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1 Introduction

The classification of superconformal field theories (SCFTs) and supersymmetric gauge theories
in various dimensions has been a major subject in the study of supersymmetry in the recent
decades. Given Nahm’s classification on superconformal algebras [1], the highest dimension
in which a nontrivial SCFT can exist is six. It is now well-known that the 6d (2, 0) SCFTs
admit an ADE classification [2, 3], while the 6d (1, 0) SCFTs admit an “atomic classification”
with certain generalized quiver structures [4]. See an excellent review [5]. More recently,
much progress has been made in the understanding of the compactification of 6d SCFTs to
lower dimensions. In particular, the compactification to 5d Kaluza-Klein (KK) theories is
mostly understood and results in a conjectural classification on 5d SCFTs by decoupling
5d hypermultiplets from the KK theories [6–10].

Besides the straightforward circle compactification, it was observed in [10] that when a
6d SCFT has a discrete global symmetry, one can do twisted circle compactification to a new
5d KK theory. This process brings in a large class of highly nontrivial 5d KK theories, many
of which have fascinating 5d Lagrangian descriptions [11]. There exist two possibilities for
the 6d discrete global symmetry: the first kind comes when the gauge algebra allows outer
automorphism, in which case the twisted circle compactification means to fold the 6d vector
multiplets; the second kind comes when the quiver structure has a discrete symmetry, in
which case one folds the 6d tensor multiplets. In the current work, we are interested in the
first kind of twisted circle compactification of 6d (1, 0) SCFTs as it is classified by twisted
affine Lie algebras and related to the modularity of congruence subgroups Γ1(N). The second
kind of twisted circle compactification for 6d (2, 0) SCFTs has been studied in [12].

The 6d (1, 0) SCFTs can be geometrically engineered by F-theory compactified on non-
compact elliptic Calabi-Yau threefolds. More precisely, such Calabi-Yau geometry M is an
elliptic fibration over a non-compact base surface B in which all curves are simultaneously
shrinkable to zero volume. The dimH1,1(B,Z) gives the dimension of the tensor branch, i.e.,
the rank of the 6d (1, 0) SCFT. We are particularly interested in the rank one case, where
the non-compact base B is just OP1(−n) for n = 1, 2, 3, . . . , 8, 12. The geometric engineering
suggests that when a 6d (1, 0) SCFT is put on the 6d Nekrasov Omega background C2

ε1,ε2×T
2,

the partition function should be equal to the refined topological string partition function on
Calabi-Yau M . On the other hand, 6d (1, 0) SCFTs contain the BPS strings or the so-called
self-dual strings with worldsheet theory as 2d (0, 4) SCFTs. From the viewpoint of worldsheet,
the elliptic genera of the 2d theories should also be equal to the 6d partition function upon
suitable expansion by the number of strings. Along with the circle compactification to 5d
KK theory, these yield the well established relation chain

E2d (0,4) SCFT = Z
6d (1,0) SCFT
R4×T 2 = Z5d KK

R4×S1 = Zref. top.
non-compact elliptic CY3. (1.1)

In the case of twisted circle compactification, the non-compact elliptic Calabi-Yau
threefolds are generalized to non-compact genus-one fibered Calabi-Yau threefolds, with
additional rational sections or just N -sections. The genus-one fibered Calabi-Yau geometries
and their role in F-theory compactification have drawn lots of attention in recent years [13–22].
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In our situation, the number of sections is naturally reflected by the type of twists:

N =


2, A

(2)
2r−1, D

(2)
r , E

(2)
6 ,

3, D
(3)
4 ,

4, A
(2)
2r .

(1.2)

The geometric engineering of these special genus-one fibered Calabi-Yau threefolds produces
the twisted compactification of 6d (1, 0) SCFTs. The BPS strings of the 6d SCFTs on the
torus T 2 = S1 × S1 also get twisted along one S1 in the sixth direction such that the elliptic
genera now have fractional q1/N orders. Although both the 6d SCFTs and the 2d worldsheet
theories are in twisted circle compactification, one can still look from 6d and 2d to keep
the modularity manifest. Notably, the modularity is no longer the SL(2,Z) of ordinary
elliptic genera, but the congruence subgroups Γ1(N) of SL(2,Z). In summary, we expect
the following twisted version of the relation chain (1.1) as

E2d (0,4) SCFT
twisted = Z

6d (1,0) SCFT
R4×S1×S1,twisted = Z5d KK

R4×S1 = Zref. top.
non-compact genus-one fibered CY3. (1.3)

We are interested in the twisted elliptic genera arising here. It should be noted that this
term actually has already been used in a different context for 2d N = (2, 2) SCFTs such as
the twisted elliptic genus of K3 surface, see e.g. [23, 24]. The twist in our term comes from
the same twist as in twisted affine Lie algebras and is specifically for 2d N = (0, 4) SCFTs,
thus should not be confused. For the second kind of twist, one can also study the associated
twisted elliptic genera, which for the 6d (2, 0) cases have been studied in [12]. However, those
are not related to twisted affine Lie algebras, thus are not the concern of the current paper.

Some typical examples of twisted circle compactification include the Z2 twist of 6d (1, 0)
pure su(3) SCFT which compactifies to the 5d su(3) gauge theory with Chern-Simons level 9,
and the Z3 twist of 6d (1, 0) pure so(8) SCFT which compactifies to 5d su(4) gauge theory
with Chern-Simons level 8. The 5d KK theories are not necessarily gauge theories. For
example, the Z2 twist of 6d (1, 0) pure so(8) SCFT is known to be a 5d non-Lagrangian
theory. We will study the twisted elliptic genera for all these examples in this paper.

In the following, we summarize several approaches to the twisted elliptic genera.

• Localization of 2d (0, 4) SCFTs. Elliptic genera of some special 2d theories can be
exactly computed by 2d localization, i.e., Jeffrey-Kirwan residue, analogous to the
ADHM construction in 0d [25, 26]. This approach can be generalized to some special
Z2 twisted theories [27]. In general, this method when applicable is the most efficient
way to compute (twisted) elliptic genera to arbitrary number of strings. Two known
examples are the n = 3, su(3)(2) theory and the n = 4, so(2r + 8)(2) theories which we
will review in section 2.4.

• Γ1(N) modular ansatz. The modular ansatz method exploits the modularity of elliptic
genera [28–32], inspired by the early work on compact elliptic Calabi-Yau threefolds [33].
In particular, the SL(2,Z) modular ansatz for the one-string elliptic genera of rank-one
6d (1, 0) SCFTs has been extensively studied in [31]. On the other hand, the modular
ansatz of congruence subgroups Γ0(N) and Γ1(N) has been investigated in [16, 20, 21]
for topological strings on genus-one fibered Calabi-Yau threefolds with N -section.

– 3 –
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Recently, the genus-one fibered Calabi-Yau threefolds associated with twisted affine Lie
algebras were discussed in [34]. We combine these results together to propose a suitable
Γ1(N) modular ansatz for the one-string twisted elliptic genera and successfully fix the
ansatz for almost all rank-one twisted theories. Interestingly, we find that for almost
all rank-one twisted theories, the modular group is enhanced from Γ1(N) to Γ0(N).

• Brane webs and topological vertex. Many 6d (1, 0) SCFTs allow brane-web interpreta-
tions. When the brane-web construction exists, one can use the (refined) topological
vertex to compute the 6d partition function. This method can be cleverly extended
to some Z2 twisted theories by including O5-planes [27, 35, 36]. For example, the 5d
su(3)9 partition function can be computed by an extension of topological vertex called
O-vertex [35, 37].

• Twisting from Higgsing. It has been noticed that some 6d twisted theories can be
obtained by the Higgsing from 6d untwisted theories [38, 39]. This generalizes the
known Higgsing trees for 6d (1, 0) SCFTs, see e.g. [31]. Most known examples of twisting
from Higgsing come from so(2r)(2) type of theories with n = 2, 3, 4 [38, 39]. We will
systematically study the twisting from Higgsing phenomenon for all rank-one theories,
including the Higgsing from both untwisted theories and twisted ones. We will also
propose a simple algebraic method to determine the precise Higgsing conditions based
on representation decompositions.

• Twisted elliptic blowup equations and the recursion formula. This will be the main
computational method in the current paper. In a series of works [40–43], the elliptic
blowup equations have been established for the elliptic genera of all 6d (1, 0) SCFTs,
which generalized Nakajima-Yoshioka’s blowup equations in 4d and 5d [44–49]. Now
we further generalize these very efficient and universal functional equations to all 6d
rank-one twisted theories, both unity and vanishing blowup equations. We focus on the
elliptic form, rather than the 5d form or geometric form of blowup equations, such that
the twisted elliptic genera can be directly computed. Some unity blowup equations for
some simple twisted theories have been studied in [50].

This paper is organized as follows. In section 2, we give an overview on some salient
features of 6d (1, 0) SCFTs and their twisted circle compactification. We will define twisted
elliptic genera of the BPS strings and describe a fundamental quantity — the modular index.
In section 3, we generalize the elliptic blowup equations in previous works to the twisted
cases and derive a recursive formula to compute the twisted elliptic genera efficiently. In
section 4, we focus on twisted one-string elliptic genera and study their universal features.
In particular, we generalize the spectral flow symmetry of the one-string elliptic genera of
2d (0, 4) theories discovered by Del Zotto and Lockhart [28, 31] to the twisted cases. In
section 5, we exploit the modularity of twisted elliptic genera, and propose the proper modular
ansatz with modular group Γ1(N) with N = 2, 3, 4. In section 6, we discuss the Higgsing
relations among untwisted/twisted 6d (1, 0) SCFTs. In section 7, we summarize our results
and point out some further directions.
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Our conventions for simple Lie algebras and affine Lie algebras are the same with [43],
see appendix A therein. We often use su, so and sp for classical gauge algebras where sp(r)
is equivalent to Cr. We will also use A,B,C,D for more algebraic contexts. We frequently
use q = e2πiτ , v = e2πiε+ and x = e2πiε− as multiplicative variables following [31], where
ε± = (ε1 ± ε2)/2.

2 General theory

2.1 Review of rank one 6d (1,0) SCFTs

In this section, we briefly review some known results on the rank-one 6d (1, 0) SCFTs
established in [4, 51, 52]. More extensive reviews can be found in e.g. [5, 31, 43].

The rank-one 6d (1, 0) SCFTs on the tensor branch are the natural elliptic lift of 4d
N = 2 and 5d N = 1 gauge theories with 8 supercharges. They are geometrically engineered
by compactifying F-theory on certain elliptic non-compact Calabi-Yau threefolds [53, 54].
To be precise, these Calabi-Yau threefolds can be realized as elliptic fibration over some
non-compact base surfaces O(−n)→ P1. The self-intersection number −n of the base curve
P1 can only take values from 1 to 8 and 12. This n is also called the tensor coefficient. The
Kodaira and Tate singularity type of the elliptic fibration gives the 6d gauge algebra G which
is supported on the (−n) base curve. The 6d global flavor symmetry F on the other hand
is supported on a non-compact curve intersecting with the (−n)-curve. The 6d matters,
i.e., hypermultiplets in representation R sit at the intersection point between curves [55].
The (n, G,R) together are highly constrained by the Calabi-Yau condition. All possibilities
have been classified in [4, 51, 52]. For example, there exist in total six pure gauge theories
shortly denoted by nG as 3su(3), 4so(8), 5F4 , 6E6 , 8E7 and 12E8 . Together with a (7, E7,

1
256)

theory, these are the rank-one non-Higgsable clusters which serve as the “atoms” to be linked
together to build higher rank 6d (1, 0) SCFTs such as conformal matter theories [56]. Notably,
the 4so(8) theory can be extended to an infinite series of 6d (1, 0) SCFTs with n = 4 which
are the so(r + 8) + rV theories. The full list of rank-one 6d (1, 0) SCFTs with (n, G, F,R)
can be found in e.g. ([31], tables 20, 21). We collect those whose gauge algebra allows an
outer automorphism i.e. type A,D and E6 in table 1, which will be our starting theories
to perform twisted circle compactification.

Interestingly, it was noticed in [43] that all rank-one 6d (1, 0) SCFTs with tensor coefficient
n, gauge algebra G and Ni number of matters in representation RGi satisfy the following
constraint

c = h∨G
6 −

∑
i

Ni

12 Ind(RGi ) = n− 2
2 . (2.1)

Here Ind is the quadratic index of a representation. The identity shows that the combination
in the left hand side depends only on the self-intersection number −n of the base curve.
This value will be called the c constant in the current paper. The physical meaning of −c
is the left-moving Casimir energy in the Ramond sector of one BPS string. It also has a
geometric meaning in elliptic non-compact Calabi-Yau threefolds and can be computed from
the intersection theory [16]. Later we will also propose an interesting generalization of the
c constant for the twisted theories.
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n G F (RG, RF )
6 E6 − −
5 E6 u(1)6 27−1 ⊕ c.c.
4 so(8) − −
4 so(N ≥ 9) sp(N − 8)1 (N,2(N− 8))
4 E6 su(2)6 × u(1)12 (27,2)−1 ⊕ c.c.
3 su(3) − −
3 so(8) sp(1)a1 × sp(1)b1 × sp(1)c1 (8v ⊕ 8c ⊕ 8s,2)
3 so(10) sp(3)a1 × (su(1)4 × u(1)4)b (10,6a)⊕ [(16s)b1 ⊕ c.c.]
3 so(12) sp(5)1 (12,10)⊕ (32s,1)
3 E6 su(3)6 × u(1)18 (27,3)−1 ⊕ c.c.
2 su(1) su(2)1 −
2 su(2) so(7)1 × Ising (2,8s × 1s)
2 su(N ≥ 3) su(2N)1 (N, 2N)⊕ c.c.
2 so(8) sp(2)a1 × sp(2)b1 × sp(2)c1 (8v,4a)⊕ (8s,4b)⊕ (8c,4c)
2 so(10) sp(4)a1 × (su(2)4 × u(1)8)b (10,8a)⊕ [(16s,2b)1 ⊕ c.c.]
2 so(12)a sp(6)a1 × so(2)8 (12,12a)⊕ (32s,2b)
2 so(12)b sp(6)a1 × Isingb × Isingc (12,12a)⊕ (32s,1bs)⊕ (32c,1cs)
2 E6 su(4)6 × u(1)24 (27,4)−1 ⊕ c.c.
1 sp(0) (E8)1 −
1 su(2) so(20)1 (2,20)
1 su(3) su(12)1 (3,12)1 ⊕ c.c.
1 su(4) su(12)a1 × su(2)b1 [(4,12a1)⊕ c.c.]⊕ (6,2b)
1 su(N ≥ 5) su(N+8)1×u(1)2N(N−1)(N+8) [(N,N + 8)−N+4 ⊕ (Λ2,1)N+8]⊕ c.c.
1 su(6)∗ su(15)1 [(6,15)⊕ c.c.]⊕ (20,1)
1 so(8) sp(3)a1 × sp(3)b1 × sp(3)c1 (8v,6a)⊕ (8s,6b)⊕ (8c,6c)
1 so(10) sp(5)a1 × (su(3)4 × u(1)12)b (10,10a)⊕ [(16s,3b)1 ⊕ c.c.]
1 so(12)a sp(7)a1 × so(3)b8 (12,14a)⊕ (32s,3b)
1 so(12)b sp(7)a1×?b×?c (12,14a)⊕ (32s,2b)⊕ (32c,1c)
1 E6 su(5)6 × u(1)30 (27,5)−1 ⊕ c.c.

Table 1. Gauge, flavor symmetries and matter contents of all rank-one 6d SCFTs [31] with gauge
algebra allowing an outer automorphism. The subscript in a flavor symmetry indicates the level kF of
the associated current algebra F . Matters are presented as the gauge and flavor representations of the
half-hypermultiplets. The theories in gray have unpaired matter content upon Z2 twist.

The 6d (1, 0) SCFTs contain tensionless strings which we call BPS strings resembling the
features of instantons in 5d N = 1 and 4d N = 2 gauge theories. Simple examples include
E-strings which are realized by M2-branes stretched between a M5-brane and a M9-brane in
the Horava-Witten picture of M-theory on S1/Z2. The worldsheet theories on k E-strings
can be realized as a series of 2d (0, 4) O(k) quiver gauge theories [57]. The E-string theory
is the simplest 6d (1, 0) SCFTs, which has no gauge symmetry but a E8 flavor symmetry.
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It can be geometrically engineered by compactifying F-theory on local half-K3 Calabi-Yau
threefolds. The E-string theory can be extended to two infinite series of 6d (1, 0) SCFTs
with n = 1 which are sp(N) + (2N + 8)F and su(N) + (N + 8)F + Λ2 theories. Another
simple example of BPS strings is the M-strings which are realized by M2-branes stretched
between two M5-branes [58]. In this case, the 6d supersymmetry is enhanced to (2, 0) and
the worldsheet theories become (0, 8). The worldsheet theories of k M-strings can also be
realized as a series of 2d quiver gauge theories [58]. The M-string theory can be extended to
an infinite series of 6d (1, 0) SCFTs with n = 2 which are su(N) + 2NF theories. In general,
the BPS strings in a 6d (1, 0) SCFT have worldsheet theories as rather nontrivial 2d (0, 4)
SCFTs. Only in some special cases, these exist known 2d quiver gauge theory constructions.
These include the four infinite series of 6d (1, 0) SCFTs with n = 1, 2, 4 mentioned earlier.

The 6d (1, 0) SCFTs usually contain three types of supermultiplets: the tensor, vector
and hyper multiplets. As we are only interested in rank-one 6d (1, 0) SCFTs in the current
work, there is always only one tensor multiplet with tensor coefficients n. For all rank-one
6d (1, 0) SCFTs except E-string theory, there is a nontrivial gauge algebra G and the vector
multiplets are in the adjoint representation Adj of G. When there is nontrivial matter
content, the hypermultiplets are in the representation R of G. If we take into consideration
the flavor symmetry F , the matter representations are often denoted as (RG, RF ) of the
half-hypermultiplets. The partition function of 6d (1, 0) SCFTs contains three parts: the
classical part, the one-loop part and the elliptic genera of BPS strings. The first two parts
can be directly written down once the data (n,G,R) are known, while the elliptic genera
are much more nontrivial and difficult to compute.

One main task in the study of 6d SCFTs is to compute the elliptic genera of the 2d
(0, 4) worldsheet theories of the BPS strings. In the past decade, a huge amount of effort has
been made and plenty of methods have been developed, see the summaries in e.g. [41, 43].
Nevertheless, there still remain quite some rank-one 6d SCFTs whose elliptic genera we
could not compute to the extent we would like. The existing major approaches include 2d
localization, modular bootstrap, elliptic blowup equations, topological vertex and brane webs
and so on. Each has their merits and limitations. For example, 2d localization is the most
efficient method for arbitrary number of strings yet only applicable to those cases with known
2d quiver gauge theory descriptions. Elliptic blowup equations imply recursion formulas for
elliptic genera or BPS invariants yet only applicable to the cases without half-hyper. All these
approaches have counterparts for twisted elliptic genera, which we will discuss in detail later.

The circle reduction of 6d (1, 0) SCFTs produces the 5d N = 1 gauge theories with the
same gauge group and matter content. For 6d (1, 0) SCFTs with n ≥ 3, by sending τ → i∞,
i.e., q → 0, the k string elliptic genera of 6d SCFTs exactly reduce to the k instanton Nekrasov
partition function of the 5d gauge theories. For the n = 1, 2 cases, there are some subtitles for
the circle reduction such that the limit of elliptic genera and 5d Nekrasov partition function
can have some small differences, which we refer to the discussion in ([31], section 7). The
circle reduction should not be confused with the circle compactification where all KK modes
are kept. The circle compactification leads to 5d KK theories which are not necessarily gauge
theories, while circle reduction leads to 5d gauge theories as deformation of 5d SCFTs.

– 7 –
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Figure 1. Dynkin diagrams.

2.2 Twisted circle compactification

It was conjectured in [7] that all 5d SCFTs can be obtained by RG flows from 5d Kaluza-Klein
(KK) theories, while the KK theories can be obtained from the compactifications of 6d SCFTs.
When a 6d SCFT is compactified on a circle, one can turn on non-trivial discrete holonomies for
the gauge fields from the discrete global symmetries, which are realized in [10] as combinations
of the outer automorphisms of gauge algebras G and permutations of tensor multiplets. Such
a circle compactification is usually called the twisted circle compactification [10]. In this
paper, we are interested in the twisted circle compactification of rank-one 6d (1, 0) SCFTs,
with a single tensor multiplet which is invariants under any kind of discrete global symmetries,
so the outer automorphism of the gauge algebra G determines the possible types of twist. In
fact, such automorphisms have been classified in the study of twisted affine Lie algebras [59].
Denote O(rout) as the order rout outer automorphism. Then G = A2r−1, Dr, E6 admit order
two outer automorphisms while G = D4 admits an order-three outer automorphism which
act on the simple roots in patterns as described in figure 1.

Upon twisted circle compactification, the gauge algebra of affine Lie type G(1) in the
tensor branch effectively becomes the twisted affine Lie algebra G(rout). The vector multiplets
are in the representation described by the roots of the twisted affine algebra, which are
described by the representations of the finite dimensional subalgebra G̊ obtained from outer
automorphism folding of G with KK charge τ . The Dynkin diagram of G̊ is obtained by
simply removing the affine node of the Dynkin diagram of G(rout). Denote nG as the rank
of the automorphism of G, for G = A2r−1, Dr, E6, the inner automorphism is trivial, such

– 8 –
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G G̊ rout nG R → R̊

A
(2)
2r Cr 2 4 Adj → Adj0 ⊕ F1/4 ⊕Λ2

1/2 ⊕ 11/2 ⊕ F3/4

A
(2)
2r−1 Cr 2 2 Adj → Adj0 ⊕Λ2

1/2

D
(2)
r+1 Br 2 2 Adj → Adj0 ⊕ F1/2

E
(2)
6 F4 2 2 Adj → Adj0 ⊕ F1/2

D
(3)
4 G2 3 3 Adj → Adj0 ⊕ F1/3 ⊕ F2/3

Table 2. Data of twisted affine Lie algebras and the KK-momentum shifts of the adjoint representa-
tions.

that nG is equal to the rank of outer automorphism. The roots of G(nG) are

∆ = ∆im ∪∆re, (2.2)

where

∆im =
{
k

nG
τ |k ∈ Z, k 6= 0

}
, (2.3)

∆re =
{
α+ k

nG
τ |k ∈ Z, α ∈ ∆̊s

}
∪
{
α+ kτ |k ∈ Z, α ∈ ∆̊l

}
, (2.4)

where ∆̊s and ∆̊l are the sets of short roots and long roots of G̊. When G = A2l, there is
a nontrivial inner automorphism such that the whole rank of the automorphism is nG = 4,
the roots of A(2)

2r are

∆ = ∆im ∪∆re, (2.5)

where

∆im =
{
k

2 τ |k ∈ Z, k 6= 0
}
, (2.6)

∆re =
{1

2α+ 1
4(2k − 1)τ |k ∈ Z, α ∈ ∆̊l

}
∪
{
α+ 1

2kτ |k ∈ Z, α ∈ ∆̊s

}
∪
{
α+ kτ |k ∈ Z, α ∈ ∆̊l

}
, (2.7)

where ∆̊s and ∆̊l are the sets of short roots and long roots of Cr. We summarize all
KK-momentum shifts of adjoint representations under twist in table 2.

We collect all 6d (1, 0) rank-one twisted theories with paired matter content in table 3.
Here by paired we mean that the twisted matter content is invariant upon KK-charge shift
by 1/rout. For example, consider the n = 4, E6 + 2F theory upon Z2 twist, twisted matter
content is F0 ⊕ F1/2 ⊕ 10 ⊕ 11/2 for F4, which apparently is invariant under KK-charge shift
by 1/2. However, for n = 5, E6 + F theory upon Z2 twist, obviously one cannot make such
an arrangement for the twisted matter content, thus we say unpaired. For the cases with
unpaired matter content, we refer to the discussion in [60]. Those cases normally result in
5d KK theories with half-hypermultiplets.
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n G G̊ R̊ F̊ c

6 E
(2)
6 F4 − − 5/4

4 D
(3)
4 G2 − − 5/9

4 D
(2)
r+4 Br+3 2r(V0 ⊕ 11/2) sp(2r) 3/4

4 E
(2)
6 F4 F0 ⊕ F1/2 ⊕ 10 ⊕ 11/2 sp(1) 1

3 A
(2)
2 C1 − − 5/16

3 D
(2)
4 B3 V0 ⊕ 11/2 ⊕ S0 ⊕ S1/2 sp(1)× sp(1) 1/2

3 D
(3)
4 G2 F0 ⊕ F1/3 ⊕ F2/3 ⊕ 10 ⊕ 11/3 ⊕ 12/3 sp(1) 1/2

2 A
(2)
2r Cr (2r + 1)(F0 ⊕ F1/2 ⊕ 11/4 ⊕ 13/4) so(4r + 2) 3/16

2 A
(2)
2r−1 Cr 2r(F0 ⊕ F1/2) so(4r) 1/4

2 D
(2)
4 B3 2(V0 ⊕ 11/2 ⊕ S0 ⊕ S1/2) sp(2)× sp(2) 1/4

2 D
(3)
4 G2 2(F0 ⊕ F1/3 ⊕ F2/3 ⊕ 10 ⊕ 11/3 ⊕ 12/3) sp(2) 4/9

2 D
(2)
5 B4 4(V0 ⊕ 11/2)⊕ S0 ⊕ S1/2 sp(4)× sp(1) 1/4

2 D
(2)
6 B5 6(V0 ⊕ 11/2)⊕ 1

2S0 ⊕ 1
2S1/2 sp(6) 1/4

2 E
(2)
6 F4 2(F0 ⊕ F1/2 ⊕ 10 ⊕ 11/2) sp(2) 3/4

1 A
(2)
2 C1 6(F0 ⊕ F1/2 ⊕ 11/4 ⊕ 13/4) so(12) 1/16

1 D
(2)
4 B3 3(V0 ⊕ 11/2 ⊕ S0 ⊕ S1/2) sp(3)× sp(3) 0

1 D
(3)
4 G2 3(F0 ⊕ F1/3 ⊕ F2/3 ⊕ 10 ⊕ 11/3 ⊕ 12/3) sp(3) 7/18

Table 3. Gauge algebra, matter representation and effective flavor symmetry for all twisted 6d (1, 0)
rank-one theories with paired matter contents. Here R̊ = (R̊G̊, R̊F̊ ) and we only write down R̊G̊ for
short. The important value c will be discussed later.

