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Abstract. Entanglement Hamiltonians provide the most comprehensive char-
acterisation of entanglement in extended quantum systems. A key result in unit-
ary quantum field theories is the Bisognano-Wichmann theorem, which estab-
lishes the locality of the entanglement Hamiltonian. In this work, our focus is
on the non-Hermitian Su-Schrieffer-Heeger (SSH) chain. We study the entangle-
ment Hamiltonian both in a gapped phase and at criticality. In the gapped phase
we find that the lattice entanglement Hamiltonian is compatible with a lattice
Bisognano-Wichmann result, with an entanglement temperature linear in the
lattice index. At the critical point, we identify a new imaginary chemical poten-
tial term absent in unitary models. This operator is responsible for the negative
entanglement entropy observed in the non-Hermitian SSH chain at criticality.
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1. Introduction

In recent years, the study of entanglement has attracted a lot of interest from several
different communities and has emerged as a unifying theme across quantum physics, in
fields ranging from quantum information [1] and high energy physics [2], to statistical
mechanics [3–5] and condensed matter physics [6]. Given a pure state described by
the density matrix ρ= |Ψ⟩⟨Ψ| and considering a bipartition of the system in A and B,
the information about the entanglement between the two subsystems is encoded in the
reduced density matrix, obtained by tracing over the Hilbert space of one of the two
subsystems

ρA =TrB ρ. (1)

If the density matrix ρ is entangled, then the reduced density matrix in equation (1)
corresponds to a mixed state and the von Neumann and Rényi entropies of ρA [7, 8]

SA =−Tr[ρA logρA] , S
(n)
A =

1

1−n
logTrρnA. (2)

are good entanglement monotones. The knowledge of all the Rényi entropies allows
in turn to compute the full entanglement spectrum, i.e, the spectrum of the reduced
density matrix [9–11].

While the entanglement entropies in equation (2) are very useful, they do not entirely
capture the entanglement properties of the system. Over the years, more comprehensive
characterisations, beyond what can be exclusively derived from the knowledge of the
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entanglement spectrum, have been investigated. Arguably, the most complete under-
standing stems from the entanglement (or modular) Hamiltonian (EH), which is the
logarithm of the (normalised) reduced density matrix [12–14]

ρA =
e−KA

ZA
. (3)

This operator contains much more information than the entanglement entropies, since,
unlike the latter, its specific form depends not only on the eigenvalues but also on the
eigenvectors of ρA.

Although calculating the EH is considerably more challenging than determining the
entanglement entropies, a rich theoretical framework has been developed during the
last decades. The most remarkable result is the Bisognano-Wichmann theorem [12–16].
Considering the vacuum state of a unitary relativistic quantum field theory (QFT) on
Rd+1 and taking as subsystem the half-space x1 > 0, the Bisognano-Wichmann theorem
asserts that the EH in the half-space is the generator of Lorentz boosts

KA = 2π

ˆ
x1>0

ddxx1T00(x) , (4)

where T00(x) is the energy density. This result is remarkable for several reasons. First, it
is extremely general, holding for all unitary Lorentz invariant QFTs, independently of
the dimension of space-time and of the mass spectrum. Another significant property is
the fact that the EH in equation (4) has a local structure, given by the integral of local
operator with a linearly increasing local entanglement temperature β(x) = x1. Finally,
the Bisognano-Wichmann theorem provides a mathematical proof of the Unruh effect
[17–19], as discussed in [12–14].

For generic massive QFTs, the Bisognano-Wichmann theorem in equation (4) is the
only known analytic result. For conformal field theories (CFT), instead, the extended
symmetry makes it possible to obtain more general results. In particular, the Hislop-
Longo theorem [12, 20] (see also [21–23]) provides the EH of the ground state of a CFT in
any ball shaped region. Even more general results can be obtained in 1+1-dimensional
unitary CFTs, where the infinite dimensional Virasoro symmetry allows one to map
the Bisognano-Wichmann result in equation (4) in several different geometries [22, 23].
In particular, for the conformal vacuum state, if the subsystem is a single interval
(A= [0,ℓ]) the EH takes the form [20–23]

KA = 2π

ˆ ℓ

0

dxβ(x)T00(x) , with β (x) =
x(ℓ−x)

ℓ
, (5)

a formula that inherits the local structure of the Bisognano-Wichmann result, with a
parabolic local entanglement temperature β(x). We remark that this local structure is
very peculiar and it fails to hold as soon as we consider minor modifications such as
for the lowest excited states [24] and when considering multiple intervals [25, 26]. This
property is not only of theoretical interest, but recently in [27–31] it has been leveraged
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to efficiently construct in synthetic quantum systems the ground state of lattice models
using a variational approach.

