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Paralinearization and extended lifespan
for solutions of the a-SQG sharp front equation

Massimiliano Berti* Scipio Cuccagna Francisco Gancedo* Stefano Scrobogna®

October 25, 2023

Abstract

In this paper we paralinearize the contour dynamics equation for sharp-fronts of a-SQG, for any a €
(0,1)u(1,2), close to a circular vortex. This turns out to be a quasi-linear Hamiltonian PDE. After deriving
the asymptotic expansion of the linear frequencies of oscillations at the vortex disk and verifying the
absence of three wave interactions, we prove that, in the most singular cases «a € (1,2), any initial vortex
patch which is e-close to the disk exists for a time interval of size at least ~ £~2. This quadratic lifespan
result relies on a paradifferential Birkhoff normal form reduction and exploits cancellations arising from
the Hamiltonian nature of the equation. This is the first normal form long time existence result of sharp
fronts.

Keywords: a-SQG equations, vortex patches, paradifferential calculus, Birkhoff normal form.
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1 Introduction and main results
In this paper we consider the generalized surface quasi-geostrophic a-SQG equations

0:0(t,0) + u(t,{)-vO(t,) =0, (t,{) eRxR?, (1.1)
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with velocity field
=V D29, IDl:=(-A):, a€0,2). 1.2)

These class of active scalar equations have been introduced in [28}[68] and, for @ — 0, formally reduce to
the 2D-Euler equation in vorticity formulation (in this case 8 is the vorticity of the fluid). The case a = 1is
the surface quasi-geostrophic (SQG) equation in [23] which models the evolution of the temperature 8 for
atmospheric and oceanic flows.

For the 2D Euler equation global-in-time well-posedness results are well known for either regular initial
data, see e.g. [22)65], as well as for L! n L™ initial vorticities, thanks to the celebrated Yudovich Theorem [77].
This resultis based on the fact that the vorticity is transported by the particles of fluid along the velocity field,
which turns out to be log-Lipschitz, and thus it defines a global flow on the plane. On the other hand, for
a > 0, an analogous result does not hold because the velocity field © in is more singular and does not
define a flow. Nevertheless local in time smooth solutions exist thanks to a nonlinear commutator structure
of the vector field for a = 1, in [24], and for a € (1,2), in [21]. For a = 1, the works [26}27] rule out the possible
formation of certain kind of singularities but the question of whether a finite-time singularity may develop
from a smooth initial datum remains open. In this context we mention the construction in [45] of solutions
that must either exhibit infinite in time growth of derivatives or blow up in finite time.

Existence of global weak L” solutions has been obtained by energy methods for a = 1, if p > 4/3, in
[66,70], and for a € (1,2) if p =2, in [21]. For « € (0, 1] global weak solutions exist also in L'NnI?as proved in
[63]. We also mention that non-unique weak solutions of SQG have been constructed by convex integration
techniques in [14}/58].

A particular type of weak solutions are the vortex patches -also called sharp fronts- which are given by
the characteristic function of an evolving domain

1 if¢eD(D),

D(1) cR%. 1.3
0 if¢e D). (0 (1.3)

H(t,()::{

The vortex patch problem (I.3) can be described by the evolution of the interface D(¢) only. The simplest
example of a finite energy vortex patch is the circular “Rankine" vortex which is the circular steady solution
with D(t) = D(0) = {|{| < 1} at any time ¢. On the other hand, since for a € (0,2) there is no analogue of
Yudovich theorem, also to establish the local existence theory for sharp fronts nearby is a difficult task. In
the last few years special global in time sharp-front solutions of a-SQG close to the Rankine vortex have
been constructed: the uniformly rotating V-states in [16}17}/40,43], as well as time quasi-periodic solutions
in [42] for a € (0, %), and in [41] for « € (1,2). We quote further literature after the statement of Theorem[L1]

In this work we prove the first long-time existence result of sharp fronts of a-SQG, in the more singular
cases «a € (1,2), for any initial interface dD(0) sufficiently smooth and close to a circular Rankine vortex, see
Theorem[L1l This is achieved thanks to the paralinearization result of the a-SQG sharp front equation in
Theorem[A.lfor any « € (0,1) U (1,2), that we consider of independent interest in itself.

Let us present precisely our main results. The evolution of the boundary of the vortex patch is governed
by the Contour Dynamics Equation for a parametrization X : T — R2, x — X(t,x), with T := R/27Z, of the
boundary 0D(#) of the vortex patch. The Contour Dynamics Equation for the a-SQG patch —also called
sharp-fronts equation- is

X' (t,x)- X' (¢,
atX(r,x):C_“ (#, x) ( y)a dy, a€(0,2), (1.4)
2m J X (X - X (1,y)|
where ' denotes the derivative with respect to x,
r(g)
Cq'i=——F—F 1.5
a zl_ar (1 _ %) ( )

and I'() is the Euler-Gamma function. The local solvability of Equation (L.4) in Sobolev class has been
proved in [36] for « € (0, 1], if the initial datum belongs to H®, s = 3 and in [37,38] for less regular initial data
(see [71] for C*° data). The uniqueness has been established in [25]. For a € (1,2) the local existence and
uniqueness theory has been proved in [21},38] for initial data in H®, s = 4, see also [1}[62]. In the very recent
work [59] it is proved that the a-patch problem is ill posed in W7 if p # 2.



Very little is known concerning long time existence results. Actually highly unstable dynamical be-
haviour could emerge. In this context we mention the remarkable work [61] where two smooth patches
of opposite sign develop a finite time particle collision. We also quote the numerical study [73] which pro-
vides some evidence of the development of filaments, pointing to a possible formation of singularities via a
self-similar filament cascade.

In this paper we consider sharp fronts of a@-SQG that are a radial perturbation of the unitary circle, i.e.

Xx)=0+hx)yx), ¥(x) := (cos(x),sin(x)). (1.6)

Since only the normal component of the velocity field deforms the patch, one derives from (I.4) a scalar
evolution equation for k(x). Multiplying (L4) by the normal vector n(x) = h'(x)y'(x) — (1 + h(x)) ¥(x) to the
boundary of the patch at X (x), we deduce that k(¢, x) solves the equation

o cos(x—y)|[Q+hx) K (y)-(1+h K (x)
—(1+h(x))6th(x):26—”f (x-y)[ : W) -(+r(y) R @] 4y
[(1+h(x))2+(1+h(y)) —2(1+h(x))(1+h(y))cos(x—y)]2
_ o (1.7)
L Ca sin(x—y)[A+h ) (1+h(y))+H @K (y)] dy

2m [(1 +h())2+(1+h(y) =20 +hx) (1+h(y))cos (x—y)] B

In view of [21}38] if hg € H?, for any s = 4, there exists a unique solution & € C ([0, T]; H®) of (I.7) defined up

toatime T > m The following result extends the local-existence result for longer times.

Theorem 1.1 (Quadratic life-span). Let a € (1,2). There exists sy > 0 such that for any s = sy, there are ey > 0,
Cs,a > 0, Cs o > 0 such that, for any hy in H® (T;R) satisfying | holl s < € < €, the equation (I7) with initial
condition h(0) = hy has a unique classical solution

heC([-Tsa Tsal; H (T;R)  with  Tgq > csae ™2, (1.8)
satisfying |h ()| gs < Cyq €, forany t € [-Ts o, Ts,a].

Theorem[LIlis proved by normal form arguments for quasi-linear Hamiltonian PDEs. The first impor-
tant step is the paralinearization of (L7) once it has been written in Hamiltonian form, see Theorem [4.1]
The paralinearization formula @.I) of the a-SQG equations holds for any a € (0,1) U (1,2). It is a major
result of this paper, that we expect to be used also in other contexts.

In order to prove Theorem[I.Tlwe reduce the paralinearized equation (4.1I), for any a € (1,2), to Birkhoff
normal form up to cubic smoothing terms. This requires to prove the absence of three wave interactions,
which is verified in Lemma [3.5] by showing the convexity of the linear normal frequencies of the a-SQG
equation at the circular vortex patch.

Theorem[I.Tlis the first Birkhoff normal form results for sharp fronts equations.

In recent years several advances have been obtained concerning long time existence of solutions for
quasi-linear equations in fluids dynamics on T, namely with periodic boundary conditions, as the water
waves equations. Quadratic life span of small amplitude solutions have been obtained in [2}/6,51}52}55H57}
76], extended to longer times in [5H7,[10,[12}(34}[75,[78], by either introducing quasi-linear modified energies
or using Birkhoff normal form techniques. We also quote the long time existence result [20] for solutions of
SQG close to the infinite energy radial solution |{].

Before explaining in detail the main ideas of proof we present further results in literature about a-SQG.

Further literature. Special infinite energy global-in-time sharp front solutions have been constructed in [29,
5354] if the initial patch is a small perturbation of the half-space, by exploiting dispersive techniques. In [18]
19] special global smooth solutions in the cases a = 0,1 are obtained using bifurcation theory. Concerning
the possible formation of singularities, we mention that [61/62] constructed special initial sharp fronts in the
half-space which develop a splash singularity in finite time if a € (0, %), later extended in [38] for a € (0, 3).
We also mention that [39,60] have proved that, if @ € (0,1], the sharp fronts equation in the whole space

does not generate finite-time singularities of splash type.

V-states. The existence of uniformly rotating V-states close to the disk was first numerically investigated
in [33] and analytically proved in [15] for the Euler equations, recently extended to global branches in [44].



For a-SQG equations, as already mentioned, local bifurcation results of sharp fronts from the disk have
been obtained in [16-1940/43]. Smooth V-states bifurcating from different steady configurations have been
constructed for a € [0,2) in [30H32}[46H50}69]. We refer to the introductions in [41}[42] for more references.

Quasi-periodic solutions. As already mentioned global in time quasi-periodic solutions of the @-SQG vortex
patch equation close to the circle have been recently constructed in [42] for a € (O, %) and in [41] for
a € (1,2). The result [42] holds for “most" values of a € (0, %) (used a parameter to impose non-resonance
conditions) whereas [41] holds for any « € (1,2), using the initial conditions as parameters, via a Birkhoff
normal form analysis. The 2D-Euler equation is more degenerate and in this case quasi-periodic solutions
have been constructed in [9] close to the family of Kirkhoff ellipses, not only close to the disk (we refer to [9]
for a wider introduction to the field and literature about quasi-periodic solutions). These results build on
on KAM techniques [3}/4}/8,13}35] developed for the water waves equations.

Ideas of the proof

The average-preserving unknown and the Hamiltonian formulation. The equation (I.7) for the unknown
h(x) is not convenient because its evolution does not preserve the average and it is nof Hamiltonian. This
problem is overcome by reformulating (I.7) in terms of the variable

f)=h@)+in* ). (1.9)

Indeed, symmetrizing in the x, y variables, we get fr r.h.s. (L7) dy = 0 and then % fr (h (t,x) + %hz (t, x)) dx =
0. Thus the average of f (x) in (I.9) is preserved along the patch evolution. Note that, inverting (I.9) for small
| fllzeo and ||kl z, we have h (x) = y/1+2f (x) — 1 and the Sobolev norms of f (x) and & (x) are equivalent

I£lls~nls,  Vs>3. (1.10)

Remark 1.2. There is a deep connection between the conservation of the average of f(x) and the incom-
pressibility of the flow generated by the a-SQG patch. Actually the Lebesgue measure Vol (¢) of the finite
region of R? enclosed by the patch is, passing to polar coordinates,

. pl+h(t,x) b4 hz(t,x) b4
Vol(t):f f pdpdx:n+f (h(t,x)+ 5 )dx:n+ ft,x)dx
—nJo -

v/

and therefore the conservation of the average fr f (x) dx amounts to the conservation of Vol ().

The variable (I.9) has been used in [42] where it is also proved that the evolution equation for f has a
Hamiltonian structure, see also [41]. The following result is [42} Proposition 2.1]:

Proposition 1.3 (Hamiltonian formulation of (I7)). Let a € (0,2). If h is a solution of Eq. (L)) then the
variable f defined in (1.9) solves the Hamiltonian equation

0:f =0xVEq4(f) (1.11)

where E, (f) is the pseudo-energy of the patch whose L -gradient VE, (f) is
. ][ 1+2f (1) + VT+2F () 9y [\/1+2f (y)sin (x - y) |
2(1-3) [1 +2f () +1+2f(y) —2\/1+2f(x)\/1+2f(y)cos(x—y)]

Note that the evolution equation (LII) is translation-invariant because E, ot = E, for any ¢ € R, where
tc f(x) := f(x+¢). Moreover, in view of the presence of the Poisson tensor 0, in (LII) it is evident that the
space average of f is a prime integral of (LTI). In the sequel we assume the space average of f to be zero.

VEq(f) = dy. (1.12)

(NI

Paralinearization of (IL.TI) for a € (0,1) U (1,2). Section[]is dedicated to write the Hamiltonian equation
(LI1) in paradifferential form and to provide the detailed structure of the principal and subprincipal sym-
bols in the expansion of the paradifferential operator, obtaining

0:f +0,00p5Y [(1+v(f;x)) La UED + V (f3x) + P(f; x,€)] f = smoothing terms (1.13)

where (see Theorem[4.Ilfor a detailed statement)



e (1+v(f;x))La (I€) + V (f; x) is a real symbol of order max{a — 1,0} and v (f; x), V (f; x) are real func-
tions vanishing for f = 0;

* the symbol P (f;x,¢) has order —1 and vanishes for f = 0.

We note that in (II3) the operator Op?" [] is the paradifferential quantization according to Weyl (see
Definition and thus OpBW [1+v (f;x) Ly (1€) + V (f; x)] is self-adjoint. As a consequence the linear
Hamiltonian operator 8, o OpBW [1+ v (f;x) Ly (1€]) + V(f;x)] is skew-self-adjoint at positive orders. This
is the reason why the unbounded quasi-linear vector field 8, o OpB"W [1+v (f;x) Ly (1€]) + V (f5x)] f ad-
mits energy estimates in Sobolev spaces H® via commutator estimates (actually existence and unicity of
the solutions of (I.T3) would follow as in [11]). We remark the absence in (I.I3) of operators like 0, o
opBW [symbol of order (a —2)|. The cancellations of such terms are verified in Appendix[Alby a direct cal-
culus and it is ultimately a consequence of the Hamiltonian structure of the equation (L.IT).
We also note that the equation (ILI3) can be written, in homogeneity degrees, as

0:f+wo(D)f =0O(f?)  where  wq(D):=0y0Ly(ID) (1.14)

is the unperturbed dispersion relation.
Let us explain how we deduce the paralinearization formula (LI3) in Section 4l The nonlinear term
VEq (f) in (LTI can be written as a convolution operator

VE“(f)(x):f”K(f;x,z)Mdz

-7 |z|*

with a nonlinear real valued convolution kernel K (f; x, z). By Taylor expanding the kernel z— K (f; x, z) at
z =0 (provided f is sufficiently regular) and expanding in paraproducts the arguments of the above integral,
we obtain an expansion of the form

J ) T j
VEq(f)(x) = Y OpW [Iq(f,...,f(l*”;x)]f (f ) - f(x-2) Iz% dz (1.15a)
j=0 -
+f op®W [R(f,...,f(j”);x,z)] (f (x) - f (x—2))dz + smoothing terms,, (1.15b)

where R (f,..., fI*V; x, z) = 0(]z|~%) as z — 0 being the Taylor remainder at order J (here £ (x) denotes the
j-derivative of f(x)). The terms in the finite sum (I.I5a) are particularly simple paradifferential operators.
Indeed, provided a < 2,

p j
f (fx)-f(x—2) £ dz= Vo-jf +mg—+1) (D) f

-7 |z|*

where V,,_; is areal constant and mq—j11) (€) is a Fourier multiplier of order a—(j + 1), as follows by standard
asymptotics of singular integral operators, see [74]. Thus, by symbolic calculus,

T J . .
opBW [Kj]f_ (fx)-f(x—2) idz:OpBW [Va_j (f,...,f(“l);x) +Kj(f,...,f0+1);x) Mg —(j+1) (6)]f+l.o.t.

|z|*

where V,_; are real functions. The unbounded terms 8, 0 Op2W [K; (f,..., f9*Y;x) ma—(+1) ©)] f, i = 0,1,
would induces a loss of derivatives in the H® energy estimates if the imaginary part Immq_ ;1) (¢) # 0.
Therefore a detailed analysis of these symbols is essential. The highest order Fourier multiplier m,_;(¢)
turns out to be real. Concerning the subprincipal symbol K; (f, f'; x) mq—2(&), it turns out that mq—»(¢) has
a non-zero imaginary part but a subtle nonlinear cancellation reveals that the corresponding coefficient
Ky (f, f’;x) is identically zero, as verified in Appendix[Al Such a structure, which ultimately stems by the
Hamiltonian nature of (LTI), could be proven up to an arbitrary negative order.

Concerning the first term in (LI5D), we use that R (f,..., fU*V; x, z) is o(|z]"~*) as z — 0 so that, mod-
ulo regularizing operators, it can be expressed as a paradifferential operator of order a — (J + 1), which is a
bounded vector field taking J = 2, see Proposition[2.36]



Reduction of (I.13) to Birkhoff normal form up to cubic terms. In Section[5lwe first conjugate the paradif-
ferential equation (LI3) into an equation with constant coefficient symbols, modulo smoothing operators,

019 +0500p®" [(1+¢o (f)) Lo (€]) + Hy (f;€)] g = smoothing terms (1.16)

where ¢ (f) is the average of a real nonlinear function of v(f;x) and He (f;¢) is a x-independent symbol
with imaginary part ImH,, (f;¢) of order —1, see Proposition[5.21 Thus is still Hamiltonian up to order
zero and thus it satisfies H*-energy estimates. The unknowns g (¢) and f (¢) have equivalent Sobolev norms
lg @ ~sa || f (@], We remark that in the constant ¢ (f) and the symbol Hy (f;¢) vanish quadrat-
ically at f = 0 and thus the only term which can disturb the quadratic life span of the solution g4 (¢) is the
smoothing operator R; (f) in the decomposition

smoothing terms = Ry (f) g+ R=2(f)g-

Then in Lemma/5.7lwe implement a Birkhoff normal form step to cancel R; (f) g. An algebraic ingredient is
to verify the absence of three wave interactions, namely that, for any #, j, k € Z\ {0} satisfying k = j + n,

|wa (k) —wq () —wa (M)| 2 >0,

where w,, (j) are the normal a-SQG frequencies in (LT4). Such a property follows by proving the convexity
of the the map w (j) for j €N, see Lemma[3.5]
The final outcome is an energy estimate for any small enough solution of (LII) of the form

et [l

4
s A7, t>0,

If O3 Ssa llf O

which implies Theorem [Tl

Structure of the manuscript. Section [2lcontains the paradifferential calculus used along the paper. In Sec-
tion2Z.Ilwe report the main results in [5|10]. Then in SectionZZlwe introduce a z-dependent paradifferential
calculus used for the paralinearization of (LI3) in Section[d Section[3lis dedicated to the linearization of
(LII) at the stationary state f = 0. Lemmas[3.I]and B.6lextend to any «a € (0,2) the asymptotic expansions
of the normal frequencies w (j) proved in [42] for « € (0,1). In Section @ we provide the paralinearization
(II3) of the Hamiltonian equation (I.II) for any a € (0,1)u(1,2). In Sectionblwe conjugate the paradifferen-
tial equation (L.I3) into an equation with constant coefficients, modulo smoothing operators. In Section [
we perform the Birkhoff normal form step and prove Theorem[L.1]

Notation. We denote with C a positive constant which does not depend on any parameter of the problem.
We write A S,,..c,y Bf A< Cl(cy,...,ecpr)Band A~ ¢, BIfA<Z,,,..c,y, Band B <., ¢, A. We denote with
N =1,2,... the set of natural numbers and Ny := NuU {0}. For any x = 0 we denote [x] :=min{neNjy | x < n}.
We denote T := R\ (27Z) the one-dimensional torus with norm | x|y := inf jez |x +27 j|. We denote D = —id,
and [A, B] the commutator [A, B] = AB— BA =:Ad4B. Given a linear real self-adjoint operator A any op-
erator of the form 0, o A will be referred as linear Hamiltonian. We denote fedx = % S edx.

2 Functional setting
Along the paper we deal with real parameters

s25>K>p>»>N=0 2.1

where N € N. The values of s, sy, K and p may vary from line to line while still being true the relation (Z.I).
For the proof of Theorem[I.Jlwe shall take N = 1.

We expand a 27z-periodic function u(x) in L%(T;C) in Fourier series as

. 1 .
ux)=) a(j)e’,  a(j)=Feej ()= uy= —f u(x)e " dx. (2.2)
jez 2m Jr



A function u(x) is real if and only if u; = u_;, for any j € Z. For any s € R we define the Sobolev space
H?® := HS(T;C) with norm

1

ﬂ(j)lz) . () =max(L,|j].

Nl = Nl e = (Z (j)*

jez

We define IIpu := iy the average of u and
My :=1d—To. 2.3)

We define Hg the subspace of zero average functions of H*, for which we also denote ||ulls = | ull gs = | ull Hy-
Clearly H{ (T;C) = L3(T;C) with scalar product, for any u, v € L3(T;C),

(u, )2 :Au(x)mdx. 2.4)

Given an interval I < R symmetric with respect to ¢ = 0 and s € R, we define the space

K
CX (15 Hy (1;0) 1= () CF (1 Hy~* (1;0) X=R, C,
k=0

resp. CK(I; H%(T; X)), endowed with the norm

(2.5)

K
suplu(t,)lxs  where u(t,)lisi= Y. [oFu(r,)
k=0

el Hs-ak

We denote BX (I;¢¢), resp. B, (I;¢€9), the ball of radius € > 0 in CX (I, H§ (T;©)), resp. in CX (I, Hj (T;R)). We
also we define Bk, y7s(1.0)) (0;€0) the ball of center zero and radius e in CK (I, H(T;C)).

Remark 2.1. The parameter s in denotes the spatial Sobolev regularity of the solution u(¢,-) and K its
regularity in the time variable. The a-SQG vector field loses a-derivatives, and therefore, differentiating the
solution u(t) for k-times in the time variable, there is a loss of ak-spatial derivatives. The parameter p in
(Z.1I) denotes the order where we decide to stop our regularization of the system.

