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Parameter-free molecular super-structures
quantification in single-molecule localization
microscopy
Mattia Marenda1,2, Elena Lazarova1, Sebastian van de Linde3, Nick Gilbert1, and Davide Michieletto1,2

Understanding biological function requires the identification and characterization of complex patterns of molecules. Single-
molecule localization microscopy (SMLM) can quantitatively measure molecular components and interactions at resolutions far
beyond the diffraction limit, but this information is only useful if these patterns can be quantified and interpreted. We
provide a new approach for the analysis of SMLM data that develops the concept of structures and super-structures formed
by interconnected elements, such as smaller protein clusters. Using a formal framework and a parameter-free algorithm,
(super-)structures formed from smaller components are found to be abundant in classes of nuclear proteins, such as
heterogeneous nuclear ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the plasmamembrane.
We suggest that mesoscopic structures formed by interconnected protein clusters are common within the nucleus and have an
important role in the organization and function of the genome. Our algorithm, SuperStructure, can be used to analyze and
explore complex SMLM data and extract functionally relevant information.

Introduction
Single-molecule localization microscopy (SMLM; van de Linde
et al., 2011; Schermelleh et al., 2010; Henriques et al., 2011; Sauer
and Heilemann, 2017) is now commonly employed for quanti-
tative analysis of molecular structures and interactions in both
cell-based (Cisse et al., 2013; Kapanidis et al., 2018; Chong et al.,
2018) and in vitro experiments (Revyakin et al., 2006; Deniz
et al., 2008). Unlike other light microscopy techniques, SMLM
achieves resolutions far beyond the diffraction limit, and its
typical output is a list of 3D coordinates (or localization events)
that are naturally analyzed using efficient clustering algorithms
borrowed from quantitative big-data analysis and even astron-
omy (Owen et al., 2010; Sengupta et al., 2011; Garcia-Parajo et al.,
2014; Baumgart et al., 2016; Spahn et al., 2016; Griffié et al.,
2016). However, traditional clustering algorithms rely on user-
defined parameters that are intrinsically intertwined with the
notion of similarity that is necessary to define a cluster. These
parameters can be either hypothesized by physical intuition
or inferred via preemptive analysis (Burgert et al., 2017;Williamson
et al., 2020; Malkusch and Heilemann, 2016), yet their choice has
a significant impact on the results, in turn hindering the porta-
bility of clustering algorithms and the comparison between dif-
ferent datasets.

At the same time, recent evidence suggest that assemblies of
proteins (Brangwynne et al., 2015; Larson et al., 2017; Strom
et al., 2017; Sabari et al., 2018; Cho et al., 2018; Maharana
et al., 2018; Chong et al., 2018) and chromatin (Bintu et al.,
2018; Boettiger et al., 2016; Frank and Rippe, 2020) form func-
tional complex structures that are not fully captured by standard
clustering algorithms. For example, the heterogeneous nuclear
ribonucleoprotein U (hnRNP-U), also called scaffold attachment
factor A (SAF-A), is suggested to form a dynamic and functional
mesh-like structure while interacting with RNA to maintain
transcriptionally active genomic loci in a decompacted config-
uration (Nozawa et al., 2017; Michieletto and Gilbert, 2019).
Other examples include SC35, a nuclear protein involved in RNA
splicing and chromatin elongation (Lin et al., 2008) that displays
localized nuclear speckles (Xie et al., 2006; Jackson et al., 2000),
or actin and microtubules, which form elongated and inter-
connected networks involved in cell motility and division, as
well as in the synaptic plasticity of dendritic spines (Resch et al.,
2002; Rogers et al., 2003; Izeddin et al., 2011). Additionally, re-
cent super-resolution studies indicate that chromatin is also
functionally organized in connected nano-scale compartments
(Prakash et al., 2015; Szabo et al., 2018; Nir et al., 2018; Maiser
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et al., 2020). Rapidly evolving methods of chromatin tracing
(Boettiger et al., 2016; Wang et al., 2016; Beliveau et al., 2015;
Nir et al., 2018; Bintu et al., 2018) and super-resolved imaging
of the accessible genome (Xie et al., 2020) require sophisticated
algorithms to analyze the topology of the generated paths
(Goundaroulis et al., 2020). To understand the relationship
between these complex structures and the underlying biologi-
cal mechanism and functions of the genome (Bronshtein et al.,
2015; Khanna et al., 2019; Leidescher et al., 2020 Preprint; Smeets
et al., 2014), a more sophisticated and standardized analysis of
SMLM data is urgently required.

It is clear that quantification of complex structures is a
ubiquitous problem in molecular and cell biology, and it is inti-
mately connected to cellular function. Motivated by this prob-
lem, here, we introduce a new algorithm termed SuperStructure,
which extends in a novel and original way the popular density-
based clustering algorithm DBSCAN. SuperStructure allows (1) a
parameter-free detection and quantification of complex struc-
tures made of connected clusters in SMLM data and (2) a
parameter-free quantification of the density of molecules within
clusters.

Here, we demonstrate the capabilities of SuperStructure on
simulated datasets and then use it to analyze two groups of
experimental datasets: (1) nuclear proteins involved in RNA
processing, namely SAF-A, hnRNP-C, and SC35; and (2) ce-
ramide lipids involved in cellular trafficking at the membrane.
We find that interconnections between clusters are abundant in
classes of proteins in the hnRNP family and that they are sur-
prisingly absent from ceramides, suggesting this feature is rel-
evant for the biological function of SAF-A and hnRNP-C.
Therefore, SuperStructure enables us to discover new facets of
protein organization in human cells and provides a better un-
derstanding of the molecular mechanisms underlying the orga-
nization of subcellular (super-)structures.

Finally, since SuperStructure is parameter-free, it provides
the community with a standardized tool for the discovery and
quantification of complex patterns in SMLM data. Furthermore,
beyond helping our understanding of complex biological struc-
tures, it might be used to assess the fluorophore blinking quality
and thus offers versatility in assessing also technical imaging
properties (van de Linde and Sauer, 2014; Hennig et al., 2015;
Siegberg and Herten, 2011).

Results
SuperStructure algorithm
SuperStructure is best explained in relation to the well-known
DBSCAN algorithm. DBSCAN detects clusters by grouping to-
gether high-density localizations and classifies as outliers low-
density ones (Ester et al., 1996). In practice, DBSCAN determines
that a localization is part of a cluster if more than Nmin other
localizations are found within a neighborhood distance ε (or if it
is part of the neighborhood of another localization with this
property). Conversely, SuperStructure extracts connectivity
information from the rate at which the number of detected
clusters Nc changes with the neighborhood radius ε for a fixed
Nmin (see Fig. 1). Indeed, the curves Nc(ε) contain important

overlooked information about the structure of connections. To
simplify the analysis, and without loss of generality, we set
Nmin � 0, which means that we do not require a minimum
number of localizations within the neighborhood to define a
cluster. As a consequence, Nc(ε) is necessarily a monotonically
decreasing function, as for ε � 0, every localization is detected as
a single cluster and increasing ε yields fewer but larger clusters.
Following on, the rate at which Nc decays with ε is an indicator
of how quickly localizations, and then clusters of localizations,
coalesce, thus indicating howmuch localizations and clusters are
connected.

The Nc(ε) curves provided by SuperStructure identify dif-
ferent clustering regimes (Fig. 1). The first (small ε) regime
describes the merging of localizations within clusters (intra-
cluster regime), the second (intermediate ε) regime captures the
growth of clusters into super-structures (first super-cluster re-
gime), and the third (large ε) regime describes the merging of
super-clusters into higher-order super-structures (second/third
super-cluster regimes). The Nc(ε) curve in the first regime
typically follows a Poissonian function (Eq. 1), and its decay rate
is related to the density of emitters ρem within the clusters (see
Materials and methods and Figs. 1 and S1). The width of the
Poisson function also sets the critical value of ε at which this first
regime is expected to end (Eq. 2). On the other hand, the decay in
the second and third regimes follows an exponential decay with
characteristic length-scale λ and are highly dependent on the
connectivity between (super-)clusters, as well as on the density
of (super-)clusters (Eq. 4).

The number of super-cluster regimes depends on the ho-
mogeneity of both cluster distribution and connections. In the
two extreme cases of a completely connected or unconnected
homogeneous distribution of clusters, we expect a single super-
cluster regime. However, while in the former case this regime is
exponential (because the clusters are connected), in the latter it
assumes a Poissonian functional form (see respectively Eqs. 4
and 3). This is not surprising, as free (unconnected) clusters that
are randomly distributed behave (on a larger scale) as single
emitters inside clusters (see Materials and methods and Fig. S1).
Also, in the case of clusters embedded in a random distribution of
other localizations (such as noise), we obtain a Poissonian decay.
Importantly, a random distribution of localizations (also at high
density) is different from “connected” clusters, where nearby lo-
calizations are mostly distributed in between clusters. As a result,
the curves generated by SuperStructure allow us to identify the
presence/absence of connectivity by investigating the functional
form of the curves, as well as to extract their decay rates.