A separate line of research, yielding numerous results, concerns the study of the
EH in unitary 1+1-dimensional integrable lattice models [32–47]. In these systems, the
EH of the ground state in the half-space x > 0 is intimately related to Baxter’s corner

transfer matrix (CTM) Â [48–50]. Considering, for example, isotropic square lattices,
the effect of the CTM is to add a full angular segment to a piece of lattice, mapping
a horizontal row to a vertical one and vice versa. Using this property it is possible to
show that the lattice reduced density matrix in the half-line can be expressed as the
product of four CTMs [7, 35, 51]

ρA =
Â4

TrÂ4
, (6)

where Z =TrÂ4 is the partition function. Recalling the definition (3) of the EH,
equation (6) implies that it is proportional to the logarithm of fourth power of the
CTM [35]

KA =− log Â4. (7)

This correspondence between EHs and CTMs has made it possible to obtain the EHs
in several integrable models. It has been observed that in certain integrable models, the
logarithm of the CTM and the EH can be written in terms of the density of the lattice
Hamiltonian h j with a linearly increasing local temperature

KA ∝
∞∑
j=0

j hj , (8)

with a non-trivial proportionality constant. This behaviour has been identified in various
spin systems such as the Ising model [33–35], the XXZ [36, 37, 48], the XYZ chains [38–
40], the anisotropic XX chain [43], and in bosonic models such as the harmonic chain [41–
43]. Comparing equation (8) with the Bisognano-Wichmann theorem in equation (4), it
is evident that the two EHs share the same structure. In fact, the connection between
the two results runs deeper than a superficial similarity. Tetel’man [38] and Itoyama and
Thacker [39, 52–54] independently showed that in these integrable models the logarithm
of the CTM is the generator of a continuous group of lattice Lorentz transformations,
akin to the role played by the generator of Lorentz boosts in the Bisognano-Wichmann
theorem.

Despite the wealth of results for unitary models, nothing is known for non-Hermitian
theories. In particular, since one of the hypothesis of the Bisognano-Wichmann the-
orem (4) is that the Hilbert space carries a unitary representation of the Poincaré group
[12, 15, 16], it is not obvious how to adapt to non-unitary CFTs this theorem and its
corollary (5). Non-Hermitian models [55, 56] have recently attracted a lot of interest for
several reasons, including but not restricted to the study of the PT -symmetric systems
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[57–62], optical phenomena [63, 64] and the study of open systems [65–67] and meas-
urement induced transitions [68–72]. It is then very natural to explore the entanglement
properties within this class of systems.

A pioneering study was carried out in [73], where the authors have studied the entan-
glement entropy and the entanglement spectrum in the non-Hermitian Su-Schrieffer-
Heeger (SSH) model at criticality (reviewed in section 2). Remarkably, it was observed
that the entanglement entropies obey the logarithmic dependence on the subsystem
length typical of critical systems [7, 74], but with a negative central charge c=−2
(see also [75]). Later, in [76], the analysis has been extended to the symmetry resolved
entanglement entropies. In this work we move a step further, conducting an explorat-
ory and thorough numerical investigation of the EH in the non-Hermitian SSH model,
both in the gapped phase and at criticality. In the gapped phase we observe that the
lattice EH has a structure analogous to the one of integrable lattice models reported
in equation (8). At the critical point, we instead find an additional term not accounted
for in the Bisognano-Wichmann corollary in equation (5), which is responsible for the
negativeness of the entanglement entropies.

The present manuscript is organised as follows. First, in section 2 we review the
non-Hermitian SSH model, with particular focus on the non-unitary c=−2 bc-ghost
CFT which describes the critical point. In section 3 we report the main results of this
work, the numerical lattice EH in the non-Hermitian SSH model. We first consider the
topologically trivial gapped phase in section 3.1 and we then study the critical point in
section 3.2. We draw our conclusions in section 4.

2. The non-Hermitian Su–Schrieffer–Heeger model

Before presenting our results, in this section we review the non-Hermitian model that
we study in this paper. We consider the non-Hermitian SSH (nH-SSH) chain with PT -
symmetry on a discrete circle of L= 2N sites, described by the Hamiltonian

H =
∑
j∈ZN

(
−wc†2jc2j+1− v c†2j−1c2j +h.c.

)
+ iu

∑
j∈ZN

(
c†2jc2j − c†2j+1c2j+1

)
, (9)

with u,v,w > 0. A schematic representation of this Hamiltonian is depicted in figure 1.
We assume quasi-periodic boundary conditions, i.e. cj+L = eiδcj, with 0< δ ≪ 1. The
reason for this choice will be explained later. The model is a fermionic chain with nearest
neighbours hoppings, which have alternating strength on even–odd links. The staggered
imaginary chemical potential breaks the hermiticity of the Hamiltonian. Notice that our
conventions match those in [75] after setting v 1=0 and v2 = v and identifying their up
(down) sites with our even (odd) ones.

The Hamiltonian becomes block diagonal after a Fourier transform of the lattice
operators, performed separately on the even and odd sites

c̃k,e =
1√
N

∑
j∈ZN

e−ikjc2j , c̃k,o =
1√
N

∑
j∈ZN

e−ikjc2j+1 , (10)
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Figure 1. Schematic representation of the nH-SSH model, described by
equation (9). The nearest neighbours hoppings have alternating strengths v and w.
The imaginary chemical potential is set to iu on the even sites and −iu on the odd
sites.

