3)(x− λ5)(x− λ7)(x− λ9)(x− λ11)(x− λ13)(x− λ15) . (4.17)

When p ∈ 16N + 1, the root λ is in Fp itself, and there are 16 invariant global forms, cf. the
necessary condition in section 4.2.

When p ∈ 16N + 9, there exists a primitive eighth root of unity σ in Fp with σ = λ2

and σ4 = −1. Hence the product of two factors (x− λ2i+1)(x− λ2j+1) is a polynomial over
Fp if

λ2i+1 + λ2j+1 ∈ Fp ⇒ λ(σi + σj) ∈ Fp . (4.18)

Since λ /∈ Fp, this happens whenever σi = −σj , which in turn happens whenever i = j + 4.
Hence

φ16(x) = (x2 − σ)(x2 + σ)(x2 − σ3)(x2 + σ3) (4.19)

and there are 4 basic invariant subspaces of dimension 2. All of them are isotropic.
When p ∈ 8N + 5 a primitive fourth root of unity κ exists and κ = λ4. The cyclotomic

polynomial φ16(x) then factorizes over Fp into two factors of degree 4, i.e φ16(x) = P (x)Q(x).
Isotropy requires that if λ is a root of P (x), then λ−1 is a root of Q(x). Imposing this
together with requiring that the coefficient of the constant term is a power of κ leaves four
possibilities,

P (x) = (x− λ)(x− λ3)(x− λ5)(x− λ7) , Q(x) = (x− λ9)(x− λ11)(x− λ13)(x− λ15) ,
P (x) = (x− λ)(x− λ3)(x− λ9)(x− λ11) , Q(x) = (x− λ5)(x− λ7)(x− λ13)(x− λ15) ,
P (x) = (x− λ)(x− λ5)(x− λ7)(x− λ11) , Q(x) = (x− λ3)(x− λ9)(x− λ13)(x− λ15) ,
P (x) = (x− λ)(x− λ7)(x− λ11)(x− λ13) , Q(x) = (x− λ3)(x− λ5)(x− λ9)(x− λ15) .

(4.20)
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p 2 3 5 7 11 13 17 19 23 29
φ15(x) 2 1 1 2 4 2 2 4 2 0
φ16(x) 1 0 0 0 0 0 16 0 0 0

Table 8. The number of invariant global forms for symmetry generators with characteristic
polynomials given by φ15(x) and φ16(x), relevant for genus 4. There exist intrinsically non-invertible
symmetries if and only if the entry above is 0.

p 2 3 5 7 11 13 17 19 23 29
φ11(x) 0 0 2 2 1 0 0 2 32 2

Table 9. The number of invariant global forms for symmetry generators with characteristic
polynomial given by φ11(x), relevant for genus 5. There exist intrinsically non-invertible symmetries
if and only if the entry above is 0.

In all four cases the requirement that the coefficient of x2 is an element of Fp leads to the
requirement that w2 ∈ Fp, which is impossible for p ∈ 8N + 5. Hence there are no invariant
global forms in this case.

For the remaining case of p ∈ 4N + 3, a similar analysis shows that there are again no
invariant global forms. The results are summarized in table 8.

4.3.3 Genus 5

Finally for genus 5 the relevant cyclotomic polynomials are φ11(x) and φ22(x). If a matrix
F has characteristic polynomial φ22(x) then −F has characteristic polynomial φ11(x) and
both have the same invariant subspaces, and hence we deal only with φ11(x) here.

For the generic case in which p does not divide 11, the only possibility for the factoriza-
tion of φ11(x) = P (x)Q(x) satisfying the isotropy criterion is

P (x) = (x− λ)(x− λ3)(x− λ4)(x− λ5)(x− λ9) ,
Q(x) = (x− λ2)(x− λ6)(x− λ7)(x− λ8)(x− λ10) (4.21)

with λ a primitive eleventh root of unity. It can be shown that P (x) and Q(x) are
polynomials over Fp if η := λ+ λ3 + λ4 + λ5 + λ9 ∈ Fp. Note that η satisfies a quadratic
equation η2 + η + 3 = 0 which has a solution in Fp if −11 has a square root in Fp. This
happens for p ∈ 11N + k for k = 1, 5, 7, 8, and 9. For the last four cases there is no further
factorization and there are only two invariant global forms. For p ∈ 11N+ 1 the polynomial
φ11(x) splits completely and there are 32 invariant global forms.

For the remaining cases of p ∈ 11N + k for k = 2, 3, 4, 6, and 10 the symmetry is
intrinsically non-invertible. Finally for the exceptional case of p = 11 there is a single
invariant global form. These results are summarized in table 9.

5 A higher-dimensional perspective

In this final section we give a higher-dimensional perspective on the non-invertible symmetries
discussed above. To make the discussion self-contained, we begin with a review of the
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relative nature of the 6d (2,0) theory. For most of this section we will work the (2,0) theory
of type aN−1 without assuming that N is prime, though this assumption will reappear
towards the end.20

5.1 The 6d (2,0) theory as a relative theory

As was already mentioned in the introduction and section 2.1, for generic N the type aN−1
6d (2,0) theory is a relative theory, which means that it is best thought of as living on the
boundary of a non-trivial 7d TQFT. This situation was shown in figure 3. In order to
specify the state |aN−1〉 corresponding to the 6d (2,0) theory, we must first specify a basis
for the Hilbert space of the 7d TQFT. To do so, we might naively aim to specify boundary
conditions for all fields in the bulk 7-dimensional theory, in particular the dynamical three-
form field c. However, due to a term proportional to

∫
W7

c ∧ dc in the action of the bulk
TQFT, the field c becomes its own canonically conjugate momentum, and thus there are
non-trivial commutation relations between c on distinct 3-cycles. This means that it is not
actually possible to specify the boundary value of c on all 3-cycles of X6.

Let us be more concrete. Our starting point is the 7d Abelian CS theory21

S7d = N

4π

∫
W7

c ∧ dc (5.1)

which we write in differential form notation c ∈ H3(W7,U(1)). This theory has the following
Wilson surfaces,

Φq(M3) := e
iq
∮
M3

c
, q ∈ ZN , M3 ∈ H3(W7,Z) . (5.2)

Let us consider a configuration of two Wilson surfaces Φq(M3) and Φq′(M ′3), with M3
and M ′3 forming a Hopf link in W7. To evaluate this configuration via the path integral, we
consider the action with insertions (see e.g. [59])

SCS = N

4π

∫
W7

c ∧ dc+ q

∫
M3

c+ q′
∫
M ′3

c (5.3)

= N

4π

∫
W7

c ∧ dc+
∫
W7

(qωM3 + q′ωM ′3) ∧ c , (5.4)

where ωM is the Poincaré dual of M . Integrating out c then imposes

dc = −2π
N

(qωM3 + q′ωM ′3) . (5.5)

If we define a manifold V4 such that

∂V4 =
(
qM3 + q′M ′3

)
, (5.6)

20We thank Kantaro Ohmori, Gabi Zafrir, and Yunqin Zheng for numerous crucial discussions about the
content of this section.

21For simplicity, we will assume the presence of a Wu 4-structure (so that the CS term is well-defined
for arbitrary N) and take c to be topologically trivial (so that we do not need to work with differential
cohomology).

– 38 –



J
H
E
P
0
5
(
2
0
2
3
)
2
2
5

then we have c = −2π
N PD(V4). Plugging this back into the action gives a term

π

N

∫
M7

(qωM3 + q′ωM ′3) ∧ PD(V4) = π

N

∫
M7

PD
(
(qM3 + q′M ′3) ∩ V4

)
= π

N

∫
M7

[
qPD(M3 ∩ V4) + q′PD(M ′3 ∩ V4)

]
= 2π
N
qq′link(M3,M

′
3) , (5.7)

where link(M3,M
′
3) is the linking number of M3 and M ′3 in W7. This linking comes about

since V4 is the Seifert surface for qM3 + q′M ′3, and hence each time M3 pierces V4 it links
M ′3 once.

To summarize, we have found that the Hopf link of Wilson surfaces supported on M3
and M ′3 in W7 evaluates to22

〈Φq(M3)Φq′(M ′3) . . . 〉 = e
2πi
N
qq′link(M3,M ′3)〈. . . 〉 . (5.8)

We may now push the configuration above to a 6d plane X6 ⊂W7. This gives a statement
about the equal-time commutation relation

Φq(M3)Φq′(M ′3) = e
2πi
N
qq′〈M3,M ′3〉Φq′(M ′3)Φq(M3) . (5.9)

We see that the linking number in 7d has reduced to the (signed) intersection number in
6d. One should be careful to note that the parity properties of the two bilinear pairings
are opposite: whereas the linking pairing was symmetric, the intersection pairing is anti-
symmetric.

The Wilson surfaces also satisfy the quantum torus algebra on a 6d slice,

Φq(M3)Φq(M ′3) = e
2πi
N

q2
2 〈M3,M ′3〉Φq(M3 +M ′3) . (5.10)

Note that it is not obvious that the factor e 2πi
N

q2
2 appearing in the quantum torus algebra is

well-defined. This is because the charge q was only defined modulo N . Under q → q +N

the factor e 2πi
N
q2 is single-valued, but this can fail to be true when we take the square root.