We set some further notation. For n € N we denote by I1,, the orthogonal projector from L?(T;C) to the
linear subspace spanned by {ei"* e7inxy (1, ) (x) := a(n)e™ + a(-n)e ™. If U = (uy,..., up) is a p-tuple
of functions and 7 = (n1,...,np) € N, we set Il := (I, u1,..., My, up) and t = (teus, ..., teup), where te
is the translation operator

ter u(x) — ulx+¢). (2.6)

For ) = (j1,...,jp) € ZP we denote |Jp| := max(|jil,...,1jp) and uz, := uj,...u;,. Note that the Fourier
coefficients of tcu are (tcu) i= elisy j-
Avector field X (u) is translation invariantif X ot =tc o X forany ¢ € R.

Given a linear operator R(u)[-] acting on L% (T; C) we associate the linear operator defined by the relation

R(w)v:=R)vforanyve L%(TT;C) An operator R(u) is real if R(u) = R(u) for any u real.

2.1 Paradifferential calculus

We introduce paradifferential operators (Definition[2.10) following [5], with minor modifications due to the
fact that we deal with a scalar equation and not a system, and the fact that we consider operators acting on
H§ and H® and not on homogenous spaces HS. In this way we will mainly rely on results in [5}10].

Classes of symbols. Roughly speaking the class fZ’ contains symbols of order m and homogeneity p in u,
whereas the class T} ., » contains non-homogeneous symbols of order m that vanish at degree at least p
in u and that are (K — K’)-times differentiable in . We can think the parameter K’ like the number of time

derivatives of u that are contained in the symbols. We denote HSO(TT; C) :=Nser Hg (T;C).

Definition 2.2 (Symbols). Let me R, p, N € Ny, K, K’ € Ny with K’ < K, and ¢ > 0.



i) p-homogeneous symbols. We denote by f,’f the space of symmetric p-linear maps from (HJ° (T;0)P
to the space of C*° functions from T xR to C, (x,¢) — a(lf; x, {), satisfying the following: there exist u =0
and, for any y, B € Ny, there is a constant C > 0 such that

p
0L0F a Ms1t; x,8)| < CIAIMY @™ P [T | Ty . 2.7)
j=1

forany U = (uy,...,up) € (H(‘)’O ('I]';G:))p and 7 = (n1,...,np) € NP. Moreover we assume that, if for some
(ng,...,np) € NoxNP, I1,,, a (I15U; -) # 0, then there exists a choice of signs nj e{x1l} such '[ha'[Z;’:1 njnj=
ny. In addition we require the translation invariance property

a(th;x,§)=all;x+6,$), VGeER, (2.8)

where t. is the translation operator in (2.6).

For p = 0 we denote by fg” the space of constant coefficients symbols ¢ — a(¢) which satisfy 2.7) with
y = 0 and the right hand side replaced by C(¢)”*# and we call them Fourier multipliers.

m
KK,
ue Bgl (I;€0) for some s large enough, with complex values, such that for any 0 < k < K—K’, any s = s,
there are C > 0, 0 < €¢(s) < €p and for any u € Bg(l;eo(s)) N C,’f*K’ (I, Hg (T;C[Z)) and any v, 8 € Ny, with
Y < s—so one has the estimate

ii) Non-homogeneous symbols. We denote by I » [eo] the space of functions a(u; t, x, £), defined for

- -1
0k0L0l atu; 1,x,6)| < CO™ Py, Nullgers. 2.9)

If p = 0 the right hand side has to be replaced by C(£)™#. We say that a non-homogeneous symbol
a(u; x,&) is real if it is real valued for any u € B.{EZR(I; €0)-

iii) Symbols. We denote by ZF;? K'p [0, N] the space of symbols

N
a(u; t,x,8) =) aqg(U,...,u; x,&) + asn(u; t, x, )
a=p

where a4, g = p,...,N are homogeneous symbols in TZ? and a- is a non-homogeneous symbol in

m
1“K,K’,N+1‘

We say that a symbol a(u; t, x,¢) is real if it is real valued for any u € BgrR(I; €0)-

Notation 2.3. If a(l{;-) is a p-homogenous symbol we also denote a(u) := a(u,..., u;+) the corresponding
polynomial and we identify the p-homogeneous monomial a(u;-) with the p-linear symmetric form a@/;-).

Actually also the non-homogeneous component of the symbols that we will encounter in Section 4l de-
pends on time and space only through u, but since this information is not needed it is not included in
Definition[2.2](as in [5]).

Remark 2.4. If a(l{;-) is a homogeneous symbol in f,’g" then a(y, ..., u;-) belongs to r[’?,o,p [eo], for any € > 0.

Remark 2.5. If a is a symbol in ZFII?,K',p[eO’N] then d,a € ZF;’&KW [eo, N] and 0sa € ZF]’?’EVP[EO,N]. If in

addition b is a symbol in ZFI’?"K,'p, leg, N] then ab e ZI‘I’?}’Z”‘;H?, leg, N1.

Remark 2.6 ( Fourier representation of symbols). The translation invariance property (2.8) means that the
dependence with respect to the variable x of a symbol a(lf; x,¢) enters only through the functions ¢/ (x),
implying that a symbol a,(u; x,¢) in I m eR, has the form

agu; x,&) = Y (aq)fq (f)ujl---ujqei(j“"'*jq)x (2.10)
J,e@\ o



where (a4)7(¢) € C are Fourier multipliers of order m satisfying: there exists p > 0, and for any § € Ny, there
is Cp > 0 such that

10 (a);, @] = Col7al* @™F, Wige@\iop?. 2.11)
A symbol a4 (u; x,¢) as in is real if
(aq);, ) = (aq)_5,©) (2.12)

By (2.10) a symbol a; in 1:;” can be written as a;(u;x,¢) = X jez\i03(a1) j($) ujeijx, and therefore, if a; is
independent of x, it is actually a; = 0.

We also define classes of functions in analogy with our classes of symbols.

Definition 2.7 (Functions). Let p, N € Ny, K, K’ € Ny with K’ < K, €y > 0. We denote by .ﬁ, resp. Fk,k',pl€ol,

2 Fk k' ,pleo, N1, the subspace of o, resp. FK K'p [eol, resp. ZFK Kp (€0, N], made of those symbols which
are independent of {. We write ‘7-:5, resp. ]—"K Kp leo], Z]:K K, [eg, N1, to denote functions in 75,,, resp.

Fr .k pleol, Z]:K,K/,p (€0, N1, which are real valued for any u € BS0 r(;€0).
The above class of symbols is closed under composition by a change of variables, see [5, Lemma 3.23].

Lemma 2.8. Let K' < KeN, meR, pe Ny, NeN with p <N, ey >0 small enough. Consider a sym-

bol a in ZFI’?K, p[eo,N] and functions b, c in Z]-"K K1 ,[€0, N1. Then a(v; t,x+b(v;t,x),EA +c(v;t, x))) isin
ZFK K p[eo, NI. In particular, ifa is a function in Z]:K k',pl€o, N1, then a(v; t, x+b(v; t, X)) isin Z]:K,K/,p[eo,N].

The following result is [5, Lemma 3.21].

Lemma 2.9 (Inverse diffeomorphism). Let 0 < K’ < K be in N and B(f;t,x) be a real function B(f;t,-) in

Zf}'ﬁ'K,’l[eo,N]. If 5o is large enough, and f € ng (I;€0) then the map ®¢ : x — x + B(f;t,X) is, for eg small
enough, a diffeomorphism of T, and its inverse diffeomorphism may be written as d>]?1 cy— y+B(f;t,y) for

some f in Z]:K x11€0, N1.

Paradifferential quantization. Given p € N we consider admissible cut-off functions v, € C*°([RP x R;R)
and y € C*°(R x R;R), even with respect to each of their arguments, satisfying, for 0 <4 « 1,

suppy, < {(, ) eRP xR || <60},  wpE, &) =1for |E']<6(8)/2, (2.13)
suppy < {(&,&) eRxR; €' <8¢}, w(E' & =1 for | <6(E)/2. (2.14)

For p = 0 we set ¥ = 1. We assume moreover that
0Ll wp(E 0| = Crp@ P, vy eNo, BNy, |0Lofw ()| < Crp@ TP Wy, feNp.  (215)

If a(x,¢) is a smooth symbol we define its Weyl quantization as the operator acting on a 2z-periodic function
u(x) (written as in (2.2)) as

OPW[“W:Z(Z (’C J»k+J) (J))e””‘ 2.16)

kez \ jez

where a(k,¢) is the k-Fourier coefficient of the 2z —periodic function x — a(x, ¢).

Definition 2.10 (Bony-Weyl quantization). If a is a symbol in T, respectively in I'” K.K,p [eo], we set

ay, U;x,8):= ) vy (i1,8) allzl; x,8),

neNe
. .__}_ / Al / iE'x !
ay (u; 1, x,8) := anRu/(f Oa(u;t,é, &) e *de,

where 4 stands for the Fourier transform with respect to the x variable, and we define the Bony-Weyl quan-
tization of a as

op®" 1aW; )1 =0p" [ay, U], OpPWla(u;1,)1=0p" [ay (u;1,)]. 2.17)



If ais a symbol in XT'} ., » [0, N1, we define its Bony-Weyl quantization

N
op®Wiaw; t,91="Y 0p®V[a,(u,...,u;)] +0p®W [as (s 1,1 .
a=p

Remark 2.11. ¢ The operator Op5" [a] maps functions with zero average in functions with zero average,
and HolOpBW la] = OpBW [a] HOL.

o If a is a homogeneous symbol, the two definitions of quantization in (2.I7) differ by a smoothing
operator according to Definition 217 below.

* Definition [2.10]is independent of the cut-off functions ¥, ¥, up to smoothing operators (Definition
217).

e The action of Op®" [a] on the spaces H§ only depends on the values of the symbol a(u;t, x,¢) for
Il = 1. Therefore, we may identify two symbols a(u; t, x,¢) and b(u; ¢, x,¢) if they agree for |{| = 1/2. In
particular, whenever we encounter a symbol that is not smooth at ¢ = 0, such as, for example, a = g(x)[&|™
for m € R\ {0}, or sign(¢), we will consider its smoothed out version y(¢)a, where y € C*°(R;R) is an even and
positive cut-off function satisfying

x@=0if|Elsg, x@=1ifE]>1, 0:x€) >0 Vie(§,1). (2.18)
Remark 2.12. Given a paradifferential operator A = Op5" [a(x, &)] it results
A=0p™ [atx,=8], AT=0p"[a(x,-), A*=0p"™ [a(xd)|, (2.19)

where AT is the transposed operator with respect to the real scalar product (u, v), = [; u(x) v(x) dx, and A*
denotes the adjoint operator with respect to the complex scalar product of L% in (24). Itresults A* = A",
o A paradifferential operator A = OpBW [a(x,&)] is real (i.e. A= A) if

a(x, &) = alx,—¢). (2.20)
Itis symmetric (i.e. A= A7) if a(x,&) = a(x,—¢). A operator 6xOpBW [a(x,¢)] is Hamiltonian if and only if
a(x,§)eR and a(x,§)=a(x,—&) 1is even in €. (2.21)
We now provide the action of a paradifferential operator on Sobolev spaces, cf. [5, Prop. 3.8].

Lemma 2.13 (Action of a paradifferential operator). Let m € R.

i) If p €N, there is sg > 0 such that for any symbol a inT™, there is a constant C > 0, depending only on s
and on 27) withy = B =0, such that, for any (uy, ..., up), forp=1,

”OpBW [a(ul,...,up;-)] up+1| Hé“m = C””l ”HSO ” up| Héo up+1| Hg .

If p = 0 the above bound holds replacing the right hand side with C ||up.41|| ;-
0

ii) Leteg >0, peN,K'<KeN, ain F?K, p[€o]- There is so > 0, and a constant C, depending only on s, €y,
and on (Z9) with0 <y <2, =0, such that, forany t inI, any0< k< K-K', anyu in Bﬁ([;eo),
|op®™ [aFatu; 1] < Cllu(t, )

p
L(Hg’Hg—m) k+K’,So ’

so that |0p®" [a(u; 1, ) (Dl k-k',5-m < Cllu(, ) NV lk-kr,s-
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P+l we denote by

Classes of m-Operators and smoothing Operators. Given integers (ny,...,71p41) € N
maxy(ny,..., nps1) the second largest among ny, ..., npyq.

We now define m-operators. The class M " denotes multilinear operators that lose m derivatives and
are p-homogeneous in u, while the class M KK',p contains non-homogeneous operators which lose m
derivatives, vanish at degree at least p in u, satisfy tame estimates and are (K — K')-times differentiable
in t. The constant u in (2.23) takes into account possible loss of derivatives in the “low" frequencies. The
following definition is a small adaptation of [10} Def. 2.5] as it defines m-operators acting on H*(T;C) and

not H®(T;C?) (and we state it directly in Fourier series representation).

Definition 2.14 ( Classes of m-operators). Let m e R, p, N € Ny, K, K’ € Ny with K’ < K, and ¢( > 0.

i) p-homogeneous m-operators. We denote by M ]’g” the space of (p + 1)-linear translation invariant op-
erators from (H* (T;C))” x H* (T;C) to H* (T;C), symmetric in (uy,..., up), with Fourier expansion

. ik
MWwv:=M(u,...,u)v= Z Mj1,...,jp,j,k ujl...ujpvjel * (2.22)
Ut iprJ k)EZP?
Jitet+jptj=k

with coefficients M, ; i symmetricin ji,..., jp, satisfying the following: there are >0, C > 0 such
that, for any ji,..., jp, j, k€ ZP*2 it results

M, ik| = Cmasa () () (N max{()sens i) (I (223)
and the reality condition holds:
M ix=M_j i, Yip=(jv-...jp) €2, (j, k)€ Z°. (2.24)
If p = 0 the right hand side of must be substituted with ¥ jez M v;e'/* with |[M;| < C(j)"

ii) Non-homogeneous m-operators. We denote by M KK\p leo]
defined on Bkt 1 o (1)) (05€0) X I C%(I, H%(T;C)) for some sy > 0, which are linear in the variable v
and such that the followmg holds true. For any s = sy there are C > 0 and €((s) €]0, €[ such that for any
W€ Beyo ;oo sy (0:€0) N CX (1, HS(T;C)), any v € CX=X'(1, HY(T;€)), any 0 < k < K- K, ¢ € I, we have
that

the space of operators (u, t, v) — M(u; t)v

k
|o¥asom| _  <c ¥ (1whidull, g Il el ) . @25)
STARTM - ktki=k

In case p = 0 werequire the estimate IIGk (M (u; ) V)l s—ak—m < Cllvllg,s. We say thata non-homogeneous
me-operator M (u; t) is real if it is real valued for any u € B L H (T:R) (0;€9).

iii) m-Operators. We denote by =M KK\ p [, N] the space of operators
N
Muw;Dv=Y Myu,...,u)v+Msy(u; v (2.26)
qa=p

where M, are homogeneous m-operators in ./T/l/;", q=p,...,N and M.y is a non-homogeneous mi-

operator in MK x.n+1l€0]. We say that a m-operator M (u; 1) is real if it is real valued for any u €

Bex 1,110 (v;my) (03 €0)-

iv) Pluri-homogeneous m-Operator. We denote by Zg M g the pluri-homogeneous m-operators of the
form (2.26) with M.y =0.

We denote with ./\/lm M I”g Kp leg] and M I”g Kip [0, N] the subspaces of m-operators in W , Tespec-
tively M7 K,k',p L€0] and Z./\/l KK\p [eo, N1, defined on zero-average functions taking value M(u)v in zero-

average functlons.
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Remark 2.15. By [10, Lemma 2.8], if M(uy,...,up) is a p-homogeneous m-operator in ./T/IJ,’D" then M(u) =
M(u,...,u) is a non-homogeneous m-operator in M Ko,p [eo] for any €p > 0 and K € Ny. We shall say that

M(u) is IHM,T-

Remark 2.16. The multiplication operator v — v belongs to MY . [eq, N].

1+2f K,0,0

If m < 0 the operators in ZM 7 K.K'p [, N] are referred to as smoothing operators.

Definition 2.17 (Smoothing operators). Let p = 0. A (—p)-operator R(u) belonging to =M "
called a smoothing operator. We also denote

Kk pleo, N is

=M,’, Rk pleal = ME, leol, IR pleo NI = ZM . eo, N1
We define R, = My, R, leol = Mih, | leoland SR, leo, NI = EM, o, Nl as in Definition 22T2)

If R(u) is a homogenous smoothing operator in ﬁ; ? then HOLR(u), where 1'[0l is defined (2.3), restricted

to zero average functions u, belongs to ﬁ;p .

Remark 2.18. « LemmalZ.I3limplies that, if a(u; ¢, ) isin ZFK Kip [eg, N1, m € R, then OpBW [a(u;t,-)] defines
a m-operator in M7 K.k, p €0, NI.

e The composition of smoothing operators R; € SR KK\p [60, N]and R, € SR KK'p [60, N] is a smooth-

ing operator RjRy in £R €0, N1. This is a particular case of Proposmonmm.

KK’p+p[

Lemma2.19. LetmeR, ey >0, K,K' €Ny, K'<K, N, pel\lo,ueB (I;€0) and M(u; t) be a real operator in

ZMIr?,K’,p [€0, N]1. Then M (u; t)u is a real function in Z]:K K'p+1 leo, N + 1] according to Definition[2.4

Proof. We decompose M (u; t) = Zlqu p Mg (u)+ M n(u; t) in the usual homogeneous and non-homogeneous
components. We assume u is in BKR (I;€0) so that u has zero average. We now prove that M, (u)u is a

function in 755 . For any zero average function u, according to (2.22) we have

(Mg (Ww) (x) = > M;
1y Jgr DE@NODTH!
Jitetjptj=k

. ) o i1t jgt )X
..... ook Wjy - Uj Uj € .

Moreover, by (2.23), for any v Jpr ) = (fq,j) € (Z\{0hH7*! we have

My ] S e {10 g (I max s (i) ()

<max{(j1),....{jq) <]>}2max{um}<|( )|2max{pm}

and, in view of (Z.II), we thus obtain that M,(u)u is a function in .7-:(”1. In view of (2.24) the function
Mg (u)u is real.
We now prove that (M- y (u; 1) u) (£, x) is a function in ]:K KN+2 (€g). Letsp:=1+a (K— K’) + m. For any

05kSK—K’,foranyszso,andOSyss—30wehavethats ak—m>y+1,and

(12.25) N1

ORI Moy w1y w)| S 0F Man (w5 ) 0) HYH < |ofan sy < NulEh o Nl

s—ak—m

proving, in view of Definitions and[2.7] that M-y (i; £) u is a function in Fx k7, n+2 (€9). The reality condi-
tion is verified since M.  is a real m-operator per hypothesis. O

Symbolic calculus. Let 0(Dy, D¢, Dy, Dy) := DeDy — Dy Dy where D, := %635 and D¢, Dy, Dy are similarly
defined. The following is Definition 3.11 in [5].
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Definition 2.20 (Asymptotic expansion of composition symbol). Let p, p in Ny, K,K’ € Ny with K’ < K,
0 =0, m,m €R, ¢y > 0. Consider symbols a € ZFK Kip [eg, Nl and b € ZF;(”K, ,[€o, N1. For u in Bf([;eo) we
define, for p < o — s¢, the symbol

p 1 k
k=0 x=y,6=1
modulo symbols in ZFK K, e [60, N].

The symbol a#,b belongs to ZF;?}’,”F iy [eg, N]. Moreover

1
a#pb=ab + Z{a, b} (2.28)

up to a symbol in ZFI’?}}’,”p +2p [eg, N1, where
{a,b}:=0cadxb—0y,adsb

denotes the Poisson bracket. The following result is proved in Proposition 3.12 in [5].

Proposition 2.21 (Composition of Bony-Weyl operators). Let p,q,N,K,K'e Ng withK' <K, p=0, m,m' €

R, €9 > 0. Consider symbols a € ZFK Kop leg, Nl and be XTI, [eog, N]. Then

K,K',q
0p®W la(u; t,x, 610 0p®W [b(u; 1, x, )] - OpPY [(a#, b) (u; 1, x,8)] (2.29)

po+m+m’

is a smoothing operator in ZRK K',p+q (€0, N].

We have the following result, see e.g. Lemma 7.2 in [5].

Lemma 2.22 (Bony paraproduct decomposition). Let uy, up be functions in H° (T;C) with o > . Then
urup = OpP" [uy] up + Op®" [up] uy + Ry (uy) up + Ry (uz) uy (2.30)
where for j = 1,2, R; is a homogeneous smoothing operator in ﬁ;p foranyp =0.
We now state other composition results for m-operators which follow as in [10, Proposition 2.15].

Proposition 2.23 (Compositions of m-operators). Let p,p’,N,K,K' € Ny withK' < K andey>0. Let m,m' €
R. Then
D) IfM(u; 1) isinZM ¢, €0, N] and M'(u; t) isinZ M

m+max(m',0)
lSanMKK,p+p [€o, N1.

KK, ,[€0, N1 then the composition M (u; t)o M’ (u; t)

ii) If M(u) is a homogeneous m-operator in HZ’ and MO (u; 1), ¢ = 1,..., p+1, are matrices of my-operators
in M. . €0, Nl with mg €R, g € No, then

M(MPw; 0u,..., MP ;1)) MPD (5 1)
belongs to ZM?J}(’WPW[%» N] withm := Z? max(rmy,0) and g := Zé 1 | de-

iii) If M(u; t) is in M7
MY ko €l

[€0] for any & € RT and My (u; t) belongs to MY €ol, then M(My(u; t)u; t) is in

KOp KK/ [

P
iv) Let a be a symbol in ZFK Kop [e0, N] with m = 0 and R a smoothing operator in ZRIQPK, . [€0, N1. Then
op”™la(u;t,)1oR(w; 1), R(w;0)o0p™" [alu;1,)],

p+m
arein ZRK K p+p! ,[€g, N1.
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m
K,0,p

[0, N1 simply as R(u), without writing the #-dependence.

Notation 2.24. In the sequel if K’ = 0 we denote a symbol a(u; ¢, x,¢) in T
-P
K,0,p

[eo] simply as a(u; x,¢), and a
smoothing operator in R(u; 1) in ZR

We finally provide the Bony paralinearization formula of the composition operator.