In heterogeneous systems that display a mix of randomly
dispersed localizations/clusters and connected ones over similar
length-scales, we strongly recommend restricting the analysis
with regions of interest (ROIs) over subregions that display
qualitatively similar phenotypes. A good example of heteroge-
neous system is given by the nuclear protein SC35, which we
analyze below. Restricting the analysis to ROIs is also recom-
mended when quantifying nuclear or cellular substructures that
display boundaries. Masking localizations falling outside these
boundaries allows SuperStructure to generate cleaner curves
that are easier to interpret.
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To quantify the intra-cluster density and (super-)cluster
connectivities, one needs to define boundaries between regimes
and to fit every regime with the corresponding function (see
Eqs. 1, 3, and 4). Regime boundaries and fitting ranges can be
selected either manually (where curves change their decay
properties) or by rigorously running a preemptive goodness-of-fit
test. For instance, once the rough regime range has been identified
and fitted, one can modify the fit window to identify the bound-
aries of the regime outside which the fit is no longer acceptable.
Arguably, the optimum regime is found by identifying the best
goodness-of-fit window (e.g., the range with the minimum χ2). It
is also possible to define a single function fitting the entire curve
by (1) defining a piecewise function where every “piece” is the fit
of the corresponding regime or (2) adding together the contribu-
tion of the different regimes (appropriately weighted).

The workflow for the application of SuperStructure is shown
in Fig. 1 and is described in detail in Materials and methods.
Additionally, the codes and scripts are open source and available
at git repository (see below).

Characterizing SuperStructure feature extraction from
simulated SMLM data
To evaluate the performance of SuperStructure, we analyzed
artificial datasets consisting of interconnected clusters of local-
izations on a 2D plane (see Fig. 2 A). Clusters are homogeneously
and randomly positioned on the plane with a cluster density
ρcl � 8.2 μm−2 that is comparable to that of some nuclear proteins
(see below). Every cluster has average radius Rcl ∼ 40 nm and an
overall internal localization density ρem � Nem/πR2

cl � 16,000 μm−2,
whereNem is the number of localizations per cluster. Pairs of clusters
are connected with probability pr by a sparse point distribution and
only if the distance between the clusters is less than b � 1 μm. These
choices allow us to readily tune the degree of “connectivity” in the
systemby varying a single parameter pr. A second parameter, prconn, is
introduced to control the density of localizations within the con-
nections ρconn (see Materials and methods for details).

The length-scales associated to density of emitters inside
clusters ρem and inside connections ρconn define the boundaries
among the three regimes of Nc(ε) (Fig. 2 B): (1) for ε(12 nm, the
intra-cluster regime follows a Poissonian decay (Eq. 1) with
density parameter ρem � 16,000μm−2 (as expected, since it was
set by construction); (2) for intermediate values of ε, the expo-
nential super-cluster regime dominates (Eq. 4), and the fusion of
connected clusters takes place (see inset of Fig. 2 B); (3) for
εa60 nm, we expect to observe the coalescence of super- and
nonconnected clusters in a second super-cluster regime; this is
captured by a second exponential for pr ≠0 (Eq. 4). Conversely,
for pr � 0, we observe a single super-cluster regime that is well
fitted by a Poissonian function with lower density (Eq. 3), as it
corresponds to the density of clusters rather than emitters
within clusters (see dark green curve in Fig. 2 B).

Examination of Fig. 2 B (inset) highlights the exponential
behavior of the super-cluster regime (2) for different values of
connectivity pr. Importantly, a larger pr results in an effectively
shorter decay length (or larger spatial rate of merging) for the
regime in which clusters merge into super-clusters. This
strongly suggests that the effective decay length (or rate) mir-
rors the connectedness of the underlying super-structures (Fig. 2
C). In fact, these simulations reveal that the decay length rep-
resents the combined contribution of cluster density ρcl and
connectivity pr. A larger density of clusters can impact the decay
length as much as a larger connectivity, as shown by simulations
at fixed pr and different ρcl (Fig. 2 D; and Fig. S2, A and B). In
particular, we find that the functional form of the decay length is
λ∼ ρ−1/2cl p−0.3r (Fig. 2, D and E). The cluster density contribution is
∼ ρ−1/2cl , as it depends on the typical distance between clusters
and is relevant when comparing datasets with different cluster
density. By combining SuperStructure with a cluster analysis,
one can estimate ρcl and normalize λ to obtain the pure con-
nectivity contribution in the decay length: λ∗ � λ/ρ−1/2cl .

Finally, in order to characterize the contribution to the Nc(ε)
curves coming from the density of localizations within the

Figure 1. Working principle of SuperStructure analysis. Left: SMLM data are taken as input for the analysis. Center left: Cluster analysis is run using the
DBSCAN algorithmwith Nmin � 0 and ε progressively increasing in an adequate range for the system. SuperStructure curves describing the number of detected
clusters Nc as a function of ε are generated. Center right: SuperStructure curves are plotted and inspected to identify super-cluster regimes representing the
onset of connected structures. Right: Intra- and super-cluster regimes are fitted with our models (see Materials and methods) to quantify the emitter density
inside clusters ρem and the connectivity among clusters (via the decay length λi for super-cluster regime i).
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Figure 2. Evaluating SuperStructure on simulated datasets. (A) Sketch representing the artificial dataset consisting of interconnected clusters of lo-
calizations on a 2D plane. Clusters are characterized by an internal density of localizations ρem and radius Rcl and are randomly distributed on the plane at an average
cluster density ρcl. Clusters can be connected by a sparse point distribution with probability pr, and connections have a density of points ρconn (controlled by the prconn
parameter). (B) Average SuperStructure curves (zoomed in the inset) for simulated datasets with different connectivity pr. Other parameters are kept fixed: average
cluster radius Rclx40 nm, emitter density within clusters ρem � 16, 000 μm−2, cluster density ρcl � 8.2 μm−2, and prconn � 0.5 (which fixes the density of emitters
within connections ρconn). The curves show the number of detected clusters normalized by the total number of localizations. Curves are the average of 20 independent
simulated datasets. Shaded regions represent the standard deviation from the average. Three regimes can be distinguished: (1) the intra-cluster (red), (2) the first super-
cluster (yellow), and (3) the second super-cluster (blue). The decay in the intra-cluster regime corresponds to a Poisson avoidance function with density parameter
ρem � 16, 000 μm−2 (Eq. 1, dotted line in the inset). The first super-cluster regime can be fitted by a single exponential (Eq. 4, dashed line in the inset) which returns an
effective decay length λ. The second super-cluster regime can be fittedwith another exponential if pr ≠0 (Eq. 4, dashed line in themain figure). In case of pr � 0, there is
only one super-cluster regime, and it follows a Poisson function with density parameter ρcl � 8.2 μm−2 (Eq. 3, dotted line in the main figure). (C) Snapshots of detected
clusters for an artificial dataset with connectivity pr � 0.004 and by progressively increasing the value of the radius ε � 4, 24, 44, 84 nm. (D) Decay length λ versus
cluster density ρcl scales as ρ

−0.5
cl for any value of connectivity pr. (E) Decay length λ versus connectivity pr scales as p−0.3r for different values of ρcl. In D and E, 20

independent datasets were fitted with Eq. 4, and the resulting λ values were averaged. Vertical bars represent the standard deviation from the average.
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connections, we further simulated SMLM datasets with a fixed,
large connectivity pr and varied the density of points in the
connections by tuning prconn (see simulated datasets in Figs. 2 A
and S2 F). As expected, we observe a single super-cluster re-
gime, and the denser the connections, the shorter the decay
length. This indicates that our algorithm is able to describe not
only how well clusters are connected (i.e., the number of con-
nections per cluster) but also how strongly they are connected
(i.e., how dense the connections are). These features are likely to
be highly relevant for nuclear proteins.

Before applying this methodology to experimental data,
we also tested the effect of random noise in the system
(i.e., unconnected isolated localizations from biological or tech-
nical sources). We observed that in presence of random noise the
decay of SuperStructure curves becomes Poissonian for large ε
(see Fig. S2 C) with an effective density ρ larger than the cluster
density (see Fig. S2 D). Decay lengths in the first super-cluster
regime (yellow regime) are still distinguishable even in presence
of noise at reasonable density (albeit smaller than the connection
density), but their absolute values are altered, with weakly
connected systems more severely affected (see Fig. S2 E). These
observations suggest that, as in most analysis algorithms, large
noise might obscure exponential decays of connected systems. In
case a single Poissonian behavior or a combination of exponen-
tial and Poissonian decay is found in the SMLM dataset, it is
therefore important to combine SuperStructure with an inde-
pendent cluster analysis at different length scales (e.g., at three
or four selected values of ε) and a direct observation of the da-
taset in order to exclude the presence of hidden connectivity.

Quantification of super-structures in nuclear proteins
We now examine biological data and apply SuperStructure to
dSTORM data acquired for three different nuclear proteins
(Fig. 3, A and B): the serine/arginine-rich splicing factor SC35,
hnRNP-C, and hnRNP-U (also known as SAF-A). These proteins
are abundantly expressed in the nucleus of human cells and are
involved with RNA processing at different stages. SC35 is nec-
essary for RNA splicing, while hnRNPs are implicated not only
in the regulation and maturation of mRNA but also in chromatin
structure (Nozawa et al., 2017; Xiao et al., 2012; Caudron-Herger
et al., 2011). In particular, SAF-A is thought to form a dynamic
homogeneous mesh that regulates large-scale chromatin orga-
nization by keeping gene-rich loci in a decompacted state
(Nozawa et al., 2017; Michieletto and Gilbert, 2019). Hence,
capturing the organization of this protein beyond the traditional
single-cluster analysis is an important step toward under-
standing how it regulates chromatin structure in different cell
stages and conditions.

