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Abstract
In a series of recent papers we put forward a ‘fractional gravity’ framework
striking an intermediate course between a modified gravity theory and an exotic
dark matter (DM) scenario, which envisages the DM component in virialized
halos to feel a non-local interaction mediated by gravity. The remarkable
success of this model in reproducing several aspects of DM phenomenology
motivates us to look for a general relativistic extension. Specifically, we propose
a theory, dubbed Relativistic Scalar Fractional Gravity or RSFG, in which the
trace of the DM stress-energy tensor couples to the scalar curvature via a non-
local operator constructed with a fractional power of the d’Alembertian. We
derive the field equations starting from an action principle, and then we invest-
igate their weak field limit, demonstrating that in the Newtonian approximation
the fractional gravity setup of our previous works is recovered. We compute
the first-order post-Newtonian parameter γ and its relation with weak lensing,
showing that although in RSFG the former deviates from its GR values of
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unity, the latter is unaffected. We also perform a standard scalar-vector-tensor-
decomposition of RSFG in the weak field limit, to highlight that gravitational
waves propagate at the speed of light, though also an additional scalar mode
becomes dynamical. Finally, we derive the modified conservation laws of the
DM stress energy tensor in RSFG, showing that a new non-local force emerges,
and hence that the DM fluid deviates from the geodesic solutions of the field
equations.

Keywords: dark matter, non-local gravity, fractional gravity

1. Introduction

In recent years there has been an increased interest in non-local gravity theories, envisaging that
gravity may feature a self-interaction mediated by non-local operators. Among these theories
the ones involving an infinite number of derivatives are arguably the most promising, since
some of them have been shown to yield singularity-free, ghost-free (and thus unitary) and
renormalizable theories of quantum gravity [1–3].

The actions of these theories are generically constructed adding to the Einstein–Hilbert one
of General Relativity (GR) all the possible terms involving the scalar curvature, the Ricci and
Riemann or Weyl tensors, with non-local infinite derivatives operators sandwiched between
them. In order to preserve general covariance, these operators are usually taken to be functions
of the d’Alembertian □=∇µ∇µ or of its inverse □−1. Since the d’Alembertian has dimen-
sions of length−2, the former class of theories offer a completion of GR in the ultraviolet
regime (i.e. small scales), being able to smooth the black holes and Big Bang singularities that
are inevitable predictions of classical GR [4–7], while the latter modify gravity in the infrared
regime (i.e. large scales) and can lead to interesting cosmological consequences. In fact, it has
been shown that models of this kind can give rise to the late time cosmic accelerated expansion
of the Universe without invoking any dark energy component [8–10].

In a nutshell, that infinite derivatives theories are non-local can be understood with the
following basic argument: in order to calculate the first derivative of a standard function, its
value at two infinitesimally close points must be known; similarly, the n-th derivative requires
knowledge of the function value at n+ 1 different points. This means that infinitely many
derivatives of a field require knowledge of its value throughout all spacetime. Another way to
see this is by looking at the action of the translation operator of a function eϵ

d
dx f(x) = f(x+ ϵ).

Since eϵ
d
dx =

∑
n
ϵn

n!

(
dn

dxn

)
, this suggests that actions involving infinitely many derivatives can

be recast in terms of fields translated at different points in spacetime.
On the other hand, inverse powers of the d’Alembertian lead to manifestly non-local theor-

ies, since □−1 can be represented as an integral kernel acting via the Green function of the □
operator:

(
□−1f

)
(x) =

ˆ
d4y
√
−g(y)G(x,y) f(y) . (1)

To different choices of Green functions correspond alternative definitions of these inverse oper-
ators. In particular, requiring causality, meaning that an event at a spacetime point could only
be influenced by events in its past but not in its future, amounts to select the retarded green
function Gret(x− y). Note that this choice can be made only a posteriori, by replacing any
advanced Green function in the field equations with its retarted counterpart by hand, since
both types of Green functions naturally emerge in the variation of the action [11].
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Among the infinite-derivatives gravity theories, the ones dealing with fractional operators,
meaning non-local operators containing a non-integer number of derivatives and in particular
fractional powers of the d’Alembertian (−□)s, occupy a special position (see e.g. [12] for a
review of fractional calculus); since these operators are non analytic, they introduce a stronger
departure from local gravity than non-local operators constructed with infinite derivatives of
integer order. Once quantized, these kind of theories have been shown to be unitary and finite
at one loop for particular values of the fractional exponent s [13].