Lemma 2.25 (Bony Paralinearization formula). Let F be a smooth C-valued function defined on a neighbor-
hood of zero in C, vanishing at zero at order q € N. Then there is € > 0 and a smoothing operator R (u) in
ZRI;"DM, [€o, N1, ¢’ :== max(q — 1,1), for any p, such that

Fw = 0p®Y [F (w]u+R@wu. (2.31)

Proof. The formula follows by combination of [5, Lemmata 3.19 and 7.2]. O

2.2 z-dependent paradifferential calculus

Along the paralinearization process of the a-SQG equation in Section [dwe shall encounter parameter de-
pendent paradifferential operators depending on a 2z-periodic variable z. The following “Kernel-functions"
have to be considered as Taylor remainders of maps of the form F (u; x, z) at z = 0 which are smooth in u
and with finite regularity in x and z. We are interested in the behavior of such functions close to z = 0.

Definition 2.26 (Kernel functions). Let n € R, p, N € Ny, K € Ny, and € > 0.

i) p-homogeneous Kernel-functions. If p € Nwe denote /IF}{Z the space of z-dependent, p-homogeneous
maps from Hg°(T;C) to the space of x-translation invariant real functions p(u; x, z) of class C* in
(x,2) € T2 with Fourier expansion

ow;x,2)= Y. pjj,(@uj o uj, @MY ze Ty}, (2.32)
J1reer jp€Z\{O}

with coefficients gj,, . j,(2) of class C* (T;C), symmetric in (j1,..., jp), satisfying the reality condition
Qji,.jp () = 0-ji,...- j, (2) and the following: for any / € Np, there exist 4 > 0 and a constant C > 0 such
that

aégh,m,jn(z)’ <C|7]* 121, Yi= (e, jp) €@V (ODP. (2.33)

For p = 0 we denote by fﬁ} the space of maps z — p(z) which satisfy |6£Q(Z)| =C Izlﬁ_l.

ii) Non-homogeneous Kernel-functions. We denote by KF 1r<l,o, » [eo] the space of z-dependent, real func-
tions p(u; x, z), defined for u € B?O (I;€p) for some sg large enough, such that forany0< k< Kand [ <
max{0,[1+n]}, any s = s, there are C > 0, 0 < €¢(s) < €9 and for any u € ng (L;eo(s)) nCk (1, Hy (T;0))
and any y € Ny, with y < s — 5o, one has the estimate

|a’;a§a’p(u;x, A= Clull Mules 12157, zeT\{(0}. (2.34)

z

If p = 0 the right hand side in (2.34) has to be replaced by |z|1’}_l.
iii) Kernel-functions. We denote by ZKF I’g op [0, N] the space of real functions of the form

N

e(u;x,2) = ) 0qWx,2) +0>Nn(U; X, 2) (2.35)
q=r

where g4 (4;x,2), g = p,..., N are homogeneous Kernel functions in KF", and o>n(u; x,z) is a non-
homogeneous Kernel function in KF I’g o.N+1 €0l

A Kernel function p(u; x, z) is real if it is real valued for any u € B?O rL;€0).

In view of Remark 2.4} a homogeneous Kernel function g(u; x, z) in ﬁz defines a non-homogenous

Kernel function in K.F 1r<l,o, p [eo] for any €y > 0.

14



Remark 2.27. Let o (u; x, z) be a Kernel function in ZF¢ p €0, N] with n = 0, which admits a continuous
extension in z = 0. Then its trace g (u; x,0) is a function in 2.7-"5 o,p €0, N].

Remark 2.28. If p(u; x, z) is a homogeneous Kernel function KF Z, the two definitions of quantization in
(Z.17) differ by a Kernel smoothing operator in ﬁ;p " for any p > 0, according to Definition[Z33below.

Remark 2.29. If p; (i; x, z) is a Kernel function in ZK.FI'}‘O p1 [eg, N1 and g2 (u; x, 2) in SKF®  [eo, N], then

K,0,p>
]_-min{nl 2}

the sum (g; + p2)(u; x, z) is a Kernel function in 2K K,0,min{prpal [€0, N] and the product (p;02)(u;x,2) is a

. . ny+n;
Kernel function in ZKF K,0,p1+p2 [eo, N].

Remark 2.30. Let ¢ (1;x,2) be a Kernel function in ZKFy , , [eo, N] with n > —1. Then fou;x,z)dzis a

function in F% . [eg, N]. This follows directly integrating (Z33) and (Z.34) in z.

K,0,p

The m-Kernel-operators defined below are a z-dependent family of m-operators with coefficients small
as |z|}. They appear for example as smoothing operators in the composition of Bony-Weyl quantizations of
Kernel-functions.

Definition 2.31. Let m,ne R, p, N € Ny, K € Ny with € > 0.

i) p-homogeneous m-Kernel-operator. We denote by Wp’"” the space of z-dependent, x-translation
invariant homogeneous m-operators according to Definition 214} Item[il in which the constant C is
substituted with C|z|?, equivalently

Mwz2vx)= Y M ix@uj...ujvie*™,  zeT\{o}, (2.36)
GprJ k)ezP*?
St tjptj=k

with coefficients satisfying
M7,k (@< Cmaxe {(j1),.... (Jp), (NN max{(ji),....Gp) (" 12lg - (2.37)
If p = 0 the right hand side of is replaced by ¥ jez M (2) vjeijx with M (2)| < C(j)m |z|%.

ii) Non-homogeneous m-Kernel-operator. We denote by KMIV?O" » [eo] the space of z-dependent, non-
homogeneous operators M (u; z) v defined for any z € T \ {0}, such thatforany0 < k< K

k . p p-1
|of e, <ciat T (1whtell s 1bis g e . @39
iii) m-Kernel-Operator. We denote by ZKM I’?'”p [0, N] the space of operators of the form
N
Mu,z2)v= ZMq(u,...,u)v+M>N(u;z)v (2.39)
q=p

where M, are homogeneous m-Kernel operators in KM Z"’", qg=p,...,Nand M,y isanon-homogeneous
. m,n
m-Kernel-operator in M K.O,N+1 [eol.

iv) Pluri-homogeneous m-Kernel-Operator. We denote by Zg M g the pluri-homogeneous m-operators
of the form (2.39) with M.y =0.

Remark 2.32. Given g (u;x,2) € ZKF} » [eo, N] then OpBW [o(w;x,2)] € TKM%"

K,0,p [60» N]-

Definition 2.33 (Kernel-smoothing operators). Given p > 0 we define the homogeneous and non-homogeneous
Kernel-smoothing operators as

KR, "= KM, KRS leol = KME  leol,  EKRA" €0, N1:= EKMKE eo, NI

In view of [10, Lemma 2.8], if M (u, ..., u; z) isahomogenous m-Kernel operator in KMpm’” then M (u,...,u; z)
defines a non-homogenous m-Kernel operator in KM ?6" p [eo] for any €p > 0 and K € Nj.
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Proposition 2.34 (Composition of z-dependent operators). Let m,n, m',n’ € R, and integers K, p, p’, N € Ny
with p,p' < N.

1. Lerp(u;x,2) € ZKFY p €0, N] and o' (u; x,z) € EKF"

K0,p [0, N1 be Kernel functions. Then

op®" o (u;x,2)] 0 Op®" [0’ (u; x,2)] = Op®" [0 0 (u;x,2)] + R (13 2)

R—p,n+n’

where R (u; z) is a Kernel-smoothing operator in ZK K,0,p+p

. [eg, N1 forany p = 0;

2. Let M (u; z) be a m-operator in ZKM;?’(?ID [€o, N1 and M’ (u; z) be an m' -operator in ZKMIV?’O’”’;, leo, N1.

Then M (u; z) o M’ (u; z) belongs to ZKMI?g;lf;f,m/’o)’mn/ l€g, N1;
3. Let p(u;x,z) be a Kernel function in ZK]:I?,O,p [eg, N1 and R (u; z) be a Kernel smoothing operator in
ZKRI_({)(;,’;;’ [e0, N1 thenOpBY [o (1; x, 2)] o R (1; 2) and R (u; 2)oOpBW [ (u; x, 2)| are a Kernel smoothing

operator in ZKRIQPO";’;, [€o, N1;
4. Let M (u; z) be an homogeneous m-Kernel operator in TFM;”", and M' (u;z) in ZKM?%OO o l€0, N1 then
M (M’ (u;2) u; z) € ZKM ' leg, NI

Proof. The proof of item[Ilis performed in [5, Proposition 3.12] keeping track of the dependence in the vari-
able z of the symbols as in (Z.33), (2.34) when y = 0. More precisely p and o’ satisfy z-dependent inequalities
(cf. 22D, .9))

p
. k -1
|0%0q Mald; x,2)| < Clzlp IRIFT TT |y, . '0t0§'§p(u;x,2) < Clalg lull}  lulgs,
j=1

and, in the proof of [5, Proposition 3.12], the seminorm of the composed symbol always appear as a product
of the seminorms of the factor symbols. The proof of item[2lis the same as in [10, Proposition 2.15-i], keep-
ing track of the dependence in z of the m-operators. For item[3] see [10, Proposition 2.19-i] factoring the
dependence on z. Item[lis a consequence of [10, Proposition 2.15-ii] factoring the dependence on z. O

Finally integrating (2.37) and in z we deduce the following lemma.

Lemma 2.35. Let R (u; z) be a Kernel smoothing operator in ZRI}‘O O’r; [eo, N] withn > —1. Then

J[R(u;z)g(x—z)dZ=R1(u)g, fR(u;z)dZ=Rz(u),

where R (1), R, (1) are smoothing operators in ZRI}’OO p leo, N].
The following proposition will be crucial in Section[4l

Proposition 2.36. Lern > —1 and o (u; x, z) be a Kernel-function in LK F¢ » [0, N1. Let us define the opera-
tor, forany g € HS(TT), SER,

(To8) (x) ::][OpBW [o(u;0,2)] g (x—2)dz. (2.40)
Then there exists

* asymbol a(u;x,¢) in ZFI_(%J;”) [0, N1 satisfying (2.20);
* a pluri-homogeneous smoothing operator R (u) in Zg ﬁ;p foranyp > 0;

such that Tog = Op®V [a (u; x,6)1 g+ R(u) g.
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Proof. In view of Definition[2.T0land Remark[2.28 we have that
op?"Y [0 (1; x,2)] - 0p" [0y (14; X, 2)] =: R (11; 2) @2.41)

is a pluri-homogeneous Kernel smoothing operator in Zg ﬁ;p "™ for any p. Since n > —1, integrating in
z, we deduce that £R (u; z) g(x — z)dz = R (u) g where R (u) is a pluri-homogeneous smoothing operator in
SNR,P (cf. LemmalZ35).

In view of (2.17) and we compute for any v e Z

Frmw (J[Opw[gw(u;x,z)]g(x—z)dz) ) = Zw(v k, —)J[p(u v—k,z)e *2dz g (k)
kez

where (¢’ £) is an admissible cut-off function, namely satisfying (2.14) - (2.15). Introducing another admis-
sible cut-off function ¥(¢’, ) identically equal to one on the support of w (¢, &), and since g(0) = 0,

Frv ( 0p" [0y (u;x,2)] dZ) v)

—Zt//(v kv k)t//(v k )X(Zk)J[Q(uv kz)e_lkzdzg(k) (2.42)
keZ

where yx(-) is the C*™ function defined in 2.I8). Introducing a C* function 1 : R — [0, 1] with compact sup-
port such that

b2 3n ;
n(z)=1, V|z| < > n(z) =0, V|z|27, Y nz+2mj)=1, VzeR, (2.43)
JjeZ
we may write the integral on T as
. 1 .
][@(u;v— k,z)e **dz = —f 0(u;j,2)n(z)e **dz . (2.44)
21 Jr () ==k k)

Therefore by (2.41), and (2.44) the operator 7, in (2.40) is equal to
To=0p" [ay (w;x,)] =0p®V [a(u;x,E)] + R(w)  where R(u)ezgﬁ;p (2.45)

and

- 1 —ile=1)z
awin®= Y aluij &), a(uiid)=p0.0x@-i) 5 ot n@e ez e

jez

In order to prove the lemma, in view of ([2.43), it is sufficient to show that a (u; x,¢) defined in (2.46) is a
symbol in ZF 1+” ) [e0, N1 according to Definition 22l Notice that a (u; x,¢) satisfies the reality condition

Moreover in view of the support properties of ¥ (j,¢) and y (2¢ — j), it results that

a(u;j,§)#0 = ‘E—é’ﬂfl, 15121, 181~¢5). (2.47)

We decompose the Kernel function

N
0 x,2) EXKFR, yleo, NI as  pwx,2)= ) 0q(1%,2) + 05N (145X, 2)
q=p

where g, (4; X, z) are homogenous Kernel functions in KF Z and p-y (u; x, ) is a non-homogenous Kernel

function in KF? KON+1 [eo]. Accordingly we decompose the symbol a (u; x, ¢) in (2.46) as

N
a(u;x,8) =Y aqu;x,8)+ asy (4;x,6)
a=p
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where

Y - NE R ifed
aq (u;x,6) = ,szq(u;frf) et ag(ujg) :=w(1,€)x(25—1)ng@q(u;],z)n(z)e i{t4)zq,
JE

. (2.48)
i o N . ~ife-1
asnwx,8) = ) asn (w).¢) e, asn (ui).¢) :=W(]r5)l(25—])EIREBN(”;J’Z)TI(ZM i{¢-8)eq,,
jez
We now prove that, according to Definition[2.2]
’f—(1+n), Yg=p,...,N, (2.49)
asn € Ty [eol. (2.50)

Step 1 (Proof of (Z.49)). In view of the g-homogeneous component a4 (u; x,¢) in (2.48) has an expan-
sion as in (recall the notation j; = (j1,..., j4))

az, & =w(j,&)x(2e-7) f@h L (An(z)e” i€2qz, J=qi+.+jg-

Let us prove it satisfies (2.11) with m = —(1 + n). Decomposing 1 = y;(-) + y2(-) where y; : R — [0,1] is a
smooth cutoff function supported and equal to 1 near 0, we decompose

2 g
aj, €)= (”(5)+a» )=2 v (i) x(25-7) f 1 (O 20, ]q(z)n(z)e‘( “t)gz. (2.51)
=

By (2.33) (with / = 0) and since n > —1 we deduce

S |H L | _
a;“(s)‘sf |Jq| |z|"dz§ﬂ1qﬂ @~ (2.52)
1215 1/49)

q

e d \1—1 _
We now estimate a; @)(&). From e ‘Z(‘f 2) = [—i(f— %)] 6i(e 1(5 ) ) for any I € N, we obtain, by an inte-
gration by parts (use (2.43) and that y» (¢¢) z) vanishes near zero), that

N L[ -ife-d)
a)(©) = [ i(é—%)] POxRE-1) X enbbys fR ey, @z

l1+lz+l3=l
where Y, 5,,(2):= )" (04 x2) (2) 0En(219% 07, (). (2.53)

Since o4 (14; X, 2) is a Kernel function in K7, using (2.33) and exploiting that (&)~! ~ |z| on the support of

(ll) (&) 2) forany [; = 1, we get

fIYzl b1 ()| dz < |7g|H ©h f_~| lIzI”_l3dz§|fq|“(£>ll+l3_(”+”. (2.54)
[3)
When /; = 0 we have that
|Yo,1,,1,(2)| dz < |7q|" 121" dz < g (1+ @b D). (2.55)
R Eelal=¥

Then by (2.53), (2.54), (Z.55) and [2.47), we deduce, for [ > n+1,
a? @IS L[ Tqlt @y~ (2.56)

The bounds (2.52) and prove that aj, (&) in (2.51) satisfies the estimate 2.I1) (for § = 0 and m =
—(1+ n)). Since, for any S €N,

I
2

0fas, = Y Cpppd 0 ()0 x(2¢-)) fu.&efq(z)(—iz)m g, (2.57)

B1+P2+P3=p

18



using 2.15), (2.47), the fact that y is supported near 0, that zﬁ3p]~q (z) satisfies (2.33) with (n replaced by
n+ P, cf. Remark2.29) and repeating the bound obtained for 3 = 0 for the integral term in Eq. 2.57), we
obtain

Faz, @ <p X @ P @ Tl @ Sy |7l @O
Bi+B2+Ps=p

Note that actually for any j € Z, B2 = 1, the derivative 6? *x(2¢—j) =0, for any |¢| = 2. This concludes the
proof of (Z.49).

Step 2 (Proof of (2.50)). We argue similarly to the previous step. Recalling (2.48), for any 0 < k < K and
Y € Ng, we decompose, with y;, j = 1,2 defined as in (2.51),

6?6§a>N(u;x,£) =L+ where

. L1 —— _ leD)z ik
61=Zw(1,f)x(25—1)§ij- (©)0Falo, y (i) @ e 2 az ol
jez R

(2.58)

Fix pp > 1, let sp > 0 associated to g~y as per Definition2.26] let y < s— (so + Ho)- The term I; can be estimated
using (2.34), the fact that y; (z (¢)) is supported for |z]| <1/({) and n> -1, as

|1 |§ : —/»iof
! Z <]> 12151/46)

JEZ

akal (1~ 62) Q>N(u] z)

dz Sl gy 1telis 70 (2.59)

Next we estimate I,. After an integration by parts, setting / = max{0, [1 + n]}, we have from Eq. (Z.58)

-
LIS Y. |1/7(j,6)x(2£—j)|’6—% Y | Zi, 1,1, (2)| dz. (2.60)
jez Lh+bL+l;=1YR
where
Ziaaiy (2= O1 (0 12) (240 0% (2) 050000, (1, 2) (2.61)
Forany jeZ
ofokoto.y (w4, 2)| S () sup |0, 053%0% (1-02) 7 oon (i, 2| S () Ul Nl |25 . (262)

With computations analogous to the ones performed in Egs. (Z.54) and (Z.55) we obtain using Egs. (2.61)
and (2.62), that

f |21, (D] d2 S (7YH NI g 120 s (O B0, it Iy 0,

(2.63)
fR |Zo,,1, @] 2 S ()N Tl (14 @500
Since [ =1} + I, + I3 > 1+ n and g > 1 we obtain, by Egs. 2.47), (2.60) and (Z.63) that
Tl SNl g Nl €4 Y (G)7H. (2.64)

jez
Inserting Eqgs. (Z.59) and [2.64) in (2.58) we conclude that

08 O% s (155, S Nl Nl (704

Arguing as in (2.57) we thus obtain that, for any g e N, |6’t‘6§6§a>N(u; PRI uIIZIXSOJrN0 el g, s (§>—(1+n+ﬁ)
concluding the proof of (Z.50).

O
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3 Thelinearized problemat f =0
The linearized equation (LII) at f =0 is
0:f =0,dVEL(0)f. (3.1)

In this section we prove that the linear Hamiltonian operator 8, dVE, (0) is a Fourier multiplier with symbol
—iwq (j) and we provide its asymptotic expansion, see Lemmas 3.1l and We also prove a convexity
property of the frequency map j — wq (j) and that w, (j) are positive for any j = 2, whereas w4(0) = wq/(1) =
0, cf. Remark[3.3] These latter results do not rely on oscillatory integrals expansions and enable to prove the
absence of three-wave resonances in Lemma[3.5]

The following result extends the computations in [42} Section 3], valid for a € (0,1), to the whole range
ac€ (0,2).

Lemma 3.1 (Linearization of VE, at zero). For any « € (0,2), it results that
dVEq(0) = —La (IDD), (3.2)

where Ly, (|D|) is the Fourier multiplier operator

Cq 1 2 I'C—-a)
Lo (ID]) = TL (D) -T2 (D) - ——— (3.3)
21-9)1 ¢ ¢ r(1-g)>
with
— |j|_1 T Q+k
T (7)) = F(Za a)a (Za ) ; , TL(0) =0, (3.4)
F1-5)T(3) =0 TA-5+k)1-3+k
re2-a I (§+1¢1) a2
T2 (€)= = [l P—{1-= ]M (1én, (3.5)
R (O O R () o= {1=5) Mate
re- 1 (% +I¢l
Mg (€]) = e %) (5+1) (3.6)

T(1-8)T(8) g -(1- 9 T(1-§+1)
The map j — T4 (|j|) is a Fourier multiplier in Ty ™%~V and j — T2 (| j|) is a Fourier multiplier inT&".
By the previous lemma, in Fourier, the linear equation 3.I) amounts to the decoupled scalar equations
0.f (j) +iwe (j) F(j) =0,  jez\{0}, 3.7)
with linear frequencies of oscillations wq (j) := jLa (| j])-

Proof of Lemmal31l By differentiating VE, (f) in (LI2) we deduce that

e [20(y)- () +¢(y))cos(x-y)
dVEa(O)(p_z(l_%)][ [2(1-cos(x—y))]? I
. Ca ¢' (y)sin(x-y) a  cy P +d(y)
i b =Y

2(1-%) [2(1—cos(x—y))]% _22(1—%) 1-cos(x—y))]?
_ c J[ PW-9y) . = ca ¢’ (y)sin (x—y)
2(1-%) [2(1—cos(x—y))]% 2(1-%) [Z(I—COS(X_J’))]%
Cq (P()’) d Ca dy _. !
L _ + 2 a7 ()= ) Lvg,x®.
4][[2(1—003(16—3/))]7_1 g 4][[2(1—COS(X_J’))]T Kz::l

We now compute these operators.