Curves obtained from SuperStructure analysis after masking
signal in the nuclear region are shown in Fig. 3 C, where we
highlighted the super-cluster regimes discussed above. Global
nuclear analysis is represented by filled curves, while analysis
on localized ROIs is represented by dashed ones (hnRNP-C nu-
clear mesh and SC35 speckles). Both hnRNPs display a first
super-cluster regime for which the curves decay as exponentials,
suggesting that within this range, distinct clusters are in reality
connected. Interestingly, while SAF-A displays a unique long

super-cluster regime, hnRNP-C seems to also show a second
exponential regime (filled curve). However, this regime ap-
pears at very large values of ε and is due to sparse clusters of
localizations in nucleoli. Running SuperStructure on ROIs
with nucleoli masked out (dashed line) indeed generates a
single exponential function, confirming that hnRNP-C clus-
ters are fully connected. We can therefore conclude that both
hnRNPs exhibit a single exponential regime, typical of fully
connected meshes. On the other hand, SC35 displays ex-
ponentials with different characteristic decay rates in two
distinct and significant super-cluster regimes (filled curve), one
for intermediate ε2 [10, 20] nm, when clusters inside speckles
merge (first super-cluster regime), and another one for large
ε2 [40, 150] nm, indicating that speckles merge together and
with isolated clusters (second super-cluster regime). The SC35
connectivity is further confirmed by running SuperStructure
on ROIs masking the speckles, as we observed a clear single
exponential decay (dashed line). These regimes are further
confirmed by directly looking at the arrangement of identified
clusters for certain values of ε (see Fig. 3, A [inset] and B).

From the SuperStructure curves, we first obtained the den-
sity of intra-cluster emitters by fitting the intra-cluster regime
with the Poisson function (Eq. 1). Interestingly, both SAF-A and
SC35 form clusters with similar densities, while hnRNP-C
clusters are less dense (see Fig. 3, D and E). Then, in order to
have a quantitative description of the clusters/speckles con-
nectivities, we fitted the curves in the exponential regimes (Eq.
4) to extract the decay length λ. However, a direct comparison is
possible only by normalizing decay lengths by the cluster/
speckle density (see Materials and methods for details and Fig.
S3, A and B). Fig. 3 F highlights that while hnRNP-C has a short
normalized decay length λ∗ due to the highly connected clusters,
SAF-A displays a weaker decay (larger λ∗) due to sparser con-
nections. Finally, SC35 displays a first (intra-speckle) very
connected regime, even more than that of hnRNPs (smaller λ∗).
This is followed by a second (inter-speckle) regime that shows a
cluster connectivity weaker than that of hnRNPs.

In summary, our analysis revealed that while different nu-
clear proteins may have similar cluster sizes or densities of
emitters within clusters (e.g., SAF-A and SC35), they have dis-
tinct super-cluster arrangements and connectivities. For in-
stance, we find that the super-structures inside nuclear speckles
are more connected than those formed by hnRNPs and also very
dense (see Fig. 3, E and F; and Table S1). We stress that these
features, which we further verified not emerging from technical
artifacts (see Fig. S3 C), cannot be quantified using standard
clustering algorithms or pair-correlation functions. Addition-
ally, the analysis in Fig. 3, E and F shows that our method is
sensitive enough to distinguish connectivity features of two
closely related wild-type hnRNPs in cell-based experiments.

The results presented in Fig. 3 give us confidence not only
that SuperStructure can be applied to a variety of nuclear wild-
type or mutated proteins in different cells, cell stages, and
conditions, but also that it has the capability to extract unique
features that may yield new mechanistic insights into the
functioning of such proteins. For instance, the analysis of SC35
reveals that speckles are themselves made of clusters that are as
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Figure 3. Application of SuperStructure algorithm to SAF-A, hnRNP-C, and SC35 SMLM data. (A) Reconstructed dSTORM images by using the shifted
histograms method with a pixel size of 10.6 nm. Insets of 4-μm2 size of reconstructed dSTORM images and spatial positions of the data. Palettes represent
the cluster ID computed by running SuperStructure with Nmin � 0 and ε at the start of the first super-cluster regime. (B) Identified clusters for increasing
values of ε in the regimes where clusters merge. (C) Normalized average SuperStructure curves in the range [0 : 150] nm. The number of detected clusters
has been normalized with the total number of localizations in the system. The average is calculated over six independent datasets (nuclei). Solid curves indicate
that SuperStructure analysis was run on the entire nucleus, and the resulting curves for the six independent datasets were averaged (all-nucleus curves).
Dashed curves indicate that SuperStructure analysis was run in five local ROIs for each of the six nuclei, and then the curves of each region (for each nucleus)
were averaged (local curves). In hnRNP-C, these local regions were chosen within the nuclear mesh (to exclude nucleoli), and in SC35, they were chosen within
speckles. Vertical dashed lines highlight different SuperStructure regimes: intra-cluster, first super-cluster, and second super-cluster regime. For SAF-A and
hnRNP-C, the exponential regime of clusters merging (first super-cluster regime) is highlighted with a solid straight line. In case of SC35, two regimes are
highlighted, the merging of clusters within speckles (first super-cluster regime) and the merging of speckles with isolated clusters (second super-cluster
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heavily interconnected as the clusters formed by hnRNP pro-
teins. Given the fact that all these proteins interact with RNA,
our findings suggest that RNA binding may facilitate the for-
mation of connections between clusters of proteins; in turn, this
also points to a suspected structural role of noncoding RNAs in
structuring the organization of the nuclear interior (Hall and
Lawrence, 2016). Studying the effect of RNA depletion on the
super-cluster connectivity is therefore a natural next step to
perform in the future.

In general, while certain mutations or conditions may not
alter the size of protein cluster itself, they may affect the con-
nectivity between clusters. In these cases, the analysis provided
by SuperStructure would be invaluable and indeed essential to
reveal the underlying mechanisms that guide the formation of
such protein assemblies.

Ceramide clusters at the plasma membrane are not connected
To test our algorithm on a different class of molecules, we ap-
plied SuperStructure on published dSTORM datasets (Burgert
et al., 2017) taken on ceramides-membrane lipids involved in
cellular trafficking (Fig. 4 A). The authors (Burgert et al., 2017)
found that bacillus cereus sphingomyelinase (bSMase) treat-
ment increases the size of ceramides clusters and the overall
localization density. By applying SuperStructure analysis (Fig. 4
B), we confirmed these results and further detected that the
difference in localization density persists inside clusters (see
Fig. 4, C and D; and Fig. S4, C and D). Furthermore, we detected
the absence of connectivity between clusters, as the large ε re-
gime is well captured by a Poisson function (Eq. 3) and not by an
exponential (see Fig. 4, B and E). In other words, clusters of
ceramides behave as unconnected, uniformly and randomly
distributed emitters. The possibility of local connectivities at
intermediate ε has also been ruled out, as no merging of clusters
was directly observed (see Fig. S4, A and B). The crossing of the
curves at εx25 nm is a consequence of the difference in overall
localization density (which in turn causes a horizontal shift
between the curves; see Fig. 4, B [inset] and C), rather than a
difference in local connectivities. The notable absence of con-
nections between clusters of ceramides further supports that the
ones detected in hnRNP-U/C and SC35 are significant.

Limitations and potential interpretation pitfalls
While we have provided evidence that SuperStructure can de-
tect connected clusters and distinguish them from noise (at low
density) or unconnected but dense clusters, in this section, we
discuss potential pitfalls and interpretation issues.

First, as mentioned earlier, datasets should always be seg-
mented in order to identify the main ROI. Spurious localizations
outside the ROI (e.g., outside of the nucleus, if we are interested

in nuclear proteins) may affect the curves generated by Super-
Structure and render their interpretation difficult. An analogous
issue may arise if the localizations are embedded within heter-
ogeneous structures, as in the case of SC35 proteins that form
structures strongly connected within nuclear speckles and
weakly connected outside speckles (see Fig. 3). Due to this mixed
behavior over similar length-scales, it is recommended to
restrict the analysis to regions that display similar structural
phenotypes. Even better, and to be preferred when possible, is
to label the region or structure of interest with orthogonal
markers.

The key difference between connected and unconnected
(albeit possibly more clustered) structures is the functional form
of the SuperStructure curves. However, in some cases, Poisson
curves may be difficult to distinguish from exponentials (espe-
cially over short intervals). In this case, the best way to identify
connected clusters (and distinguish them from noisier or more
clustered subregions) is to restrict the analysis over smaller ROIs
to avoid potential contaminations and to perform goodness-of-
fit tests on the curves. Additionally, in these complex cases we
also suggest performing an independent cluster analysis over
different length-scales and directly inspecting the results.

As with all computational algorithms, the danger of incorrect
interpretation can be addressed with quality control. In the case
of SuperStructure, this means directly monitoring the for-
mation of connected clusters/structures while increasing ε.
Nonetheless, thanks to its parameter-free execution, Super-
Structure may currently offer one of the safest ways to analyze
SMLM data.

Discussion
In this work, we have introduced a novel algorithm that extends
the traditional idea of cluster analysis of SMLMdata and that can
quantify both the connections between clusters and the density
of emitters within clusters. SuperStructure introduces for the
first time the concept of connectivity between clusters, which is
different from a random distribution of points at high density. In
this concept, connection points are preferentially found in be-
tween clusters and this feature manifests itself in SuperStruc-
ture curves behaving as single exponentials rather than
Poissonian. Because SuperStructure is parameter-free, it does
not require any prior knowledge of the sample and it thus takes
a crucial step toward a more standardized, portable, and dem-
ocratic quantification of complex patterns and super-structures
in SMLM data.