For 6d SCFTs with hypermultiplets in the representations of the flavor algebra F , the
representations have integer KK charges for a circle compactification without twist. For
twisted circle compactifications, the hypermultiplets are in the representations of the sub
flavor algebra F̊ , with fractional KK charges. We refer to the Reference A of [50] for a
detailed discussion. The twisted matter representations for all twisted 6d (1, 0) rank-one
theories with paired matter contents are summarized in table 3. For a twisted theory with
gauge group G and non-trivial matter representations, they always take the form

⊕
i

Ni(R̊i,0 ⊕ R̊i,1/nGi ⊕ · · · ⊕ R̊i,(nGi −1)/nGi
), (2.8)

where nGi is either the rank of outer automorphism rout or 1. We denote a representation
with zero KK charge Ri,0 as Ri, and Ni is the number of matters in the representation Ri.
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2.3 Twisted prepotential and one-loop free energy

The prepotential, which is also the classical part of the genus zero free energy of the
corresponding topological strings, contains the tree-level and one-loop level contributions

Fcls
(0,0) = F tree + F1-loop. (2.9)

The tree level contribution contains the information of tensor multiplet, which should not be
changed for the twisted circle compactification of rank-one theories. Under O(rout) action,
we expect that

F tree = tell
2n

(
− nO(rout)(mG ·mG) +O(rout)

∑
i

(kFimFi ·mFi)
)
− 1

2n t
2
ellτ

= tell
2n

(
− nmG̊ ·mG̊ +

∑
i

kF̊imF̊i
·mF̊i

)
− 1

2n t
2
ellτ, (2.10)

where the O(rout) acts on the bilinear form m ·m by identifying the masses in the orbit of
O(rout), such that it becomes the bilinear form of the algebra G̊/F̊ . The O(rout) acts on kFi by
multiplying it to kF̊i = nGi kFi , which can be understood as follows. For the case without twist,
kF is the intersection number of the non-compact curve and the base curve [43]. When we do
the outer automorphism twist, the non-compact curves that along the obit of the action O(rout)

should be identified, which naturally changes the intersection number from kFi to kF̊i = nGi kFi .
As suggested in [50], the one-loop prepotential can be evaluated from the zeta regulariza-

tion of the summation over infinite roots or weights of the twisted affine algebra. For G(rout)

not of type A(2)
2r , we have nG = rout, and the one loop prepotential can be formally written as

F1-loop =− 1
12
∑
k∈Z

∑
α∈∆̊l

|α ·mG̊ + kτ |3 − 1
12
∑
k∈Z

∑
α∈∆̊s

|α ·mG̊ + kτ/nG|3

+ 1
12
∑
k∈Z

∑
i,fi

∑
wG̊∈R̊

G̊
i

|wG̊ ·mG̊ + kτ/nGi +mfi |
3, (2.11)

where R̊G̊i are the representations of the matter contents with KK charge zero. Using the
zeta regularization1

∞∑
k=1

1 = ζ(0) = −1
2 ,

∞∑
k=1

k = ζ(−1) = − 1
12 ,

∞∑
k=1

k2 = ζ(−2) = 0, (2.12)

the relevant parts in the one-loop prepotential become

− 1
12
∑
k∈Z

∑
α∈∆̊l

|α ·mG̊ + kτ |3 ∼ −1
6
∑
α∈∆̊+

l

(α ·mG̊)3 + 1
24τ

∑
α∈∆̊l

(α ·mG̊)2, (2.13)

− 1
12
∑
k∈Z

∑
α∈∆̊s

|α ·mG̊ + kτ/nG|3 ∼ −
1
6
∑
α∈∆̊+

s

(α ·mG̊)3 + 1
24nG

τ
∑
α∈∆̊s

(α ·mG̊)2, (2.14)

1The formal definition of zeta function ζ(s) =
∑∞

k=1
1
ns for Re(s) > 1 can be extended to the whole

complex plane via analytic continuation.
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1
12
∑
k∈Z

∑
i,fi

∑
wG̊∈R̊

G̊
i

|wG̊ ·mG̊ + kτ/nGi +mfi |
3

∼ 1
12
∑
k∈Z

∑
i

∑
w∈R̊+

i

(wG̊ ·mG̊ + wF̊ ·mF̊ )3 −
∑
i

Ni

24nGi
τ ·

∑
wG̊∈R̊

G̊
i,ri

(wG̊ ·mG̊)2. (2.15)

Then the total one-loop prepotential becomes

F1-loop = −1
6
∑
α∈∆̊+

(α ·mG̊)3 + 1
12
∑
k∈Z

∑
i

∑
w∈R̊+

i

(wG̊ ·mG̊ + wF̊ ·mF̊ )3

+ 1
24τ

∑
α∈∆̊

(α ·mG̊)2 + 1− nG
24nG

τ
∑
α∈∆s

(α ·mG̊)2 −
∑
i

Ni

24nGi
τ ·

∑
wG̊∈R̊

G
i,ri

(wG̊ ·mG̊)2

= −1
6
∑
α∈∆̊+

(α ·mG̊)3 + 1
12
∑
k∈Z

∑
i

∑
w∈R̊+

i

(wG̊ ·mG̊ + wF̊ ·mF̊ )3 + cτmG̊ ·mG̊.

(2.16)
Here we define the positive weights as

R̊+
i = {wG̊ ∈ R̊

G̊
i , wF̊ ∈ R̊

F̊
i

∣∣wG̊ ·mG̊ + wF̊ ·mF̊ > 0}, (2.17)

and the constant c as

c =
h∨
G̊

6 −
nG − 1
12nG

Ind(RG̊i )−
∑
i

Ni

12nGi
Ind(R̊G̊i ). (2.18)

For the A(2)
2r cases, as described in (2.6), there are additional “shortest” roots taking the

KK-charge n + 1
4 and n + 3

4 . They contribute an additional term

− 1
12 × 2× 3×

(
ζ

(
−1, 1

4

)
+ ζ

(
−1, 3

4

))
τ
∑
α∈∆+

l

(
α · t

2

)2
= − 1

96τ
∑
α∈∆+

l

(
α · t

2

)2
, (2.19)

which contributes to c by − 1
96 × 2 Ind(F) = − 1

48 . Therefore, for A(2)
2r theory with N KK

zero mode matter in the fundamental representation, the one-loop prepotential takes the
form of the last line in (2.16) with

c = r + 1
6 − 1

12(r − 1)− 1
48 −

N

24 × 1 = 1
48(11 + 4r)− 1

24N. (2.20)

Here we have used that for G = Cr, h∨G = r + 1, Ind(F) = 1 and Ind(Λ2) = 2(r − 1).
By explicit computation for all twisted theories, we observe the following interesting

identities of the c constant. For all the cases with twist coefficients nG = 2, 3, 4 in table 3,

c =
{

n
2nG −

1
(nG)2 , G̊ = Br, Cr,

n
2(nG)2 + 1

nG
, G̊ = G2, F4.

(2.21)

The physical meaning of the constant c is (the negative of) the left-moving Casimir energy in
the twisted Ramond sector which will be discussed later. In geometry, c can be absorbed
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by the base Kähler parameter. A similar shift of the base Kähler parameters has been
discussed in [16], which is closely related to the intersection number of the divisors in the
genus-one fibered Calabi-Yau threefolds. It is interesting to construct the geometry explicitly
and reproduce the identity (2.21).

In order to make connection to the blowup equation in section 3, we need the information
about the classical part of the genus one free energies Fcls

(0,1) and Fcls
(1,0). As described in

section 2 of [43], these two functions only contain bilinear forms of the gauge and flavor
algebra and the part related to the tensor multiplet. The action of the automorphism twist
maps the bilinear forms to the bilinear forms of the folded algebras directly and leaves the
tensor part unchanged. We expect that

Fcls
(0,1) = − 1

12
∑
α∈∆̊+

α ·mG̊ + 1
24
∑
i

∑
w∈R̊+

i

(wG̊ ·mG̊ + wF̊ ·mF̊ ) + n− 2
2n tell, (2.22)

Fcls
(1,0) = 1

12
∑
α∈∆̊+

α ·mG̊ + 1
24
∑
i

∑
w∈R̊+

i

(wG̊ ·mG̊ + wF̊ ·mF̊ ) +
n− 2− h∨

G(r)

4n tell. (2.23)

Notice that the dual Coxeter number h∨G in (2.23) is the number for the original group G
or the twisted group G(r), according to the identity

h∨G(r) = h∨G(1) = h∨G. (2.24)

This is easy to understand because the dual Coxeter number is the summation of all comarks
of the affine Dynkin diagrams and the comark of each node of twisted affine Lie algebra just
comes from the summation of the comarks of the nodes folded together.

2.4 Twisted elliptic genera of BPS strings

The Ramond-Ramond (R-R) elliptic genus of the BPS strings in 6d (1, 0) SCFTs is defined
as the trace over the Hilbert space of the R-R sector of the 2d (0, 4) worldsheet theory:

E(q, v, x,m) = TrRR(−1)FL+FRe2πiτHLe2πiτ̄HRxJ
3
LvJ

3
R+J3

I

∏
e2πim·K , (2.25)

where m and K are the fugacities and the Cartan generators associated to the 2d global
symmetry, which is composed of 6d gauge and flavor symmetries. The J3

L, J
3
R and J3

I are
the usual Cartan generators of the little group so(4) = su(2)L × su(2)R and the R-symmetry
group su(2)I of the 6d (1, 0) SCFT. It is common to refer to the R-R elliptic genera as
just elliptic genera. One can also consider the trace over the Hilbert space of the Neveu-
Schwarz-Ramond (NS-R) sector of the 2d theory, in which case the above definition gives
the NS-R elliptic genera. This type of elliptic genera will also be used in later sections when
we discuss the spectral flow symmetry.

In the case of twisted circle compactification of 6d SCFTs, the 2d worldsheet theories also
get twisted circle compactified on one circle of the torus. We can formally define the twisted
elliptic genera by replacing the Hilbert space in (2.25) to the Hilbert space of the 2d states
appearing in the twisted circle compactification. The Hamiltonians HL now have fractional
eigenvalues due to the twist. For the twist coefficient nG = 2, 3, 4, the gap between energy
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eigenvalues becomes 1/nG. This brings in many new fascinating features for the twisted
elliptic genera. We find the primary feature of d-string twisted elliptic genera is

Ed(q, v, x,mG̊,mF̊ ) = q−dc
(
Z5d
d (v, x,mG̊,mF̊ ) +O(q1/nG)

)
. (2.26)

Here Z5d
d is the d-instanton Nekrasov partition function of the circle reduction, i.e., the 5d

low energy theory of the twisted 6d (1, 0) SCFT. Such a 5d theory has gauge group G̊ and
the 5d matter content taken from the KK-charge 0 part of the 6d twisted matter content.

When the 2d (0, 4) worldsheet theory has a known 2d quiver gauge theory construction,
the above definition can be explicitly computed by 2d localization, also known as Jeffrey-
Kirwan residue [25, 26]. However, this good situation happens very rarely. In most cases, it
is very hard or impossible to construct a 2d gauge theory for the worldsheet theory of BPS
strings. For the twisted cases, this is even hard and rare. In this section, we review the 2d
localization formulas for 6d so(2r + 8)(2) theories with n = 4 and pure su(3)(2) theory with
n = 3, which were first established in [27]. As far as we know, these are the only two types of
twisted theories, for which the twisted elliptic genera can be computed directly.

so(2r + 8) theory with Z2 twist. The instanton partition function of the so(2r + 8)(2)

theory can be obtained from the Z2 twist of 6d so(2r + 8) theory with 2r fundamental flavors.
In the 2d N = (0, 4) quiver gauge theory description of the 6d so(2r + 8) theory, at k-strings,
the resulting theory is a sp(k) gauge theory coupled to the bulk so(2r + 8) gauge group
and the sp(2r) flavor group as follows

sp(k)

so(2r + 8)

sp(2r)asym
(2.27)

Here solid/dashed lines denote 2d hypermultiplets/Fermi multiplets respectively. Under
the Z2 outer automorphism twist, the sp(k) gauge algebra and sp(2r) flavor algebra keep
invariant, so we only need to take care of the bulk gauge group so(2r + 8). In the 2d
description, the bulk gauge group serves as a flavor group and it couples with the gauge group
sp(k) in the fundamental representation. Under Z2 twist, the fundamental representation
of so(2r + 8) is split into the fundamental representation of so(2r + 7) with KK charge
zero and a trivial representation of so(2r + 7) with KK charge one half. The 6d partition
function turns out to be [27, 61]

Z6d
str =

∞∑
k=0

qkφ Ek, (2.28)

where Ek is the k-string elliptic genus

Ek = 1
2kk!

∮ k∏
I=1

duI
2πi · Z

6d
k,1−loop(uI), (2.29)
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with the integrand to be

Z6d
k,1−loop(uI) =

(
−ϑ1 (2ε+)
ϑ1 (ε1,2)

)k
·
k∏
I=1

ϑ1 (±2uI)ϑ1 (2ε+ ± 2uI)

·
k∏

I<J

ϑ1 (±uI ± uJ)ϑ1 (2ε+ ± uI ± uJ)
ϑ1 (ε1 ± uI ± uJ)ϑ1 (ε2 ± uI ± uJ)

·
(

k∏
I=1

∏2r
l=1 ϑ1 (±uI +ml)

ϑ1 (ε+ ± uI)ϑ4 (ε+ ± uI)
∏r+3
i=1 ϑ1 (ε+ ± uI ± αi)

)
,

(2.30)

where we define the variant theta functions ϑi(z) = θi(z, τ)/η(τ), i = 1, · · · , 4. Here the ϑ4 in
the last line comes from the trivial representation of so(2r + 7) with 1

2 KK charge.

su(3) theory with Z2 twist. It was realized in [27] from brane webs that the Z2 twisted
circle compactification of 6d pure su(3) can be obtained from Higgsing of 6d G2 gauge theory
with one fundamental flavor. The 2d description of 6d G2 theory with one fundamental has
been constructed in [62], where the theory is written from the G2 subalgebra su(3). Note
the G2 algebra contains a subalgebra su(2)× su(2). Denote α, α′ the Coulomb parameters
for the su(2)’s, and m the mass for the fundamental flavor in the 6d G2 theory, we have
the following tuning of parameters for the Higgsing

α→ α, α′ → τ

4 , m→ ε+ −
τ

2 . (2.31)

Apply the reparametrization (2.31), we have the k-string elliptic genus of 6d su(3) theory
with Z2 twist as

Z6d
str =

∞∑
k=0

qkφ Ek, (2.32)

where Ek is the k-string elliptic genus

Ek = 1
k!

∮ k∏
I=1

duI
2πi · Z

6d
k,1−loop(uI), (2.33)

with the integrand in the elliptic form to be

Z6d
k,1−loop(uI) =

k∏
I=1

duI
2πi ·

∏
I 6=J ϑ1(uIJ) ·∏I,J ϑ1(2ε+ − uIJ)∏k

I=1
∏2
i=1 ϑ1(ε+ ± (uI − αi)) ·

∏
I,J ϑ1(ε1,2 + uIJ)

×
∏
I

(
ϑ

[ 3
4 ]

4 (ε+ + uI) ·
∏
I≤J

(
ϑ4(uI + uJ) · ϑ4(uI + uJ − 2ε+)

)
∏
I

(
ϑ

[ 3
4 ]

4 (ε+ − uI)ϑ
[∓ 1

4 ]
4 (ε+ ± uI)

∏2
i=1 ϑ4(ε+ − uI − αi)

)
·
∏
I<J ϑ4(ε1,2 − uI − uJ)

,

(2.34)
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where α1 = −α2 = α. The residue sum can be labeled by su(2) colored Young diagrams,
then we have

Ek =
∑

~Y ;|~Y |=k

2∏
i=1

∏
s∈Yi

ϑ4(2u(s)) · ϑ4(2ε+ − 2u(s))∏2
j=1 (ϑ1(Eij(s)) · ϑ1(Eij(s)− 2ε+))

2∏
i=1

∏
s∈Yi

ϑ
[ 3
4 ]

4 (ε+ + u(s))

ϑ
[ 3
4 ]

4 (ε+ − u(s))ϑ[∓ 1
4 ]

4 (ε+ ± u(s)) ·∏2
j=1 ϑ4(ε+ − u(s)− αj)

·
2∏
i≤j

∏
si,j∈Yi,j ;si<sj

ϑ4(u(si) + u(sj)) · ϑ4(u(si) + u(sj)− 2ε+)
ϑ4(ε1,2 − u(si)− u(sj))

,

(2.35)

where
u(s) = αi − ε+ − (n− 1)ε1 − (m− 1)ε2, s = (m,n) ∈ Yi, (2.36)

and
Eij(s) = αi − αj − ε1hi(s) + ε2(vj(s) + 1), (2.37)

Here si<sj means (i < j) or (i= j and mi<mj) or (i= j and mi=mj and ni<nj). The
hi(s) denotes the distance from s to the right end of the diagram Yi by moving right and the
vj(s) denotes the distance from s to the bottom of the diagram Yj by moving down.

2.5 Anomaly and modular index

Elliptic genera E of 2d (0, 4) SCFTs in general are weight zero Jacobi forms of multi elliptic
variables on SL(2,Z). They are equipped with an important quantity — the modular index
IndE, as a quadratic form of the elliptic variables. Under modular transformation of the
torus, the elliptic genera transform as

Ed
(
− 1
τ
,
ε1
τ
,
ε2
τ
,
mG

τ
,
mF

τ

)
= exp

(2πi
τ

IndE
)
E(τ, ε1, ε2,mG,mF ). (2.38)

Equivalently, one can write as

∂E2 logE = − 1
12(IndE). (2.39)

Here E2(τ) is the weight-two Eisenstein series that measures the modular anomaly.
For 6d rank-one (1, 0) theories, the modular index of the elliptic genera can be derived from

the anomaly polynomials for the 2d (0, 4) SCFTs on the worldsheet of the BPS strings [63–65].
To be precise, for a 6d (1, 0) theory with tensor coefficient n, gauge group G and flavor group
F , the modular index of the d-string elliptic genus can be uniformly written as

IndEd(ε1, ε2,mG,mF ) =−
(
ε1 + ε2

2

)2
(2− n + h∨G)d+ ε1ε2

2 (nd2 + (2− n)d)

+ d

2(−nmG ·mG + kF mF ·mF ) .
(2.40)

The modularity for twisted elliptic genera is more complicated. Though from the
viewpoint of twisted circle compactification, it is convenient to discuss the fractional KK-
charges, which brings in the fractional q1/nG orders in twisted elliptic genera, where nG = 2, 3, 4.

– 16 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
5

From the geometric viewpoint, it is more suitable to scale q to qnG such that we are still in
the integral bases of curves. After such scaling, it is natural to expect that the twisted elliptic
genera behave as weight zero Jacobi forms of some congruence subgroups of SL(2,Z). We
propose that in general the congruence subgroup should be Γ1(nG), though in many cases, we
notice that the twisted elliptic genera satisfy a bigger modular symmetry that is Γ0(nG). These
are consistent with the geometric observation in [16] for multi-section Calabi-Yau threefolds.
We collect the definition of various congruence subgroups of SL(2,Z) in appendix B.

The index quadratic form does not really depend on the modular groups. For O(rout)

twisted compactification of rank-one SCFTs, the tensor multiplet is invariant under the twist,
the gauge and flavor algebras become their twisted versions due to the identification of the
masses in the same orbits of O(rout). This indicates that the modular index of twisted elliptic
genus can be directly deduced from its untwisted origin by identifying the masses of the
particles of the hyper and vector multiplets in the same orbits of O(rout). Thus we have the
following uniform formula for the index of d-string twisted elliptic genus:

IndEd(ε1, ε2,mG̊,mF̊ ) =−
(
ε1 + ε2

2

)2
(2− n + h∨G)d+ ε1ε2

2 (nd2 + (2− n)d)

+ d

2(−nmG̊ ·mG̊ + kF̊ mF̊ ·mF̊ ).
(2.41)

One can see that only the second line changes from (2.40). It should be emphasized that
the dual Coxeter number h∨G here does not change upon the twist, as was explained in
the identity (2.24).

3 Twisted elliptic blowup equations

3.1 Elliptic blowup equations and their twists

For refined topological strings on a non-compact Calabi-Yau threefold X, the general form
of blowup equations was proposed in [66]:

Λ(ε1, ε2,mi)Z (ε1, ε2, ti + πiBi)
=

∑
k∈Zb4

(−1)|k|Z (ε1, ε2 − ε1, ti + (Cijkj +Bi/2)ε1 + πiBi)

× Z (ε1 − ε2, ε2, ti + (Cijkj +Bi/2)ε2 + πiBi) ,

(3.1)

as a generalization of the K-theoretic blowup equations for 5d gauge theories in [45]. Here
b4 is the Betti number which counts the number of compact divisors of X. The ti is
the Kähler parameter which is the volume of the curve class in H2(X;Z) and Cij is the
intersection numbers of divisors and curves in X. The Bi is the flux for the corresponding
Kähler parameter, where the value can be determined from the classical prepotential of the
topological strings on X [66]. The Λ(ε1, ε2,mi) is a function that can be fixed from the fluxes
Bi and the classical prepotential, and it only depends on the mass parameters of the theory.

In a series of works [12, 40–43], elliptic blowup equations have been established for all 6d
(1, 0) and (2, 0) SCFTs. These functional equations serve as very efficient tools to solve the
elliptic genera of the BPS strings associated to 6d SCFTs. For example, for rank-one 6d (1, 0)
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SCFTs with n ≥ 3 and no half-hyper, there exist a universal recursive formula for the elliptic
genera with respect to the number of strings derived from unity elliptic blowup equations [43].
In this section, we generalize both the elliptic blowup equations and the recursive formulas
to the twisted cases. The partition functions of twisted circle compactification of 6d SCFTs
can be written in terms of twisted elliptic genera as

Z (ε1, ε2, ti) = eF
cls
Z0(ε1, ε2,mG̊,mF̊ )

(
1 +

∞∑
d=1

ed·tellEd(ε1, ε2,mG̊,mF̊ )
)
, (3.2)

where Fcls is the classical prepotential Fcls = Fcls
(0,0) + Fcls

(0,1) + Fcls
(1,0) defined by (2.9), (2.22)

and (2.23). The derivation of twisted elliptic blowup equations from (3.1) to the elliptic
form is exactly parallel to the untwisted cases, by a “de-affinization procedure”, thus we
only present the results here. We refer readers interested in the derivation to section 2.4
of [41] and section 3.1 and appendix D of [43].

Consider a rank one 6d SCFT with tensor branch coefficient n, gauge symmetry G, flavor
symmetry F , and half-hypermultiplets transforming in the representations (RG, RF ). The
flavor symmetry induces a current algebra of level kF on the worldsheet of BPS strings. Upon
discrete twist, the twisted affine Lie algebra Ĝ(n) has truncated part G̊ as low energy 5d
gauge symmetry. In the meantime, matter representation becomes R̊ and reduced flavor
symmetry becomes F̊ . Let λ0 be a coweight base of G that is invariant upon the twist.2 If
(λ0, λF ) gives admissible elliptic blowup equation for the original 6d SCFT, and let λF̊ be
the reduction of λF , then we propose the twisted elliptic genera Ed(τ,mG̊,mF̊ , ε1,2) satisfy
the following twisted elliptic blowup equations:

1
2 ||λG̊||

2+d′+d′′=d+δ∑
λG̊∈φλ0 (Q∨(G̊))

(−1)|λG̊|

× θ[a]
i

(
nτ,−nλG̊ ·mG̊ + kF̊λF̊ ·mF̊ +

(
y − n

2 ||λG̊||
2
)

(ε1 + ε2)− nd′ε1 − nd′′ε2

)
×AG̊V (τ,mG̊, λG̊)Afrac

V (τ,mG̊, λG̊)AR̊H(τ,mG̊,mF̊ , λG̊, λF̊ )
× Ed′(τ,mG̊ + ε1λG̊,mF̊ + ε1λF̊ , ε1, ε2 − ε1)Ed′′(τ,mG̊ + ε2λG̊,mF̊ + ε2λF̊ , ε1 − ε2, ε2)

= Λ(δ) θ[a]
i (nτ, kFλF̊ ·mF̊ + ny(ε1 + ε2))Ed(τ,mG̊,mF̊ , ε1, ε2), d = 0, 1, 2, . . . (3.3)

where

Λ(δ) =

1, δ = 0,
0, δ > 0.

(3.4)

The Λ(δ) = 1 case is called unity blowup equations, while the Λ(δ) = 0 case vanishing. The
parameter y is determined in [43] as

y = n− 2 + h∨G
4 + kF

2 (λF · λF ) = n− 2 + h∨G
4 +

kF̊
2 (λF̊ · λF̊ ), (3.5)

2For example for so(2r)(2), the λ0 associated to the vector representation is invariant upon the twist, while
the one associated to the spinor representation is not.
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which does not change upon twist. The Jacobi theta function θ
[a]
i with characteristics a

are defined in appendix A. It comes from the contribution of the prepotential of 6d twisted
theories. The subscript i is 3 if n is even and 4 if n is odd. For twist coefficient nG = 2, 3, the
characteristic a of the theta function can be one of the following n numbers

2na = h∨
G̊
− 1

2
∑
i

NiInd(RG̊i )− 2k, k = 0, 1, . . . , n− 1. (3.6)

Recall Ni are the number of hypers in RG̊i with KK-charge zero. This formula means that
only the KK-charge 0 part is relevant for the characteristic a, which is required for the 5d
limit of twisted elliptic blowup equations to be consistent with the 5d blowup equations
with matters [49]. For twist coefficient nG = 4, the low energy gauge group G̊ = Cr
which needs special care. When there is no KK-charge 0 matter, the Cr allows another
possibility called the θ = π theory, in which case the h∨

G̊
in (3.6) needs to be replaced as

h∨
G̊
− 1. This is also consistent with the 5d blowup equations in [49]. The one-loop vector-

multiplet contribution AG̊V (τ,mG̊, λG̊) is defined as equation (3.7) of [43], while the fractional
part Afrac

V (τ,mG̊, λG̊) is defined similarly with the fractional KK-charge taken into account.
The one-loop hypermultiplet contribution AR̊H(τ,mG̊,mF̊ , λG̊, λF̊ ) is defined similar with
equation (3.8) of [43] with KK-charges taken into account. We collect the relevant formulas in
appendix A. We summarize all admissible unity twisted elliptic blowup equations in table 4.
We also collect some simple vanishing ones in table 5. It can be expected that there will be
more vanishing blowup equations for some theories. Besides, we will focus on the twisted
theories with paired matter content here. The blowup equations and twisted elliptic genera for
theories with unpaired matter content are more subtle, we leave the discussion in appendix D.