Recently [14–16] put forward a framework where the dark matter (DM) component within
virialized halos is subject to a non-local interaction originated by fractional gravity (FG)
effects. We have shown that such a framework can substantially alleviate the small-scale
issues of the standard cold DM paradigm, without altering the DM mass profile predicted
by gravity-only N−body simulations (not including possible baryonic feedback effects, which
can improve the agreements with observations in large spirals, but can be neglected in very
small, DM dominated, dwarfs; e.g. [17–20]), while retaining its successes on large cosmolo-
gical scales6. In particular, we were able to: (i) provide accurate fits to the stacked rotation
curves of spiral galaxies with different properties, to the thermodynamic profiles of galaxy
clusters, and to the rotation curves of individual dwarf spheroidal and irregular galaxies; (ii)
reproduce the observed shape and scatter of the radial acceleration relation (RAR) over an
extended range of galaxy accelerations; (iii) account for several scaling relations observed
between the properties of DM halo and baryonic disk. The emergent evidence is that, when
endowed with the fractional interaction, DM performs better that in the Newtonian case, espe-
cially in small structures like dwarfs where FG effects are found to be stronger. Furthermore the
presence of DM, whose existence, although not yet confirmed by direct experiments, has been
strongly supported by a plethora of astrophysical and cosmological probes [29–35], is crucial
since we have verified in [14] that a MOND-like version of the fractional model including
only baryons is not able to fit the aforementioned data (though the classical, phenomenolo-
gical MOND parameterization works better; e.g. [36, 37]). Specifically, in such a MOND-like
model the outer part of the rotation curves always tend to decrease towards zero, while data
show that the general trend is to stabilize around a constant value, or even to increase in the
smaller dwarfs. Furthermore, the correct normalization of the rotation curve (even in the inner
region) can be obtained only with disk masses systematically larger than those inferred from
photometry (I−band), hinting tomass-to-light ratios substantially larger than the typical values
M⋆/LI ⩽ 1.5 expected on the basis of stellar population synthesis models [38].

In FG the potential originated by a given DM distribution is computed from a modified
Poisson equation [39], in which the Laplace–Beltrami operator is replaced by its fractional
power [14, 40]

(−∆)
s
Φ(x) =−4πGℓ2−2s ρ(x) . (2)

Here the fractional exponent s, which measures the strength of non locality, is restricted to
the range s ∈ [1,3/2] in order to ensure convergence, while the length scale ℓ, which must
be introduced for dimensional consistency, can be interpreted as the typical size below which
gravitational effects are somewhat reduced and above which they are instead amplified by
non-locality. One can also transfer the non-locality from the differential operator to the matter
content and interpret equation (2) as a classical Poisson equation sourced by an effective, deloc-
alized density distribution ρeff(x) = (−ℓ2∆)1−s ρ(x), or equivalently ρ̃eff(k) = (ℓ |k|)2−2s ρ̃(k)

6 We caveat the reader that the standard cosmological model faces some challenges on large scales, like the Hubble
(e.g. [21, 22]), the cosmic shear (e.g. [23, 24]), the bulk flows (e.g. [25, 26]) and the large local supervoid (e.g. [27,
28]) tensions. However, addressing these is beyond the scope of the present work.
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in the Fourier domain. Considering for instance a point-like particle at the origin ρ(x) =
mδ3(x), the effective density for this system turns out to be

ρeff (x) =
Γ
(
5
2 − s

)
4s−2

√
πΓ(s− 1)

ℓ2−2sGm
|x|5−2s

, (3)

showing that the effective density associated to a well localized matter distribution can be
non-zero in all of space. If both baryons and DM are present with densities ρbar and ρDM, the
potential in FG can then be computed by solving the Poisson equation

∆Φ(x) = 4π G [ρbar (x)+ ρDM,eff (x)] = 4π G
[
ρbar (x)+

(
−ℓ2∆

)1−s
ρDM (x)

]
. (4)

Motivated by the successes of FG at the Newtonian level, in this paper we propose a gen-
eral relativistic extension of the latter, deriving the equations of motion from an action which
naturally extends the Einstein–Hilbert one of GR. This will enable us to explore FG in regimes
in which the strictly Newtonian approximation cannot be applied, to study phenomena which
are exclusive to the relativistic setting (e.g. propagation of gravitational waves), and provide a
more straightforward physical interpretation of the non-locality effects associated to the theory.

The plan of the paper is as follows. In section 2 we introduce the action of the theory and
derive the associated equations of motion; in section 3 we investigate the weak field limit,
derive the Newtonian (section 3.1) and post-Newtonian (section 3.2) approximations, and dis-
cuss mode propagation via a scalar-vector-tensor (SVT) decomposition analysis (section 3.3);
in section 4 we derive the modified conservation equation for the DM fluid; finally, in section 5
we summarize our findings and outline future perspectives.

2. Relativistic action and equations of motion

In extending DM in FG to a relativistic setting, we aim to meet a series of requirements:
(i) our theory must be generally covariant and locally Lorentz invariant; (ii) baryons must
obey standard GR, in particular must follow the geodesics of the metric obtained by solving
the field equations; (iii) the Newtonian limit of the field equations of the relativistic theory
must yield the fractional Poisson equation (2). Moreover, the expression of the effective DM
density suggests to consider negative fractional powers of the d’Alembertian acting on the
matter distribution.