(3.8)
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Step 1 (Evaluation of Lyg, ;). We claim that

Ca (b(x)—¢(y) 1
(Lvg, 19) (x):=— ][ - dy=- T,UDN¢. 3.9
2(1-3)) [2(1-cos(x-7))]2 2(1—%)
Indeed, setting y = x — z we have
Ca Px)-—Ppx- z) Ca px)-d(x-2)
L =-— dz=- dz. (3.10)
VEAP =500 201 —cos 14 2(1-9J  J2sin(2)"
We compute the action of Lyg,; on ¢ (x) = Zjez([)(j) el =)+ Y (j) el 4+ Z )e 1,
j=1 jz
) ::qb+(x) —.qb-(x)
By (3.10) we immediately get Lyg,,1¢$(0) = 0. Moreover, by 3.10),
Ly, 19+ (%) Z¢() lfx][ eVt g, (3.11)
VEq 1 = - ——dz. .
' 2( _% j=1 |4sin2(z/2)|m2
We compute
1 [ 1-el® 1 (2 1-e7V"
— T a2 Z= —f I———— ¥4
2 Jo  |4sin? (z/2)|* 2w o |1-e7i2|

1 (7 1-e 2% iz |1 2! ‘” 1
:—f ———|1-e7| "dz=- f 2@k (5ing)'"¥dz  (3.12)
|1—e Z| in k=0

having also written |1 — ez | =—i (1 - e‘Ziz) ei? for any z € [0, 1]. We use now the identity (cf. [64} p. 8])

ne T T (X +1)
2T (1 ) (14 5T

f sin® (z) e'Y?dz = (X,Y) € (~1,00) xR. (3.13)
0

Setting X =1-a and Y = — (2k + 1), and using e 1Ck+DZ — —i(-1)¥, we obtain

f” o 12@2k+1) (sinz)"%dz = —i-DFAr - . (3.14)
0 2170 (1-k-4)r(2+k- %)

The following consequence of Euler’s reflection formula (cf. [67])

1 T(=2)T(1+2)

[(z-j)=(-1)/" : R\Z, jez, 3.15
(z-j)=(-D TG+1-79) ze je (3.15)
implies, settingz=1-4%, j=k,andsince'(1+y)=yTI(y),
¢ _1q _a T(1-4\1(4
F(l—k—g)=(—1)kl r(z-1r(2 2)_(_1)k (1-%) (2) (3.16)
2 I'(§+k) I'(§+k)
By (3.14)- (3.16) we deduce
T —i — r($+k
fe—lz(2k+l)(sinz)l—adzz 1_7T re-a) (2 ) . (3.17)
0 217ar(1-4)T(§) r(2-4$+k)

Consequently, by 3.12) and (3.17), we conclude that for any j = 1

1 (2 1-e7l% re-a = T'($+k) 1 _
2_ ) a/2dz= a Z za 1-¢ k=T(1x(])
mJo  |4sin?(z/2)] FA-2)r(g)inr(i-g+k1-5+
defined in (3.4), which in turn, recalling (3.11), implies that Lyg, ¢+ (x) = (1__) Z]>1T (j )(b(j)eijx.

Since Lyg,, is a real operator T}, (=) = T4 (j) = TL (j) which, combined with Ly, 1¢(0) = 0, gives us 3.9).
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Step 2 (Evaluation of Lyg, »). We claim that

c
(Lyg,2¢) () = —— IDI* (M (ID) ¢) (x) . (3.18)
2(1-%)

: v ¢'(x—2)sinz sinz __1 _ 1-4
Setting y = x—z we have (Lyg, 2 ¢)(x) = f[z(l = dz. As 0 cos o’ 2(1_%)62([2(1 cos z)] ),
integrating by parts

c 0z[¢' (x—2) c "(x—2z)
(Lvg,2H)0) = ———* 2][ 219 g]_ldz: “ ZJ[ ¢ —dz. (3.19)
[2(1-4)]") 20 ~-cos2)]? [2(1-4)]") 20 ~-cos2)]?
For j = 0 we compute
-1jz 1 T i 22—a b3 L
Ij:=][ - dz:—f eV 2(1-cos2)]? ' dz= fe“zfz(sinz)z‘“dz
[2(1-cosz)]2"! mJo n Jo

and applying Eq. 3.I3) with X =2 —-a, Y = -2, and using I'(x + 1) = xI'(x), we obtain

e 1z , -l 2-a)
J[ 5 dZ:(_l)] 7 a . a)
[2(1-cosz)]2! r2-j-4)r2+j-9%)
We use now the identities
a a @ @ @ Ta-9r()
_ . _ _ . _ . ___- _ ___- _ ]

F(Z 2+J)_(1 2+])1“(1 2+J)’ r(z 2 ])_(l 2 ])( 2 r(¢+j) '
which follows by I' (1 + z) = z I' (z) and B.I5) (with z= —-a/2 and j ~» j—1), to deduce, for any j =0,
—ijZ _ _ r Q+ .
hef e e e (-G
[2(1-cosz)]2” r1-4$)r(%) (1-9) —jZF(1—§+]) 2

with M, defined in (3.6). Since I j = 1-j we conclude that
—-ijz a
__dz=-2[1-=|M.(lj]). (3.20)
][[2(1—cosz)]r1 ( 2) a(l7)

By (3.19) and (3.20) we deduce (3.18).

Step 3 (Evaluation of Lyg, 3). The action of the operator Lyg, 3 in (3.8) on a function ¢(x) = } jez ([) ( j ) elix
is, setting y = x — z and using (3.20),

e iz Ca a2
Lvg,, (x)= — E J[ —dz= — 1-— Mg (ID]) @) (x). 3.21)
(Lve.a¢) ]Ez(b [2(1-cosz)]27! 2(1—%)( 2) ( )

Step 4 (Evaluation of Lyg, 4). By 3.20) with j =0 and (3.6) it results that Lyg, 4 in 3.8) is

J[ ¢ (x) Ca re-a)
[

(L, a0) (x) = -dz= 5 G0 (3.22)

2(1-cosz)]z 7! 2(1- )F(l——)
In conclusion, by (3.8), 3.9), 3.18), (3.21), we deduce that dVE,(0) is equal to L, (ID]) in (3.3).

Step 5 (T}x e Tmax(O.a-1) 554 fo e T 1), We start with Tfl(lf ) in (3.5) which is defined on R. We recall the
asymptotic expansion for [¢| — oo, see [67, Eq. (5.11.13)],

TC+a)  ap( Gelab)) (@-b)—(1+N)
T (ZO—E =0l )
Go(a.b):l,Gl(a,b):(a_b)(;Hb_l), VNeN, [Argé|<m, (3.23)
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which involves holomorphic functions. We can focus on the case Re(¢) > 0. We claim that formula (3.23)
implies automatically the estimates for the derivatives

Iré+a b
H < ra—-b—p
5(F(£+b)) Su for large ¢ > 0 and for any g e N. (3.24)
Case u = 0 of (3.24) follows trivially from @.23). For any € N\ {0} and for N; > u =1, let us set
G (a b) NI G (a b) T ¢+a)
My (§) =& bz . . My =& > . E(f)3=€7—(M1(f)+Mz(f))-
Kk=N+1 I'+b)

Obviously M; (¢) € T¢™? and M> () € fg_b_(N”). For ¢ > 1, E is holomorphic in B (¢,2). Thus O?E(f) =
20—7‘[‘1 fa B@&1) (Ciﬁ% d{ by the Cauchy formula. Moreover (3.23) is true in B (£,2) and so, by |{| ~ [£],

1 || bm NN b—(1+N+Ny) b—(1+N+4)
MBS [ B 11 NN gt (),
' ¢ Plopen 10-¢tH g g

which implies

a#(I“(fﬁtol)
s\reE+n

This proves (3.24). From (3.24) we conclude that T(zx (I7]) in @3 is a Fourier multiplier of order a — 1.
We now consider T}, (| j|) defined in (34). For any j € Ny, the discrete derivative of T}, (j) is

- M, (f))

+|OE@)| S lelat- v

re-a TI(5+7) 1 Ta(0)
CI-$)r(§T(-3+)1-5+] 1-§+J

ATH () =Th(j+1)-Ta(j) =

Since T2 is a symbol of order a — 1 we deduce that |T}x ( ])| <1+ j%!and, forany ¢ € N, the discrete deriva-
tives satisfy |(A°TY) (j)| < j%'%. By [72, Lemma 7.1.1] there exists a C* extension of T} to the whole R
which is a symbol of order max (a —1,0).

The proof of Lemmal[3.1lis complete. O

Remark 3.2. For a # 1 the Fourier multiplier T (|j|) in () is equal to

L) = r2-a 1 rG+jp 1@
W= raoar@e-1|ra+j-9 Tta-9

as follows by induction.

Remark 3.3. The first linear frequency wg (1) = 0. This is equivalent to prove that L, (1) = 0, that, in view of
(3.3)-(3.5), amounts to show that

I'2C—a) B I'2C—a)
r(1-2y Tr(1-%)
This holds true because, using the identity I'(y + 1) = y T'(y),

1 r(s)s

3 1 _ 1 a ay]
3 (o R 7 e R Gt

TLm-T2Q) -

The fact that the first frequency w, (1) = 0 is zero has a dynamical proof. Indeed, in view of the translation
invariance of the problem, the patch equation (LTI) possesses the vector prime integral

f(\/1+2f(x)—1))7(x) dx=ff(x)(cosx,sinx) dx+O(||f||2). (3.25)
T T

Let us consider a dynamical system f = Y (f) with Y(0) = 0 and A:= dY (0). If b(f) is a prime integral then
Vb(f)-Y(f) =0, Vf. Hence, differentiating and since Y (0) = 0, we obtain Vb(0)- Af =0, V. If A is non
singular then Vb(0) = 0, i.e. the prime integral b is quadratic at f = 0. Here the linear operator A (cf. 3.7)) is
degenerate in the one-Fourier mode on which (3.25) has a linear component in f.

23



The other linear frequencies w (j), j #0,+1, are all different from zero.

Lemma 3.4 (Convexity of wq (). Leta € (0,2). The frequency map j — wq (j) = jLa (|j|), j € Z, where Ly is
computed in Lemmal3.1, is odd and satisfies the convexity property

re- rs-1+j
C-o I3 ])(xj>0, Vi=1.  (3.26)

2172 (1-§)T(2-%+])

ANwg(j)i=wq(j+1)+wq(j-1)-2wq(f) =
The linear frequencies wq ( j) are different from zero for any |]| > 2, in particular wq (j) > 0 and increasing for
anyj=2.

Proof. In view of Lemmal[3.]] for any j = 1, and the identity I'(1 + y) = yT'(y), the second discrete derivative
A2wg (f) is equal to

c re-a ) I T(§+k) C 2 T(S+k) I T(§+k)
aa a a {(]+1)Z za +(]_1) Za —2j 2@
2(1-4)r(1-4)r(3) ioT(2-3+k) iT2-3+k) T inTR-3+k)
r($+j+1 r(s+j-1 r($+
B T
T(1-g+j+1) ri-g+j-1 "r(1-g+j)
The first term inside the above bracket is equal to
r(4+j r(£+j-1
1= eyl TR
re-3+j) 7 Te-§+j-1 20
F( +j-1) a a F(%+j—1 )
=2 - - )(=+j-1-(-1)(1-=+j||= =2——ZL aj.
F(z_%ﬂ)[(ﬁ)(zﬂ )(J )( 2+1)] fezr )
Writing the terms in the 2nd line of the bracket in as
L(§+j+1) r(g+j-1)
—(j+1 - = - = (j+1)(%+j)(%+j-1
U)ot e = Tty U E+)E )
r(g+i-1) r(g+j-1)
-(j-1 = - = (j-1)(-2+j)(1-2+)), (3.29)
( )1“(1—%+]—1) F(Z—%+])( )( 2 )( 2 )
r(%+]) r(%+]_1) ( _( _2)2)
-5+ Te-g+y) VU
we conclude by Egs. (3.27) to and since ¢, = %(%1)—5) (cf. (LA)), that
2
1 re-a) I(5-1+))

NPw, (J) =

2702 -a) T2 (1-4)T(2- % +))

Xo()=maj=(+0)(§+ ) (§-140) - (-1 5+ )= 5+ ) 427 (12~ (1-9) = - e,

This proves (.26). The positivity of A%w, (j) in (:26) follows because the function T is positive on positive
numbers. Finally, the convexity property 3.26) and wq (0) = wq (1) = 0 (cf. Remark3.3) imply that wg (j) >0
and increasing for any j = 2. O

The next lemma is crucial for the normal form construction of Section[(l

Lemma 3.5 (Absence of three wave interactions). Leta € (0,2). For anyn, j, k € Z\{0} satisfyingk = j+ n, it
results
|wa (k) — wq () — 0a (M| 2 e (2) >0. (3.30)
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Proof. Since the map j — wq/(j) is odd and strictly increasing for j € N, it is sufficient to consider the case
=wq (1) =0, defining Ay (4) := wq (€) — wq (¢ — 1), we write by

k=j=n=1, k=j+ n. Then, using that w,(0)
«(q-1))

_ qé (0a

a telescoping expansion
_ j+n J
wa (k) —wa () —wa (M) = }_ (0a(q) -wa(9-1)) - X (0a(q) - wa
q=1 q=1
n n i
=2 (Ac(a+))-Ac(@) = XL X (Ac(a+q)~Ac(q+q' -1))
q=1 qg=1qg'=1
n Jj
=2 X (g+4d'-1)= 2%wa (1) =wq (2) >0
[l

q:l q’:]
i . ajz()ﬁ

by (3.26) and Lemmal[3.4l This proves (3.30).

(3.26)
We finally prove an asymptotic expansion of the frequencies w (j). We use the notation P
p2 < p1. We denote mg a real Fourier multiplier of order 8 € R, and c, real constants, which may vary from

line to line.
Lemma 3.6 (Asymptotic behavior of Ly (| j|)). Let
-

acy 1-a) QL

2—-ar (1 - 2)

72 (3.31)

Z ! ( - i) a=1
2k -

S

l
k=112 %

Vg = 1 ( ,
. YEM

whereygm := (limn_,+OO Zzzl %) —logn is the Euler-Mascheroni constant
Then the symbol Ly (| j|) in Lemmal31 has the following asymptotic expansion: for any K €N, K =3
KC -1} and a Fourier multiplier mq_x of order

e Ifa€(0,1)U(1,2) thereexists real constants cy, K € {3
a— K such that
. Cq ré-aw 1 a-1 |-k
L =V - 3.32
06(|]|) “+?(1—%)F(1—5)F(% | | +Z |J| T Mg ’C(|]| ( )
:;;g
* Ifa =1 thereexists real constants cy, x € {3,...,K — 1} and a Fourier multiplier my_x of order 1-K such
that
Ly ([]) W1+—10g|1|+ 23011(|j|1_1<+m1—’€(|j|)'
K=
17" is, for @ € (1,2),

Note that in the expansion 332) there is not a term as cZ|j|* % and that 15 |j|

positive and tends to infinity, whereas, for a € (0, 1), it is negative and tends to zero
We provide for completeness the expansion also in the cases ¢ =1 and «a € (0, 1), although not needed

for the proof of Theorem[I.1l
Lemmal[3.6lis a direct consequence of (3.5), (3.3) and (L3) and the following lemma

Lemma 3.7. Forany X e N,K =3, the following holds
] , K =1} such that

e ifae(0,1)U(1,2), thereexist real constantscly, k € {3
o Tad-w r2-a a1 "G o1 Ljax :
T! = + + Y + Mg (3.33)
a('JD F(l—%)z F(l—%)r(i | | Z a |J| a /C(|]|
* ifa =1 thereexist real constants cy, x € {3,..., K — 1} such that
& 1
> =) | S et e mocils @30

YENI_.__) k=1 é4—k k

T}(|j|)=%{log|f|+
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* ifa €(0,2) there exist real constants cy, k € {3,...,K — 1} such that

F(2 a)

- 9T (%) ) ( - a)?

i1 1+Z i mac (i) 839)

Proof. By the proof of Lemmal[3.1] (below (3.23)) we know that

rc+a) .,
I'é+b) ¢ Z

k=0

Gy (a b)

= Mg—p-a+nN) &),

where m,_p_1+n) (§) is a Fourier multiplier in fg ~b=1+N) "and therefore, for any K =3,

5 +1il) a1 & a a a-(1+x)
— =i+ Y G| 1-=] |J +ma-r (|J]) (3.36)
b Y (G- 8) (il

where we exploited that Gy(a,b) =1 and Gy (%, 1- %) =0, by (3.23). By Remark[3.2]and (3.36) we deduce
(.33) for K = 3. Finally (3.34) for a = 1 follows by the asymptotic estimate of the harmonic numbers

Yo kKt =vem +log(j) + 55 + mo2 (7). =

4 Paralinearization of the Hamiltonian scalar field

The main result of this section is the following.

Theorem 4.1 (Paralinearization of the @-SQG patch equation). Leta € (0,1) U (1,2) . Let Ne N and p = 0.
For any K € Ny, there exist sy > 0, €y > 0 such that, if f € Bg g (;€0) solves Eq. (LI1) then

0cf +0x00p"" [(1+v(f;x)) La (6D +V (f3x) + P(fix.8)] f=R(f)f @1
where
o Ly (D) is the real valued Fourier multiplier of order max{0, a — 1} defined in Lemmal3.1}
e v(f;x),V(f;x) are real valued functions in Z]—"}'ﬁ'o’l [€o, N1 (see Definition|2.7);
* P(f;x,¢) isasymbol in XTI\ | leo, N] (see Definitionl22) satisfying (2.20);
* R(f) is a real smoothing operator in ZRK 0,1 €0, N1 (see Definition[2.I7).

Note that, since the symbol (1 +v (f;x)) Ly (I€]) + V (f; x) is real, the vector field in (&) is linearly Hamil-
tonian up to zero order operators.
4.1 Isolating the integral terms

Notation. In this section we use the following auxiliary functions

() e e __ Of
=r(f;x):=\/1+2f (%), 8.f=f(x)—f(x—2), Aafim ooty YZET O, 4.2)

We shall denote by P(f;x,¢) a symbol in Tl | [, N] (see Definition Z2) by R (f) a smoothing operator

inzR’ 0,1 €0, N] (see Definition[2.17) and by R (f; z) a Kernel-smoothing operator in KR K01 [eo, N] (see
Definition Z33), whose explicit expression may vary from line to line.

Note that r (f; x) is a function in ZF% %.0,0 [€0, N1 and, according to Definition 2.3

S, e KM, (4.3)
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In view of (LT2) and performing the change of variable y = x — z, the gradient VE, (f) can be decomposed

* VEq (f) = VED () + VEQ (f)

VEW (f):= Ca J[ 1+2f (x—2)—/1+2f(x) \/1+2f (x—z)cosz e
a . n ,
2(1-3) RA+f)+fx—2)—/1+2f (x)y/1+2f (x—2z)cosz)]? (4.4)
1+2f(x) .
VE(Z) (f): Cq J[ T+2f(x—2) f,(x—Z)San o
a * z .
21-5)) 21+ f0+fx-2-VI+2f @I+ 2f (x—2)cosz)]?

Then, recalling the notation in (4.2), we write

2 _ _ 2 _
VE((XI)(f): caa J[ r°=26,f—r+\/r*—=28,fcosz _dz- caa rz_aJ[thx,z((sng) dz 4.5)
2l [Z(rz—ézf—r\/mcosz)]2 2(1-2) g
with
G}m(X): 1-2X-v1-2Xcosz _, 4.6)
[Z(I—X—VI—ZXCOSZ)]Z
and 1
c
VEff) (f) ][G ( )f (x— z)smzdz—z(l—ig) r—aj(f) (4.7)
2
=7(f)
with 1
G2, (X):= Viz2X . (4.8)

[2(1—X— 1—2Xcosz)]%

By (@.4), recalling (2.3) and that VE((XD (0) is a constant, using (4.5), [@.7), the equation (LII) can be written
as

0cf = 0y [(VED (f) - VEY (0)) +VES (£)]
Ca

=7ax[ (r**AI(f J[G L0dz (r —1)+ij(f) 4.9)

209
1= fob. %

][G;(O) dz = %][ [2(1-cos2)]'"2dz

where

) -G, . (0)dz. (4.10)

By (3.22), we get

1 T2-a)
SISy’
The terms AI(f) and J (f) are yet not in a suitable form to be paralinearized, since the nonlinear convolu-
tion kernels need to be desingularized at z = 0.

(4.11)

Lemma 4.2. The term Al (f) in @I0) can be written as

AI(f)=Z(f)+R(f)f (4.12)

where R (f) is a real smoothing operator in RL NJ, and

K,0,1 [60»

()

r2|2sin (z/2)|%

Z(f) 1=f0pBW 4.13)
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with
KL, 0 :=(GL,) @Xsin (2/2)) [2sin (2/2)|*

2_ cosz
_ | V1-4Xsin(z/2)
[2 (1 —2Xsin (2/2) — /1= 4Xsin (2/2) cos z)] 2 (4.14)

COSZ s 1
(1 - m) (1 —4Xsin (2/2) — /1 —4Xsin (z/2) cosz)

a

|2(1-2Xsin (2/2) - /1=4Xsin (2/2) cos z) | *

The term J (f) in @1 can be written as

=fri{

+ta 12sin (2/2)|% .

) f(xmg) —DE__ 4 (4.15)
|2sin (z/2)|% “ ’

where

Ve 2sin (#/2)1°

K2 ,(X):= G5 , (X 2sin(2/2)) [2sin(z/2)|* = . (4.16)
[2 (1 —2Xsin (2/2) — /1 - 4Xsin (z/2) cos z)] 2
The functions z — Kj(m( zf) 1=1,2, are2m-periodic.
Proof. Applying Lemma[2.25]to (4.10) we get
0z
][OpBW '( Zf) ( Zf) Ozf 4. (4.17)
where R is a smoothing operator in SR P K01 [0, N] and, recalling (4.6),
— oSz 1— 82 |11 -2X—-+v1-2Xcosz
(GL,) )=~ V12X -+ a( Vi-2X ) ( — ) (4.18)
[2(1—X— 1—2Xcosz)]2 [2(1—X— 1—2Xcosz)]2

In view of (4.18), (4.14) we have that
KL, (X = (Gl ,) (2Xsin (2/2))|2sin (2/2)|%

so that the first term on the right hand side of (4.I7) is equal to Z ( f ) in (4.I3). Notice that, since Az o, f =
—A,f and Ka i (=X) =K, (X) (cf. @I4)), themap z— K, , ( Zf) is 27-periodic. Similarly z — K2, (Arzz )
is 2;-periodic.

We now prove that

J[R 1+2f) 1+2f) where  R(f)e IR | leo, N1, (4.19)
We write f f
=) 1+2f) R(M(:2) ) M(:2) f
where . ;
M (f;z) = My (f)+M2(f32), Ml(f)3=mv M2(fiz)=—1+_;f-

Remark 216 shows that M (f) € =M%

X.0,0 [€0, N1 and Proposition 2.34} Item[2lproves that M, (f; z) belongs

to ZKMK 0,0 €0, N1. Thus M(f;z) € ZKMO 0,0 [€0, N1 and Proposition 2.34} Items[2and @ give that
f ) 0.f )
=R(MI|Tf; MI(f; =RI\f;
for some Kernel-smoothing operator R (f;z) in KR " K01 % [€o, N1. Finally Lemma[Z35 implies @I9). O
Plugging in (4.9) we obtain
1

01f=——"—0,|r**(Z(f ][G 0)d 1)+ — . 4.20
of -9 | (Z( (0)dz )+ = I (4.20)
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4.2 Analysis of the nonlinear convolution kernels

The goal of this section is to represent the nonlinear convolution kernels in (4.I3) and (4.I5) as Kernel-
functions according to Definition [2.26] In Section [4.4]we shall consider as well the convolution kernel

1
(1-4Xsin(z/2))%?