Figure 2. Phase diagram of the nH-SSH model, explained in the main text. The
orange circle and the green square mark the points in parameter space for which
we study the EH, reported in sections 3.1 and 3.2 respectively.

with

k ∈ 2π

N

(
ZN +

δ

2π

)
, (11)

where the shift in momentum space is due to the δ-twisted boundary conditions. The
Hamiltonian then becomes

H =
∑
k

(
c̃†k,e c̃†k,o

)(
iu −w− ve−ik

−w− veik −iu

)(
c̃k,e
c̃k,o

)
, (12)

and the eigenvalues of the matrix in equation (12) are the single-particle energies.
Varying the relative strengths of the parameters u,v,w, the model admits three

different gapped phases [73]. If v−w ∈ (−u,u), the PT symmetry is broken so that the
energy spectrum is complex and the eigenvalues appear in complex conjugate pairs. In
the two phases v−w > u or v−w <−u, the PT symmetry is unbroken and the energy
spectrum is real. The latter two phases are distinguished by topological properties, as
discussed in [77]. The resulting phase diagram is given in figure 2.

Two critical points occur for v−w =±u. In these cases, the single-particle spec-
trum is ϵ±,k =±

√
2vw(1+ cosk) and the gap closes at k = π, leading locally to a linear

spectrum with speed of sound

cS =
√
vw. (13)

Moreover, at k = π the kernel of the Hamiltonian (12) is not diagonalisable, as it is
made of a 2× 2 Jordan block. This is called an exceptional point in momentum space.
The exceptional point occurs because, as k → π, the two eigenspaces become more and
more collinear, and they perfectly coincide at k = π.
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Finally, since the Hamiltonian is a linear combination of terms of the form c†i cj, it
is invariant under the U (1) generated by

Q=
∑
j∈Z2N

c†jcj . (14)

In this paper, we will investigate the ground-state of the system in the PT -unbroken
trivial phase and the critical point between the PT -unbroken trivial phase and the PT -
broken phase, marked in figure 2 with a orange circle and a green square, respectively.
In [73], the latter point has been identified with the fermionic bc-ghost CFT with central
charge c=−2, which we review in the following section.

2.1. bc-ghost CFT

The bc-ghost CFTs are a family of theories governed by the following action [78–82]

S =

ˆ
d2z
(
b ∂̄c+ b̄∂c̄

)
, (15)

where b and c are anticommuting holomorphic fields and b̄ and c̄ are the corresponding
anti-holomorphic fields. The different members of this family are distinguished by the
value of the central charge and by the conformal dimension of the fields c and b. In
particular, the CFT which describes the nH-SSH critical point is the one with central
charge c=−2 [73], in which the fields have conformal weight hb = 1,hc = 0. All these
theories have a conserved current J =:cb : so that the field c has charge 1 and b has
charge −1, independently of the specific realisation and central charge.

The CFT with c=−2 is one of the simplest instances of a logarithmic CFT [80],
incorporating reducible but not indecomposable representations of the Virasoro algebra.
Specifically, the fields c and the identity field share the same conformal weights, leading
to the formation of a 2-dimensional Jordan block in the Virasoro modes L0 and L̄0. This
phenomenon occurs exclusively in the untwisted sector of the theory, which corresponds
to periodic boundary conditions on a cylinder. In the scenario where δ-twisted boundary
conditions are adopted, the fields acquire a phase factor ei2πδ as they move around the
non-contractible loop of the cylinder. Consequently, the identity field is no longer part
of the spectrum, and the system’s ground state becomes associated with the twist field
σδ [80]. The conformal dimension of σδ is given by hσδ = δ(δ− 1)/2, which is negative
for δ ̸=0. This implies that for δ ̸=0, there is no Jordan block for L0 and L̄0, effectively
eliminating the logarithmic singularities. It is noteworthy that the presence of the Jordan
block in periodic boundary conditions and its absence in the twisted sectors draws a
further analogy with the nH-SSH model.

2.2. Left-right ground-state

Before concluding this brief review, we would like to emphasise the states that are the
focus of this paper. First, in both of the cases we consider (see figure 2), the Hamiltonian
has a real spectrum, thus there is a well defined notion of a ground state as the eigen-
state with minimum energy eigenvalue. We denote by |R⟩ the right ground state of the
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Hamiltonian, defined by H|R⟩= Egs|R⟩, while we denote with ⟨L| the left ground-state,
defined by ⟨L|H = Egs⟨L|. Since the Hamiltonian is non-Hermitian, the left ground state
is not the ‘bra’ of the right ground state, in other words, |L⟩ ̸= |R⟩.