Inspired by these guidelines and by the principle of simplicity, we propose an action where
the scalar curvature couples with the trace of the DM stress-energy tensor via a non-local
operatorF(□)whichmust be chosen in such away to recover the appropriate Newtonian limit.
The action of this model, from now on called Relativistic Scalar Fractional Gravity (RSFG),
reads7

SRSFG [g,ψbar,ψDM] = SEH [g] + Sbar [g,ψbar] + SDM [g,ψDM]+

− 1
2

ˆ
M

d4x
√
−gRF (□) TDM (5)

where SEH[g] = (2κ)−1
´
M d4x

√
−gR, with κ≡ 8πG/c4, is the usual Einstein–Hilbert action

of GR, Sbar[g,ψbar] and SDM[g,ψDM] denote the matter actions for baryons and DM, and

7 We remark that the choice of this action is based on simplicity principles. In fact, other possibilities would
include a non-local coupling Rµν F2(□)TµνDM between the Ricci and the DM stress-energy tensors, or even

Rµανβ F4(□)TµνDM T
αβ
DM between the Riemann (or Weyl) and two copies of the DM stress-energy tensors. We plan to

explore these alternative, more complex theories in a forthcoming paper.
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TDM ≡ gµν TDMµν is the trace of the DM stress-energy tensor TDMµν . We anticipate that the
Fractional Poisson equation considered in our previous works [14–16] can be recovered in the
Newtonian limit if F(□) is chosen of the form

F (□) = ℓ2
[(
ℓ2□

)−1
+
(
−ℓ2□

)−s
]
; (6)

hereafter we will assume this shape and work in units for which ℓ= 1, being the appropriate
power of ℓ easily reinserted when needed.

To obtain the field equations from the action of equation (5), we vary it with respect to the
inverse metric, finding

δSRSFG = δSEH + δSbar + δSDM − 1
2

ˆ
M

d4x
{
δ
(√

−g
)
RF TDM +

√
−gδRF TDM

+
√

−gR
(
δ
(
□−1

)
+ δ[(−□)−s]

)
TDM +

√
−gRF δTDM

}
=

1
2

ˆ
M

d4x

{√
−gδgµν

[
Gµν

κ
−Tbar,µν −TDM,µν − (Gµν + gµν□−∇µ∇ν) F TDM+

−F R
δTDM
δgµν

]
−
√

−gR
(
δ
(
□−1

)
+ δ[(−□)−s]

)
TDM

}
+

ϵ

2κ

˛
∂M

d3y
√
hNα

[
gµν

(
∇α δgµν −∇ν δgµα

)
(1−κF TDM)

+κδgαβ∇βF TDM −κδgµνgµν∇αF TDM
]
, (7)

where we have used the standard definition of the stress-energy tensor Tµν =− 2√
−g

δS
δgµν , the

well-known expression for the variation of the Ricci scalar

δR= (Rµν + gµν□−∇µ∇ν) δg
µν , (8)

and we have applied the divergence theorem twice to transfer the action of the differential
operators on the stress-energy tensor. The last term in equation (7) involves an integration
over the three dimensional boundary ∂M, whose volume form is dSα = ϵ

√
hNα d3y; here Nα

denotes the normal vector to the surface and ϵ≡ NαNα =±1 depends on the surface being
spacelike or timelike, respectively.

In line with the standard cosmological model, we consider DM as a perfect, pressureless
fluid, with TµνDM = ρuµ uν and TDM =−ρ. In this case [41] have shown that, in standard astro-
physical and cosmological settings, where the entropy and particle production rates remain
unchanged during the dynamical evolution of the fluid, the variation of the trace of the stress
energy tensor can be written in a closed form as

δTDM
δgµν

=
1
2
(TDM gµν −TDMµν) . (9)

To proceed further one needs the variation of the nonlocal operators. This can be found by
recalling the semi-group integral representation of the inverse Fractional d’Alembertian [13]

(−□)
−s

=
1

Γ(s)

ˆ ∞

0
dτ τ s−1 eτ□ (10)

5
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which stems from the definition of the Euler Gamma function Γ(s), together with the
Duhamel’s formula for the variation of the exponential of an operator O in terms of the vari-
ation of the operator itself

δ
(
eτO

)
=

ˆ τ

0
dqeqO δO e(τ−q)O . (11)

In particular, the variation of the inverse d’Alembertian simply follows

δ□−1 =−□−1 δ□□−1 . (12)

Therefore, one has

ˆ
M

d4x
√
−gRδ

(
−□−s

)
TDM

=

ˆ
M

d4x
√
−g 1

Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq Req□ δ□e(τ−q)□TDM

=
1

Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq
ˆ
M

d4x
√
−geq□R

[
δ

(
1√
−g

)
∂α
(√

−ggαβ ∂β
)

+
1√
−g

∂α
(
δ
(√

−ggαβ
)
∂β
)]

e(τ−q)□TDM

=
1

Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq
ˆ
M

d4x
√
−geq□R

[
1
2
gµν δg

µν 1√
−g

∂α
(√

−ggαβ ∂β
)

+
1√
−g

∂α

(√
−gδgµν

(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∂β

)]
e(τ−q)□TDM

=
1

Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq
ˆ
M

d4x
√
−gδgµν

[
1
2
gµν e

q□Re(τ−q)□□TDM+

+

(
1
2
gµν g

αβ − δ(αµ δβ)ν

)
∇α

(
eq□R

)
∇β

(
e(τ−q)□TDM

)]
+

+
1

Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq
ˆ
M

d4x ∂α

[
eq□R

(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∂β

×
(
e(τ−q)□TDM

)√
−gδgµν

]
. (13)

Similarly,

ˆ
M

d4x
√
−gRδ

(
□−1

)
TDM

=

ˆ
M

d4x
√
−gδgµν

[
−1
2
gµν TDM□−1R+ ∂α

(
□−1R

) (
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∂β

(
□−1TDM

)]
+

−
ˆ
M

d4x ∂α

[
□−1R

(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∂β

(
□−1TDM

)√
−gδgµν

]
. (14)

The last line of this expression can be turned into a surface term by using the identity
∂α (

√
−gVα) =

√
−g∇αVα, valid for any vector Vα, and the divergence theorem.

