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SUMMARY
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how
altered neuronal sensory representations in these states relate to task performance and learning. We trained
water-restrictedmice in a two-whisker discrimination task to study cortical circuits underlying perceptual de-
cision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor
cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas iden-
tified populations selective to sensory or motor events. Analysis of task performance during individual ses-
sions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning
was better explained by improvements in motivational state control rather than sensorimotor association.
Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker
stimuli could be better decoded from neuronal activity during high task performance states, suggesting
that state-dependent changes of sensory processing influence decision-making.
INTRODUCTION

Perceptual decision-making is expressed through sensorimotor

transformations: sensory-evoked responses in the brain are

transformed into motor plans guiding execution of an appro-

priate action. Brain circuits involved in this behavior have long

been studied in primates (Parker and Newsome, 1998; Romo

and Rossi-Pool, 2020). However, access to micro-circuits is

challenging in these animals. The mouse model has become

increasingly promising for more advanced recording techniques

relying on genetic tools for circuit interrogation (Chen et al.,

2013b; Fenno et al., 2011; Kim and Schnitzer, 2022). Head-fixed

mice can be trained to perform behavioral tasks based on visual

(Burgess et al., 2016; Goltstein et al., 2021; Steinmetz et al.,

2019), olfactory (Allen et al., 2017; Komiyama et al., 2010), tactile

(Chen et al., 2013a; Guo et al., 2014; Harrell et al., 2021; Sachid-

hanandam et al., 2013), or auditory (Kuchibhotla et al., 2017;

Pinto and Dan, 2015; Xin et al., 2019) sensory cues.

Sensory processing is strongly modulated by ongoing behav-

ioral states that might vary during task execution. Exploratory

behaviors such as locomotion or whisking can modulate the

amplitude of evoked sensory responses (Ayaz et al., 2013;

Crochet and Petersen, 2006; Ferezou et al., 2007; Gasselin

et al., 2021; Szwed et al., 2003; Vinck et al., 2015). Task

engagement and arousal have also been shown to enhance
4176 Neuron 110, 4176–4193, December 21, 2022 ª 2022 The Autho
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sensory responses during goal-directed behaviors (Kuchibhotla

et al., 2017; Lee et al., 2020; McGinley et al., 2015). More

importantly, appetitive-related states that are used to motivate

behavior in these tasks can strongly alter brain-wide activity

and sensory representations across the brain (Allen et al.,

2019; Burgess et al., 2016; Henschke et al., 2020; Livneh

et al., 2017, 2020). How thirst-related motivational states can

alter sensory processing in relation to task performance re-

mains unclear.

In mice, the whisker somatosensory system is prominent, as

rodents rely on their whiskers to explore their environment, mea-

sure distances, guide locomotion, and identify objects (Grant

and Goss, 2022). Recent studies have investigated whisker

perception with simple detection tasks in which water-restricted

mice have to produce an action to obtain water upon whisker

stimulation (Kwon et al., 2016; Le Merre et al., 2018; Sachidha-

nandam et al., 2013), revealing the existence of decision-modu-

lated sensory signals in somatosensory cortices (Kwon et al.,

2016; Yamashita and Petersen, 2016; Yang et al., 2016) and in

some thalamocortical projections (El-Boustani et al., 2020).

However, because of widespread representations of multiple

behavior-related variables in the cortex (Musall et al., 2019;

Steinmetz et al., 2019; Stringer et al., 2019), it has been chal-

lenging to fully understand the nature of sensory processing dur-

ing task performance.
r(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Head-fixed mice can learn a two-whisker discrimination task with distinct orofacial responses

(A) Schematic of the experimental design. The table represents outcomes (Hit, False alarm [FA], Miss, or Correct rejection [CR]) for each combination of stimulus

condition (C2 whisker, B2 whisker, No stimulus) and mouse action (lick or no lick).

(B) Lick probability for all stimulus conditions across sessions and averaged over mice (N = 92 mice). Whisker discrimination performance is shown with the right

y-axis (blue). Dashed black line: chance level. Shaded areas: SEM.

(C) Snapshot from the camera filming the face of the mouse.

(D) Trajectories in the t-SNE space corresponding to a single session for Hit (green) and FA (red) trials. Trajectories start at stimulus onset and end after the

response window (2 s). Domains for specific orofacial movements are highlighted with colors and labeled (see Figure S1A for examples of Miss and CR tra-

jectories).

(E) Ethograms based on the t-SNE in (D) for all Hit and FA trials in chronological order. Colors correspond to state location at each time point with the same color

code as in (D). The white line indicates stimulus onset and the dashed white line indicates the end of the response window (see Figure S1B for examples of Miss

and CR ethograms).

(legend continued on next page)
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RESULTS

Head-fixed mice can learn a two-whisker discrimination
task with distinct orofacial responses
To address this issue, we developed a go/no go two-whisker

discrimination task for head-fixed mice under a water-restriction

schedule to investigate sensory and motor representations dur-

ing perceptual decision-making in different behavioral states.

Mice were head-fixed in the dark and received short pulsatile

tactile stimulations on one of two neighboring whiskers: the C2

or the B2 whisker (Figure 1A). Licking a spout in response to

C2 whisker stimuli (Go) within a 2 s window following stimulus

onset delivered a drop of water reward from the spout (Hit trials),

whereas licking in response to the B2 whisker (No go) resulted in

a 10 s long timeout (False Alarm trials). This two-whisker discrim-

ination task is more challenging than simpler whisker detection

tasks, as it requires mice to make perceptual decisions based

on neighboring whiskers that share overlapping cortical repre-

sentations. During the first days of training, mice quickly learned

to lick in response to whisker stimulation but displayed little

discrimination between the two whiskers (Figure 1B). After the

second week of training, mice displayed a significantly higher

lick probability for C2 whisker than for B2 whisker stimulation

(Figure 1B, see STAR Methods).

To tease apart motor and sensory signals from neural activity,

it is critical to precisely describe motor responses to accurately

estimate reaction times as the earliest detectable orofacial

movements for licking. While licking behavior during execution

of the task was monitored through vibrations on the spout, pre-

cise lick reaction times were obtained by offline analysis of oro-

facial movements filmed during each trial (Figures 1A and 1C).

The movies were analyzed, adapting a method for non-linear

dimensional reduction previously used to classify stereotyped

motor behaviors of flies (Berman et al., 2014). This method is

based on the t-distributed stochastic neighbor embedding algo-

rithm (t-SNE) (Van Der Maaten and Hinton, 2008) (see STAR

Methods). In the resulting two-dimensional t-SNE space, individ-

ual trials could be represented as trajectories traversing domains

corresponding to stereotypical orofacial movements (Figures 1D

and S1A). Some categories of orofacial movements were clearly

identified in all mice and all sessions: lick initiation, sustained

licking, swallowing, twitching, tense jaw movement, shaking,

and body movements (Video S1).

This parcellation of the t-SNE space could be used to repre-

sent sessions as ethograms describing the sequence of actions

performed bymice in Hit or False Alarm trials (Figure 1E). In these

trials, mice produced an initial lick upon whisker stimulation fol-

lowed by sustained licking and swallowing when a reward was

available (Hit trials), whereas mice quickly resumed the quiet

state if no reward was delivered (False Alarm trials) (Videos S2

and S3). The t-SNE representation could be used to estimate

licking reaction times more accurately than what was estimated
(F) Comparison of first lick reaction times measured with spout contact or based

shown for C2 (green) and B2 (red) whisker. The gray scale map represents the den

(n = 346). Average reaction time across all mice: 0.280 ± 0.001 s (t-SNE) versus 0.4

bout duration evoked by C2 or B2 whisker stimulation across all sessions of all m

STAR Methods). Shaded areas: SEM.
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by detecting spout vibrations. We defined the t-SNE reaction

time as the first frame where the lick domain is crossed by the

trajectory in each lick trial (Figure 1D, see STAR Methods). This

definition of the reaction time correlated well with the values ob-

tained based on spout contact detection but with shorter la-

tencies (Figure 1F). Orofacial ethograms also revealed that

mice produced decreasing bouts of sustained licking in

response to water reward as the session progressed. Indeed,

licking bout duration linearly decreased with each reward until

it almost reached the level of licking activity observed during un-

rewarded trials (Figure 1F, inset). This stereotypical decay of

licking bout duration during individual sessions indicated

changes in thirst-related motivational state. Mice licked continu-

ously for several seconds when thirsty (at the beginning of the

session) and licked only once when completely sated (at the

end of the session).

The secondary whisker sensorimotor pathway
contributes to task execution
To identify cortical regions involved in the execution of the task,

we first performed wide-field calcium imaging over the dorsal

cortex of head-fixed mice. Transgenic mice (Daigle et al.,

2018) expressing the genetically encoded calcium indicator

GCaMP6f in cortical layers 2/3 (see STARMethods) were trained

in the task. Functional maps for each trial type were averaged

over several sessions and then compared across mice

(Figures 2A and S2A). Upon C2 whisker stimulation, the primary

and secondary whisker somatosensory cortices (wS1 and wS2)

were activated almost simultaneously, as previously reported

(Esmaeili et al., 2021). In trials wheremice did not lick in response

to the whisker stimulus, this pattern of activity was maintained

transiently and then decayed to baseline activity. However,

whenmice decided to lick, we observed over the same time win-

dow (0.12 to 0.18 s, preceding the average lick reaction time of

0.28 s) a strong activation of the premotor cortex wM2, known

to be involved in whisker-based goal-directed sensorimotor

transformation (Esmaeili et al., 2021, 2022; Gilad et al., 2018).

The same was true for B2 whisker stimuli, though with activity

in different somatotopic locations in wS1 and wS2 (Figure 2B

and S2A).

As the premotor cortex is known to be involved in action selec-

tion during decision-making (Barthas and Kwan, 2017; Sul et al.,

2011), we investigated whether somatosensory cortex might

contribute to driving activity in this area. We performed the

same wide-field imaging experiments to measure GCaMP6f ac-

tivity in wM2-projecting neurons (see STAR Methods). Upon

whisker stimulation, we observed that only wS1 and wS2 re-

sponded prior to wM2, indicating that these sensory areas could

directly be driving activity in wM2 (Figures 2C, 2D, and S2B).

Interestingly, we found a comparable enhancement of activity

between the retrogradely labeled neurons in somatosensory

cortices wS1/wS2 and premotor cortex wM2 in lick trials
on t-SNE lick domain crossing. Trials corresponding to the session (D–E) are

sity plots for all lick trials (n = 50,879 trials) across all mice (N = 27) and sessions

20 ± 0.001 s (spout), two-sided paired t test, p = 23 10�307. Inset: average lick

ice (n = 346 sessions, N = 27 mice) as a function of session progression (see
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(Figures 2C and 2D, Kruskal-Wallis one-way ANOVA test,

p = 0.22 for C2 and p = 0.55 for B2).

Given that frontal projections from wS1 primarily project to

wM1 (Yamashita et al., 2018), we performed anatomical tracing

experiments to investigate whether wM2 might receive direct

projections from wS2. We expressed eGFP in wS2 neurons

through viral vector injection (Figures 2E and 2F). We found

strong axonal projections of wS2 neurons in wM2 but also in

the ventral orbitofrontal cortex (vOFC) (Figure 2G). To identify

the locations of projecting neurons in wS2, we injected the retro-

grademarker cholera toxin subunit B (CTB) in these target areas.

We used CTB conjugated with two different Alexa dyes for wM2

and vOFC to separately label wM2-projecting and vOFC-projec-

ting neurons (Figures 2H and 2I). We found large populations of

neurons projecting to these two frontal structures in wS2

(Figure 2J) with very little overlap (5.7% of 669 wM2-projecting

neurons and 9.5% of 400 vOFC-projecting neurons, N = 2

mice). These neurons were found in superficial and deep layers,

but not in layer 4. These results are in line with previous studies

showing that motor cortices receive direct inputs from somato-

sensory cortices (Esmaeili et al., 2022), whereas the adjacent

anterior cingulate cortex receives predominant inputs from vi-

sual cortices (Zhang et al., 2016).

To test whether these cortical regions are involved in the

whisker-based sensorimotor transformation, we used optoge-

netics to inactivate these areas during execution of the task.

We expressed a Cre-dependent version of the light-gated chlo-

ride channel iC++ (Berndt et al., 2016) in Emx1-Cre mice

through viral vector injections. Mice performed the task while

we inactivated wS1, wS2, wM2, vOFC, or a control area with

no expression in a subset of trials (Figures 2K and S3,

see STAR Methods). We performed unilateral inactivation, as

previous studies have shown that the performance of

whisker-based sensorimotor tasks is strongly impaired when

the contralateral hemisphere is inactivated during sensory stim-

ulation (Esmaeili et al., 2021; Guo et al., 2014). We do not

exclude that callosal connections could provide inputs to the

ipsilateral hemisphere, but we think these signals would likely

contribute to a lesser extent.
Figure 2. The secondary whisker sensorimotor pathway contributes to

(A) Wide-field average calcium response over the dorsal cortex of mice express

licking, middle: with licking). The maps are obtained by averaging across mice (N

activity (see Figure S2A). Right panel: normalized difference between the no-lick a

correction, *p < 0.05, **p < 0.01). Grid size: 1 mm. Orange outline indicates limit

(B) Same as (A) for B2 whisker stimulation.