Here, we have tested the capabilities of SuperStructure first
on simulated datasets, where we observed that it could capture
not only the degree of connectivity between clusters but also the

regime). (D) Normalized all-nucleus average SuperStructure curves in the range [0 : 200] nm for the three proteins. Average is computed over six nuclei.
Shaded regions represent standard deviation from the average. Poisson fits (Eq. 1) for the intra-cluster regime at small ε are shown in the inset. (E) Intra-cluster
density of emitters ρem as parameter of Poisson fit for six independent nuclei (Eq. 1). (F) Normalized decay length λ∗ for the super-cluster regimes highlighted in
C for six independent nuclei. SuperStructure curves were fit with Eq. 4 to extract the decay length λ, and then the normalization λ∗ � λ/ρ−1/2cl was performed
(where ρcl is the detected cluster density at the beginning of each regime of interest). Details are explained in Materials and methods and Fig. S3. P values were
calculated using a Student’s t test: ns, P > 0.05; **, P < 0.01; ***, P < 0.001.
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strength of the connections, and then on biological dSTORMdata
from nuclear proteins and membrane lipids. SuperStructure
allowed us to discover that the speckles formed by the splicing
factor SC35 are made of connected clusters. Further, that the
density of emitters in those clusters is high and the connectivity
between clusters even higher than that of hnRNP proteins. We
argue that this may reflect the RNA-binding feature that char-
acterizes both hnRNPs and SC35 and that may be driving the
formation of interconnected nuclear super-structures. We
highlight that this discovery could not be made simply by
looking at clustering with traditional algorithms, as both pro-
teins display clusters of similar size at small/intermediate ε.

We further stress that SuperStructure is perfectly suited to
compare different datasets without a priori assumptions (albeit,
as discussed before, segmentation to ROIs is recommended for
strongly heterogeneous structures). The datasets of nuclear
proteins we chose to analyze are an example of this. SAF-A,
hnRNP-C, and SC-35 are three nuclear proteins involved in the
metabolism of RNA at different stages, and they display three

different connectivity phenotypes, which point to three differ-
ent nuclear functions. In particular, SAF-A, which also plays a
major role in maintaining the chromatin active loci in a de-
compacted state, is detected as a fully connected mesh. This
finding is in agreement with a previous study that hypothesized
the formation of a dynamic and RNA-interacting nuclear mesh
made by SAF-A (Nozawa et al., 2017). We thus argue that Su-
perStructure is a useful tool for studying the structural and
functional properties of this nuclear mesh. For instance, we
expect that in absence of RNA, the SAF-A mesh would be dis-
rupted and its connectivity strongly weakened (not necessarily
affecting the protein clusters, which may be formed via an RNA-
independent mechanism, such as phase separation by weak
unspecific interactions of SAF-A’s intrinsically disordered do-
main). In turn, the application of SuperStructure would in this
case be indispensable for understanding the link between the
spatial arrangement, mechanics, and function of this nuclear
protein. A similar example is given by the V(D)J locus, whereby
interacting segments appear to be trapped by a protein or

Figure 4. Application of SuperStructure algorithm to ceramide data. Analysis was performed on published data (Burgert et al., 2017). (A) dSTORM
reconstruction of ceramides dataset using the shifted histogram method. The left panel represents signal from cells treated with bSMase; the right panel is a
control without treatment. (B) SuperStructure curves of the two conditions for the entire dataset. Curves show the number of detected clusters normalized by
the total number of localizations. The red region highlights the intra-cluster regime, while the blue region highlights the Poissonian unconnected super-cluster
regime. The shaded purple region highlights the horizontal shift between the two curves. Dashed lines represent Poisson fits at low and high ε. (C–E) Average
density of total localizations (C), intra-cluster density extracted as parameter from Poisson fit (Eq. 1; D), and overall density in the super-cluster regime
extracted as parameter from Poisson fit (Eq. 3; E) for +bSMase and −bSMase treatment datasets. Calculations and fits were performed on data and Su-
perStructure curves from 16 independent circular regions of radius r � 1.5 μm within the original dataset. P values were calculated using a Student’s t test: **,
P < 0.01; ***, P < 0.001.
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chromatin network whose (super-)structure is still poorly un-
derstood (Khanna et al., 2019). We argue that SuperStructure
can shed light also on this problem.

In addition to all this, super-resolved chromatin tracing
(Boettiger et al., 2016; Bintu et al., 2018) and super-resolved
imaging of the accessible genome (Xie et al., 2020) generate
complex datasets that will benefit from “beyond-traditional-
clustering” algorithms. Connections between nanodomains
and chromatin paths do not resemble the structure of iso-
lated clusters but rather that of a mesh of clusters, which
would be perfectly suited for quantification via the Super-
Structure algorithm.

The use of SuperStructure is not limited to biological appli-
cations, and we propose it can be used as a standardized and
parameter-free tool for assessing imaging technical aspects (van
de Linde and Sauer, 2014; Hennig et al., 2015). One of the main
issues in SMLM data, especially in dSTORM, is the evaluation of
fluorophore blinking quality, as it strongly affects the localiza-
tion accuracy in the analysis process. For example, an elevated
blinking frequency would result in a high emitter density (per
frame) and therefore in a high localization inaccuracy due to
overlapping emissions. A similar detrimental effect could also be
due to a poor blinking signal (few emitted photons per blinking
event). As a consequence, lower localization precision of emit-
ters may create pseudo-clusters, as well as pseudo-connections.
We envisage that SuperStructure would be well suited to eval-
uate the blinking quality of fluorophores, for instance by mea-
suring the emerging pseudo-connectivity in a controlled setup,
such as fluorophores attached to a grid.

As discussed above, SuperStructure has been developed with
the aim of going beyond “simple clustering” and in particular to
measure connectivity between clusters. However, our method
might be used in combination with other pairwise distance and
clustering methods. For instance, one can compute Ripley’s
(pairwise distance) functions to preliminarily detect if local-
izations are uniform or clustered and, in case, what is the av-
erage cluster radius. Yet, Ripley’s functions cannot identify
single clusters or more complex structures. Thus, one could use
SuperStructure to determine whether the system under inves-
tigation displays connected or isolated clusters. At the same
time, by computing SuperStructure curves, one can have a firm
ground to decide the value of ε that can be used as input in
DBSCAN for cluster analysis. This second approach can be used,
for example, to measure the size or shape of local super-
structures. Indeed, one can fix ε at the value that identifies
super-structures, perform a cluster analysis, and calculate the
gyration tensor of the identified clusters.

We tested the segmentation capabilities of the latter ap-
proach by estimating the radius and circularity of SC35 speckles;
we observed that it yields similar results as the well-known SR-
Tesseler software (Levet et al., 2015; see Fig. S5). Although Su-
perStructure lacks a graphical user interface, it has several
advantages. First, it can be run on any operating system and can
be easily automatized to run on a large number of cells. Second,
since it is based on DBSCAN, the algorithm scales as nεN2 in its
simplest implementation (where nε is the number of ε values
used in the analysis and N is the total number of localizations).

The calculations on different ε are independent, so Super-
Structure scales extremely well with the number of central
processing units available. For instance, the analysis of nε � 100
values and 105 localizations can be done on a six-coremachine in
∼19 min. Third, since our algorithm is aimed at extracting be-
yond-simple-clustering information, it is flexible and intended
to be used in combination with other pair-correlation or seg-
mentation methods that are extensively employed for single-
clustering analysis.

We conclude by highlighting that SuperStructure provides an
unbiased and parameter-free estimation of (1) the density of
localizations within single clusters and (2) the formation of
super-structures made of connected clusters. Here, we tested
SuperStructure both in simulated and cell-based SMLMdatasets.
Importantly, we revealed previously undocumented system-
spanning structures made of connected clusters of nuclear
proteins that we argue may have a functional role in shaping
genome organization. The use of SuperStructure on cells under
different conditions or with proteinmutations is thus an exciting
direction to uncover the biological significance of these newly
discovered nuclear structures.

Materials and methods
SuperStructure algorithm
SuperStructure is an algorithm that detects and quantifies
super-structures formed by interconnected clusters on SMLM
datasets. Additionally, it can also evaluate the density of emitters
inside clusters.

SuperStructure is mainly based on DBSCAN, a density-based
algorithm to detect clusters of points in arbitrary dimensional
space. The key concept underlying DBSCAN scheme is that it
groups together points at high density, while it marks as outliers
points in low-density regions. After defining a neighborhood
size ε, a point x can be part of a cluster if the number of points
N(ε, x) within a circular region Ω(ε, x) of size ε centered in x,
exceeds some threshold Nmin (or is within the region Ω(ε, y) of
another point y satisfying this condition).

The concept of clusters is subject to the choice of ε and Nmin

and therefore to some sort of likeness or proximity. Further-
more, the change in number of clusters detected by DBSCAN
when varying ε contains some information of the underlying
distribution of points that has been overlooked.

SuperStructure progressively runs DBSCAN to detect the
number of clusters Nc within a broad range of the neighborhood
parameter ε,while Nmin is kept fixed. The resultingNc(ε) curves,
and in particular the change dNc(ε, Nmin) due to a small change
in neighborhood parameter dε, contain fundamental informa-
tion about the formation and organization of super-structures
and connected clusters.