For N odd, there is no issue: noting that e 2πi
N
q2 = e

2πi
N

(N+1)q2 , we can simply define

e
2πi
N

q2
2 := e

2πi
N

(N+1) q
2
2 (5.11)

which is manifestly well-defined since N+1
2 is an integer. A simpler way of saying this is

that 2 is invertible in ZN for N odd.
For N even, the discussion is more subtle. To begin, let us return to e 2πi

N
q2 , which as

we said is well-defined. In fact, even this is slightly non-obvious, since one has to check that
q2 is well-defined modulo N when q → q +N . This is indeed the case, since

(q +N)2 − q2 = N(2q +N) (5.12)
22This is the direct analog of the S-matrix element Sab between charge a and b anyons in U(1)k CS theory

in 3d, which is given by Sab = e
2πi
k
ab.
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and hence q2 = (q +N)2 mod N . But now we see something more: when N is even, then
we in fact have

(q +N)2 − q2 = 2N
(
q + N

2

)
(5.13)

and hence q2 = (q +N)2 mod 2N . This means that we can promote q2 to an element in
Z2N , as opposed to an element in ZN like q was. We denote this promoted quantity by
P(q) ∈ Z2N , which is known as a quadratic refinement of the original pairing in ZN . We
may now define

e
2πi
N

q2
2 := e

2πi
N
P(q)

2 , (5.14)

which is well-defined since we only need single-valuedness under P(q)→ P(q) + 2N .
We now return to the specification of the basis of the Hilbert space of the 7d TQFT.

Noting that the factor of q can be absorbed by replacing M3 with qM3, we may without loss
of generality restrict to Φ1(M3), which for simplicity we will denote by Φ(M3), and M3 ∈
H3(X6,ZN ). Because of the non-commutativity of Φ(M3) for generic M3 ∈ H3(X6,ZN ), it
is not possible to write a simultaneous eigenvector for all Φ(M3) — in other words, it is not
possible to specify the boundary value of c on all three-cycles of X6. Instead, the best one
can do is to choose a maximal isotropic sublattice L ∈ H3(X6,ZN ) and to specify all of the
boundary values associated with L. Here isotropicity means that we have

〈M3,M
′
3〉 = 0 , ∀M3,M

′
3 ∈ L . (5.15)

In terms of this isotropic sublattice we may define a state |L, 0〉 such that

Φ(M3)|L, 0〉 = |L, 0〉 , ∀ M3 ∈ L . (5.16)

On the other hand, applying Φ(M ′3) for M ′3 in the complement L⊥ := H3(X6,ZN )/L
gives a new state,

|L,M ′3〉 := Φ(M ′3)|L, 0〉 (5.17)

which by the commutation relations (5.9) satisfies

Φ(M3)|L,M ′3〉 = e
2πi
N
〈M3,M ′3〉|L,M ′3〉 , ∀ M3 ∈ L . (5.18)

These states form an irreducible representation of the algebra (5.9).
Physically, we may interpret the state |L, 0〉 as imposing Dirichlet boundary conditions

c|∂ = 0 on allM3 ∈ L. This means the bulk Wilson surface Φ(M3) = e
i
∮
M3

c trivializes when
moved to the boundary, reproducing the statement in (5.16). By the canonical commutation
relations, Dirichlet boundary conditions on M3 ∈ L require Neumann boundary conditions
on M ′3 ∈ L⊥, and hence Φ(M ′3) for M ′3 ∈ L⊥ gives a new state, which is |L, 0〉 with the
insertion of a Wilson surface on M ′3. This is the state |L,M ′3〉.23

In terms of the basis of states |L,M ′3〉, we may then write the state |aN−1〉 corresponding
to the relative 6d (2,0) theory as

|aN−1〉 =
∑

M ′3∈L⊥
ZL[M ′3]|L,M ′3〉 (5.19)

23These are the analogues of the non-identity characters χa in 2d RCFT. The Wilson surfaces discussed
here are the analogues of the Verlinde lines in that context.
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for some appropriate coefficients ZL[M ′3]. This vector is sometimes referred to as the
“partition vector” of the 6d theory. We should be careful to note that the states |L,B〉 do
not define topological boundary conditions for the bulk 7d TQFT; indeed, there do not in
general exist topological boundary conditions for this theory. Thus when one refers to the
6d (2,0) “theory,” what one is really referring to is the above vector.

5.2 Compactification on Σg,n

We now take X6 = Σg,n×X4, as for the class S construction. The 7d bulk theory is likewise
put on W7 = Σg,n×W5, where ∂M5 = X4.24 Because the four-dimensional spacetime X4 is
attached to a bulk five-dimensional spacetime W5, we may expect that the theory is again
only relative. However, we will now show that the theory in W5 can be made invertible,
and hence that this procedure defines an absolute theory in 4d.

Given the 6d spacetime X6 = Σg,n ×X4, there is a particular class of 7-manifolds W7
obtained by taking W7 = Vg,n ×X4 with Vg,n a three-manifold with boundary Σg,n. For a
given Riemann surface Σg,0, there are many inequivalent three-manifolds with boundary Σg,0.
A particularly simple class of such manifolds are the so-called handlebodies, whose basic
properties are reviewed in appendix C. As discussed there, in order to construct a handlebody,
one must choose a set of g meridians, i.e. a set of g generators of H1(Σg,0,Z) which become
trivialized as elements of H1(Vg,0,Z). The remaining g generators of H1(Σg,0,Z) lift to
generators of H1(Vg,0,Z) and are referred to as “longitudes.” We will denote the meridians
by µi and the longitudes by λi for i = 1, . . . , g. Note that not every choice of g generators
of H1(Σg,0,Z) gives a legitimate set of meridians. Indeed, as explained in appendix C, each
legitimate choice of meridians corresponds to a maximal isotropic sublattice L ⊂ H1(Σg,0,Z).
We will denote the handlebody specified by the choice of meridians L by V L

g,0.
Given a handlebody V L

g,0, there are multiple choices of longitudes, which differ by shifts
by meridians. Indeed, given one choice of longitudes λi, the choice of longitudes

λ′i = λi +
g∑
j=1

kij µj , kij ∈ Z (5.20)

is another legitimate choice. We may also allow for linear combinations of the λi, but we
will fix a basis such that the intersection pairing of λi with the meridians µi is

〈µi, λj〉 = −〈λj , µi〉 = δij . (5.21)

We now consider the 7d CS theory (5.1) on this handlebody geometry. First we define
the following fields

bi =
∮
µi

c , b̂i =
∮
λi

c , i = 1, . . . , g . (5.22)

Because the meridians µi are naively contractible, we might assume that all of the bi are
trivial. This however is not necessarily true. The origin of the discrepancy is that we can

24Despite our notation, the product here is not necessarily trivial, as we will discuss shortly.
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have Wilson surfaces supported on longitudes λi which link with µi, and hence effectively
make µi non-contractible.

To understand this, let us denote the Wilson surfaces wrapping meridians and longitudes
by

Φi(M2) := Φ(M2 × µi) = e
2πi
N

∮
M2

bi
,

Φ̂i(M2) := Φ(M2 × λi) = e
2πi
N

∮
M2

b̂i
,

respectively, where we have converted to discrete cocycle notation (bi, b̂i) → 2πi
N (bi, b̂i).

By (5.8), these surfaces may have non-trivial linking in 5d. Indeed, let us insert a Wilson
3-surface on the longitude λj in 7d, with the remaining support on M ′2 ⊂ X4. This amounts
to inserting Φ̂j(M ′2) in 5d. Equation (5.8) then gives

〈Φi(M2)Φ̂j(M ′2) . . . 〉 = e
2πi
N

link(M2×µi,M ′2×λj)〈. . . 〉 . (5.23)

Clearly this means that we cannot set Φi(M2) = 1, and likewise bi is not simply zero.
Let us now compactify the theory on Σg,0 in the presence of a series of Wilson 3-surfaces

on λj×M ′2,j . Denote the Poincaré duals of M ′2,j by Bj ∈ H2(X4,ZN ). The linking equation
above becomes an operator equation determining Φi(M2),

Φi(M2) = e
2πi
N

∑g

j=1〈µi,λj〉(M2,M ′2,j) = e
2πi
N

∑g

j=1〈µi,λj〉
∮
M2

Bj
. (5.24)

Another way to say this is that in any 4d computation involving Φi we may commute it to
the right of all Φ̂j using (5.9), at which point it can be shrunk away. Hence insertion of Φi

is equivalent to insertion of the phase appearing in (5.9).
We see that the insertion of the longitudinal Wilson surface Φ̂j(M ′2,j) effectively fixes

bi =
g∑
j=1
〈µi, λj〉Bj . (5.25)

In particular, if we work with a basis of longitudes satisfying (5.21), we have simply bi = Bi.
The insertion of Wilson lines on longitudes has allowed us to make bi non-zero, though it is
still a constant, i.e. a background field.

Upon compactification on Σg,0, the bulk CS theory of (5.1) then reduces to,

S7d = N

4π

∫
W7

c ∧ dc compactify on Σg,0−−−−−−−−−−−−→ S5d = 2π
N

g∑
i=1

∫
W5

Bi ∪ δb̂i . (5.26)

Unlike usual BF theory, only one of the fields appearing above is dynamical — in other words,
this is the theory of g free ZN background gauge fields Bi. This theory is obviously invertible,
which means that the boundary four-dimensional theory is well-defined as a standalone
theory. This is how one obtains an absolute 4d theory from the relative 6d (2, 0) theory.