(C) Same as (A) but for mice expressing GCaMP6f only in wM2-projecting neur

significant differences between areas (Kruskal-Wallis one-way ANOVA test, p =

(D) Same as (C) for B2 whisker stimulation (Kruskal-Wallis one-way ANOVA test,

(E) Schematic of the injection of AAV.hSyn.eGFP in wS2. Inset: Optical intrinsic s

injection.

(F) Coronal brain slice at the level of the injection site.

(G) Coronal slice from the same brain in (F) with axonal projection of wS2 neuron

(H) Schematic of the injection of CTB-Alexa647 in vOFC and CTB-Alexa488 in w

(I) Coronal brain slice at the level of the injection sites with CTB-Alexa647 (red) a

(J) Coronal slice from the same brain in (I) with wM2 and vOFC projecting neurons

anterior-posterior locations relative to bregma is overlaid on top of the image.

(K) Effect of optogenetic silencing of specific areas on lick probability and performa

and without light (see Figure S3). Line thickness indicates significance (two-sided p

Average for each area was performed over several mice: wS1 (N = 10 mice), wS2

4180 Neuron 110, 4176–4193, December 21, 2022
In trials in which a whisker was stimulated, inactivation of wS1,

wS2, andwM2 reduced licking probability,whereas inactivation of

vOFC or the control area had no effect on the licking behavior.

During trials without any whisker stimulation, only wM2 inactiva-

tion significantly reduced licking probability. As a consequence,

wS1 and wS2 inactivation resulted in a significant drop in whisker

detection performance. On the contrary, inactivation of wM2 did

not affect whisker detection performance, as licking was reduced

regardless of the stimulation condition. This result indicates a

change of function between wS1/wS2 and wM2, with the former

areas being involved in whisker perception and the latter area be-

ing involved in motor planning for licking. Because licking proba-

bility was reduced equally for both whiskers, none of these inacti-

vation experiments affected the discrimination performance. Note

that inactivation of these areas affects downstreamsubcortical re-

gions and further optogenetic dissections would be required to

characterize circuits for sensorimotor transformation beyond

cortical regions. Altogether, these results show that the wS1-

wS2-wM2 pathway is involved in the execution of the task.

Sensory neurons in deep layers of the secondary
sensorimotor pathway show strong response
modulation preceding licking
To study sensory andmotor representations in these areas at the

cellular level we performed two-photon calcium imaging experi-

ments. We used a cranial window-microprism assembly to im-

age cortical responses across layers (Figure 3A) and to access

projecting neurons in deep layers. Expression of genetically en-

coded calcium indicators in these areas was obtained through

different strategies combining viral vector injections with retro-

grade or transsynaptic anterograde transduction properties in

transgenic mouse lines (see STAR Methods). During passive

C2 or B2 whisker stimulation, we observed that these neuronal

populations displayed different spatial organizations and de-

grees of whisker selectivity (Figure 3B). wS1 was characterized

by a clear delimitation between neurons responding to C2 and

the nearby B2 whisker, reflecting the somatotopic organization

of the barrel cortex. Functional organization was not so clear in

other neuronal populations.
task execution

ing GCaMP6f in cortical layers 2/3 during C2 whisker stimulation (left: without

= 11 mice) and over a 60 ms time window preceding lick-related widespread

nd lick conditions for wS1, wS2, and wM2 (Kruskal-Wallis test with Bonferroni

of the imaged dorsal cortex and the orange dot indicates bregma.

ons throughout the dorsal cortex (N = 4 mice, see Figure S2B). We found no

0.22).

p = 0.55).

ignal imaged over the surface of the skull used to localize wS2 for viral vector

s in wM2 and vOFC.

M2 for retrograde labeling of cortico-cortical projecting neurons in wS2.

nd CTB-Alexa488 (green).

in wS2. In (F), (G), (I), and (J) reference atlas (Paxinos and Franklin, 2000) with

nce. Color for each location indicates difference in probability between trials with

airedWilcoxon test, thin: p > 0.05, medium: 0.01 < p < 0.05, and thick: p < 0.01).

(N = 10 mice), wM2 (N = 7 mice), vOFC (N = 8 mice), and Control (N = 11 mice).
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Among all neurons we imaged, we observed distinct popula-

tions of neurons responding to whisker stimulation and/or mo-

tor-related events (see STARMethods). We first focused on neu-

rons that displayed whisker-related sensory responses (wS1:

58%, n = 1,864; wS2: 36%, n = 3,578; wM2: 41%, n = 1,525;

wM2-p in wS2: 38%, n = 530; vOFC-p in wS2: 29%, n = 401 of

task-responsive neurons, with the remaining neurons being

exclusively responsive to motor-related events). We identified

three types of sensory neurons displaying different forms of

event selectivity (Figure S4A). ‘‘Mixed sensory’’ neurons re-

sponded to whisker stimuli in absence of licking but responded

also to lick events in absence of whisker stimulation (Figure 3C).

‘‘Pure sensory’’ neurons responded to whisker stimulation alone

but not to isolated lick events. Responses of these neurons to

whisker stimuli during lick trials could, however, be strongly

enhanced even before licking (Figure 3D). ‘‘Gated sensory’’ neu-

rons did not respond to whisker stimuli alone or to lick events

alone but did respond strongly to whisker stimuli in lick trials (Fig-

ure 3E). Responses of these neurons during lick trials preceded

licking events and were not time-locked to them, indicating a

sensory signal rather than a motor one (see STAR Methods).

Indeed, the response latency or peak of these neurons did not

scale with increasing reaction times, a property expected formo-

tor planning neurons. These neurons could be considered an

extreme case of pure sensory neurons with high lick-related

response enhancement, though we found that their modulation

during licking was significantly stronger than pure sensory neu-

rons, and, therefore, gated sensory neurons constitute a distinct

population of sensory neurons (Figure S4B).

Comparing the distribution of these cell types in all neuronal

populations, we found that half of the neurons inwS1weremixed

and showed poor event selectivity. In contrast, wS2 and wM2
Figure 3. Sensory neurons in deep layers of the secondary sensorimo

(A) Schematic of two-photon calcium imaging of cortical neurons through a micr

(B) Example field-of-views imaged through themicroprism for different cortical pop

C2 (green) or B2 (red) whisker stimulation in no-lick trials. Boundaries between la

and A, anterior.

(C) Example ‘‘mixed sensory’’ neuron. Top: Plots showing Z scored calcium re

responses is above the average response across trials. Shaded area: SEM. Middle

the absence of licking. Bottom: Same plots for Z scored calcium responses align

timing of the whisker stimulus, and the subsequent white line indicates the timin

(D) Same as (C) but for an example ‘‘pure sensory’’ neuron.

(E) Same as (C) but for an example ‘‘gated sensory’’ neuron.

(F) Distributions of neurons with mixed, pure, or gated sensory responses across

(G) Proportion of sensory neurons with significant whisker selectivity (see STAR M

in white.

(H) PMI across all sensory neurons in each population as a function of absolute w

red, difference in gray). Bar heights represent medians and error bars display 95%

B2- and C2-preferring populations withmatched population sizes (wS1: n = 366, w

test, wS1: p = 0.49897; wS2: p = 0.77208; wM2: p = 48601).

(I) PMI as a function of whisker preference for individual sensory neurons (C2 is pre

preferred whisker are striped, whereas bars indicating median PMI on the non-pre

95% confidence intervals obtained from a two-sample paired median difference t

preferred and a non-preferred whisker (wS1: n = 849, wS2: n = 816, wM2 n = 816

1 3 10�15; wM2: p = 2 3 10�8).

(J) PMI across imaged populations and cortical depths. Violin plots represent ful

represent medians, interquartile range, and max/min without outliers (outside 1.5

(K) Surprise matrix for median PMI value comparison across all conditions in (J).

Wilcoxon test. *p < 0.05 with Bonferroni correction. The matrix has been reord

Figure S4.
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were dominated by gated sensory neurons with projecting neu-

rons in wS2 containing a large majority of gated neurons (Fig-

ure 3F). Thus, we observed increasing event selectivity along

the wS1-wS2-wM2 pathway. Note that the bulk layer 2/3 wide-

field signal modulation that we observed in wS1 and wS2 during

lick trials (Figures 2A–2D) appears to originate from different sin-

gle-cell response properties with overlapping (wS1) or distinct

(wS2) representations of sensory and motor events. Whisker

selectivity along the same pathway was decreasing (Figure 3G).

Interestingly, the functional properties of neurons in wS1 and

wS2 reflected the event selectivity found in the thalamocortical

projections innervating these areas (El-Boustani et al., 2020).

How are whisker-evoked responses related to the decision to

lick? Previous studies have tried to identify decision-related ac-

tivity in sensory cortices by comparing sensory evoked re-

sponses during lick and no-lick trials (Kwon et al., 2016; Takaha-

shi et al., 2016; Yamashita and Petersen, 2016; Yang et al.,

2016). As motor-related signals are widespread in the cortex

and can contaminate sensory signals upon licking, we defined

amodulation index to compare lick and no-lick conditions before

licking happened based on the t-SNE reaction time: the pre-lick

modulation index (PMI). This index compares whisker responses

during individual lick trials to the average whisker response in the

absence of licking in time windows preceding licking (see STAR

Methods and Figure S4C). We first investigated task-specific

modulation of whisker representations. In this scenario, re-

sponses to C2 or B2 whisker stimulation would be differently

modulated, as they have different behavioral relevance in this

task (C2 being associated to a reward and B2 to a timeout pun-

ishment). This modulation could be the result of top-down selec-

tive modulations. When comparing response modulation be-

tween C2 and B2, we found no significant differences in any of
tor pathway show strong response modulation preceding licking

oprism-cranial window assembly.

ulations. The color maps overlaid represent themaximum calcium response to

yers are indicated with dashed orange lines. M, medial; L, lateral; P, posterior;

sponses aligned to isolated lick events. Heatmap representing all single-trial

: Same plots for calcium responses in Z score aligned to whisker stimulation in

ed to whisker stimulation followed by licking. The straight white line indicates

g of first lick for trials ordered by increasing reaction times.

all neuronal populations in (B). Population sizes are indicated in white.

ethods) across all neuronal populations in (B). Population sizes are indicated

hisker preference (C2-whisker-preferring in green and B2-whisker-preferring in

confidence intervals obtained from a bootstrap procedure to compare PMI in

S2: n = 392, wM2: n = 293, see STARMethods). N.S., not significant (bootstrap

ferred if WSI > 0 and B2 is preferred if WSI < 0). Bars indicating median PMI on

ferred whisker are plain. Gray bars represent the difference. Error bars display

est. Neuronal population sizes are matched because each neuron always has a

). ***p < 0.001 (Two-sided paired Wilcoxon test, wS1: p = 3 3 10�30; wS2: p =

l distributions of PMI values computed on both C2 and B2 whiskers. Boxplots

times interquartile range from 1st and 4th quartile).

Surprise values plotted derive from p values obtained with a two-sided paired

ered using a hierarchical clustering algorithm (see STAR Methods). See also
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Figure 4. Motor-related neurons in the whisker secondary somatosensory cortex exhibit a rich representation of orofacial movements

(A) Example motor-related neuron in wS2 encoding lick initiation. Left panels show Z scored calcium responses in Hit trials. Heatmap represents chronologically

ordered trial responses aligned to stimulus onset (dashed white line). Average response across trials along with SEM is represented below. Middle panels show

the same for FA trials. Right panel shows action tuningmap of the neuron in the orofacial movement state space (see STARMethods). Colored lines represent the

mode of C2 (green) and B2 (red) lick trial reparametrized trajectories in the orofacial state-space (see STAR Methods).

(B) Same plots for an example motor-related neuron in the same wS2 recording as (A) encoding sustained licking.

(C) Same plots for an example motor-related neuron in the same wS2 recording as (A) encoding transition between sustained licking and swallowing.

(D) Same plots for an example motor-related neuron in the same wS2 recording as (A) encoding swallowing.

(legend continued on next page)
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the imaged areas (Figure 3H). However, when modulation was

compared in terms of preferred and non-preferred whiskers for

each neuron, the PMI was significantly larger for the non-

preferred whisker for all populations (Figure 3I). As decisional

signals should be independent of the whisker identity when

mice decide to lick, this heterogenous enhancement of sensory

responses across whiskers rather indicates an alteration of the

sensory representation used to drive decision-making. These

strong modulations were more prominent in neurons located in

deep cortical layers of the secondary sensorimotor pathway

wS2-wM2 and projecting neurons in wS2 (Figure 3J). Cluster

analysis of the surprise matrix comparing statistical significance

between populations and layers revealed the existence of a

network of highly modulated neurons within wS2-wM2 deep

layers (Figure 3K).

Motor-related neurons in the whisker secondary
somatosensory cortex exhibit a rich representation of
orofacial movements
Task-responsive neurons that were not classified as sensory dis-

played complex patterns of activity during behavioral sessions

that correlated with orofacial movements. Movements can

trigger widespread activity in the cortex (Musall et al., 2019;

Steinmetz et al., 2019; Stringer et al., 2019). To precisely

describe the tuning properties of these neurons, we took advan-

tage of the t-SNE representation for orofacial movements (Fig-

ure 1D). As mice explored this space during single sessions,

we could monitor the activity of single neurons and map out their

response patterns in different regions of the t-SNE two-dimen-

sional space. Much alike the mapping of place cells in hippo-

campal circuits, this allowed us to map the state preference of

individual neurons in the t-SNE space (Figures 4A–4D). We

referred to these maps as action tuning maps (see STAR

Methods). This analysis was performed using neurons that did

not have whisker sensory responses to avoid spurious tuning

properties in action maps, as passive whisker stimulation could

occur independent of ongoing orofacial movements.