As we aim for a parameter-free algorithm, without losing
generality, we fix Nmin � 0, which means no minimum number
of other emitters necessary in the neighborhood to define a lo-
calization as part of a cluster. For ε � 0, any point is found to be a
cluster by itself. Then, points merge upon increasing ε→ ε + dε,
resulting in dNc/dε ≤ 0 " ε. Additionally, the larger |dNc/dε|, the
more identified clusters are coalescing together for a certain ε.
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At ε smaller than the typical (true, rather than the one de-
tected by DBSCAN) cluster size, the decay of dNc/dε is determined
by the intra-cluster density of points ρem (intra-cluster regime), as
they are the points at the highest density. The decay of this regime
is Gaussian and it is described by the Poisson function:

Nc(ε) �
Xm

k�0
ck
(πρemε2)

k

k!
e−πρemε

2
. (1)

To understand the origin of this functional form, let us imagine
to apply the SuperStructure algorithm by setting Nmin � 0 and
increasing the radius ε. For sufficiently small ε, every point is
considered as a single cluster itself, as no other points are de-
tected in its neighborhood. However, by increasing ε, the
probability of finding another point in the neighborhood in-
creases, implying that points start to merge in bigger clusters for
small ε. It is then legitimate to argue that the number of detected
clusters Nc decreases (with ε) as the probability of not finding
any other emitter in the neighborhood. This is the so-called
Poisson avoidance function Nc(ε) � P(n(ε) � 0) � e−πρemε

2
, and it

is a good approximation for very small ε,where the contribution
of clusters formed by two emitters dominates over clusters
formed by three or more points. For larger ε, this function un-
derestimates the number of detected clusters. The number of
detected clusters can therefore be described by the probability of
not finding more than m particles in the circle of radius ε. The
function we are seeking is the linear combination of the prob-
abilities of not finding any other point in the neighborhood and
finding one or more other points (up to m − 1). Being the prob-
ability of finding k particles P(n(ε) � k) � (π ρem ε2)k

k! e−πρemε
2
, it is

then straightforward to get the functional form of Eq. 1.
Note that ck � 1/(k + 1) in Eq. 1 is to avoid overcounting

clusters. In fact, if we consider two points within distance ε from
each other (and hence in the same cluster), both points will count
toward P(n(ε) � 1), so this contribution must be divided by 2, etc.
Importantly, Eq. 1 displays a natural length-scale κ0 � (π ρem)−1/2
that is intrinsically determined by the internal density of emitters
ρem. Therefore, ρem is a parameter that can be quantified by fitting
the Nc(ε) curve, and it can also be used to quantify the approxi-
mate upper limit of this regime (with 99% confidence level):

ε∗x 3κ0 � 3
. ffiffiffiffiffiffiffiffiffiffiffi

π ρem
p � 3Rcl

. ffiffiffiffiffiffiffiffi
Nem

p
, (2)

where Rcl is the average cluster radius and Nem is the average
number of localizations within a single cluster. We successfully
tested that SuperStructure curves are well fitted by Eq.1 up to
m � 2 using a system where we simulated localization of points
inside a single cluster (see Fig. S1).

At ε of the order than the typical (true) cluster size, the decay
is determined by the rate at which distinct clusters merge upon
ε→ ε + dε (first super-cluster regime). This merging can be due
to either (1) distinct clusters starting to overlap as their distance
is smaller than ε or (2) the presence of points, which we call
connections, bridging two clusters. In case of total absence of
connectivity and a homogeneous cluster distribution, the merging
is only due to the random positioning of clusters, and therefore, it
also follows a Poisson function:

Nc(ε) � f
Xm
k�0

ck
(π ρclε

2)k
k!

e−πρclε
2
, (3)

where f is a normalization factor and ρcl the density of clusters.
We observed that SuperStructure curves of simulated systems
are well fitted by using m � 1. This equation holds also in pres-
ence of noise, but in that case, ρcl→ ρcl + ρnoise (see Fig. S2). The
decay is different in presence of connections between clusters;
connected clusters will merge at smaller ε than unconnected
ones (assuming same distance between the centers of clusters).
In particular, the larger the number of connections or of the local
density of connection points ρconn (i.e., thicker connections), the
faster the merging of bridged clusters as a function of ε and thus
the larger |dNc/dε|. The functional form of this second regime is
exponential in presence of connections:

Nc(ε) � g · e−ε/λ, (4)

where g is a normalization factor and λ the decay length quan-
tifying the rate of decay and therefore the connectivity. This
decay length can be used to discern systems that exhibit either
different grades of connectivity or homogeneous meshes at
different densities. Note λ purely quantifies the connectivity
only when the cluster density ρcl is small and homogeneous, as
we could have underlying highly dense clusters overlapping and
therefore merging. We showed that λ∼ ρ−1/2cl and therefore the
pure connectivity decay length can be further evaluated if the
density of clusters is known: λ∗ ∼ λ/ρ−1/2cl .

We need to stress that by choosing Nmin � 0, connections will
also be considered as points to be merged. However, it is im-
portant that we identify connection points as having a lower
local density ρconn than the groups of points that are bridged by
them (clusters). In this way, they will merge in this second re-
gime to form super-structures. The limiting case in which the
local density of connection points is the same as the one in the
clusters at the two ends of the connections is indistinguishable
from the case of one elongated cluster. A special case is that in
which both clusters and connections have the same density of
points but the connections are slightly detached from the clus-
ters, thus forming three independent clusters at intermediate ε,
which may then merge (we assume this to be a rare event). The
above reasoning can be extended to multiply connected clusters
via the analysis of pairwise connections.

At larger ε, we could have additional super-cluster regimes if
the system is heterogeneous. Most common cases showing two
(or more) super-cluster regimes are the following: (1) inhomo-
geneous system displaying different connectivities at different
length-scales, (2) connected clusters embedded in a noisy envi-
ronment (in this case we observe an exponential followed by a
Poissonian decay), and (3) unconnected clusters within a ran-
dom noise and/or unconnected clusters at different densities (in
this case, we observe two or more Poissonian decays).

SuperStructure pipeline
To apply SuperStructure, we adopt the following steps.

(1) Generation of SuperStructure curves. We run Super-
Structure on a SMLM dataset by first masking our data in the
ROI, such as the nucleus for nuclear proteins asmentioned in the
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section below. Then, we choose a ε range to analyze. For ex-
ample, in SMLM datasets of nuclear proteins a typical choice is
ε2 [0 : 200] nmwith dε � 2 nm. One should notice that lower dε
may be necessary for fitting the intra-cluster regime. Su-
perStructure curves are generated by progressively running
DBSCAN clustering algorithm on the SMLM dataset in the
chosen ε range (and Nmin � 0). The DBSCAN software we use is
from https://github.com/gyaikhom/dbscan, and the progress-
ive run is performed with bash scripts available in the reposi-
tory. SuperStructure output curves are saved in a three-column
file (ε, Ncl, Ncl/Nloc),whereNcl is the number of detected clusters
for the corresponding ε and Nloc the number of total localizations.
Additionally, the classification of localizations in clusters is saved
on a separate file for every ε.

(2) Evaluation of SuperStructure regimes. As a second step,
we evaluate regimes by plotting and investigating SuperStruc-
ture curves (we adopt a log scale in the y axis). This step includes
a preliminary check for the number of regimes and their decay
behavior (exponential versus Poissonian). In the case we ob-
serve a single Poissonian behavior, we can state that the dataset
does not show any, or very limited, connectivity, and therefore,
we are in presence of homogeneous isolated clusters (and
eventually noise). Limited connectivity needs to be checkedwith
a cluster analysis and direct dataset observation in case noise has
obscured an exponential decay. On the other hand, if we observe
a single exponential regime (a straight line in a log-linear plot),
we conclude that the system is made of fully connected clusters.
If SuperStructure curves showmultiple super-cluster regimes, it
is likely that the system is heterogeneous. Indeed, multiple
exponential regimes may reflect heterogeneous/multiscale
connectivities combined with heterogeneous distributions of
clusters. Alternatively, we may find also a combination of ex-
ponential and Poissonian regimes, and in this case, the system
may be made of connected clusters embedded in a noisy region.
Other more complex combinations may be possible; however,
one should notice that in heterogeneous systems, it might be
difficult to recognize and fit super-cluster regimes. To clarify
these contributions, it is useful to combine the analysis of Su-
perStructure curves with a direct observation of the dataset
and identified structures and to run SuperStructure on smaller
ROIs to analyze different regions of the sample with similar
structural phenotypes. Nonetheless, SuperStructure will be
able to unambiguously detect differences in connectivity and
behaviors in, for example, samples that have been subjected to
different conditions or expressing mutated proteins.

(3) Fit of SuperStructure regimes. Once regimes have been
identified, one needs to define the boundaries where regimes
crossover from one to another. This can be either donemanually
or by using a preemptive goodness-of-fit test (this procedure
would also define fitting ranges). The intra-cluster regime is
typically fitted with a Poisson equation (Eq. 1) to evaluate the
density of emitters inside clusters as well as obtain an estimation
of the upper limit of the intra-cluster regime (using Eq. 2). For
super-cluster regimes, we use Eq. 3 if they show a Poissonian
decay (curved on a log-linear plot) or Eq. 4 if they otherwise
appear straight on a log-linear plot; from the latter, we quantify
the connectivity parameter λ.We can then additionally calculate

the cluster density ρcl to extract the pure connectivity part λ∗ �
λ/ρcl

−1/2. The cluster density ρcl can be computed by performing
a cluster analysis with DBSCAN on local circular regions rep-
resentative of that decay regime and by fixing ε at the start of
that regime (e.g., by counting the number of clusters one obtains
by fixing ε at the beginning of the yellow area in Fig. 3). In the
section below and in Fig. S3, we describe in detail the procedure
for λ normalization for the nuclear protein datasets. Finally, and
optionally, it is also possible to define a single function fitting the
entire curve by either (1) defining a piecewise function where
every piece is the fit of the corresponding regime or (2) adding
together the contribution of the different regimes (appropriately
weighted). We performed fits with a combination of bash and
gnuplot scripts available in the repository.