Of course, the set of Wilson surfaces Φ̂j(M ′2,i) that we inserted in 7d was just one
choice. We could have modified this choice by placing the Wilson surfaces on different
2-cycles M ′2,i. From the four-dimensional perspective, this changes the background fields Bi
to which the one-form symmetries are coupled.
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X4

W7

Φ̂i(M2,i)

Σg,0V L
g,0

Shrink Σg,0

T N,g,0
L [Ω, Bi]

X4

W5

Figure 6. We begin with a handlebody configuration in 7d specified by L, together with a set of
Wilson surfaces Φ̂i(M2,i) on the longitudes. This configuration has a single boundary, located on the
right. One then compactifies on Σg,n to get a 5d bulk with a single 4d boundary. The 5d theory can
be shown to be invertible, and hence the boundary theory is a well-defined 4d theory labelled by L,
the longitudes λi (capturing stacking with SPT phases), and the background fields Bi = PD(M2,i).

Alternatively, we could have changed the longitudes λi on which the Wilson surfaces were
inserted. Say that we change longitudes to λ′i as defined in (5.20), with the corresponding
Wilson surfaces denoted by Φ̂′i(M2,i). Using the commutation relations (5.9) and the
quantum torus algebra (5.10), we find that

∏
i

Φ̂′i(M2,i) =
∏
i

e 2πi
N

∑g

j=1 kij〈µi,λj〉
∫
X4

Bi∪Bi
2 Φ̂i(M2,i)

g∏
j=1

Φkij
j (M2,j)

 (5.27)

= exp

2πi
N

∑
i

kii

∫
X4

Bi ∪Bi
2 +

∑
i<j

kij

∫
X4
Bi ∪Bj

∏
i

Φ̂i(M2,i)

where in the second line we have used (5.21), and after commuting all Φj operators to the
right of Φ̂i operators we have shrunk them away. The factor of Bi∪Bi

2 appearing above
should be understood as the appropriate quadratic refinement when applicable. We see
that changing to a different longitude stacks the 4d theory with an SPT phase.

The final picture is thus as in figure 6. We begin in 7d by specifying a maximal isotropic
sublattice L, which specifies a way to fill in the Riemann surface Σg,0 to get a handlebody
V L
g,0. We may also choose to insert some set of Wilson surfaces Φ̂i(M2,i) along the longitudes
λi. Upon compactification on Σg,0, we obtain a well-defined 4d theory coupled to an
invertible 5d bulk. The choice of meridians L in 7d determines the charge lattice of the 4d
theory. On the other hand, the choice of longitudinal Wilson surfaces determines both the
background fields Bi for the 1-form symmetry (coming from the choice of M2,i) together
with the possible invertible phases that can be stacked with the 4d theory (coming from
the choice of λi).
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5.3 From the Anomaly TFT to the Symmetry TFT

We have now seen how the (trivial) Anomaly TFT of the 4d theory can be obtained by
reducing the 7d CS term on an appropriate handlebody. It is also enlightening to see how
the Symmetry TFT (SymTFT) [30, 57, 59, 110, 129–132] emerges in this picture.

At any point y along the handlebody direction R+, we may choose to split the handle-
body into an interior portion V L,in

g,0 with y ≥ y∗ and an exterior portion V ext
g,0 := Σg,0× [0, y∗].

If we focus on the latter and forget about boundary conditions, the reduction on the
Riemann surface gives

S7d = N

4π

∫
W7

c ∧ dc compactify on Σg,0−−−−−−−−−−−−→ S5d = 2π
N

g∑
i=1

∫
X4×[0,y∗]

bi ∪ δb̂i , (5.28)

where now both bi and b̂i are dynamical — indeed, both the longitudes λi and meridians µi
are non-trivial in V ext

g,0 .
This gives us a picture in which a dynamical BF theory inhabits [0, y∗], with a boundary

condition at y = y∗ specified by L. In particular, L specifies which directions of the Riemann
surface become trivial in the handlebody (i.e. meridians), and hence which of the dynamical
fields of the BF theory become background. In other words, each choice of L is a choice
of Dirichlet boundary conditions for different sets of fields of the BF theory. The setup is
shown in figure 7. Because the 7d geometry is completely independent of the location of y∗,
the 5d picture should likewise be independent of y∗, meaning that the interface between
the BF theory and the anomaly theory is topological.

While it is tempting to refer to the dynamical BF theory we have obtained as the
SymTFT for the boundary 4d theories, one should be careful with this language. In general,
the SymTFT is defined such that it captures the full symmetry (higher-)category of the
boundary theory, and it is not always true that the bulk BF theory does so.25 Indeed, the
BF theory above is a simple example of a Dijkgraaf-Witten (DW) theory, and as explained
in [59] the SymTFT is a DW theory if and only if the boundary fusion category has no
intrinsically non-invertible symmetries. Hence straightforward reduction of the 7d CS theory
on a Riemann surface can only capture the full SymTFT in cases in which all potential
non-invertible symmetries are non-intrinsic. To obtain the SymTFT for intrinisically non-
invertible symmetries, it turns out that the 7d CS theory must be coupled to topological
gravity, as we will now explain.26 This gives a physical relevance for the notion of intrinsic
non-invertibility.

To begin our discussion, we define two families of operations on the handlebody
configuration. The first are modular transformations of the Riemann surface, which act
throughout the entire handlebody and generically change the period matrix of the Riemann
surface at each cross section. Note that because the theory in the bulk of the handlebody

25In fact, if we also account for zero-form symmetries such as the Z2N chiral symmetry of the boundary,
then the BF theory is never the full SymTFT; at best it only captures the one-form symmetry sector. We
will focus only on this one-form symmetry sector here, defining the “full SymTFT” as such.

26Of course, it is not inconsistent to have the 4d theory coupled to the 5d BF theory alone, so the sum
over geometries is ultimately optional. It is only necessary if we want to obtain the 4d theory coupled to the
full SymTFT for the one-form symmetry sector.
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y = ∞

y∗ y = 0

Σg,0V ext
g,0V L,in

g,0

Shrink Σg,0

|T N,g,0[Ω]〉〈L|

∑g
i=1

∫
bidb̂i

∑g
i=1

∫
Bidb̂i

Figure 7. Splitting the handlebody into an inner handlebody V L,ing,0 and an outer shell V ext
g,0 separates

the (trivial) Anomaly TFT from the Symmetry TFT. The location y∗ of this splitting is arbitrary
in 7d, and hence the boundary 〈L| separating the Anomaly and Symmetry TFTs is topological.

is topological, the only sensitivity to the change in the period matrix is on the boundary
Riemann surface, where the 6d (2, 0) theory lives.

The second family of operations involve excising from the handlebody an inner han-
dlebody, like in the case of the splitting into V L,in

g,0 and V ext
g,0 from before, but now gluing

them back together with a non-trvial element of the modular group Sp(2g,ZN ) — in other
words, we perform “surgery” on the three-manifold [133]. Because this operation happens
in the interior of the handlebody, it does not affect the boundary Riemann surface, and
in particular it does not change the period matrix in the region in which the theory is
sensitive to it. This operation does however change the global form L, because it changes
which cycles in the handlebody are contractible (fixing the conventions for the cycles on
the boundary Riemann surface).

The handlebody configuration we have been describing thus far has two “boundaries”:
one is the obvious boundary where the 6d (2,0) theory lives, while the other is off at infinity,
where the longitudinal Wilson surfaces fixing the background fields live. We can now
perform surgery by an element F of the modular group, as described above. Since this
happens in the interior of the handlebody, it does not affect the boundary where the 6d
(2,0) theory lives, but it does change the “inner boundary”, i.e. it changes the global form.
This operation may then be combined with a modular transformation F acting on the entire
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handlebody. The modular transformation reverts the interior of the handlebody back to its
original form, but changes the value of the period matrix of the boundary Riemann surface.
If we fix ourselves to a value of the period matrix that is invariant under the action of F ,
then the geometry with the combined surgery and modular transformations has the same
boundaries as the original geometry. Importantly though, the full geometry is not identical
to the original one, due to the internal twist.

In quantum gravity (and quantum field theory in general), one is instructed to sum
over all configurations with the same asymptotic boundary conditions. If we were to treat
the 7d CS theory in a (topological) quantum gravity context, then we would likewise sum
over handlebody configurations with all such internal twists. Furthermore, we should allow
for different twists at each point of X4, captured by a discrete metric connection.27

How do we interpret this topological gravity computation from the point of view
of the compactified 5d theory? As we will explain in the next subsection, the surgery
defects described above descend to condensation defects implementing outer automorphism
symmetries of the 5d BF theory. Promoting background gravity to dynamical gravity in 7d
then corresponds to gauging of these automorphisms, with the role of the discrete gauge
field being played by the dimensional reduction of the discrete metric connection. The
result is not a BF theory in general.

We may write the action for the resulting 5d theory in terms of twisted cocycles as
follows [59]. First, we write (5.28) in the form of a K-matrix theory,

S5d = 2π
2N

∫
W5

bT ∪Kδb , K =
(

K̃ 1g×g
−1g×g 0

)
, (5.29)

where we have defined b = (b1, . . . , bg, b̂1, . . . , b̂g). The matrix K̃ has elements (K̃)ij = kij ,
with kij as defined in (5.20). This theory has an Sp(2g,ZN ) outer automorphism symmetry
which acts on b in the usual matrix representation, and is a zero-form symmetry.