We found neurons that responded to specific phases of lick tri-

als with, for instance, tuning for lick initiation (Figure 4A), sus-
(E) Action tuning maps response along the reparametrized trajectories in the orofa

of neuronal responses varies along themotor sequence of lick trials. Curves repre

population (wS1: n = 115, wS2: n = 1195, wM2: n = 475), shaded areas represent S

of colors representing themotor states traversed by the trajectory at that point acro

the trajectory across sessions.

(F) Distributions of preferred positions displayed in (E) across populations. Vertic

density peak positions represented as bar plot along with error bars representin

Methods).

(G) Observed (left) and decoded (right) ethograms in Hit trials for an example wS1

Trials are ordered chronologically. Vertical white line represents C2 stimulus ons

(H) Same as (G) for an example wS2 imaging session.

(I) Same as (G) for an example wM2 imaging session.

(J) Distributions of motor state classification accuracy (fraction of correctly pre

average value of bin-by-bin decoding accuracy (see STAR Methods) for wS1 (n

medians, interquartile range, and max/min without outliers (outside 1.5 times inte

(two-sided unpaired Wilcoxon test, wS1 vs. wS2: p = 0.0078; wS1 vs. wM2: p =

(K) Distributions of correlation between observed and decoded lick bout duration

coefficients between observed and inferred lick bout durations for wS1 (n = 24), w

interquartile range, and max/min without outliers (outside 1.5 times interquartile ra

unpaired Wilcoxon test, wS1 vs. wS2: p = 3.2 3 10�5; wS1 vs. wM2: p = 0.027;
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tained licking at high pace (Figure 4B), transition between licking

and swallowing (Figure 4C), or swallowing (Figure 4D). Distribu-

tions of tuning preferences were quite broad and covered trajec-

tories explored during licking. To compare these distributions

across areas, we reparametrized trajectories to have a compara-

ble duration from the exit to the re-entrance of the quiet state

(see STAR Methods). Distribution of tuning peaks along this tra-

jectory showed that most wM2 neurons were responsive early at

lick initiation, shortly followed by wS2 neurons and then wS1

neurons (Figures 4E and 4F). This is in line with a role of wM2

in generating lick motor signals as a result of the decision-mak-

ing process that could then backpropagate to upstream sen-

sory areas.

As the tuning distribution was rather broad in all areas, we

quantified how well orofacial movements could be decoded

from these neuronal populations using a Bayesian decoder

(see STAR Methods). Decoding was performed on ethograms

that we tried to reconstruct from neurons and compare to the

ones directly obtained from the t-SNE trajectories

(Figures 4G–4I). We observed that wS2 neuronal populations

were significantly better than any other population at decod-

ing sequences of orofacial movements (Figure 4J), followed

by wS1 and then wM2. The presence of motor-related re-

sponses across these cortical regions resulted in good

decoder performance, though it appears that wS2 contains

a richer functional diversity for orofacial movements that can

be used to precisely reconstruct t-SNE trajectories. We used

ethograms reconstructed from neuronal activity to decode

the duration of lick bouts on a trial-by-trial basis (see STAR

Methods). Accuracy in predicting lick bout duration was as-

sessed by computing the Pearson correlation coefficient be-

tween observed and decoded lick bout durations across all

trials of each session, with the highest correlation found in

wS2 (Figure 4K). The rich representation of orofacial move-

ments in wS2 could potentially originate from the large sen-

sory integration known to take place in this associative area,

while wM2 appears to be implicated in action initiation but

less so in moment-by-moment execution. The latter is pre-

sumably taking place rather in primary motor areas such as
cial state space for each cortical area. This plot shows how the typical intensity

sent averages across all motor-related neurons of all sessions andmice in each

EM. The color of the curves for each coordinate is given by a weighted average

ss all sessions considered. Black dots: the distribution of preferred positions in

al dashed lines represent maximum density peak positions. Inset: maximum

g 95% confidence intervals obtained from a bootstrap procedure (see STAR

imaging session (color legend for categories of motor states displayed below).

et and the dashed white line represents the end of the response window.

dicted states) across sessions. Violin plots represent full distributions of the

= 24), wS2 (n = 42), and wM2 (n = 40) recording sessions. Boxplots represent

rquartile range from 1st and 4th quartile). *p < 0.05, *p < 0.01, and ***p < 0.001

0.033; wM2 vs. wS2: p = 0.0001).

across sessions. Violin plots represent full distributions of Pearson correlation

S2 (n = 42), and wM2 (n = 40) recording sessions. Boxplots represent medians,

nge from 1st and 4th quartile). *p < 0.05, **p < 0.01, and ***p < 0.001 (two-sided

wM2 vs. wS2: p = 5.5 3 10�6).
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Figure 5. Mice exhibit distinct behavioral states within single sessions, reflecting changes in motivational level

(A) Probability of licking for all stimulus conditions and discrimination performance (blue) across trials for two sessions indicated with arrows in (B). Colored

shaded patches highlight distinct behavioral states (gray: hyper-motivated, brown: detection, green: discrimination, white: disengaged, see STAR Methods and

Figure S5).

(B) Proportion of trials spent on each behavioral state across sessions for an example mouse.

(C) Lick probability for all stimulus conditions and performance averaged across all mice (N = 92 mice) after centering each session on the trial displaying peak

performance. Same color code as in (A). Shaded areas: SEM.

(D) Same as (B) but averaged over all mice (N = 92 mice) with graded colors corresponding in different mixture of behavioral states across mice for each session.

(E) Discrimination performance across sessions averaged across all mice (N = 92 mice) for all trials where mice were engaged (blue line) or for trials in the

discriminating state only (dashed blue line). Dashed black line: chance level. The average proportion of trials spent in the discrimination state is shown in green

with axis. Shaded areas: SEM.

(F) Histogram showing distributions of task performance rise times (number of training sessions required to reach 75% of peak performance) across all mice (N =

92) based on all engaged trials (dark gray) or only in trials in the discriminating state (light gray). Dashed lines represent averages for each distribution. Average

task performance risetimes across all mice: 8.29 ± 0.43 sessions (engaged) versus 4.40 ± 0.37 sessions (discriminating) with significant difference: two-sided

paired t test, p = 1 3 10�15.

(G) Estimated slopes for learning curves in discriminating state (blue) and proportion of trials in discriminating phase (green) in (E, threshold = 0.6) and for two other

discrimination thresholds (0.55 and 0.65). Slopes were estimated around session 6 and error bars are 95% confidence intervals. See also Figure S5.
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the tongue-jaw primary motor cortex (tjM1), as previously

described (Mayrhofer et al., 2019; Xu et al., 2022).

Mice exhibit distinct behavioral states within single
sessions, reflecting changes in motivational level
The linear decrease of lick bout duration with session progres-

sion (Figure 1F) reflects changes of thirst-related motivational

level. Observing such non-stationarity in the level of motivation

led us to more carefully inspect individual sessions to identify

specific behavioral states related to changes in thirst. Across

mice and sessions, we observed a stereotypical pattern of

changes in the licking probabilities for different stimulus condi-

tions. Using simple criteria on lick rates, we identified four behav-

ioral states that we named ‘‘hyper-motivated,’’ ‘‘detecting,’’

‘‘discriminating,’’ and ‘‘disengaged’’ (see STAR Methods and

Figure S5). The hyper-motivated state was characterized by

high spontaneous and evoked licking probability, detecting state

was characterized by low spontaneous licking but poor discrim-

ination, discriminating state was characterized by higher whisker

discrimination, and disengaged state was characterized by low

evoked licking (Figure 5A). These four distinct behavioral states

reflect a discretization of continuous changes in motivational

state over time based on qualitatively distinct task performances

emerging throughout the course of every session.
As mice improved their average task performance, the relative

proportion of these behavioral states changed from day to day

(Figure 5B). Although the discrimination phase was short during

the early days of training, mice could already reach high perfor-

mance levels similar to those reached in the last days of training

(Figure 5A). Discrimination performance during individual ses-

sions displayed an ‘‘inverted U-shaped’’ curve with lower perfor-

manceat the beginningandendof the session (Figure 5C). Across

all mice we confirmed that the proportion of trials spent in the

discriminating state increased during the training procedure

(Figures 5D and 5E).

Most of the learning time course was dominated by changes in

motivational control. Indeed, we found that the average discrim-

ination performance during the discriminating state was already

high during the first days of training, while the proportion of this

state increased steadily over days (Figure 5E). The resemblance

of the time course for overall performance during engaged states

and the relative proportion of the discriminating phase indicated

that most of the learning dynamics were driven by a control of

behavioral state rather than sensorimotor association that is

most likely acquired early during the training. This was supported

by estimating the number of sessions necessary for each mouse

to reach a stable performance (75% of overall peak perfor-

mance) in the engaged state (all states except disengaged)
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Figure 6. Thirst manipulation reversibly affects task performance, pupil dynamics, and licking behavior for water reward

(A) Schematic of the experimental design. Mice were subjected to cycles of thirst manipulation either by receiving water prior to the training (pre-fed) or by

delaying the training (delayed). Orofacial movements and pupil dilation were filmed. Inset: example image of eye-filming field of view with estimated pupil contour

markers shown in red.

(B) Example of 3 consecutive sessions where a mouse was first pre-fed (left), trained with delay (middle), and pre-fed again (right). Color code identical to

Figure 5A.

(C) Changes in discrimination performance (N = 11mice), session duration (N = 11mice), pupil area (N = 9mice), and lick bout duration (N = 9mice) for consecutive

days of thirst manipulation with pre-feeding (water drop) and delayed training (timer). Gray lines indicate individual mice and black lines indicate population

average with error bars as SEM (two-sided paired Wilcoxon test, *p < 0.05 and **p < 0.01).

(D) Changes in discrimination performance (n = 82 sessions), session duration (n = 82 sessions), pupil area (n = 57 sessions), and lick bout duration (n = 55

sessions) as a function of weight difference between the end of a session and the beginning of the next one expressed in relative weight. Blue dots: pre-feeding

sessions, red dots: delayed sessions, gray dots: sessions without thirst manipulation. Black lines indicate best linear fit with shaded areas as 95% confidence

interval. Pearson correlation coefficients: performance (0.61, p = 8. 6 3 10�13), duration (�0.41, p = 4.1 3 10�6), pupil area (�0.42, p = 0.00031), and lick bouts

duration (�0.57, p = 9.53 10�7). p values are obtained from a t-distribution with 2 degrees of freedom. Vertical brown line indicates median weight loss of trained

mice between two consecutive sessions.

(E) Distributions of weight loss (in relative values) for early (n = 60) and late (n = 111) sessions. The right violin plot shows the distribution of weight gained during

task in late sessions (n = 82). ***p < 0.001, N.S., not significant (two-sided unpairedWilcoxon test, Early loss vs. Late loss: p = 1.63 10�6; Early loss vs. Late gain:

p = 7.5 3 10�6; Late loss vs. Late gain: p = 0.62).

(F) Pupil area as a function of behavioral states (n = 103 sessions). One-way ANOVA p = 0.0011. Surprise matrix is shown on the right comparing all states (color

coded on the side). Two-sided unpaired Wilcoxon test, *p < 0.05.

(G) Lick bout duration as a function of behavioral states (n = 495 sessions). One-way ANOVA p = 3.13 10�117. Surprise matrix is shown on the right comparing all

states (color coded on the side). Two-sided unpaired Wilcoxon test, *p < 0.05.

(E–G) Boxplots represent medians, interquartile range, and max/min without outliers (outside 1.5 times interquartile range from 1st and 4th quartile).
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compared to discriminating states only (Figure 5F). Mice showed

much faster learning when computed for discriminating states

compared to engaged states (4.40 ± 0.37 sessions for discrimi-

nating versus 8.29 ± 0.43 sessions for engaged with significant

difference, two-sided paired t test, p = 1 3 10�15). Furthermore,

this analysis was robust to the choice of threshold for classifying

discriminating states. For different thresholds, we observed that

the slopes describing changes of discriminating state propor-

tions over days were larger than the slopes describing variation
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of performance within that state over days (Figure 5G). The latter

slopes were found to be close to 0. This analysis decouples two

aspects of the learning process: the strength of the sensorimotor

association, defined as the performance in the discriminating

state, and the control of motivational state, defined as the pro-

portion of the session spent in that state. Learning trajectories

based on changes exclusively in one of these variables were

numerically simulated and compared to mouse behavior (Fig-

ure S5, see STAR Methods). Although both learning trajectories
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Figure 7. Whisker decoding in the secondary sensorimotor pathway correlates with task performance in different behavioral states

(A) Z scored calcium responses to C2 and B2 whisker stimulation across a session for an example neuron. Behavioral states are indicated in the right with color

bars (gray: hyper-motivated, brown: detecting, green: discriminating, white: disengaged). Trials are ordered chronologically.

(B) Average response across trials in each behavioral state as indicated in (A). Shaded areas: SEM.