Simulated dataset generation and SuperStructure analysis
The simulated dataset consists of spatially homogeneous and
interconnected clusters randomly distributed on a plane. We set
to workwith clustersmade by taking random clusters centers on
the plane and by sampling Nem � 80 emitters within a Gaussian
of standard deviation σem � 20 nm, thereby setting the cluster
radius to Rcl � 2 σem � 40 nm with a 95% confidence and the
intra-cluster emitters density at ρem � 16,000 μm−2. The clus-
ters are positioned in a L � 3.5 μm large area, and their number
Ncl is varied in order to consider different clusters densities. In
the example shown in the main text, we fixed Ncl � 100, thus
fixing a cluster density to approximately ρcl � 8.2 μm−2,
roughly similar to the values found in experiments for some
nuclear proteins. Pairs of clusters are connectedwith probability
pr if they are positioned closer than a distance b � 1 μm. The
value of pr is calculated as the ratio between the actual drawn
connections and Ncl(Ncl − 1)/2, which is the maximum possible
connections (i.e., when every cluster is connected with every
other cluster). To generate a single connection, we considered
the vector joining the centers of two clusters and sampled one
emitter with probability prconn every 10 nm. Emitters are sam-
pled from a 2D Gaussian centered on the vector connecting the
two clusters centers and with a width σconn � 10 nm. In the main
text, we fixed prconn � 0.5. Note that pr controls the number of
connections, while prconn controls their density, ρconn. We gen-
erated at least 20 independent replicas for each simulated
dataset using a combination of bash and python scripts, and
thenwe ran SuperStructure analysis in the range ε2 [0 : 400] nm
with a change dε � 2 nm. If not differently specified, the first
super-cluster regime was fitted with Eq. 4 for ε2 [15 : 60],
while the second super-cluster regime was fitted with either
Eq. 3 (unconnected systems) or Eq. 4 (connected systems) for
ε2 [70 : 300].

Cell preparation for dSTORM imaging of nuclear proteins
hTERT-RPE1 cells (catalog no. ATCC-CRL-4000; American Type
Culture Collection) were grown overnight in an eight-well Lab-
Tek II Chambered Coverglass–1.5 borosilicate glass (Thermo
Fisher Scientific) at 37°C at initial concentration of 105 cells/ml
in 400 μl (∼40% confluency). We fixed the cells with 4% PFA
(Sigma-Aldrich) for 10 min, washed three times in PBS, per-
meabilized with 0.2% Triton X-100 (Sigma-Aldrich) for 10 min,
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washed three times in PBS, and blocked with 1% BSA (Sigma-
Aldrich) for 10 min.

Immunofluorescence labeling was done by exposing the cells
for 2 h to (1) hnRNP-U polyclonal rabbit antibody (A300-690A;
Bethyl Laboratories) at 10 μg/ml, (2) hnRNP-C1/C2 (4F4) mouse
monoclonal antibody (sc-32308; Santa Cruz Biotechnology) at
0.2 μg/ml, or (3) SC-35 mouse monoclonal antibody (ab11826;
Abcam) at 2 μg/ml and then three washes. Cells were then ex-
posed for 1 h to secondary antibody. The secondary antibodywas
made by AffiniPure F(ab’)2 fragment donkey anti-rabbit or
donkey anti-mouse IgG (H+L; 711–006-152 and 715–007-003,
Jackson ImmunoResearch Europe Ltd.) conjugated to the organic
fluorophore CF647 (92238A-IVL; Sigma-Aldrich) at a stochio-
metric ratio of ∼1. After that, cells were washed three times
in PBS.

Oxygen scavenger imaging buffer based on the glucose oxi-
dase enzymatic system (GLOX) for dSTORMwas prepared fresh.
The recipe employed was similar to that used previously
(McSwiggen et al., 2019). We mixed (1) 5.3 ml of 200 mM Tris
and 50 mM NaCl solution with (2) 2 ml of 40% glucose solution,
(3) 200 μl GLOX, (4) 1.32 ml of 1 M 2-mercaptoethanol (Sigma-
Aldrich), and (5) 100 μl of 50 μg/ml DAPI solution (Sigma-
Aldrich). The GLOX solution was made by mixing 160 μl of
200 mM Tris and 50 mM NaCl with 40 μl catalase from bo-
vine liver (Sigma-Aldrich) and 18 mg glucose oxidase (Sigma-
Aldrich).

The 8.9-ml final solution was enough to fill the chambers of
the eight-well dish; a coverglass was sealed at the top of the dish
to prevent inflow of oxygen.

dSTORM acquisition of nuclear proteins
We performed 3D-STORM acquisitions using a Nikon N-STORM
total internal reflection fluorescence system (TIRF) with Eclipse
Ti-E invertedmicroscope and laser TIRFilluminator (Nikon).We
equipped the microscope with a CFI SR HP Apo TIRF 100× ob-
jective lens (N.A. 1.49) and applied a 1.5× additional optical zoom.
We also used a cylindrical astigmatic lens to obtain elliptical
shapes for emitters that reflect their z-position (Huang et al.,
2008). Laser light was provided via a Nikon LU-NV laser bed
with 405-, 488-, 561-, and 640-nm laser lines. In particular,
CF647 fluorophores were stochastically excited using the 640-
nm laser beam with an additional 405-nm weak pulse. Images
were acquired with an Andor iXon 897 EMCCD camera (Andor
Technologies). The z-position was stabilized during the entire
acquisition by the integrated perfect focus system. Acquisition
were performed at room temperature.

For every nucleus, we acquired a stack of 20,000 frames at
19-ms exposure time by using the Nikon NIS-Element software.
Acquired images have a 256 × 256 pixel resolution with pixel
size equal to 106 nm. For every condition (SAF-A, hnRNP-C, and
SC35), we acquired six nuclei (i.e., six independent datasets).

Raw images and post-processing analysis for nuclear protein
data
The raw stack of frames was initially segmented based on a DAPI
marker to carefully mask out the extranuclear signal. Then,
frames were analyzed using FIJI (Schindelin et al., 2012) and in

particular the Thunderstorm plugin (Ovesný et al., 2014). First,
we filtered them by using Wavelet functions to separate signal
from noise. The B-Spline order was set to 3 and the B-Spline
scale to 2.0 as suggested previously (Ovesný et al., 2014) for
localizations of ∼5 pixels. To localize the emitters centroids, we
thresholded filtered images (threshold value was set 1.2 times
the standard deviation of the first Wavelet function) and cal-
culated the local maximum relative to the eight nearest neigh-
bors. Finally, we fitted the emitters signal distribution with
elliptical gaussians (ellipses are necessary for z-position recon-
struction) using the weighted least-square method and by set-
ting 3 pixels as fitting radius and 1.6 pixels as initial sigma.

Localized data were then postprocessed using the same plu-
gin. We corrected the xy drift using a pair-correlation analysis,
filtered data with a position uncertainty < 40 nm, restricted
the z-position to the interval [−100 : 100] nm, and projected the
data in a 2D plane, as the z-axis precision is ∼100 nm.

Reconstructed images shown in the main text were created
by using the average shifted histograms method of the same
plugin with 10× magnification (final resolution set to 10.6 nm/
pixel).

SuperStructure analysis for nuclear protein data
SuperStructure analysis was run on the entire nuclear region by
setting Nmin � 0 and by increasing ε in the range [0 : 200] nm,
and “all-nucleus” curves were generated for six independent
nuclei. We set the change rate dε � 0.25 nm for ε2 [0 : 10] nm
and dε � 10 nm for ε2 [10 : 200] nm. This choice was due to the
higher resolution necessary to extract intra-cluster information
at small ε. As shown in Fig. 3, SuperStructure all-nucleus curves
show that SAF-A has a single exponential super-cluster regime,
while hnRNP-C and SC35 have two regimes. In the case of
hnRNP-C, the second regime is due to weakly connected and
sparse clusters in nucleoli, while in SC35 it is due to the cluster/
connectivity heterogeneity in the system (i.e., speckles).
Therefore, we additionally run SuperStructure analysis on local
ROIs for hnRNP-C and SC35 to obtain the isolated contribution
for the first super-cluster regime. In particular, for hnRNP-C,
we considered five independent circular ROIs per nucleus with
radius r � 1.5 μm within the nuclear mesh; for SC35, we con-
sidered five independent circular ROIs per nucleus with radius
r � 0.5 μm within speckles. We ran the analysis on these ROIs
and generated SuperStructure “local” curves (five for each
nucleus).

The values of the intra-cluster density ρem were extracted by
fitting with Eq. 1 the intra-cluster regime in the all-nucleus
curves in the range ε2 [0, 3] nm. Resulting average values are
ρhnRNP−Cem � 7, 973 ± 1, 732 μm−2, ρSAF−Aem � 16, 998 ± 2, 444 μm−2,
and ρSC35em � 18, 680 ± 1, 520 μm−2.

Then, we identified the super-cluster regimes of interest: the
first super-cluster regimes of SAF-A and hnRNP-C and both
super-cluster regimes of SC35 (SC35-1 and SC35-2). For SAF-A
and SC35-2, the decay length λ was obtained by fitting all-
nucleus curves with Eq. 4. For hnRNP-C and SC35-1, we fitted
the local curves (five curves per nucleus) and then averaged λ
values obtained from different local curves in the same nucleus.
Fit ranges are ε2 [16, 100] nm for SAF-A, ε2 [14, 70] nm for
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hnRNP-C, ε2 [8, 20] nm for SC35-1, and ε2 [40, 150] nm for
SC35-2.

