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1 Introduction

First-order phase transitions (FOPTs) were proposed long ago as potentially occurring during
the hot big-bang phase of the universe [1–3]. In the past, it was entertained that even within
the known Standard Model (SM) of particle physics there might have been as many as
two: chiral symmetry breaking/confinement in QCD at temperatures T ∼ 150 MeV and
the spontaneous breaking of electroweak (EW) symmetry at T ∼ 160 GeV. Both are now
understood to be smooth crossovers [4, 5]. In fact, it is interesting to note that from the
current laws of physics, there is no conclusively established meta-stable vacuum for any
temperature at zero chemical potential.1

By contrast, FOPTs are ubiquitous in beyond the SM (BSM) theories. This is due firstly to
a vast richness of important phenomenological consequences, among which baryogenesis [7–18],
the production of heavy dark matter [19–25], primordial black holes [26–30] and gravitational
waves (GW) [3, 31–34] to name a few. In particular, the EW phase transition is easily
made first order in many BSM models [14, 35–45] and the consequent out-of-equilibrium
dynamics (in conjunction with B violation in the SM) still make for an attractive theory of
baryogenesis. Secondly, our currently most compelling picture of physics at the highest energy
scales seems to suggest landscapes of countless meta-stable vacua. From this perspective,
FOPTs may even be expected during the post-inflationary era [46]. Finally, and perhaps
most importantly from a phenomenological perspective, the advent of gravitational wave
detectors has re-energised interest in these violent phenomena with the prospect of upcoming
experiments possibly detecting a stochastic gravitational wave background relic [3, 47, 48].
Thus even FOPTs occurring in potential hidden sectors decoupled from the SM and its
thermal history become of interest [49, 50].

A FOPT proceeds through the nucleation and subsequent expansion of bubbles of new
phase, pushed by the free-energy density difference ∆V between phases. If friction from the
surrounding matter can be ignored, the bubble wall interpolating between the two phases will
continue to expand with constant proper acceleration until they collide with each other, with
most of the vacuum energy released thus going into kinetic energy of the walls. This scenario
is known as runaway. If instead friction causes a pressure P which manages to equilibrate
the driving force P ≃ ∆V , a constant subluminal terminal velocity is reached and energy
is efficiently transferred to the medium. All phenomenological consequences listed above,
for example, the strength and spectral shape of the stochastic GW signal, depend crucially
on the bubble velocity and which of the two regimes is realised. To this end, it becomes

1The closest thing that we are aware of is the instability in the Higgs effective potential for central values of
SM parameters when extrapolated to very large field range [6]. However, this is sensitive to possible — though
unknown — UV physics, over many orders of magnitude, so that we certainly cannot count it as ‘conclusive’.
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Figure 1. Diagrams corresponding to LO and NLO processes contributing to friction on a moving
bubble wall. The emission of vectors with changing mass is generally the dominant 1 → 2 process for
friction and the subject of this work. Tilde distinguishes objects in the new phase.

important to understand precisely the dynamics of an expanding domain wall in medium.2
The analysis of bubble-medium interactions is a complicated problem which is largely still
under investigation [51–66]. Friction is expected in general to be an involved function of
bubble velocity vw and the surrounding degrees of freedom (d.o.f.). A distinction can be made
however between low vw, when a fluid description is most appropriate, and the ultra-relativistic
regime, γw ≡ 1/

√
1− v2

w ≫ LwΓint., where Lw is the wall thickness in its rest frame and Γint.
is the interaction rate between particles in medium [57]. We will focus on the latter regime
in this work, where the wall can be said to be interacting with individual particles.