6
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Collecting all the terms together, the field equations read

Gµν

κ
= Tbarµν +TDMµν +(Gµν + gµν□−∇µ∇ν) F TDM − 1

2
F R (TDMµν −TDM gµν)+

− 1
2
gµν TDM□−1R+

(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∇α

(
□−1R

)
∇β

(
□−1TDM

)
+

− 1
Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq

[(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∇α

(
eq□R

)
∇β

(
e(τ−q)□TDM

)
+

−1
2
gµν e

q□R□e(τ−q)□TDM

]
, (15)

and the full boundary term takes the form

ϵ

2κ

˛
∂M

d3y
√
hNα

{
gµν (∇α δgµν −∇ν δgµα) (1−κF TDM)+κδgαβ∇βF TDM+

−κδgµνgµν∇αF TDM −κ□−1R

(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∇β

(
□−1TDM

)
δgµν

+
κ

Γ(s)

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq eq□R

(
δ(αµ δβ)ν − 1

2
gµν g

αβ

)
∇β

(
e(τ−q)□TDM

)
δgµν

}
.

(16)

Although the last three addenda can be set to zero at the boundary since the variation of the
metric vanishes there, the situation is more subtle for the first one, which involves the variation
of the derivative of the metric at the boundary, and hence cannot be set to zero in principle.
However, it is well known that such a term can be related to the variation of the trace of the
intrinsic curvature K≡∇αNα of the boundary. In fact, one can write

Nα gµν (∇α δgµν −∇ν δgµα) = NαPµν (∇α δgµν −∇ν δgµα) = NαPµν∇α δgµν , (17)

where we have substituted the metric with the projection tensor on the boundary Pµν ≡ gµν −
ϵNαNβ since the term involving the product of three tangent vectors vanishes by symmetry,
and in the last equality we have used the fact that Pµν∇ν δgµα = 0 since it is the covariant
derivative of the metric variation projected on the boundary, on which the metric is held fixed.
On the other hand,

δK= Pα
β δΓ

β
αγ N

γ =−1
2
Nγ Pα

β g
βδ (∇α δgγδ +∇γ δgαδ −∇δ δgγα)

=−1
2
Nγ Pα

β g
βδ∇γ δgαδ =−1

2
NαPµν∇α δgµν (18)

so that NαPµν∇α δgµν =−2δK holds. Thus, we obtain

˛
∂M

d3y
√
hNα gµν (∇α δgµν −∇ν δgµα) (1−κF TDM)

=−2
˛
∂M

d3y
√
hδK (1−κF TDM) . (19)

Note that, although F(□) is a non-local operator, as long as the trace of the DM stress-energy
tensor vanishes asymptotically on the boundary, so doesF(□)TDM. This should be contrasted

7
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to other modified gravity theories, like for example F(R); for these, in order to have a well-
defined variational principle, the quantity F ′(R) must be required to vanish on the boundary,
implying that it represents a new dynamical degree of freedom [42]. In the present case of
RSFG, the boundary term can be simply accounted for by introducing in the action a Gibbons
Hawking York-like counter-term [43, 44] of the form:

ϵ

κ

˛
∂M

d3y
√
hK (1−κF TDM) . (20)

Furthemore, one can renormalize the action by subtracting the extrinsic curvature on the
boundary of the corresponding asymptotic vacuum spacetime K0.

Therefore the full action of RSFG reads

SRSFG [g,ψb,ψDM] = SEH [g] + Sbar [g,ψb] + SDM [g,ψDM]+

− 1
2

ˆ
M

d4x
√
−gRF TDM +

ϵ

κ

˛
∂M

d3y
√
h (K−K0)(1−κF TDM) .

(21)

3. Weak field limit

Since the full field equations (15) are very complicated, it is convenient to restrict further
analysis to the weak field limit, as it is customary in non-local gravity theories (see, e.g. [6]).
To this purpose, one assumes the dynamics of the gravitational field to be encoded in a small
perturbation over the Minkowski background gµν = ηµν + hµν , with hµν ≪ 1. Furthermore,
the non-local operator F(□) is obtained by replacing the D’Alembertian with its expression
in Minkowksi space F(□g)≃F(□η), to linear order in h. Finally, having the metric as a
small perturbation requires the stress energy tensor to be at least linear in h, so that all the
terms in equation (15) involving the product of the curvature and the stress-energy tensor can
be neglected at the linear order. With these assumptions equation (15), to linear order in h,
simplifies considerably and read

G(h)
µν

κ
= Tbarµν +TDMµν − (∂µ ∂ν − ηµν□η) F (□η) TDM . (22)

We note that, in this weak field limit, the contracted Bianchi identities imply that the baryons
and DM stress energy tensors must satisfy the usual conservation law ∂µ (Tbarµν +TDMµν) =
0, in terms of flat partial derivatives. We will see in the next section that this is no longer true in
RSFGwhen the higher order terms are included, due to the appearance of an external non-local
force.