We consider the density matrix ρ= |R⟩⟨L|, which we call the left-right ground state
[73, 75, 76, 83–87]. Indeed, this can be seen as the zero-temperature limit of the thermal
state e−βH/Z and therefore is the most natural object to be studied in field theory.
The density matrix ρ is positive semi-definite but not Hermitian and therefore the
reduced density matrix ρA is not positive semi-definite. This means that the entangle-
ment entropy between a subsystem and its complement can be negative. Indeed, the
entanglement entropy scales as c/3log ℓ, with c=−2 [73].

The symmetry-resolved entanglement, relative to the U (1) symmetry (14), at the
critical point has been studied in [76]. Of relevance for this paper, it has been under-
stood that the eigenvalues of the reduced density matrix are either positive or negative
depending on the sign of the charge sector, namely signλq = (−1)q−⟨QA⟩, where λq stands
for an eigenvalue of ρA in the charge sector q of QA (i.e. the charge (14) restricted to
A). We will show in section 3.2 that we can identify the source of this behaviour in the
form of the EH.

2.3. Correlation function

A key object in the analysis of the EH of the left-right ground state is the two-point
correlation matrix C with entries [73, 76]

C2j+a,2l+b = ⟨L|c†2j+ac2l+b|R⟩= 1

N

∑
k

e−ik(j−l)G (k)ab , a,b ∈ {0,1} , (16)

with

G (k) =
1

2

 1− cos(2ξk) −
√

η*k
ηk
sin(2ξk)

−
√

ηk
η*k
sin(2ξk) 1+ cos(2ξk)

 , (17)

where 2ξk = tan−1(|ηk|/(iu)), ηk =−w− ve−ik. Due to the dimerization of the hopping
amplitudes v, w, the correlation matrix C presents a block structure. In the thermody-
namic limit L→∞, C is a block Toeplitz matrix generated by the symbol G.

3. Lattice entanglement Hamiltonians of the non-Hermitian SSH model

This section contains the main results of this paper, the numerical lattice EH in the non-
Hermitian SSH model and an analytic conjecture for its behaviour. In order to compute
numerically the lattice EH we use the known relation between fermionic Gaussian states
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and the correlation matrix. Notice first that since the Hamiltonian (9) is quadratic, the
ground state is Gaussian [73, 76] and the reduced density matrix can be written as

ρA =
1

ZA
exp

−
∑
i,j∈A

c†ik
A
i,jcj

 , (18)

where kAi,j is the kernel of the EH, i.e. the single-particle EH. For Gaussian states as

in equation (18), the kernel kA can be obtained from the knowledge of the reduced
correlation matrix, i.e. the matrix (16) with indexes restricted to A, (CA)i,j = (C)i,j∈A.

Using Peschel’s formula [88–90] one has

kA = log
[
C−1

A − I
]T

, (19)

where T denotes the matrix transpose. While equation (19) was initially derived for
Hermitian models, as discussed in [73, 76], it remains valid in the non-Hermitian one
under consideration. In [73, 76] the restricted correlation matrix of the non-Hermitian
SSH model is used for the computation of the entanglement spectrum and the entropies.
In the following we will compute the kernel of the EH using the correlation matrix (16).

We remark that the numerical computation of the formula (19) suffers from numer-
ical instabilities and must be conducted at high precision. The reason for this instability
is that many eigenvalues of the correlation matrix CA are arbitrarily close to 0 and 1,
and as a consequence the matrix inside of the logarithm in equation (19) has eigenvalues
which are very close to 0 or very large. In our study we used the python library mpmath

[91] and the software Mathematica, keeping up to 500 digits.
In rest of this section, we present the results for the EH of an interval A= [0,ℓ]

in the left-right ground state. We first study the topologically trivial gapped phase
w− v > u with periodic boundary conditions and we compare with the known results
in unitary integrable lattice models [43]. We then consider the critical point w− v = u
with a small twisting of the boundary conditions δ = 10−7, which as we explained in
section 2 is described by the c=−2 bc-ghost CFT. We compare the results with the
continuum prediction from unitary CFTs and we use our observations to formulate a
conjecture for the EH of an interval in the ground state of the bc-ghost theory.

3.1. Entanglement Hamiltonian in the trivial gapped phase

Before studying the non-Hermitian model, it is instructive to first recall the known
results in unitary gapped lattice models, in order to compare them with ours. As we
reported in equation (8) in section 1, in certain integrable models the EH in the half-
space follows the structure recognised by Tetel’man, Itoyama and Thacker, i.e. the EH
is proportional to the Hamiltonian density with a local temperature equal to the lattice
site, analogous to a lattice Bisognano-Wichmann behaviour [14, 38, 39, 49, 50, 52]. If we
instead consider a finite interval, in the general case there are very few known analytic
results. If the gap is sufficiently large, however, in [43] it was observed via numerical
computations that near the two endpoints of the interval the EH follows the half-space
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result of equation (8), only deviating from this behaviour in the middle of the interval,
which give rise to a characteristic triangular entanglement temperature.