A particle hitting the wall from the old phase can undergo many processes, which can
be organised in terms of a perturbative expansion in couplings of the theory defined in
the background of the wall profile, as sketched in figure 1. The spontaneous breaking of
translation symmetry means that momentum perpendicular to the wall is no longer conserved.
The average momentum lost ⟨∆p⟩ times the flux of incoming particles is then the pressure
opposing the bubble’s expansion. It is most convenient to work in the rest frame of the
wall. At leading order (LO) incoming particles either cross the wall or reflect. It is easy
to show that when reflections can be neglected,3

PLO
γw→∞ ≃ (γwnvw)⟨∆p⟩ ≃ (γwnvw)∆m2/2⟨p0⟩ , (1.1)

where ⟨p0⟩ ∝ γwT is the (boosted) incoming particle’s energy in the wall frame, ∆m ≡√
m̃2 −m2 the change in mass between phases, and n the number density in the plasma

frame. This LO pressure is independent of γw, scaling like ∝ T 2ṽ2 in the case of a thermal
bath, where ṽ is the vev in the broken phase4 [61, 62].

Later, the same authors analyzed the next-to-LO (NLO) 1 → 2 processes in the same
ultra-relativistic regime and found that, despite paying the price of the coupling, the emission
of soft vector bosons that gain mass during the transition leads to a friction pressure scaling
like PNLO ∝ γw [63], eventually dominating over the LO effect. This soft emission is known

2In this work by domain wall we simply mean any bubble wall interpolating between different phases of a
theory in the planar limit.

3Although these can be important and even dominant for intermediate relativistic γw [67].
4This lead to the so-called Bodeker-Moore (BM) criterion PLO < ∆V , for the wall to become relativistic.

Under the assumption of pressure monotonically increasing with γw, the BM criterion was used also as a
rough runaway condition.
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as transition radiation. While the original [63] focused on particles emitted forward into the
wall (to the right in figure 1), the authors of [66, 68] considered also reflected emission (to
the left in figure 1) and argued it was larger by a factor of four.

However, all studies after [63] only considered the emission of transverse vector polarisa-
tions, ignoring the effects of longitudinal ones. The analysis of these modes is complicated by
the rearrangement of particle degrees of freedom across a gauge symmetry breaking transi-
tion [69], which has naturally been the case of greatest interest. Moreover, it is well known
that amplitudes involving NGBs can give spurious divergences without proper care. Recently
it was shown that LO effects from longitudinal modes can have a large impact on pressure [67].
It thus becomes of interest to properly account for their contribution at NLO. In addition,
a weakness of the treatments used so far is the frequent reliance on WKB approximations,
which are known to break down for the soft momenta dominating the emission phase space.

In this paper, we approach the calculation of transition radiation by quantising field
theories in the translation-breaking background of a domain wall from first principles. A
complete orthonormal basis is constructed out of ‘left’ and ‘right’ mover energy eigenstates,5
each wavemode having ‘reflected’ and ‘transmitted’ parts. We then carefully relate these to
in and out6 asymptotic eigenstates of 4-momentum. In the case of vectors, we show that
the degrees of freedom across the wall are most conveniently described in terms of ‘wall
polarisations’ τ and λ rather than the conventional transverse and longitudinals, as already
pointed out in [69]. The advantage is that τ1,2 and λ are not mixed with each other in the
presence of the domain wall. The two sets coincide only for zero transverse momentum
k⃗⊥ = 0 (normal incidence on the wall), where rotations around the direction of propagation
are a symmetry.7 Moreover, in the case of gauge symmetry breaking, λ smoothly interpolates
between a Higgs d.o.f. on the symmetric side and a third massive vector d.o.f. on the broken
side. We show how to perform calculations using this basis consistently and avoid divergences
which seem to appear in a naive analysis.

Although we explain how to (numerically) compute ⟨∆p⟩ for a general wall profile, we
dedicate most of the work to approximating it in a way that is independent of the particular
shape, with the rough scale Lw playing the only role, while commenting on the sensitivity
thereon. For the IR of the emitted spectrum kz ≲ L−1

w the wall appears effectively as a step
function. This limit is particularly interesting theoretically (as well as phenomenologically
important, as mentioned already) since everything can be computed analytically and relatively
simply. For wavelengths shorter than the wall width kz > L−1

w , the WKB approximation
becomes applicable. The integral over the phase space thus splits into two contributions and
the averaged momentum exchange very schematically takes the form

⟨∆p⟩ ∼
∫ kz<L−1

w

d3k ∆p |Mstep|2 +
∫
kz>L−1

w

d3k ∆p |Mwkb|2 , (1.2)

5Throughout this paper, the reader should associate ‘right-moving’ with positive z-momentum and ‘left
moving’ with negative z-momentum particles.