(C) Whisker Selectivity Index (WSI) for each neural population across behavioral states. Shaded areas: SEM.

(D) Average Z scored response amplitude across C2 and B2 whisker stimulation for each neural population across behavioral states. Shaded areas: SEM.

(E) Whisker decoding performance averaged over imaging sessions in wS1, wS2, and wM2 as a function of population size. Dashed black line: chance level.

Shaded areas: SEM.

(F) Variation of decoding performance in each behavioral state for wS1, wS2, and wM2 populations. Points represent performance variation expressed as a

relative difference from average performance across all states. One-way ANOVA wS1: p = 0.36; wS2: p = 2.0 3 10�6; wM2: p = 0.0031; Error bars: SEM.

(G) Surprise matrices for mean performance variation difference across all states. For each comparison, only sessions featuring the relevant pairs of states are

kept (see STAR Methods). Color bars on the side indicate behavioral states. Surprise values plotted derive from p values obtained with a two-sided paired t test.

*p < 0.05 with Bonferroni correction.

(H) Variation of decoding performance as a function of the variation of behavioral performance (both as relative difference from the average session value) for wS1

(n = 86), wS2 (n = 143), and wM2 (n = 93). Lines represent best linear fits. Shaded areas: 95% confidence region given uncertainty on best fit parameter values.

(legend continued on next page)
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were indistinguishable in their average performance curves

(Figures S5D and S5J), they displayed very different characteris-

tics, supporting the hypothesis that mice in the two-whisker task

increase their discrimination performance mainly through better

control of motivational state.

Thirst manipulation reversibly affects task
performance, pupil dynamics, and licking behavior for
water reward
To directly test the effect of thirst-related motivation on task per-

formance during training, we manipulated the level of thirst bidi-

rectionally in consecutive training days (see STAR Methods). To

reduce the level of thirst prior to training,wepre-fedmicewithwa-

ter an hour before the session began, whereas we increased the

level of thirst by delaying the training session with respect to the

normal schedule (Figure 6A). Orofacial movements and pupils

were filmed during individual sessions tomonitor licking behavior

and pupil dilation as proxies for thirst-related motivation and

arousal, respectively. Changes in thirst level hadadramatic effect

on task performance. In consecutive sessions where mice were

first pre-fed then trained with a delay, we observed a strong

regression in task performance following the delay (Figure 6B).

Although the average performance was much worse for the de-

layed session due to a decrease in the discriminating phase,

the performance in that phase remained stable (Figure 6B,middle

panel). This deterioration of average task performance could be

completely reversed the following day by pre-feeding the mouse

with water prior to training (Figure 6B, right panel). This was

confirmed at the population level, where we found that consecu-

tive days with pre-feeding or delayed training resulted in strong

and reversible changes of task performance in a range compara-

ble to normal learning (Figure 6C). Session durationwas inversely

affected with shorter sessions in days where mice were pre-fed

and longer sessions in dayswith delayed training. Both pupil dila-

tion and lick bout duration were also significantly affected by the

manipulation of thirst level. Mice displayed more dilated pupils

and produced longer bouts of licking in days with higher level of

thirst and the converse in days with pre-feeding (Figure 6C).

To obtain a more graded relation of thirst level with these vari-

ables, we compared body weight changes from the end of a ses-

sion to the beginning of the next. Body weights were computed

relative to the weight prior to water restriction (see STAR

Methods). We observed strong correlations between body

weight changes and changes in task performance, session dura-

tion, pupil dilation, and lick bout duration (Figure 6D). Large body

weight losses resulted in deterioration of task performance,

longer sessions, more dilated pupils, and longer lick bout dura-

tion. For moderate body weight losses (<2%), we observed an

increase in task performance and decrease in session duration,

pupil dilation, and lick bout duration. Manipulations of thirst level

allowed us to explore a large range of body weight loss/gain,

revealing a linear relationship with critical behavioral variables.

We posit that during learning of the task in water-restriction con-
(I) Slope parameters for best linear fits in (H). Confidence intervals and p values f

Methods). Error bars: indicate 95% confidence intervals. N.S., not significant (wS

(J) Pearson correlation coefficients for the data shown in (H). p values are obtained

0.73). ***p < 0.001 (wS2: p = 4.9 3 10�6; wM2: p = 2.6 3 10�6). See also Figure
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ditions, mice learn to regulate their weight loss and therefore

their thirst-related motivation. Indeed, we observed that mice

lost significantly more weight during early days of training, as

opposed to later days (Figure 6E). Interestingly, at expert level

during late days of training, weight loss was comparable to

weight gain during training, indicating that mice adapt to wa-

ter-restriction conditions to maintain stable body weight and

task performance across days (Figures 6D and 6E). This could

be achieved by reduced motor activity and grooming in their

home cage, as previously reported (Goltstein et al., 2018), or

by physiological adaptations that occur in rodents after days of

water scarcity (Xu and Wang, 2016).

Although both pupil dilation and lick bout duration were

affected by manipulation of thirst level, they displayed different

dependencies on behavioral states within sessions. Pupils

were significantly more dilated during hyper-motivated states

but comparable in other states (Figure 6F). Although we selected

epochs without whisker stimuli or reward delivery to measure

pupil dilation (quiet window, see STAR Methods), this proxy for

arousal was noisy and therefore did not reflect variations in

behavioral states. On the contrary, lick bout duration showed

strong variations across behavioral states, decreasing almost

linearly from the hyper-motivated to the disengaged state (Fig-

ure 6G). This indicates that lick bout duration for reward during

task execution could be used as a reliable indicator of thirst-

related motivation varying within and between training sessions.

Whisker decoding in the secondary sensorimotor
pathway correlates with task performance across
behavioral states
To test the impact of changes in motivational states on sensory

representations, we focused on all sensory neurons that were

not responding to isolated lick events (i.e., excluding mixed neu-

rons to avoid contamination by motor-related signals). Single

neuron examples showed that sensory neurons changed their

whisker selectivity during single sessions as the mouse exhibited

different behavioral states (Figure 7A). Responses to thepreferred

whisker were relatively constant across the session but, as moti-

vation decreased, the response to the non-preferred whisker

decreased (Figure 7B) in linewith thestrongerPMI valueobserved

for the non-preferred whisker (Figure 3I). As a result, the whisker

selectivity increased from the hyper-motivated to the disengaged

state for all populations (Figure 7C). The overall whisker-evoked

activity, however, was reduced with decreasing motivation (Fig-

ure 7D). While the whisker representation in these neuronal pop-

ulations gained in resolution with decreasing motivation, it also

lost in signal-to-noise ratio with respect to baseline activity.

To understand how these opposite effects can potentially alter

perception, we used a Bayesian decoder to predict whisker

identity from neuronal activity (see STARMethods). The decoder

performance was higher for neuronal populations with high

whisker selectivity (Figure 3G) for all decoding pool sizes (Fig-

ure 7E). To understand whether perceptual capacity could be
or difference from zero are obtained from the fit covariance matrix (see STAR

1: p = 0.37). ***p < 0.001 (wS2: p = 1.2 3 10�6; wM2: p = 3.7 3 10�7).

from a t-distribution with 2 degrees of freedom. N.S., not significant (wS1: p =

S6.
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affected by the motivational state, we then compared the

decoder performance of wS1, wS2, and wM2 populations in

behavioral states described in Figure 5 (see STAR Methods).

We observed that the secondary whisker sensorimotor pathway

wS2-wM2, but not wS1, displayed a marked improvement in

whisker prediction performance during the discriminating state

in which mice performed the task best (Figure 7F). In other

words, the inverted U-shaped pattern seen in whisker discrimi-

nation performance was also found in neuronal-activity-based

whisker decoding performance as a ‘‘sweet spot’’ between

increasing whisker selectivity and reduced response amplitude.

When analyzed separately, gated and pure sensory neurons

displayed similar changes across states, although decoding per-

formance decreased more strongly for gated neurons in the dis-

engaged state (Figure S6). The significance of this effect was

confirmed by comparing exclusively neurons that were imaged

during pairs of states (Figure 7G).

This result indicates that whisker-identity decoding perfor-

mance from neuronal activity could potentially explain whisker

discrimination performance in the perceptual decision-making

task. For each session and motivational state, we compared

the change in behavioral and decoder whisker discrimination

performance with respect to the average values obtained for

the whole session. We observed a strong correlation for wS2

and wM2, but not for wS1 (Figures 7H–7J), suggesting that

whisker sensory representation in the secondary sensorimotor

pathway covaries with the mouse’s performance. Hyper-moti-

vated or disengaged states diminished sensory tuning or

neuronal signal, respectively, which resulted in poorer decoding

performance. When mice are in the discriminating phase,

neuronal populations considerably improve their decoding ca-

pacity. Note that decoding from a full cortical population can

overestimate the capacity of the brain to use sensory information

in downstream areas involved in decision-making (Stringer et al.,

2021). Indeed, only a fraction of neurons in wS2 will project their

axons to convey a whisker sensory signal to wM2. As most of

these projecting neurons are gated sensory neurons that display

stronger modulations with behavioral state (Figure S6) and mod-

erate whisker selectivity (Figure 3G), an increase or decrease of

decoding performance in these populations can potentially have

a strong impact on decision-making.

DISCUSSION

How behavioral states influence sensory processing is a central

question in systems neuroscience. Exploratory behaviors, task

engagement, and arousal have been shown to strongly influ-

ence sensory processing (Ayaz et al., 2013; Crochet and Pe-

tersen, 2006; Ferezou et al., 2007; Lee et al., 2020; McGinley

et al., 2015; Szwed et al., 2003). Several studies have demon-

strated how internal states related to thirst and hunger can

reshape neural representations brain-wide (Allen et al., 2019;

Burgess et al., 2016; Livneh et al., 2017). The impact of motiva-

tional or arousal states on decision-making has been exten-

sively studied in psychology, dating back to the Yerkes-

Dodson law introduced in the early 20th century (Yerkes and

Dodson, 1908). This empirical law describes how performance

of behavioral tasks increases with increasing task-pressure up
to a point where high pressure becomes detrimental and re-

sults in poorer performance. A recent study reported that

very high or low arousal states measured by pupil dilation

correlated with impaired performance in mice executing a

detection task (McGinley et al., 2015), in line with the Yerkes-

Dodson law. Here, we showed that water-restricted mice

exhibit distinct behavioral states in a two-whisker discrimina-

tion task. As thirst-induced motivational pressure decreased,

performance varied following an ‘‘inverted-U shaped’’ curve

reminiscent of the Yerkes-Dodson law, with the best perfor-

mance occurring in a state of intermediate motivational pres-

sure. We investigated the neural basis of this phenomenon

and observed degraded sensory representations at the ex-

tremes of the spectrum of motivational pressure. Our work

sheds new light on the perceptual side of a pervasive phenom-

enon shaping human and animal goal-directed behaviors.

Where do the signals modifying the whisker representations

originate from? Hypothalamic neurons sensing osmolarity and

angiotensin participate in a circuit capable of integrating different

physiological signals (Sternson, 2013) to compute internal states

such as ‘‘thirst’’ and subsequently broadcast them to the rest of

the brain (Allen et al., 2019). The exactmechanism throughwhich

state-defining signals are broadcasted and how they affect

sensorimotor transformation is not yet fully elucidated. Both

fast synaptic transmission and/or neuromodulators are likely

involved. Noradrenergic (NA) projections from locus coeruleus

and cholinergic (ACh) projections from basal forebrain are known

to regulate brain states during arousal, vigilance, and attention

(Harris and Thiele, 2011; Lee and Dan, 2012). Cholinergic inputs

have been reported to affect response properties of sensory

neurons (Chen et al., 2015; Fu et al., 2014; Gasselin et al.,

2021; Goard et al., 2016; Pinto et al., 2013). Noradrenergic

neurotransmission is also related with arousal and has been

shown to modulate neuronal firing in mouse sensory cortices

(Polack et al., 2013) together with pupil dilation (Breton-Pro-

vencher and Sur, 2019). It is possible that abnormally high levels

of neuromodulator release could lead to broadening of tuning

properties in sensory cortices, such as observed in hyper-moti-

vated states. This widespread increase in sensory-evoked activ-

ity could improve simple detection while being detrimental for

discrimination. The existence of an adaptive, nutritional-state-

dependent trade-off between sensory coding precision and

metabolic expenditure has been reported in mice (Padamsey

et al., 2021). It is possible that the effect we observed could

have a similar adaptive nature on a shorter timescale.

Our behavioral findings have profound implications about the

nature of the learning process in goal-directed sensorimotor

tasks in water-restricted mice. Different aspects of behavioral

task procedures, such as the availability of a positive reinforcer

or lack of habituation to experimental conditions, can mask an

already acquired latent knowledge. This highlights the impor-

tance of decoupling knowledge acquisition and expression in in-

terpreting the results of behavioral experiments (Kuchibhotla

et al., 2019). We report here two separate processes going on

throughout the training: a fast increase of sensorimotor associa-

tion during discriminating states and a slower improvement of

the ability to remain in that state. Drawing a clear distinction be-

tween these two processes could be key to properly interpreting
Neuron 110, 4176–4193, December 21, 2022 4189
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future experiments aiming at tracking network plasticity at the

synaptic level underlying acquisition of task associations (Hu-

meau and Choquet, 2019).