This triangular behaviour has been observed in several Hermitian models, such as
the Hermitian SSH model (or dimerised hopping chain) and the harmonic chain [43].
Its physical interpretation is that, for short-range correlated systems, the EH density
is affected only by the closest boundary, as the contribution from the furthest one is
exponentially suppressed. Then the EH density behaves as the one of a semi-infinite sub-
system (see equation (8)) and the RDM effectively factorises [92]. This argument is inde-
pendent of unitarity and holds also for the non-hermitian model under consideration.
It is therefore natural to wonder if this factorisation holds also for the non-Hermitian
model under study.

Another important consequence of equation (8) is that in unitary lattice integrable
modes, the half-space lattice EH does not couple fermions at distances larger than
those in the corresponding lattice Hamiltonian. Correspondingly, within an interval,
it was noted that near the endpoints, the EH does not exhibit higher couplings, only
manifesting them in the crossover region at the center [43].

Let us now consider the non-Hermitian SSH model. Assuming that the structure of
the EH in equation (8) holds also for this theory, from the Hamiltonian in equation (9)
we can conjecture that the half-space lattice EH takes the form

KA ∝
+∞∑
j=0

[
(2j )w

(
c†2jc2j+1+ c†2j+1c2j

)
+(2j +1)v

(
c†2j−1c2j + c†2jc2j−1

)
+ i

(
2j +

1

2

)
uc†2jc2j − i

(
2j +

3

2

)
uc†2j+1c2j+1

]
, (20)

with some unknown proportionality constant. Since we cannot access numerically the
full EH of the half-space, in order to test the conjecture in equation (20) we study the
EH of an interval [0,ℓ] in a finite system of length L≫ ℓ. In analogy with the unitary
case, we expect that for a sufficiently large gap, near the endpoints the EH will follow
the half-space result in equation (20), with a crossover in the middle of the interval,
giving rise to the typical triangular shape.

In figure 3 we report the results of the numerical calculation of the lattice EH in the
gapped phase, for an interval of length ℓ= 100 in a system of total length L=2000 with
periodic boundary conditions. We fix the parameters v = u= 1 and we study different
gaps by varying the value of w, in particular we take w = 5,10 and 20. The plots report
the ratio between the kernel of the EH, kA, obtained from equation (19) and the one
of the Hamiltonian h in equation (9) as a function of the lattice site. On the left, in
figure 3(b) we report the real part of the nearest-neighbour coupling kAj,j+1, divided by
(−w) for j even (circles) and by (−v) for j odd (crosses). Dividing by these coupling
constants, we isolate the entanglement temperature, which is expected to follow the
triangular shape (see equation (20) and discussion below). Indeed we see that, apart
from a small crossover region in the center of the interval, the nearest-neighbour coupling
follows the expected behaviour for all values of w that we considered. This behaviour
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Figure 3. Entanglement temperature in the gapped phase w− v > u. In both plots
we fix v = u= 1 and we consider different values of w = 5,10 and 20 and we take a
subsystem of length ℓ= 100 in a full system of total length L=2000. In the left plot
we report, as a function of j/ℓ, the real part of the ratio of the nearest-neighbour EH
coupling kAj,j+1 with the coupling (hj,j+1), i.e. −w for even j (circles) and −v for odd
j (crosses). The purpose of this ratio is to isolate the entanglement temperature.
Apart from a small region in the center of the interval, the ratio follows the expected
triangular shape (see discussion below equation (20)). In the right plot we report
the imaginary part of the ratio between the staggered imaginary chemical potential
kAj,j with +u (−u) for even (odd) site j. Again, up to a small finite size oscillation,
the ratio follows the predicted triangular shape.

is completely analogous to what observed in [43] for the dimerised hopping chain. The
novel result is reported in the right plot, in figure 3(b), where we show the staggered
imaginary chemical potential kAj,j, divided by u for j even and by (−u) for j odd. Again,
the role of this division is to isolate the entanglement temperature, which should agree
with the one obtained from the nearest-neighbour coupling. Indeed we observe that,
apart from a small oscillation due to finite size effects, the imaginary chemical potential
follows the same triangular shape as the nearest-neighbour coupling, as expected from
our conjecture in equation (20).

As a further check, in figure 4 we report the matrix plots of the real (left plot) and of
the imaginary parts (right plot) of the single-particle EH kA. According to our conjecture
in equation (20), the half-space EH does not couple fermions at distances higher than
one, similarly to what happens for unitary integrable models in equation (8). In the left
plot in figure 4(a), we see that near the endpoints the only non-zero elements of the
real part of the EH kernel are the nearest-neighbour couplings kAj,j+1 and kAj,j−1. The
higher couplings are non-zero only in a crossover region in the middle of the interval, as
expected. This behaviour is again completely analogous to what was observed in [43] for
the dimerised hopping chain. The new results are given by the imaginary part, shown
in the right plot in figure 4(b). We see that also the imaginary part follows the expected
behaviour, with only the main diagonal kA being significantly different from zero near
the endpoints. This confirms the validity of our local conjecture in equation (20) for
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Figure 4. Matrix plot of the EH kernel kA in the gapped phase w− v > u
with w =20, v =2 and u =2, for an interval of length ℓ= 80 in a system of
length L=2000. Left (Right): Absolute value of the real (imaginary) part of kA.
Consistently with the Tetel’man-Thacker behaviour (20), near the two endpoints
the only non-vanishing elements of the EH are the imaginary chemical potential
(main diagonal in the right plot) and the coupling between nearest-neighbours (first
sub-diagonals in the left plots). The latter couplings (left) display the alternating
value between the odd and even sites (see equation (20)). In the middle of the
interval, the EH deviates from equation (20) and also couplings at higher distances
are non-zero.