To solve blowup equations, four methods have been presented in section 4 of [43], which
are recursion formula and Weyl orbit expansion for elliptic blowup equations, and refined
BPS expansion and ε1, ε2 expansion for general local Calabi-Yau threefolds. All four methods
apply to the current twisted cases as well. In section 3.3, we will explicitly present the
recursion formula for twisted elliptic genera, which is the most efficient approach but only
works for n ≥ 3 theories. We also use the Weyl orbit expansion to solve the twisted elliptic
genera of many n = 1, 2 theories. Both methods utilize the unity part of (3.3). The vanishing
part of (3.3) is less useful in solving twisted elliptic genera, but still gives some interesting
vanishing theta identities which will be discussed in section 3.4.

Blowup equations can even shed new light on the structure of 6d (1, 0) SCFTs itself. As
mentioned earlier, it was found in [43] that for the modularity of elliptic blowup equations
for 6d (1, 0) SCFTs to hold, the following constraint on tensor coefficient n, gauge algebra
G and matter representations R need to be satisfied:

h∨G
6 −

∑
i

Ni

12 Ind(RGi ) = n− 2
2 . (3.7)

Simply speaking, this constraint comes from the consistency requirement when converting the
blowup equations of refined topological strings on non-compact Calabi-Yau threefolds to the
elliptic form. For twisted elliptic blowup equations, we find there exists similar constraints
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n G G̊ F̊ # y λF̊

6 E
(2)
6 F4 − 1 4 ∅

4 D
(3)
4 G2 − 1 2 ∅

4 D
(2)
r+4 Br+3 sp(2r) 22r r + 2 (0 . . . 01)

4 E
(2)
6 F4 sp(1) 2 5 (1)

3 A
(2)
2 C1 − 1 1 ∅

3 D
(2)
4 B3 sp(1)× sp(1) 4 5/2 (1),(1)

3 D
(3)
4 G2 sp(1) 2 5/2 (1)

2 A
(2)
2r Cr so(4r + 2) 22r+1 r + 1

2 (0 . . . 01)

2 A
(2)
2r−1 Cr so(4r) 22r r (0 . . . 01)

2 D
(2)
4 B3 sp(2)× sp(2) 16 3 (01),(01)

2 D
(3)
4 G2 sp(2) 4 3 (01)

2 D
(2)
5 B4 sp(4)× sp(1) 32 4 (0001), (1)

2 E
(2)
6 F4 sp(2) 4 6 (01)

1 A
(2)
2 C1 so(12) 64 2 (0 . . . 01)

1 A
(2)
3 C2 so(12)× sp(1) 128 5/2 (0 . . . 01), (1)

1 D
(2)
4 B3 sp(3)× sp(3) 64 7/2 (001),(001)

1 D
(3)
4 G2 sp(3) 8 7/2 (001)

Table 4. The parameters y, λF̊ of unity twisted elliptic blowup equations for rank one models. The
# is the number of unity equations with a fixed characteristic a.

n G G̊ F̊ # y λF̊

4 D
(2)
r+4 Br+3 sp(2r) 22r r + 2 (0 . . . 01)

3 D
(2)
4 B3 sp(1)× sp(1) 2 3 (1),(0)

2 A
(2)
2r−1 Cr so(4r) 1 1 (0 . . . 0)

2 D
(2)
4 B3 sp(2)× sp(2) 4 4 (01),(00)

2 D
(2)
5 B4 sp(4)× sp(1) 16 5 (0001), (0)

2 D
(2)
6 B5 sp(6) 64 6 (000001)

1 D
(2)
4 B3 sp(3)× sp(3) 8 5 (001),(000)

Table 5. The parameters y, λF̊ of vanishing twisted elliptic blowup equations for rank-one models.
The # is the number of vanishing equations with fixed characteristics a.

depending on the type of twists. For Z2 twist with nG = 2, we find3

h∨
G̊

6 −
1
24Ind(V frac

1/2 )−
∑
i

Ni

12nGi
Ind(RG̊i ) =

{
n
4 −

1
4 , so(2r)(2),

n
8 + 1

2 , E
(2)
6 .

(3.8)

3The n = 1, su(2) + 10F theory is not included.
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Here Ni is the number of hypers RG̊i with KK-charge 0, with a twist coefficient nGi . We
checked (3.8) is true for all n = 4, so(2N)(2) theories,4 n = 1, 2, 3, 4, G = so(8)(2) theories,
n = 2, G = so(10), so(12) theories, n = 2, G = su(2N) theories5 and n = 1, G = su(4)
theories. For Z3 twist, we have

h∨
G̊

6 −
1
18Ind(V frac

1/3 )− N

36Ind(RG̊) = n

18 + 1
3 . (3.9)

Here N is the number of hypers RG2 with twist coefficient 3. We checked (3.9) is true for
n = 1, 2, 3, 4, G = so(8)(3) theories. For nG = 4, we find

h∨
G̊

6 −
1
24Ind(V frac

1/2 )− 1
48Ind(V frac

1/4 )− N

24Ind(RG̊) = n

8 −
1
16 . (3.10)

Here N is the number of fundamental hypers R = F of G̊ = sp(r). We checked (3.10) is
true for n = 1, 2, 3, G = su(3)(2) theories and n = 2, G = su(2r + 1)(2) theories.6 Notice that
these interesting constraints exactly give the c constants discussed in (2.21). In summary,
denote s as all fractional KK charges, we have for all paired theories,

c =
h∨
G̊

6 −
∑
s

ζ(−1, s)Ind(V frac
s )−

∑
i

Ni

12rout
i

Ind(RG̊i ) =
{

n
2nG −

1
(nG)2 ,

n
2(nG)2 + 1

nG
.

(3.11)

Here nG = 1, 2, 3, 4. The two possibilities here perhaps are related to the different types
of multi-section Calabi-Yau geometries.

3.2 Modularity

The modularity of all elliptic blowup equations for rank-one 6d SCFTs has been proved
in the section 3.2 of [43]. The modularity of twisted elliptic blowup equations actually
inherits from its untwisted origin, that is the index of each part is directly reduced from
its untwisted origin. For example, as we have mentioned, the modular index of twisted
elliptic genera can be reduced from the modular index of untwisted ones. Therefore, we will
be brief and only show one example here. Consider the pure so(8)(3) theory with n = 4.
From the general formula (3.3), we have the following unity twisted elliptic blowup equations
for the twisted elliptic genera:∑

1
2 ||α∨||

2
G2

+d′+d′′=d

(−1)|α∨|θ[a]
3 (4τ,−4mα∨ + (2− 2||α∨||2)(ε1 + ε2)− 4d′ε1 − 4d′′ε2)

×AG2
V (τ,m, α∨)A71/3⊕72/3

V (τ,m, α∨)
× Ed′(τ,m+ ε1α

∨, ε1, ε2 − ε1)Ed′′(τ,m+ ε2α
∨, ε1 − ε2, ε2)

= θ
[a]
3 (4τ, 2(ε1 + ε2))Ed(τ,m, ε1, ε2), d = 0, 1, 2, . . . (3.12)

Here the characteristic a = 0,±1
4 ,

1
2 . Note the B field of the base (−4)-curve is even, which

was already observed in ([50], section 6.1).
4Since G̊ = so(2N − 1), we have 2N−3

6 − 2
24 − 2N−8

12 × 2 = 3
4 .

5Since G̊ = sp(N), we have N+1
6 − 2N−2

24 − 2N×1
24 = 1

4 .
6Since G̊ = sp(N), we have N+1

6 − 2N−2
24 − 1

48 − (2N+1)×1
24 = 3

16 .
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We now show how to prove the modularity of twisted elliptic blowup equations (3.12).
Denote d0 = 1

2 ||α
∨||2G2

. The classical part contributes to the index quadratic form as

Indcl = 2(−α∨ ·mG2 + (1/2− d0)(ε1 + ε2)− d′ε1 − d′′ε2)2. (3.13)

The Λ factor θ[a]
3 (4τ, 2(ε1 + ε2)) contributes index with IndΛ = 1

2(ε1 + ε2)2. The following
identities for the coroot lattice of G2 are useful when computing the index from vector
multiplets contribution: ∀α∨ ∈ Q∨G2

,∑
β∈∆+(G2)

(m · β)(α∨ · β) = 4m · α∨, (3.14)

∑
β∈∆+(G2)

(m · β)(α∨ · β)3 = 10d0m · α∨ = 5(α∨ · α∨)(m · α∨), (3.15)

∑
β∈∆+(G2)

(m · β)2(α∨ · β)2 = 10
3 (m · α∨)2 + 5

3(m ·m)(α∨ · α∨). (3.16)

Then by the definition in appendix B, we find the G2 vector multiplet AG2
V (τ,m, α∨) con-

tributes to index as

IndG2
V =− 5

3
(
(α∨ ·mG2)2 + d0(mG2 ·mG2)

)
− 10d0 − 4

3 (ε1 + ε2)α∨ ·mG2

− d0
3 (5d0 − 2) (ε21 + ε1ε2 + ε22).

(3.17)

To compute the index contribution from the fractional vector multiplets, we still need the
following useful formulas for G2 orbit O1,6 ⊂ 7: ∀α∨ ∈ Q∨G2

,∑
w∈O1,6

(m · w)(α∨ · w) = 2m · α∨, (3.18)

∑
w∈O1,6

(m · w)(α∨ · w)3 = 2d0m · α∨ = (α∨ · α∨)(m · α∨), (3.19)

∑
w∈O1,6

(m · w)2(α∨ · w)2 = 2
3(m · α∨)2 + 1

3(m ·m)(α∨ · α∨). (3.20)

Then by the definition in appendix B, we find the KK charge 1/3 and 2/3 parts
A

71/3⊕72/3
V (τ,m, α∨) contribute to index as

Ind71/3⊕72/3
V =− 1

3
(
(α∨ ·mG2)2 + d0(mG2 ·mG2)

)
− 2d0 − 2

3 (ε1 + ε2)α∨ ·mG2

− d0(d0 − 1)
3 (ε21 + ε1ε2 + ε22).

(3.21)

From (2.41) we know the d-string twisted elliptic genus has index

IndE(d,mG2 , ε1, ε2) = −d(ε1 + ε2)2 + (2d2 − d)ε1ε2 − 2dmG2 ·mG2 . (3.22)

All together, we checked that given d = d0 + d′ + d′′, the modularity of twisted elliptic
blowup equation (3.12) holds, i.e.,

Indcl + IndG2
V + Ind71/3⊕72/3

V + IndE(d′,mG2 + ε1α
∨, ε1, ε2 − ε1)

+ IndE(d′′,mG2 + ε2α
∨, ε1 − ε2, ε2)

= IndΛ + IndE(d,mG2 , ε1, ε2). (3.23)
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3.3 Recursion formula for twisted elliptic genera

In general, for n ≥ 3 and paired matter content, there exist a sufficient number of unity
blowup equations which together give a recursion formula for the elliptic genera with respect
to the string number d. For the untwisted situation, this has been discussed extensively in
section 4.1 of [43]. For the current twisted situation, the recursion formula is very similar.
We omit the derivation and only state the results here. It should be noted that for n = 1, 2,
although there is no explicit recursion formula, the elliptic genera still can be solved for many
theories, see section 4.2 of [43]. For simplicity, in this subsection, we first discuss the four
pure gauge twisted theories, then move to the theories with matters.

For the pure gauge twisted theories G(n) = su(3)(2), so(8)(2), so(8)(3), E
(2)
6 , let us use the

following shorthand notation for the classical term in blowup equations:

θ
[a]
i,{d0,d1,d2} = θ

[a]
i (nτ,−nmα∨ + (n− 2)(ε1 + ε2)− n((d0 + d1)ε1 + (d0 + d2)ε2)) , (3.24)

where mα∨ = m · α∨ and m is the gauge fugacity for G̊. Furthermore, we define

Dd = det


θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{0,0,0}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{0,0,0}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{0,0,0}

 , (3.25)

as well as

Dα∨

{d0,d1,d2} = det


θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{d0,d1,d2}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{d0,d1,d2}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{d0,d1,d2}

 . (3.26)

Note that Dd = Dα∨

{0,0,0} does not depend on α∨. Then the recursion formula of d-string
twisted elliptic genera Ed(m, ε1, ε2) read

Ed =
d0+d1+d2=d∑

d0= 1
2 ||α

∨||2, d1,2<d

(−1)|α∨|
Dα∨

{d0,d1,d2}
Dd

AG̊V (m,α∨)Afrac
V (m,α∨)

× Ed1(m+ ε1α
∨, ε1, ε2 − ε1)Ed2(m+ ε2α

∨, ε1 − ε2, ε2).

(3.27)

Specializing to d = 1, we obtain the following elegant formula for the twisted one-string
elliptic genera of all four pure gauge twisted theories:

E1 =
∑
α∈∆∨

l

Dα∨

{1,0,0}
D1

η4

θ1(mα)θ1(mα − ε1,2)θ1(mα − 2ε+)
∏
β∈∆
α·β=1

η

θ1(mβ)

k∏
γ∈∆s
α·γ=1

η

θ
[k]
1 (mγ)

. (3.28)

Recall ∆s denotes the set of short roots, while k denotes all fractional KK-charges of F
appearing in the twist of adjoint representation. For example, for so(8)(3), k takes values
1/3, 2/3.

For twisted theories with paired matters, we just need to add the hypermultiplet contri-
bution to the above formulas. The classical term in (3.24) is replaced as

θ
[a]
i (nτ,−nmG̊

α∨ + kF̊m
F̊
λ + (y − nd0)(ε1 + ε2)− nd′ε1 − nd′′ε2), (3.29)
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with a fixed unity λ = λF̊ . Then Dd and Dα∨

{d0,d1,d2} are defined the same with the pure
gauge cases (3.25), (3.26). The universal recursion formula for twisted d-string elliptic genera
Ed(mG̊,mF̊ , ε1, ε2) read

Ed =
d0+d1+d2=d∑

d0= 1
2 ||α

∨||2, d1,2<d

(−1)|α∨|
Dα∨

{d0,d1,d2}
Dd

AG̊V (mG̊, α
∨)Afrac

V (mG̊, α
∨)AR̊H(mG̊,mF̊ , α

∨, λ)

× Ed1(mG̊ + ε1α
∨,mF̊ + ε1λ, ε1, ε2 − ε1)

× Ed2(mG̊ + ε2α
∨,mF̊ + ε2λ, ε1 − ε2, ε2). (3.30)

Specializing to d = 1, we obtain the following universal formula for the twisted one-string
elliptic genera:

E1 =
∑
α∈∆∨

l

Dα∨

{1,0,0}
D1

η4

θ1(mα)θ1(mα − ε1,2)θ1(mα − 2ε+)

×
∏
β∈∆
α·β=1

η

θ1(mβ)

k∏
γ∈∆s
α·γ=1

η

θ
[k]
1 (mγ)

∏
w∈R

α·w=1/2

θ
[k′]
1 (mw +mf + ε+)

η
.

(3.31)

Here k′ are the KK-charges of the twisted matter content, and the w are the weights of G̊
and mf are the flavor fugacities. We use this formula to compute the twisted one-string
elliptic genera of lots of 6d twisted theories. In most cases, our results are new.

Though by the recursion formula, one can compute the elliptic genera to arbitrary
number of strings, we are particular interested in the reduced twisted one-string elliptic
genera defined by

Ered
1 (τ, ε+) = θ1(τ, ε1)θ1(τ, ε2)

η(τ)2 E1(τ, ε1, ε2). (3.32)

The prefactor here comes from the well-known center of motion contribution in C2
ε1,ε2 , see

e.g. [28, 31]. The simplicity of Ered
1 lies in that it only depends on ε+ but not on ε−. Since

there is no room for confusion, in the following we often omit the term “reduced”, and
just say twisted one-string elliptic genera. The reduced twisted one-string elliptic genera
exhibit many fascinating properties such as Γ1(N) modularity and spectral flow symmetry,
which will be discussed later.

3.4 Vanishing equations and vanishing theta identities

The vanishing elliptic blowup equations, although less constraining for elliptic genera than
the unity ones, are still rather non-trivial functional equations. In particular, the leading
degree of vanishing elliptic blowup equations does not involve contribution from elliptic
genera, but only the classical and one-loop parts. Therefore, the leading degree equations
usually give some interesting vanishing theta identities depending on the root and weight
lattices of the 6d gauge algebras G, see many examples in [41, 43]. In the twisted cases,
we find many similar identities depending on the root and weight lattices of the truncated
algebras G̊. In this subsection, we will explicitly show some leading degree identities for
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the vanishing twisted elliptic blowup equations given in table 5. We have checked these
identities to sufficient high orders in the q expansions.

Let us first study the so(8)(2) cases, where G̊ = so(7) and the vanishing λso(7) can take
value in the dominant orbit O1,6 of vector representation 7. For pure so(8)(2) theory with
n = 4, we derive the following leading degree vanishing theta identity:

∑
w∈O1,6

(−1)|w| θ
[a]
3 (4τ, 4mw)
θ4(τ,mw)

w·α=1∏
α∈∆(B3)

θ1(τ,mα)−1 = 0. (3.33)

Here a = ±1/8,±3/8. It is easy to check for each w ∈ O1,6, the summand has index
4
2m

2
w − 1

2m
2
w − 5

2m
2
w = −m2

w which is invariant for the whole Weyl orbit. We checked this
identity to high q orders. For n = 3, we have one vector hypermultiplet with mass mv and
two spinor hypermultiplets with mass ms. Note ∀w ∈ O1,6 and w′ ∈ 8s, w · w′ = ±1/2.
Thus the spinor hypermultiplets do not contribute to the leading degree vanishing theta
identity. We then have

∑
w∈O1,6

(−1)|w| θ
[a]
4 (3τ,−3mw + y)θ1(τ,mw + y)

θ4(τ,mw)

w·α=1∏
α∈∆(B3)

θ1(τ,mα)−1 = 0. (3.34)

Here y = mf + ε+ and a = 0,±1/3. It is easy to check for each w, the summand has
index 3

2

(
mw − 1

3y
)2

+ 1
2(mw + y)2 − 1

2m
2
w − 5

2m
2
w = −m2

w + 2
3y

2 which is invariant for the
whole Weyl orbit. We also checked this identity for general y to high q orders. In fact, for
6d (1, 0) so(8)(2) theories with n = 1, 2, 3, 4, we find the following unified formula for the
leading degree vanishing theta identities:

∑
w∈O1,6

(−1)|w|
θ

[a]
i (nτ,−nmw +∑

yj)
∏4−n
j=1 θ1(τ,mw + yj)

θ4(τ,mw)

w·α=1∏
α∈∆(B3)

θ1(τ,mα)−1 = 0. (3.35)

Recall i = 3 for even n and i = 4 for odd n.
Consider the so(2r + 8)(2) theories with n = 4, where G̊ = so(2r + 7) and the vanishing

λBr+3 can take value in the dominant orbit O1,2(r+3) of the vector representation. In these
cases, the vector hypermultiplets can contribute to the leading degree of vanishing blowup
equations. To be precise, we find the following leading degree vanishing theta identity
for general r:

∑
w∈O1,2(r+3)

(−1)|w| θ
[a]
4 (4τ,−4mw +∑

yj)
θ4(τ,mw)

w·α=1∏
α∈∆(Br+3)

θ1(τ,mα)−1
2r∏
j=1

θ1(τ,mw+yj) = 0. (3.36)

Here a = ±1/8,±3/8 and yi = mfi + ε+. We checked this identity for various r up to high
q orders. More so type examples with Z2 twist include the so(10)(2) theory with n = 2, for
which we find the following leading degree vanishing theta identities:

∑
w∈O1,8

(−1)|w| θ
[a]
3 (2τ,−2mw +∑

yi)
∏4
i=1 θ1(τ,mw + yi)

θ4(τ,mw)

w·α=1∏
α∈∆(B4)

θ1(τ,mα)−1 = 0. (3.37)
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Here a = ±1/4. Besides, for so(12)(2) theories with n = 2, we find the following leading
degree vanishing theta identities:

∑
w∈O1,10

(−1)|w| θ
[a]
3 (2τ,−2mw +∑

yi)
∏6
i=1 θ1(τ,mw + yi)

θ4(τ,mw)

w·α=1∏
α∈∆(B5)

θ1(τ,mα)−1 = 0. (3.38)

We checked all these identities for general yi up to high q orders.
Now consider the su(2r)(2) theories with n = 2 where G̊ = sp(r). First, for su(2)(2)

theory, the leading vanishing identity is trivial. For su(4)(2) theory, the leading degree
vanishing identity is for C2:

∑
w∈O1,4

(−1)|w| θ
[a]
3 (2τ,−2mw)
θ4(τ,mw)

w·α=1∏
α∈∆(C2)

θ1(τ,mα)−1 = 0, (3.39)

where a = ±1/4 and O1,4 is the dominant Weyl orbit in 5. We checked this identity to
high q orders. For arbitrary r, it is easy to find the leading degree vanishing theta identities
for Cr can be uniformly written as

∑
w∈O1,2r

(−1)|w|θ[a]
3 (2τ,−2mw)

w·α=1∏
α∈∆(Cr)

θ1(τ,mα)−1
w·β=1∏
β∈Λ2

θ4(τ,mα)−1 = 0. (3.40)

Again a = ±1/4 and the O1,2r is the dominant Weyl orbit in the Λr representation of Cr.
Note each w ∈ O1,2r intersect with all weights of Λ2 by r(r − 1)/2 number of 1, r(r − 1)/2
number of −1, while the rest intersection numbers are zero. We have checked identity (3.40)
for r = 2, 3, 4, 5 to high q orders.

4 Structure of twisted elliptic genera

We use the twisted elliptic blowup equations and the recursion formula (3.28) introduced
in the last section to compute the twisted one-string elliptic genera of all twisted 6d (1, 0)
SCFTs. These data enable us to study some universal features of the twisted elliptic genera.
Many of these features are the generalization of those of the ordinary (0, 4) elliptic genera
observed by del Zotto and Lockhart in [28, 31]. According to the universal formula (2.26)
and (3.32), the reduced twisted one-string R-R elliptic genera have the following form

E1(q, v, x,mG̊,mF̊ ) = q
1
6−c
(
Z5d

1 (v, x,mG̊,mF̊ ) +O(q1/nG)
)
, (4.1)

where Z5d
1 is the reduced one-instanton partition function of the 5d circle reduction theory.

4.1 Spectral flow symmetry

Spectral flow is a characteristic feature of 2d N = (2, 2) SCFTs, see e.g. ([67], chapter 5.4).
The different sectors of 2d SCFTs are interpolated by a spectral flow parameter η. When
η ∈ Z + 1

2 , the spectral flow interpolates the NS sector with half-integer modes and the R
sector with integer modes. For chiral primary |h, q〉 of (2, 2) SCFT, the conformal weight
h and charge q transform under spectral flow with general η as

hη = h− ηq + η2

6 c
′, qη = q − c′

3 η. (4.2)
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Here the c′ is the central charge of the 2d SCFT. We are interested in the η = 1
2 case. Using

h = q/2, the spectral flow induces transformation∣∣∣∣q2 , q
〉

NS
→
∣∣∣∣ c′24 , q −

c′

6

〉
R
. (4.3)

Note the weight c′

24 indicates the ground state of the R sector. This phenomenon suggests an
interesting transformation between NS-R elliptic genera and R-R elliptic genera.

Similar phenomena appear in 2d (0, 4) SCFTs as well [28, 31]. Let us focus on the 2d
(0, 4) SCFTs of one BPS string in 6d (1, 0) SCFTs, possibly with twisted compactification.
In general, the spectral flow from R-R sector to NS-R sector for the same 6d (1, 0) theory
possibly with a twist is induced by the following transformation:

ER̊KK
NS−R

(
q, v

)
= ±

(
q1/4

v

)n−h∨G
ER̊KK

R−R

(
q,
q1/2

v

)
. (4.4)

On the other hand, from the viewpoint of (0, 4) NLSM, the NS-R elliptic genera are obtained
by imposing anti-periodicity on the 2d chiral fermions. This suggests the following elegant
phenomenon for the twisted one-string elliptic genera: the spectral flow transformation
shifts the KK charges of all hypermultiplets by half. To be precise, we find that for twisted
one-string elliptic genera of different sectors:

ER̊KK
NS−R (q, v) = ER̊KK+1/2

R−R (q, v). (4.5)

Note this is even true for the untwisted cases, which explains the NS-R elliptic genera in [31]
have simple low energy behaviors as 5d pure gauge theories. With this understanding, we
know that the NS-R elliptic genera have similar expansion as (4.1), as long as both the c
and Z5d

1 are derived from the twisted matter content with all KK-charges shifted by half.
When the twisted matter content is invariant under KK-charge shift by half,7 the above two
properties induce a nontrivial symmetry for the R-R elliptic genus itself, i.e.,

E1

(
q,
q1/2

v

)
=
(
− q1/4

v

)n−h∨G
E1(q, v). (4.6)

We have checked this symmetry for all admissible twisted theories. The prefactor on the
right hand side does not involve any information on the twist. This means that the spectral
flow symmetry is preserved upon twisted compactification.

4.2 The pure gauge cases

We first discuss the four pure gauge cases su(3)(2), so(8)(2), so(8)(3) and E(2)
6 . Denote θ and

f as the weight generating the adjoint and fundamental representation respectively. We find
that for 6d (1, 0) pure gauge G(n) twisted theories with twist coefficient N = 2, 3, 4, the
reduced twisted one-string elliptic genera have the following universal expansion

EG
(n)

1 = q
1
6−cv

h∨
G̊
−1
( ∞∑
n=0

χG̊kθv
2n + q

1
N (1 + v2)

∞∑
n=0

χG̊kθ+fv
2n +O(q

2
N )
)
. (4.7)

7For pure gauge theories, this is automatically satisfied.
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For the N = 2 cases, we further find that the q1 term in the above expansion is χG̊2f + χG̊θ +
2 + O(v2). We also find the following interesting spectral flow symmetry:

EG
(n)

1

(
q,
q1/2

v

)
=
(
− q1/2

v2

)n−3
EG

(n)
1 (q, v), (4.8)

as a special case of (4.6). This resembles the spectral flow symmetry for the reduced one-string
elliptic genera associated to untwisted 6d (1, 0) SCFTs studied in [28].