[2(1 —2Xsin(z/2) — \/Win(z/Z)cosz)]

(1 _ cosz ) 1
V1-4Xsin(z/2) ) v/1-4Xsin(z/2)

[2(1 —2Xsin (z/2) — \/Win(z/Z)cosz)] z

Lemma 4.3. Let KJ;LZ(X), a€(0,2), j=1,2,3, be the functions defined in (4.14), and A.21). Then

K3, (X):= (G2 ) (X 2sin (2/2)) sinz|2sin(z/2)|% =

(NI

+a |2sin(z/2)|% sinz. (4.21)

(A N
Kb,z (r%f) = Kb, ( - fg f) € KFy €0, N (4.22)

is a Kernel function, which admits the expansion

Kh.z (rsz) =K (f3%) + K& (£;x) sinz+ K52 (f; x) (2sin (2/2)% + 0% (f3 %, 2) (4.23)
where
_ . _ 1 ifj=1,2,
Ki (f;x) € ZFiopGn €0 N, 0% (fix,2) €K Fy, goleo NI q(j):= {0 Fi=3 (4.24)
with p (j, 1) € {0,1} and constant functions
KLo0;x) K2°0;x) K3°(0;x) -1 1 0
KL'o;0) K2 0,00 K3 ox) |= ( 0 1+% |. (4.25)
K’ 0 KPP0 K00 -3(1-3) 0 0

Proof. The statement (4.22) follows by (.23)-(@.24) that we now prove. We first claim that for any R > 0,
there exists eg > 0 such that the functions

i i (Y i
Ja,w(x,y)._Ka,z(Hzx), w:=2sin (z/2) (4.26)

where KJ;L 2 (),J=1,2,3 are defined in (4.14), (4.16) and (4.21), are analytic in (x,y, w) in the domain
IXI<er, lylser, |wlsR, (4.27)

B (% y)| < Cp in this domain. Let us prove the analiticity of J} , (x,y).

and there exists Cgr > 0 such that

Substituting X = ﬁ, w =2sin(z/2) and cos(z) =1 — “’72 in (@.14) we have
2
I
Jow (xy) = - Y12 = lw|® (4.282)

2(1-Xw - V1—2Xw+vV1-2Xw¥ || *
2
1 (VImXw-1+ ) (1-2Xw - VI-2Xw + VI-2Xw'y)
¢ a+
V1-2Xw [Z(I—Xw—\/l—ZXw+\/I—ZXWWTZ)]TZ

lw|® . (4.28b)

Since the function 1 — Xw — v'1-2Xw = (Xw)? + O (Xw)? is analytic in Xw small, the function in @28a) is
analytic in the domain (£.27) for ez small enough. Furthermore, noting that the functions v1-2Xw -1 =
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~Xw +O0Xw)? and 1 - 2Xw — V1 -2Xw = —Xw + O(Xw)? are analytic in Xw small, we deduce that also
(4.28D) is analytic in (x,y, w) in the domain (£27). The analiticity of Ji’w (x,y) and Jz,w (x,y) follow similarly.
Then by Cauchy integral formula,

& 1

c?ffzdf,’lJj,,[,w(O,O)X’l’zy’”1 where

Bow(xy) = . 00" Yo (0,0)] < prlps!Cre” 7. (4.29)
p1,p2=0 F1-F2t

J

-~

::kja;,,,1 (@)
In view of (4.26) we have J{,,w (%,0) := KJ;,, . (0) for any x, and therefore
Koo @ =Ko @, Ky (2=0,Vpa=1, (4.30)

and, by (4.14), (4.16), (.21), one computes that

Khe@=-2(1-Z)2sin(Z)) -1, KLo=1, KL.@=(1+5)sn@. @D

Choosing above R = 4 and ¢ > 0 such that [sin (z/2)| < 2 for |Imz| < ¢, we deduce that each k), ,, (2) :=

A0k 1, 4, (0,0), ] =1,2,3, satisfies

0Lk

o (| 1T Cre” P, WZER, 120,p1,p220. 4.32)

Now, in view of (4.26), (4.29) and (4.30) we expand

. ALf . . .
JIZ,Z 1 +sz) = Jsz,w (f!AZf) = K‘Ja,z (O) + Z Z k‘ja;pl,pz (Z) f‘p2 (Azf)pl
p=l p=1
p1+p2=p
::R{,’tp(f;x,z) (4.33)
. N _. .
=KL 0+ Y K (f;x,2)+ Y. K& (f;x,2).
p=1 p>N
———
::R{fN(f;x,z)
We claim that forany peNand ¢=0,...,7,
LYY (fix,2) € KFY (4.34)
OLRE™N (f3x,2) € KFL g won leo] - (4.35)
Step 1 (Proof of (4.34)). We expand in Fourier
AR (Fixz)= Y OREP (@) fj, - f;, el ti)x (4.36)
7pe@\{opP I
where, in view of (4.33) and (4.2),
(i J f 1—e i
2 = . AN, VAN, =
@ plzzl wp1,p, (2) }:[1 jg (@) iy (@)= 5
pr+p2=p
For any [ € Ny we have
1P Ly £ oh
0K (2) = > Y, 0Zknp ., @[04, (2). (4.37)
P l2+llyl+"'+llyp1:l P121 L7=1
p1t+p2=p
For anyj € Z\ {0}, we may write A] (z) = 215i_ne(_zi;;) =i Zl]]'lz_ol e_isgn(j) (j/+sgn(j)%)z and then, for any le No
1 |]| NI g+l
aa;@|s Y () ilil'™, vzer. (4.38)
j'=1
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By (@.32), (4.38), we estimate [4.37) as (the constant €4 is the one in (£.32) for R = 4)

. h
~i, —-p1— . hgtl
ASIOIENEDS Y Ce” P T gl
s l2+11‘1+"'+l1‘p1=l p1=1 q=1
pitp2=p
< 2 1\?P . lpl ) pie p .
Sept\ | Tl Tl lial =GP 17pl" T1 1l (4.39)
4 g=1 g=1

for some constant C; > 0, for any z € T. The bound (4.39) implies, recalling Definition[2.26] the claim (4.34).
Step 2 (Proof of (4.35)). Recalling (4.33) and (@.36), we have, forany0< k <K, [,y € Ny,

FAAR N (fixa|= XY IRl
p>Nj,€(Z\(0)?

. 5 Pk
<y ¥ ¥ |Jp|Y|aéK;:<z>iq1]1|axffq

p>N jpe@\ON? ki +...+kp=k

- B Ak
=D I M M o i | N1 |
q:

p>N jpe@\ON? ki +...+kp=k

oLKIP 2|0k (£ -+ £,)

using @.39). Then, assuming with no loss of generality that |fp| = max{ | Jj1 | Yoo | ip |} = | j1| we have

it o

o, » .

p>Nj,e@\OY ki+..+kp=k  \g=2 ¥

< Cp k P ak‘7 akl

< 5o (Dol flers
P>N kl,...,kp:O q:2

= Z (Cik)P ”f”;z:%iak ||f||k,3+y+l+ak
p>N

3+y+1

recalling (2.5). Summing in p and setting sy := 11 + ak, we get, forany / <8, forany 0 <y < s — 50,
kAY Al >N (£ N+1 || gV
|08 %aL RN (Fix2)| = X I F IR I F s V2€T,

which, recalling Definition [2.286], proves the claim in (£35).

Equations (4.34) and (4.33) thus prove (4.22).
[Proof of (4.23)-(@.25)] In view of (4.33), in order to expand KJ;L 2 (AZf ) as in ([4.23), we perform a Taylor ex-

r2

pansion in z of the functions KJ;,_ . (0) and Rj,;p (f;x,2), for any p = 1. By (@31) we have
K, - (0) = K5 (0; ) + K& (0; x) sin z + KEZ (0; x) (2sin (2/2))% + 0 (0; x, 2) (4.40)
with KJ;,’CI 0;x),j=1,2,3,1=0,1,2, are the constants computed in (4.25) and
0% (0;x,2) = p2° (0;x,2)=0 and @5 (0;x,2) € KFy (4.41)

is x-independent. Then, for any p = 1, we expand

. 2 . .
K:P 1X,2) = Rj’p’l i X 2y RIP3 1X,2
P (e = LR () +RP (i) i

= KEPO (f; %) + KEP! (£ x) sinz + KEP? (f; x) (2sin (2/2)2 + 057 (f3 %, 2),

where, for [ =0,1,2,
1
= ﬁ

KiP! (%) OLKEP (f;x, Z)| (4.43)

z=0
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and - - ~ s
0" (fix,2):=Re” (fx,2) +Re”" (3 x,2)

. 1 .
R:PS (f;x,2):= %fo A-923KYP (f;x,92)dd 2° (4.44)
RIP3 (f;x,2) := KEPY(f;x) (z—sin2) + K5P? (f; x) (2% — (2sin (2/2))?).

Notice that z — Q{f 3 ( fix, z) is 2m-periodic thanks to @.42). In view of and ([@.42), we obtain the
expansion [4.23) with, foranyj=1,2,3,

. . N _. .
KL (f;x) = K 00+ Y REPH(F0) + KN (£50), 1=0,1,2,
p=1

(4.45)
. . N . .
0% (f3x,2) = 057 (03 x, 2) + lej(;p’s (fix,2)+ 05" (f3%,2)
p:

and

RN (fx)= Y KPP (fx), o™ (fixg)= 3 ob (fix2). (4.46)

p>N p>N
Let us prove @24). We deduce that each K" ! (f;x) = %OIZR{;’” ! (f;x,0), p = 1, is a homogenous function

in .7-"75 by (@.34) and Remark .27 Analogously the non-homogenous term ijN’l (f;x) is in .7-"}'30, N+1 [€0]

by (4.35). Next, by (4.34) an integration in z give that Q{f 3 (f3x,2), p =1, defined in @.44) is a homoge-
nous Kernel-function in KF 3p and, by (4.33), the non-homogenous term Q{fN’s ( fx, z) in is a Kernel
function in K]:I?} o.N+1 €0l

Finally the zero-homogenous functions K{,’cl (0; x) are the constants in (4.25) (cf. (4.40)) and the Kernel
functions g}’ (0; x, z) are in @41). O

4.3 Paralinearization of the quasilinear integral term Z ()

In this section we paralinearize Z (f).
Lemma 4.4. The termZ (f) defined in @.I3) can be written as
Z(f)=0p"" [~ (L+vz(f; x)) Lz (€D +iSTa—2 (f;%,€) + VIZI (f; x) + P (f;x,€)| f+R(f) f (4.47)
where
* vz(f;x) is the real function

vz(fix):= —(r 2Ky (f3x)+1) € 2-7:50,1 l€o, N1; (4.48)

Lz (€D := TLUeEn + % +(1- %)2 Mg (I€]) is a real Fourier multiplier in fglaX{O’“_l} (the Fourier
-3

multipliers TL, (I€]) and M (I€]) are defined in Lemmal3.1);

Sz,a—2(f%,&) = —% (vz(f;x)), 0eLz (€D + r 2Ky (f; x) Mg (1€1) € is a real symbol inZF%’_OZ'l l€o, N1;
» VIZ1(f;x) is a function in Z‘FE,O,I leo, N1;

* P(f;x,€) isasymbol in ST, , [eo, N1 satisfying @220);

* R(f) is a real smoothing operator in XR \, | [€o,

NI.

The rest of this section is devoted to prove Lemmal4.4l
By Lemma[2.22]we have

6:_2f =0p"" [r72] 6. f +Op™" [8.f](r™* = 1) + Ri (r™* = 1)8.f + Rz (8.f) (r > -1)
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with smoothing operators Ry, Ry in ﬁl_p for any p > 0. Hence, recalling the definition of Z (f) in @I3), we
write

7(9)= 35(1).

7 (f) =J[OpBW KL, ArZZf) OPBW[T’_Z]%dZ,

f) =J[OPBW Ka,z Arzzf) "5 zf]mdz (r2-1), (4.49)
Zs(f) =J[OpBW Ka, A:Zf) Rl(r_z—l)m z,
L) :J[OpBW Koz A:Zf) Rz(lzsirf(zzf/z)l”')dz (r= -1

Step 1 (Paralinearization of Z; in (.49)). By (4.23) and isolating by (4.25) the zero-order components in f,

we write
Af _
Kb )| o™ 1177 -

op3W [K(lx'o (f;x)+ KL! (f;x) sinz+ KL? (f;x) @2sin (2/2))% +pk3 (f;x,2)] opB" [r‘z]

OpBW

_ 1 a . 2
=-1-3 (1 - 5) (2sin (z/2))

+ OpPW [(KE2 (f5%) +1) + KY (f; x) sinz +

K(ll,Z(f;x) ;(1——))(25m(z/2)) +Q (f;x,z)
+ OpPW [KLO (£5%) + KLY (f5 %) sinz + KE2 (f5 x) (2sin (2/2)% + 05 (f5 %, 2) | OpP™ [r 2 = 1] (4.50)

where Q,lx’s ( fix, z) is a Kernel function in XK F 13< 01 l€0, N ] by (4.24). We now expand the last line (4.50). By
Proposition 22Tl there exists a smoothing operator R (f) in £R Kp 0,1 €0, N such that

0 BW[KIO(f x) + Ky (f; x) sinz + K&2 (f; x) (2sin (2/2))? ]OpBW[ -1]
=0pBW [(r 2= 1) (KL (f; %) + KLY (f; %) sinz + KY? (f; %) (2sin (2/2))?)]
+R(f) +(sin(2) + (2sin (2/2))*) R(f) . (4.51)

J

=R (f32)€ZKRE5) leo, N]

Moreover due to Proposition2.34] Item[T] there exists a Kernel-smoothing operator R; (f;z) in = KR " K01 % leg, N]
such that

op”" [oy® (f;x,2)]Op”" [r2=1] =0p®" [(r2-1) 03> (fix.2)] + R1 (3 2) . (4.52)

Plugging (4.51) and in we get

z _ 1
op®W [KL , ( rf) opBY [r2] = 1—5(1——)(Zsm(z/2))
+ OpBW (r_thl,gO(f;x)+1)+r_2K(1,6'1 (f;x) sinz+(r_zK(lx'z(f;x)+%(l—%))(Zsin(z/Z))z]
+ 0p”" [r?05° (f3%,2)] + R (f) + Ry (£ 2) (4.53)

where R (f;z) is a Kernel smoothmg operator in £ KR
the expression of Z; (f) in ( ) we obtain that

K 0 . [60, N]. Inserting the decomposition (@.53) in

_ [ %f Lo ey % f S
Il(f)_ ][IZSin(z/Z)I“dZ 2(1 2)][ |2sin (z/2)|%2 dz+j:ZIILJ(f) (4-54)
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where

T, (f) = OpB" [r2KL° (fx) + lfmd

. . B 2K11 J[ sinz dz,
12(f):=0p" " [r~ x)] 12sin (2/2)|% 0=f dz

(r—sz;x) 3 (-3 s o=

[2sin (z/2)]% 2
T 0 BWr.-2 1,3 X ;f
14 (f) = ][ P [ ea” (f5x.2)] |2sin (z/2)|%?

Lo )= f (R00)+ R (152)

|2sin (z/2)|%

Tis(f):= op®"

By recalling and (3.9) we have

0.f
|2sin (z/2)|¢

Next, by Eqs. 3.21) and (3.22) we deduce that

dz=0p"" [T, (€n] f. (4.56)

2

1 a 6.f re-a a
1 ————dz=—"— 1-—=] My (D 4.57
(-3 s ¢ o 2)Zf()+( ~) MDD (4.57)

By (4.58), using also Proposition 2.2Tland (2.28), and that T}l (I¢]) is a symbol of order a — 1, we have
Ti1 (f) =Op®W [r2KL0 (5 x) + 1] OpBW [TL (D] f (4.58)

= 0p™ | (r72KE (£32) + 1) Th D + 502 (r 2KE (i) +1) 06ThED + P (i 8) | £+ R(f) f

where P (f;x,¢) is a symbol in ZFKO ) [60, NI.
In order to compute Z; 5 (f) in we need the following lemma.
Lemma 4.5. We have .
sinz )
m(‘jz(p dz=1My (D)) D ¢, (4.59)
where M, (€|) is defined in (3.6).

Proof. By oddness f usi;ﬂ%}wdz = 0 and thus, integrating by parts,

sinz B sinz [2(1-cosz)]'"2
|2sin(z/2)|“5z¢dz_ ][[2(1 05 2)] a/z(p(x z) dz= ][0 ( (1_%) )¢(x z)dz

1 ¢ (x—2) ,
=- —dz=iM,(IDl)D
2(1—2)][[2(1—00%)]5‘1 FTi e ¢

using B3.20). This proves (4.59). O

Lemmal4.5and Proposition[2.2T]and since M, (I¢]) is a symbol of order a — 3 gives that

Ti2(f) =0p"" [i r?KG () Ma (€D E+ P (f3%,8)] f+R(f) f (4.60)
where P (f;x,¢&) is a symbol in ZF 1 [60, N] satisfying (2
Let us now compute Z; 3 (f) i in ( (4.55). Applying Proposmon 2.36lwe deduce that

Tus(f) =0pBY [V [Tu3] (f;x) + P(F;%,8)] 4.61)

where

_ 1
V[Ilyg] (f;X) =1|r ZKtlxyz (f;x) 2 1—— )fm dz (4.62)

is a function in ZF%¥  [eo, N] and P (f;x,¢) is a symbol in 2T

K,0,1 €0, N1, being a € (0,2).

Pl
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Similarly, applying Proposition[2.36]

T14(f) = 0p"" [V [Zoa] (fix) + P(fix,8)] f (4.63)
where ) 13( )
- fixz
VT ;X ::][ ———d 4.64
[T1.a] (£3) 12sin (z/2)|%72 ‘ oy
is a function in ZF§ | leo, N] by Remark[Z30} and P (f; x,¢) is a symbol in Ty ; [0, N1.
Finally, the last term in (4.55) is, applying Lemma[2.35]since % €ZKR K‘Ooll [0, N1,
o5 (£) = R(AOP™Y [ToUED] F+ R(F) £, R(F)R(f) € TR, leo, NI (4.65)
We thus plug (4.56), (4.57) (.58), (4.60), (4.61), (.63), (4.63), in Equation (4.54) and obtain
I'e-a

T,(f)=-ThDD =~ = (1= 5) Me DD f

r1-3)
+Op™ | (r 2K (i) +1) Te (€D + %f%c(r‘zKé'“ (f52) +1) 0¢To (€D +ir 2Ky (f5x)Ma (€D | f
+0p"W (VI (£;x) + P(f;x,)| f+R(f) f  (4.66)
where V [Z;] (f; x) is the function (cf. Egs. and (&.64))
VIL (fix) =V [Zos] (fi) + V [Tr4] (£ %) € 2F o 1 leo, NI - 4.67)

Step 2 (Paralinearization of 7, in (4£.49)). Since K}L 2 (Arzzf ) € ZK}"I% 0,0 [€g, N] (cf. Lemmal4.3) and 6§, f € KF {
we apply Proposition[2.34} Item[Tland obtain that, for some R (f;z) € £ KR P o0, N

K01
][OpBW KL, (Azf)]o BW (s Zf].L:][OpBW Azf)

[2sin (z/2)|¢
where R (f) is a smoothing operator in =R

dz

Zf] |2$1n(z/2)|06 ][RZ (f;Z)dz

1
Ka.z

=0p™" [VIZ,1] + R(f)

x.0.1 €0, N1 (by Lemmal[2.35) and

1
d
|2sin (z/2)|% o

VLI (f;x) ::J[K}m( rzzf)ézf

isa function in ZF® K01

Finally, using the identity (cf. Lemmal[Z.25)

[€0, N1, by Remark[2.30land since since K}LZ (Ar%f) O.f m isinZ K]-"Il< 0"‘1 (eo, N].

rP—1=0p8W [ﬁrﬁ‘z]f+R(f)f, VBER, (4.68)
we write the term 7 () in £.49) as, using Propositions2.2Tland 2.23]
T, (f) = (0p"™ [V (Z1 (fix)] + R(f)) (0" [-2r*] F + R(£) f)
=0p™ [VIL) (f;x)] £+ R(f) f (4.69)

where
VL] (f;x):=—2r*VI[L,] (f;x) € ZFg .1 l€o, NI . (4.70)

Step 3 (Paralinearization of Z3 in @49)). We first note that, in view of (&68), the fact that Op" [fr#~2] and
R(f) are 0-operators, and Proposition 223} (ii), we deduce that

R (r7?-1)=R(f) e TR, €0, N]

is a smoothing operator that we may also regard as a Kernel-smoothing operator in ZK'R " Kol [60, N]. Fur-

thermore by (4.3) m is in KM, KM "'~ and KJa Z( Zf) is a Kernel function in ZK]:?%O o [€0, N1 by (#.22).
Therefore by Proposition 2.34]Items 2] andB] and Lemma[2.35] we obtain that

L (f) = R(s32) fdz=R(f) f @7

where R (f) is a smoothing operator in TR ./ Kx,0,p €0, N1
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Step 4 (Paralinearization of 74 in (4.49)). Reasoning as in the previous step there is a smoothing operator
R(f)in ZRKO €0, N such that

I (f)=R(F)(r*-1)=R(f)f 4.72)
(use (4.68)) where R ( f ) is a smoothing operator in SR P K.0,p [€g, N1.