the half space EH in the non-Hermitian SSH model. We remark that this is the first
observation of a Bisognano-Wichmann like behaviour in a non-Hermitian model.

Before concluding this section, we wish to comment on the proportionality constant
in equation (20), i.e. the slope of the triangles in figure 3. This constant is actually
related to the velocity of the excitations in the gapped model. In [43], the analogous
proportionality constant in the dimerised hopping chain was computed analytically
using the knowledge of the exact CTM. It would be interesting to obtain analytically
the CTM in the non-Hermitian SSH model, which would refine our conjecture (20) for
the half-space EH. This computation would not only allow us to predict the slope of the
linearly increasing entanglement temperature, but it could also provide a quantitative
understanding of the finite size oscillations of the chemical potential in figure 3(b) which
are not captured by equation (20). This is however a rather involved calculation which
goes beyond the scope of this work.

3.2. Entanglement Hamiltonian at the critical point

In this section we study the EH at the critical point w− v = u (green square in figure 2).
As discussed in section 2, at the critical point and for periodic boundary conditions, the
lattice Hamiltonian (9) presents a Jordan block. Then, to treat the system numerically
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we need to introduce a small twisting of the boundary conditions δ [73, 76]. In all
the following discussion we fix δ = 10−7. In full analogy to the study we performed
for the gapped phase in section 3.1, we compute numerically the lattice EH kernel
kA using equation (19), performing all calculations at high precision. However, at the
critical point there is an additional subtlety. In [73] it was shown that at criticality all
eigenvalues νj of the correlation matrix are real and lie outside of the interval [0,1].
As a consequence, the matrix appearing inside the logarithm in equation (19) has all
negative eigenvalues (see also [76]). This is susceptible to numerical instabilities, giving
an imaginary part of the logarithm which (unphysically) oscillates wildly between +iπ
and −iπ. In this work we always fix it to be equal to +iπ.

Before presenting our numerical results for the critical non-Hermitian SSH model,
we would like to reiterate what occurs in the case of unitary gapless models. According
to equation (5), in the vacuum of the CFT describing the continuum limit of a critical
model, the EH of an interval is proportional to the energy density with a parabolic
entanglement temperature β(x) [20–23]. One could be tempted to conclude that the
EH of an interval in a critical model should be proportional to the critical Hamiltonian
density with the parabolic temperature in equation (5). This behaviour would in partic-
ular imply that all terms of the lattice EH that couple fermions at distances higher than
those in the Hamiltonian must be negligible. However, as recognised first in [93], this is
not the case, and the EH contains couplings at arbitrary distances (see also [44–46]).
Moreover, when expanding the lattice fermions in the lattice spacing, all these higher
couplings contribute to the continuum energy density T 00 [94, 95]. In [94–96] it was
shown that in order to recover the CFT entanglement temperature β(x) in equation (5),
it is necessary to perform a careful continuum limit which takes into account all of these
higher contributions. This limiting procedure has allowed to reconstruct the CFT EH in
many systems at criticality, both at finite temperature and in the ground state [94–96]
and also in the presence of boundaries [95–97], in inhomogeneous and out-of-equilibrium
systems [98, 99] and in higher dimensions [100]. In [97, 101] it has also been extended
to the recently introduced negativity Hamiltonian [102], i.e. the logarithm of the partial
transposed density matrix. On the other hand, this limit is highly dependent on the
lattice model and, to date, it is only understood in the case of free massless lattice
fermions and the harmonic chain.

Considering now the non-Hermitian SSH model, in figures 5 and 6, we report the
numerical lattice EH, obtained from equation (19) with a choice of parameters w =1.5,
v =1 and u= w− v = 0.5 and different interval lengths ℓ= 60,100 and 120 in a total
system of length L=2000. In figure 5 we plot the real part of the nearest-neighbour
coupling kAj,j+1, divided by (−w) for j even and by (−v) for j odd, analogously to
what we have done in the massive case. We further make the quantity dimensionless by
multiplying it by 2cS/ℓ, where cS is the speed of sound (13) in the critical lattice model.
Indeed, notice that if we reintroduce the dimensions, kA is dimensionless, while w and v
have the dimensions of an inverse time. We observe a perfect collapse for all the lengths
considered. The black dashed line in figure 5 is the parabolic entanglement temperature
2πβ(x) for unitary CFTs reported in equation (5), divided by the length of the interval
ℓ. While near the endpoints we find a good agreement, we see a deviation in the middle
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Figure 5. Real part of the ratio of the EH nearest-neighbour coupling kAj,j+1 with
the coupling w (v) for j even (odd), rescaled by 2cS/ℓ, where ℓ is the length of
the interval and cS is the speed of sound (13). The circles represent even sites and
the crosses are odd sites. For all lengths considered we observe a perfect collapse.
The black dashed parabola is the field theory prediction for the local temperature
2πβ(x) in equation (5), divided by ℓ. Near the endpoints of the interval we find a
very good agreement between the lattice result and the field theory. The deviation in
the middle of the interval is due to the contribution of higher couplings, analogously
to what happens in Hermitian lattice models.