Characterization of sensory and motor-related responses

along the wS1-wS2-wM2 pathway revealed a functional special-

ization of these areas. Gated sensory neurons responded selec-

tively to sensorimotor events, therefore displaying a form of

context-dependent coding of sensory stimuli preceding inten-

tional action. Increase in the number of gated sensory neurons

across the wS1-wS2-wM2 pathway complements other recent

reports suggesting that this pathway is required for tactile-based

sensorimotor transformation in rodents (Crochet et al., 2019; Es-

maeili et al., 2020, 2021) and monkeys (Romo and Rossi-Pool,

2020). Gated sensory neurons respond to whisker stimuli only

when mice intend to lick. These cells are characterized by a

high pre-lick modulation index, displaying an extreme version

of the decision-related modulations reported in previous studies

(Kwon et al., 2016; Yamashita and Petersen, 2016; Yang et al.,

2016). The enrichment of this type of neuron among projection

neurons from wS2 to its two main frontal targets, wM2 and

vOFC, could gate the routing of sensory information toward re-

gions involved in action planning and execution.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by Swiss Federal Veterinary Office (License number VD1628 and GE15620) and were conducted in

accordance with the Swiss guidelines for the use of research animals. Wild-type mice (C57BL/6J) or transgenic mouse lines (mice

Thy1-GCaMP6f [C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J, JAX mouse number 025393]; mice Ai148D [Ai148(TIT2L-GC6f-ICL-

tTA2)-D, JAX mouse number 030328]; mice Rasgrf2-2A-dCre [B6;129S-Rasgrf2tm1(cre/folA)Hze/J, JAX mouse number 022864];

mice Emx1-IRES-Cre [B6.129S2-Emx1tm1(cre)Krj/J, JAX mouse number 005628] or the crossing Ai148DxRasgrf2-2A-dCre) were

used for experiments. Immune-competent mice were bred in specific pathogen-free facilities before entering experiments. Mice

were then housed in ventilated cages with maximum 5 mice in conventional animal facility under a 12/12-h reverse light cycle (light

7 p.m. to 7 a.m.). The ambient temperature in the animal facility was 23�Cand the relative humidity wasmaintained around 50%. Food

and water were available ad libitum except during behavioral training where water was restricted to 1 mL/day for up to 2 weeks, after

which mice had free access to water for at least 2 consecutive days. The cages also contained nesting materials, cardboard house,

grids and objects for enrichment. For all experiments, we used adult mice from both sexes and aged between P25 and P300 at the

time of the first procedure. Mice used in these experiments were not involved in previous procedures and were test naı̈ve.

METHOD DETAILS

Head plate surgery
All mice first underwent a head implant surgery. Mice were anesthetized with 2–4% isoflurane in pure oxygen. Body temperature was

monitored and kept at 37�C throughout the surgery with the help of body temperature-controlled heating pad (DC Temperature

Controller, FHC Inc., USA). An eye cream (Viscotears, Alcon, USA; VITA-POS, Pharma Medica AG, Switzerland) was applied over

the eyes to prevent them from drying. Carprofen was injected intraperitoneally or subcutaneously (100 mL at 0.5 mg/mL or 100 mL

at 1.5 mg/mL) for analgesic treatment before any surgeries. A mix of lidocaine and bupivacaine was injected below the scalp for local

anesthetics before opening the skin. In addition, we supplied approximately 0.2 mg/mL ibuprofen (Algifor Dolo Junior, VERFORA Sa,

Switzerland) in the cage drinking water for three days after surgery. Once the mouse was anesthetized, we trimmed all whiskers on

the right whisker pad except C2 and B2 and head-fixed the mouse on a platform with a nose clamp. Cycles of povidone-iodine so-

lution (Betadine, Mundipharma Medical Company, Bermuda) and 70% ethanol were applied for skin disinfection before surgery. Us-

ing surgical scissors, we opened the scalp to expose the skull over the dorsal cortex. We removed all of the connective tissue by

scraping the surface of the skull with a scalpel and we spread the temporal muscles by pushing with the side of the blade. Once

the skull was cleaned with Ringer solution and fully dried, a custom-made head implant was positioned on top of the skull and glued

(Loctite super glue 401, Henkel, Germany) to the right hemisphere of the skull for head-fixation. The head implant was further secured

with self-curing denture acrylic (Paladur, Kulzer, Germany; Ortho-Jet, LANG, USA). The surface of the skull was cleared of any den-

ture acrylic to allow optical access for wide-field imaging or optogenetic stimulations. After three days of post-operative care, intrinsic

optical signal (IOS) imaging was performed on the left hemisphere as previously described (Sachidhanandam et al., 2013). A piezo-

electric actuator was used to repeatedly stimulate either the right C2 whisker or the right B2 whisker. Whiskers were inserted in capil-

lary tubes attached to a piezoelectric actuator that produced continuous 10 Hz pulsatile movements for 4 sec preceded by 4 sec with

no stimuli. This was repeated for at least 10 trials with a 10-s interstimulus interval. Increase in absorption (reduced reflectance) of red

light at 625 nm upon tactile stimulation indicated the functional location of the C2 or B2 whisker representation in the primary and

secondary somatosensory cortices. Throughout the imaging isoflurane was kept around 1% to obtain strong intrinsic responses

in somatosensory cortices.

Cranial window surgery for two-photon imaging
For mice used for two-photon calcium imaging, a circular craniotomy with a 3 mm diameter was performed over the primary whisker

somatosensory cortex wS1, the secondary whisker somatosensory cortex wS2 or the premotor cortex wM2 (based on stereotaxic

coordinates: 2 mm anterior, 1 mm lateral from bregma). Once the bone cap has been removed, the surface of the cortex was rinsed

with ringer and the dura was removed using a 27G 1/2 sharp needle bended as a hook. A perfusion system was then used to contin-

uously rinse the surface of the cortex with Ringer and prevent any bloodstain. To express calcium indicators in the areas of interest,

adeno-associated viral vectors were then injected in the cortex. A thin glass pipette (PCR Micropipettes 1–10 mL, Drummond Scien-

tific Company, USA) was first pulled and then the tip was broken using a tissue to obtain a 21–27 mm inner tip diameter. The pipette

was filled with mineral oil and then tip-filled with the AAV vector. The pipette was lowered to different locations in the brain very slowly

and injection was performed using a single-axis oil hydraulic micromanipulator (Narishige, Japan). To express GCaMP6f locally

across all cortical layers of wS1 (N = 3 mice) or wS2 (N = 5 mice), AAV1.CamKII0.4.Cre.SV40 was injected in these areas in

Ai148Dmice. Because this viral vector serotype displays retrograde and trans-synaptic anterograde transduction of the Cre-recom-

binase (Zingg et al., 2017), the resulting GCaMP6f expression was widespread and uniformly present in all layers. For experiments

where wM2-projecting or vOFC-projecting neurons were imaged in wS2, we injected ssAAV-hSyn1-chI-EBFP2_2A_NLS_iCre-

WPRE-SV40p (retroAAV.hSyn.eBFP2.Cre) in the target region (wM2 or vOFC) of Ai148D mice (n = 4 mice for wM2-projecting and

n = 3 mice for vOFC-projecting). In a different set of experiments, we also injected CAV2-Cre (Hnasko et al., 2006) in these regions

in Thy1-GCaMP6f mice together with AAV1.Syn.Flex.NES-jRGECO1a.WRPE.SV40 (Dana et al., 2016) in wS2 to label projecting
Neuron 110, 4176–4193.e1–e10, December 21, 2022 e2
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neurons with the red calcium indicator jRGECO1a (n = 4 mice for wM2-projecting and n = 3 for vOFC-projecting). As wM2 could not

be identifiedwith intrinsic optical imaging, we used a different approach and took advantage of the retrograde and anterograde trans-

synaptic property of AAV1 serotypes (Zingg et al., 2017). For experiments where wM2 neurons were imaged (N = 3mice), we injected

AAV1.CamKII0.4.Cre.SV40 in wS2 based on the intrinsic optical signal and injected AAV1.Syn.Flex.NES-jRGECO1a.WRPE.SV40 in

wM2 based on stereotaxic coordinates therefore expressing jRGECO1a only in wM2 neurons interacting directly with wS2 either

through retrograde or anterograde transduction (Zingg et al., 2017). For all these injections, we injected 50–100 nL at 3 different

depths corresponding to deep, intermediate and superficial layers. Injections were done at an approximate rate of 100 nL/min.

Once all injections were performed, a sharp razor blade (Wilkinson Sword, UK) mounted on an injection plunger was lowered to

the cortex with amicromanipulator (Luigs andNeumann, Germany) tomake an incision corresponding to the length of themicroprism

that will be used to perform two-photon imaging across layers. The blade was lowered slowly in the cortex to a depth of approxi-

mately 800 mm. After 3–5 min, the blade was slowly retracted from the cortex. A custom-made microprism window assembly was

prepared by gluing a 5 mm round coverslip on top of two co-aligned 3 mm coverslips (CS-3R and CS-5R, Warner Instruments,

USA) using UV-curing optical adhesive (NOA61, Thorlabs, USA). A microprism coated with aluminum (MPCH-1.25 for wS1/wS2

and MPCH-1.5 for wM2, Tower Optical Corporation, USA) was then glued to the surface of the 3 mm coverslip in the location cor-

responding to the incision in the cortex. The microprism window assembly was then held parallel to the craniotomy using a syringe

with a flat tip needle attached to a Venturi suction pump. The window was lowered using the same micromanipulator used for the

incision and gently placed on the craniotomy while carefully monitoring the insertion of the microprism in the incision. The prism

was inserted either in wS1 or wS2 along themedial-lateral axis or in wM2 along the anterior-posterior axis. If any bleedingwas caused

by the surgery, we waited until they stopped before stopping the rinsing perfusion system. Kwik-Cast sealant or UV-Curing Optical

Adhesives (NOA61, Thorlabs, USA) was then applied below the edge of the 5 mm cranial window to protect the cortex. The window

was then fixed using super glue and self-curing denture acrylic. Mice were then placed back in their home cage to recover from the

surgery. For all these experiments we waited at least 5 weeks for cortical tissues to stabilize before any imaging was performed.

Behavioral training
Micewere trained in a two-whisker go/nogodiscrimination task under awater-restriction schedule.Micewere head-fixedonaplatform

and theC2 andB2whiskerswere inserted in capillary tubes glued to piezoelectric actuatorsmounted in a two-armholding systemwith

foam to dampen vibration resonance. The tip of the capillary tubes was briefly heated with a Bunsen burner to tighten the opening and

better constrain the whisker inside. A plastic sheet was attached below their head on the platform to prevent their forepaws from grab-

bing thewhisker tubes. Thepiezoelectric actuatorswere oriented to deliver tactile stimulation along the rostro-caudal axis. A spoutwas

positioned in front of themouse. A piezo-filmwas glued to the spout tomeasure vibration caused by licking activity. Water reward was

delivered through thespout usinganelectronicpinchingvalvesystem.Thebehavior apparatuswascontrolledwithacustom-madeuser

graphical interfacebasedonMatlab (MathWorks,USA) operating a data acquisition card (National Instruments,USA). Each trial started

with a quiet window of 2 sec during which any detected lick aborted the current trial. This helped to reduce spontaneous licking and to

prevent any lick related signals to contaminate baseline activity prior to tactile stimuli during calcium imaging. Following the quiet win-

dow, tactile stimulationcouldbeapplied to theC2whisker, theB2whiskeror noneof them.Whisker stimuli consistedof 5sinewaveform

pulses, each lasting 40 msec for a total stimulus duration of 200 msec. The amplitude of the tube displacement was�1 mm and was

comparable for bothwhiskers. Fromstimulus onset, a 2 sec long responsewindowwas used to detect licking.Micewere trained to lick

the spout in response to theC2whisker (Go trials) to obtain a drop ofwater of approximately 8 mL. Licking in response to the B2whisker

(No go trials) resulted in a timeout punishment of 10 sec whereas licking when no stimuli were presented (catch trials) had no conse-

quences on the trial. The proportion of go, no go and catch trials was 30%, 50% and 20% respectively. After the response window,

a consumption window of 5 seconds allowed the mouse to collect the water reward. Each trial was therefore 9 sec long and followed

by an inter-trial interval of at least 4.5 sec. Before behavioral training started,micewere habituated to head-fixation first for a short dura-

tionof about15minand then for longerdurations.Micewere then trained to the taskwithonesessionperday.On thefirst dayof training,

micewere exposed to the taskwith trialswherewaterwasautomatically delivered followingC2whisker stimulation (Go trials) to engage

licking behavior. As soon as they started licking spontaneously, automatic water delivery was stopped and water was only delivered if

mice lick forC2whisker stimulationduring the responsewindow.This first phaseof training typically lasted for oneor twosessions.Mice

were then trained daily to the normal task for a period of two to threeweeks until they displayed stable behavior asmeasure by their lick

probability for all conditions and discrimination performance. Body weight wasmonitored daily and was kept above 80%of theweight

measured prior towater-restriction.Mice received at least 1mLofwater per day, either during behavioral training or in their homecage.