If we further assume the metric to be quasi static and the source to move slowly with respect
to the speed of light c, we can expand equation (22) in inverse powers of 1/c to obtain the
Newtonian and post-Newtonian approximations. It is customary to express the metric perturb-
ation in terms of potentials, constructed from the matter density and velocity, with real coef-
ficients known as post-Newtonian parameters. In a gravity theory, these must be computed
from the field equations, and then allow a direct comparison with experimental data (see [45],
chapters 39 and 40, for an excellent discussion on the Parametrized Post-Newtonian, or PPN,
expansion and its relevance in performing experimental tests of GR in the Solar System). If
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we retain only terms up to order 1/c2 the metric perturbation, in the standard PPN coordinate
system, can be written in the form

hµν =

(
− 2Φ

c2

− 2Ψ
c2 δij

)
; (23)

hereΦmust coincide with the gravitational potential in the Newtonian limit of the theory, while
Ψ is usually written as Ψ = γΦ in terms of the PPN parameter γ, representing the amount of
space curvature per unit rest mass.

3.1. Newtonian limit: recovering the fractional Poisson equation

Specializing to RSFG, we can insert equation (23) into the expression of the linearized Einstein
tensor

G(h)
µν =

1
2

[
2∂α ∂(µ h

α
ν) − ∂µ ∂ν h−□hµν − ηµν ∂α ∂β h

αβ + ηµν□h
]

(24)

to find, up to order 1/c2, the expansion:

G(h)
00 =

2∆Ψ

c2
, G(h)

0i = 0, G(h)
ij = (∂i ∂j− δij∆)

Ψ−Φ

c2
. (25)

On the other hand, expanding the right hand side of equation (22) to the same order, we obtain
the equations

∆Ψ = 4πGρbar + 4πG (1+∆F) ρDM (26)

(∂i ∂j− δij∆) (Ψ−Φ) = 8πG (∂i ∂j− δij∆) F ρDM , (27)

with ρ denoting the rest mass density. To find the connection with the Newtonian potential
appearing in the Fractional Poisson equation (2) of our previous works [14–16], we recall that
the latter must be encoded in the combination∆Φs/c2 = R00 = (G00 + δijGij)/2, to guarantee
that the Newtonian limit of the geodesic equation is consistent with the Newtonian equation
of motion for the matter. This yields the expected result Φ = Φs, and

∆Φs = 4πGρbar + 4πG (1−∆F) ρDM . (28)

By taking the Newtonian limit of the non-local operator F after equation (6), one has

F =∆−1 + ℓ2−2s (−∆)
−s (29)

and hence the Fractional Poisson equation (4)

∆Φs (x) = 4πGρbar (x)+ 4πGℓ2−2s (−∆)
1−s

ρDM (x) (30)

is recovered in this limit.

3.2. Post-Newtonian limit: the parameter γ

The other potential is straightforwardly found from equation (26) as

Ψ = 2ΦN −Φs , (31)

9
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where ΦN denotes the potential in the Newtonian theory generated by the total density distri-
bution ρbar + ρDM, hence the potential satisfying the standard Poisson equation. The expres-
sions of the post-Newtonian potentials have two remarkable consequences. First, the post-
Newtonian parameter γ is not constant with radius, and explicitly given by

γ = 2
ΦN

Φs
− 1 , (32)

at variance with GR, where insteadΦ =Ψ =ΦN and hence γ= 1 applies. Second, weak grav-
itational lensing in RSFG is not altered with respect to GR, since it depends only on the com-
bination (Φ +Ψ)/2=ΦN (see e.g. [45], chapter 40; also [46]).

We stress that these two findings are not in contradiction since the Newtonian limit of RSFG
boils down to the fractional (not the Newtonian) Poisson equation; other modified gravity
theories which have the standard Poisson equation as Newtonian limit imply that lensing is
unaffected only if γ= 1; e.g. this is the case in Chameleon gravity [47]. In parallel, this occur-
rence allows RSFG to escape the weak lensing constraints γ− 1≈ (2.1± 2.3)× 10−5 from
the Cassini experiment [48].

The occurrence Φ ̸=Ψ in RSFG is easily understood by noticing that the right hand side
of equation (22) can be interpreted as an effective stress energy tensor for a fluid with both
isotropic and anisotropic stresses:

T̄DMµν = (ρ̄+ p̄) uµ uν + p̄ηµν +Π̄µν , (33)

where Π̄µν encodes deviations from a perfect fluid. The various components can be found by
comparison of equations (22) and (33), requiring that T̄DM =−ρ̄+ 3p̄, and that T̄DM,00 = ρ̄,
Π̄00 = 0 in a comoving inertial frame. The result reads

ρ̄= (1+∆F) ρDM, p̄=

(
∂20 −

2
3
∆

)
F ρDM (34)

Π̄µν =

[(
∂µ ∂ν −

1
3
ηµν∆

)
− uµ uν

(
∂20 +

1
3
∆

)]
F ρDM . (35)

As it is well known, it is found that the difference between the two scalar potentials is propor-
tional to the anisotropic stress of the source in the comoving frame

∆(Ψ−Φ) = 12πG

(
∂i ∂j
∆

− 1
3
δij

)
Π̄ij

= 12πG

(
∂i ∂j
∆

− 1
3
δij

) (
∂i ∂j− 1

3
δij∆

)
F ρ0,DM

= 8πG∆Fρ0,DM = 2∆ (ΦN −Φs) . (36)

Note that the difference depends only on the DM density, as it should, since baryons gener-
ate gravity only through their stress-energy tensor, whose anisotropic component vanishes in
the Newtonian limit. Remarkably, the effective density appearing in the Fractional Poisson
equation can be rewritten as

ρeff = (1−∆F) ρDM = ρ̄+ 3 p̄ , (37)

which is the same expression appearing for instance in the cosmological FRW metric. We
conclude that the deviation from the standard cold DM behavior induced by the non-local
interaction can be seen as the action of a non-local pressure, acting as a source of gravity even
in the non relativistic regime.