6To be understood in the S matrix language.
7Starting from k⃗⊥ = 0, the general τ and λ polarisation vectors can be obtained by general transverse

Lorentz boost — a good symmetry of the theory. Thus orthogonality is obvious. In general, they are also
distinguished by whether in unitary gauge the z− component of the vector Aµ is zero or not. See section 3.2.
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Figure 2. Comparison between the averaged exchanged momentum from transition radiation due to
the emission of τ and λ vector polarisations, in the limit of large incoming particle energy p0 → ∞.
Left: Symmetric → Broken transition at finite temperature T , shown as a function of temperature
over Higgs vev ṽ. T enters via thermal masses (for details see the discussion in section 4.2). Results
do not change significantly in the limit Lw → 0. Right: Broken → Broken transition. While the τ
contribution does not change, λ emission can easily become dominant. We highlight the sensitivity on
the wall thickness. [arb.] means arbitrary units.

where the M are matrix elements for emission calculated using the respective approximations.
As the incoming flux scales like γw, we then have

P ∝ γw⟨∆p⟩ . (1.3)

As a warm up, we study transition radiation in a theory with two scalars and observe some
surprises. Though we find that the pressure from the emission of one scalar by the other always
saturates at large velocities PNLO,scalars

γw→∞ ∝ γ0
w, we find also that there can be an intermediate

regime of linear growth PNLO,scalars
intermediate ∝ γw. For scalars we find that the WKB contribution

(second term in eq. (1.2)) dominates the momentum transfer in the asymptotic γw limit.
In the case of spontaneous breaking of gauge symmetry we find that the total friction

from vector emissions scales as ∝ γw log gT
ṽ for T/ṽ ≪ 1, where ṽ is the Higgs’ vev, in

line with literature. We provide an updated fitted formula in eqs. (4.11) and (4.15). The
logarithmic enhancement appears only for the τ polarisations, and is dominated by the
step function contribution (the first term in the eq. (1.2)), however we also find that effects
of the λ polarisations can lead to significant corrections for mild supercooling ( ṽT ∼ few).
We compare the relative importance in figure 2 (Left). The curves are only very weakly
dependent on Lw. This and all of the rest of the figures in the paper are in natural units
with some arbitrary scale [arb.].

As a side application, we also compute the transition radiation when the bubble wall
connects two vacua with broken gauge symmetry but different vevs v and ṽ. In this case, the
contribution to friction from the longitudinal vector emission scales as PNLO,vectors

γw→∞ ∝ γwL
−1
w

(see figure 2, Right) and can dominate over the transverse for thin wall.
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Figure 3. Total averaged momentum exchange as a function of incoming particle energy p0. Left:
Symmetric → Broken for different values of the mass of the emitter particle ψ. The asymptotic regime
is reached around p0 ∼ mψm̃/m (dashed lines), with intermediate log(p0/mψ) growth. Right: Broken
→ Broken with thin walls. Here the saturation value is reached around p0 ∼ L−1

w Max[1,mψ/m].
Again we highlight the sensitivity to wall width. For small enough Lw we find an inter-relativistic
regime with averaged exchange momentum growing linearly, which translates to pressure scaling
like γ2

w.

Aside from the asymptotic p0 → ∞ limit, we are also able to explore regimes with
intermediate — though large — γw. For symmetric → broken transition we find that the
saturating value is reached at energies dependent on the mass of the emitter particle, as shown
in figure 3 (Left). In the case of the broken → broken transition we find that there is an
intermediate regime where the pressure scales as PNLO,vectors

intermediate ∝ γ2
w (right panel of figure 3).