of the interval. Similarly to what happens for unitary lattice models, the origin of
this discrepancy is the presence of higher couplings which in the continuum limit give
contributions to the continuum energy density. We expect that a proper continuum limit
should exactly reproduce the parabola in equation (5) (as for Hermitian free fermions
[94]), but this is beyond our goals.

In figure 6 we instead report the staggered imaginary chemical potential (the altern-
ating sign with respect to figure 3(b) is due to not having divided by either u or (−u)).
This quantity displays the most significant difference with respect to the Hermitian case.
For all the lengths ℓ of the interval, at the left endpoint j/ℓ= 0 the chemical potential
takes the value 2π i (grey dotted line), while at the right one j /ℓ= 1 it vanishes. Based
on this observation, we conjecture that besides the approximate parabolic result, at the
critical point appears an additional term of the form

ℓ∑
j=0

µA
j,j c

†
jcj = 2πi

ℓ∑
j=0

(
1−

(
j+ 1

2

)
ℓ

)
c†jcj, (21)

i.e. a chemical potential term which interpolates linearly between 2πi and 0. We remark
that, differently from the parabolic entanglement temperature β(x) in equation (5),
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Figure 6. Imaginary chemical potential kAj,j at criticality w− v = u for different
lengths of the interval ℓ= 60,100 and 120. The black dash-dotted curves are repor-
ted in equation (22) and are obtained as the sum of the naive field theory prediction
for the entanglement temperature in equation (5) and of the conjectured form of the
novel term in equation (21). Close to the endpoints we observe a perfect agreement
which becomes slightly worse in the middle of the interval.

this novel term does not scale with the system size. In order to check equation (21), in
figure 6 we compare the two curves (dash-dotted black lines)

π (±u)

cS

(
(ℓ−x)x

ℓ

)
+2π

(
1− x

ℓ

)
, (22)

with the imaginary part of the EH chemical potential term for ℓ= 60,100 and 120.
Near the endpoints we find a perfect match for all the lengths considered, while the
agreement gets slightly worse in the middle of the interval, but still acceptable.

To facilitate the comparison, we extract the part of the EH chemical potential
that scales with the length of the interval by subtracting the conjectured form µA

j,j

in equation (21) from the numerical result for kAj,j. We then divide by u for j even and
by (−u) for j odd to isolate the entanglement temperature and we rescale with 2cS/ℓ
to make the quantity dimensionless. The result of this procedure is reported in figure 7.
For all the values of the length considered we observe a perfect collapse, which suggests
that the novel non-scaling term µA

j,j takes indeed the conjectured form (21). The black
dashed curve is again the parabolic CFT prediction for the entanglement temperature in
equation (5) divided by ℓ. Once again, we have a perfect agreement near the endpoints
of the interval, while we observe a deviation in the middle. This deviation is always due
to the presence of contributions from higher couplings.

Summing up our findings, recalling from section 2 that the critical point is described
by the c=−2 bc-ghost CFT, we propose that the continuum limit of the difference
(kA−µA) must reproduce the continuum CFT EH in equation (5). Meanwhile, the
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Figure 7. Imaginary part of (kAj,j −µA
j,j)/hj,j (i.e. the difference between the EH

chemical potential and µA
j,j in equation (21), all in units of hj,j), rescaled with 2cS/ℓ,

where cS is the speed of sound in equation (13). We consider intervals of length
ℓ= 60,100 and 120 in a system of total length L=2000, with parameters w =1.5,
v =1 and u= w− v = 0.5. For all ℓ, we observe a perfect collapse, suggesting that
we have successfully isolated the scaling part. The black dashed curve is the CFT
prediction for the entanglement temperature 2πβ in equation (5) divided by ℓ.
Analogously to the nearest-neighbour coupling in figure 5, the agreement is perfect
at the endpoints and is slightly worse in the middle of the interval, due to the
contribution of higher order couplings.

continuum limit associated with the new chemical potential term µA in equation (21)
will yield

ℓ∑
j=0

µA
j,j c

†
jcj ∼ 2π i

ˆ ℓ

0

dx
(
1− x

ℓ

)
J(x)+ irrelevant operators, (23)

where J(x) =:cb : (x) is the ghost number operator. Putting all together, we conjecture
that the EH of the c=−2 bc-ghost CFT would take the form