After 14 days of water-restriction schedule, mice were given access to water ad libitum for at least 2 consecutive days. In experiments

requiring thirst manipulation (Figure 6), we either pre-fedmice with water an hour before the training session or we delayed the session

with respect to thenormal schedule. Inbothcases,wemonitoredbodyweightsafter pre-feedingorduring thedelayed interval tocontrol

changes in thirst level while ensuring that weights remained above 80% of reference weight prior to restriction at all time. Pre-feeding

and delayed sessions were done in alternance for several consecutive days.

High-speed filming and analysis of orofacial movements
Orofacial movements were filmed at 100 or 200 frames per second using a high-speed camera (CL 600 3 2/M, Optronis, Germany)

under infrared illumination with light outside the visible range of the mouse. The field of view of the camera was oriented and cropped
e3 Neuron 110, 4176–4193.e1–e10, December 21, 2022
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to capture the face of themouse and in particular orofacial movements. Movies weremonochrome and lasted for thewhole trial dura-

tion (i.e. 9 sec). Movies of facial movements were analyzed to classify movements using a previously published pipeline Motion Map-

per (Berman et al., 2014) based on the dimensionality reduction algorithm t-distributed stochastic neighbor embedding (t-SNE) (Van

Der Maaten and Hinton, 2008). After applying principal component analysis decomposition on individual frames, we kept the 50 prin-

cipal components and ran wavelet decompositions over the temporal domain with 25 frequency bands evenly distributed between

0.5 frames per sec and 30 frames per sec. t-SNE was then applied to the resulting reduced space to obtain two-dimensional maps of

orofacial dynamics. Stereotypical movement types were then assigned to each domain of the t-SNE space by inspecting videos ex-

tracted during exploration of the domain (see Video S1 for example videos snippets of the stereotypical movements identified). We

ran the whole procedure again over all sessions for eachmouse to obtain a commonmap for all sessions. In some cases, this was not

possible because the field of view of the camera was changed, in which case individual sessions had their own t-SNE space. In this

framework the orofacial movie of each trial is transformed in a trajectory in the t-SNE space defining a sequence of motor states (see

Videos S2 and S3 for example videos showing the correspondence between the original movie and the trajectory in t-SNE space for

examples of Hit and False Alarm trials). Lick reaction times capturing the very first movement onset time were obtained from this

analysis by finding the first time-bin where the trajectory enters (for at least 3 time-bins for robustness) the domain representing

licking behavior. Extra spontaneous licking events occurring throughout the duration of the session and their precise timing could

also be detected in a similar way (i.e. as stable transitions to the lick domain). In order to collect ‘‘isolated’’ licks the additional

constraint of being temporally distant fromother lick eventswas imposed (>0.495 s). This procedure was used to collect spontaneous

licking events to better identify motor responsive neurons. Hit trials were not used to recover extra lick events since in this condition

late isolated licks could correspond to delayed reward consumption events rather than spontaneous ones. The matrix storing motor

state labels for each time bin (columns) of all trial (rows) of a given session is what we defined as an ‘‘ethogram’’ (represented as

heatmaps in Figures 1E, 4G–4I, and S1B). The ethogram summarizes the animal motor output in a given session. By summing the

number of lick bins (i.e. ‘‘isolated licking’’ and ‘‘sustained licking’’) after stimulus onset within each trial (along the rows of the matrix)

we were able to quantify the duration of licking bouts for each trial throughout sessions.

High-speed filming and analysis of pupil dilation
To establish how thirst-induced motivation affects arousal state we performed pupillometric measurements during task perfor-

mance. Pupil diameter is a well-established measure of arousal state (Breton-Provencher and Sur, 2019; Vinck et al., 2015). In order

to measure pupil area, we filmed the left eye of individual mice at 100 frames per second with high-resolution CMOS camera (Ximea

xiQ) equippedwith a 6mm focal length objective (MVL6WA, Thorlabs). Infrared illumination at 940nm was provided by a light-emitting

diode array light source (DIR-020-002, Everlight). Recent progress in markerless tracking of body parts based on machine learning

approaches havemade it possible to reliablymonitor changes in high-speedmovies (Mathis et al., 2018). Here we used SLEAP deep-

learning based pose estimation software (Pereira et al., 2022) to automatically extract markers of pupil contour markers (12 equi-

spaced around the iris contour in steps of 30 degrees as in Figure 6A, with �500 manually annotated frames from different sessions

to train the marker estimation model). The area of pupil polygons defined by SLEAP estimated markers was computed in Matlab for

each frame of each video (and expressed in normalized pixel frame-area). All analysis reported in Figure 6 are done associating to

each trial the average fractional frame area in the pre-stimulus period. This was done in order to discard stimulus and trial-outcome

related pupil signals and slower-timescale arousal fluctuations.

Wide-field imaging
In order to image the dynamics of mesoscale neural activity patterns cross dorsal cortex of mice performing the task GCaMP6f cal-

cium indicator was excitedwith blue light at 485 nm (halogen lamp, TH4-200 andU-LH100-3, Olympus, Japan; 485/20BrightLine HC,

Semrock, USA) and emission light was detected through a green band pass filter (525/50 BrightLine HC, Semrock, USA). A dichroic

mirror (Beamsplitter T 495 LPXR, Chroma Technology Corp, USA) was used to separate excitation and emission light. The left dorsal

hemisphere of the cortexwas projected on aCMOS chip by using a face-to-face tandemobjective (Nikkor 50mm f/1.2, Nikon, Japan;

50 mm video lens, Navitar, USA). Images were acquired at a resolution of 100x100 pixels (100 mm / pixel) and a frame rate of 100 Hz

with a 12 bit camera (MiCAM Ultima, Scimedia, USA). Stimuli and hardware synchronization were done with Matlab using a National

Instrument card (NI PCIe-6342) running on a PC. To collect an anatomical reference image for each imaging session, the top of the

transparent skull was illuminated with a fiber (M71L02 - Ø1000 mm, 0.48 NA, SMA-SMA Fiber Patch Cable, Thorlabs, USA) coupled to

a green LED (530 nm, M530F2, Thorlabs, USA). Movies acquired during behavioral sessions were processed after the experiments.

For each trial, we computed a baseline image as the average of the last 5 frames prior to the stimulus onset. This baseline image was

used to compute a relative change in fluorescence for the rest of the trial following response window onset. This was done by sub-

tracting the baseline image from each frame and then dividing the resulting image with that same baseline. The image of the skull

taken with green light was used to identify Bregma and delimit the edge of the skull. For each mouse, we collected trials from several

sessions (between 5 and 10) to compute an average response map for each trial condition with large numbers of trials. For mice ex-

pressing GCaMP6f in cortical layer 2/3 (Ai148DxRasgrf2-2A-dCre), we registered maps across mice using the peak response in wS1

for C2whisker stimulation. This is a highly reliable functional landmark andwe confirmed that all responsemaps aligned properly after

registration. Bregma was measured for each mouse based on the skull image and the mean location for the anatomical landmark is

displayed in the figures. To express GCaMP6f in wM2-projecting neurons, we injected wM2 of Ai148 Cre-dependent GCaMP6f
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reporter mice with retroAAV.hSyn.eBFP2.Cre viral vector to express Cre-recombinase in wM2-projecting neurons across the dorsal

cortex. For these mice, we registered maps across mice using Bregma as the functional responses during passive whisker stimuli

were much weaker. Once all cortices were aligned across mice, we compared responses between lick and no-lick conditions for

both C2 and B2 whisker stimulation. A one-sided paired t-test was applied for each pixel to compare these conditions for all

mice. The time window chosen to compute and compare maps for lick and no-lick conditions was the last 60 msec before lick-

evoked widespread activity. The normalized difference between average responses was computed as the difference between the

response in lick condition and the one in no-lick condition divided by the sum of these two.

Perfusion and postmortem analysis
Mice that received injections of viral vectors, CTB-Alexa488 or CTB-Alexa647 were euthanized for postmortem analysis. After being

deeply anesthetized with 4% isoflurane, they were overdosed with pentobarbital injected intraperitoneally. After perfusion with

approximately 25 mL of PBS (0.9% NaCl, 0.01M phosphate buffer, pH 7.4), they were then perfused with 25 mL of 4% paraformal-

dehyde (PFA). The brains were then extracted from the skull and kept in 4% PFA overnight and then transferred into PBS. Brain cor-

onal sections were then cut using a vibratome (Leica VT1200S) and imaged using an epifluorescence microscope (Olympus Slide

Scanner VS120-L100 or LEICA DM 5500) through a 103/0.40 NA air objective.

Optogenetics
Optogenetics silencing experiments were performed using Emx1-IRES-Cre mice injected with AAV-8-Ef1a-DIO iC++-EYFP in spe-

cific cortical regions. This opsin responds to blue light by hyperpolarizing membrane potential and was used to silence Emx1-pos-

itive excitatory neurons in the cortex. For experiments involving inactivation of wS1, wS2 or wM2, a 1 mm diameter optic fiber

attached to a 470 nm high power laser (MBL-F-473/200 mW, Changchun New Industries Optoelectronics Technology, China)

was used to deliver blue light at the surface of the cortex through the glue covered skull. The fiber was positioned with a micro-

manipulator and placed over the area to be silenced. For experiments involving inactivation of the orbitofrontal cortex, a fiber

optic cannula with 400 mm diameter (CFMLC14L02, Thorlabs, USA) was inserted in the cortex after injection of AAV-8-Ef1a-

DIO iC++-EYFP using the same penetration track. To target vOFC without going through wM2 we used the following coordinates

after tilting the brain 30 degrees to flatten the surface of the cortex over vOFC: 2 mm lateral, 2 mm anterior and 2.3 mm deep from

bregma. The cannula was then attached to the skull using super glue and self-curing denture acrylic. During behavioral training the

cannula was coupled to the laser fiber using a ceramic mating sleeve. The location of the expression site and the position of the

fiber over the ventral orbitofrontal cortex were confirmed with post-mortem analysis. During the whisker discrimination task, blue

light stimulation was delivered in 50% of trials interleaved with control trials and consisted of continuous illumination at approx-

imately 10 mW/mm2 starting 100 msec before stimulus onset and lasting for 1 sec after stimulus onset. Change in lick probability

was measured during blue light illumination in the response window. To ensure that mice did not directly perceive the blue light

used for optogenetic silencing, we displayed a strong masking blue light in front of the mouse and isolated with an opaque sleeve

the fiber on top of the skull. To better assess the contribution of each cortical area in the execution of the task, we used single

whisker deflection at moderate amplitude.

Two-photon imaging
A custommade two-photonmicroscope was used to perform calcium imaging experiments described in this paper. Themicroscope

was equipped with a galvo-resonant mirror pair (8 kHz CRS, Cambridge Technology, USA), allowing a frame rate of 30 Hz for reso-

lutions of either 5123 512 pixels or 5123 1024 pixels with the frame length being along the resonant scanner axis. A femtosecond

tunable infrared laser line (Mai Tai or InSight DeepSee, Spectra Physics—Newport, USA) was fed into the light path at a wavelength of

940 nm or 1000 nm to excite the genetically encoded calcium indicator GCaMP6f or jRGECO1a respectively. Light emission was

detected with a GaAsP photosensor module (H10770PA-40, Hamamatsu, Japan), and signal acquisition was performed with Na-

tional Instrument hardware (NI PXIe-1073, NI PXIe-6341, National Instruments, USA). The microscope head was movable and

controlled in three dimensions by motors (Luigs and Neumann, Germany). A 16x immersion objective (163 Nikon CFI LWD, Japan)

was used for all the imaging. The systemwas operated by theMatlab-based software ScanImage SI5 (Vidrio Technologies, USA). For

each mouse, multiple imaging sessions were performed at very different depths and locations within the field of view in the micro-

prism. During the behavior sessions, we used a trial-based acquisition scheme where acquisition sequences of fixed duration (9 sec)

were triggered at the beginning of each trial.

Two-photon calcium data pre-processing
To extract time-varying somatic calcium signals, we used the Matlab-based Suite2p toolbox (Pachitariu et al., 2016). Neuropil

contamination was corrected by subtracting the fluorescent signal from a surrounding ring FSurround(t) from somatic fluores-

cence: F(t) = FSoma(t) - a*FSurround(t), where a was estimated by the Suite2p deconvolution algorithm. Neuropil-corrected fluo-

rescence signals F(t) where then converted in z score by subtracting from each trace the mean value and dividing by its stan-

dard deviation of F(t) over the samples contained in the last second of the baseline window preceding the stimulus (pooling

across all trials).
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Behavioral analysis and state classification
We observed the behavior of mice performing the task transitioning across 4 stereotypical behavioral patterns as their thirst-induced

motivation decreased over the course of each session. This analysis was based on the lick probability for all stimulus conditions (C2

whisker, B2whisker, No stimulus) as well as the discrimination performancemeasured as the percentage of correct trials. We labeled

the first stage ‘‘hyper-motivated’’ (gray shaded areas in Figures 5A and S5A). In this statemice producedmany spontaneous licks (i.e.

licks not evoked by a whisker stimulation) and tend to lick indiscriminately upon stimulation of any whisker. We labeled the second

state as ‘‘detecting’’ (brown shaded areas in Figures 5A and S5A). In this state, themotivation starts to decrease andmice stop licking

when not cued by a whisker stimulation but they remain unable to suppress licking for the No go whisker (B2). We labeled the third

state as ‘‘discriminating’’ (green shaded areas in Figures 5A and S5A). In this state, mice finally stop licking for the No go (B2) stimulus

while continuing to lick upon simulations of the Go whisker (C2). The last state was labeled ‘‘disengaged’’ (white areas in Figures 5A

and S5A). In this state, the motivation becomes so low that mice eventually stop licking for any stimulus, even upon simulation of the

Go whisker (C2). Figure S5A illustrates the sequence of states described above in an idealized case. In order to automatically label

trials as belonging to one of these 4 states we implemented a behavioral data analysis pipeline that is schematically depicted in Fig-

ure S5B.We first isolated each stimulus condition (C2, B2, No stim.) during the session to compute a smoothed lick probabilities over

a sliding window of 61 consecutive trials. This is computed as the number of licks in a stimulus condition divided by the number of

occurrences of that given condition in the sliding window. From these condition-specific smooth lick probabilities, we also computed

a performance variable as the percentage of correct trials. It is defined as the average between the rate of correct choices for C2

whisker stimulations (i.e. Hit rate = C2 lick rate) and the rate of correct choices for B2 whisker stimulations (i.e. Correct Reject

rate = 1 – False Alarm rate = 1 – B2 lick rate). These curves are the ones displayed in Figures 5A and S5. This way of computing per-

formance makes it insensitive to the proportion of C2 vs. B2 trials. We chose to use this performance metric rather than the signal

detection d-prime to avoid the divergence problem for low-variance distributions that were often observed in our data when hit

rate was stuck at 1. However, additional analysis with a regularized version of d-prime showed similar results as the one reported

in this study (data not shown). The next step is a first labeling of each trial as belonging to one of the 4 possible states depending

just on the local values of the above-mentioned curves. The decision tree describing the logic of this labeling is depicted in Figure S5B.