4.2.1 su(3)(2)

The 6d (1, 0) pure su(3) SCFT enjoys a series of fascinating 2d quiver constructions for the
worldsheet theories of the BPS strings such that the elliptic genera are exactly computable
to arbitrary number of strings [62]. The Z2 twisted circle compactification gives the 5d su(3)
gauge theory with Chern-Simons level 9 [6]. The blowup equations for this twisted theory
have been studied before in ([50], section 3.2.3), which are consistent with our universal
elliptic form. As we have reviewed, this twisted theory can be Higgsed from 6d (1, 0) G2 + F
theory [27], thus the twisted elliptic genera are also exactly computable to arbitrary number
of strings. Here we provide a new observation that is the spectral flow symmetry of its
twisted one-string elliptic genus.

For su(3)(2), the low energy gauge algebra is G̊ = su(2). Let us denote the reduced
twisted one-string elliptic genus as

E1 = q−
7
48

∞∑
i=n

qngn
(
v,msu(2)

)
= q−

7
48

∞∑
i=0

bijq
iv−2i+j , 4n ∈ Z. (4.9)

We calculate gn up to n = 4 from the unity twisted elliptic blowup equations with character-
istics a = 0,±1/3. The results are in perfect agreement with the computations in [27, 35, 50].
For example, when turning off the su(2) fugacity, we have

g0 = v(v2 + 1)
(v2 − 1)2 , g 1

4
= 2v(v2 + 1)

(v2 − 1)2 , g 1
2

= (v6 + 2v4 + 2v2 + 1)
v (v2 − 1)2 , (4.10)

g 3
4

= 2(v6 + 2v4 + 2v2 + 1)
v (v2 − 1)2 , g1 =

(
4v6 + 9v4 + 9v2 + 4

)
v (v2 − 1)2 . (4.11)

With the su(2) fugacity, we find

g0 = v
∞∑
n=0

χA1
nθ v

2n = v + 3v3 + 5v5 + 7v7 + . . . , (4.12)

g 1
4

= v(1 + v2)
∞∑
n=0

χA1
f+nθv

2n = 2v + (2 + 4)v3 + (4 + 6)v5 + (6 + 8)v7 + . . . , (4.13)

g 1
2

= v−1(1 + v2 + v4)
∞∑
n=0

χA1
nθ v

2n = v−1 + (1 + 3)v + (1 + 3 + 5)v3 + . . . , (4.14)

g 3
4

= v−1(1 + 2v2 + 2v4 + v6)
∞∑
n=0

χA1
f+nθv

2n = 2v−1 + (2× 2 + 4)v + . . . . (4.15)
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q\v 0 1 2 3 4 5 6 7 8
0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 7 0 0

1/4 0 0 0 2 0 0 0 6 0 0 0 10 0 0 0 14 0
1/2 1 0 0 0 4 0 0 0 9 0 0 0 15 0 0 0 21
3/4 0 2 0 0 0 8 0 0 0 18 0 0 0 30 0 0 0
1 0 0 4 0 0 0 17 0 0 0 39 0 0 0 65 0 0

5/4 0 0 0 8 0 0 0 30 0 0 0 66 0 0 0 110 0
3/2 3 0 0 0 17 0 0 0 51 0 0 0 105 0 0 0 170
7/4 0 6 0 0 0 30 0 0 0 86 0 0 0 174 0 0 0
2 0 0 9 0 0 0 51 0 0 0 147 0 0 0 297 0 0

9/4 0 0 0 18 0 0 0 86 0 0 0 236 0 0 0 468 0
5/2 5 0 0 0 39 0 0 0 147 0 0 0 370 0 0 0 708
11/4 0 10 0 0 0 66 0 0 0 236 0 0 0 576 0 0 0

3 0 0 15 0 0 0 105 0 0 0 370 0 0 0 896 0 0

Table 6. The coefficient matrix bij for the E1 of 6d pure su(3)(2) theory.

The g0 result shows that the leading q order of the twisted one-string elliptic genus gives the
one su(2) instanton Hilbert series [68], which is expected since the circle reduction of the 6d
su(3)(2) theory should be a pure su(2) theory with θ angle 0. We also have the following
table 6 for the coefficients bij . The manifest symmetry of the coefficient matrix suggests the
following spectral flow symmetry of the twisted one-string elliptic genus

Esu(3)(2)

1 (q, q1/2/v) = Esu(3)(2)

1 (q, v). (4.16)

This resembles the spectral flow symmetry of the one-string elliptic genus of untwisted
6d su(3) theory observed in [28]. It is actually easy to prove this identity from the exact
formula of E1 in (2.35).

Interestingly, we notice that the twisted elliptic blowup equations for su(3)(2) allow another
solution for the twisted one-string elliptic genera if we set the characteristic a = 1/2,±1/6.
We call this as the sp(1)π case, as the low energy limit gives the one-instanton partition
function of 5d N = 1 pure sp(1)π theory. In this case, combining together the twisted
elliptic blowup equations and modular ansatz which will be discussed later, we solve the
twisted one-string elliptic genus with the sp(1) fugacity turned off. Let us denote the reduced
twisted one-string elliptic genus as

Eπ1 (q, v) = q−
7
48

∞∑
i=0

qngπn

(
v,msu(2)

)
= q−

7
48

∞∑
i=0

bπijq
iv−2i+j , 4n ∈ Z. (4.17)

We calculate gπn up to n = 4. For example,

gπ0 = 2v2

(v2 − 1)2 , gπ1
4

= 4v2

(v2 − 1)2 , gπ1
2

= 6v2

(v2 − 1)2 ,

gπ3
4

= 12v2

(v2 − 1)2 , gπ1 = 2(v8 + 11v4 + 1)
v2 (v2 − 1)2 .

(4.18)

With the gauge su(2) fugacity, we find

gπ0 = v2
∞∑
n=0

χ
su(2)
nθ+fv

2n = 2v2 + 4v4 + 6v6 + . . . . (4.19)
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q\v 0 1 2 3 4 5 6 7 8
0 0 0 0 0 2 0 0 0 4 0 0 0 6 0 0 0 8

1/4 0 0 0 0 0 4 0 0 0 8 0 0 0 12 0 0 0
1/2 0 0 0 0 0 0 6 0 0 0 12 0 0 0 18 0 0
3/4 0 0 0 0 0 0 0 12 0 0 0 24 0 0 0 36 0
1 2 0 0 0 4 0 0 0 28 0 0 0 52 0 0 0 78

5/4 0 4 0 0 0 8 0 0 0 48 0 0 0 88 0 0 0
3/2 0 0 6 0 0 0 12 0 0 0 74 0 0 0 136 0 0
7/4 0 0 0 12 0 0 0 24 0 0 0 124 0 0 0 224 0
2 4 0 0 0 28 0 0 0 52 0 0 0 220 0 0 0 388

9/4 0 8 0 0 0 48 0 0 0 88 0 0 0 348 0 0 0
5/2 0 0 12 0 0 0 74 0 0 0 136 0 0 0 520 0 0
11/4 0 0 0 24 0 0 0 124 0 0 0 224 0 0 0 804 0

3 6 0 0 0 52 0 0 0 220 0 0 0 388 0 0 0 1272

Table 7. The coefficient matrix bij for the Eπ1 of 6d pure su(3)(2) theory.

This shows the leading q order of twisted elliptic genus Eπ1 is indeed the 5d one sp(1)π
instanton partition function. We also have the table 7 for the coefficients bπij . The manifest
symmetry of the coefficient matrix shows that the solution Eπ1 also satisfies the spectral
flow symmetry (4.16). We regard this as further evidence that this serves as a good elliptic
completion of 5d one sp(1)π instanton partition function. However, to push forward to
two-strings, we meet some inconsistency when solving the blowup equations. It is not clear
to us whether there would exist a Z2 twist of the two-string elliptic genus of 6d (1, 0) pure
su(3) theory that has low energy limit as 5d two sp(1)π instantons.

4.2.2 so(8)(2)

The Z2 twisted circle compactification of 6d (1, 0) so(8) SCFT gives a non-Lagrangian 5d
KK theory. The twisted elliptic genera can be exactly computed to an arbitrary number
of strings by 2d localization [27]. The unity blowup equations for this twisted theory have
been studied before in ([50], section 6.1), which are consistent with our elliptic form. Using
our universal E1 formula (3.28), we calculate the twisted one-string elliptic genus for this
so(8)(2) theory and find it in complete agreement with the 2d localization results. Let us
denote the reduced twisted one-string elliptic genus of so(8)(2) as

E1 = q−
7
12

∞∑
n=0

qngn(v,mso(7)) = q−
7
12

∞∑
i,j=0

bijq
iv−2i+j , 2n ∈ Z. (4.20)

When turning off the so(7) fugacities, we obtain

g0 = v4 (v8 + 13v6 + 28v4 + 13v2 + 1
)

(1− v2)8 , (4.21)

g 1
2

= 7v4 (v2 + 1
)2 (

v4 + 6v2 + 1
)

(1− v2)8 , (4.22)

g1 = 2v4 (25v8 + 189v6 + 300v4 + 189v2 + 25
)

(1− v2)8 . (4.23)
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q\v 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 1 0 21 0 168 0 825 0

1/2 0 0 0 0 7 0 112 0 798 0 3696
1 0 0 0 0 0 50 0 778 0 5424 0

3/2 −1 0 0 0 1 0 238 0 3206 0 20860
2 0 −7 0 −1 0 7 0 1101 0 14225 0

5/2 −21 0 −50 0 −7 0 50 0 4242 0 49756
3 0 −112 0 −238 0 −50 0 238 0 15802 0

7/2 −168 0 −778 0 −1101 0 −238 0 1101 0 52900
4 0 −798 0 −3206 0 −4242 0 −1101 0 4221 0

9/2 −825 0 −5424 0 −14225 0 −15802 0 −4221 0 15690
5 0 −3696 0 −20860 0 −49756 0 −52900 0 −15690 0

Table 8. The coefficient matrix bij for the E1 of 6d pure so(8)(2) theory.

With the so(7) gauge fugacities, we have

g0 = v4
∞∑
n=0

χ
so(7)
nθ v2n = v4 + 21v6 + 168v8 + 825v10 + 3003v12 + . . . . (4.24)

This is exactly the one so(7) instanton Hilbert series [68], thus agrees with the expectation
that the circle reduction of the twisted theory should be a 5d pure so(7) gauge theory.
Besides, we have

g 1
2

= v4(1 + v2)
∞∑
n=0

χ
so(7)
f+nθv

2n = 7v4 + (105 + 7)v6 + (798 + 105)v8 + (3696 + 798)v10 + . . .

and g1 = (27 + 21 + 2)v4 + . . . . We also have the table 8 for the Fourier coefficients bij .
The representations χso(7)

nθ are colored in orange. The manifest anti-symmetric coefficient
matrix implies the following spectral flow symmetry

Eso(8)(2)

1 (q, q1/2/v) = −q1/2v−2 Eso(8)(2)

1 (q, v). (4.25)

4.2.3 so(8)(3)

The Z3 twisted circle compactification of 6d (1, 0) so(8) SCFT gives the 5d su(4) gauge
theory with Chern-Simons level 8 [6]. The circle reduction on the other hand gives a 5d pure
G2 gauge theory. The worldsheet theories of the BPS strings for 6d so(8)(3) theory do not
have 2d quiver descriptions, thus the computation of elliptic genera is quite nontrivial. The
blowup equations for this twisted theory have been studied before in ([50], section 6.1), which
are consistent with our elliptic form. There are in total four unity blowup equations and no
vanishing one. Let us denote the reduced twisted one-string elliptic genus as

E1 = q−
7
18

∞∑
n=0

qngn(v,mG2) = q−
7
18

∞∑
i,j=0

bijq
iv−2i+j , 3n ∈ Z. (4.26)
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q\v 1 3 5 7
0 0 0 0 1 0 0 14 0 0 77 0 0

1/3 0 0 0 0 7 0 0 71 0 0 350 0
2/3 0 0 0 0 0 35 0 0 301 0 0 1372
1 −1 0 0 0 0 0 141 0 0 1127 0 0

4/3 0 −7 0 0 0 0 0 497 0 0 3648 0
5/3 0 0 −35 0 0 0 0 0 1582 0 0 10836
2 −14 0 0 −141 0 0 0 0 0 4650 0 0

7/3 0 −71 0 0 −497 0 0 0 0 0 12838 0
8/3 0 0 −301 0 0 −1582 0 0 0 0 0 33621
3 −77 0 0 −1127 0 0 −4650 0 0 0 0 0

10/3 0 −350 0 0 −3648 0 0 −12838 0 0 0 0
11/3 0 0 −1372 0 0 −10836 0 0 −33621 0 0 0

Table 9. The coefficient matrix bij for the E1 of 6d pure so(8)(3) theory.

From our universal E1 formula (3.28), we calculate gn up to n = 4. For example, turning
off the G2 fugacities, we have

g0 = v9 + 8v7 + 8v5 + v3

(1− v2)6 = v3 + 14v5 + 77v7 + 273v9 + . . . ,

g 1
3

= v3 (v2 + 1
) (

7v4 + 22v2 + 7
)

(1− v2)6 = 7v3 + 71v5 + 350v7 + . . . ,

g 2
3

= 7v3 (v2 + 1
) (

5v4 + 8v2 + 5
)

(1− v2)6 = 35v3 + 301v5 + 1372v7 + . . . .

(4.27)

Keeping the G2 gauge fugacities, we find the following exact formulas by the infinite sum-
mations of G2 characters

g0 = v3
∞∑
n=0

χG2
nθ v

2n, g 1
3

= v3(1 + v2)
∞∑
n=0

χG2
f+nθv

2n,

g 2
3

=
∞∑
n=0

(χG2
2f+nθ + χG2

f+nθ + χG2
nθ )v2n+3 +

∞∑
n=0

(χG2
2f+nθ + χG2

f+nθ)v
2n+5 +

∞∑
n=0

χG2
2f+nθv

2n+7.

The g0 formula shows that the circle reduction of 6d so(8)(3) theory is indeed a 5d pure
G2 theory. We also have the table 9 for the coefficients bij , i, j = 0, 1, 2, . . . , where the
coefficients χG2

nθ in g0 in colored orange. From the obvious anti-symmetry coefficient matrix,
we find the following spectral flow symmetry

Eso(8)(3)

1 (q, q1/2/v) = −q1/2v−2 Eso(8)(3)

1 (q, v). (4.28)

4.2.4 E
(2)
6

The Z2 twisted circle compactification of 6d (1, 0) E6 SCFT gives a non-Lagrangian 5d KK
theory, while the circle reduction gives a 5d pure F4 gauge theory. This twisted theory has
six unity blowup equations and no vanishing one. The twisted elliptic genera of this theory
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q\v 3 4 5 6 7 8 9 10 11 12 13
0 0 0 0 0 0 1 0 52 0 1053 0

1/2 0 0 0 0 0 0 26 0 1079 0 18954
1 0 0 0 0 0 0 0 378 0 13910 0

3/2 0 0 0 0 0 0 0 0 4056 0 134342
2 0 0 0 0 0 −1 0 0 0 35362 0

5/2 −1 0 0 0 1 0 −26 0 0 0 264576
3 0 −26 0 0 0 26 0 −378 0 0 0

7/2 −52 0 −378 0 0 0 378 0 −4004 0 0
4 0 −1079 0 −4056 0 0 0 4004 0 −34283 0

5/2 −1053 0 −13910 0 −35362 0 0 0 34283 0 −250666
5 0 −18954 0 −134342 0 −264576 0 0 0 250666 0

Table 10. The coefficient matrix bij for the E1 of 6d pure E(2)
6 theory.

have not been computed before. We use the universal E1 formula (3.28) to compute the
twisted one-string elliptic genus. Denote the reduced twisted elliptic genus as

E1 = q−
13
12

∞∑
n=0

qngn(v,mF4) = q−
13
12

∞∑
i,j=0

bijq
iv−2i+j , 2n ∈ Z. (4.29)

Turning off the F4 fugacities, we obtain

g0 = v8(v16 + 36v14 + 341v12 + 1208v10 + 1820v8 + 1208v6 + 341v4 + 36v2 + 1)
(1− v2)16 ,

g 1
2

= 13v8 (v2 + 1
)2 (2v12 + 47v10 + 274v8 + 506v6 + 274v4 + 47v2 + 2

)
(1− v2)16 ,

g1 = 2v8

(1− v2)16
(
189v16 + 3931v14 + 24233v12 + 64761v10 + 88332v8 + 64761v6

+ 24233v4 + 3931v2 + 189
)
.

(4.30)

When keeping the F4 fugacities, we have

g0 = v8
∞∑
n=0

χF4
nθv

2n = v8 + 52v10 + 1053v12 + 12376v14 + . . . . (4.31)

This is exactly the one F4 instanton Hilbert series [68], thus agrees with the expectation that
the circle dimension reduction should be a 5d pure F4 gauge theory. Besides, we find

g 1
2

= v8(1 + v2)
∞∑
n=0

χF4
nθ+fv

2n = 26v8 + (1053 + 26)v10 + (17901 + 1053)v12 + . . . (4.32)

and g1 = (324 + 52 + 2)v8 + . . . . We also have the table 10 for the coefficients bij . From the
anti-symmetric coefficient matrix, we observe the following spectral flow symmetry

EE
(2)
6

1 (q, q1/2/v) = −q3/2v−6 EE
(2)
6

1 (q, v). (4.33)
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4.3 Universal features with matters

In this section, we discuss the universal features of the reduced twisted one-string elliptic
genera for twisted 6d theories with matters. Most of our observations are the twisted
generalization of those in [31]. These include the spectral flow symmetry and the precise
spectrum of the twisted R-R vacuum, NS-R vacuum and possibly the excited states with
fractional KK-charges above the NS-R vacuum. For all reduced twisted one-string elliptic
genera we solved from blowup equations, we analyze these features in the (q, v) expansion:

E1(q, v) = q
1
6−c

∞∑
i,j=0

cijq
ivj = q

1
6−c

∞∑
i,j=0

bijq
iv−2i+j , Ni, j ∈ Z, (4.34)

where N is twist coefficient. All coefficients cij should be integers as they represent the states
in the 2d worldsheet theories, in particular form representations of G̊ and F̊ when turning on
the fugacities. The bij coefficients are slightly shifted from the cij coefficients. As we have seen
in the pure gauge cases, the bij coefficients are very useful to show explicitly the spectral flow
symmetry. Therefore, we will show the bij coefficient matrix for all examples in the following.

4.3.1 n = 4, so(2r + 8)(2)

The Z2 twist of 6d (1, 0) so(2r + 8)+2rV theory has low energy gauge algebra G̊ = so(2r + 7)
and twisted matter content 2rV0. The circle reduction gives a 5d N = 1 so(2r + 7) + 2rF
theory whose 5d Nekrasov partition function is exactly computable by localization. On the
other hand, the circle reduction of the NS-R sector gives a 5d N = 1 pure so(2r + 7) theory.
For all n = 4, so(2r + 8)(2) theories with r ≥ 0, we use the recursion formula (3.31) to compute
the one-string elliptic genera and find complete agreement with the 2d localization formulas.
Let us study the following expansion for the reduced twisted one-string elliptic genera

Eso(2r+8)(2)

1 (q, v) = q−
7
12

∞∑
i,j=0

cijq
ivj = q−

7
12

∞∑
i,j=0

bijq
iv−2i+j . (4.35)

We observe the following patterns for the Fourier coefficients cij :

• c0,j = 0 for j < 2r + 4. This is consistent with the fact that the reduced one-instanton
partition function of 5d so(2r + 7) + 2rF theory has v expansion starting from v2r+4.
The v expansion coefficients are colored orange in the tables 11, 12 and 13.

• c 3
2 +n,−2−2n = χ

so(2r+7)
nθ and c2+n,−3−2n = 0. This shows that the leading q order of

the NS-R twisted elliptic genera indeed gives the 5d one so(2r + 7) instanton Hilbert
series [68]. The coefficients are colored red in the tables 11, 12 and 13.

• c 5
2 +n,−1−2n = −χso(2r+7)

f+nθ χ
sp(2r)
f . These are the first excited states with integer modes

and a half KK-charge above the NS-R vacuum. The coefficients are colored blue in the
tables 11, 12 and 13.

• c2+n,−2−2n = χ
so(2r+7)
f+nθ + χ

so(2r+7)
f+(n−1)θ. These are the first excited states with half-integer

modes and a half KK-charge above the NS-R vacuum. The coefficients are colored cyan
in the tables 11, 12 and 13.
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q\v 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 −5 36 −224 924 −3385

1/2 0 0 0 0 0 4 −54 324 −1596 5940
1 0 0 0 0 0 0 36 −506 3132 −15568

3/2 1 0 0 0 −1 −4 0 348 −3498 19368
2 0 9 −4 0 4 −4 −36 0 2208 −21438

5/2 36 −36 92 −36 0 36 −38 −312 −36 13624
3 0 240 −324 642 −348 0 312 −136 −1884 −240

7/2 495 −924 2776 −3132 4236 −2208 0 1884 −738 −10492
4 0 2805 −5940 15744 −19368 23838 −13624 224 10492 −2400

9/2 4004 −10296 35240 −59004 106468 −118080 124392 −69372 1596 50004

Table 11. The coefficient matrix bij for the E1 of 6d so(10)(2) theory with n = 4.

q\v 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 −42 528 −4065

1/2 0 0 0 0 0 0 0 48 −759 6328
1 0 0 0 0 0 0 0 0 528 −8748

3/2 1 0 0 0 −1 0 0 −48 0 6792
2 0 11 −8 0 8 −11 0 42 −528 0

5/2 55 −88 158 −88 0 88 −158 88 704 −6792
3 0 440 −968 1606 −1144 0 1144 −1606 440 8308

7/2 1144 −3432 8630 −12584 14501 −9152 0 9152 −14501 6256
4 0 7579 −26312 65230 −101152 115434 −76192 0 76192 −111369

9/2 13650 −57200 180372 −378136 640565 −814352 800642 −493416 0 493416

Table 12. The coefficient matrix bij for the E1 of 6d so(12)(2) theory with n = 4.

• c2+n,−1−2n = −χsp(2r)
f . These are the second excited states with half-integer modes and

KK-charge 1 above the NS-R vacuum.

• c 5
2 ,−2 = χ

so(2r+7)
θ + χ

so(2r+7)
2f + χ

sp(2r)
2f + 2. These are the second excited states with

integer modes and KK-charge 1 above the NS-R vacuum. The coefficients are colored
purple in the tables 11, 12 and 13.

n = 4, so(10)(2). From the recursion formula (3.31), we compute the twisted one-string
elliptic genus to q order 4 and find complete agreement with the 2d quiver formula. In
particular, we obtain the coefficients bij in table 11. We checked that the coefficients satisfy
all universal behaviors summarized earlier with r = 1.

n = 4, so(12)(2). From the recursion formula (3.31), we compute the twisted one-string
elliptic genus to q order 4. We obtain the following Fourier coefficients bij in the (q, v)
expansion in table 12. We checked that the coefficients satisfy all universal behaviors
summarized earlier with r = 2.

n = 4, so(14)(2). From the recursion formula (3.31), we compute the twisted one-string
elliptic genus to q order 4. We obtain the following coefficients bij in the (q, v) expansion
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q\v 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 −429

1/2 0 0 0 0 0 0 0 0 0 572
1 0 0 0 0 0 0 0 0 0 0

3/2 1 0 0 0 −1 0 0 0 0 −572
2 0 13 −12 0 12 −13 0 0 0 429

5/2 78 −156 248 −156 0 156 −248 156 −78 0
3 0 728 −2028 3354 −2612 0 2612 −3354 2028 −728

7/2 2275 −8580 21476 −33956 38456 −25376 0 25376 −38456 33956
4 0 17290 −76440 200824 −340028 396643 −271984 0 271984 −396643

Table 13. The coefficient matrix bij for the E1 of 6d so(14)(2) theory with n = 4.

in table 13. We checked that the coefficients satisfy all universal behaviors summarized
earlier with r = 3.

4.3.2 n = 2, su(2r)(2)

The Z2 twist of 6d (1, 0) su(2r) + 4rF theory has low energy gauge algebra G̊ = sp(r) and
twisted matter content 2r(F0 + F1/2) which is invariant under the KK-charge shift by 1/2.
The circle reduction gives a 5d N = 1 sp(r) + 2rF theory whose 5d Nekrasov partition
function is exactly computable by localization. However, the twisted elliptic genera, albeit
the simple look, do not to our knowledge have a 2d quiver gauge theory description. We
utilize the blowup equations to compute the twisted one-string elliptic genera. For arbitrary
r ≥ 1, the twisted elliptic blowup equations can have two possibilities for the characteristics
a = ±1/4. From the unity twisted elliptic blowup equations, we solve the one-string twisted
elliptic genera for r = 1, 2, 3, 4. We find the reduced twisted one-string elliptic genus has
the following spectral flow symmetry

Esu(2r)(2)

1

(
q,

√
q

v

)
= −

(√
q

v2

)r−1
Esu(2r)(2)

1 (q, v). (4.36)

We also find the following compact formula for the twisted one-string elliptic genus when
turning off all gauge and flavor fugacities:

Esu(2r)(2)

1 (τ, ε+) = 22r−1η(τ)8r−3

η( τ2 )4r−2
θ4(τ, 2ε+)

(θ2(τ, ε+)θ3(τ, ε+))2r . (4.37)

It is easy to prove the spectral flow symmetry from this expression. In the following, we
explicitly show the results for r = 1, 2, 3.

n = 2, su(2)(2). From the unity twisted elliptic blowup equations, we calculate the twisted
one-string elliptic genus to q order 5. We can also use the 2d localization to compute the
twisted elliptic genus in this case as the Z2 twist for the gauge algebra su(2) is trivial. We
only need to fold the four fundamentals. For one-string, we have

E1 =
∏2
i=1 θ1(a+ ε+ −mi)θ4(a+ ε+ +mi)

η2θ1(2a)θ1(2a+ 2ε+) + (a→ −a), (4.38)
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q\v 0 1 2 3 4 5 6 7
0 0 −2 4 −6 8 −10 12 −14

1/2 2 0 −6 16 −24 32 −40 48
1 −4 6 0 −22 52 −84 112 −140

3/2 6 −16 22 0 −58 144 −234 320
2 −8 24 −52 58 0 −152 368 −606

5/2 10 −32 84 −144 152 0 −352 864
3 −12 40 −112 234 −368 352 0 −796

7/2 14 −48 140 −320 606 −864 796 0

Table 14. The coefficient matrix bij for the E1 of 6d su(2)(2) theory with n = 2.