The paper is organised as follows: in the section 2 we work through a toy model with
only scalars, introducing various elements of the calculation. In section 3 we quantise an
Abelian Higgs model in the presence of a symmetry breaking domain wall and present the
results for transition radiation of vectors in section 4. We summarise in section 5.

Summary of notation. In the rest of this paper, we will adopt the following conventions:

1. We treat the bubble wall in the planar limit, where it is one dimensional and centred
around z = 0.

2. We use a hybrid notation for four-vector Lorentz indices: µ = (n, z) ≡ (0, 1, 2, z).
Coordinates are xµ = (xn, z) ≡ (t, x⃗⊥, z).

3. Similarly for momenta kµ = (kn, kz) ≡ (k0, k⃗⊥, k
z) ≡ (k0, k⃗). Also E2 = knkn = k2

0−k2
⊥,

where k⊥ = |⃗k⊥|.

4. We define the change in mass across the wall ∆m ≡
√
m̃2 −m2.

5. Lw is the thickness of the wall.

6. γw (vw) is the boost factor (the velocity) of the wall.

– 6 –
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7. The momenta p, q, k will always be used as in figure 1 and we define:

∆p ≡ pz − qz − kz , ∆pr ≡ pz − qz + kz ,

∆p̃ ≡ pz − qz − k̃z , ∆p̃r ≡ pz − qz + k̃z .
(1.4)

2 Simple example: scalars

In this section, as a warm up for the more complex case of gauge theories, we go through the
quantisation of a scalar field theory in the presence of a domain wall and derive results for
transition radiation for the case of one scalar emitting another. This toy example is sufficient
to highlight many features of calculations in a spatially dependent background.

Consider two different scalar fields ϕ, ψ, the first of which feels the wall and has different
mass depending on the phase, while the second for simplicity does not. The Lagrangian
we consider is the following

L = 1
2(∂ϕ)

2 + 1
2(∂ψ)

2 − 1
2m

2
ϕ(z)ϕ2 − 1

2m
2
ψψ

2 − y(z)12ψ
2ϕ, (2.1)

where m(z) interpolates between m2(z)|z→−∞ = m2 = const and m2(z)|z→+∞ = m̃2 = const.
Similarly y(z) goes from y to ỹ. The profiles change on the scale of the wall width Lw around
z = 0. The interactions in eq. (2.1) are not the most general, but are designed to mimic the
vector case when y = const. The process that we will be studying is ψ → ψϕ, which would
be forbidden by kinematics if it was not for the breaking of z-momentum.

Section summary. In section 2.1 and 2.2, we quantise the free theory, focusing on the
ϕ field,8 by defining a complete basis of solutions that solve its equations of motion. In
section 2.3, we define a new basis that corresponds to out-going eigenstates of momentum.
Later, in section 2.4, we calculate the amplitude for the ψ → ψϕ transition in the step wall
approximation, valid when kzLw ≲ 1. In section 2.5, we present the proper domain for the
phase space integration over the final state. In section 2.6, we complete the emission spectrum
discussing the calculation of the amplitude in the (opposite) WKB regime kzLw ≳ 1. In
section 2.7, we summarise and present master formulae for the calculation of the averaged
momentum transfer ⟨∆p⟩. We conclude by discussing results for ⟨∆p⟩ and pressure PNLO

in sections 2.8 and 2.9 respectively.

2.1 Complete basis

The quantisation of modes in the presence of a background profile arises in many corners of
physics. A very similar task appears for example in the quantisation of field theory in black
hole spacetimes. We found the treatment in [70] particularly useful. In the simple example
of eq. (2.1) above, the discussion is relevant for ϕ, which satisfies

(∂2 +m2
ϕ(z))ϕ = 0 , (2.2)

with a z-dependent mass term. To perform second quantisation we need to first find a
convenient basis of solutions of this equation. Far away from the wall the solutions are plane