Finally, the values of λ for SAF-A, hnRNP-C, SC35-1, and
SC35-2 were normalized by the cluster density: λ∗ � λ /ρ−1/2cl . In
the case of SAF-A and SC35-2, the normalization was performed
for λ for every nucleus by using the average cluster density ρcl
of that nucleus. In particular, ρcl was calculated as the average
of the cluster density in five independent circular regions of
radius r in the same nucleus as shown in the example of Fig. S3
A. In the case of hnRNP-C and SC35-1, where λ values were
obtained from local curves, the normalization of λ was per-
formed using the cluster density of the same local region; then,
λ∗ values obtained from different regions in the same nucleus
were averaged (see Table S1). The number of clusters estimation
(to calculate the cluster density) was made with DBSCAN by
setting Nmin � 0 and ε close to the beginning of the exponential
regime of interest, as shown in Fig. S3 B, and by keeping only
clusters with at least 30 particles. To compute the cluster den-
sity, for SAF-A and hnRNP-C, we set local circular regions of
radius r � 1.5 μm and fixed ε � 20 nm for cluster analysis (for
hnRNP-C, we used the same local regions as defined above). For
SC35, we considered two sets of local regions: (1) inside speckles
to normalize the shorter decay length, where we used ROIs with
radius r � 500 nm and fixed ε � 10 nm for cluster analysis
(same regions as above); and (2) outside speckles to normalize
the longer decay length, where we used ROIs with radius r �
1.5 μm and ε � 40 nm for cluster analysis. Average nuclear
values of λ, ρcl , and λ∗ are shown in Table S1.

SuperStructure analysis of ceramide data
SuperStructure analysis was run on the two ceramide datasets
provided by the authors from Burgert et al. (2017), namely
+bSMase and −bSMase, by setting Nmin � 0 and ε2 [0 : 200].
We set dε � 0.5 nm for ε2 [0 : 10] nm and dε � 2 nm for
ε2 [10 : 200] nm. This choice was due to the higher resolution
necessary to extract intra-cluster information at small ε. From
the curves in Fig. 4 B, it is clear that there is no strong con-
nectivity (we observe a Poissonian decay). Therefore, we iden-
tified free unclustered emitters as noise. We additionally ran
SuperStructure in 16 independent local circular regions of radius
r � 1.5 μm to extract the quantities of interest. In particular, we
measured the average densities of total localizations, ρ+loc � 595 ±
130 μm−2 and ρ−loc � 475 ± 87 μm−2, respectively, for +bSMase
and −bSMase treatment. This is in accordance with results in the
original paper. Then, we fitted local SuperStructure curves in
the intra-cluster regime with Eq. 1 for ε2 [0 : 3] nm :
ρ+em � 22, 391 ± 3, 306 μm−2 and ρ−em � 15, 505 ± 3, 470 μm−2, re-
spectively, for +bSMase and −bSMase treatments. Finally, we
fitted local SuperStructure curves in the super-cluster regime
with Eq. 3 in the range ε2 [50 : 200] nm for +bSMase and
ε2 [60 : 200] nm for −bSMase (the difference in fit starting
value is explained by a horizontal shift between the two curves):
ρ+sc � 62.01 ± 20.76 μm−2 and ρ−sc � 43.56 ± 11.05 μm−2. These
two values are in accordance with the sum of cluster density and
noise at the ε value were the fit starts. We additionally per-
formed a cluster analysis with DBSCAN, and results are in
agreement with the original paper (see Fig. S4 for details). To

verify that there is no limited connectivity hidden by noise, we
performed a cluster analysis at two different values of ε and
monitored the change in density of clusters and density of free
emitters (see Fig. S4 for details).

Data availability
The simulated and experimental datasets that support the
findings of this study are available from the corresponding au-
thors upon request.

Code availability
The code for the generation of SuperStructure curves is avail-
able at https://git.ecdf.ed.ac.uk/dmichiel/superstructure.

Online supplemental material
Fig. S1 shows a simulated distribution of points inside a single
cluster and how it is well represented by Eq. 1 in Materials and
methods. Fig. S2 shows SuperStructure curves for simulated
datasets of connected clusters in different conditions, including
systems with different cluster densities, systems embedded in a
noisy environment, and fully connected meshes. Fig. S3 shows
how the normalization of λ was performed in nuclear protein
data (exhaustively explained inMaterials and methods) and that
nuclear proteins connectivity is not a technical artifact. Fig. S4
shows that there is no local connectivity in ceramide data and
confirms the original paper’s results on ceramide cluster size.
Fig. S5 shows SuperStructure + DBSCAN segmentation capa-
bilities by estimating the radius and circularity of SC35 speckles
alongside SR-Tesseler software. Table S1 recapitulates values for
λ, ρcl, and λ∗ in nuclear protein data.

Acknowledgments
The authors thank the Edinburgh Super-Resolution Imaging
Consortium (Institute of Genetics and Molecular Medicine sec-
tion), in particular Matthew Pearson and Ann Wheeler, for help
and support. The authors are grateful to Markus Sauer for
providing the ceramides data. M. Marenda and D. Michieletto
also thank Ibrahim Cissè for an igniting discussion and Davide
Marenduzzo’s group for discussions.

M. Marenda is a cross-disciplinary postdoctoral fellow sup-
ported by funding from the University of Edinburgh and the
Medical Research Council (core grant MC_UU_00009/2 to the
Medical Research Council Institute of Genetics and Molecular
Medicine). S. van de Linde is supported by the Academy of
Medical Sciences, the British Heart Foundation, the Government
Department of Business, Energy and Industrial Strategy, and
theWellcome Trust Springboard Award (SBF003\1163). N. Gilbert
is funded by the UK Medical Research Council (grant
MC_UU_00007/13). D. Michieletto is a Royal Society University
Research Fellow and was supported by the Leverhulme Trust
(grant ECF-2019-088) and European Research Council Starting
Grant (Topologically Active Polymers [TAP] grant 947918). The
authors thank the Scottish University Life Science Alliance for
support through a technology seed grant (Worktribe Project ID
8824507).

The authors declare no competing financial interests.

Marenda et al. Journal of Cell Biology 13 of 15

Molecular super-structures quantifier https://doi.org/10.1083/jcb.202010003

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/220/5/e202010003/1834407/jcb_202010003.pdf by S I S S A user on 24 O

ctober 2024

https://git.ecdf.ed.ac.uk/dmichiel/superstructure
https://doi.org/10.1083/jcb.202010003


Author contributions: M. Marenda, D. Michieletto, and N.
Gilbert conceived the project. M. Marenda and D. Michieletto
analyzed both simulated and experimental datasets. M. Mar-
enda, S. van de Linde, and D. Michieletto generated the simu-
lated dataset. M. Marenda, E. Lazarova, and D. Michieletto
performed super-resolution experiments and localization
analysis. M. Marenda, D. Michieletto, S. van de Linde, and N.
Gilbert wrote the manuscript, with input from all authors.

Submitted: 2 October 2020
Revised: 6 January 2021
Accepted: 23 February 2021

References
Baumgart, F., A.M. Arnold, K. Leskovar, K. Staszek, M. Fölser, J. Weghuber,

H. Stockinger, and G.J. Schütz. 2016. Varying label density allows
artifact-free analysis of membrane-protein nanoclusters. Nat. Methods.
13:661–664. https://doi.org/10.1038/nmeth.3897

Beliveau, B.J., A.N. Boettiger, M.S. Avendaño, R. Jungmann, R.B. McCole, E.F.
Joyce, C. Kim-Kiselak, F. Bantignies, C.Y. Fonseka, J. Erceg, et al. 2015.
Single-molecule super-resolution imaging of chromosomes and in situ
haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6:
7147. https://doi.org/10.1038/ncomms8147

Bintu, B., L.J. Mateo, J.H. Su, N.A. Sinnott-Armstrong, M. Parker, S. Kinrot, K.
Yamaya, A.N. Boettiger, and X. Zhuang. 2018. Super-resolution chro-
matin tracing reveals domains and cooperative interactions in single
cells. Science. 362:eaau1783. https://doi.org/10.1126/science.aau1783

Boettiger, A.N., B. Bintu, J.R. Moffitt, S. Wang, B.J. Beliveau, G. Fudenberg, M.
Imakaev, L.A. Mirny, C.T. Wu, and X. Zhuang. 2016. Super-resolution
imaging reveals distinct chromatin folding for different epigenetic
states. Nature. 529:418–422. https://doi.org/10.1038/nature16496

Brangwynne, C.P., P. Tompa, and R.V. Pappu. 2015. Polymer physics of in-
tracellular phase transitions. Nat. Phys. 11:899–904. https://doi.org/10
.1038/nphys3532

Bronshtein, I., E. Kepten, I. Kanter, S. Berezin, M. Lindner, A.B. Redwood, S.
Mai, S. Gonzalo, R. Foisner, Y. Shav-Tal, and Y. Garini. 2015. Loss of
lamin A function increases chromatin dynamics in the nuclear interior.
Nat. Commun. 6:8044. https://doi.org/10.1038/ncomms9044
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Supplemental material

Figure S1. The Poissonian functional form in the intra-cluster regime. (A) To test the Poissonian functional form (Eq. 1) of the intra-cluster regime of
SuperStructure curves, we simulated localizations inside clusters as a uniform distribution of Nem points distributed within a circle of radius Rcl. The resulting
average density is ρem. The number of points included in any circular subregion of radius ε is, on average, n ε( ) � πρemε

2, and is in fact itself Poisson distributed.
(B) To check the theoretical prediction of Eq. 1, we have created simulated datasets for various ρem and Nem. The theoretical predictions (dotted lines) with
m � 2 are in good agreement with the SuperStructure curves, indicating that indeed Eq. 1 correctly captures the behavior of uniformly distributed points
forming one idealized cluster. However, note that for m � 2, there is already an overcounting of clusters at large values of ε due to the fact that DBSCAN
merges indirectly related emitters in a single big cluster. This suggests not to extend the summation to higher values of m. From Eq. 1, the end of the intra-
cluster regime can be approximated by the width of the Poisson function, i.e., ε∗x3κ0 (at 99% confidence level), where κ0 � 1/ ffiffiffiffiffiffiffiffiffiffi