In the following we provide a brief summary of this process. First trials in which spontaneous lick probability exceeds a threshold

value of 0.3 are labeled as ‘‘hyper-motivated’’. Next remaining trials are labeled as ‘‘detecting’’ if at least one of the two stimulus

evoked lick probabilities (i.e. C2 and B2) exceeds the threshold value of 0.3 and the C2-evoked one is not exceeding the B2-evoked

one above a given threshold of 0.2. On the contrary, if this latter condition is met, the trial receives the label of ‘‘discriminating’’. Re-

maining trials are labeled as disengaged. This procedure already yields a relatively good match with the intuition described above in

the majority of sessions, however this kind of ‘‘threshold crossing’’ algorithm is prone to noise around state transitions (producing a

multitude of very small chunks of trials with alternating labels when the lick probabilities randomly fluctuate around the threshold

values). In order to fix this problem and make sure sessions are always chunked in a sequence of large state phases (likely to be

more behaviorally relevant in reflecting the change of motivational state of the animal) we applied two extra post-processing steps.

The first is the application of a ‘‘gap filling’’ algorithm to the sequence of behavioral state labels of each session. The algorithm is

composed of three main steps: i) the state sequence is padded with ‘‘hyper-motivated’’ and ‘‘disengaged’’ at the beginning and

end respectively; ii) for each isolated chunk of length <50 in the sequence we take a window of width 100 centered in its middle point

and we replace current label with one that is more abundant in the neighboring bins; iii) a session ‘‘end point’’ is detected as the trial,

after peak performance has been reached, in which the curve goes under 0.66 of the peak performance: every trial after this point is

re-labeled as disengaged and padding is removed. Finally, as a second post-processing step, sequential ordering (‘hyper-moti-

vated’->’detecting’->’discriminating’->disengaged’) of the remaining chunks is ensured by filling up remaining isolated chunks

with the label of the earliest state not terminated yet for the current session (where termination is defined as the trial in which the

last label of a given state appears in each particular session). In order to assess the learning of each individual mouse, we computed

a session-by-session C2 vs. B2 discrimination performance including only ‘‘engaged’’ trials (i.e. hyper-motivated + detecting +

discriminating). By performing a bootstrap-t procedure resampling over trials we obtained p-values for this difference in each ses-

sion. Displaying at least one session with significantly positive C2 vs. B2 lick rate difference was adopted as criterion for learning. In

order to quantitively assess how fast mice improved their task performance over days we computed learning curves by averaging

performance session-by-session and considering all engaged trials. For each mouse, after a mild smoothing of the learning curves

(i.e. moving average with widow of length = 5) we defined as ‘‘sessions to criterion’’ the number of sessions required for these

smoothed performance curves to reach 75%of the peak value. To quantify performance improvement within the discriminating state

across sessions we re-applied exactly the same procedure to session-by-session performance curves obtained only considering

‘‘discriminating’’ states. Another important metric of progression of mice proficiency in the task we computed is the fraction of trials

spent in the ‘‘discriminating’’ state over the total number of ‘‘engaged’’ trials of each session (Figure 5F).

Simulations of learning trajectories
We simulated two distinct learning scenarios to illustrate how the behavioral state analysis can distinguish between them and char-

acterize how mice performance progressed across days. We considered a ‘‘sensorimotor learning’’ scenario and a ‘‘motivational

state control’’ scenario and we simulated the outcomes of the analysis in the two cases. For both scenarios we implemented a

toy model able to generate synthetic behavioral data following specific changes in behavioral curves. Single trial licking events
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were drawn from a binomial probability distribution controlled by the lick probability curves. These simulated data were then fed to

the same analysis pipeline used for real data (Figure 5). In the first scenario (‘‘sensorimotor learning’’) performance increase is driven

by a linear increase of the gap between the C2 and B2 lick probability plateau levels across sessions. Session after session C2 lick

probability remains fixed at 1 while B2 lick probability linearly decreases (downward red arrow in Figure S5C). This yields a flat per-

formance curve within each session steadily increasing across days (upward blue arrow in Figure S5C). This scenario mimics the

hypothetical case of a mouse slowly strengthening the sensorimotor association between whisker stimuli and actions while express-

ing this knowledge at all times during the session. In the second scenario (‘‘motivational state control’’) performance increase is

driven by an increase of the duration of the discriminating phase in each session with the B2 lick probability decaying to zero pro-

gressively earlier before the C2 one lick probability curve (leftward red arrow in Figure S5I). This results in an inverted U-shaped per-

formance curve with broader and broader peak across days (upward blue arrow in Figure S5I). This scenario mimics the hypothetical

case of a mouse that has acquired the sensorimotor association early but is not able to express this latent knowledge at all times

during training. On the contrary task knowledge expression in this scenario can happen only during a final discrimination phase

that progressively increase in duration as the animal learns to control its motivational state across days. To compare the results

of these simulations with real data we quantified in both cases the slopes of the discriminating phase proportion and discriminating

performance curves over late sessions close to the saturation point of the sigmoidal learning curve (Figures S5H and S5N). The same

process was repeated for different discrimination thresholds (i.e. minimal C2 vs B2 lick rate difference) used by the behavioral phase

classification algorithm to ensure robustness to the choice of this parameter.

Classification of neurons in functional cell classes
Whether a neuron was responsive to each condition (‘‘Hit’’, ‘‘Miss’’, ‘‘False Alarm’’, ‘‘Correct Rejection’’ and ‘‘Catch’’, including

all spontaneous licking events realigned to licking time) was assessed by performing a one-sided unpaired z test on the z

scored calcium traces for each trial time bin. Bins for which the distribution of z scored activity was exceeding a threshold

of significance of p < 10�10 for at least 3 consecutive bins were considered a ‘‘responsive’’ bin. A neuron having at least 1

responsive time bin in a given condition was considered ‘‘responsive’’ to that condition. Whether the calcium responses of a

neuron were better aligned to the onset time of licking movements or to the onset of whisker stimulation was assessed by per-

forming a two-sided paired t-test comparing the mean value of peak z scored calcium traces (in Hit and False Alarm conditions)

keeping trials aligned to stimulus (stimulus-aligned) vs. aligned to lick timing (lick-aligned). A neuron having an average response

peak significantly greater (i.e. with p < 0.05) in the lick-aligned condition than in the stimulus-aligned condition was considered

‘‘motor aligned’’. Responsive neurons were assigned to 4 different functional cell classes (i.e. ‘‘pure sensory’’, ‘‘mixed sensory’’,

‘‘gated sensory’’ and ‘‘motor-related’’). The decision tree used for the cell classification algorithm is depicted as flowchart in

Figure S4A. In the following we will briefly summarize the logic of the classification. i) If a neuron is responsive only in presence

of one or both sensory stimuli (i.e. to Hit & Miss or False Alarm & Correct Reject) and not motor-aligned we will consider this cell

a ‘‘pure sensory’’ neuron since it responds to sensory events only. ii) If a neuron is responsive to one or both sensory stimuli (as

in the previous case) but also to spontaneous licking events or if its responses are motor-aligned we will consider this cell a

‘‘mixed sensory’’ neuron since it responds to both sensory and motor events. iii) If a neuron is unresponsive to any sensory

stimulus alone as well as to spontaneous licks but is responsive to whisker stimuli in lick conditions (i.e. Hit or False Alarm) while

not being motor-aligned we will consider this cell as ‘‘gated sensory’’ neuron since it responds as a sensory neuron but only

when the stimulus is followed by the action to lick (i.e. the lick decision ‘‘gates’’ the sensory response). iv) If a neuron is unre-

sponsive to any whisker sensory stimulus alone as well as to spontaneous licks but is responsive to catch or its responses are

lick-aligned we will consider this cell a ‘‘motor-related’’ neuron since it responds to motor events only.

Quantification of whisker selectivity
In order to quantify the sensory selectivity of imaged neurons we computed a ‘‘whisker selectivity index’’ (WSI) characterizing the

difference between responses to C2whisker and B2whisker in No lick trials (to avoid any confounding effects due tomotor-related

signals potentially present in Lick trials). The first step in computing WSI consists in taking Miss and Correct Reject trial responses

and baseline correct them (by subtracting the median of the traces in each condition between �2 and�0.5 from stimulus onset to

the traces themselves). Next, traces of each trial are integrated over the whole response window (i.e. between 0 and 2 sec after

stimulus onset). Finally, WSI value is given by taking a normalized difference between the average across trials of these integrals

for the Miss and Correct Reject condition (leading to positive values for neurons preferring the C2 whiskers and negative values for

neurons preferring B2). In the histogram in Figure 3G neurons referred as whisker selective are neurons with abs(WSI)>0.33. When

computingWSI by behavioral state the same logic applies but this time all C2 and B2 trials are considered since motor-related and

mixed sensory neurons are excluded from this analysis (therefore excluding contaminations with motor-related signals). Average

WSI curves shown in Figure 7C are obtained by averaging theseWSI values by behavioral state including, for each state, only cells

for which >10 trials have been observed for both whiskers in that particular state (to ensure good sampling). Average z scored

amplitude curves shown in Figure 7D are obtained by taking the average between the max C2 and B2 z score responses of the

same signals from which WSI is computed and averaging, for each state, only over cells for which >10 trials have been observed

for both whiskers.
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Quantification of pre-lick modulation in sensory responses
In order to quantify modulations of sensory responses by the upcoming action (i.e. lick or no lick) we devised a ‘‘pre-lick modulation

index’’ (PMI) that compares, trial-by-trial observed responses in the Stim + Lick condition (i.e. Hit of False Alarm) with the one pre-

dicted looking at the average of the Stim +No lick condition over a timewindowpreceding lick time in each trial. Figure S4C displays a

schematic showing how the PMI is computed for an example pure sensory neuron. In the followingwewill briefly summarize the steps

of the algorithm to compute this index. The first step consists in computing the trial average of the response in the Stim + No lick

condition (after a baseline correction step in which the median of the trace between �2 and �0.5 sec from stimulus onset is sub-

tracted to the traces). Next the algorithm requires to loop over trials in the Stim + Lick condition and for each of them define a

‘‘pre-lick window’’ as the time between stimulus onset and one time bin (i.e. 33 msec) of margin before the t-SNE estimated lick

time. The current Stim + Lick trial z scored response and the average z scored one in the Stim +No lick condition have to be integrated

over this time window to produce two response integrals (indicated as ‘‘i1’’ and ‘‘i2’’ in Figure S4C). To reduce the noise in the es-

timate of these two integrals, time samples not crossing a significance threshold of p < 10�10 (i.e. ‘‘unresponsive’’ bins) for both

the Stim + Lick and Stim + No Lick conditions are excluded from the integration as well as the ones for which a pre-lick response

was observed for less than 5 trials (i.e. ‘‘undersampled’’ bins). The PMI value is finally obtained by taking a normalized difference be-

tween the averages across Stim + Lick trials of i2 and i1 (resulting in a positive value for an enhancement of the responses preceding

licks and negative values for a depression).

Clustering of populations according to similarities in pre-lick modulation
In order to find the best clustering of neural populations under investigation according to the similarity of their PMI values we applied

hierarchical clustering approach. The hierarchical clustering algorithm (implemented in Matlab Statistics and Machine Learning

ToolboxTM) was fed with the surprise matrix derived from p values obtained from a two-sided paired Wilcoxon test comparing the

median C2 and B2 PMI values of each pair of populations. The linkage to be fed to Matlab function ’’dendrogram’’ (outputting the

reordering permutation) was created using the ‘‘average’’ method and ‘‘cosine’’ metric. The matrix of surprise values for median

PMI differences was then reordered applying the permutation minimizing clustering distance between rows and columns to obtain

the result shown in Figure 3K.