We checked this agrees with our results solved from blowup equations to high q orders. We
also obtain the coefficients bij in table 14. The spectral flow symmetry manifests as expected.
We also checked the spectral flow symmetry with all gauge and flavor parameters turned
on. Notice the leading orders of both R-R and NS-R elliptic genera give the one-instanton
partition function of 5d su(2) + 2F. With gauge and flavor fugacities turned on, we have
the following exact formula for the v expansion:

Z5d
1 =

∞∑
n=0

(
− χb(1)χ

su(2)
nθ v1+2n + χa(1)χ

su(2)
f+nθv

2+2n
)
. (4.39)

Here the truncated flavor symmetry so(4) ∼ su(2)a × su(2)b.

n = 2, su(4)(2). From the unity twisted elliptic blowup equations, we compute the twisted
one-string elliptic genus to q order 5. We obtain the coefficients bij in table 15. The obvious
anti-symmetric coefficient matrix shows the self-duality under spectral flow as expected.
The leading orders of both R-R and NS-R elliptic genera should give the one-instanton
partition function of 5d sp(2) + 4F. From ADHM construction, we obtain the following
exact formula for the v expansion:

Z
sp(2)+4F
1 =

∞∑
n=0

(
χ
so(8)
S χ

sp(2)
nθ v2+2n − χso(8)

C χ
sp(2)
f+nθv

3+2n
)
. (4.40)

where so(8) is the pertubative 5d flavor symmetry. The Fourier coefficients completely agree
with the orange numbers in table 15.

n = 2, su(6)(2). From the unity twisted elliptic blowup equations, we calculate the twisted
one-string elliptic genus to q order 5. We obtain the coefficients bij in table 16. The obvious
anti-symmetric coefficient matrix shows the self-duality under spectral flow. The leading
orders of both R-R and NS-R elliptic genera give the one-instanton partition function of 5d
sp(3)+6F. From ADHM construction, we find the following exact formula for the v expansion:

Z
sp(3)+6F
1 =

∞∑
n=0

(
χ
so(12)
S χ

sp(3)
nθ v1+2n − χso(12)

C χ
sp(3)
f+nθv

2+2n
)
. (4.41)

where so(12) is the pertubative 5d flavor symmetry. We checked that these coefficients
completely agree with the orange numbers in table 16.
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q\v 1 2 3 4 5 6 7 8
0 0 −8 32 −80 160 −280 448 −672

1/2 8 0 −96 384 −960 1920 −3360 5376
1 −32 96 0 −752 2848 −7008 13920 −24272

3/2 80 −384 752 0 −4464 16256 −39296 77440
2 −160 960 −2848 4464 0 −22152 78048 −185552

5/2 280 −1920 7008 −16256 22152 0 −96320 330112
3 −448 3360 −13920 39296 −78048 96320 0 −378096

7/2 672 −5376 24272 −77440 185552 −330112 378096 0

Table 15. The coefficient matrix bij for the E1 of 6d su(4)(2) theory with n = 2.

q\v 2 3 4 5 6 7 8
0 0 −32 192 −672 1792 −4032 8064

1/2 32 0 −800 4352 −14560 37888 −84000
1 −192 800 0 −11104 55424 −177184 449024

3/2 672 −4352 11104 0 −109760 512512 −1574720
2 −1792 14560 −55424 109760 0 −862848 3819200

5/2 4032 −37888 177184 −512512 862848 0 −5727648
3 −8064 84000 −449024 1574720 −3819200 5727648 0

Table 16. The coefficient matrix bij for the E1 of 6d su(6)(2) theory with n = 2.

4.3.3 n = 2, su(2r + 1)(2)

The Z2 twist of 6d (1, 0) su(2r+1)+2(2r+1)F theory has low energy gauge algebra G̊ = sp(r)
and twisted matter content (2r+1)(F0 +F1/2) which is invariant under the KK-charge shift by
1/2. The circle reduction gives 5d N = 1 sp(r) + (2r+ 1)F gauge theories whose 5d Nekrasov
partition function is exactly computable by localization. The twisted circle compactification
gives 5d N = 1 so(2r + 3) + (2r + 1)V KK theories [69]. To our knowledge, there is no 2d
quiver gauge theory description in the current situation. Therefore, it is important to use
blowup equations to solve the twisted elliptic genera and study their properties. Indeed, we
successfully solve the twisted one-string elliptic genera for r = 1, 2, 3, 4 to high q orders. We
find the reduced twisted one-string elliptic genus has the following spectral flow symmetry

Esu(2r+1)(2)

1

(
q,

√
q

v

)
= −

(
q1/4

v

)2r−1
Esu(2r+1)(2)

1 (q, v). (4.42)

We also manage to find the following compact formula for the twisted one-string elliptic
genus for arbitrary r:

Esu(2r+1)(2)

1 (τ, ε+) =
η( τ4 )2θ4( τ2 , ε+)
η( τ2 )2θ4( τ2 )

(2θ1(τ, ε+)θ4(τ, ε+)
θ1(τ, 2ε+)θ4(τ)

)2r
. (4.43)

We checked this formula for r = 1, 2, 3, 4 against the twisted elliptic genera solved from
blowup equations and found perfect agreement. It is easy to prove the spectral flow symmetry
from this expression.

It is interesting to remark that the twisted elliptic blowup equations also allow nice
solutions for the twisted matter content (2r+ 1)(F1/4 + F3/4). This choice of the KK-charges
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q\v 1 2 3 4
0 0 4 0 −8 0 12 0 −16 0

1/4 −4 0 8 0 −16 0 24 0 −32
1/2 0 −8 0 36 0 −72 0 108 0
3/4 8 0 −36 0 80 0 −144 0 216
1 0 16 0 −80 0 224 0 −416 0

5/4 −12 0 72 0 −224 0 472 0 −812
3/2 0 −24 0 144 0 −472 0 1092 0
7/4 16 0 −108 0 416 0 −1092 0 2168
2 0 32 0 −216 0 812 0 −2168 0

Table 17. The coefficient matrix bij for the E1 of 6d su(3)(2) theory with n = 2.

of the hypermultiplets F has its merit in that they coincide with those of the F in the twist of
vector multiplet, i.e. Adj0 + F1/4 + F3/4 + Λ2

1/2. This brings in some simplification that the
B field of the tensor parameter becomes integral. In fact, there are two possibilities for such
B field — even and odd, corresponding to two non-equivalent circle reductions to 5d N = 1
pure sp(r)0 or sp(r)π theory. We leave the discussion for these situations in appendix C.

n = 2, su(3)(2). The Z2 twisted circle compactification of 6d (1, 0) su(3) + 6F theory
gives a 5d rank-3 KK theory which has gauge theory description as 5d sp(2) + 3Λ2 or 5d
so(5) + 3V theory [69]. From the unity twisted elliptic blowup equations, we compute the
twisted one-string elliptic genus to q order 5. The coefficients bij are listed in table 17. The
obvious anti-symmetric coefficient matrix shows the self-duality under spectral flow. For
the low energy limit, the 5d one-instanton partition function of su(2) + 3F theory can be
computed by localization as

Z
su(2)+3F
1 =

∞∑
n=0

(
χ
so(6)
S χ

su(2)
nθ v1+2n − χso(6)

C χ
su(2)
f+nθv

2+2n
)
. (4.44)

where so(6) is the pertubative 5d flavor symmetry. It is easy to check that the v expansion
coefficients are consistent with the orange numbers in table 17.

n = 2, su(5)(2). The Z2 twisted circle compactification of 6d (1, 0) su(5) + 10F theory
gives a 5d rank-4 KK theory which has gauge theory description as 5d so(7) + 5V theory [69].
From the unity twisted elliptic blowup equations, we compute the twisted one-string elliptic
genus to q order 5. The coefficients bij are listed in table 18. The obvious anti-symmetric
coefficient matrix shows the self-duality under spectral flow. The 5d one-instanton partition
function of sp(2) + 5F theory can be computed by localization as

Z
sp(2)+5F
1 =

∞∑
n=0

(
χ
so(12)
S χ

sp(2)
nθ v1+2n − χso(12)

C χ
sp(2)
f+nθv

2+2n
)
. (4.45)

where so(10) is the pertubative 5d flavor symmetry. It is easy to check that the v expansion
coefficients are consistent with the orange numbers in table 18.
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q\v 1 2 3 4
0 0 16 0 −64 0 160 0 −320 0

1/4 −16 0 64 0 −176 0 384 0 −720
1/2 0 −64 0 400 0 −1280 0 2976 0
3/4 64 0 −400 0 1344 0 −3376 0 7040
1 0 176 0 −1344 0 5312 0 −14528 0

5/4 −160 0 1280 0 −5312 0 15488 0 −36192
3/2 0 −384 0 3376 0 −15488 0 48976 0
7/4 320 0 −2976 0 14528 0 −48976 0 128768
2 0 720 0 −7040 0 36192 0 −128768 0

Table 18. The coefficient matrix bij for the E1 of 6d su(5)(2) theory with n = 2.

q\v 4 5 6 7 8 9 10 11 12
0 0 0 0 −1 −4 78 −754 4433 −21060

1/2 0 0 0 2 −27 −108 2509 −21654 124956
1 0 0 0 3 54 −512 −1736 43680 −363866

3/2 1 −2 −3 0 86 874 −7436 −19680 552578
2 4 27 −54 −86 0 1437 10756 −88505 −178544

5/2 −78 108 512 −874 −1437 0 16930 113530 −895387
3 754 −2509 1736 7436 −10756 −16930 0 154075 1072946

7/2 −4433 21654 −43680 19680 88505 −113530 −154075 0 1117564
4 21060 −124956 363866 −552578 178544 895387 −1072946 −1117564 0

Table 19. The coefficient matrix bij for the E1 of 6d E(2)
6 theory with n = 4.

4.3.4 Other examples

n = 4, E
(2)
6 . The Z2 twist of 6d (1, 0) E6 + 2F theory has low energy gauge algebra G̊ = F4

and twisted matter content 260 + 261/2 which is invariant under the KK-charge shift by
1/2. The twisted partition function has not been computed before. From the recursion
formula (3.31), we compute the twisted one-string elliptic genus to q order 5. We summarize
the coefficients bij in table 19. Notice the obvious anti-symmetric coefficient matrix, this shows
that the twisted theory has self-dual spectral flow symmetry, albeit the nontrivial matter
content. The leading q order of E1 should give the one-instanton Nekrasov partition function
of 5d F4 + F theory, whose exact v expansion formula can be found in ([31], equation (H.36)).
For example, when turning off all fugacities,

ZF4+F
1 (v) = v7

(v − 1)10(v + 1)16 (v12 + 10v11 − 49v10 + 266v9 − 549v8 + 1068v7

− 1110v6 + 1068v5 − 549v4 + 266v3 − 49v2 + 10v + 1)
= v7 + 4v8 − 78v9 + 754v10 − 4433v11 + 21060v12 + . . .

(4.46)

We have checked they are in complete agreement. The v expansion coefficients of 5d ZF4+F
1

are colored in orange in table 19.

n = 3, so(8)(2). The Z2 twist of 6d (1, 0) so(8) + V + S + C theory has low energy
gauge algebra G̊ = so(7) and twisted matter content 70 + 80 + 81/2. From the recursion
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q\v 1 2 3 4 5 6 7 8 9
0 0 0 0 4 −30 132 −434 1184 −2826

1/2 0 0 0 0 40 −272 1152 −3696 9936
1 2 0 −2 −4 0 324 −2168 8868 −27860

3/2 −8 16 0 −16 −32 0 1936 −12416 49464
2 42 −108 142 0 −112 −216 −42 10392 −64496

5/2 −112 432 −848 848 0 −576 −1088 −432 48448
3 336 −1428 3606 −5528 4814 −132 −2646 −4864 −3606

7/2 −720 3712 −10976 21744 −29312 23056 −1152 −10640 −19024
4 1650 −8964 29700 −68096 115992 −140732 103936 −8868 −39006

9/2 −3080 18800 −68256 176608 −349888 534816 −603264 424864 −49464

Table 20. The coefficient matrix bij for the E1 of 6d so(8)(2) theory with n = 3.

formula (3.31), we computed the twisted one-string elliptic genus to q order 5. We obtain
the Fourier coefficients bij in the (q, v) expansion in table 20.

We find the leading q order of the R-R sector, i.e., the orange coefficients gives the
one-instanton Nekrasov partition function of 5d so(7) + V + S theory, while the leading
q order of the NS-R sector, i.e., the red coefficients gives the one of 5d so(7) + S theory.
For 5d so(7) + S theory, the ADHM description has been studied in [62]. For example, the
reduced one-instanton partition function is given by

Z
so(7)+S
1 (ui,m) =

4∑
i=1

sinh(4ε+ − 2ui) sinh(m± (ui − ε+))∏
j( 6=i) sinh(uij) sinh(2ε+ − uij) sinh(2ε+ − ui − uj)

. (4.47)

Here ui satisfying u1 + u2 + u3 + u4 = 0 are the fugacities of su(4) embedded in so(7).
From this formula, we find

Z
so(7)+S
1 (v) = 2v4 (v6 − 2v5 + 8v4 − 6v3 + 8v2 − 2v + 1

)
(v − 1)6(v + 1)8 . (4.48)

Z
so(7)+S
1 (v,mso(7),msp(1)) =

∞∑
n=0

χ
so(7)
nθ χ

sp(1)
(1) v2n+4 − χso(7)

nθ+sv
2n+5. (4.49)

This perfectly agrees with the leading q order of the NS-R twisted elliptic genus. For
so(7) + V + S theory, we can compare with the reduced one-instanton partition function
of 5d so(7) + V + 4S theory given in (H.15) of [31]. After decoupling three S, we find the
resulting 5d partition function is

Z
so(7)+V+S
1 (v,mso(7),mv,ms) =

∞∑
n=0

χ
so(7)
nθ χ

sp(1)
(1)v χ

sp(1)
(1)s v

2n+4 + χ
so(7)
nθ+v+sv

2n+6

−
(
χ
so(7)
nθ+vχ

sp(1)
(1)s + χ

so(7)
nθ+sχ

sp(1)
(1)v

)
v2n+5.

(4.50)

This perfectly agrees with the leading q order of the R-R twisted elliptic genus that is when
turning off all gauge and flavor fugacities:

Z
so(7)+V+S
1 (v) = 2v4 (2v2 − 3v + 2

)
(v − 1)2(v + 1)8 . (4.51)
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q\v 2 3 4 5 6 7 8 9 10 11
0 0 2 −7 28 −64 154 −286 546 −896 1496

1/3 0 −1 16 −70 224 −563 1232 −2412 4368 −7413
2/3 1 −2 −10 104 −420 1260 −3070 6566 −12680 22722
1 0 10 −16 −60 528 −2016 5824 −13812 29120 −55488

4/3 0 −14 67 −90 −288 2270 −8344 23198 −54112 112056
5/3 0 14 −112 358 −416 −1192 8720 −30820 83216 −190402
2 0 0 140 −630 1598 −1668 −4412 30566 −104388 275170

7/3 0 0 −128 840 −2912 6288 −6032 −15004 99296 −329752
8/3 0 0 77 −870 4032 −11676 22508 −20150 −47592 303454
3 0 0 0 770 −4528 16611 −42096 74444 −62896 −142378

10/3 0 0 0 −572 4438 −19694 60998 −140026 230718 −185756
11/3 0 0 0 273 −3680 20356 −74720 205436 −435408 677190

Table 21. The coefficient matrix bij for the E1 of 6d su(8)(3) theory with n = 3.

q\v 1 2 3 4 5 6 7 8
0 0 −1 −4 −18 300 −1603 5768 −16548

1/2 5 4 −12 −68 −152 3460 −18980 68796
1 −32 50 100 −110 −780 −1340 31516 −169674

3/2 140 −524 426 1004 −620 −6840 −6896 212152
2 −448 2413 −5060 2332 8440 −3452 −46800 −35810

5/2 1218 −8232 25172 −38908 12255 54640 −14240 −279572
3 −2880 22724 −86492 195414 −245816 50690 315700 −61000

7/2 6204 −54888 242564 −681100 1265024 −1377048 206878 1592400

Table 22. The coefficient matrix bij for the E1 of 6d so(8)(2) theory with n = 2.

n = 3, so(8)(3). The Z3 twist of 6d (1, 0) so(8) + V + S + C theory has low energy
gauge algebra G̊ = G2 and twisted matter content 70 + 71/3 + 72/3. From the recursion
formula (3.28), we compute the twisted one-string elliptic genus to q order 11/3. In particular,
we obtain the coefficients bij in table 21. We observe the leading q order of R-R elliptic genus
gives the one-instanton partition function of 5d G2 + F theory [31]:

ZG2+F
1 =

∑
n=0

χG2
nθ χ

sp(1)
(1) v2n+3 −

∑
n=0

χG2
f+nθv

2n+4. (4.52)

Besides, the leading order of NS-R elliptic genus colored red has coefficients χG2
nθ as the one

G2 instanton Hilbert series. The subleading order of NS-R elliptic genus colored blue has
coefficients −χG2

f+nθχ
sp(1)
(1) , which are the excited states over NS-R vacuum with KK-charge 1/3.

The subsubleading order of NS-R elliptic genus colored cyan has coefficients (χG2
f +χ

sp(1)
(2) )χG2

nθ ,
which are the excited states over NS-R vacuum with KK-charge 2/3.

n = 2, so(8)(2). The Z2 twist of 6d (1, 0) so(8) + 2(V + S + C) theory has low energy
gauge algebra G̊ = so(7) and twisted matter content 2(70 + 80 + 81/2). From the unity
twisted elliptic blowup equations, we compute the twisted one-string elliptic genus E1 to q7

order. In particular, we obtain the following coefficients bij in table 22.
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Our results are consistent with the 5d limits in both R-R and NS-R sectors. The leading
q order of the NS-R sector gives the 5d so(7) + 2S theory whose 5d partition function can
be computed by localization [62] or by 5d blowup equations [49]. We use the localization
formula in [62] to compute the 5d one-instanton partition function as

Z
so(7)+2S
1 = v4 (5v4 − 12v3 + 22v2 − 12v + 5

)
(v − 1)4(v + 1)8 = 5v4 − 32v5 + 140v6 − 448v7 + . . . . (4.53)

One can see the coefficients are in agreement with the red numbers in table 22. One can
also turn on the gauge and flavor fugacities, in which cases the Z1 formula as v expansion
can be found in ([31], equation (H.27)). The leading q order of the R-R sector should give
the 5d so(7) + 2V + 2S theory whose partition function to our knowledge has not been
computed before. Luckily we can compare with the reduced one-instanton partition function
of 5d so(7) + 2V + 6S theory given in ([43], equation (E.2)). After decoupling four S, we
find the resulting 5d partition function is

Z
so(7)+2V+2S
1 = v2 + χ

sp(2)
(10)vv

3 − χso(7)
(100)v

4 +
∞∑
n=0

χ
so(7)
nθ χ

sp(2)
(01)vχ

sp(2)
(01)sv

2n+4

−
(
χ
so(7)
(1n0)χ

sp(2)
(10)vχ

sp(2)
(01)s + χ

so(7)
(0n1)χ

sp(2)
(01)vχ

sp(2)
(10)s

)
v2n+5

+
(
χ
so(7)
(2n0)χ

sp(2)
(01)s + χ

so(7)
(1n1)χ

sp(2)
(10)vχ

sp(2)
(10)s + χ

so(7)
(0n2)χ

sp(2)
(01)v

)
v2n+6

−
(
χ
so(7)
(2n1)χ

sp(2)
(10)s + χ

so(7)
(1n2)χ

sp(2)
(10)v

)
v2n+7 + χ

so(7)
(2n2)v

2n+8.

(4.54)

We checked that this completely agrees with leading q order of the R-R elliptic genus up
to an overall minus sign:

Z
so(7)+2V+2S
1 (v) = v2 (v4 + 12v3 + 78v2 + 12v + 1

)
(v + 1)8 = v2 + 4v3 + 18v4 − 300v5 + . . .

n = 2, so(8)(3). The Z3 twist of 6d (1, 0) so(8) + 2(V + S + C) theory has low energy
gauge algebra G̊ = G2 and twisted matter content 2(70 + 71/3 + 72/3). From the unity
twisted elliptic blowup equations, we compute the twisted one-string elliptic genera E1 to the
order q16/3. We summarize the coefficients bij in table 23. The leading q order of the R-R
elliptic genus should give the 5d partition function of G2 + 2F theory. We compute the 5d
one-instanton partition function of G2 + 2F theory from the localization formula in [62] as

ZG2+2F
1 = −v

3 (5v6 − 28v5 + 67v4 − 88v3 + 67v2 − 28v + 5
)

(1− v2)6 . (4.55)

We checked that the Fourier coefficients here are in agreement with the orange numbers in
table 23. The leading order of NS-R elliptic genus colored red has coefficients χG2

nθ as expected,
since the circle reduction of the NS-R sector should be a 5d pure G2 theory. We find the
subleading order of NS-R elliptic genus colored blue has coefficients −χG2

f+nθχ
sp(2)
(10) , which

represent the first excited states with KK-charge 1/3 above the NS-R vacuum. Interestingly,
we notice the diagonal elements in table 23 are always zero, but we could not find an
explanation for it.
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q\v 2 3 4 5 6 7 8 9 10
0 0 −5 28 −97 256 −574 1144 −2094 3584

1/3 1 0 −57 336 −1159 3072 −6881 13728 −25119
2/3 0 17 0 −455 2488 −8349 21760 −48293 95728
1 0 −28 170 0 −2802 14400 −46814 119808 −262906

4/3 0 14 −336 1157 0 −14386 70388 −222392 559616
5/3 0 0 373 −2488 6466 0 −64869 303888 −935643
2 0 0 −256 3240 −14400 31001 0 −263943 1191224

7/3 0 0 77 −3072 20251 −70388 132353 0 −987985
8/3 0 0 0 2254 −21760 103822 −303888 515468 0
3 0 0 0 −1144 18935 −119808 462279 −1191224 1861127

10/3 0 0 0 273 −13728 115465 −559616 1850023 −4316352

Table 23. The coefficient matrix bij for the E1 of 6d so(8)(3) theory with n = 2.

n = 2, so(10)(2). The Z2 twist of 6d (1, 0) so(10) + 4V + 2S theory has low energy gauge
algebra G̊ = so(9) and twisted matter content 4V0 + S0 + S1/2. From the unity twisted
elliptic blowup equations, we compute the twisted one-string elliptic genus E1 to q7 order.
In particular, we obtain the Fourier coefficients bij in the (q, v) expansion in table 24. The
leading q order of the NS-R sector should give the 5d so(9) + S theory. To our knowledge, 5d
so(9)+S theory does not have an ADHM construction. Luckily, the exact v expansion formula
of the one-instanton partition function of 5d so(9) + 2V + S theory has been found in ([31],
equation (H.29)). By decoupling the two V, we obtain the following exact v expansion formula

Z
so(9)+S
1 =

∞∑
n=0

χ
so(9)
nθ χ

sp(1)
(2)s v

2n+6 − χso(7)
(0n01)χ

sp(1)
(1)s v

2n+7 + χ
so(7)
(0n10)v

2n+8. (4.56)

This is in complete agreement with our leading q order of the NS-R elliptic genus whose
coefficients are colored red in table 24. Utilizing the Weyl dimension formula, we further find
the following rational expression of v with all gauge and flavor fugacities turned off:

Z
so(9)+S
1 (v) = v6 (3v8 − 20v7 + 58v6 − 116v5 + 134v4 − 116v3 + 58v2 − 20v + 3

)
(v − 1)8(v + 1)12 . (4.57)

On the other hand, the leading q order of the R-R sector should give the 5d so(9)+4V+S theory.
The exact v expansion formula of the one-instanton partition function of 5d so(9) + 4V + 3S
theory has been found in ([43], equation (E.6)). By decoupling two S, we find the resulting 5d
partition function is in agreement with the leading q order of the one-string R-R elliptic genus:

Z
so(9)+4V+S
1 (v) = −v

2 (v8 + 12v7 + 66v6 + 268v5 + 954v4 + 268v3 + 66v2 + 12v + 1
)

(v + 1)12 ,

up to an overall sign. The Fourier coefficients are colored orange in table 24.

n = 2, E
(2)
6 . The Z2 twist of 6d (1, 0) E6 + 4F theory has low energy gauge algebra G̊ = F4

and twisted matter content 2(260 + 261/2) which is invariant under the KK-charge shift by
1/2. From the unity twisted elliptic blowup equations, we compute the twisted one-string
elliptic genera E1 to the q3 order. We summarize the coefficients bij in the (q, v) expansion
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q\v 1 2 3 4 5 6 7 8
0 0 −1 0 0 −48 117 2288 −23760

1/2 3 8 −10 −24 −12 −264 66 31448
1 −32 30 112 −82 −96 −184 −5344 4314

3/2 192 −600 150 1352 −500 −1344 −472 −42496
2 −864 4346 −7664 1260 11520 −6583 −1056 16448

5/2 3135 −20664 57492 −72752 2499 96792 −60738 −11760
3 −9856 78646 −286704 586292 −616336 27138 701296 −625918

7/2 27456 −252120 1101390 −2917296 4860776 −4412640 15894 4855392

Table 24. The coefficient matrix bij for the E1 of 6d so(10)(2) theory with n = 2.

q\v 5 6 7 8 9 10 11
0 0 −5 −20 282 −52 −14377 133136

1/2 5 0 −160 −848 11354 −8144 −491872
1 20 160 0 −4490 −18476 263092 −322556

3/2 −282 848 4490 0 −94702 −273520 4456372
2 52 −11354 18476 94702 0 −1598277 −3093340

5/2 14377 8144 −263092 273520 1598277 0 −21992316
3 −133136 491872 322556 −4456372 3093340 21992316 0

Table 25. The coefficient matrix bij for the E1 of 6d E(2)
6 theory with n = 2.

in table 25. From the obvious anti-symmetric coefficient matrix, we recognize that the E1
is anti self-dual upon the spectral flow. Besides, the leading q order of E1 should give the
one-instanton Nekrasov partition function of 5d F4 + 2F theory, which as v expansion can
be found in ([31], equation (H.34)). We have checked they are in complete agreement. The
v expansion coefficients in 5d are colored in orange in table 25.

n = 1, su(3)(2). The Z2 twist of 6d (1, 0) su(3) + 12F theory has twisted matter content
6F0 ⊕ 6F1/2 which is invariant under KK-charge shift by 1/2. The circle reduction should
give a 5d su(2) + 6F theory. The twisted circle compactification gives a highly nontrivial 5d
KK theory with several 5d gauge theory descriptions which are 5d su(3)4 + 6F, G2 + 6F and
sp(2)+2Λ2 +4F theories [7]. To our knowledge, there is no 2d quiver gauge theory description
for the twisted elliptic genera in this case. From the unity twisted elliptic blowup equations,
we compute its twisted one-string elliptic genus E1 to the order q4. We obtain the coefficients
bij in table 26. The symmetry coefficient matrix indicates the self-dual spectral flow symmetry
as expected. The 5d one-instanton partition function of su(2)+6F theory can be computed as

Z
su(2)+6F
1 =

∞∑
n=0

(
χ
so(12)
S χ

su(2)
nθ v1+2n − χso(12)

C χ
su(2)
f+nθv

2+2n
)
. (4.58)

where so(12) is the pertubative 5d flavor symmetry and S and C are the spinor and conjugate
spinor representations which both have dimension 32. One can see these coefficients are in
total agreement with the orange numbers in table 26.

n = 1, so(8)(2). The Z2 twist of 6d (1, 0) so(8) + 3(V + S + C) theory has low energy
gauge algebra G̊ = so(7) and twisted matter content 3(V0 + S0 + S1/2). From the unity

– 45 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
5

q\v 1 2 3 4
0 32 0 −64 0 96 0 −128

1/4 0 64 0 −128 0 192 0
1/2 −64 0 480 0 −960 0 1440
3/4 0 −128 0 960 0 −1920 0
1 96 0 −960 0 4160 0 −8128

5/4 0 192 0 −1920 0 8192 0
3/2 −128 0 1440 0 −8128 0 27040

Table 26. The coefficient matrix bij for the E1 of 6d su(3)(2) theory with n = 1.

q\v 1 2 3 4 5 6
0 14 44 42 −168 −2490 18564

1/2 −112 128 896 896 −5376 −29568
1 504 −2212 −224 10768 12152 −66528

3/2 −1680 11648 −24416 −16000 98672 130048
2 4620 −41496 148526 −198688 −212310 751104

5/2 −11088 118272 −557088 1380736 −1323168 −1918080
3 24024 −290136 1629600 −5386024 10423952 −7603608

Table 27. The coefficient matrix bij for the E1 of 6d so(8)(2) theory with n = 1.

twisted elliptic blowup equations, we compute its twisted one-string elliptic genus E1 to the
order q7. We summarize the Fourier coefficients bij in table 27.