10
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3.3. SVT decomposition: gravitational waves and propagating scalar modes

The weak field limit is also the relevant setting for studying the generation and propagation of
gravitational waves and other modes. By looking at equation (22) it is clear that the only term
of RSFGwhich is not present in GR has a very special form, namely it just involves derivatives
of a scalar.

If we perform a SVT decomposition of equation (22) by separating themetric and the effect-
ive stress energy tensor into irreducible representations of spatial rotations, the gravitational
waves (corresponding to pure tensorial components) will not be affected by the scalar frac-
tional interaction, since the scalar, vector and tensor modes do not mix with each others in the
linear regime. In particular, their generation will be due as usual to the pure tensorial part of the
stress-energy tensors of both baryons and DM, and their propagation, occurring at the speed
of light, will be encoded in the two degrees of freedom of a transverse traceless symmetric
tensor, which oscillates orthogonally to the direction of motion.

On the other hand, it is clear that the scalar part of the decomposition gets modified when
the fractional interaction is taken into account. Indeed, focusing only on the latter, we can write
the metric and the total stress energy tensor as

h00 = 2ϕ, T00 = ρbar +(1+∆F) ρDM

h0i = ∂ik, T0i = ∂iS+ ∂i ∂0F ρDM

hij =
1
3
Hδij+

(
∂i ∂j−

1
3
δij∆

)
λ, Tij =

{
1
3
p+

(
∂20 −

2
3
∆

)
F ρDM

}
δij

+

(
∂i∂j−

1
3
δij∆

)
(σ+ F ρDM) (38)

for some scalar functions ϕ, k, H, λ, S,σ. By performing the same SVT decomposition on the
generators of gauge transformations, one can check that the following Bardeen’s variables are
gauge invariant [49]:

ψ =−ϕ + ∂0 k−
1
2
∂20 λ

θ =
1
3
(H−∆λ) . (39)

In terms of these the Einstein tensor is given by [50]:

G(h)
00 =−∆θ

G(h)
0i =−∂0 ∂i θ

G(h)
ij =−1

2
∂i ∂j (2ψ+ θ)+ δij

[
1
2
∆ (2ψ+ θ)− ∂20 θ

]
. (40)

We then substitute this decomposition into equation (22) and use the conservation law ∂µTµν =
0 to find that some of the equations are automatically satisfied on shell, while the others can
be simplified to

∆θ =−8πG [ρbar +(1+∆F) ρDM]

∆ψ = 4πG [ρbar +(1−∆F) ρDM + 3p− 3∂0 S] . (41)

11



Class. Quantum Grav. 41 (2024) 175010 F Benetti et al

When the non local interaction is neglected, the conservation of the energy momentum tensor
implies that these degrees of freedom do not propagate, leaving as the only propagating modes
the pure tensorial ones, representing gravitational waves. However, in the current frame-
work, this is not the case, since the presence of F(□), containing inverse powers of the
d’Alembertian, implies that these scalar modes do propagate. In fact, the solution of (41) for
θ is

θ (x, t) = 2G
ˆ

d3x ′
ρbar (x ′, t)+ ρDM (x ′, t)

|x− x ′|
+ 2G

ˆ
d3x ′

ρDM (x ′, t− |x− x ′|)
|x− x ′|

+

−G
ˆ

d4x ′ ρDM (x ′, t ′)

[
(t− t ′)2 − |x− x ′|2

]s−2

4s−2Γ(s) Γ(s− 1)
Θ(t− t ′ − |x− x ′|) , (42)

and an analogue solution holds forψ. The above expression comprises three terms: the first one
is the instantaneous Newtonian solution, the second one represents the generation of a scalar
wave propagating at the speed of light in vacuum, and the last one is of non-local nature. The
Heaviside function in this last term restricts the integration in the interior of the past light cone,
thus preventing acausal or superluminal motion (see appendix for a derivation of the retarded
Green function for the fractional d’Alembertian with s> 1 in Minkowskian spacetime, whose
convolution with the density yields the last term). Note that, if the source is static, the two
Bardeen variables are related to the two scalar potentials of the post-Newtonian expansion via
ψ =Φs, θ =−2Ψ.

The appearance of scalar propagating degrees of freedom alongside gravitational waves is
a common feature of many scalar-tensor gravity models which predict a massive or a mass-
less scalar field satisfying a modified Klein–Gordon equation [51–54]. In the present model
these scalar modes are associated only with the DM component and feature both a static and
a propagating term.

4. Conservation equations

We have shown above that in the weak field limit the stress energy tensor in RSFG satisfies
the same local conservation equation valid in GR. However, this is no longer true when higher
order terms are included. In general, the non-local coupling between the DM fluid and gravity
modifies the conservation equation by introducing a non-local force, orthogonal to the direc-
tion of motion, and depending on the value of the density at any point in spacetime.