Step 5 (Conclusion). Inserting Eqs. (4.66), (4.69), (4.71) and in Eq. (4.49), recalling the definition of
Lz(&l) in LemmaM4) and that vz (f; x) := —(r 2K (f;x) + 1) (cf. Eq. @48)) we obtain
Z(f)=~Lz(Nf+0p"" | ~vz (f;x) Ta (€D - % (vz(fix)), 0cTa (€D +ir 2Kg" (f;x)Ma (DS | f
+Op®" [VIZI (f;%) + VL) (f;%) + P(F; 5,8) | F+R(f) £ (4.73)

Finally, substituting T1 (€N = Lz (&N — F(12_ f))z —-(1- %)ZMa (1¢]), we deduce that (4.73) is the paralinearization

(@.47) with (cf. Eqs. (4.67) and (4.70))

I'2-a)

VIZI(f;x) = VL (f; x) + VI (f5 ) + vz (£ %) Ta_o:
2

€ ZFg 0.1 [€0, N1 (4.74)
and another symbol P (f;x,¢) in ZT'¢ | [€o, N] satistying (Z.20).

4.4 Paralinearization of the quasilinear integral term 7 ( f)
In this section we paralinearize 7 (f).

Lemma 4.6. The term J (f) defined in @I5) can be written as

T (f)=0p"" [~ (1+vy (f;%)) Ly (1E) +iSg,a-2 (fi %, &) + VITI(f;x) + P(fix. &) f+R(f) f  (4.75)
where

* vz (f;x) is the real function

1 f(x)
-1

7(fix):= (K?);O (f;x)—1)+a K30(f,x) 62-7:5,0,1 [€o, NT; (4.76)

e Ly(I¢D):=- Ifl2 Mg (I€l) is a real Fourier multiplier in fg_l (the Fourier multiplier M, (I€|) is defined

in Lemmal3.1);

* Sga-2(fi%€):= =% (var (fi%) 0Ly (1ED+((@ -2 KG' (i) + & (FKY (30) - /K% (f3)) | Ma (16D ¢

is a real symbol in ZF%—OZJ leo, N1;
e VIJI (f; x) is areal function in Z}'}go 1 €0, NT;
* P(f;x,§) isasymbol in XTI\ | leo, N| satisfying @220);
* R(f) is a real smoothing operator in ZRI}?O'I l€o, N1.

The rest of this section is devoted to the proof of Lemmal[£.6l
By Lemma[2.22]we obtain that

Ki( Zf)f(x z)= 0p BW

K2 ( Zf)]f(x 2)+0p®"W [ (x - z)]( (:f) KZZ(O))

o ) ) ()

-KZ, (0)) 4.77)
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where R, R, are smoothing operators in 7’51‘9 . Hence, recalling the definition of J (f) in @I5), we have

J(f):

||
Hﬁ "H ||[\/]4>

Ji(£),

9 Azf)] B sinz
Ka ( [ D osmeE

o Y o __sinz (4.78)
[/ (x=2)] ( ( r2 ) K“'Z(O)) 2sinczr2

o 2 Azf)_ 2 ) I (4 &
«73(f)-—J[Rl (Ka,z( ) K“’Z(O) fx=2) [2sin (z/2)|% dz,

sinz

. oo 2 Azf)_ 2 )7
ﬂ(f).—fRz (f' (x Z))(Ka,z( 2 Ka,z (0) 12sin (2/2)]% 4

Step 1 (Paralinearization of 7; in (4.78)). By (4.23) and (4.25) we obtain that

sinz 3
J[f( - )|251n(z/2)|“ +.Z‘71’j(f)

Ji1(f) = OpPW [K2O(f:x) - 1]][f(—) sin :

|2sin (z/2)|% 4.79)

Sll’l2 Z

Fia ()= 0p™ K2 (i) f £/ e-2) o

Js(f ][OPBW[Q[3 D(f;x,2)] f(x—2) dz,

2,

where, by (4.24), (4.25) and Remark[2.29]

sinz

o (f30,2) 1= (KG? (f3x) sin (21207 +05° (f3,2)) oo € KF gl eo, N1 (4.80)
Now, by (3.18), the first term in (4.79) is
][f (x-z )|ansll( 72”@ =|DI* My (ID]) f (4.81)
and, using Proposition [Z.21]
Ji1(f) = 0p" M [(KG° (f:x) = 1)]IDI*Ma (D)) f (4.82)

= op®" | (K2 (f;x)-1) |5|2Ma(|f|)+§ax(K§g°(f;x)) 0: (1€ Mg (1€ + P (f;x,€))| F+R(f) f

where P (f;x,¢&) is a symbol in ZFKO L [€0, N1. In order to expand 71,2 (f) in @79 we write

sinfz_ cos®(z/2) 1

12sin (2/2)|*  |2sin(2/2)|%72  |2(1 - cos (z)| 2!

+012(2), Q1,202 eKF5 “. (4.83)

As a consequence of (#.83), using also (3.2I), Propositions[Z.36land2.2T], for any « € (0,2), we get

BW K21 BW K21 d
T2 (f) = [ fX]J[f(x 2) 20— cos (] J[Op (f;x)e12(2)] f'(x~2) dz

= OpB" [K%! (f3x)]ita -2 Mo (ID)DS +0p®" [a(f3x,¢)] dx f
=0p®" [i@-2)KE" (fix) Mo (EDE+P(f;x,8)] f+R(f) f (.64

where a(f;x,¢) is a symbol in XTI [eo, N1 and P (f;x,¢) is a symbol in IT¢lo1 [€o, N1 satisfying (Z.20).
Furthermore, by (4. Proposmonsandm for any a € (0,2), the last term in (Z79) is

Ji3(f)= 0p®W [P(fix, &) f+R(f)f- (4.85)
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In conclusion, by Egs. (4.25), (.81), 4.82), (4.84) and (4.85) defining
va (f;x) :=K5 (f;x) - 1€ ZFg,  [eo, NT, (4.86)

the term J; (f) in @79) is

Ji (f) =0p®W [(1+v2 (f;%)) [EF Mg (1€ED] f

+i0p”" %(w(f;x)) 0: (1E7 Mg (1ED) + (@ =2) K2 (f3%) Mg (€D E+P(f;x,8) | fF+R(f) f. (4.8

Step 2 (Paralinearization of /> in (£.78)). Using (4.16), (4.2), the paralinearization formula (2.25) and (4.21),
we write

Ki,Z(ArZZf )—Ki,Z(O): (Gi’ ( 0=1 ) G2 (0))|2sin(z/2)|“

W (Gfm)'( Zf)|2sm(z/2)|“] 22 R(%zf) 0=/ 2sin(z/2)|*  (4.88)

Af)] _6:f 021 0=f
=0 1) e -+ (5)
P “%\ r2 )| r2sin(z) T
where R is a smoothing operator in R .” 0,1 [€0, N1 for any p. By Eq. (4.21) it results K3 X)) = a ze27 (=X)
and the map z— K3 0z ( rzzf ) is 2m-periodic. Therefore, by (4.78) and (4.88) we obtain that
A.f 62f
= fop®"[f (x- OBWKB(Z) = 4.89
2 (/) ][ P [ (x-2)]0p “2\ r2 J] r?)2sin(z/2)|* (4.892)
0.f10
+ ][ op®" [f'(x-2)] R [ sz sz (4.89b)
r

By (#3) and Remark[ZI6we deduce that M, (f;z) := r~28 is an operator in TKM %0, [€0, N1 As a conse-
quence by Proposition[2.34lwe obtain that

12 K,0,1

(f) = R(f;z)f where R(f;z)eZKR 3] leo, NI, (4.90)

and, by Proposition[2.34] Item[3] Lemmal[2.35] being a € (0,2), we deduce that the integral (4.89D) is

][OpBW[f (x— z)smz]R( f) fd =R(f)f (4.91)

where R (f) is a smoothing operator in=R " k0,1 €0, NT.
We now consider the term (£.89a). By Lemmal[Z.22lwe write

0-f

—5 =0pBY [r2]6,f +OpBW [6,f] r > =1+ Ry (r 2 =1)8.f +Ra (8. f) [r %~

where R, R, are smoothing operators in 7’51‘9 for any p = 0, and thus

K?x, (Azf)] OpBW[r—Z] fi (4.92a)

4,89a) = Bw ! - Bw
][Op [f'(x-2)]Op |2sin (z/2)|*

BW gl ., BW | 13 Azf)] BW -2 dz
+ ][ op”" [f'(x-2)]0p°" Ky , ( op°" [8.f] (r )IZSin(z/Z)I“ (4.92b)
BW gl . BW | 1¢3 Azf)] -2 dz
+fop™ (/-2 0p™ | K2 (55| (R (2= Vo + Ro G2 - 1) i
(4.92¢)
Proposition 2.34]give that
BW =f 6. f J[ _
(@.92a) = J[Op 2 x-2)K3 ( ) PTG dz+ 1 R(f;2) fdz
—

=R(f)f
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where R(f;z) is a Kernel-smoothing operator in TR 011 % e, N] and, since a € (0,2), the operator R (f) is

inZR " 0.1 €0, N1 by Lemma[2.35] Then by Proposition[2.34] Eq. (4.68), and Remark[2.30} we get

@92b) = OpBY (V1 (a1 (F; X)) f+R(f) f

where Vi [72] (f; x) is a real function in ZF§ | [eo, N]. Finally @32c) is a smoothing term R(f) f and we
deduce that

=J[OpBW

24 w3 Azf)] o.f BW .
rof(x z)KW(r2 lzsin(z/z)ladz+0p VI (f:X)] f+R(f)f.  (4.93)

Then we write
flx—2)=f'(x)- f"(x) sinz+p1(f;x,2)

where p; ( fx, z) is a homogenous Kernel function in /Ig]:? and, using [@.23), we deduce that

2 x-2)K3 (rzf

)= 2P0 () 2 (7 K (2) = R0 () sima 637 (£5.2),

where ()‘Z’Z ( fix, z) is a Kernel function in K F2 K01 [€g, N1, and, by also (3.9), Lemmal4.5]and Proposition2.36]

and Proposition[2.2T] we get
BW | ~2 ¢/ 13 Azf) 6-f _ RBW =2 g1 3,0( . BW 1

+10p™" [ (£ KG! (f30) = £ COKG® (£5))] 0p™™ Mo (12D €1 £ +0p™" [P (£;,€)] £
— opB" [r‘zf'(X) K30 (f;x) TLUEN] f

#1007 [ 20, (LE2K30 (150) 0cTh 060 +172 (/00K (f32) - " 0KEY (7)) Ma 6] 1
+0p"™™ [P(f;x,¢)] f+R(f) f- (4.94)
By Lemma3.Zlwe have T}, (1€]) = =15 [£1* Mg (€]) + Vg + mq—3 (€]) and so, defining the function
1
v (f:X)i=ﬁfr(x) K3O(f;x) € 2FR 1 leo, NI, (4.95)

the equation (4.94) becomes

J[OPBW

+iOpBW

21 3 Azf) 6.f _ BW . 2
r f (x Z)Ka,z( r2 |281n(Z/2)|a dZ—Op [V3(f!x)|€| Ma(|£|)]f

50 (v (£3) 0 (161 Ma 1€D) + 72 (/GO () = £ GOKS® (£:.)) Ma G€D¢ | £
+0pPY [Va |l (£3;%) + P (f3%,€)] f+R(f) £ (4.96)

where V2 [72] (f; x) == Vq v3 (f;x) is a function in ZFg | [eo, N]. By @39, @393), we deduce that
> (f) in @8%) - @890 is

T2 (f) = 0p®W [vs (f;x) 1EF M (1€D)] f
+i0pBW %(st(f;x)) 0c (IEF Mg (1€D) + r 2 (F' K3 (f;x) = 'K (f5x)) Mo (EDE| f

+0p" W VIR (f;x)+P(f;x,8)] f+R(f) f (4.97)

where the real function V [ J5] := V; [ Ja] + Vo [ Jo] is in ZFR

K,0,1 [€O)N]-

Step 3 (Paralinearization of 73 in (£78)). By Eqgs. (4.88) and (4.90), Proposition [Z.34] and Remark[2:32]and
% eyK .M}< 0,0 (€0, N1 (which follows by Eq. (£.3), Remark leﬁ‘ and Proposition [2.34), and since R; is a

r’sinz
smoothing operator in Rl_p , we deduce that

A
1 Kzzx,z ( rzzf) - Kzzx,z 0)

39

e SKRA) leo, NI (4.98)




Furthermore f'(x—z) =0yot_,f and 0y ot__ is in f<7\/l_/(1)’0. By Remark[2.29and Proposition 2.34l we obtain
(after relabeling p) that

Ry

A sinz 01—
Kﬁyz( :zf) -KZ, (0)] maxot_z: R*(f;2) eZKRKf’O"ll %leg, N] .

Finally Lemmal2.35limplies that

I (f) :][R* (f;2)fdz=R(f)f where R(f)eZR., leo1]. (4.99)
Step 4 (Paralinearization of 7, in (4.78)). We similar arguments one obtains

Ja(f)=R(f)f where R(f)eZR%  le0,1]. (4.100)

Step 5 (Conclusion). We plug Equations (4.87), (4.97), and in Eq. (4.78) and, recalling that
L7 (I€) = = &> Mg (1)), defining the real functions V [7] := V [J2] in Z‘FE,O,I leo, N] and v7 := v5 + v3 in
2]:5,0,1 [, N] (cf. Egs. and (4.95)) we obtain the paralinearization formula (4.75) stated in Lemmal4.6l
4.5 Proof of Theorem[4.1]
We now paralinearize the scalar field in Equation (£.20). We apply Lemma[2.22]

7L () 0p™ [ Z (1) + Op™ [Z(1)] (> ~1) + R (P =) (1) + R (Z(£) (1),
r@J (£)=0p"" [r=*] T (f)+0p" " [T (A (r = 1)+ R (r=* = 1) T (f) + Ba (T (£)) (™ =1).

We thus apply (4.68), Lemmas [2.19} 4.4 and [4.6] and Propositions [Z.2T]and [2.23] and obtain that there exist
real functions Vz, V7 in ZF% , , [eo, N1 such that

r?9Z(f) = op®" [P~ Z(f)+0Op"" [Vz(f;x)] f+R(f) f,
rJ (f)=0p"" [r=*] T (f)+0p™" (V7 (f;x)] f+R(f) ],

for some smoothing operator R (f) in ZR ", , leo, N1.
A key fact proved in the next lemma is that the imaginary part of the symbol in (.102) has order at most

—1. This is actually an effect of the linear Hamiltonian structure, see Remark[4.8

(4.101)

Lemma 4.7. It results
Op” [ Z(f)+ 0p" Y [r7) T (f) = =0p™" [(1+ 92 (f3x)) Lz 16D + (1+ 77 (f3.%)) Ly (ED] f
+OpBW [VZ (%) + V7 (F;2) + P(Fix,8)] F+R(f)f  (4.102)
where
* L7 (I&) and Ly (I&]) are the real Fourier multipliers defined in Lemmasl4.4 and[4.6;
« v7(f;x), V7 (f3x), Vz(f5x), V7 (f; x) arereal functions in 2Fg | [eo, N1;
o P(f;x,&) isasymbolin ZFI}’IO'I l€o, N1;
* R(f) is a smoothing operator in ZRI_{’O’I l€o, N1.
Proof. Proposition[Z.2Tland Lemmas[4.4]and 4.6l give that
OpP [ Z(f) = Op™Y [r*7* (= (1+vz (f32)) Lz (€D +1 Sz.0-2 (fi%:8))] f
+Op™ | 2 (127 (L vz (£9)) 0Lz (2D | £
+0p"Y [Vr (f5x) + P(f5x.8)| f+R(f) £,
Op [r7*] 7 () = 0p™" [r (= (1+ vy (f3)) Ly (D +i S.a2 (f3,6))] f
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+ 0PI | (), (14 v (fi3))0cLs 06D | £

+0p™ [V (£3x) + P (i d) S+ R (),
so that, defining 77 (f; ) := 2% (1 + vz (f;x)) — 1 and v.7 (f; %) := 1~ (1 +v7 (f:x)) - 1, we get
Op™™ [~ Z(f) + 0p™" [7%) 7 )

= —0p"" [(1+792 (f;x)) Lz 1€D) + (1+ 77 (£3x)) Ly (D] S
+i0pPY [rP7 Sz4a (F3%,8)+ 177 S 702 (f;%,8)] f (4.103a)

+ % OpBW [(rz—a)x (1 +vz (f;x))Gng(lfl) + (r‘“)x(l +vy (f;x))afLJ(|§|)] f (4.103b)
+0p™W [z (f;x) + V7 (f; %) + P(f;x,E)] f+R(f) £

We now prove that the sum of (£I03a) and (4.103b) give a paradifferential term of order —1. We first note
that, by Lemma[3.7] we have the asymptotic expansions

IEPMg (1ED) = &4 1E1%7 1+ mg—3 (I€]), EMg (I€D) = Calé1¥3 &+ mg_y (IED),

1 e < ra-l o . re-o (4.104)
IME a_lcalfl + Vg +mg_3(é]), where &y:= —F(l—%)r(%) ,

so that
0: L7 (1ED) = 8o 1E1% 3+ ma—a (I€]),  O¢L7(IE) = —(@—1) Ea1EI* 3 E+ mg_g (IE]) .

By the explicit definition of the symbols Sz 4—» and S 74— in Lemmas[4.4]and .6 and (4.104) we have the
expansion of the symbol in (4.103a)

i(r*7 Sz.a-2 (f3x,8) + 177 S7,0-2(f3%,€)) (4.105)
:i[_rz—“ %(vz)x(f;x) +@-1r° %(Vj)x(f;x) +Aq1 (f3%) | EalE1* 2 E+iP(f5x,8),
where

(4.106)

Ao (f33) 5= = |KE (£ + @=2KE () + 5 (7 K& (75) - 1 KS® (£:0)

is a function in Z}'}@ 0.1 [€0, N1, recalling (.25). Then the sum of (4.103a) and (4.103b) gives

P27 St a2 (f32,8) +17% S7,a-2 (f3,€)

- % (77, (L vz (£3)) 0Lz 18D + (77 (1+v.7 (£3%)) 9Ly (16D

= %I—rz_“(1+vz(f;x))+(a—1)r_“(1+vj(f;x))]€+Aa,1(f;x) CalE1*3E+P(f5x,8), (4.107)
=(Aao(F:0)).

where, having substituting the explicit values of vz, v 7 in (4.48), (4.76), we define

Ago(f;x) = ri“ Ke? (f5%) + (@ - DKE (f5x) + f—; K3 (f;x)| +2- ) (4.108)
which is a function in £F§ | e, N]. We finally write
EI0D = | (Aao (), + At (f33) | Gal€1* 36+ P (5,8 = P(f33.6) (4.109)
in view of the key cancellation
Agn (f3x)+ % (Aao(f3x)),=0. (4.110)
proved in Appendix[Al By we deduce that (4.103) has the form (4.102). O

41



Remark 4.8. The algebraic reason of the cancellation (IT0) is that a symbol of the form ig ( f; x) 1£|*73¢, as
in (4.103), with a real function g ( f; x), does not respect the Hamiltonianity condition (2.21).

The next lemma enables to highlight the quasilinear structure of the vector field in (4.20).

Lemma 4.9. It results

op®" [ Z(f)+0p®V [r Y T (f fG L0dz (r-7*-1)
-1

Op™" [(1+v(f3x)) La (€D] £+ Op™Y |V (£3) + P(fix,6)| F+ R(F) f @111)

Ca

\2(1-9)

where Lg, (€]) is the Fourier multiplier defined in Lemmal31 and

. V(f;x),‘:/(f; x) are real functions in Z]—"}'ﬁ,o’l l€o, N1;
e P(f;x,€) lsasymbolmZFKOI[eO,N];

* R(f)isa smoothmg operator in ZRK 0.1 €0, N1.
Proof. By (@.I1) and (4.68) we have

J[G 0)dz (r —1):2L_:‘)z(f+0pBW[r‘“—1]f)+R(f)f. (4.112)
riao-9)
Notice now, from Lemmas[4.4land[4.6land Lemma[3.1] that
-1
I'C—a) Cq

Lz(¢h+Lg(&h -2 = Lo (ISD) - (4.113)

Y (R (2(1—%))
Now we claim that

-1
f/z(f:x)Lz(Ifl)H/J(f;x)LJ(IfI)=(2(%2)) v(f;x) Lo 1EN+ V (f3x) + P(f;x,€), (4.114)

for a suitable real functions v, V in FR K01 [€9, N] and a symbol P in st K01 (€0, N]. From Lemmas[4.4land[4.6]

and the asymptotic decomposition of T1 and M, in Lemma[3.7] we have that
Lh.s. of @IIA) = vz (f;x) To (€D = V7 (f3 %) [EP Mg (I€) + V (f3 x) + P (f5x,€)

_ a-1
- r(lr_(zz);x)(ﬁ) lfx|—1 (vz(fix) = (@=-D V7 (f;x))+V(f;x)+P(f;x8).
2 2

Defining v ( f x) = (i)~ VJ (fix) and using the identityI'(3—a) = 2—-a) ' (2 - a), we get

-1
Ca Ca ré-w |n|a—1
Lh.s. of = ; VI(f; P(f;x¢). 4.115
> of LD (2(1—%)) 20-9) (- 9r(g) a—1 "ATVUR PR a
By Lemma[3.6lwe have
Ca ré-a) (¢!

205 TO-9T (@) a1 v(f;x)=v(f;x) La (ED+V (f3x) + P(f5x,€) . (4.116)
2 2 2

Finally plugging (4.116) in (4.115) we deduce (4.114). _
Equations (4.102) and (A.I112) to (4.114) give that for suitable v, VexzF }'ﬁ 0.1 [€0, V] the desired decompo-
sition provided in Equation (4.1TT). O

We can finally paralinearize Equation (4.20). Using (4.101) and (@.I11) we have

r(Z(f) ][G ©dz (P =1)+r7 7 (f)

:_(z(fi %))_ OpBY [(1+v(f3x)) Lo (€N + V (f3x) + P(f; x,8)| f+R(f) f

where V (f;x) is a real function in 2]:50 . [€0, N1 This, combined with the observation that d, o R(f) €
ZRKP 0+11 [0, N1, proves that Equation has the form @.1).
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5 Birkhoff normal form reduction up to cubic terms

In this section we reduce the equation (@.1) to its Birkhoff normal form up to a cubic smoothing vector field,
from which Theorem [T easily follows. From now on we consider a € (1,2).