The leading q order of the NS-R sector should give the 5d so(7) + 3S theory whose 5d
partition function can be computed by localization [62] or 5d blowup equations [49]. We use
the localization formula in [62] to compute the 5d one-instanton partition function as

Z
so(7)+3S
1 = 14v4

(v + 1)8 = 14v4 − 112v5 + 504v6 − 1680v7 + 4620v8 − . . . (4.59)

One can see these coefficients are in agreement with the red numbers in table 27. The
leading q order of the R-R elliptic genus should give the on-instanton partition function of 5d
so(7) + 3V + 3S theory whose v expansion coefficients are colored orange. We are not aware
that any other method can compute the partition function of 5d so(7) + 3V + 3S theory.

n = 1, so(8)(3). The Z3 twist of 6d (1, 0) so(8) + 3(V + S + C) theory has low energy
gauge algebra G̊ = G2 and twisted matter content 3(70 + 71/3 + 72/3). The circle reduction
gives the 5d G2 +3F theory. From the unity twisted elliptic blowup equations, we compute its
twisted one-string elliptic genus E1 to the order q16/3. We summarize the Fourier coefficients
bij in (q, v) expansion in table 28. The leading q order of the R-R elliptic genus should give
the 5d partition function of G2 + 3F theory. We compute the 5d one-instanton partition
function of G2 + 3F theory from the localization formula in [62] as

ZG2+3F
1 = −v

12 + 7v10 + 14v9 − 119v8 + 274v7 − 350v6 + 274v5 − 119v4 + 14v3 + 7v2 − 1
(1− v2)6

= −1 + v2 + 14v3 − 98v4 + 358v5 − 973v6 + 2212v7 − 4452v8 + 8196v9 − . . .
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q\v 2 3 4 5 6 7 8 9
0 1 14 −98 358 −973 2212 −4452 8196

1/3 0 28 176 −1448 5488 −15148 34720 −70224
2/3 0 −42 308 1498 −12712 48230 −133028 304682
1 0 14 −784 2472 10304 −85456 319712 −874888

4/3 0 0 770 −7630 16226 59970 −480164 1763734
5/3 0 0 −384 9793 −54080 91168 306432 −2363200
2 0 0 77 −8246 79058 −316218 452881 1409772

7/3 0 0 0 4802 −79856 497280 −1603616 2035490
8/3 0 0 0 −1716 62083 −557458 2643312 −7287124
3 0 0 0 273 −38304 498064 −3169600 12400754

Table 28. The coefficient matrix bij for the E1 of 6d so(8)(3) theory with n = 1.

One can see these Fourier coefficients are in agreement with the orange numbers in table 28
up to the first gauge singlet 1. On the other hand, the leading q order of the NS-R elliptic
genus gives the 5d one G2 instanton Hilbert series, as shown from the red numbers which
are the χG2

nθ characters. The subleading q order of the NS-R elliptic genus has coefficients
−χG2

f+nθχ
sp(3)
(100) colored in blue in table 28. These are the first excited states with KK charge

1/3 above the NS-R vacuum.

5 Modular bootstrap of the twisted elliptic genera

In this section, we utilize the modularity of elliptic genera to obtain some all order results
beyond the q expansion. This compensates the results of twisted elliptic genera for n = 1, 2
twisted theories where from elliptic blowup equations we can only solve E1 as q expansion
but cannot have a compact formula. The modular bootstrap approach views the elliptic
genera as Jacobi forms on certain modular groups, and utilizes the finite generation property
of modular forms and Jacobi forms to obtain a compact modular expression of elliptic genera
which works for all q orders.

5.1 The modular ansatz for twisted elliptic genera

For a 6d (1, 0) SCFT with gauge group G and tensor coefficient n, the modular ansatz for its
reduced one-string elliptic genus was proposed by Del Zotto and Lockhart in [31] as

E1(τ, ε+) = N (τ, ε+)
η12(n−2)−4+24δn,1φ−2,1(τ, 2ε+)h∨G−1 . (5.1)

Here all gauge and flavor fugacities are turned off, and only ε+ serves as the elliptic parameter
of the Jacobi form. The δn,1 comes from the special phenomenon of n = 1 theories, where the
leading q order of elliptic genus is always trivial, and the 5d theory information only emerges
from the subleading q order. Utilizing several other constraints, mostly from the universal
features of the leading order of R-R and NS-R elliptic genera, [31] successfully determined
the modular ansatz for most rank-one theories. The modular ansatz for several remaining
theories was determined in [43] with the help of elliptic blowup equations.
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We would like to find a generalization of (5.1) for the reduced twisted one-string elliptic
genera. An inspiration comes from the recent study on the modularity of topological strings
on N -section Calabi-Yau threefolds [16, 20, 21]. The modular ansatz for the topological string
partition function on such geometries was first proposed in [16]. Combining (5.1) and the
results in [16] together, we propose the following modular ansatz for the reduced one-string
elliptic genus for twisted 6d (1,0) theories with twist coefficient N = 2, 3, 4:

E1(τ, ε+) = N (τ, ε+)
η12(n−2)−4+24δn,1∆2N ( τN )sφ−2,1(τ, 2ε+)h

∨
G̊
−1 , (5.2)

with
s = N

N − 1

(
c− n− 2

2 − δn,1
)
. (5.3)

Recall the c is the c constant of twisted theories defined in (2.21) that depends only on the
tensor coefficient n and twist coefficient N . The ∆2N are some Γ0(N) cusp forms defined in
appendix B. The numerator N (τ, ε+) is of weight 6(n− 2) + 2Ns+ 12δn,1 − 2h∨

G̊
and index

4(h∨
G̊
− 1) + n− h∨G. The N (τ, ε+) usually has fractional q1/N orders thus it is convenient to

scale q1/N to q. Then we expect N (Nτ, ε+) to be a Γ1(N) weak Jacobi form with positive
integer index. By the finite generation property of weak Jacobi forms [70]:, we have

N (Nτ, ε+) ∈M?(N)[φ−2,1(Nτ, ε+), φ0,1(Nτ, ε+)]. (5.4)

Here M?(N) denotes the ring of modular forms on Γ1(N). The φ−2,1(τ, z) and φ0,1(τ, z)
are the well-known Eichler-Zagier generators for weak Jacobi forms whose expressions are
collected in appendix B. The s here measure the difference between the twisted c constant
and the untwisted one and is related to a geometric quantity rβ = Ns which is always
integral [16]. Interestingly, we find that except for the n = 1, so(8)(3) twisted theory, the
modular ansatz of all twisted one-string elliptic genera encountered in the current paper
satisfy a bigger congruence subgroup that is Γ0(N). We collect the definition and modular
generators for Γ0(N) and Γ1(N) in appendix B.

Some more explanation for the N = 4 cases are needed. We notice that for some
theories with twist coefficients 4, it is possible that besides the Γ1(4) elements from ∆8,
there can be extra Γ1(2) elements. In such case, the ∆8( τ4 )s in (5.2) need to be extended
to ∆8( τ4 )s1∆4( τ4 )s2 . This suggests that the associated Calabi-Yau geometries contain both
4-section and 2-section components.

We collect in table 29 the relevant data for the modular ansatz for all rank-one twisted
theories. The # means the number of independent parameters to be fixed in the numerator
N . The n = 2, so(12)(2) theory is marked with ∗ because we do not have enough data to fix
the modular ansatz, as it involves half-hyper. Except for this theory, we successfully fix its
modular ansatz for all other theories in table 29 and check the ansatz against the results
from twisted elliptic blowup equations to high q orders.

5.2 Computational results

We pick some interesting theories to explicitly show the modular ansatz results. The results
for other theories in table 29 can be shared to interested readers upon request.
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n G G̊ N c s weight index #

6 E
(2)
6 F4 2 5/4 −3/2 0 26 196

5 E
(2)
6 F4 2 3/2 0 0 25 182

2 3/4 −3/2 −6 25 144

4 D
(3)
4 G2 3 5/9 −2/3 0 10 44

4 D
(2)
4 B3 2 3/4 −1/2 0 14 64

4 D
(2)
5 B4 2 3/4 −1/2 −4 20 100

4 D
(2)
6 B5 2 3/4 −1/2 −8 26 144

4 D
(2)
7 B6 2 3/4 −1/2 −12 32 196

4 D
(2)
r+4 Br+3 2 3/4 −1/2 −4r 14 + 6r · · ·

4 E
(2)
6 F4 2 1 0 −6 24 132

3 A
(2)
2 C1 4 5/16 −1/4 0 4 15

3 D
(2)
4 B3 2 1/2 0 −4 13 42

3 D
(3)
4 G2 3 1/2 0 −2 9 30

2 A
(2)
1 C1 2 1/4 1/2 −2 4 6

2 A
(2)
2 C1 4 3/16 1/4 −2 3 6

C1,θ=0/π 4 3/8 1/2 0 3 10

2 A
(2)
3 C2 2 1/4 1/2 −4 6 9

2 A
(2)
4 C2 4 3/16 1/4 −4 5 10

C2,θ=0/π 4 1/2 (1/2, 1/2) 0 5 21

2 A
(2)
5 C3 2 1/4 1/2 −6 8 12

2 A
(2)
2r−1 Cr 2 1/4 1/2 −2r 2r + 2 · · ·

2 A
(2)
2r Cr 4 3/16 1/4 −2r 2r + 1 · · ·

Cr,θ=0/π 4 r
8 + 1

4 (1
2 ,

r−1
2 ) 0 2r + 1 · · ·

2 D
(2)
4 B3 2 1/4 1/2 −8 12 25

2 D
(3)
4 G2 3 4/9 2/3 −4 8 19

2 D
(2)
5 B4 2 1/4 1/2 −12 18 49

2 D
(2)
6 B5 2 1/4 1/2 −16 24 81∗

2 E
(2)
6 F4 2 3/4 3/2 −12 22 81

1 A
(2)
0 C0 2 0 −1 0 0 1

1 A
(2)
2 C1 4 1/16 (−5/4, 2) 0 2 6

1 D
(2)
4 B3 2 0 −1 −8 11 20

1 D
(3)
4 G2 3 7/18 −1/6 −3 7 15

Table 29. Data of Γ1(N) modular ansatz for the twisted one-string elliptic genera of twisted 6d (1, 0)
rank-one theories. For N = 4, the (s1, s2) means that the denominator contains ∆8( τ4 )s1∆4( τ4 )s2 and
only one s means the (s, 0).
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n = 3, su(3)(2). For 6d pure su(3)(2) theory studied in section 4.2.1, let us first discuss
the sp(1)0 case. From the general formula (5.2), we have the following modular ansatz for
its reduced twisted one-string elliptic genus

E1(τ, ε+) = ∆8(τ/4) 1
4N (τ, ε+)

η(τ)8φ−2,1(τ, 2ε+) . (5.5)

Here N (τ, ε+) is of weight 0 and index 4. Interestingly, we notice that in this case the
∆8(τ/4) 1

4 has taken care of all the Γ0(4) elements such that N (τ, ε+) contains no q1/4+n/2

orders, i.e., N (2τ, ε+) is a Γ0(2) Jacobi form. Using the generators E2(τ)(2), E4(2τ) and
φ−2,1(2τ, ε+), φ0,1(2τ, ε+) given in appendix B, there are 9 parameters to fix the ansatz of
N (2τ, ε+). We find the ansatz can be determined by the known Fourier coefficients of q0,1,2

of N (2τ, ε+) as

N (2τ, ε+) = 1
10368

((
− 4(E(2)

2 )4 + 18E4(E(2)
2 )2 − 9E2

4
)
φ4
−2 + 2E(2)

2
(
2(E(2)

2 )2 − 9E4
)
φ3
−2φ0

− 6
(
(E(2)

2 )2 − 3E4
)
φ2
−2φ

2
0 − 2E(2)

2 φ−2φ
3
0 − φ4

0

)
. (5.6)

We then check the modular ansatz results to q8 order. Here φ−2, φ0 are the short notation
of φ−2,1(2τ, ε+), φ0,1(2τ, ε+). On the other hand, if we regard N (4τ, ε+) as a Γ0(4) Jacobi
form, there will be 15 coefficients to fix N (4τ, ε+) using E(2)

2 and E(4)
2 given in appendix B

as modular generators. For the sp(1)π case, the modular ansatz takes the same form as (5.5)
and the N (τ, ε+) is still of weight 0 and index 4. Amusingly, we find in this case the N (2τ, ε+)
is again a Γ0(2) Jacobi form which we determine to be

N (2τ, ε+) = − 1
10368

((
2(E(2)

2 )2 − 3E4
)
φ2
−2 + 2E(2)

2 φ−2φ0 − φ2
0

)2
. (5.7)

This numerator is still fixed by the known Fourier coefficients of q0,1,2 and then checked to
q8 order against the twisted elliptic blowup equations.

n = 4, so(8)(2). For 6d pure so(8)(2) theory, from the general formula (5.2), we have the
following modular ansatz for its reduced twisted one-string elliptic genus

E1(τ, ε+) = ∆4(τ/2) 1
2N (τ, ε+)

η(τ)20φ−2,1(τ, 2ε+)4 . (5.8)

HereN (τ, ε+) is of weight 0 and index 14. Based on the relation between twists and modularity,
the N (2τ, ε+) should be a Γ0(2) Jacobi form. Again using the generators E2(τ)(2), E4(2τ)
and φ−2,1(2τ, ε+), φ0,1(2τ, ε+), we find there are 64 coefficients to fix N (2τ, ε+). They can
be fixed from the known Fourier coefficients up to q7. We have

N (2τ, ε+) = − 1
160489808068608

((
2(E(2)

2 )2 − 3E4
)
φ2
−2 + 2E(2)

2 φ−2φ0 − φ2
0

)(
(64(E(2)

2 )12

− 672E4(E(2)
2 )10 + 3024E2

4(E(2)
2 )8 − 9072E3

4(E(2)
2 )6 + 17982E4

4(E(2)
2 )4

− 15066E5
4(E(2)

2 )2 + 5103E6
4)φ12
−2 + 6E(2)

2
(
64(E(2)

2 )10 − 800E4(E(2)
2 )8

+ 3456E2
4(E(2)

2 )6 − 5616E3
4(E(2)

2 )4 + 2268E4
4(E(2)

2 )2 − 1053E5
4
)
φ11
−2φ0
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− 18
(
64(E(2)

2 )10 − 720E4(E(2)
2 )8 + 2544E2

4(E(2)
2 )6 − 2340E3

4(E(2)
2 )4

− 1836E4
4(E(2)

2 )2 + 513E5
4
)
φ10
−2φ

2
0 + 2E(2)

2
(
1696(E(2)

2 )8 − 18000E4(E(2)
2 )6

+ 64368E2
4(E(2)

2 )4 − 77760E3
4(E(2)

2 )2 + 1701E4
4
)
φ9
−2φ

3
0 − 9

(
80(E(2)

2 )8

− 1648E4(E(2)
2 )6 + 8316E2

4(E(2)
2 )4 − 12276E3

4(E(2)
2 )2 − 945E4

4
)
φ8
−2φ

4
0

+ 108E(2)
2
(
8(E(2)

2 )6 − 72E4(E(2)
2 )4 + 332E2

4(E(2)
2 )2 − 597E3

4
)
φ7
−2φ

5
0

+ 12
(
128(E(2)

2 )6 − 690E4(E(2)
2 )4 + 846E2

4(E(2)
2 )2 + 675E3

4
)
φ6
−2φ

6
0

+ 36E(2)
2
(
8(E(2)

2 )4 + 8E4(E(2)
2 )2 − 63E2

4
)
φ5
−2φ

7
0 + 135

(
2(E(2)

2 )4 − 6E4(E(2)
2 )2

+ 7E2
4
)
φ4
−2φ

8
0 + 2E(2)

2
(
52(E(2)

2 )2 − 123E4
)
φ3
−2φ

9
0 + 6

(
8(E(2)

2 )2 − 19E4
)
φ2
−2φ

10
0

+ 18E(2)
2 φ−2φ

11
0 + 7φ12

0

)
. (5.9)

We then check the modular ansatz results to q16 against the 2d localization formula and
find perfect agreement.

n = 4, so(8)(3). For 6d pure so(8)(3) theory, from the general formula (5.2), we have the
following modular ansatz for its reduced twisted one-string elliptic genus

E1(τ, ε+) = ∆6(τ/3) 2
3N (τ, ε+)

η(τ)20φ−2,1(τ, 2ε+)3 . (5.10)

Here N (τ, ε+) is of weight 0 and index 10. The N (3τ, ε+) should be a Γ0(3) Jacobi form. Using
the generators E2(τ)(3), E4(3τ), E6(3τ) and φ−2,1(3τ, ε+), φ0,1(3τ, ε+) given in appendix B,
we find there are 67 coefficients to fix N (3τ, ε+). We find they can be fixed from the
data up to q7 up to the vanishing relation (B.9), which involve in total 44 independent
parameters. We obtain

N (3τ, ε+) = 1
10319560704

(
E

(3)
2
(
2268(E(3)

2 )9 − 14661E4(E(3)
2 )7 + 20880E6(E(3)

2 )6

− 25560E4E6(E(3)
2 )4 + 22176E2

6(E(3)
2 )3 − 7488E4E

2
6E

(3)
2 + 2560E3

6
)
φ10
−2

+12
(
39(E(3)

2 )9 − 252E4(E(3)
2 )7 + 300E6(E(3)

2 )6 − 54E4E6(E(3)
2 )4− 96E2

6(E(3)
2 )3

+ 96E4E
2
6E

(3)
2 − 128E3

6
)
φ9
−2φ0 + 27

(
39(E(3)

2 )8 − 252E4(E(3)
2 )6 + 344E6(E(3)

2 )5

− 336E4E6(E(3)
2 )3 + 256E2

6(E(3)
2 )2 + 64E4E

2
6
)
φ8
−2φ

2
0 + 24E(3)

2
(
18(E(3)

2 )6

− 117E4(E(3)
2 )4 + 93E6(E(3)

2 )3 + 234E4E6E
(3)
2 − 416E2

6
)
φ7
−2φ

3
0 − 126

(
6(E(3)

2 )6

− 39E4(E(3)
2 )4 + 48E6(E(3)

2 )3 − 28E4E6E
(3)
2 − 16E2

6
)
φ6
−2φ

4
0 − 1512E4E6φ

5
−2φ

5
0

+ 42E(3)
2
(
3(E(3)

2 )3 − 18E4E
(3)
2 + 20E6

)
φ4
−2φ

6
0 + 72(E(3)

2 E4 − E6)φ3
−2φ

7
0

+ 27E4φ
2
−2φ

8
0 − 4E(3)

2 φ−2φ
9
0 − 3φ10

0

)
. (5.11)

Here φ−2, φ0 are short for φ−2,1(3τ, ε+), φ0,1(3τ, ε+). We then check the modular ansatz
results to q16 against the twisted elliptic genera solved from the recursion formula.
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n = 6, E
(2)
6 . For 6d pure E(2)

6 theory, the general formula (5.2) gives the following modular
ansatz for its reduced twisted one-string elliptic genus

E1(τ, ε+) = ∆4(τ/2) 3
2N (τ, ε+)

η(τ)44φ−2,1(τ, 2ε+)8 . (5.12)

Here N (τ, ε+) is of weight 0 and index 26. The N (2τ, ε+) should be a Γ0(2) Jacobi form.
Using the generators E2(τ)(2), E4(2τ) and φ−2,1(2τ, ε+), φ0,1(2τ, ε+), we find there are 196
coefficients to fix N (2τ, ε+). Indeed we find they can be fixed from the data up to q13. We
then check the modular ansatz results against the twisted elliptic genera solved from the
recursion formula to q14. The explicit formula for N (2τ, ε+) is too long to show here.