Let us assume that the enhanced symmetry is cyclic and is generated by a single element
F ∈ Sp(2g,ZN ). Gauging this symmetry amounts to promoting b to a twisted cocycle. If
F is of order |F |, the action after gauging is given by

S5d = 2π
2N

∫
W5

bT ∪η Kδηb + 2π
|F |

∫
W5

x ∪ δη (5.30)

where η is the background gauge field for F , descending in an obvious manner from the
discrete metric connection in 7d, and x is a Lagrange multiplier field enforcing that η is a
Z|F |-valued cocycle. The twisted cup products and differentials are defined by

(a ∪ b)ijk`m := aijkF ηikbk`m , (δηb)ijk` := F ηijbjk` − bik` + bij` − bijk , (5.31)

so that the term appearing in the integrand in components is

(bT ∪η Kδηb)ijk`pq = bTijkF ηikK(F ηk`b`pq − bkpq + bk`q − bk`p) . (5.32)
27Without the sum over geometries, this setup is similar to that of theories of “class F” [134], though in

the current case we still take the boundary X6 = Σg,n ×X4 to be a trivial product.
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Here we take F to be given in the appropriate matrix representation. Note that similar
expressions can be written down in the non-cyclic (and even non-Abelian) cases, though
the expressions are more complicated and we do not write them down here. This gives a
complete description of the SymTFT for the 4d theory.

What we have just described is the generic scenario. However, in some cases something
special happens: it can sometimes be the case that there is a global form L (i.e. a choice of
handlebody) which is left invariant by modular transformations, and hence also by surgery.28

In this case, the geometry with the combined surgery and modular transformation not
only has the same boundary as the original geometry, but is exactly identical to it (at
fixed points of the period matrix). In this case there are not distinct geometries to sum
over, and upon compactification we obtain (5.30) with the field η now only a background
field. The same holds for global forms which are related to an invariant global form by
a surgery operation. This is exactly as expected: when there is an invariant global form
L, the symmetries are non-intriniscally non-invertible, and this is only possible if the bulk
theory is Dijkgraaf-Witten (and in this case BF).

Incidentally, note that this gives an alternative, though obviously equivalent, approach
to searching for invariant global forms: we ask when an isometry of the Riemann surface
Σg,n can be extended to an isometry of V L

g,n, with coefficients valued in ZN . It is known
that this is possible if and only if the isometry maps meridians of V L

g,n to meridians [133]
modulo ZN . It is easy to convince oneself that for N = p prime this gives the same results
as identified using 4d techniques before. We may also understand the transformation law
given in (2.26) from the current perspective: in the current language, F correspond to
modular transformations while G corresponds to surgery operations. Whereas the former
acts by changing the basis in which the global form ML,B is expressed, the latter fixes the
basis but changes the “charges” labelling the global variant.

Finally, let us note that for (g, n) = (1, 0) and F = S, the theory obtained by com-
pactifying the 7d CS + topological gravity theory on V L

1,0 is precisely the SymTFT for
(3 + 1)d theories with duality defects, studied in detail in [59]. One question which was left
unanswered in that work was when the SymTFT can be recast as a Dijkgraaf-Witten theory.
Our current results allow us to answer this question when N = p is prime, as was already
discussed in the introduction in theorems 1 and 2. We may use the results in sections 3
and 4 to make analogous statements about discrete gaugings of (Z(2)

p )⊗g gauge theory in
(4 + 1)d, with g ≤ 5.

5.4 Surgery defects

We close this section by providing more detail on the surgery defects discussed above. In
particular, let us see how they descend to condensation defects in 5d. First we define the
following surface operators,

Φn(M2) = e
2πi
N

1
2 e·m(M2,M2)

g∏
i=1

Φ̂ei
i (M2)

g∏
i=1

Φmi
i (M2) , n = (e1, . . . , eg;m1, . . . ,mg) ,

(5.33)
28For the current discussion we set the background gauge fields in 4d to zero — i.e. we do not insert

longitudinal Wilson lines inside the handlebody.
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CF (X4)

Φn(M2) ΦFTn(M2)

CF (X4)

Φ(1−FT )n(M2)

Figure 8. The defects CF (X4) can absorb Wilson surfaces Φ(1−FT )n(M2), and hence should be
condensates of them.

where e · m := ∑g
j=1 ejmj . These are the most general Wilson surfaces that can be

constructed in the 5d TQFT. Each of these surface operators descends from a Wilson
three-surface in 7d, and is associated with a cycle γn on Σg,n via

Φn(M2) = Φ(M2 × γn) , γn :=
g∑
j=1

ejλj +
g∑
j=1

mjµj . (5.34)

The surgery defects in 7d correspond to loci across which F acts on γn to produce F (γn) =
γFTn. We thus expect that surgery defects in 7d should reduce to defects CF (X4) in 5d
implementing

CF (X4) : Φn(M2) 7→ ΦFTn(M2) M2 ⊂ X4 . (5.35)

It is easy to see that such defects are condensation defects. Indeed, consider figure 8. On
the left-hand side of the figure we have a configuration in which Φn(M2) enters CF (X4)
from the left and ΦFTn(M2) exits from the right. We may now fold ΦFTn(M2) to the
left to obtain the figure on the right. This configuration tells us that CF (X4) must be
able to absorb Φ(1−FT )n(M2), for any n. Let us assume that n = (1, 0, . . . , 0). Then
Φ(1−FT )n = Φ(1−FT )1 , where we use the notation that Mi represents the i-th column of a
matrix M . We conclude that CF (X4) can absorb Φ(1−FT )1 , and hence CF (X4) should be a
condensate of Φ(1−FT )1 . The same argument can be used for n = (0, . . . , 0, 1, 0, . . . , 0) with
the 1 in the i-th slot, which tells us that CF (X4) must be a simultaneous condensate of all
Φ(1−FT )i for i = 1, . . . , 2g.

One subtlety is that, for certain values of N , two separate vectors (1 − F T )i and
(1− F T )j may be equal modulo N . In such cases the full one-form symmetry is not quite
Z2g
N , but a quotient thereof. This happens for example in the case of F = S at genus 1,

where the two vectors (1 − S)i are (1,−1) and (1, 1), which are equivalent for N = 2; a
treatment of the subtlety in this case can be found in [59]. More generally, some of the
(1−F T )i or multiples thereof may be linear combinations of the others. For simplicity here
we will only focus on the case for which this does not happen, i.e. ker(1− F T ) = 0 mod N ,
and will furthermore assume that N = p is prime. The more general case is discussed in
appendix D.
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With this motivation, we may now define the following condensation defect

CF (X4) := |H
0(X4,Zp)|2g

|H1(X4,Zp)|2g
∑

M1
2 ,...,M

2g
2 ∈H2(X4,Zp)

e
2πi
p

1
2
∑2g

i,j=1 R
F
ij(M

i
2,M

j
2 )

2g∏
i=1

Φ(1−FT )i(M
i
2) .

(5.36)
The RFij are F -dependent coefficients, whose explicit form will be given shortly. In practice,
it is actually more useful to rewrite the operators Φ(1−FT )i(M2) appearing above in terms
of products of the elementary operators Φ̂j(M2) and Φj(M2) introduced previously. To do
so, we write

Φ(1−FT )i(M
i
2) = Φ(M i

2 × Γi) , Γi :=
g∑
j=1

αijλj +
g∑
j=1

βijµj . (5.37)

The coefficients αij and βij are fixed in terms of the matrix elements of F straightforwardly,

F = 1−



α1
1 . . . α

2g
1

...
...

α1
g . . . α

2g
g

β1
1 . . . β

2g
1

...
...

β1
g . . . β

2g
g


. (5.38)

Using (5.33) and the commutation relations (5.9), we may then expand

2g∏
i=1

Φ(1−FT )i(M
i
2) = exp

2πi
p

1
2

2g∑
i=1

αi · βi(M i
2,M

i
2) +

2g∑
i<j

βi · αj(M i
2,M

j
2 )


×

g∏
j=1

Φ̂j

 2g∑
i=1

αijM
i
2

 g∏
j=1

Φj

 2g∑
i=1

βijM
i
2

 (5.39)

with αi · βi := ∑2g
j=1 α

i
jβ

i
j , whence the surgery defect may be rewritten as

CF (X4) = |H
0(X4,Zp)|2g

|H1(X4,Zp)|2g
∑

M1
2 ,...,M

2g
2 ∈H2(X4,Zp)

e
2πi
p

1
2
∑2g

i,j=1(βi·αj+RFij)(M
i
2,M

j
2 )

×
g∏
j=1

Φ̂j

 2g∑
i=1

αijM
i
2

 g∏
j=1

Φj

 2g∑
i=1

βijM
i
2

 . (5.40)

Having introduced this notation, we may now give the expression for the coefficients RFij in
terms of αji and β

j
i ,

RFij =
{
−βij j ≤ g
αij−g j > g

(5.41)

which completes the definition of the surgery defects CF (X4).
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Let us also note that this defect can be written in a more streamlined fashion by
defining it in terms of a sum over a single manifold M2 in H2(X4,Z2g

p ), as opposed to 2g
manifolds M i

2 in H2(X4,Zp),

CF (X4) =
|H0(X4,Z2g

p )|
|H1(X4,Z2g

p )|
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p 〈FM2,M2〉
)

Φ((1− F )M2) . (5.42)

The notation here is such that F now acts on the coefficient system of the manifold, instead
of on the manifolds themselves. We discuss this expression in more detail in appendix D.