Proposition 5.1 (Cubic Birkhoff normal form). Let a € (1,2) and N € N. There exists p := p (N, @), such that
for any p = p there exists K':= K'(p,a) > 0 such that for any K = K' there is S0 >0 such tﬁatfor any s = sy,
there is €q (s) > 0 such that for any 0 < €y < €o (s) and any solution f € B SR (I;e) N CX(1; H; (T;R)) of the
equation [@.1) the following holds:

o there exists a real invertible operator ¥ (f; t) on H{(T,R) satisfying the following: for any s € R there are
C := C(s,€0,K) and €)(s) € (0,¢9), such that for any f € BSR (I;ep(s) and v e C*K_K(I; H;(T,R)), for
any0<k<K-K', rel, B

)]s e =

e thevariabley:=¥Y (f;t) f solves the equation
01y +iwg (D) y+iOp®W [d (f;6,8)]y=Rs2 (f; 1)y (5.2)

where
e wy (&) =E&Ly (I€D), with Ly (I€]) defined in Lemmal3.1l is a Fourier multiplier of order a;
e d(f;t,€) is a symbol in ZFK K2 [eo, N1 independent of x, satisfying 2.20), with Imd (f;t,€) in the

space XTI , €0, NT;

K.K',2

p-a)
2 leo, NI

=(
e Rxy(f;t) is a real smoothing operator in =R 2

The bounds (5.I) imply in particular that for any s = sp, there exists C := Cs g o > 0 such that
cHralsslyolsclfal,, veel (5.3)

Note that the x-independent symbol d (f;¢,¢) in has homogeneity at least 2 by Remark[2.6l

Reduction to constant coefficients up to a smoothing operator. The first step is to reduce the symbol of
the paradifferential operator in (4.I) to a constant coefficient one, up to a smoothing operator.

Proposition 5.2 (Reduction to constant coefficients up to smoothing operators). Let « € (1,2) and N € N.
There exists p := p (N, ), such that for any p = p there exists K' := K'(p, a) > 0 such that for any K = K’ there
are so > 0, €9 > 0 such that for any solution f € Bg g (I;€0) of @) the following holds:

* there exists a real invertible operator ¥ ( bi t) on Hg (T,R) satisfying (5.1D;

o thevariableg:=Y (f;t) f solves the equation

01 +0,00p"" [(1+a (f)) La (€N +Ha (f;1,€)] g =R(f3 1) g (5.4)

where
o Ly (I€]) is the Fourier multiplier of order a — 1 defined in Lemmal3.1}
e o (f) is a x-independent real function in Z]—"}'ﬁ 0.2 [€0, NI;
He (f51,€) is an x-independent symbol in ZFK K2 [€0, N1 satisfying @20), with TmHq (f3t,€) in
ZFK 2 [€0, NI;

)
* R(f; 1) is a real smoothing operator in ZRK 2, f [€o, NI.
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Proposition 5.2 relies on general results (given in Appendix[B) that describe how paradifferential oper-
ators are conjugated under the flow generated by a paradifferential operator, which is Hamiltonian up to
zero order operators. We shall use repeatedly the following result.

Lemma 5.3 (Flows of Hamiltonian operators up to order zero). Let p, Ne N, 0< K' <K and d = 0. Let us
consider a “Hamiltonian operators up to order zero"

A(f,7;1):= 050 0pBW [A(f,7;1,x,8)]

whereA(f,7;t,x,&) isasymbol in ZFI‘(‘?K,'p [eo, N1, uniformlyin|t| < 1, withImA(f,7;t,x,¢) € ZFI}}K,’p l€o, N1

satisfying 2.20). Then there exists sy > 0 such that, for any f € Bgu@ (I;€0), the equation

d

E(DA(f,T;t)=A(f,T;t)(I)A(f,r;t), @, (f,0;1)=1d, (5.5)
has a unique solution ®, (f,7) := ®, (f,7; t) satisfying the following properties: for any s € R the linear map
®4 (f,7;t) is bounded and invertible on Hj(T,R) and there are a constant C := C(s,€g, K) and e} (s) € (0,€o)
such that, for any f € B o (I;€4(s)), forany0<k<K-K',ve CK-K(L HY(T,R), tel,

lot(@atr.m) o), +Jok(on 0™ o), = o o0

s—
uniformlyin|t| < 1.
Proof. Since the imaginary part of the symbol A has order —1, the flow @, of (5.5) is well-posed and satisfies

(5.6) arguing as in [5, Lemma 3.22]. Moreover it preserves the subspace of real functions since A (f,7; 1, x,¢)
satisfies (2.20). O

In the proof of Proposition[5.2]it is convenient to preserve the linear Hamiltonian structure of (4.I) up to
order zero along the reduction which leads to (5.4), since it guarantees that the symbol (1 + ¢y (f)) La (IE) +
He (f;1,€), as well as those obtained in the intermediate reduction steps, are real, at least up to order —1.

Reduction to constant coefficients at principal order. We first reduce to constant coefficients the highest
order paradifferential operator in (4.1). We conjugate (4.1) via the transformation

fM=op(f,1) f 5.7)

where @5 (f,7) is the flow generated as in Lemmal5.3]by the Hamiltonian operator

B(f,7):=0,00p"" [b(f,;x)],  b(f,7;x):= 1 +T'[;)Eja3x()f:x)) ’

(5.8)

where B (f; x) is a real function to be chosen.

Lemma 5.4 (Reduction to constant coefficients at principal order). Let §(f;x) € Z‘FE,O,I [0, N1 be the peri-
odic function of the diffeomorphism x — x + (f;x) of T whose inverse diffeomorphism is y — y + B (f33)
where

B(fiy)=0" (—lﬂo(f))f -1

Ty €Zf}'§yoy1[eo,N], co(f)::(f(uv(f;y))‘ﬁdy) -1, (5.9)

andv (f;y) is the real function defined in Theorem[d1. Then, if f solves @.1), the variable ' defined in (5.7)
satisfies the equation

0/ +0,000™™ (140 (/) La 1D + V! (Fi1,) + P(fix8) | /M =R(fi) M (5.10)
where

* (f) is the x-independent function in Z]—"}'ﬁ 0.1 €0, N] defined in (5.9);
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e VI(f;t,x) is areal function in 2.7-"51 1 [eo, N1;

P(f;x,€) isasymbol in ET' | [€o, N1 satisfying (Z20);

R(f; 1) is a real smoothing operator in ZRK({’IN) l€o, N1

Proof. If f solves @) then, the variable fI!l := @5 (f,1) f := ®5 (1) f satisfies, using also the expansion
La(I€]) = Vg + ¢4 1E1%7 + mg—_3 (I€]) in @32), and 8,@5 (1) o Dp (1)L = —@p (1) 0 (8,5 (1)7!), the equation

0 fM 4+ ®p (1) 00, 00pBY [(1+v(f3 %)) (chIE1Y + Vg + ma_3 (1ED) + V (f;x) + P(f;x,8) ] op (1)7F £
+®g(1)o (0,05 Y fl =g M) oR(f)o@p (M~ M. (5.11)
By (B.1), (B.2) the principal order operator in (5.11) is
®p (1) 00,0 OpPW [(1+v(f;x)) k119 odp ()] (5.12)

= 0,00p™ | (1+v(£:7)) (1+0,B(f¥)° €197 4 Py (f3x,6) |+ R(f)

y=x+p(f;x)

where y — y + f(f;y) is the inverse diffeomorphism of x — x + (f; y) given by Lemma[23] P; (f;x,¢) is a

symbol in ZF}'Q 031 [e0, N] and R () is a smoothing operator in IR K(g 1 N) [eg, N]. By (5.9) we deduce that the

symbol of highest order in (5.12) is independent of the variable x, that is

®p (1), 0pW [(1+v(f;x)) e 1E1%7 ] @p (1) =0, 0" [cg (1+ o (£)) 1E1% 7+ Py (5 6,€) ]+ Ry (f) . (5.13)

The lower order conjugated operator in (5.11) is, by (B.I) and Lemmal[2.8]

®p (1) 00,0 0pB" [(1+v(f5x)) (Vg + ma—3 (1EN) + V (f3%) + P(f5x,&)] o @p (1)
=0,00pPW [V + ma_3(1EN) + VI (£;%) + P2 (f;x,8)] + R(f) (5.14)

where V! (f;x) is a function in Z]:K 0.1 [€0, N1, P2 (f3x,&) is a symbol in ZT¢L | [eo, N], since a < 2 (note that

K,0,1
Ma—3 (IEI (1+B(f; ) y=xiprm ) mq-3 (I¢]) is a symbol in ZI'¢ 5 [, N1) and R (f) is a smoothing operator
in ZRK 0.1 [€0, N1, by renaming p. Flnally by (B3) there exists a real function U (f; 7, x) in £F R . leo, Nland

K11
a smoothing operator R (f;t) in 2R . ” N] such that

K,1,1 [60»
®p(1)o (3,05 (1)) =0, 00pBY [V (f;1,x)] +R(f; 1) (5.15)

Lemma [5.4] follows by G.11), (5.13), (5.14) and with V1 (f;x) := V1 (f;x) + D (f;x) - c0 (f) Va, which
belongs to F¢ | | [eo, NI, and P(f;x,¢) 1= (P1+ P2) (f;x,€) = co (f) ma—3 (I€]) in ZTYy ; (€0, N1. O

Reduction to constant coefficients at arbitrary-order. We now reduce (5.10) to constant coefficients up to
a smoothing operator, implementing an inductive process which, at each step, regularizes the symbol of
6 := a—1> 0. We distinguish two regimes.

Lemma 5.5 (Reduction to constant coefficients up order 0). Leté := a—1 and] j«» :=[1/8] +1. For any
J€{1,...,j« — 1}, there exist p; defined inductively as p1 := N and pj+1 := p;+ N (1 —j6) such that for any K = ]
there exist so >0 and a

o symbol &V (f;1,) := (1+¢o (f)) La (D + HY (£ 1,6) where HY (£;1,€) € ZF?(’J._LZ l€o, N1, independent
of x, real, even iné;

e symbol rll (f; t, x,f) in ZF;};M leg, N1, real and even iné;

o symbol PV (f;1,x,&) in ZFIQIJ._I L €0, N;

INote that j» =min{jeN| (j-1)§ > 1}.
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e real smoothing operator RV (f; t) in ZRI}(.pl_pj) l€o, N1;

e Hamiltonian operator WU (f) := 8,0 OpBW [wl! (f; 1, x,&)] where w is the real and even in & symbol

(i (£
i A (fuxg) —fro(fitxdde) s
)= [ (ra() daet | cnloNi 516
such that if f € BY o (I;€0) is a solution of @I) then fU:= i 11 win (1) o®p (1) f solves
0uf 9 +0.00p™" [ (£;6,8) + 10 (fi1,5,8) + PU (36,5, fT=RU (£ /9. 517)

Proof. Note that (5.10) has the form (G.I7) for j = 1 with H}! (f£;£,&) := 0, M (£;2,8) := (1+ (f))La(lfl),
r(f;6,x,&) == VI(f;1,x), PY(f;8,x,&) := P(f;1,x,&) and RY(f; 1) := R(f; ). We now prove that, if fU
solves (5.17) then

fIr= @y (F,1)7 FY (5.18)

solves (5.I7) with j + 1 instead of j. By conjugation, from (.I8), setting @, (1) := @y, (f, 1), we have

0 fI Y+ @y ()7 00, 00p™ [ (£ 1,8) + 70 (£38,x,¢) + PU (£51,%,8)| 0@y (1) 041
—0,®@ 5 (D o, ) I =@, Mo RY(F8) 0, (1) I (5.19)
Using (B.6) we expand the highest order operator in (5.19) as
) (1) 00, 00p"™ [ 411 (£;1,6)] 0@y (1) = 0,0 0p"™ [T (£;1,6)]
- [axo0p™" [w“l (f3 t,x,f)] ,0:00p"™ [ 410 (£2,6)] | + 9.0 00" [Q_s -1 (51, %,6)| + R(F31)  (5.20)

where, in view of (5.16), Q_ (21 15 is a real and even in ¢ valued symbol in ZT' (ZJ % (€0, N] and R (fit)isa
smoothing operator in =R Kj2 [€o, N]. By symbolic calculus, (5.16) and since 4 U] is x-independent we have

[000p™" |wl (£;1,x,)

axoOpBW |49 (£:1,6)] | = 0xo| 0™ [l (£ ,%,8) |, OB [i€ U (£31,8) |
=0,00p"™ |~wd (£;1,%,6) 0 (¢ ¢ (£,6)) + Qagons (i1, 8) |+ R(f38)  (5.21)

2(,1)6

where Q 2—G-1s (f3 1, x,€) isareal and even symbol in D e [eo, N1 and R (f; t) is a smoothing operator

in ZR il [eg, N]. Using the asymptotic expansion (3.32) we have that
0: (5 zﬂ” (f;t, 5)) =(1+c(f)) caalél* '+ QY (f;1,6)  where QY (f;1,&)e =Ty | yleo, N1. (5.22)
So, by (5.20), (5.2, (5.22), (B.6), the definition of wU (f;t,x,8) € ngfl [€o, N] provided in Eq. (3.16), (B:29),

we obtain
Py (1) 005 00" [V (£51,6) 470 (51,3,8) | 0@y (1)
9 (£, + w0 (6,58 (1+w(f) caaldl™ +Qus (fi 658+ (fi6,x,8)| +R(f31)

Y (f;1,8) +][rm (f;6,x,8)dx+Q_j5 (f5 1, x,)

= 0,00p5W

=0d,00p®" +R(f;1) (5.23)

where Q_js (f; £, x,£) is a symbol in ngfl leo, N1. By (B.D),

—0, D@, (1) oDy g (1)=6xoOpBW[TU] (f; t,x,f)]+R(f; t) with TU(f; t,x,g‘)EZFKJfﬂl[eo,N] (5.24)

real and even in ¢. Furthermore by (B.6)

@y (0 00p™ [PV (f51,3,8) [ oy g (1) = O™

P (f;1,%,6)], (5.25)

up to a smoothing operator, with a symbol P ( f; £, x,&) in ZFI_(,IJ',1 [eg, N]. By (5.23), (5.24), (5.23) and since
Dy (D71 oRU(f;1) o®y, (1) isin ZR_(p_pj_N(l_Jé)) [eg, N1, we deduce that (5.19) has the form (5.17) with
jreplaced by j + 1 where HU+1] HU] +Jcr[” (f;t,x,&)dxand rit1:= TU + Q_ s O
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Now, implementing an analogous algorithmic procedure for the symbols of order < —1, we reduce the
equation (5.I7) for j = j. to constant coefficients up to a smoothing operator.

Lemma 5.6 (Reduction to constant coefficients up to smoothing operators). For any integerj = j., for any
K =] thereexista

. symbolzf[” (F;6,€) = (1+ o (f)) La (ED+HE (£ 1,8) with HY (f;£,6) e ST, leo, NI andImHg (f;1,¢)
inxrzt K,j-1,2 €0, NI, independent of x and satisfying ;

o symbol PU (f;t,x,¢) in Zl“;j_l(j_j*)(s [€o, N1 satisfying @.20);

* areal smoothing operator RV (f;t) in ZRI}(jpl_pj*) [e0, N1;

o bounded linear operators WU (f) := 8, 0 OpBW [wl (f; 1, x,&)] where

PU(f;t,x,&) = fPU(f;6,x,&)dx

b) AU AREOLE PN Vo P 5.26
(1+Co(f)) c}xalcfl"‘_l (€0, V] ( )

K,j,1

wl (f;¢,x,8) 1= 07"

and sy >0, such that if f € BS,R (I;€) is a solution of @I) then fU:= Hj:,_:ll Q1 (f5 1) o®p(f;1) f solves

0,1+ 0,0 0p™ [V (f51,8) + P (£ 1,2,)] £ = R (£;1) 70, 5.27)

We now conclude the proof of Proposition[5.21 Let j* := j* (p) := min{jeNp | (j—j+)8 > p — pj.}, which
is explicitly j* := [&83] +j, = [&8] + [-L5] +1, so that OpBW [PU") (£; ¢, x,€)] is a smoothing operator in

a-1

>R K(Jp lp i) [0, N] by Remark[2.T8] Then the equation (5.27) with j = j* has the form (5.4) with

-1

g=f=vw(fi0f,  ¥(f0)= _HICDWU'] (f,1) e@s (1),
j'=

symbol Hy (f;1,¢) := HI'(f;1,¢), smoothing operator R(f;¢) := RU'V(f; 1) + OpBY [PU") (f;1,x,¢)], and
defining p (N, a) := pj, and K’ (p, @) :=j*. O

Birkhoff normal form step. We now perform one step of Birkhoff normal form to cancel out the quadratic
term in (5.4) which, since ¢, (f) and Hy (f; t,¢) vanish quadratically at f = 0, comes only from R (f; ¢) 4.
By Proposition 5.Jland using Proposition 22Tl we first rewrite (5.4) as

0.9 +iwg (D) g +i0pBY [d (f;1,€)] g=Ri(f)g+R=2(f;1) g (5.28)
where

D) d(f;1,8) = (f)wa (@ +EHa(f31,¢) is a symbol in ZI'E x2 [€0, N1 independent of x, with imaginary
partlmd (f;,¢) in ZF(I)( K2 , l€0, NT;

= —(p—p)
ii) R;(f)isareal homogenous smoothing operator in R, e , that we expand (cf. (Z.22)) as

Ri(f)lv= Y ujxfavie™,  (DujreC, (5.29)
n,k,jeZ\{0},
n+j=k
and Rx (f;t) is a real smoothing operator in ZRK K2 e [€0, N].

In order to remove R; (f) we conjugate (5.28) with the flow

0:%5 (f)=Q(f) 5 (f),  ¥(f)=1d, (5.30)
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generated by the 1-homogenous smoothing operator

i =(rn Jk
Q(f)v= kfavie®, gn = - , (5.31)
(£) n,k,jeZZ\(O), .k fn? nj i(wa (k) - we (j) —wa ()
n+j=k
which is well-defined by Lemma[3.5] Note also that by (3.30) and since (cf. (2.24), (2.23))
_ max, (|nl, | j1)"
(rn,j ke = () =—n—j—k> [(r)p,jel=C dl ) (5.32)

max |z, |j1)" 2’

. . . Sptp
also Q(f) is areal smoothing operatorin R, ~ as Ry (f).
Lemma 5.7 (Birkhoff step). Ifg solves then the variable y := <DIQ ( f ) g solves the equation (5.2).

Proof. To conjugate (5.28) we apply a Lie expansion (similarly to Proposition[B.2). We have

0} (f) wa(D) (@)™ = —iwa (D) +[Q(f) , ~iwa(D)]

+f ‘a-neL (1) [0l —iwadIl [05(0) Tdr. 63

—p+p+a

Using that Q (f) belongs to TQ:“B the term in (5.33) is a smoothing operator in R K02

we obtain

[0, N]. Similarly

—idg, (f)op®" [d(f;1,¢)] (‘Db (f))_1 =-i0p®" [d (f; 1,¢)] (5.34)
up to a smoothing operator in ZR;I:,’BZW [€g, N1, and
@} (1) (R () + Rea (1)) (@4 (1)) =R (1) (5.35)
—-p+p+a

plus a smoothing operator in R [0, N]. Next we consider the contribution coming from the conju-

KK!,2
gation of d;. By a Lie expansion (similarly to Proposition[B.2) we get

0.9 () (@4 (1)) '=0,0(f)
21el) a0l +1 [a-eg(lel). (o). 0 (05 () "ar. 536

Since the Eq. @I) can be written as 9, f = —iwa (D) f + M (f) f where M (f) is a real a-operator in TM% |
by Remark[2.18/and 21T} we deduce by Proposition [2.23] that

0,Q(f) = Q(-iwa (D) f + M(f) f) = Q(~iwa(D)f) (5.37)

—p+p+

pta . . .. Aptpta .
ko2 l€0,NI. Since Q (—iwe (D) f) is in R, we have that the line

up to a smoothing operator in R
. —p+p+
(5.36) belongs to R KPOZB ¢ leg, N].

We now prove that Q (f) solves the homological equation
Q(-iwa D) f)+[Q(f), —iwe(D)] + Ry (f) =0. (5.38)

Writing G.31) as Q (f) v = Xk, jez 0 [Q (f) ]ivjeikx with [Q(f) ]{C := qp,j kfn, We see that the homological
equation (5.38) amounts to [Q(—iwe (D) f)]7 +[Q(f)]; (iwa (k) —iwe (j)) + [R1 (f)]{ = 0, for any j, k€ Z\ {0},
and then, recalling (5.29), to qn,j,ki(wa(k) —wq () - wa(m) + (1), j,k = 0. This proves (5.38).

In conclusion, by (5.33), 6.34), (5.35), (5.36), (5.37) and (5.38) we deduce (after renaming p). The
bound (5.3) follows by standard theory of Banach space ODEs for the flow and (&.3). O

In view of Lemma[5.7} Proposition B.1lfollows defining W (f;¢) := @, (f) o ¥ (f; 1) where ¥ (f;7) is de-
fined in Proposition[5.2land q)b (f) is defined in (5.31). We now easily deduce Theorem[L1l
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Proof of Theorem [I.LI. The following result, analogous to [I0, Lemma 8.2], enables to control the time
derivatives ||6’lff(t) |s—kq Of a solution f(t) of (@) via || f(£)|ls.

Lemma 5.8. Let K € N. There exists so > 0 such that for any s = sy, any € € (0,€q (s)) small, if f belongs to
B?O r (I;6) N CY (I; HS (T;R)) and solves @) then f € ck(r; H; (T;R)) and there exists Cy := Ci (s,a,K) = 1
such that ||f(t)||s < ||f(t)||K's = ||f(t)||s foranytel.

The first step is to choose the parameters in Proposition 5.1l Let N := 1. In the statement of Proposi-
tionB.Iwe fix p := p(1,@) + @ and K := K’ (p, ). Then Proposition B.Il gives us sp > 0. For any s > sy we fix
0 < €0 < min{eg (), €0 (s)} where € (s) is defined in Proposition[5.Iland € (s) in Lemma[5.8l o

The key corolla?y of Proposit_ion G.Ilis the following energy estimate where by the time-reversibility of
a-SQG we may restrict to positive times ¢ > 0.

Lemma 5.9 (Quartic energy estimate). Let f(t) be a solution of equation [@.1) in Bg r (;€0) r‘nC*K (I; Hg (T; R)).