E-string. The elliptic genera of E-strings have been studied in [57, 71–74]. For a 6d
theory with trivial gauge group in the tensor branch, there is no discrete symmetry from the
automorphism of the gauge algebra. However, one can still consider discrete symmetries of
the flavor algebra. A typical example is the E-string theory, where the flavor symmetry is the
exceptional group E8, for which we may find a rich class of discrete subgroups. The twisted
circle compactification with such a discrete symmetry shall lead to a theory whose partition
function is the same as the partition function of E-strings on a circle with a special choice of
the Wilson line parameters. At first glance, it looks like these theories are boring, but as have
been studied in [16, 20], their geometries, which are genus-one fibrations with N -sections,
have very rich structures. Thus it is worthy to have a study on them. For example, let us do
a Z2 twist to E-string theory formally. The twisted one-string elliptic genus is just

E1(τ, ε+,mi) = 1
2

(2,3),(3,2)∑
(r,s)=(1,4),(4,1)

4∏
i=1

8∏
j=5

θr(mi)θs(mj)
η2 . (5.13)

Turning off the flavor parameters, the reduced twisted one-string elliptic genus is independent
from ε+ and has the following nice modular ansatz as a special case of our general formula (5.2):

E1(τ, ε+) = θ4
2θ

4
3

η8 =
16∆4( τ2 )

η8 . (5.14)

It is easy to prove this identity. This has been also studied in the setting of Calabi-Yau
threefolds with 2-sections in [16].

n = 2, su(2)(2). This case is similar to the E-string theory, where the Z2 twist is only
performed on the flavor parameters. From the general formula (5.2), we find the following
modular ansatz

E1(τ, ε+) = N (τ, ε+)
η(τ)−4∆4( τ2 ) 1

2φ−2,1(τ, 2ε+)
. (5.15)

Here N (τ, ε+) is of weight −2 and index 4. In the case, the N (2τ, ε+) is a Γ0(2) Jacobi
form. We fix it to be

N (2τ, ε+) = φ−2
864

(
E

(2)
2 φ−2 − φ0

) (
2(E(2)

2 )2φ2
−2 − 3E4φ

2
−2 + 2E(2)

2 φ0φ−2 − φ2
0

)
. (5.16)
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Recall φ−2 and φ0 are short for φ−2,1(2τ, ε+), φ0,1(2τ, ε+). We have checked this modular
ansatz against the localization formula (4.38) to O(q20). In fact, we find an even simpler
form for the numerator:

N (2τ, ε+) = 2φ−2(ε+)h(ε+)2h(2ε+), h(τ, z) = θ4(2τ, z)
θ4(2τ) . (5.17)

Here we notice that

E
(2)
2 φ−2 − φ0 = −12h(ε+)2, (5.18)

2(E(2)
2 )2φ2

−2 − 3E4φ
2
−2 + 2E(2)

2 φ0φ−2 − φ2
0 = −144h(2ε+). (5.19)

In summary, we find the following compact formula for the twisted one-string elliptic genus:

E1(τ, ε+) = θ2(τ)θ3(τ)η(τ)θ4(τ, 2ε+)
θ2(τ, ε+)2θ3(τ, ε+)2 = 2η(τ)5

η( τ2 )2
θ4(τ, 2ε+)

θ2(τ, ε+)2θ3(τ, ε+)2 (5.20)

n = 2, su(3)(2). From the general formula (5.2), we have the following modular ansatz
for its reduced twisted one-string elliptic genus

E1(τ, ε+) = N (τ, ε+)
η(τ)−4∆8(τ/4) 1

4φ−2,1(τ, 2ε+)
. (5.21)

Here N (τ, ε+) is of weight −2 and index 3. We find that unlike the pure su(3)(2) case, now
the N (τ, ε+) does contain quarter q orders. Therefore, there is no longer simplification to
Γ0(2), i.e., the N (4τ, ε+) should be a genuine Γ0(4) Jacobi form. Using the Γ0(4) modular
generators E2(τ)(2), E

(4)
2 (τ) and φ−2,1(4τ, ε+), φ0,1(4τ, ε+) given in appendix B, we find there

are 6 parameters to fix the modular ansatz. By the known coefficients of N (4τ, ε+) up to
q6, we determine it to be

N (4τ, ε+) = 1
288φ−2

(
(E(2)

2 + 3E(4)
2 )φ−2 − 4φ0

)(
(E(2)

2 − 3E(4)
2 )φ−2 + 2φ0

)
. (5.22)

Here φ−2 and φ0 are short for φ−2,1(4τ, ε+), φ0,1(4τ, ε+). We then check the modular ansatz
against the results from blowup equations to q16. In fact, we observe an even simpler form
for the numerator:

N (4τ, ε+) = −4φ−2,1(4τ, ε+)h(2τ, ε+)2h(τ, ε+), h(τ, z) = θ4(2τ, z)
θ4(2τ) . (5.23)

Here we notice that

(E(2)
2 − 3E(4)

2 )φ−2 + 2φ0 = 24h(2τ, ε+)2, (5.24)

(E(2)
2 + 3E(4)

2 )φ−2 − 4φ0 = −48h(τ, ε+). (5.25)

In summary, we find the following compact formula for the twisted one-string elliptic genus:

E1(τ, ε+) =
4η( τ4 )2θ4( τ2 , ε+)
η( τ2 )2θ4( τ2 )

(
θ1(τ, ε+)θ4(τ, ε+)
θ1(τ, 2ε+)θ4(τ)

)2
. (5.26)
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n = 2, su(5)(2). From the general formula (5.2), we have the following modular ansatz
for its reduced twisted one-string elliptic genus

E1(τ, ε+) = N (τ, ε+)
η(τ)−4∆8(τ/4) 1

4φ−2,1(τ, 2ε+)2
. (5.27)

Here N (τ, ε+) is of weight −4 and index 5. We find the N (4τ, ε+) should be a Γ0(4) Jacobi
form. Using the Γ0(4) modular generators E2(τ)(2), E

(4)
2 (τ) and φ−2,1(4τ, ε+), φ0,1(4τ, ε+),

we find there are 10 parameters to fix the modular ansatz. By the known coefficients of
N (4τ, ε+) up to q4, we determine it to be

N (4τ, ε+) = − 1
1728φ

2
−2
(
(E(2)

2 + 3E(4)
2 )φ−2 − 4φ0

)(
(E(2)

2 − 3E(4)
2 )φ−2 + 2φ0

)2
. (5.28)

Here φ−2 and φ0 are short for φ−2,1(4τ, ε+), φ0,1(4τ, ε+). We then check the modular ansatz
against the results from blowup equations to q12.

n = 1, su(3)(2). The twisted one-string elliptic genus has been solved from blowup equa-
tions in early sections and the Fourier coefficients have been shown in table 26. From the
general formula (5.2), we have the following modular ansatz

E1(τ, ε+) = ∆
5
4
8 (τ/4)N (τ, ε+)

η8∆2
4(τ/4)φ−2,1(τ, 2ε+) . (5.29)

Here N (τ, ε+) is of weight 0 and index 2. Note there are both ∆8 and ∆4 which indicates that
both Γ0(4) and Γ0(2) play a role. The N (4τ, ε+) is a genuine Γ0(4) Jacobi form. Using the
Γ0(4) modular generators E2(τ)(2), E

(4)
2 (τ) and φ−2,1(4τ, ε+), φ0,1(4τ, ε+) given in appendix B,

we find there are 6 parameters to fix for the modular ansatz of N (4τ, ε+). Indeed, they are
fixed by the known q0,1,2 coefficients. We have

N (4τ, ε+) = 4
3E

(4)
2 φ−2

(
(E(2)

2 − 3E(4)
2 )φ−2 + 2φ0

)
. (5.30)

Here φ−2 and φ0 are short for φ−2,1(4τ, ε+), φ0,1(4τ, ε+). We then check the modular ansatz
against the twisted elliptic genera solved from blowup equations to q16 order.

n = 1, so(8)(3). In the end we show one example of Z3 twist which is the only case we
encounter in the current work that the modular group must be Γ1(N) instead of Γ0(N). This
is the so(8)(3) theory with n = 1. The general formula (5.2) gives the following modular
ansatz for its reduced twisted one-string elliptic genus

E1(τ, ε+) = ∆6(τ/3) 1
6N (τ, ε+)

η(τ)8φ−2,1(τ, 2ε+)3 . (5.31)

Here N (τ, ε+) is of weight −3 and index 7. Due to the odd weight, the N (3τ, ε+) must be
a Γ1(3) Jacobi form instead of a Γ0(3) one. Using the generators E2(τ)(3), E4(3τ), E(a)

3 (τ),
E

(b)
3 (τ) and φ−2,1(3τ, ε+), φ0,1(3τ, ε+) given in appendix B, we find there are 26 coefficients
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to fix N (3τ, ε+). Indeed they can be fixed from the data up to q3 up to the vanishing
relations (B.12). We have

N (3τ, ε+) =− φ3
−2

186624
(
E

(3)
2
(
19(E(3)

2 )3E
(a)
3 + 450(E(3)

2 )3E
(b)
3 − 45E4E

(3)
2 E

(a)
3 − 64(E(a)

3 )3)φ4
−2

+ 6
(
17(E(3)

2 )3E
(a)
3 − 342(E(3)

2 )3E
(b)
3 + 45E4E

(3)
2 E

(a)
3 + 16(E(a)

3 )3)φ3
−2φ0

− 27
(
21(E(3)

2 )2E
(a)
3 − 72(E(3)

2 )2E
(b)
3 + 11E4E

(a)
3
)
φ2
−2φ

2
0 + 36E(3)

2 (19E(a)
3

+ 69E(b)
3 )φ−2φ

3
0 − 18(11E(a)

3 + 189E(b)
3 )φ4

0

)
. (5.32)

We then checked it to q11 order against the twisted elliptic blowup equations and found
perfect agreement.

5.3 Full modular ansatz with gauge fugacities

It is also interesting to consider the full modular ansatz with gauge fugacities. For untwisted
6d (1, 0) SCFTs, this has been studied in [30] for pure su(3) and so(8) theories, see also [32, 75].
The denominator of the modular ansatz of reduced one-string elliptic genus involves the block∏

α∈∆+
l

(G)

θ1(mα ± 2ε+). (5.33)

This is natural as all the poles of elliptic genera are associated to the 5d states related to
the long roots of G. Analogously for twisted theories, given the understanding on 5d circle
reduction theory, it is reasonable to expect the denominator of the modular ansatz for twisted
one-string elliptic genera involves the block∏

α∈∆+
l

(G̊)

θ1(mα ± 2ε+), (5.34)

where ∆+
l is the long positive roots of G̊. More precisely, we propose the following full

modular ansatz for the reduced one-string twisted elliptic genera:

E1(τ, ε+,mG̊,mF̊ ) =
N (τ, ε+,mG̊,mF̊ )

η12(n−2)−4+24δn,1∆2N ( τN )s∏α∈∆+
l

(G̊) φ−1,1/2(mα ± 2ε+)
, (5.35)

where the s is defined the same as in (5.3). The φ−1,1/2(τ, z) := φ−2,1(τ, z)1/2 is a Jacobi
form with weight −1 and index 1/2. The weight and index of N (τ, ε+,mG̊,mF̊ ) should be
coordinated with the weight 0 and index (2.41) of the E1(τ, ε+,mG̊,mF̊ ). In general, for
twist coefficient N , the N (Nτ, ε+,mG̊,mF̊ ) should be a Γ1(N) Jacobi form of multi elliptic
variables. In principle, one can fix the numerator by the M∗(N) modular generators, the
φ−2,1(Nτ, ε+), φ0,1(Nτ, ε+) generators, the generators of G̊ Weyl invariant weak Jacobi forms
and the generators of F̊ Weyl invariant weak Jacobi forms all together.

We give a simple example here, which is the pure su(3)(2) theory with n = 3. The
low energy algebra is G̊ = sp(1). We have the following anstaz for the reduced one-string
elliptic genus with sp(1) fugacity m as

E1(τ, ε+,m) = ∆8(τ/4) 1
4N (τ, ε+,m)

η(τ)2θ1(2m± 2ε+) . (5.36)
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Here N (τ, ε+,m) has weight 0 and index 4 for ε+ and index 1 for m. We find the N (4τ, ε+,m)
is a Γ0(4) Jacobi form with two elliptic variables. Using the Γ0(4) modular generators
E2(τ)(2), E

(4)
2 (τ) and φ−2,1(4τ, ε+), φ0,1(4τ, ε+) and φ−2,1(4τ,m), φ0,1(4τ,m) given in ap-

pendix B, we find there are 35 parameters to fix for the modular ansatz of N (4τ, ε+,m).
Indeed, they are fixed by the known coefficients up to q5. We have

N (4τ, ε+,m) = 1
127401984

(
(5E(2)

2 − 9E(4)
2 )ϕ−2 + 4ϕ0

)((
(E(2)

2 )4 + 636E(4)
2 (E(2)

2 )3

− 3834(E(4)
2 )2(E(2)

2 )2 + 8316(E(4)
2 )3E

(2)
2 − 6399(E(4)

2 )4)φ4
−2 − 16

(
(E(2)

2 )3

− 117E(4)
2 (E(2)

2 )2 + 567(E(4)
2 )2E

(2)
2 − 675(E(4)

2 )3)φ3
−2φ0 + 96

(
(E(2)

2 )2

+ 30E(4)
2 E

(2)
2 − 63(E(4)

2 )2)φ2
−2φ

2
0 − 256(E(2)

2 − 3E(4)
2 )φ−2φ

3
0 + 256φ4

0

)
.

Here ϕ−2, ϕ0 are short for φ−2,1(4τ,m), φ0,1(4τ,m), while φ−2, φ0 are short for φ−2,1(4τ, ε+)
and φ0,1(4τ, ε+). We then check the modular ansatz against the twisted elliptic genera from
2d localization formula to q10 order. Note in N (4τ, ε+,m) the m and ε+ dependence naturally
factorizes. This is expected as there is no mε+ term in its index quadratic form.

6 Twisting from Higgsing

Many twisted 6d (1, 0) SCFTs can be Higgsed from untwisted 6d (1, 0) SCFTs [38, 39]. Most
previously known examples are recognized from brane webs. In particular, many examples
of twisting from Higgsing of so type with n = 2, 3, 4 were discussed in [38]. In this section,
we systematically study all possible twisting from Higgsing among rank-one theories and
propose a simple method to obtain the precise Higgsing condition that does not rely on brane
webs, but only on Lie algebra representations and their decompositions.

A primary condition to establish a Higgsing is that the two theories must have the same
tensor coefficients n. Suppose we want to establish a Higgsing from an untwisted theory
with gauge group G to a twisted theory G(n) with low energy gauge group G̊. Our trick
is to perform the decomposition

G → G̊×Hres. (6.1)

Here the residue group Hres is either su(2) or so(2) for Z2 twist, or su(3) for Z3 twist. The
Higgsing to twisted theory can be achieved by discretizing Hres, i.e., to take its continuous
fugacities as some fractions of τ . In the meantime, some mass parameters of the hyper-
mulitplets of the untwisted theory must be taken as some delicate linear combinations of ε+
and τ to produce the correct one-loop partition function of the twisted theory. We find all
previously known examples of twisting from Higgsing fall into this paradigm. For example,
the Z2 twisted pure su(3) can be obtained from Higgsing of G2 + F theory. Here we show
this from a purely algebraic viewpoint. Consider the decomposition G2 → su(2) × su(2),
we have the following representation decompositions

14→ (2,4) + (3,1) + (1,3), 7→ (1,3) + (2,2). (6.2)
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The Higgsing process can be realized by simply discretizing the second su(2), which we have
presented in (2.31). To check the one-loop part, it is only necessary to study the function
f(ε+,mG,mF , q) inside the vector multiplet partition function

PE

 f(ε+,mG,mF , q)(
q

1/2
1 − q−1/2

1
)(
q

1/2
2 − q−1/2

2
)
(1− q)

 . (6.3)

Under analytic continuations, we have(
−vχG2

14 + emχG2
7

) ∣∣∣
Higgsing

∼ −v
(
χA1

3 + χA1
2 (q3/4 + q1/4 + q−1/4 + q−3/4)

)
+ vq−1/2

(
χA1

2 (q1/4 + q−1/4)
)
,

= −v
(
χA1

3 + χA1
2 q1/4 + χA1

2 q3/4
)
.

Here we have dropped those gauge singlets by ∼. This computation shows that the Higgsing
indeed gives the required one-loop part of the twisted su(3)(2) theory.

A known infinite series of twisting from Higgsing is from so(2k+ 9) + (2k+ 1)V to the Z2
twist of so(2k+8)+2kV with k = 0, 1, 2, . . . . This type of Higgsing has been discussed from the
viewpoint of brane webs in section 5 of [38]. Since the low energy gauge algebra of so(2k+8)(2)

is so(2k+ 7), we can consider the decomposition so(2k+ 9)→ so(2k+ 7)× so(2). Let us just
regard the so(2) as u(1). It is useful to remark the following representation decompositions

Adj→ (Adj + 1)0 + V±2, V→ V0 + 1±2. (6.4)

To be precise, we find the Higgsing condition is

mu(1) →
τ

4 , mj → mj , mj+k → mj + τ

2 , j = 1, 2, . . . , k, mV2k+1 → ε+ −
τ

2 . (6.5)

Here we have used the orthogonal bases of so(2n + 1) algebras such that the character of
vector represention is χV = 1 +∑n

i=1Q
±1
i . During the decomposition mu(1) = 2 log(Qk+4).

For the one-loop function, we have
(
− vχso(2k+9)

Adj + χ
so(2k+9)
V

2k+1∑
i=1

emi
)∣∣∣

Higgsing

∼ −v
(
χ
so(2k+7)
Adj + χ

so(2k+7)
V (q−1/2 + q1/2)

)
+ vq−1/2χ

so(2k+7)
V + χ

so(2k+7)
V (1 + q1/2)

k∑
i=1

emi ,

= −v
(
χ
so(2k+7)
Adj + χ

so(2k+7)
V q1/2

)
+ χ

so(2k+7)
V (1 + q1/2)

k∑
i=1

emi . (6.6)

This shows that the above Higgsing indeed produces the correct one-loop part of the so(2k +
8)(2) twisted theory. It is also easy to check the elliptic genera obtained from the above
Higgsing is precisely the same with expression from 2d localization.

The Higgsing trees for Z2 twisted so theories with n = 2, 3, 4 have been mostly studied
in [38] using brane webs. We find more examples by our algebraic procedure, and collect the
n = 4 Higgsing tree in figure 2, n = 3 Higgsing tree in figure 3 and n = 2 Higgsing tree in
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so(11) + 3V

so(12) + 4V (so(12) + 4V)/Z2

so(13) + 5V

so(8 +m) +mV

so(10) + 2V (so(10) + 2V)/Z2

E7 + 2F

so(9) + V

E6 + 2F

so(8)

F4 + F

(E6 + 2F)/Z2

so(8)/Z2 so(8)/Z3

Figure 2. Higgsing tree for untwisted/twisted 6d (1, 0) SCFTs on with n = 4.

so(11) + 4V + 1
2S

so(12) + 5V + 1
2S

so(10) + 3V + S (so(10) + 3V + S)/Z2

E7 + 5
2F

so(9) + 2V + S

E6 + 3F

so(8)+V+S+C

F4 + 2F

(E6 + 3F)/Z2

(so(8)+V+S+C)/Z2 (so(8)+V+S+C)/Z3

so(7) + 2S

G2 + F

su(3) su(3)/Z2

Figure 3. Higgsing tree for untwisted/twisted 6d (1, 0) SCFTs on with n = 3.

figure 4. For Z2 twisted so theories with n = 1, it is not easy to find the brane webs. We
use our new method to propose the n = 1 Higgsing tree in figure 5.

Our method can also be used to rule out some potential Higgsing. For example, we
notice that the n = 2, su(N) theory cannot be Higgsed to n = 2, su(N − 1)(2) twisted
theory. The reason is that the Adj and Λ2 of su(N) always have the same KK charge 0
under representation decompositions, thus can not produce the required one-loop function
of the su(N − 1)(2) twisted theory.

The Higgsing of elliptic blowup equations for 6d (1, 0) SCFTs have been discussed in
section 3.3 of [43]. For the twisted cases, the Higgsing is just similar. The Higgsing conditions
can be taken directly in the elliptic genera as well as the (twisted) elliptic blowup equations,

– 58 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
5

so(11) + 5V + S

so(12) + 6V + 1
2S + 1

2C (so(12) + 6V + 1
2S + 1

2C)/Z2

so(13) + 7V + 1
2S

so(12) + 6V + S

so(10) + 4V + 2S (so(10) + 4V + 2S)/Z2

E7 + 3F

so(9) + 3V + 2S

E6 + 4F

F4 + 3F

so(8) + 2V + 2S + 2C

(E6 + 4F)/Z2

(so(8) + 2V + 2S + 2C)/Z2 (so(8) + 2V + 2S + 2C)/Z3

so(7) + V + 4S

G2 + 4F

(su(N) + 2NF)/Z2

su(4) + 8F

su(N) + 2NF

su(3) + 6F

(su(4) + 8F)/Z2

(su(3) + 6F)/Z2

su(2) + 4F (su(2) + 4F)/Z2

M-string

Figure 4. Higgsing tree for untwisted/twisted 6d (1, 0) SCFTs with n = 2.

so(11) + 6V + 3
2S

so(12) + 7V + 3
2S so(12) + 7V + S + 1

2C

so(10) + 5V + 3SE6 + 5F (E6 + 5F)/Z2

E7 + 7
2F

(so(10) + 5V + 3S)/Z2

so(9) + 4V + 3SF4 + 4F

so(8) + 3V + 3S + 3C (so(8) + 3V + 3S + 3C)/Z2 (so(8) + 3V + 3S + 3C)/Z3

so(7) + 2V + 6S

G2 + 7F

su(3) + 12F (su(3) + 12F)/Z2

sp(1) + 10F

E-string E-string/Z2

Figure 5. Higgsing tree for untwisted/twisted 6d (1, 0) SCFTs on with n = 1.
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at least for the unity ones. It is easy to check that the characteristic a and value y of elliptic
blowup equations are consistent with the Higgsing.

In the following, we pick some interesting examples of twisting from Higgsing to show
our algebraic approach and give the precise Higgsing conditions.

6.1 Higgsing from untwisted to twisted theories

6.1.1 E7 → E
(2)
6

A series of interesting examples of twisting from Higgising is the E7 → E
(2)
6 type for

n = 6, 5, 4, 3, 2, 1. Let us start with the simplest case n = 6, i.e., Higgsing E7 + F→ E
(2)
6 . The

flavor algebra of E7+F theory is so(2)12. To write down the precise Higgsing condition, we first
decompose E7 → F4×su(2). It is useful to remark the following representation decompositions

133→ (1,3) + (26,3) + (52,1), 56→ (1,4) + (26,2). (6.7)

We find the Higgsing can be taken by discretizing the su(2) into Z2:

msu(2) →
τ

2 , mso(2) → ε+ −
τ

4 . (6.8)

It is easy to see that upon this condition the elliptic genera index of E7 + F from (2.40)

Ed(ε1, ε2,mE7 ,mso(2)) = −14dε2+ + ε1ε2(3d2 − 2d) + d
(
−3(m,m)E7 + 6m2

so(2)

)
(6.9)

indeed goes to the index of twisted elliptic genera of E(2)
6 theory from (2.41)

Ed(ε1, ε2,mF4) = −8dε2+ + ε1ε2(3d2 − 2d) + d(−3(m,m)F4). (6.10)

To check the one-loop function, we have(
−vχE7

133 + emso(2)χE7
56

) ∣∣∣
Higgsing

∼ −v
(
χF4

52 + χF4
26(q1/2 + 1 + q−1/2)

)
+ vq−1/4

(
χF4

26(q1/4 + q−1/4)
)
,

= −v
(
χF4

52 + χF4
26q

1/2
)
.

(6.11)

Here we have droped those gauge singlets.
For n = 4, we can Higgs E7+2F→ (E6+2F)/Z2. The Higgsing condition is precisely (6.8)

combined with m′so(2) = msp(1) + τ/4. For the one-loop function, we have
(
−vχE7

133 + emso(2)χE7
56 + e

m′
so(2)χE7

56

) ∣∣∣
Higgsing

∼ −v
(
χF4

52 + χF4
26(q1/2 + 1 + q−1/2)

)
+ (vq−1/4 + emsp(1)q1/4)

(
χF4

26(q1/4 + q−1/4)
)
,

= −v
(
χF4

52 + χF4
26q

1/2
)

+ emsp(1)
(
χF4

26(1 + q1/2)
)
.

(6.12)

The same applies to all Higgsing

E7 + 8− n

2 F→ (E6 + (6− n)F)/Z2, n = 6, 4, 2. (6.13)
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For odd n, the Higgsing is a bit unorthodox as the twisted theory has unpaired matter
content. Under the above procedure, the 1

256 with zero mass should produce a 26 with
a quarter KK-charge and zero mass.

As a final remark, some 6d E
(2)
6 theories can also be Higgsed from conformal matter

theories. For example, it was found in [39] that the n = 2, E(2)
6 theory can be obtained from

a special Higgsing of the minimal (E7, E7) conformal matter theory, while the n = 5, E(2)
6

theory can be obtained from a special Higgsing of extended (E7, E7) theory.

6.1.2 E6 → so(8)(3)

One more interesting example of twisting from Higgsing is for the Z3 twisted theories. In [39],
it was found that the n = 4, so(8)(3) theory can be obtained from a special Higgsing of the
minimal (E6, E6) conformal matter theory, while the n = 2, so(8)(3) theory can be obtained
from a special Higgsing of non-minimal (E6, E6)2 conformal matter theory. We notice that in
general, the rank-one so(8)(3) theory can be Higgsed from the rank-one E6 theory with the
same tensor coefficient n. Let us first consider the n = 4 case, i.e. Higgsing E6 + 2F to pure
so(8)(3). To write down the precise Higgsing condition, it is useful to consider decomposition
E6 → su(3) × G2. Remark that

78→ (8,1) + (8,7) + (1,14), 27→ (6̄,1) + (3,7). (6.14)

We then observe that the Higgsing to twisting can be achieved by discretizing the su(3)
into Z3 by the following condition

m
su(3)
1,2,3 → 0,±τ3 , m1,2 → ε+, ε+ −

τ

3 . (6.15)

It is easy to see that upon this condition the elliptic genera index of E6 + 2F from (2.40)

Ed(ε1, ε2,mE6 ,m1,2) = −14dε2+ + ε1ε2(3d2 − 2d) + d
(
−3(m,m)E6 + 6m2

so(2)

)
(6.16)

indeed goes to the index of twisted elliptic genera of so(8)(3) theory from (2.41)

Ed(ε1, ε2,mG2) = −8dε2+ + ε1ε2(3d2 − 2d) + d(−3(m,m)G2). (6.17)

For the one-loop function, we have(
−vχE6

78 + (em1 + em2)χE6
27

) ∣∣∣
Higgsing

∼ −v
(
χG2

14 + χG2
7 (2 + 2q±1/3 + q±2/3)

)
+ (vq−1/3 + v)

(
χG2

7 (q1/3 + 1 + q−1/3)
)
,

= −v
(
χG2

14 + χG2
7 (q1/3 + q2/3)

)
.

(6.18)

This shows that the Higgsing indeed produces the correct one-loop function of pure so(8)(3)

theory.
For n = 3, we can Higgs E6 + 3F→ (so(8) + V + S + C)/Z3. The Higgsing condition is

precisely (6.15) combined with m3 = msp(1) + τ/3. For the one-loop part, we have(
−vχE6

78 + (em1 + em2 + em3)χE6
27

) ∣∣∣
Higgsing

∼ −v
(
χG2

14 + χG2
7 (2 + 2q±1/3 + q±2/3)

)
+ (vq−1/3 + v + emsp(1)q1/3)(q1/3 + 1 + q−1/3)χG2

7 ,

= −v
(
χG2

14 + χG2
7 (q1/3 + q2/3)

)
+ emsp(1)χG2

7 (1 + q1/3 + q2/3).
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The same applies to all Higgsing to twisting

E6 + (6− n)F→ (so(8) + (4− n)(V + S + C))/Z3, n = 4, 3, 2, 1. (6.19)

6.1.3 so(7) → su(4)(2)

Consider the n = 2 Higgsing from so(7) + V + 4S to the Z2 twist of su(4) + 8F. This twisting
from Higgsing has been found in [38] from brane webs. Here we adopt a purely algebraic
approach. Let us consider the decomposition so(7) → sp(2) × so(2). Regarding the so(2)
as u(1). We have the following representation decompositions

21→ 10 + 52 + 5−2 + 100, 7→ 12 + 1−2 + 50, 8→ 41 + 4−1. (6.20)

We find the Higgsing to twisting can be achieved by discretizing the u(1) by the following
condition

mu(1) →
τ

4 , m7 → ε+ −
τ

2 , mi,8 → mi,4 + τ

4 , i = 1, 2, 3, 4. (6.21)

For the one-loop part, we have(
− vχso(7)

21 + em7χ
so(7)
7 + χ

so(7)
8

4∑
i=1

emi,8
)∣∣∣∣

Higgsing

∼ −v
(
χ
sp(2)
10 + χ

sp(2)
5 q±1/2

)
+ vq−1/2χ

sp(2)
5 + (q−1/4 + q1/4)χsp(2)

4

4∑
i=1

q1/4emi,4 ,

= −v
(
χ
sp(2)
10 + χ

sp(2)
5 q1/2

)
+
(
χ
sp(2)
4 + χ

sp(2)
4 q1/2

) 4∑
i=1

emi,4 .

Thus we successfully reach the one-loop function of the Z2 twist of n = 2, su(4) + 8F theory.