We may similarly define the conjugate defect CF (X4) := χ(X4,Zp)−2gCF (X4)†, where
we have used the freedom to normalize this operator with an Euler counterterm. The
dagger acts as complex conjugation, and also transposes the order of operators. With these
definitions, one finds the following fusion rules,

CF (X4)× CF (X4) = CF (X4)× CF (X4) = 1 ,

Φn(M2)× CF (X4) = CF (X4)× ΦFTn(M2) ,
ΦFTn(M2)× CF (X4) = CF (X4)× Φn(M2) . (5.43)

In particular, we see that the fusions are generically non-Abelian.
An important point is that the fusion rules above are valid only subject to certain

constraints on the matrix F . In particular, explicit computation leads one to conclude that
the following constraints on αij , βij must hold,

αi · βj − βi · αj = βji − β
i
j

αi · βj+g − βi · αj+g = βj+gi + αij

αi+g · βj+g − βi+g · αj+g = αi+gj − αj+gi (5.44)

Remarkably, these conditions are satisfied exactly when F is symplectic. Indeed, if F is
symplectic then F TIF = I, and hence

(1− F )TI(1− F ) = I(1− F ) + (1− F )TI . (5.45)

This gives a series of equations which are quadratic in αij , βij on the left and linear in αij ,
βij on the right, which are precisely the equations in (5.44).

For every element of F ∈ Sp(2g,Zp), we have thus constructed codimension-1 defects
implementing the symmetry in the bulk 5d TQFT. These condensation defects can now be
used to construct |F |-ality defects in the boundary 4d gauge theories. Indeed, each of the
condensation defects above admits at least one topological boundary condition (namely,
Dirichlet boundary conditions for the condensate) which allows us to terminate them in
the bulk. The result can be thought of as a non-genuine 3-manifold defect attached to a
4-manifold. Such non-genuine operators were referred to as “twist defects” in [59, 135, 136],
and we denote them by TF (M3,M4). Concretely, we have

TF (M3,M4) := |H
0(M4,M3,Zp)|2g

|H1(M4,M3,Zp)|2g
∑

M2∈H2(M4,Z2g
p )

exp
(2πi

2p 〈FM2,M2〉
)

Φ((1− F )M2) ,

(5.46)
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N
2π
∑g
i=1

∫
bidb̂i

〈L| |T N,g,n[Ω]〉CF

Expand / Shrink

T N,g,nL [Ω]

T N,g,nF (L) [FΩ]/〈F 〉

NF

Figure 9. When the surgery defect CF is given a topological boundary, one obtains a twist defect.
Shrinking the slab, this twist defect becomes an |F |-ality interface NF in (3 + 1)d.

where the only difference with the expression for the condensation defect CF (M4) is in the
overall normalization factor, which is now in relative cohomology.29 The fusion rules follow
simply from those above. By moving the twist defects to the boundary as shown in figure 9,
one obtains an interface between the four-dimensional theory,

NF (M3) := TF (M3,M4)|y→0 , (5.47)

which fuse as

NF (M3)×NF (M3)

= 1
|H0(M3,Zp)|2g

∑
M1

2 ,...,M
2g
2 ∈H2(M3,Zp)

g∏
j=1

Φ̂j

 2g∑
i=1

αijM
i
2

 g∏
j=1

Φj

 2g∑
i=1

βijM
i
2

 . (5.48)

One can further obtain the fusion rules of NF (M3) with NF (M3) or NG(M3) for generic
G ∈ Sp(2g,Zp), thereby proving that they are |F |-ality defects as claimed. Since these
fusion rules will appear in an upcoming work [137] we do not expand on them here.
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A Symmetry generators at genus 2

In this appendix we give explicit matrix representation of the generators of isometries for
genus 2 Riemann surfaces. These matrices were also given in [126]. First, the matrices
appearing in table 2 are given by,

φ =


0 −1 −1 −1
0 0 −1 0
0 0 0 −1
1 0 0 1

 , M1 =


0 0 0 1
0 0 1 1
1 −1 0 0
−1 0 0 0

 ,

M2 =


0 0 1 1
0 0 1 0
0 −1 0 0
−1 1 0 0

 , M3 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

M4 =


0 0 1 0
0 0 0 1
−1 0 −1 0
0 −1 0 0

 , M5 =


0 0 1 0
0 −1 0 0
−1 0 0 0
0 0 0 −1

 ,

M6 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , M7 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

M8 =


−1 1 1 0
1 0 0 1
−1 0 0 0
1 −1 0 1

 , M9 =


0 0 0 −1
1 0 1 0
0 1 0 1
−1 0 0 0

 ,

M10 =


0 0 1 0
0 0 0 −1
−1 0 −1 0
0 1 0 1

 , C =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

In addition, the remaining matrices appearing in tables 3 and 4 are given by

N1 =


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 , N2 =


0 1 −1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

 ,

N3 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , N4 =


1 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 ,

– 52 –



J
H
E
P
0
5
(
2
0
2
3
)
2
2
5

N5 =


−1 1 0 0
0 1 0 0
0 0 −1 0
0 0 1 1

 , N6 =


1 0 0 0
1 −1 0 0
0 0 1 1
0 0 0 −1

 ,

P1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (A.2)

B Some algebra

In this appendix we collect and give details on various arithmetic statements that are used
in the main text.

B.1 Roots of unity over finite fields

Over the complex numbers the polynomial xn − 1 has n roots, each with multiplicity one.
We can ask if the same is true over an extension of Fp which splits xn − 1.

Over any field, if a polynomial P (x) has a root λ with multiplicity greater than 1, then
λ is also a root of d

dxP (x). For xn − 1 this means that there are roots with multiplicity
greater than 1 if and only if nλn−1 = 0. Since λn−1 can’t be zero, this is possible only if
n = 0 mod p. Hence if p is not a factor of n, there are n distinct roots of unity.

Since the product of two n-th roots of unity is another n-th root of unity, n-th roots of
unity form a group. This group is always cyclic, just like the group of complex n-th roots
of unity. To see this let us assume the contrary, namely that there exist two n-th roots
of unity σ and κ such that the intersection of their orbits is the identity, and such that
they generate a subgroup which is not cyclic. Let k be the order of σ and l the order of κ.
Non-cyclicity means that gcd(k, l) = m > 1. Hence, σ k

m and κ l
m both generate a subgroup

of order m. Unique factorization of xm− 1 then demands that σ k
m = κ

l
m , which contradicts

the assumption that the orbits do not intersect.
Hence if p is not a factor of n, the group of n-th roots of unity is a cyclic group of order n.
Let us next consider the case where p is a factor of n, namely n = pkm with p not

dividing m. Since (
pk

`

)
= 0 mod p if ` 6= 0, pk (B.1)

we have (xm − 1)pk = ∑pk

`=0
(pk
`

)
(−1)pk−`xm` = xn − 1 mod p. So the roots of xn − 1 are

roots of xm − 1 with multiplicity p. Since p is not a factor of m, the group of n = pkm

roots of unity is a cyclic group of order m.
Noting further that

xn − 1 =
∏
k|n

φk(x) (B.2)
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with φk(x) the k-th cyclotomic polynomial, we can also determine the factorization of φn(x)
from this. When p is not a factor of n, the roots of φn(x) are primitive n-th roots of unity.
More explicitly, if λ is the generator of n-th roots of unity then the roots of φn are λr with
gcd(r, n) = 1.

When n = pkm, (B.2) along with an inductive argument show that

φn(x) = (φm(x))ϕ(pk) . (B.3)

In this case the roots of φn(x) are the primitive m-th roots of unity, each with multiplicity
ϕ(pk) = pk − pk−1.

B.2 Integer matrices of finite order

Let F be a matrix of order k with integer coefficients. Then as a complex matrix it has a
Jordan normal form; see the discussion around (3.9) for the definition of Jordan normal
form. Each Jordan block corresponds to an eigenvalue λ and contains an eigenvector v with
λ as its eigenvalue. The condition that F has order k then translates to,

F kv = λkv = v . (B.4)

Hence λ must be a k-th root of unity. Furthermore, every Jordan block must be of size
1, i.e. F is diagonalizable as a complex matrix. To see this, let us suppose that a Jordan
block with eigenvalue λ is not of size 1. Then in addition to the eigenvector v, there is a
vector u such that

Fu = λu+ v . (B.5)

Applying F repeatedly, we deduce

F ku = λku+ kλk−1v . (B.6)

Since F k = 1, the above condition tells us that kλk−1v = 0, which is impossible. Thus all
integers matrices of finite order are diagonalizable as complex matrices. Things will be
different when we consider matrices over finite fields.

Since F is an integer matrix, its characteristic polynomial PF (x) is an integer polynomial.
Let λi be the (complex) eigenvalues of F . Then by definition

PF (x) =
∏
i

(x− λi) . (B.7)

As explained above, all eigenvalues of F are roots of unity. Hence the only possible integer
eigenvalues are ±1. All other eigenvalues are complex, and their product must give an integer
polynomial. Complex numbers which are roots of monic polynomials with integer coefficients
are known as “algebraic integers”, and hence the eigenvalues are all algebraic integers.

Every algebraic integer λ has a corresponding minimal polynomial φ(x), which is the
unique monic polynomial of the smallest degree such that λ is a root of φ(x). If P (x) is
any other integer polynomial with root λ, then the minimal polynomial φ(x) of λ must
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be a factor of P (x). Roots of unity are algebraic integers since they are roots of xn − 1.
The minimal polynomial for a primitive k-th root of unity is the cyclotomic polynomial
φk(x). As a result, the characteristic polynomial PF (x) of a finite order integer matrix F
must be a product of cyclotomic polynomials. Hence if one primitive k-th root of unity is a
root of PF (x), then all other primitive k-th roots of unity must also be roots, all with the
same multiplicity.