Then there exists C, (s, a) > 1 such that
t
If @ <G (||f(0) I2 +f0 If @ ||‘s‘dr) , Vo<r<T. (5.39)

Proof. The variable y:= ¥ (f; ) f defined in Proposition 5.Ilsolves the equation where Imd (f; t,¢) is
a symbol in 1"(])( k2 [€0] and, being x-independent, OpB w [d ( fit, 6)] commutes with (D)*. Furthermore, for
the above choice of p it results that Rx (f;t) is in RY. ., , [€o]. Then by @.25), Lemmata 213 and 5.8 we
deduce N

t
Iyl < ls@ 2+ [ Jyw]idr, vo<i<T,
0
and, by (5.3), we deduce (5.39). O

The energy estimate (5.39), (I.10) and the local existence result in [21] (which amounts to a local exis-
tence result for the equation (4.1)), imply, by a standard bootstrap argument, Theorem[I.1] g
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A Proof of Equation (4.110)

We now prove the identity Eq. (4.110) where the functions Ay o, Ag,1 are defined in (4.108), (4.J06), and
K{;l, j =123, 1=0,1 are the [-th order Taylor expansion in z of the function z — K{,_Z (AZf) where the

r2
kernel functions K{x, - (x) are defined in (4.14), (4.16), (4.21). The verification of Eq. (4.110) can be automated.
The next small program in SageMath, a Python-based, open-source Computer-Algebra System, verifies

Eq. (A.110).

x, X, z, a =var('x, X, z, a’)
assume (0<a<2)

f(x) = function(’f’) (x)
Deltaf (x,z) = (£(x)-f(x-2z))/(2xsin(z/2))

Gl (X,z,a) = (1-2xX-sqgrt (1-2+X)+*cos(z))/ ((2x (1-X-sqgrt (1-2xX)*cos(z))) " (a/2))

DXG1l (X, z,a) = diff(Gl(X,z,a),X)
K1 (X,z,a)= DXGl (2%xXxsin(z/2),z,a) * (2%« (l-cos(z)))"(a/2)
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G2 (X,z,a) = (1/ (sqgrt(1-2+X)) )/ ((2% (1-X-sqrt (1-2*X)*cos(z))) " (a/2))

K2 (X,z,a) = G2( 2*xX*sin(z/2) , z , a) * (2« (l-cos(z)))"(a/2)

DXG2 (X, z,a) = diff (G2 (X,z,a),X)

K3(X,z,a) = DXG2(X*2xsin(z/2), z, a)* (2x(l-cos(z)))”(a/2) * sin(z)

expansionf_K1(x,z,a) = taylor(Kl( Deltaf (x,z) / (1+2«f(x)) , z, a ), z, 0, 1)

expansionf_K2(x,z,a) = taylor(K2( Deltaf (x,z) / (1+2xf(x)) , z, a ), z, 0, 1)

expansionf_K3(x,z,a) = taylor(K3( Deltaf (x,z) / (1+2xf(x)) , z, a ), z, 0, 1)

Cl0(x,a) = expansionf_Kl.coefficient (z, n=0)

Cll(x,a) = expansionf_Kl.coefficient(z, n=1)

C20(x,a) = expansionf_ K2.coefficient(z, n=0)

C21l(x,a) = expansionf_ K2.coefficient(z, n=1)

C30(x,a) = expansionf_ K3.coefficient(z, n=0)

C31(x,a) = expansionf_K3.coefficient(z, n=1)

AOD(x,a) = ((1+2*xf(x))"(-a/2)) = ( ClO0(x,a) + (a-1)xC20(x,a) + (diff(f(x),x) /
(1+2xf(x))) = C30(x,a) )

Al (x,a) = ((1+2*xf(x))"(-a/2)) = ( Cll(x,a) +(a-2)% C21l(x,a) + (1 / (1+2xf(x)))
* ((diff(f(x),x) * C3l(x,a) - diff(f(x),x,x) = C30(x,a)))

bool (Al (x,a) + 1/2 % diff (A0 (x,a) , x)==0)

Here we comment the lines of code above.

1,2 Several variables are defined, so that (x, X, z, a) = (x,X, 2, @) accordingly to the notation of the present
manuscript. The variable a, which is the parameter ¢, is limited to the range (0, 2).

3,4 We define f as an implicit function depending on the variable x only, next we define Deltaf as the
periodic finite difference A, f defined in (4.2).

5-7 The function G1 is the function G}, , defined in (@8), the function DXG1 is the function (G, Z)' defined
in (4.18) and finally we define K1 as the function K,ll’z defined in Eq. (4.14).

8-11 We perform the same computations as K}Zy , for the kernels K2 Kf’x’ . defined in Eqs. (4.16) and (@.21).

a,z’

12-14 The asymptotic expansion in Eq. (£.23) is computed for the three kernels.

15-20 We ask the computer to extract the coefficients of the expansions in Eq. (£.23) so that Cjl (x,a) =
KL (f;x), forany j=1,2,3, 1=0,1.

21,22 We define the functions A0 and A1 as in Eqs. (4.106) and (4.108).

23 Thelastline, line 23, is a statement of truth, which asks the computer whether using algebraic simpli-
fications it can prove that Eq. (4.110) is true.

B Conjugation of paradifferential operators under flows

The main results of this section concern transformation rules of paradifferential operators of the form 9, o
Op®% [a] under the flow generated by paradifferential operators which are Hamiltonian, or Hamiltonian up
to order zero.

Proposition B.1. Let g€ N, K' < K, Ne N withq < N, ¢y >0 and p > N. Let B(f;t,x) be a function in
SFR 1 leo, N1 and g (f,7) be the flow generated by the Hamiltonian operator B (f,7) defined in (5.8).

i (Conjugation of a paradifferential operator) Let a (f;t, x,&) be a symbol in ITY q [€0, N]. Then
<I)B(f,l)oaxOOpBW[a(f;t,x,f)]0<I>B(f,1)_l=6x00pBW[ao(f,l;t,x,£)+P(f;t,x,€)]+R(f;t) (B.1)
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where

a (f,7:6,%,8) 1= (1+0,B(f,76,)) a(f £, 3, E(1+0,B(f,7; tvy)))'y:xﬂﬁ(f.tx) (B.2)
is a symbol in ZFI’?‘K,'q leo, N1, P(f;t,x,€&) is a symbol in ZFI’?;(Z,'qH leo, N1 and R(f;t) is a smoothing
operator in ZR?E,";:?N l€o, N1

ii (Conjugation of d;) There exists a function V (f;t,x) in Z]—"}'ﬁ x'+1.1 €0, N1 and a smoothing operator

R(f1) in2R ", leo, N1 such that

5 (£,1)0(0:®5 (£,1) ") =000p™" [V (f31,x)] + R (£;1). (B.3)

iii (Conjugation of a smoothing operator) If R(f;t) is a smoothing operator in ZRIQP K'\q [€o, N] then the
composed operator ®g (f,1)o R (f; 1)o@ (f,1) " isin ZRIQPI:,A; [€0, N].

We also prove an analogous result when the paradifferential operator which generates the flow has order
strictly less than 1.

Proposition B.2 (Lie expansions). Letg €N, K' < K, Ne N withq < N, ¢y > 0 and p > N. Given a symbol
w:=w/(f;t,x,¢) satisfying

w(f;t,x,6) €30 % e, NI, d>0, Imw(fit,x,¢) eT s [eg, N], (B.4)

and and denote Dy (f,7) the flow generated by
0: @y (f,7) =0, 00p®" [w(f; £, x,8] Ow (f, 1), Ddw(0)=1d. (B.5)

i (Conjugation of a paradifferential operator) Leta:=a(f;t,x,¢&) be a symbol in ITY q [eo, N]. Then

Oy (£,1) 005000 [a(f;1,1,8) 0w (f,1) =
0, 00p®" [a] - [0, 0 Op®W [w], 8, 0 Op®W [a]] + 0,0 Op®Y [P (f;1,x,&)] +R(f31) (B.6)

whereP (f; t,x,&) isasymbolin ZFI’?’;(Z,"ZH [e0, N1, and R (f; t) is a smoothing operator in ZQI}?K',quz [€o, N.
Ifa, w are real and even in ¢ then ﬂax ) OpBW [w],0y0 OpBW [a]ﬂ is Hamiltonian and P is real and even
iné.

ii (Conjugation ofd,) Thereexists asymbol T (f; t,x,&) in ZFI‘(dK, +11 €0, N1 satisfying (2.20), and a smooth-
ing operator R(f; 1) inXR ", | , [€o, N1 such that

—0,Pw (f,1) " o®w (f,1) =0, 00p®W [T (f;1,x,6)] + R (f3 1) . (B.7)
If w is real and even in & thend, o OpBW [T (f;t,x,¢)] is Hamiltonian, i.e. T is real and even iné&.

iii (Conjugation of a smoothing operator) If R(f;t) is a smoothing operator in ZRI}’) K'\q [€o, N] then the

composed operator Oy (f,1) o R(f; 1)o@y (f,1) " isin ZRIQPI:,A;maX{O'(I_d)} [€o, N1.

The rest of this section is devoted to the proof of PropositionsB.IJland[B.2l

Proof of Proposition[B.1]

The proof of Propositions[B.1lis inspired by the Egorov type analysis in [5, Section 3.5]. The difference is that
we highlight the Hamiltonian structure in (B.I) and (B.3) of the conjugated operators.

For simplicity we avoid to track the dependence of 8, b and ®p on the variable f, as well as on ¢, and
denote B (x) := 0y (B(f;1, %)), by (1;1,%) := 0x (b (f,7; 1,x)) and ®p(7) := ®p(f,7). In the sequel 0! is the
Fourier multiplier with symbol (i¢) ™! that maps H; onto Hg“ for any se R.
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Proof of itemlil: conjugation of a paradifferential operator

The conjugated operator
P (1) :=Dp (1) 00, 00p®" [alo®p (1) e L(HGH'™™), VseR, (B.8)

satisfies P (0) = 0, 0 OpBW [a], and using that 0; (<DB (T)_l) = —®p (1) ' 00,P5 (1) o®g (1), it solves the
Heisenberg equation
0;P(1)=[B(x),P(M], P(0)=0,00p""al. (B.9)

Lemma B.3. The operator A(v) :=0;' o P (1) € L(H; Hy™™) solves
0: A =i[op”" b(r;x) &1, AM)] - 5 (0p"" by (1; 001 A (1) + A(1) Op”" [y (7 2)1)

+R (@) AT)-A@ R(T) (B.10)

A(0) =0p2" [a]
where R (1), R' (1) are smoothing operators in ZRI_(p k' 1 Uniformly in|t| < 1, preserving the zero-average sub-
spaces.

Proof. By (5.8) and Proposition[Z.2Twe have

B (1) - 0p®W [ib(T;x)€+%bx(T;x)] =R (1) (B.11)
07 oB(1) 00, =0p®" [b(1;:)] 00, = OV [ib (1;2) € = 3 by (0] + R' (1) (B.12)
where R (1), R’ (r) are smoothing operators in 27'21_("0 1 breserving the zero-average subspaces. Then, by

(B.9), (B.ID, (B12) we get
0, A1) =0,  0B(1) 00,0 A(T)— A(T) 0 B(T)
= (0p"" [ib(1;0) €= by (1;0)]) A(T) — A@) (OpPY [ib (1;0) £+ 3by (1;0]) + R (1) A(1) - A(T) R (7)
proving (B.10). a

We now look for an approximate solution of (B.10) of the form

J .
AP@ =y op™[g@], a@eITPy leo, NI, @@ eIy leo NI, Vi=1,.,]. (B13)
j=0

We use the following asymptotic expansions derived by Proposition2.2Tland (2.28).

Lemma B.4. Leta be asymbol in LT} , 4 €0 N]. Then the commutator

[0p®W [ib(r; x)¢1, 0pPW [al] = OpBW [{b(r; x)¢, a}] +OpBY [r_s(b(1), @] + R (1)

with symbols
{b(r;x)¢, a} € ZF]’?’K,’(]H l€o, N1, r_3(b(r),a) € ZFI"&;(Z,’[HI l€o, N1,

—p+m+1

and a smoothing operator R (1) in ZRK'K,'qH

[r, N1, uniformly in T. Moreover

10p"" [by (1;2010p®" [a] + $0p”" [a] Op®Y [by (15201 = Op®Y (b (1;%) a+ r_2(b(¥), @)] + R (1)

-p+m

wherer_,(b(1),a) is a symbol in XI'"">2  [eo, N1, and R (1) is a smoothing operator in ZRK Kiq+1

K,K’,q+1 [€O)N]-

We shall also use the following lemma concerning solutions of a transport equation.
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Lemma B.5. Let W (f,7;x,&) by a symbol in ITR 4 €0 N] uniformly in|t| < 1. Then the unique solution of

0:Q(f,7;x,8) = {b(f,r;x) g, Q(f,r;x,f)} — by (£,1:%)Q(f, 13 %,8) + W (f,75%,&) 514
Qf,75%,8)|,29= Qo (f;x,6) €ZTF 4 , [€0, N]
has the form
QUm0 = (14 By (£7 1) Q5 v €0+ By (15 M) svrpirog (3.15)
T 1+ 8, (f,7; < 1+ 6, (f,7;
+f +{3y(f‘[ y) W(f,_’/_l;y_i_ﬁ(f,_’/_l;y),f( +U:BJ’(fT y)))dT/ ,
0 1+:6J’(f’77,; y) 1+:6J’(f’77,; y) y:x-{-‘[ﬁ(f;x)
which is a symbol in ZFI’?’K,'q [eo, N1, uniformlyin|t| < 1.
Proof. The solution (x(1),¢(1)) = ¢°’T (X, E) of the characteristics system
d d
d—x(r) =-b(T;x(1)), ——=¢@)=by(1;x(1)) {(1), (B.16)
T dr
with initial condition (x (1),¢ (1))l;=0 = $*°(X, Z) = (X, ) is (cf. [5} p. 83])
) =T (X,2) = | X+ P XL ) B.17
(x(1),§@)=¢"" ( ) ( B, X) 1+,5y(T,X)) ( )
By (B.16) and (B.14) we get d% [E@QT;x(1),E@)] =E@W (1;x(1),€ (1)) and so, by integration,
E() Q3 x(1),& (1) =EQ(O;X,E)+f0 EEW (s x(r), &) dr’. (B.18)
The inverse flow ¢T’° (x,8),ie. (x,&) = ¢°’T (X,Z) ifand only if (X,E) = (pT'O(x, &) is (cf. [B] p. 83])
(X,5) = p™(x,&) = (x+r,6(x),€(1 +5, (T;y))ly:x”ﬁ(x)) . (B.19)
In addition, by (B.17) and (B.19),
/ ! 7,7 T (T 5 (! f 1+ 5 75
(x(@),@") =™ (x,&) =T (p™° (x,6)) = (y+/3(r y), (ﬁ—y(’y))) . (B.20)
1+ IBJ’ (T ;J/) y=x+1B(x)
We deduce (BI5) inserting (B.19) and (B.20) in (B.I8). Finally Q (f,T;x,f) is a symbol in ZFI’?’K,’(] [€g, N1, by
(B.15) and LemmataZ.8and[2.9l O

Step i): Determination of the principal symbol ay. From (B.10), (B.I3) and Lemmal[B.4]the principal symbol
ag solves the equation

{01 ao (1;%,6) = {b(1;x) &, ao (13,8} — by (T3 %) ag (1;%,€) B2)

ap (0;x,8) =a(x,¢) .

By Lemmal[B.5lwith W = 0 and Qy = a, the solution of (B.21) is given by (B.2). The operator A® := A® (1) :=
OpB Wlao (1)] solves approximately (B.I0) in the sense that, by (B.2I) and Lemmal[B.4]

0,40 =i[0p"" (b(@)¢], AV - OpFW [ 22| A0 - AQ0pEW [ 10| 1 0pW [rO )]+ RO (1) (B.22)

where r© (1) := —r_3(b, ag) — r_2(b, ao) is a symbol in T2 g+11€0, Nl and R© (1) is a smoothing operator
in ZR;&;”ZH [€0, N1, unifomly in 7 € [0, 1].

Step ii): Determination of the subprincipal symbol Zj]:l aj. We define a,(7;x,¢) as the solution of the
transport equation

01 ;»=b; ’ ;»_bx; ;’_(0);’
{ a1 (1;%,8) ={b(1;%)¢, a1 (1; x,8)} — by (1;%) a1 (1;2,0) =1 (15%,8) (B.23)

ay (0;x,8) =0.
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By Lemma[B5|the symbol a; (7; x,¢) is in T2 4+1- BY Equations (B.22) and (B.23) and Lemmal[B.4]

A @)= A9 @) +0p”" (4 (7))
is a better approximation of equation (B.10) in the sense that

GTA(D =i ﬂOpBW [b(1)¢&], A(l)ﬂ _OpBW [%] AD _ A(l)opBW [%] + OpBW [r(l)(T)] +RrM () (B.24)

where rV := —r_3(b,a)) — r_2(b,ay) is a symbol in ZF;(”;;,‘ g+1 [eo, N] and RY (1) are smoothing operators in

ZRI_(’)I:,";H [€g, N] uniformly in |7| < 1.
Repeating J times (J ~ p/2) the above procedure, until the new paradifferential term may be incorpo-

rated into the smoothing remainder, we obtain an operator AY) (1) := ijzo Op®" |4 (1)] as in (BI3) solving

{a,A(” @ =i [0p™ (bm¢l, AV @] -0p"" | 22| AP (1) - AV () 0pPW | 22| + RV (@) 525

A (0) = 0pBW [a)

-p+m
K,K',g+1
Step iii) : Analysis of the error. We finally estimate the difference between the conjugated operator P (1) in

and PY (1) := 0, 0 AV (7).

where RY (1) are smoothing operators in R [€9, N] uniformly in || < 1.

-p+m+1+N

LemmaB.6. P (1) - PY) (1) is a smoothing operator R (1) in SR ", i1

leo, N1 uniformlyin|zt| < 1.

Proof. In view of Egs. (B.I1), (B12) and (B.25), the operator P (1) =4, 0 AV (1) solves an approximated
Heisenberg equation (cf. (B.9))

PP @=[B,PY@]+R@®, R@eIRFT . (B.26)
Recalling we write
PY @) -P@)=V@)®g)™! where V(1):=PY (1)®g(1) - Pp(r) 0, 00pBWa].

By (B.26) we have that d; V() = B(t) V(1) + R(t)®5p (1), V(0) = 0, and therefore, by Duhamel and 8, ®5 = B®p
we deduce V(1) = @g(1) [y @) 'R(T")®p(7')d7’ and thus

PY @) -P(1) = fo (1) o ®p(1") Lo R(r) o ®p(r) o Dp(r) T dr’.

This is a smoothing operator in arguing as in [5, Proof of Thm. 3.27]. O
LemmalB.6limplies that P (1) = 8, 0 AY) (1) + R(r) concluding the proof of Proposition B.IHlwith symbol
P= Zjlzl a; (1). Item il follows similarly as in [7, Lemma A.5]. Item[iiilis given in [5, Remark at page 89].

Proof of Proposition[B.2
In view of (B.4) and Lemma[5.3]the flow @y (1) := @ (f, T) generated by (B.F) is well posed and

d
o (Ow (1)1 08, 00p®W [a] 0 @y (7)) = —Dyy (1) [0, 0 Op®W [w], 8, 0 Op®W [a]] Dw (7) (B.27)

and a Taylor expansion gives

Oy (1)~ 8,0 0pPW [a]o Dy (1)

L l
=D
=0,00p”" (a] = [0, 0 0p”" (], 0,0 Op"™ [al] + }_ 7 =Ad]  sw,,, (0x°0p™" [a])
=2 *
(-nirt 1 L -1 L+1 BW
T fo(l—r) Dy (1) OAdaxoopBW[w](6x00p [a])o®w (T)dT. (B.28)
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Since 0,00p”" [w] belongs to =T % |, d > 0, then, by PropositionZZTleach commutator [0, 0 Op®" [w], -]

gains d > 0 unit of order and one degree of vanishing in f and (B.28) is an expansion as in (B.6) in operators

with decreasing order and increasing degree of homogeneity with a symbol P of order m—2d. Item{iilfollows

as in [5, Remark at page 89], see also [10], by properties of the flow generated by paradifferential operators.

Thus, Proposition 221} give that the last term of (B28) belongs to TR~ d(L+1)+max{0,1-dIN 1o N1 hence
p+1+m+max{0,1-d} N

K,K',q
if L+1= 3 it belongs to SR P K.K'\q [eg, N]. If w,a are real and even in £, then the operators
0,00pB% [w] and ,00pBW [a] are Hamiltonian (cf. (Z21)). The commutator of two Hamiltonian operators

Ady o0pr 1) (0x00p”" [a]) =8508,  §:=0p”" [w]0d,00p”" [a] -Op”" [a] 00, 0 Op”" [w], (B.29)
where S = §*, § = §, is another Hamiltonian operator where, by Proposition 221} the operator § = OpBW [s]
with areal symbol s in I d 41 [€0, N]evenin ¢ (cf. (Z.21)), up to asmoothing operator in ZRK K'\q+1 leg, N1,

KK
by renaming p. Applying iteratively this result to Ad’ (00 op? [a]) the formula (B.6) follows.

Let us prove (B.7). As in (B.27) we have that

0,00p®" [w]

d% (@w (M 0d;0 Dy (1) = —Ppy (1) ' 0 [0, 00pP" (W], 0,] 0 Py () = Py (1) ! 00,0 0P [wil 0 Dy (1)

and a Taylor expansion gives

(‘!

Oy (1) L od; 0@y (1) =0; +0,00pZY [wy] +Z
(=2

f A= w07 0AdS (020 0P w1l )o@ (@) 7.

YAl Ad[ OIOPBW[W] (ax ° OpBW [wt] ) (B.30)

(-DE
+
L!

Since @y (1)71 00, 0Dy (1) =0, + Py (1)1 0 (0, P (1)) = 0, — (0, Pw (1)) oy (1) we deduce by (B30) that

L (_1)[—1

~0, Dy () oDy (1) =8, 00p"W (w1 + Y ——

7 d[ ! BW 1) (axOOpBW[wt])+R
(=2 :

oOp

where, if L 24 v p, then Ris in ZRK K412 [€o, N] (renaming p). Then (B.7) follows arguing as for (B.6) and if
w is real and even in ¢ we also deduce that T is real and even in é.
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