To show this occurrence, we start by looking at equation (15), neglecting baryons for sim-
plicity and dropping the subscript ‘DM’ to simplify the notation. By the contracted Bianchi
identities the left hand side satisfy ∇µGµν = 0, and thus this must also be true for the right
hand side. After some algebraic manipulation, in particular by using the relation [□,∇µ]ϕ =
Rν
µ ∇νϕ valid for any scalar ϕ, and by integrating by parts with respect to the auxiliary variable
q to cancel some terms, we obtain the conservation equation in RSFG

2∇µT
µ
ν +T∇νF R−∇µ (F RTµν )−∇ν

ˆ ∞

0
dτ

τ s−1

Γ(s)

ˆ τ

0
dq
[
eq□R□e(τ−q)□T

]
= 0 .

(43)

Including baryons would just amount to add a term∇µT
µ
barν to the left hand side of the above

expression.
To gain some physical insights, it is useful to decompose the conservation equation in two

independent components: one parallel and one orthogonal to the flow of the fluid. The latter can
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be found by contracting with the tensor Pµ
ν = δµν + uµ uν , which is easily seen to be orthogonal

to the fluid velocity uµPµ
ν = Pµ

ν u
ν = 0. Thus, given any scalar S, we can write

∇νS= δµν ∇µS= (Pµ
ν − uµ uν)∇µS= Pµ

ν ∇µS−
dS
dT

uν , (44)

where the derivative in the last term is taken with respect the proper time T along the worldline
of the DM fluid element. Furthermore, we have

∇µT
µ
ν = uµ∇µ ρuν + ρuν∇µ u

µ + ρuµ∇µ uν =

(
dρ
dT

+ ρθ

)
uν + ρaν , (45)

where θ = uµ∇µ is the expansion rate along the direction of the flow of the fluid and aν
is the four acceleration, which is orthogonal to the flow. Projecting equation (43) in the two
orthogonal directions one obtains two coupled equations:(
1− 1

2
F R

) (
dρ
dT

+ ρθ

)
− 1

2Γ(s)
d
dT

ˆ ∞

0
dτ τ s−1

ˆ τ

0
dq
[
eq□R□e(τ−q)□ ρ

]
= 0 ,

(46)

and

(2−F R) ρaν − ρPµ
ν ∇µF R+Pµ

ν ∇µ

ˆ ∞

0
dτ

τ s−1

Γ(s)

ˆ τ

0
dq
[
eq□R□e(τ−q)□ ρ

]
= 0 . (47)

Equation (46) is the conservation equation describing the evolution of the DM density along
its trajectory, while equation (47) can be interpreted as a modified Euler equation for the DM
fluid, where a non-local force appears

Fν =
1

2−F R

{
Pµ
ν ∇µF R− 1

ρ
Pµ
ν ∇µ

ˆ ∞

0
dτ

τ s−1

Γ(s)

ˆ η

0
dq
[
eq□R□e(τ−q)□ ρ

]}
. (48)

The consequence of this force orthogonal to the four velocity is that the DM fluid does not
move on the geodesic solutions of the field equations, in accordance with the appearance of
a non local pressure in its effective energy momentum tensor. At face value, such a non-local
force seems to imply that the gravitational field experienced by a test particle is eventually
determined by the overall mass distribution in the Universe, a concept that may conjure to
a Mach principle argument [55, 56]; addressing the issue is clearly beyond the scope of the
present work, but we plan to come back to it in the next future.

5. Summary and outlook

In a series of recent papers [14–16] we put forward a ‘FG’ framework which strikes an inter-
mediate course between a modified gravity theory and an exotic DM scenario. It envisages that
the DM component in virialized halos is subject to a non-local interaction mediated by gravity.
In such a framework the gravitational potential associated to a given DM density distribution
is determined by a modified Poisson equation including fractional derivatives, that are aimed
at describing non-locality. Remarkably, the dynamics in such a Newtonian FG setup can be
reformulated in terms of the standard Poisson equation, but with an effective density distribu-
tion which, especially in small systems like dwarf galaxies, is flatter in the inner region with
respect to the true one. We have shown that this occurrence substantially alleviates the small-
scale issues of the standard cosmological paradigm, while preserving the DM mass profile
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predicted by gravity-only N−body simulations, and retaining its successes on large cosmolo-
gical scales.

Motivated by the above encouraging results, in this work we look for a general relativistic
extension of such a framework. Specifically, we propose a theory, dubbed RSFG, in which the
trace of the DM stress-energy tensor couples to the scalar curvature via a non-local operator
F(□), taken as a function of d’Alembertian to ensure general covariance.

Our main results can be summarized as follows:

• We have derived the field equations for RSFG starting from an action principle;
• We have investigated the weak field limit of RSFG, showing that the latter can be represented
as GR sourced by an effective DM stress energy tensor, featuring an anisotropic stress of non
local nature;

• We have demonstrated that in the Newtonian limit RSFG reduces to the FG setup of our pre-
vious works if the shape of the non-local operator F(□) =□−1 + ℓ2(−ℓ2□)−s is adopted,
with ℓ a scale-length and s a fractional index;

• We have shown that in the Newtonian limit the deviation of RSFG with respect to the stand-
ard Newtonian setup can be interpreted in terms of a non local pressure, which gravitates
even in the non relativistic regime;

• We have analyzed the post-Newtonian approximation and derived the first-order correction
parameter γ. Although the latter deviates from the GR value of unity due to the presence of
the aforementioned anisotropic stress in the weak-field limit, weak lensing is not modified
with respect to what one finds in GR.