6.2 Higgsing from twisted to twisted theories

Let us consider a chain of Higgsing n = 2, su(N)(2) → su(N − 1)(2). From (2.41), we can
easily write down the modular indices of the su(N)(2) theories. For both N = 2r + 1 and
N = 2r cases, we have

Ed(ε1, ε2,msp(r),msp(N)) = −Ndε2+ + d2ε1ε2 + d

(
− (m,m)sp(r) +

N∑
i=1

m2
i,N

)
. (6.22)

Consider the Higgsing from su(2r + 1)(2) → su(2r)(2). The low energy gauge group sp(r)
remains the same upon the Higgsing. However, the number of fundamentals gets reduced.
We propose the Higgsing condition to be

m2r+1 → ε+ + τ

4 , mi → mi, i = 1, 2, . . . , 2r. (6.23)

Obviously, this Higgsing condition gives the correct modular index in (6.22). For the one-loop
function, we have(

− v
(
χ
sp(r)
Adj + χ

sp(r)
F (q1/4 + q3/4) + χ

sp(r)
Λ2 q1/2

)
+ χ

sp(r)
F (1 + q1/2)

2r+1∑
i=1

emi
)∣∣∣

Higgsing

= −v
(
χ
sp(r)
Adj + χ

sp(r)
Λ2 q1/2

)
+ χ

sp(r)
F (1 + q1/2)

2r∑
i=1

emi .

This gives exactly the one-loop function of su(2r)(2) twisted theory.
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Now consider the Higgsing from su(2r)(2) → su(2r − 1)(2). The low energy gauge group
reduces from Cr to Cr−1. Let us consider the natural decomposition Cr → Cr−1 × su(2). It
is useful to remark the following representation decompositions

Adj→ (Adj,1) + (F,2) + (1,3), F→ (F,1) + (1,2), Λ2 → (Λ2,1) + (F,2) + (1,1).

We find the Higgsing can be taken by discretizing the su(2) into Z2:

msu(2) →
τ

4 , m2r → ε+ −
τ

4 , mi → mi, i = 1, 2, . . . , 2r − 1. (6.24)

Obviously, this Higgsing condition also gives the correct modular index in (6.22). For the
one-loop function, we have(
− v

(
χ
sp(r)
Adj + χ

sp(r)
Λ2 q1/2

)
+ χ

sp(r)
F (1 + q1/2)

2r∑
i=1

emi
)∣∣∣∣

Higgsing

∼ −v
(
χ
sp(r−1)
Adj + χ

sp(r−1)
F (q−1/4 + 2q1/4 + q3/4) + χ

sp(r−1)
Λ2 q1/2

)
+ χ

sp(r)
F (1 + q1/2)vq−1/4

+ χ
sp(r−1)
F (1 + q1/2)

2r−1∑
i=1

emi

= −v
(
χ
sp(r−1)
Adj + χ

sp(r−1)
F (q1/4 + q3/4) + χ

sp(r−1)
Λ2 q1/2

)
+ χ

sp(r−1)
F (1 + q1/2)

2r−1∑
i=1

emi .

This gives exactly the one-loop function of su(2r − 1)(2) twisted theory.

7 Summary and outlook

In this paper we studied the 2d (0, 4) SCFTs of BPS strings associated with the twisted
circle compactification of all 6d rank-one (1, 0) SCFTs. The twisted elliptic genera of such 2d
theories exhibit many extraordinary properties, which above all are classified by twisted affine
Lie algebras. We established the functional equations of the twisted elliptic genera, called
twisted elliptic blowup equations, which are the generalization of elliptic blowup equations
developed in recent years. This powerful tool enables us to calculate twisted elliptic genera for
most rank-one theories from twisted compactification. Although we focused on the one-string
case, the recursion formula from twisted elliptic blowup equation allows us to compute the
twisted elliptic genera of arbitrary number of strings. We also investigated the modular
ansatz of the twisted one-string elliptic genera and found there is naturally a Γ1(N) modular
structure, where N = 2, 3, 4 is just the twist coefficients of the twisted affine Lie algebras.
This is directly connected to the underlying N -section Calabi-Yau geometries, which are
some genus-one fibered Calabi-Yau threefolds, whose blowup equations after converting to
gauge theory language are just the twisted elliptic blowup equations. Our blowup equations
can also solve the refined BPS invariants of these Calabi-Yau geometries.

We further studied the generalization of spectral flow symmetry proposed in [28, 31]
to the twisted case. We found the spectral flow between R-R and NS-R elliptic genera of
one BPS string nicely fits into the twisted situation where the KK charges are naturally
shifted by half. In many cases such as the four pure gauge cases, this implies an extra
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symmetry of the twisted elliptic genera. For theories with 2d localization formulas such as all
n = 4, so(2r + 8)(2) theories, such spectral flow symmetry can be derived explicitly.

In [28], Del Zotto and Lockhart conjectured a surprising relation between the one-string
elliptic genera of 6d (1, 0) pure gauge G SCFTs and the Schur indices of 4d N = 2 HG

SCFTs for G = su(3), so(8), F4, E6,7,8. Though still mysterious, this relation has also been
shown to exist to some extent for multi-string cases [41]. It is intriguing to consider whether
the twisted elliptic genera of the four pure gauge cases discussed in the current work, i.e.,
su(3)(2), so(8)(2), so(8)(3), E

(2)
6 are related to the Schur indices of some 4d SCFTs, possibly

with defects. This relies on certain decompositions of the twisted elliptic genera as infinite
copies of certain simpler functions, similar with those in [28]. Besides, by SCFT/VOA
correspondence, the Schur indices of HG SCFTs are equivalent to the vacuum characters of
VOA (G)−h∨G/6−1. Thus we suspect in the twisted case, the VOA (G(n))−h∨G/6−1 will also play
a role. Notably, the VOA (su(3)(2))−3/2 has been recently discussed in [76].

One more fascinating structure of the one-string elliptic genera of 6d (1, 0) SCFTs
with tensor coefficient n and gauge group G (possibly with matter content) is an elegant
decomposition found in [31] involving the characters of affine Lie algebra G(1) at negative
level −n, see the equations (1.6) and (1.7) there and some recent results in [77]. Presumably,
the twisted elliptic genera we investigated in the current paper should have an analogous
decomposition involving the characters of twisted affine Lie algebras at negative levels. We
hope to address this issue in the future.

In this paper, we have limited ourselves to the twisted compactification by folding vector
multiplets in gauge algebra G, which is closely related to twisted affine Lie algebras. As
mentioned earlier, it is well-known that there exists another type of twist, that is folding
tensor multiplets. This can happen when a higher-rank 6d SCFT exhibits some discrete
symmetry in its quiver structure. This type of twisted compactification also gives many
interesting 5d KK theories. It should be interesting to study as well the twisted elliptic genera
in this setting. In particular, for 6d (2, 0) SCFTs, this kind of twisted elliptic genera has
been studied in [12]. Besides, one can even consider the twisted elliptic genera associated to
the twisted circle compactification of 6d little string theories which has drawn some interests
recently [78–80]. We expect many methods developed in the current work can be extended
to the twisted elliptic genera of little string theories.

We can also study 6d SCFTs with defects. There are two types of defects with codimension
two and codimension four, which play important roles in the study of the elliptic quantum
Seiberg-Witten curves [61, 81, 82]. See [83–85] for other approaches to the elliptic quantum
Hamiltonians. The blowup equations for Wilson loops/surfaces and codimension four defect
partition functions have been proposed in [86] for generic 5d/6d theories on R4 × S1 and
R4 × T 2. It is also interesting to extend the (elliptic) blowup equation to theories with
codimension two defects, and study the modular expressions of the (twisted) elliptic genera.
See [87, 88] for the blowup equation for codimension two defects in 4d. The solution of
the defect partition functions would help to bootstrap new elliptic quantum Seiberg-Witten
curves that are corresponding to 6d gauge theories with and without twist.
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A Useful formulas

We collect some definition formulas used in the twisted elliptic blowup equations (3.3).
These are the twisted generalizations of those that appeared in [43]. When computing
the contribution of G̊ vector multiplet with KK-charge zero to twisted elliptic blowup
equations, we have

AV (τ,mG̊, λG̊) =
∏

β∈∆+

θ̆V (β ·mG̊, β · λG̊), (A.1)

where for L ∈ Z,

θ̆V (z, L) :=
∏

m,n≥0
m+n≤|L|−1

η

θ1(z + smε1 + snε2)
∏

m,n≥0
m+n≤|L|−2

η

θ1(z + s(m+ 1)ε1 + s(n+ 1)ε2) ,

(A.2)

with s the sign of L. The contributions of vector multiplets with fractional KK-charges
can be defined analogously. For G̊ representation R with non-zero fractional KK-charge
k = 1/2, 1/3, 2/3, 1/4, 3/4, we have

Afrac
V (τ,mG̊, λG̊) =

∏
β∈R

θ̆
[k]
V (β ·mG̊, β · λG̊), (A.3)

where θ̆[k]
V is defined by adding characteristic k for all θ1(τ, z) functions as θ[k]

1 (τ, z) in (A.2).
The Jacobi theta functions with characteristics a are defined as

θ
[a]
1 (τ, z) =− i

∑
k∈Z

(−1)k+aq(k+1/2+a)2/2Qk+1/2+a
z , (A.4)

θ
[a]
2 (τ, z) =

∑
k∈Z

q(k+1/2+a)2/2Qk+1/2+a
z , (A.5)

θ
[a]
3 (τ, z) =

∑
k∈Z

q(k+a)2/2Qk+a
z , (A.6)

θ
[a]
4 (τ, z) =

∑
k∈Z

(−1)k+aq(k+a)2/2Qk+a
z , (A.7)
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where Qz = e2πiz. It is important to write every component as genuine Jacobi forms, where
the following easy formulas are useful:

PE
((

Qz + 1
Qz

)
q

1
2

1− q

)
= q−

1
24 η(τ)

θ4(τ, z) , (A.8)

PE
((

Qz + 1
Qz

)
q

1
3 + q

2
3

1− q

)
= − q−

1
6 η(τ)2

θ1(τ, τ3 + z)θ1(τ, τ3 − z) = − q−
1
18 η(τ)2

θ
[ 5
6 ]

4 (τ, z)θ[ 5
6 ]

4 (τ,−z)
, (A.9)

PE
((

Qz + 1
Qz

)
q

1
4 + q

3
4

1− q

)
= − q−

1
12 η(τ)2

θ1(τ, τ4 + z)θ1(τ, τ4 − z) = − q−
1
48 η(τ)2

θ
[ 3
4 ]

4 (τ, z)θ[ 3
4 ]

4 (τ,−z)
. (A.10)

The three formulas are used for the twist coefficient N = 2, 3, 4 respectively. For example, for
N = 2 theories, we can simply define θ̆[k]

V by replacing all θ1 function to θ4 in (A.2).
The contribution of hypermultiplets of twisted 6d (1, 0) theory to the twisted elliptic

blowup equations is defined similarly. We have

AR̊H(τ,mG̊,mF̊ , λG̊, λF̊ ) =
∏
ω∈R̊+

θ̆
[k′]
H (wG̊ ·mG̊ + wF̊ ·mF̊ , wG̊ · λG̊ + wF̊ · λF̊ ). (A.11)

Here R̊+ is half of the total weight space of the twisted matter representations. The
k′ is the KK-charge of each component in the twisted matter content. The k′ can be
0, 1/2, 1/3, 2/3, 1/4, 3/4. For unity blowup equations, the half weight space can be taken as

R̊+ = {wG̊ ∈ RG̊, wF̊ ∈ RF̊ |wF̊ · λF̊ = +1/2}, (A.12)

and for vanishing blowup equations as

R̊+ = {wG̊ ∈ RG̊, wF̊ ∈ RF̊ |wG̊ · λG̊ + wF̊ · λF̊ > 0}. (A.13)

The θ̆[k′]
H functions are defined as

θ̆
[k′]
H (z, L) :=

∏
m,n≥0

m+n≤|L|−3/2

θ
[k′]
1 (z + s(m+ 1/2)ε1 + s(n+ 1/2)ε2)

η
, L ∈ 1

2 + Z. (A.14)

B Modular forms and Jacobi forms

The ring of SL(2,Z) holomorphic modular forms of even weights is generated by the Eisenstein
series E4(τ) and E6(τ). The SL(2,Z) weak Jacobi forms of even weights are generated by
E4(τ), E6(τ) and the Eichler-Zagier generators [70]:

φ−2,1(τ, ε) = −θ1(τ, ε)2

η(τ)6 and φ0,1(τ, ε) = 4
[
θ2(τ, ε)2

θ2(τ)2 + θ3(τ, ε)2

θ3(τ)2 + θ4(τ, ε)2

θ4(τ)2

]
. (B.1)

These two weak Jacobi forms have index 1 and weight −2 and 0 respectively. They are
frequently used in the modular bootstrap of SL(2,Z). We will also use φ−1,1/2(τ, ε) :=
φ−2,1(τ, ε)1/2 for some occasions.
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The principal congruence subgroup of level N in SL(2,Z) is defined by

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)
}
. (B.2)

The Hecke congruence subgroup of level N is defined by

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ c ≡ 0 (mod N)
}
. (B.3)

Another useful congruence subgroup of level N is defined by

Γ1(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)
}
. (B.4)

Clearly Γ(N) ⊂ Γ1(N) ⊂ Γ0(N). Therefore, there are less modular forms of Γ0(N) than
those of Γ1(N). Define weight-two modular forms of level N by

E
(N)
2 (τ) = − 1

N − 1∂τ log
(
η(τ)
η(Nτ)

)
. (B.5)

Then the ring M∗(N) of even-weight modular forms for Γ0(N), N ∈ {2, 3, 4} is finitely
generated by

M∗(2) = 〈E(2)
2 (τ), E4(2τ)〉, (B.6)

M∗(3) = 〈E(3)
2 (τ), E4(3τ), E6(3τ)〉, (B.7)

M∗(4) = 〈E(2)
2 (τ), E(4)

2 (τ), E4(4τ), E6(4τ)〉. (B.8)

The subscripts are the weights of the modular forms. Note for N = 3, 4, the generators are
not algebraically independent. For example, for N = 3, it is easy to find

0 = E
(3)
2 (τ)4 − 6E(3)

2 (τ)2E4(3τ)− 3E4(3τ)2 + 8E(3)
2 (τ)E6(3τ). (B.9)

The rings of modular forms for Γ1(N) usually have more generators. In the case of N = 2,
the two rings are isomorphic. Luckily, for almost all numerators of the modular ansatz in the
current work, we only need to use the Γ0(N) generators. Only in the case of n = 1, so(8)(3),
we utilize Γ1(3). The ring of Γ1(3) has four generators: E(3)

2 (τ), E4(3τ) and two odd ones
of weight 3 which are

E
(b)
3 (τ) = η(3τ)9

η(τ)3 = q + 3q2 + 9q3 + 13q4 + 24q5 + 27q6 + . . . ,

E
(a)
3 (τ) = E1(τ)3 − 18E(b)

3 (τ) = 1 + 54q2 + 72q3 + . . . .

(B.10)

where
E1(τ) = ΘA2(τ) =

∑
n1,n2∈Z

qn
2
1−n1n2+n2

2 = 1 + 6q + 6q3 + 6q4 + . . . . (B.11)

One can also find some algebraic relations like E(3)
2 = E2

1 and

0 = E
(3)
2 (τ)3 − 4E(a)

3 (τ)2 + 3E4(3τ)E(3)
2 (τ)− 72E(a)

3 (τ)E(b)
3 (τ),

0 = 2E(a)
3 (τ)2 + E

(3)
2 (τ)3 − 3E4(3τ)E(3)

2 (τ)− 648E(b)
3 (τ)2.

(B.12)

For N = 4, the two generators E(2)
2 (τ), E(4)

2 (τ) are sufficient for our purpose.
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For N > 1, we define the weight-2N cusp forms of Γ1(N) by

∆2N (τ) = 1
qφN−2,1(Nτ, τ)

= qN−1 +O(qN ). (B.13)

For N = 2, 3, 4, ∆2N (τ) are also cusp forms of Γ0(N), they take the form from eta functions
or the modular generators as

∆4(τ) = η(2τ)16

η(τ)8 = 1
192

(
E4 − (E(2)

2 )2
)
, (B.14)

∆6(τ) = η(3τ)18

η(τ)6 = 1
24 · 36

(
7(E(3)

2 )3 − 5E(3)
2 E4 − 2E6

)
, (B.15)

∆8(τ) = η(2τ)8η(4τ)16

η(τ)8 (B.16)

= 1
217 · 32 · 17

(
187(E(2)

2 )4 − 144(E(4)
2 )4 − 33E2

4 − E6(154E(2)
2 − 144E(4)

2 )
)
.

These ∆2N cusp forms are used in the modular ansatz for the twisted elliptic genera.

C More on su(2r + 1)(2) theories

In section 4.3.3 we have discussed the Z2 twist of 6d (1, 0) su(2r + 1) + 2(2r + 1)F theories
where we choose the twisted matter content as (2r+ 1)(F0 +F1/2). Here we choose a different
assignment of the KK-charges of the twisted matter content as (2r + 1)(F1/4 + F3/4). We
notice this choice results in some quite interesting twisted elliptic genera, thus we record our
results here. This choice also makes the tensor parameter has integral B field. With this
matter content, the circle reduction gives 5d N = 1 pure sp(r) gauge theories. Interestingly,
we find there exist two possible solutions for the twisted elliptic blowup equations by choosing
different characteristics a. The two solutions have circle reduction as 5d pure sp(r)0 and
sp(r)π theories respectively. Since the matter content is still invariant under the KK-charge
shift by 1/2, we can expect some spectral flow symmetry. Most interestingly, we find the two
twisted elliptic genera are dual to each other under spectral flow transformation! Besides,
both twisted elliptic genera allow perfect modular ansatz. We have fixed the modular ansatz
for both elliptic genera for r = 1, 2, 3 against the results from blowup equations and find
perfect agreements. We summarize the relevant data of the modular ansatz in table 29. In
the following we show some detailed results for r = 1, 2.

n = 2, su(3)(2). With twisted matter content 3(F1/4 +F3/4), we find there are two possible
low energy gauge groups sp(1)0 or sp(1)π. For each case, we solve the twisted one-string
elliptic genus from twisted unity elliptic blowup equations to q4 order, and collect the Fourier
coefficients in (q, v) expansion in tables 30 and 31. For θ = 0 in table 30, we recognize that the
circle reduction of the twisted R-R sector colored orange gives exactly the one sp(1)0 instanton
Hilbert series, while the circle reduction of the twisted NS-R sector colored red gives exactly
the one sp(1)π instanton Hilbert series. For θ = π in table 31, it is exactly the opposite. It is
interesting to see that the two elliptic genera are dual to each other under spectral flow!
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q\v 1 2 3 4 5
0 0 1 0 0 0 3 0 0 0 5

1/4 0 0 2 0 −12 0 6 0 −24 0
1/2 0 −6 0 18 0 −24 0 54 0 −48
3/4 2 0 −12 0 38 0 −88 0 108 0
1 0 4 0 −44 0 113 0 −176 0 327

5/4 0 0 36 0 −100 0 250 0 −516 0
3/2 0 −18 0 72 0 −282 0 626 0 −1002
7/4 4 0 −36 0 218 0 −580 0 1254 0
2 0 8 0 −132 0 431 0 −1300 0 2669

9/4 0 0 72 0 −264 0 1114 0 −2588 0

Table 30. The coefficients bij for the E1 of 6d su(3)(2) + 3(F1/4 + F3/4) theory with θ = 0.

q\v 1 2 3 4 5
0 0 0 0 2 0 0 0 4 0 0

1/4 1 0 −6 0 4 0 −18 0 8 0
1/2 0 2 0 −12 0 36 0 −36 0 72
3/4 0 0 18 0 −44 0 72 0 −132 0
1 0 −12 0 38 0 −100 0 218 0 −264

5/4 3 0 −24 0 113 0 −282 0 431 0
3/2 0 6 0 −88 0 250 0 −580 0 1114
7/4 0 0 54 0 −176 0 626 0 −1300 0
2 0 −24 0 108 0 −516 0 1254 0 −2588

9/4 5 0 −48 0 327 0 −1002 0 2669 0

Table 31. The coefficients bij for the E1 of 6d su(3)(2) + 3(F1/4 + F3/4) theory with θ = π.

q\v 2 3 4 5 6
0 0 1 0 0 0 10 0 0 0 35

1/4 0 0 4 0 −40 0 24 0 −200 0
1/2 0 −10 0 60 0 −110 0 536 0 −450
3/4 4 0 −40 0 224 0 −920 0 1280 0
1 0 11 0 −280 0 1112 0 −2440 0 7536

5/4 0 0 220 0 −960 0 3528 0 −10928 0
3/2 0 −100 0 596 0 −3932 0 12656 0 −27432
7/4 20 0 −240 0 3328 0 −11648 0 35348 0
2 0 45 0 −2160 0 8602 0 −37680 0 105345

9/4 0 0 1060 0 −5120 0 33104 0 −100168 0

Table 32. The coefficients bij for the E1 of 6d su(5)(2) + 5(F1/4 + F3/4) theory with θ = 0.

n = 2, su(5)(2). With twisted matter content 5(F1/4 +F3/4), we find there are two possible
low energy gauge groups sp(2)0 or sp(2)π. For each case, we solve the twisted one-string
elliptic genus from twisted unity elliptic blowup equations to q4 order, and collect the Fourier
coefficients in (q, v) expansion in tables 32 and 33. For θ = 0 in table 32, we recognize that
the circle reduction of the twisted R-R sector colored orange gives exactly the one sp(2)0
instanton Hilbert series, while the circle reduction of the twisted NS-R sector colored red
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q\v 2 3 4 5 6
0 0 0 0 4 0 0 0 20 0 0

1/4 1 0 −10 0 11 0 −100 0 45 0
1/2 0 4 0 −40 0 220 0 −240 0 1060
3/4 0 0 60 0 −280 0 596 0 −2160 0
1 0 −40 0 224 0 −960 0 3328 0 −5120

5/4 10 0 −110 0 1112 0 −3932 0 8602 0
3/2 0 24 0 −920 0 3528 0 −11648 0 33104
7/4 0 0 536 0 −2440 0 12656 0 −37680 0
2 0 −200 0 1280 0 −10928 0 35348 0 −100168

9/4 35 0 −450 0 7536 0 −27432 0 105345 0

Table 33. The coefficients bij for the E1 of 6d su(5)(2) + 5(F1/4 + F3/4) theory with θ = π.

gives exactly the one sp(2)π instanton Hilbert series. For θ = π in table 33, the situation
is exactly the opposite. Again we observe that the two elliptic genera are dual to each
other under spectral flow.

D Cases with unpaired matter content

We have focused on the twisted compactification of 6d (1, 0) SCFTs with paired matter
content in the main context. The unpaired cases are trickier and have been discussed in [60]
including the Calabi-Yau geometries and 5d low energy limits. The twist in this situation
always involves zero mass of some hypermulitplet, thus there should exist no unity elliptic
blowup equation or recursion formula for the twisted elliptic genera. However, we notice that
sometimes it is possible to pretend the hyper has a free mass for blowup equations and then
turn the mass off after solving the twisted elliptic genera. We find that for some twisted
theories, this procedure allows consistent solutions of twisted elliptic genera. Remarkably,
the solutions have perfect modular ansatz, spectral flow symmetry and required behavior in
the (q, v) expansion. It is intriguing to consider whether the solutions are indeed physical.
We give one example in the following.

Consider the Z2 twist of E6 + F theory with n = 5. It was determined in [60] that the
5d low energy limit should be a pure F4 theory. In other words, the twisted matter context
should be R̊ = 10 + 261/2. Let us pretend the fundamental hyper 261/2 of G̊ = F4 has a
free mass m. This mass can have a shift in blowup equations such that there exist unity
twisted elliptic blowup equations. Then from the recursion formula (3.31), we compute the
twisted one-string elliptic genus to q order 5. Let us denote

E1(q, v) = q−
4
3

∞∑
i,j=0

bijq
iv−2i+j . (D.1)

We obtain the coefficients bij in table 34. We recognize the leading order of R-R elliptic
genus colored orange gives exactly the one-instanton partition function of 5d pure F4 theory,
while the leading order of NS-R elliptic genus colored red gives exactly the one-instanton
partition function of 5d F4 + F theory.
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q\v 5 6 7 8 9 10 11 12 13
0 0 0 0 1 0 52 0 1053 0

1/2 0 0 0 0 26 −52 1079 −2106 18954
1 0 0 0 0 −2 381 −1300 15209 −41910

3/2 0 0 0 0 −3 −46 4235 −18670 164753
2 0 0 0 0 −2 −73 −610 38768 −201290

5/2 1 −2 1 0 −1 8 −1100 −6134 308968
3 4 23 −50 22 2 4 578 −12778 −50036

7/2 −78 154 307 −766 441 −112 −167 10866 −122955
4 754 −2197 2610 3113 −8788 6143 −2582 −4314 131968

9/2 −4433 17214 −33127 31736 25627 −82494 68509 −36674 −65257

Table 34. The coefficient matrix bij for the E1 of 6d E(2)
6 theory with matter 10 + 261/2.

q\v 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 1 4 −78 754 −4433

1/2 0 0 0 0 0 −2 23 154 −2197 17214
1 0 0 0 0 0 1 −50 307 2610 −33127

3/2 1 0 0 0 0 0 22 −766 3113 31736
2 0 26 −2 −3 −2 −1 2 441 −8788 25627

5/2 52 −52 381 −46 −73 8 4 −112 6143 −82494
3 0 1079 −1300 4235 −610 −1100 578 −167 −2582 68509

7/2 1053 −2106 15209 −18670 38768 −6134 −12778 10866 −4314 −36674
4 0 18954 −41910 164753 −201290 308968 −50036 −122955 131968 −65257

Table 35. The coefficient matrix bij for the E1 of 6d E(2)
6 theory with matter 260 + 11/2.

Interestingly, we find that even for twisted matter content R̊ = 260 +11/2, elliptic blowup
equations still allow perfectly reasonable solution as long as we pretend the hyper has free
mass. From the recursion formula (3.31), we also compute the twisted one-string elliptic
genus of this case to q order 5. Let us denote

E1(q, v) = q−
7
12

∞∑
i,j=0

bijq
iv−2i+j . (D.2)

We obtain the coefficients bij in table 35. We recognize the leading order of R-R elliptic
genus colored orange gives the one-instanton partition function of 5d F4 + F theory, while the
leading order of NS-R elliptic genus colored red gives the one-instanton partition function of
5d pure F4 theory. In fact, we find the twisted elliptic genera of the two cases are exactly
spectral dual to each other. We also compute the twisted elliptic genera for both matter
contents with the mass parameter turned on to q order 5 and find the spectral flow relation
still holds perfectly. Moreover, we determine the modular ansatz for both cases and find
complete consistency with the results from the recursion formula (3.28). We have summarized
the relevant data of the two modular ansatz in table 29.
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