KA =

ˆ ℓ

0

dx
x(ℓ−x)

ℓ
T00(x)+ 2π i

ˆ ℓ

0

dx
(
1− x

ℓ

)
J(x) , (24)

which is one of the main results of this paper. Comparing the proposed EH with the
result for unitary CFTs in equation (5), the main difference is the presence of the
imaginary term proportional to the ghost number J (x ). Nevertheless, since this term
is again the integral of a local operator, our conjecture (24) retains a local structure.
Notice that, since the conformal dimension of the ghost number operator J (x ) is ∆J = 1,
the local weight (1−x/ℓ) is dimensionless and it does not scale with the system size,
as we observed on the lattice.
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Figure 8. Spectra of the single-particle EH kA (blue) and of the difference (kA−µA)
(orange), where µA is given by equation (21). The data are for an interval of length
ℓ= 120, in a system of size L=2000, and couplings w =1.5, v =1 and u= w− v =
0.5. All eigenvalues of the EH have imaginary part equal to π (gray dotted line).
Subtracting µA has the net effect of making almost all the eigenvalues real.

In order to understand the role played by the term µA in equation (21), in figure 8
we compare the single-particle entanglement spectrum, i.e. the eigenvalues of kA, with
the eigenvalues of the matrix (kA−µA). All the eigenvalues εj of the single-particle EH
(blue circles) possess an imaginary part equal to π, a feature previously identified in
[76]. As already mentioned, this imaginary part is due to the fact that the eigenvalues
νj of the correlation matrix all belong to (−∞,0)∪ (1,+∞), which, using equation (19),
leads to [76]

εj = log

∣∣∣∣1− νj
νj

∣∣∣∣+ iπ . (25)

As discussed in section 2.2, the impact of the imaginary part in equation (25) on the
many-body spectrum of the reduced density matrix is to impart an alternating sign
to the eigenvalues of ρA depending on the charge sector, i.e. the number of ghosts,
according to [76]

ρA = (−1)QA−⟨QA⟩ |ρA| , (26)

which in turn is responsible for the negative sign of the entanglement entropy. On the
other hand, in figure 8 we see that the eigenvalues of (kA−µA) (orange circles) are
almost all real. We can therefore argue that the novel operator µA in equation (21) (and
its continuum limit (23) in the bc-ghost CFT) is the one responsible for the alternating
sign of the entanglement spectrum. Without the operator µA, the reduced density matrix
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ρA would be positive defined and, as a consequence, the entanglement entropy would
be positive too.

4. Conclusions

In this work we have have studied the ground state EH in the non-Hermitian SSH model,
considering the left-right density matrix ρ= |R⟩⟨L|. We studied both the topologically
trivial gapped phase and the critical point. In the gapped phase, the EH assumes the
typical triangular shape (see equation (20) and discussion) that was already observed
in [43] for unitary integrable gapped models. Near the endpoints of the interval, the
entanglement temperature grows linearly with the lattice site, according to the half-
space prediction in equation (20). Remarkably, we observe that the same behaviour is
true for the imaginary part of the EH. This is the first example of a lattice Bisognano-
Wichmann like behaviour in a non-Hermitian model.

At the critical point, described by the bc-ghost CFT, we find a departure from the
parabolic EH in equation (5) predicted by the Bisognano-Wichmann theorem for unitary
CFTs. In addition to a term proportional to the energy density with a parabolic entan-
glement temperature, we observe a term proportional to the number operator c†ici with
an imaginary chemical potential interpolating between 2π i and 0, cf equation (21). This
operator has a profound effect on the entanglement spectrum. As depicted in figure 8,
removing the operator in equation (21) ensures that almost all the eigenvalues are real.
As discussed in [76], the imaginary part of the single-particle entanglement spectrum
in equation (25) is responsible for the negativeness of the entanglement entropy. If the
operator in equation (21) were not present, the entanglement entropy would be positive.
Based on these results, we formulate a conjecture given by equation (24) for the EH
in the bc-ghost CFT. Such a conjecture consists of a term analogous to the Bisognano-
Wichmann EH in equation (5) and of an imaginary chemical potential term proportional
to the ghost number J (x ).

This paper paves the way for future investigations into the EHs of non-Hermitian
models. Three open problems emerges very naturally. Firstly, in the gapped phase, it
would be interesting to derive analytically the CTM. As discussed in section 3.1, this
would determine the slope of the triangular entanglement temperature in figure 3 and
could validate the lattice Bisognano-Wichmann behaviour. Secondly, it is desirable to
analytically derive the EH at the critical point, akin to the work done for free massless
fermions in [25]. Thirdly, the robustness of our findings remains uncertain, such as
whether the conjectured form of the EH withstands the presence of relevant interactions.
Other unexplored research directions include understanding the EH for non-Hermitian
systems that lack a real Hamiltonian spectrum.
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