• We have performed a standard SVT-decomposition of RSFG in the weak field limit, to high-
light that gravitational waves propagate at the speed of light, though also an additional scalar
mode becomes dynamical;

• We have derived the modified conservation laws of the DM stress energy tensor in RSFG,
showing that a new non-local force emerges. It implies that the DM fluid deviate from the
geodesic solutions of the field equations.

In future works we plan to: analyze the behavior of RSFG in a standard cosmological setting;
look for specific solutions of RSFG in the strong gravity regime; test the predictions of RSFG
concerning the post-Newtonian parameter γ by designing specific tests in DM-dominated sys-
tems; investigate other terms in the relativistic action that could lead to the same FG setup in
the Newtonian limit, like for example a non-local coupling of the DM stress-energy and the
Ricci tensors.
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Appendix. Retarded Green function for the fractional d’Alembertian

In this appendix we derive the retarded Green function for the fractional d’Alembertian (−□)s

with s> 1 in the case of Minkowksian spacetime, which is exploited in equation (42) of the
main text. By definition the Green function satisfies the functional equation

(−□x)
s Gret (x− y) = δ4 (x− y) , (A.1)

for any two spacetime points x= (x0,x) and y= (y0,y). This equation is best solved recall-
ing the action of the Fractional d’Alembertian in Fourier space; specifically, the expression

(̃−□)sf(k) = (kµ kµ)s f̃(k) applies for any function f (x), so that

G̃ret (k) = (kµ k
µ)

−s
. (A.2)

Going back to position space, we obtain:

Gret (x− y) =
ˆ

d4 k

(2π)4
eikµ (xµ−yµ)

(kν kν)
s

=
1

4π3 |x− y|

ˆ ∞

0
dk k sin(k |x− y|)

ˆ ∞

−∞
dk0

e−ik0 (x0−y0)[
k2 − (k0 + iϵ)2

]s , (A.3)

with k= |k|. We then perform a Wick rotation by setting q= ϵ− ik0, to get:

Gret (x− y) = lim
ϵ→0+

Θ
(
x0 − y0

) e−ϵ(x0−y0)

4π3 i |x− y|

ˆ ∞

0
dk k sin(k |x− y|)

ˆ ϵ+i∞

ϵ−i∞
dq

eq(x
0−y0)

(|k|2 + q2)s

=
Θ
(
x0 − y0

) (
x0 − y0

)s−1/2

2s+1/2π3/2Γ(s) |x− y|

ˆ ∞

0
dk k3/2−s sin(k |x− y|) Js−1/2

(
k
(
x0 − y0

))
(A.4)

where in the last integral of the upper equation we have recognized the inverse Laplace trans-
form of the quantity (k2 + q2 )−s, and then we have computed it in terms of the Bessel function
Jν(z) of the first kind and order ν. To proceed further we can exploit the result that the spe-
cial integral I(a,b,λ,ν)≡

´∞
0 dz zλ sin(bz)Jν(az) for−Re(ν)− 1< Re(λ)+ 1< 3/2 can be

written in terms of the Gaussian hypergeometric function 2F1 as (e.g. see [57], p 730, equation
(6.699))
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I(a,b,λ,ν) =
2λ+1

aλ+2

Γ
(
2+λ+ν

2

)
Γ
(
ν−λ
2

) 2F1

(
2+λ+ ν

2
,
2+λ− ν

2
;
3
2
;
b2

a2

)
, if 0< b< a

=
(a
2

)ν 1
bλ+ν+1

Γ(λ+ ν+ 1)
Γ(ν+ 1)

sin

[
π

(
λ+ ν+ 1

2

)]
× 2F1

(
λ+ ν+ 2

2
,
λ+ ν+ 1

2
; ν+ 1;

a2

b2

)
, if 0< a< b . (A.5)

In the present context λ= 3/2− s, ν = s− 1/2, a= x0 − y0, b= |x− y| applies, so that
(λ+ ν+ 1)/2= 1 holds. This implies that the integral in equation (A.4) vanishes whenever
|x− y|> x0 − y0, so preventing superluminal motions. Therefore the support of the Green
function coincides with the interior of the past light cone for the point x, where it is expli-
citly given by:

Gret (x− y) =

(
x0 − y0

)2s−4

22s−1πΓ(s) Γ(s− 1) 2F1

(
3
2
, 2− s;

3
2
;

[
|x− y|
x0 − y0

]2)
Θ
(
x0 − y0 − |x− y|

)
.

(A.6)

Finally, since 2F1
(
3
2 , 2− s; 3

2 ;z
)
=
(
1− z2

)s−2
, we obtain:

Gret (x− y) =

[(
x0 − y0

)2 − |x− y|2
]s−2

22s−1πΓ(s) Γ(s− 1)
Θ
(
x0 − y0 − |x− y|

)
, (A.7)

which is employed in deriving the last term of equation (42) in the main text.
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