B.3 Intersections and the Jordan blocks

Recall that the action of a modular transformation on the cycles in H1(Σg,0,Fp) is represented
by a matrix F ∈ Sp(2g,Fp). This means that F preserves the symplectic form I,

F TIF = I . (B.8)

If we work over the splitting field of the characteristic polynomial of F , the cycles organize
themselves into Jordan blocks which are (partially) labelled by the eigenvalues λ of F . A
Jordan block with eigenvalue λ is spanned by vectors v(i)

λ such that

Fv(0) = λv(0) ,

Fv(i) = λv(i) + v(i−1) . (B.9)

In particular v(0)
λ is an eigenvector with eigenvalue λ. Since F satisfies (B.8), we have

(v(0)
λ1

)TIv(0)
λ2

= (v(0)
λ1

)TF TIFv(0)
λ2

= λ1λ2(v(0)
λ1

)TIv(0)
λ2
,

which then implies (λ1λ2−1)(v(0)
λ1

)TIv(0)
λ2

= 0 mod p. Hence
〈
v

(0)
λ1
, v

(0)
λ2

〉
= 0 unless λ2 = λ−1

1

mod p. Following the same steps iteratively, we can obtain that
〈
v

(i)
λ1
, v

(i)
λ2

〉
= 0 unless

λ2 = λ−1
1 mod p for any i. This means in particular that Jordan blocks themselves are

isotropic unless the eigenvalue λ = ±1.
Now let us apply this to integer matrices of finite order as above. As explained, the

characteristic polynomial of such a matrix is a product of cyclotomic polynomials,

PF (x) = (φn1(x))k1(φn2(x))k2 . . . (φnl(x))kl (B.10)

The module Z2g on which F acts splits as

Z2g ∼= Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λl , Λi := ker(Φni(F )) . (B.11)

This splitting relies on the diagonalizability of F . The Λi are invariant under the action of
F , and using the intersections in diagonalized form we can deduce that the vectors in Λi do
not intersect vectors in Λj unless i = j. Furthermore, we can split each Λi into ki parts,

Λi = Λ(1)
i ⊕ Λ(2)

i ⊕ · · · ⊕ Λ(ki)
i , (B.12)

where each Λ(1)
i is of dimension ϕ(ni) and is annihilated by φni(F ). This means that

regarded as a complex vector space, the space Λ(a)
i contains one eigenvector for each
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primitive n-th root of unity, and furthermore vectors in Λ(a)
i don’t intersect those in Λ(b)

i

unless a = b.
This remains true on passage from integers to finite fields. As a result, whenever φni(x)

has ϕ(ni) distinct roots over Fp, each Λ(a)
i will contain one eigenvector for each of these

roots. On the other hand, if p is a factor of n there can be non-trivial Jordan blocks. In
fact, in this case each Λ(a)

i contains one Jordan block of size ϕ(n) for each root of φ ni
pk

(x)

where pk is the highest power of p that divides ni. This can be seen as a statement about
the order of F̃ , defined to be F restricted to Λ(a)

i . Over integers F̃ has order n = mpk,
while over Fp it has this order iff there is a single Jordan block for each root of φm(x). To
see this, let us suppose that the order of F̃ is mp` with ` ≤ k. In that case we must have
that over integers,

F̃mp
` = 1 + pN (B.13)

where N is some non-zero matrix. Let us recall that over its splitting field the matrix F̃ is
diagonalizable, with eigenvalues that are primitive n-th roots of unity. The eigenvalues of
F̃mp

` are then primitive pk−`-th roots of unity, each with multiplicity ϕ(n)
ϕ(pk−`) . Hence we

obtain

det
(
x−Mmp`

)
=
(
φpk−`(x)

) ϕ(n)
ϕ(pk−`) ⇒ det

(
1−Mmp`

)
= p

ϕ(n)
ϕ(pk−`) (B.14)

where we have used the fact that φpk(1) = p for k > 1 and p > 2. Now going back to (B.13),
we see that this means,

pϕ(n) det(N) = p
ϕ(n)

ϕ(pk−`) (B.15)

Hence N cannot be an integer matrix unless k = `.
We can now ask about the intersection number of a vector v in a Jordan block of

eigenvalue λ with another vector u in a different Jordan block. First we note that since
I is non-degenerate there must exist at least one vector which intersects v, and from the
discussion above it must lie in a Jordan block of eigenvalue λ−1. Now we can check that

(v(0)
λ−1)TF TIFv(1)

λ = (v(0)
λ−1)TIv(1)

λ ⇒ (v(0)
λ−1)T v(0)

λ = 0 , (B.16)

i.e. if there is a non-trivial trivial Jordan block for λ, then the eigenvector v(0)
λ cannot

intersect v(0)
λ−1 . The argument above obviously does not work if v(1)

λ does not exist. We
can then iterate this computation and deduce that

〈
v

(0)
λ , v

(a)
λ−1

〉
= 0, unless v(a+1)

λ−1 doesn’t
exist. In that case we need to compute (v(a+1)

λ−1 )TF TIFv(0)
λ . Similarly, by an appropriate

sequence of computations of (v(a)
λ−1)TF TIFv(b)

λ , we can conclude that
〈
v

(a)
λ , v

(b)
λ−1

〉
= 0 unless

a+ b− 1 is greater than or equal to the size of the Jordan blocks, i.e ϕ(pk). In fact, this
can be simplified even further: the v(a)

λ are not uniquely determined by (B.9). In fact we
can change v(a)

λ by any arbitrary linear combination of v(b)
λ with b < a, and (B.9) will still

hold. By using this freedom we can choose v(b)
λ in such a way that the non-zero intersection

numbers are
〈
v

(a)
λ , v

(ϕ(pk)−1−a)
λ−1

〉
.
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B.4 Factorization φ15(x) of over finite fields

We now focus on the study of invariant subspaces of φ15(x), which is relevant to the study
of global forms of genus 4 class S theories invariant under a certain order 15 symmetries,
discussed in section 4.3.2.

Passing to the splitting field of φ15(x), we obtain a primitive fifteenth root of unity λ.
The roots of φ15(x) are then: λ, λ2, λ4, λ7, λ8, λ11, λ13, and λ14. Since λ3 is a primitive fifth
root of unity and λ5 is a primitive third root of unity, we obtain two relations,

φ3(λ5) = λ10 + λ5 + 1 = 0 ,
φ5(λ3) = λ12 + λ9 + λ6 + λ3 + 1 = 0 . (B.17)

The multiplicative groups Z×15 is not cyclic, and as a result there is no element of order 8
in it. Thus over any Fp we can write φ15(x) = P (x)Q(x) where P (x), Q(x) are polynomials
over Fp that can potentially factorize further. We want to determine when they determine
isotropic invariant global form. Here we need to divide into three cases,

1. We first assume that the constant term of P (x) and Q(x) is 1, since that is only
power of λ that is in Fp for all p, and hence the only value allowed without further
assumptions on p. The only possible factorization satisfying this and the isotropy
criterion is:

P (x) = (x− λ)(x− λ2)(x− λ4)(x− λ8) ,
Q(x) = (x− λ7)(x− λ11)(x− λ13)(x− λ14) . (B.18)

These are polynomials over Fp if η := λ+λ2 +λ4 +λ8 ∈ Fp. Using the relations (B.17),
it can be checked that η satisfies,

η2 − η + 4 = 0 ⇒ η = 1±
√
−15

2 . (B.19)

Hence P (x) and Q(x) are polynomials over Fp whenever −15 has a square root in
Fp. Using the Legendre symbol, this can be seen to happen whenever p ∈ 15N + k

for k = 1, 2, 4, and 8. Notice that when k = 1, 4 there are also other values available
for the constant term of P (x) and Q(x). This means that P (x) and Q(x) can split
further for these cases, and as we will see below that they do. For the other cases
k = 2, 8 there are exactly 2 invariant global forms.

2. If p ∈ 3N + 1 then λ5 ∈ Fp and hence P (x) and Q(x) can have a constant term which
is a power of λ5. As a result, in addition to the possibility given in (B.18), there is
another possibility,

P (x) = (x− λ)(x− λ4)(x− λ7)(x− λ13) ,
Q(x) = (x− λ2)(x− λ8)(x− λ11)(x− λ14) . (B.20)

Using (B.17), it can be verified that

(−λ− λ4 − λ7 − λ13)3 = (−λ2 − λ8 − λ11 − λ14)3 = 1 . (B.21)
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This together with (B.17) can then be used to show that P (x) andQ(x) are polynomials
over Fp. This means that when p ∈ 15N + 7 or 15N + 13, there are 2 invariant global
forms. For p ∈ 15N + 4 there are 4.

3. Finally if p ∈ 5N + 1, then λ3 ∈ Fp. Moreover using (B.17) we can show that,

(−λ− λ11)5 = (−λ2 − λ7)5 = (−λ4 − λ14)5 = (−λ8 − λ13)5 = 1 . (B.22)

Hence all of the four sums are fifth roots of unity, and thus in Fp. This gives four
factors of φ15 which are polynomials over Fp, namely (x−λ)(x−λ11), (x−λ2)(x−λ7),
(x − λ4)(x − λ14), and (x − λ8)(x − λ13). In all 4 cases, the coefficient of both the
linear and constant term is a fifth root of unity. Hence there are 4 invariant global
forms when p ∈ 15N + 6 or p ∈ 15N + 11.

When p ∈ 15N+ 1, all 3 cases above coincide and there are 8 invariant global forms. In
the remaining case, i.e. when p ∈ 15N + 14, the factorization gives non-isotropic invariant
forms and hence in that case there are no invariant global forms.