πρem
√ is the decay length

identified by Eq. 1. This is confirmed by observing that predicted ε∗ for the curves are ε∗(ρem � 2, 000 μm−2)x38 nm, ε∗(ρem � 10, 000 μm−2)x18 nm, and
ε∗(ρem � 100, 000 μm−2)x5.3 nm, which correspond to Ncl/Nemx10−3 (when most of the points have been merged in a single cluster).
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Figure S2. Average SuperStructure curves for simulated datasets in different conditions. SuperStructure analysis was run on 20 independent datasets
(each in the same condition), and the resulting curves were then averaged. Shaded regions represent the standard deviation from the average. Parameters are
set to their standard values if not otherwise specified (seeMaterials and methods). Palettes in the inset configurations represent cluster analysis at ε � 80 nm.
(A) Locally connected clusters with different grades of connectivity and doubling the cluster density (from left to right): ρcl � 8.2 μm−2 (left) and ρcl �
16.3 μm−2 (right), connection density prconn � 0.5, and no noise and different values of connectivity pr. The higher cluster density makes SuperStructure curves
more markedly distinct as a function of pr compared with the same curves for a lower density. (B) Locally connected clusters with low connectivity and
increasing cluster density: connectivity pr � 0.002, connection density prconn � 0.5, and no noise and different cluster densities ρcl. The first super-cluster
regime maintains the single exponential decay, but the decay length λ decreases with the cluster density. In the main text, we showed that this dependence
goes as λ}ρ−1/2cl . Also, the exponential decay λ2 of the second super-cluster regime decreases with the density of clusters, and this regime evolves from a
Poisson-like (low ρcl) to an exponential decay (high ρcl). This behavior seems to be a pure effect of the cluster density, as all other parameters remain un-

changed. Black curves are Poisson decays attempts ∼ e−πρε
2
to fit the second super-cluster regime. (C) Locally connected clusters with different grades of

connectivity and sparse noise addition: cluster density ρcl � 8.2 μm−2, connection density prconn � 0.5, noise density ρn � 0 μm−2 (left)/ρn � 64 μm−2 (right),
and different values of connectivity pr.With high noise (eight times the cluster density), the second super-cluster regime becomes Poissonian; the first super-
cluster regime maintains its typical exponential decay, but the decay length is altered. Dotted lines represent fit with Eq. 3 for ε2 [70 : 300] nm. (D) Un-
connected clusters of points with increasing density of noise (other parameters are the same as C). Eq. 3 well describes the decay of the curves in the
intercluster regime, with the density parameter ρcl and ρcl + ρn, respectively, in absence and presence of noise. (E) Average decay length of the first super-
cluster regime for the connected systems represented in C as function of noise density ρn. The fit to calculate the decay length λ has been made for
ε2 [20, 60] nm for 20 independent datasets. Values of λ are then averaged. Bars represent the standard deviation from the average. Decay lengths for systems
with different connectivities pr are distinguishable as long as the noise density is below the connection density (~500 μm−2). However, low noise density also
alters the estimation of the decay length. The alteration is less severe for highly connected clusters. (F) Fully connected meshes of clusters with increasing
density of the mesh: cluster density ρcl � 8.2 μm−2, connectivity p � 0.025, and no noise and different values of connection density prconn. The super-cluster
regime is unique, the decay is exponential, and the decay length λ decreases with the density of the mesh. Fit of λ was performed for ε2 [20 : 60] nm. The
inset shows the dependence of λ on prconn in a fully connected mesh, which is λ∼ p−0.74rconn .

Marenda et al. Journal of Cell Biology S2

Molecular super-structures quantifier https://doi.org/10.1083/jcb.202010003

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/220/5/e202010003/1834407/jcb_202010003.pdf by S I S S A user on 24 O

ctober 2024

https://doi.org/10.1083/jcb.202010003


Figure S3. Details on λ normalisation and proof that connections are not technical artifacts in nuclear protein data. (A) dSTORM reconstructed images
of SAF-A, hnRNP-C, and SC35 in a single cell where local circular regions for cluster density estimation purpose are highlighted. In the case of SC35, two
different region types are used, one inside speckles for the first exponential regime and one outside speckles for the second exponential regime. In the case of
hnRNP-C and SC35, local circular regions were also used to compute SuperStructure local curves and the decay length λ in the first super-cluster regime, as
explained inMaterials andmethods. (B) Average SuperStructure curves for SAF-A, hnRNP-C, and SC35 are shown and explained in the main text. Solid lines are
the result of all-nucleus analysis, while dashed lines are the result of a local analysis (in local circular regions). Exponential regimes of interest are highlighted, as
well as the values of ε at which the cluster analysis is made for cluster density estimation purposes (purple dashed vertical line). (C) Check that connections are
not the result of technical artifacts due to bad blinking quality both in SAF-A and hnRNP-C data by monitoring λ (left) and λ∗ (right) for different cluster
densities ρcl. The bad blinking quality of fluorophores would lead to localization inaccuracy of emitters at the borders of protein clusters, and this in turn could
lead to pseudo-connections between clusters. However, these pseudo-connections would be proportional to the cluster density; a higher cluster density would

result in stronger pseudo-connections, which would reflect to a decrease of λ∗ with the cluster density. λ, ρcl, and λ
∗ were calculated for the six independent

nuclei, as explained in Materials and methods, and are shown in Table S1. Every nucleus can be considered as a system where the blinking conditions are the

same, but cluster densities may vary due to statistical fluctuations. While λ (left) decreases with ρcl, as expected, λ∗ (right) is constant for different densities,
ruling out the hypothesis that connections are artifacts due to bad blinking quality.
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Figure S4. Absence of local connectivity and confirmation of original paper results in ceramide data. (A and B) The absence of local connectivity was
confirmed by analyzing cluster density (A) and sparse localization density (B) in the crossover range. We monitored the density of ceramides clusters and that
of free emitters at ε1 � 20 nm and ε2 � 36 nm. To calculate cluster density, DBSCANwas run at Nmin � 0 and at the given value of ε, and we kept only clusters
with at least 10 particles. The remaining particles were considered as free localizations. Clusters and free localizations were detected at Nmin � 0 for 16 in-
dependent circular regions. The number of clusters remains constant in the considered ε regime, while the free localizations density significantly decreases
(more severely for −bSMase cells). As a consequence, we can state that there is no significant merging of ceramide clusters, only embedding of nearby free
localizations in already-formed clusters. (C and D) Confirmation of the original paper’s results by calculating the ceramide cluster size both as gyration radius
(C) and number of emitters (D). Protein clusters were detected at Nmin � 0 at ε+ � 20 nm and ε− � 24 nm. In accordance with the analysis in the paper, we
looked at the size of clusters with a radius >30 nm. Note that +bSMase ceramide clusters consist of (on average) 180 emitters in a circle of radius 42 nm. The
resulting density is 32,500 μm−2. This result is approximately in line with our prediction obtained with the Poisson intra-cluster fit by considering that the
standard deviation of both cluster radius and emitters is high. Similarly, −bSMase clusters have on average 78 emitters in an average cluster radius of 40 nm.
The resulting density is 15,500 μm−2.
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Table S1 is provided online and shows the decay length, detected cluster density, and normalized decay length for SAF-A, hnRNP-C,
and SC-35 in both super-cluster regimes (SC35-1 and SC35-2).

Figure S5. Size and shape estimation of local super-structures emerging in SC35 dSTORM data (i.e., nuclear speckles) by using both SuperStructure
and SR-Tesseler. Analysis was performed on a single cell as proof of concept. (A) Super-structure detection using SR-Tesseler software, a segmentation
framework based on Voronöı tessellation (constructed from the localization coordinates). Adjustments of the density factor allows the detection of structures
at different density levels, such as clusters (violet) or speckles (yellow). Blue dots represent no-segmented localizations. The software was downloaded from
https://github.com/flevet/SR-Tesseler/releases/tag/v1.0 and run on a Windows operating system. (B) SuperStructure curve of the same data. Analysis of
decay regimes allows the identification of ε � 40 nm as a suitable value for super-structure identifications. (C) Identified clusters at ε � 40 nm with Su-
perStructure. Speckle detections are visually compatible with those of SR-Tesseler. (D and E) Radius and circularity of super-structures using both SR-Tesseler
and SuperStructure. Both radius and circularity are very similar, showing the power of SuperStructure in computing shape and size properties. In the analysis,

we considered the 20 largest identified structures (i.e., speckles). For SuperStructure, the 2D symmetric gyration tensor R2
�→

was computed and diagonalized
for identified super-structures. The gyration tensor components R2xy are defined as R2xy � 1

2N2

PN
i�1
PN

j�1(xi − xj)(yi − yj), where N is the total number of lo-
calizations in a superstructure, and xi and yi are the x and y positions of the localization i. The diagonalization is necessary to obtain the square of the major and

minor semi-axis of the speckles, namely γ1 and γ2.We then calculated the speckle radius Rg � ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1 + γ2

√
and their circularity c �

ffiffiffiffiffiffiffiffiffiffi
|γ1−γ2|
γ1+γ2

q
. For SR-Tessler, radius

and circularity parameters were obtained as output after Voronöı tessellation. P values were calculated using a Student’s t test: ns, P > 0.05; *, P < 0.05.
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