Analysis of action tuning maps
Action tuning maps were characterized in the t-SNE space by computing the ratio between the unweighted trajectory-occupancy

histogram and the one obtained weighting each position with neuronal activity recorded during transit of the trajectory in that partic-

ular bin. Histograms were filtered with a gaussian kernel before taking the ratio to get smoother tuning maps. For this analysis we

used z scored deconvolved calcium traces as representation of neural activity. This choice was dictated by the need to avoid the

potential smearing of the reconstructed tuning map along the trajectory due to the long tail of the calcium fluorescence signal. Z

scoring of deconvolved trajectories was carried out following the same procedure described above for fluorescence traces. In order

to investigate in which state of the typical trajectory in t-SNE space any neuron would fire (i.e. to understand which point of the typical

motor sequence each neuron encodes) we devised a ‘‘convolved trajectory analysis’’ based on the idea of convolving the action tun-

ing map with the typical motor trajectory. The first step of this analysis was to reparametrize trajectories in the t-SNE space with an

intrinsic length coordinate thusmaking them insensitive to small trial-to-trial variation in the exact dwelling time in any given region. In

doing so only the part of the trajectory going from the exit to the entrance in the quiet state was considered to discount the effects of

different reaction times and overall motor sequence duration. In order to obtain such a reparameterization we devised an algorithm

that ‘‘jumps’’ frompoint to point (potentially skipping groove points) along the original trajectory. The algorithm selects the destination

of the ‘‘jump’’ (i.e. the next point in the reparametrized trajectory) weighting different factors: i) the distance in t-SNE space of next

candidate points from the current one (trying to match an ideal reparameterization step side), ii) their angular distance with respect to

the current direction of the trajectory (trying to deviate as little as possible), iii) the distance in time samples of next candidate points

from the current one (to avoid big ‘‘jumps’’). After a final interpolation step the reparametrized single-trial trajectories obtained in this

way are summarized in a typical trajectory by taking their mode point-by-point (the mode is obtained by taking the maximum density

point of the estimated distribution of positions of the reparametrized trajectories for all values of the intrinsic coordinate). Having ob-

tained these typical reparametrized trajectories for each session the next step consists in convolving them with the tuning map of

each motor neuron recorded in that session. This yields a ‘‘convolved trajectory trace’’ for each neuron where the peak represents

the preferred stage of the motor sequence for each cell (black dots in Figure 4E). Averaging across all motor neurons (after a max

normalization step) from all sessions recorded in a given area yields the curves visualized in Figure 4E describing where, along

the motor sequence, the majority of motor neurons are active in wS1, wS2 and wM2.

Decoding the identity of the stimulated whisker
In order to quantify the amount of information about the tactile stimulus encoded in different areas and across different behavioral

states we implemented a decoder classifying trials as ‘‘C2 stimulation’’ or ‘‘B2 stimulation’’ on the basis of neuronal population ac-

tivity of neurons in each session. This decoder was inspired by original works introducing neuronal population probabilistic codes

(Jazayeri and Movshon, 2006; Ma et al., 2006) and is similar to the one used in a previous publication (Mayrhofer et al., 2019).

The first preparatory step for this analysis was to compute, for all non-motor neurons in a given session (i.e. ‘‘pure sensory’’ and
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‘‘gated sensory’’) the integral of the z scored responses over thewhole responsewindow on eachC2 or B2 trial. This yielded a dataset

amenable to be solved as a binary classification problem: for each trial, we have a population ‘‘feature vector’’ containing the

response integral of all neurons in the population and a ‘‘label vector’’ encoding the identity of the whisker being stimulated at

that time. To solve this classification problem with the probabilistic approach mentioned above while ensuring robustness of the re-

sults we applied a 4-fold cross-validated procedure in whichwe split trials of any given session in 4 batches andwe used 3 of them for

‘‘training’’ of the decoder and 1 for ‘‘testing’’ (i.e. to evaluate the decoding performance on hold out data). The ‘‘training’’ in this prob-

abilistic framework consists simply in computing the tuning curves (i.e. whisker-triggered averages) using all trials included in the

training set and taking their logarithm. The subsequent ‘‘testing’’ of the decoder requires to generate a prediction. This is done by

computing the log-likelihood of test trials being fed as a C2 trial or a B2 trial and selecting as predicted whisker the maximum likeli-

hood one. The log-likelihood can be obtained by taking a matrix product between the matrix storing the log of tuning curves

computed at the ‘‘training’’ step and the current population feature vector (after subtracting a corrective term proportional to the

sum of all tuning curves to account for any representational bias in the decoded population). The fraction of correct predictions

(i.e. when the predicted whisker coincides with the true one) is the accuracy of the decoder on the test set. The average test set ac-

curacy across each of the 4 train/test splits was used to measure the decoding performance in a given session. This process was

repeated 250 times reshuffling the neurons to make sure the results were fully independent from any particular train/test split. As

a preprocessing step, each element of the population feature vector was scaled independently between 0 and 1 and the order of

trials was randomly reshuffled (while keeping the correspondence with the correct label) in order to get rid of noise correlations.

To obtain curves of accuracy vs. number of neurons in the decoded population in Figure 7E the process described above was

repeated subsampling the neuronal population to match a given neuron number for all neuron numbers from 1 to the total number

of neurons recorded in each session. Performance curves obtained in this way were then averaged across all sessions recorded in

each area. The same procedure was applied limiting trials to only the ones in a given state in order to obtain decoding performances

per behavioral state (using all neurons in each session). These performances were in turn used to compute the performance variation

in each state relative to the average across states. This normalized performance variation was indicated as ‘‘DDecoding perfor-

mance’’ in Figures 7F–7H. The same procedure was followed for the results in Figure 7G where an additional resampling procedure

generating ‘‘surrogate’’ sessions was applied (see Statistics section below for the details). All plots in Figure 7 showing decoding

performances include only sessions with at least >20 trials observed for both C2 and B2 (i.e. ‘‘well-sampled sessions’’).

Decoding orofacial movements
In order to quantify the amount of information about orofacial movements encoded in different areaswe implemented a decoder clas-

sifying each bin of each trial as pertaining to one of the 7 possible motor states on the basis of neuronal population activity of neurons

in each session. As for the whisker decoder this decoder was also inspired by population probabilistic codes (Jazayeri andMovshon,

2006; Ma et al., 2006) and similar to the one used in a previous publication to decode left vs. right licks from tongue-jaw M1 and wS1

activity (Mayrhofer et al., 2019). However, the higher dimensional nature of the problem, as compared with whisker decoding,

required several adaptations. In this case our probabilistic decoder was not trying to directly predict the state label for each time

bin but rather the position in the t-SNE state space. Boundaries of regions associated to different motor states in the t-SNE space

provided the link function to translate these predicted positions in predicted state labels. The first preparatory step for this analysis

was to extract the value of smoothed deconvolved activity traces in the time interval from�1 to 6 sec after stimulus onset for all non-

sensory neurons in a given session (i.e. ‘‘motor-related’’ only). Smoothing was carried out by convolving raw deconvolved traces with

a causal exponential filter with tau = 0.230 sec. This yielded a dataset amenable to be solved as a multi-class classification problem:

for each time sample of each trial, we have a population ‘‘feature vector’’ containing the response integral of all neurons in the pop-

ulation of interest and a ‘‘t-SNE position vector’’ encoding the position in the t-SNE plane that time (encoded by an integer number

between 1 and 500). To solve this problem with our probabilistic approach while ensuring robustness of the results we applied a

3-fold cross-validated procedure in which we split trials of any given session in 3 batches and we used 2 of them for ‘‘training’’ of

the decoder and 1 for ‘‘testing’’ (i.e. to evaluate the decoding performance on hold out data). The ‘‘training’’ of our probabilistic frame-

work consists simply in computing the action tuningmap for each neuron (i.e. tuning curves in the t-SNE space, as described in detail

in the Analysis of action tuning maps section) using all samples of all trials included in the training set and taking their logarithm. The

subsequent ‘‘testing’’ of the decoder requires the generation of a prediction. This is done by computing the log-likelihood of the test

time sample being fed as input corresponding to any point of the t-SNE space and selecting as predicted position the maximum log-

likelihood one. The log-likelihood can be obtained by taking a matrix product between the matrix storing the log of tuning curves

computed at the ‘‘training’’ step and the current population feature vector (after subtracting a corrective term proportional to the

sum of all tuning curves to account for any representational bias in the decoded population). As mentioned before, the position pre-

dicted in this way is translated in a predicted state using the known state boundaries. As a preprocessing step, each element of the

population feature vector was scaled independently between 0 and 1 and the order of trials was randomly reshuffled (while keeping

the correspondence with the correct label) in order to get rid of noise correlations. Repeating the procedure described above we can

get a state prediction for all time samples of all trials of a session. We can then visualize these data as a predicted ethogram that we

can compare with the true one (as in Figures 4G–4I). The fraction of correct predictions across all time bins of all testing trials (i.e. the

fraction of times over which the predictedmotor state label coincides with the true one) is the accuracy of the decoder on the test set.

The average test set accuracy across each of the 3 train/test splits was used to measure the decoding performance in a given
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session. For the results reported in Figure 4J only ‘‘active’’ time samples (defined as moments in which at least one neuron in the

population feature vector was above its 25% quantile of activity) were taken in consideration to limit the assessment of performance

to moments in which some activity was present in the motor network imaged. Predicted ethograms were also used to decode lick

bout duration in each trial by integrating the time spent in ‘‘isolated licking’’ and ‘‘sustained licking’’ in each trial. Agreement between

predicted and observed lick bout duration in each session was quantified as the Pearson correlation coefficient between these 2 vari-

ables. Prediction of ethograms can also be achieved using a more standard Generalized Linear Models (GLM) approach based on

neuronal activity to predict moment-by-moment discrete behavioral states. Performing the same analysis using GLM models we

found a similar trend as the one observed with Bayesian decoder for different areas with an overall lower fraction of correct trials

(data not shown).

Quantification and statistical analysis
Statistical details of experiments and analysis are described in figure legends and in the Results section. Details include statistical

tests used, sample type and number as well as definition of bar plots and error bars. In figure legends, standard error of the mean

(s.e.m.) is specified when plotted as error bars. Paired or unpaired t-tests were used to assess significance of mean comparisons

(implemented byMatlab functions ‘‘ttest’’ and ‘‘ttest2’’ respectively). Normality tests were not performed systematically but individual

data points were plotted to visualize distributions. Wilcoxon signed rank test were used to assess significance in paired median com-

parisons (implemented by Matlab function ‘‘signrank’’). Wilcoxon rank sum test was used for unpaired median comparisons (imple-

mented by Matlab function ‘‘ranksum’’). Pearson correlation coefficient was used to compute correlations between two conditions

(implemented by Matlab function ‘‘corr’’). Across all fits reported uncertainties (i.e. confidence intervals) for best-fit parameter values

were extracted fit covariance matrices (fitting was performed using Matlab function ‘‘nlinfit’’). When comparing systematically many

populations (>3, like in the analysis described in Figures 3K, 6F–6G, and 7G) Bonferroni multiple comparison correction was applied.

Custom bootstrap or resampling procedures were adopted when in need of applying particular constraints to the distributions to be

compared (i) or when the complex nature of the analysis involvedwasmaking them less amenable to amore standard approach (ii, iii,

iv). In the following lines we will outline the procedures adopted in these cases more in detail. i) When comparing PMI values across

sensory neurons (i.e. ‘‘pure sensory’’, ‘‘mixed sensory’’ and ‘‘gated sensory’’) in each neuronal population as a function of the whisker

identity (Figure 3H) a bootstrap procedure with sample size matching was applied. This was important to discount from the compar-

ison any effect of the differences in overall whisker preference between areas. Neurons were resampled 2,000 times subsampling

every time the largest population among the C2 preferring (i.e. WSI>0) and the B2 preferring (i.e. WSI<0) to achieve equal sampling

(i.e. wS1: n = 366, wS2: n = 392, wM2: n = 293). The average across neurons for the C2 andB2 PMI aswell as their differencewas then

computed for each resampling. Finally, the distribution thus obtainedwas used, under a normal assumption, to compute Z values and

compute the corresponding p value for the difference from zero as well as 95% CI. ii) When comparing the results of the convolved

trajectory analysis across areas a bootstrap-t procedure (Efron and Tibshirani, 1993) with 2,000 outer resamplings and 25 inner re-

samplings (over neurons) was applied in order to obtain 95% CI for the mode of the distribution of peak positions of the convolved

trajectory traces. iii) When comparing whisker DDecoding performances across behavioral states (Figure 7G) it was important to

compare average performance between sessions containing both states in the pair under consideration only (e.g. when comparing

‘‘discrimination’’ and ‘‘disengaged’’ only sessions featuring these two states with a sufficient number of trials per whisker should be

included). In order to be able to do so while still keeping a good number of samples for the comparison we resorted to a resampling

approach in which we created n surrogate sessions from each session with n neurons. This enabled to keep the number of samples

high enough (greater than >14 in the worst case) to have a meaningful comparison for all pairs of states. iv) When assessing the dif-

ference from zero of the C2 vs. B2 lick rate difference in each session of each mouse a bootstrap-t procedure (Efron and Tibshirani,

1993) with 2,000 outer resamplings (over trials) and 25 inner resamplings was applied in order to obtain 95% CI.
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