B.5 Composite characteristic polynomial

Finally, in this appendix we make some comments on the case in which the characteristic
polynomial of F is not a cyclotomic polynomial, but a product thereof. Concretely, take
PF (x) = (φn(x))k with n > 2. In this case, over the complex numbers each of the n
eigenvalues of PF (x) has multiplicity k. For the generic case when p is not a factor of n,
this fact carries over to the field extension of Fp which splits PF (x). Hence each eigenvalue
λ has an eigenspace of degeneracy k. We can always choose a basis v(i)

λ , 1 ≤ i ≤ k of these
spaces such that the non-zero intersection numbers are,30

〈
v

(i)
λ , v

(i)
λ−1

〉
= 1 , if λ > λ−1 . (B.23)

This degeneracy means that often a large number of invariant subspaces exist. In fact, if
k = 2l is even then F has invariant spaces for every prime field Fp. This is because any
subspace spanned by l eigenvectors of each eigenvalue is annihilated by (φn(F ))l and hence
is an invariant subspace, and because of the intersections given in (B.31) many of these
are isotropic.

As an illustration let us consider the case of k = 2. If φn(x) is irreducible over Fp, then
an invariant global form consists of precisely one vector from each of the eigenvalues λi,
where 1 ≤ i < n, gcd(i, n) = 1 and λn = 1. There are p+ 1 ways of picking an eigenvector
(up to scalar multiplication) with the eigenvalue λi from the 2 dimensional eigenspace. Once
we pick an eigenvector vλ for λi, then isotropy forces us to pick the unique (again up to
scalar multiplication) eigenvector uλ−1 for λ−i = λn−i which does not intersect u. As a
result, there are (p + 1)

ϕ(n)
2 invariant isotropic subspaces. If φn(x) factorizes then more

invariant global forms exist and can be counted using similar arguments, we will refrain
from a general exposition here.

30The ordering in the expression is arbitrary and its only purpose is to fix the sign of the intersection pairing.
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If k is odd, then invariant global forms require factorization of φn(x) over Fp. The
counting of the number of invariant forms is tedious, but is a straightforward application of
the arguments above combined with those used in the preceding sections. The non-generic
case when p is a factor of n is yet more involved because there are multiple non-trivial
Jordan blocks.

Finally we discuss the most general case,

PF (x) =
∏
n

(φn(x))kn . (B.24)

Over the complex numbers each ker(φn(F )kn) is an invariant subspace and, moreover, a
vector in such a subspace only intersects with other vectors in the same subspace.

For the generic prime fields Fp,31 this means that an invariant global form consists
of invariant maximal isotropic lattice from each of ker(φn(F )kn). As a result the number
of invariant global forms is a product: if we denote by N (p)

n1,k1;n2,k2;...;na,ka , the number of
global forms for,

PF (x) = (φn1(x))k1 . . . (φna(x))ka , (B.25)

then for generic p,

N
(p)
n1,k1;n2,k2;...;na,ka = N

(p)
n1,k1

N
(p)
n2,k2

. . . N
(p)
na,ka

. (B.26)

This factorization essentially holds for non-generic p too, but multiplicities need to be
adjusted to take into account the factorization (4.4) and the more complicated structure of
the Jordan blocks.

B.5.1 An all genus example

As an example with composite characteristic polynomials, we consider an infinite family of
fixed point indexed by genus g. This fixed point is a genus g surface obtained by identifying
the diagonally opposite sides of a regular (4g + 2)-sided polygon in hyperbolic space. This
surface has a Z4g+2 isometry corresponding to rotation by 2π

4g+2 . The non-zero entries for the
matrix F for the corresponding transformation take the form (in a basis with non-standard
intersection form, cf. [39]),

Fi+1,i = 1 , F2g,i = (−1)i , 0 < i < 2g . (B.27)

The characteristic polynomial of F can be evaluated using,

det(X) =
∑
π∈Sn

sign(π)
n∏
i=1

Xπ(i),i (B.28)

where X is an n× n matrix and Sn is the group of permutations of n objects. Since F has
few non-zero entries, it is possible to enumerate all the permutations π that contribute to

31Generic means that if kn 6= 0 then p is not a factor of n. This is the generic case because for a given F ,
there are only finitely many primes not satisfying this.
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det(x− F ). We do so by identifying permutations contributing to a particular power of x.
For x2n, the permutations that contribute to its coefficient are those that fix precisely 2n
of the 2g objects. The rest of the 2n − 2g objects are permuted among themselves. For
such a permutation to have a non-zero contribution we must have π(i) = i+ 1 for all those
2n− 2g objects, except for i = 2g. Completing the cycle then requires π(2g) = 2g − 2n+ 1.
This is an odd permutation, and thus the coefficient is 1.

Next consider the odd powers of x. For x2n−1, the only permutation that contributes
is the identity permutation since the diagonal element F2g,2g = 1, and hence the coefficient
is −1. For other odd powers x2n+1 the only permutation that contributes is again the one
consisting of the cycle π(i) = i+ 1 for i ≥ 2g − 2n and now π(2g) = 2g − 2n. This is an
even permutation and the coefficient is −1. Hence

PF (x) = x2g − x2g−1 + x2g−2 + · · ·+ x2 − x+ 1 . (B.29)

We can mod out by Z2 by considering F 2 as the generator of Z2g+1. Since we know the
eigenvalues from the characteristic polynomial, it is straightforward to obtain that,

PF 2(x) = x2g + x2g−1 + · · ·+ 1 = x2g+1 − 1
x− 1 . (B.30)

Hence it is easy to obtain the expansion of PF 2(x) in terms of cyclotomic polynomials,

PF 2(x) =
∏

m 6=1,m|2g+1
φm(x) . (B.31)

We can now easily determine when the polynomial PF 2(x) splits completely over Fp
when p is not a divisor of 2g+ 1. This requires that for any divisor m of 2g+ 1, p = 2m+ 1.
Requiring that this happens simultaneously for all the divisors means that p ∈ (2g+ 1)N+ 1
and in this case there are 22g invariant global forms. We can also easily find a sufficient
criteria for the existence of intrinsic non-invertible symmetry. The group Z×n is cyclic if n is
a prime and there are ϕ(n− 1) generators in this group. Hence if p ∈ (2g + 1)N + k where
k is one of the ϕ(2g) generators of Z×n then the symmetry generated by M is intrinsically
non-invertible. However whenever p is not in one of these cases, i.e. when φ2g+1(x) is not
irreducible or split over Fp, then we need the details of how it factors to decide whether the
symmetry is invertible or not.

The next simplest case is when 2g+ 1 = qk with q a prime. Here the sufficient condition
for the invariant global forms to exist is that p ∈ qkN + 1. Since φq(x) is a factor of PF 2(x)
we have intrinsic non-invertible symmetry whenever p ∈ (2g + 1)N + k where k is one of
ϕ(q − 1) generators of Z×q .

For the most general case we can write down a similar pair of sufficient conditions
for complete splitting and irreducibility of PF (x2) when 2g + 1 = qk1

1 . . . qkmm . When
p = 2l(2g + 1) + 1, then 22g invariant forms always exist. Similarly, if any of the cyclotomic
polynomials appearing in (B.31) are irreducible over Fp then the symmetry is intrinsically
non-invertible. So if p ∈ (2g + 1)N + k where k generates one of Z×qi , then the symmetry is
intrinsically non-invertible.
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C Basics of handlebodies

In this appendix we review some basic facts about handlebodies which will be used in
section 5. These facts can be found in many standard math texts, such as [133].

C.1 Solid tori

Handlebodies are a class of three manifolds obtained by “filling in” a genus g Riemann
surface (for simplicity we will assume no punctures in this appendix). The simplest case is
filling in a torus to obtain a solid torus, homeomorphic to S1×D2.32 More concretely, given
a torus Σ1,0, we may construct a solid torus V1,0 by choosing any curve µ ∈ H1(Σ1,0,Z) on
Σ1,0 to be the “meridian”, i.e. the curve which becomes contractible in the handlebody. The
remaining generator of H1(Σ1,0,Z), which remains as a non-trivial generator of H1(V1,0,Z),
is referred to as the “longitude”, and will be denoted by λ.

Meridians and longitudes are not on equal footing: all meridians of V1,0 are ambiently
isotopic, and hence it makes sense to discuss the meridian of V1,0, but there are infinitely
many ambient isotopy classes of longitudes.33 These statements can be better understood
by first introducing the following non-trivial theorem:

Theorem 3. The set of isotopy classes [γ] of non-trivial closed curves γ on Σ1,0 is in
bijection with ordered pairs of coprime integers (m,n), such that [γ] corresponds to (m,n)
if and only if γ is homologous to mµ+ nλ.

Since µ is trivial in π1(V1,0), whereas λ generates π1(V1,0), a curve γ is homotopically
trivial in V1,0 if and only if it is labelled by (m,n) = (±1, 0). Thus all homotopically trivial
curves in V1,0, i.e. all meridians, are in a single isotopy class (modulo change of orientation).

On the other hand, a curve γ labelled by (m,n) represents a generator of H1(V1,0), and
hence a longitude, if and only if n = ±1. This means that any curve labelled by (m,±1) is
a longitude. There are thus an infinite number of them, labelled by integers m. Note that
each (m,±1) can be obtained from the curve (m,±1) and doing m Dehn twists around the
meridian.

C.2 Higher genus handlebodies

We may now proceed to the case of more general handlebodies Vg,0. In order to specify the
handlebody, we must again choose a set of g generators of H1(Σg,0,Z) to be meridians, i.e.
to be trivialized in H1(Vg,0,Z). Given a meridian µ1, note that any γ intersecting µ1 at a
single point must be a longitude. Indeed, we have the following,

Proposition 1. Given two curves γ1 and γ2 with labels (m1, n1) and (m2, n2), the algebraic
intersection number is given by

〈γ1, γ2〉 = m1n2 − n1m2 . (C.1)
32Not every three-manifold with torus boundary is a solid torus. Indeed, for any knot K we could consider

the knot exterior in S3. For any K besides the unknot this will not be a solid torus, but rather a “cube with
knotted hole”.

33Any two longitudes are related by homeomorphism, though.
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This proposition implies that if 〈γ1, γ2〉 = ±1, then we have m1n2 − n1m2 = ±1. Now
if we assume that γ1 is a meridian, we must have (m1, n1) = (±1, 0), and hence we conclude
that n2 = ±1. This means that γ2 is indeed a longitude.

In the current context, what this tells us is that when we choose our meridians, we
must choose them such that they have zero intersection pairing. In other words, the choice
of meridians is given by a choice of maximal isotropic sublattice L ⊂ H1(Σg,0,Z).

As we discussed above for solid tori, the set of meridians L is a well-defined property
of the handlebody. On the other hand, there are many choices for the set of longitudes.
Each choice is related by shifts by the meridians. The invariant quantity associated to the
handlebody is thus not the set of longitudes themselves, but the coset L⊥ = H1(Σg,0,Z)/L.

D Alternative expression for CF (X4)

In this appendix we give details on the more streamlined expression for CF (X4) given
in (5.42). The basic idea is to replace the 2g two-cycles M i

2 valued in Zp with a single
two-cycle M2 valued in Z2g

p . Another way of saying the same thing is we consider a single
cycle in H2(X4,Z2g

p ) instead of 2g cycles in H2(X4,Zp). This also makes direct contact
with the 6d picture since,34

H3(Σg,0 ×X4,Zp) ∼= H2(X4, H1(Σg,0,Zp)) ∼= H2(X4,Z2g
p ) . (D.1)

In this picture given H2(X4,Z2g
p ) we can define the antisymmetric pairing 〈·, ·〉 which is the

combination of the symmetric intersection pairing on homology with the antisymmetric
Dirac paring on Z2g

p . In class S theories, this is the same as the intersection pairing on
H3(Σg,0,Zp) by (D.1). As a result, the operators Φ(M2) with M2 ∈ H2(X4,Z2g

p ) satisfy
the algebra in (5.9). There is also a symmetric pairing (·, ·) which is the combination of
symmetric intersection pairing with the canonical symmetric pairing on the group Z2g

p of
coefficients. The two are related by,〈

M2,M
′
2
〉

= (M2, IM
′
2) . (D.2)

We would like to construct a defect CF (X4) that acts on Φ(M2) with M2 ∈ H2(X4,Z2g
p )

as

CF (X4) : Φ(M2) 7→ Φ(FM2) , M2 ⊂ X4 . (D.3)

This is equivalent to the fusion rule,

Φ(M2)× CF (X4) = CF (X4)× Φ(FM2) , M2 ⊂ X4 . (D.4)

In the equations above F is a 2g × 2g matrix with coefficients in Zp, and FM2 represents
an automorphism of the coefficient system of H2(X4,Z2g

p ).
The most general form CF (X4) can take is

CF (X4) =
|H0(X4,Z2g

p )|
|H1(X4,Z2g

p )|
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p 〈M2,M2〉F
)

Φ((1− F )M2) , (D.5)

34As in the main text, we assume H1,3(X4,Z) = 0.
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where 〈·, ·〉F is a bilinear form which we will determine by demanding that the fusion rules
given by (D.4) are satisfied. From (D.5), it is clear that only the symmetric part of it
contributes. The reason that we have included a factor of (1− F ) in Φ((1− F )M2) is to
implement folding trick, as discussed around figure 8. Another way to see that it should be
there is to notice that if FM2 = M2 then the defect CF (X4) should be transparent to M2,
and hence Φ(M2) should drop out of the condensate.

We now fix the bilinear pairing 〈·, ·〉F by evaluating Φ(M̃2)× CF (X4), which gives

|H1(X4,Z2g
p )|

|H0(X4,Z2g
p )|

Φ(M̃2)×CF (X4)

=
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p 〈M2,M2〉F
)

Φ(M̃2)×Φ((1−F )M2)

=
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p
(
〈M2,M2〉F +

〈
M̃2,(1−F )M2

〉))
Φ(M̃2+(1−F )M2)

=
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p
(
〈M2,M2〉F +

〈
M̃2,(1−F )M2

〉))

×Φ((1−F )M̃2+(1−F )M2+FM̃2)

=
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p
(
〈M2,M2〉F +

〈
M̃2,(1−F )M2

〉
−
〈

(1−F )(M̃2+M2),FM̃2
〉))

×Φ((1−F )(M̃2+M2))×Φ(FM̃2)

=
∑

M2∈H2(X4,Z2g
p )

exp
(2πi

2p
(〈
M2−M̃2,M2−M̃2

〉
F

+
〈
M̃2,(1−F )(M2−M̃2)

〉

−
〈

(1−F )M2,FM̃2
〉))

Φ((1−F )M2)×Φ(FM̃2) .

We now demand that the left-hand side is proportional to CF (X4)×Φ(FM̃2). If we assume
that ker(1− F ) is trivial, then this simply amounts to the requirement that〈
M2 − M̃2,M2 − M̃2

〉
F

+
〈
M̃2, (1− F )(M2 − M̃2)

〉
−
〈

(1− F )M2, FM̃2
〉

= 〈M2,M2〉F .
(D.6)

To solve for 〈·, ·〉F we first consider the case M̃2 = M2. This gives〈
M̃2, M̃2

〉
F

= −
〈
M̃2, FM̃2

〉
=
〈
FM̃2, M̃2

〉
, (D.7)

which in turn motivates 〈
M2, M̃2

〉
F

:=
〈
FM2, M̃2

〉
. (D.8)

This pairing is not symmetric, but only the symmetric part contributes to (D.5). By making
use of (D.2) and (5.38), it can be shown that this definition matches that appearing in (5.40)
and (5.41).
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Inserting this definition into the more general (D.6), we see that this is satisfied only if〈
FM2, FM̃2

〉
=
〈
M2, M̃2

〉
, (D.9)

i.e if F is a symplectic matrix. It can also be checked that CF (X4)× CF (X4) = Φ(0) = 1 if
we define CF (X4) = χ(X4,Zp)−2g CF (X4)†.

More care is required in the case that ker(1 − F ) is nontrivial. There are two cases
to be considered here. First, consider the case in which 1− F has no non-trivial Jordan
blocks with eigenvalue 1. In this case we have the splitting

H2(X4,Z2g
p ) = ker(1− F )⊕ im(1− F ) , (D.10)

and we see that requiring Φ(M̃2)× CF (X4) = CF (X4)× Φ(FM̃2) no longer imposes (D.6),
but rather the seemingly looser requirement

∑
N2∈ker(1−F )

e
2πi
2p 〈M2+N2,M2+N2〉F =

∑
N2∈ker(1−F )

e
2πi
2p

〈
M2+N2−M̃2,M2+N2−M̃2

〉
F (D.11)

× e
2πi
2p

(〈
M̃2,(1−F )(M2−M̃2)

〉
−
〈

(1−F )M2,FM̃2

〉)
,

obtained by comparing the coefficients of Φ((1− F )M2) on both sides. Similar to before,
in order to determine the pairing 〈·, ·〉F we first restrict to M̃2 = M2 +N2, in which case
we obtain ∑

N2∈ker(1−F )
e

2πi
2p 〈M2+N2,M2+N2〉F = e

2πi
2p 〈FM2,M2〉 ∑

N2∈ker(1−F )
e

2πi
2p 〈N2,(1−F )M2〉

= |ker(1− F )| e
2πi
2p 〈FM2,M2〉 (D.12)

where we have used the fact that any M2 satisfies 〈N2, (1− F )M2〉 = 0. Thus in this case
we obtain the form of the defect

CF (X4) =
|H0(X4,Z2g

p )|
|H1(X4,Z2g

p )|
|ker(1− F )|

∑
M2∈im(1−F )

exp
(2πi

2p 〈FM2,M2〉
)

Φ((1− F )M2) .

(D.13)
On the other hand, if there exists a non-trivial Jordan blocks with eigenvalue 1, then

the splitting in (D.10) is no longer possible, and the above manipulations are no longer
valid.35 In that case, an alternative way to proceed (which works as long as p 6= 2) is to
work in a basis where F is given by

F =
(
F ′ 0
0 F̃

)
(D.14)

35We can see that the splitting fails in the case of a non-trivial Jordan block of size k > 1 by considering
the vector v(k−1) in the notation of (B.9), which cannot be written as a sum of an element in the image and
an element of the kernel.
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where F ′ is a block containing all Jordan blocks of eigenvalue 1 and F̃ contains the rest of
the blocks. Then instead of starting with F , we start with the matrices,

F− :=
(
−F ′ 0

0 F̃

)
, I− :=

(
−1 0
0 1

)
. (D.15)

Since F− and I− both have no non-trivial Jordan blocks of eigenvalue 1, we can write down
the defects for both of them. We then define the defect for F in a roundabout manner as36

CF (X4) := CF−(X4)× CI−(X4) . (D.16)

We note that in practice this is not an irrelevant subtlety: non-trivial Jordan blocks
of eigenvalue 1 appear in our discussion whenever the characteristic polynomial of F is
φp(x) and the finite field we are working over is Zp. A concrete example is the case of the
Z5 ⊂ Z10 symmetry appearing at genus 2, discussed in section 3.3, when p = 5.
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