8The quantisation of ψ, as it does not feel the wall, is instead completely standard.
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waves. A convenient choice of complete orthonormal basis is given in terms of ‘right’ and
‘left’ moving solutions, which are defined by their boundary conditions as follows9

ϕR,k = e−iknx
n
χR,k(z) ≡ e−iknx

n

eik
zz + rR,ke

−ikzz , z → −∞
tR,ke

ik̃zz , z → +∞
(Right) (2.3)

with k0 > m and

ϕL,k = e−iknx
n
χL,k(z) ≡ e−iknx

n

√
kz

k̃z

tL,ke−ik
zz , z → −∞

rL,ke
ik̃zz + e−ik̃

zz , z → +∞
(Left) (2.4)

with k0 > m̃ and we take kz, k̃z to be strictly positive.10 The factor
√
kz/k̃z is included

in eq. (2.4) to ensure appropriate normalisation (see below, eq. (2.10)). In the limit of no
domain wall the rL, rR (tL, tR) coefficients are zero (one) and ϕL, ϕR correspond simply to
the plane waves with ∓kz momenta. The momentum along z is not conserved across the
wall; however, asymptotically far it becomes constant and fixed by the relations

kz ≡
√
k2

0 − k2
⊥ −m2, k̃z ≡

√
k2

0 − k2
⊥ − m̃2 . (2.5)

In general, we need to solve the equations of motion to find the expression of the coefficients
rL,R, tL,R. Consequently, they will depend on the explicit form of the mass variation m2

ϕ(z).
However, here it will be sufficient to consider the step wall ansatz for the mass m2

ϕ(z)

m2
ϕ(z) = m2 +∆m2Θ(z) , ∆m2 ≡ m̃2 −m2 , (2.6)

using the Heaviside Theta function. The form of the coefficients for the scalar case under
consideration can be obtained by matching ϕ and its first derivative at the origin z = 0,
where the step wall lies. They take the form

rR,k =
kz − k̃z

kz + k̃z
, tR,k =

2kz

kz + k̃z
. (2.7)

These expressions are specific to the step-wall assumption. However, the general treatment
that we present here will hold for general rk, tk coefficients and could be easily adapted to a
smooth wall case. Modes with m < k0 < m̃ decay exponentially on the right of the wall and
are automatically included as right-movers. For these, k̃ is purely imaginary with magnitude

|k̃z|2 = ∆m2 − k2
z for 0 < kz < ∆m. (2.8)

In a similar fashion, for the left moving solution we find

rL,k = −rR,k =
k̃z − kz

kz + k̃z
, tL,k =

k̃z

kz
tR,k =

2k̃z

kz + k̃z
, (2.9)

9Recall that the index n designates 0, 1, 2 and not the z direction.
10As is well known, the basis formed by just ϕR,k but allowing kz to take both signs (and k̃z =

sign(k)(
√
k2 − ∆m2) is also complete but not orthogonal and therefore less convenient. For example, the

algebra of creation and annihilation operators would be more complicated.
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and we explicitly note the condition k0 > m̃, to avoid the inclusion of solutions growing
exponentially at infinity. The left and right moving modes are orthonormal in the sense that∫ ∞

−∞
dz χI,k χ

∗
J,q = 2πδIJδ(kz − qz) , I, J ∈ {R,L} . (2.10)

Computing integrals such as eq. (2.10)in the step function case requires the identity∫ 0

−∞
eiβzdz = PV

( 1
iβ

)
+ πδ(β) , (2.11)

and its complex conjugate (which gives the integral from 0 to ∞). In eq. (2.10) the principle
value (PV) pieces vanish as soon as we specify the relation between k̃z and kz, i.e. k̃2

z = k2
z +

m2 − m̃2. Notice we can discard terms proportional to δ(kz + qz) due to the strictly positive
definition of kz, qz in our definition. If explicitly computing things like the Hamiltonian and
operator algebra (see next subsection) it is also useful to know the other inner products:

∫ ∞

−∞
dz χR,k χR,q = −

∫ ∞

−∞
dz χL,k χL,q = 2πk

z − k̃z

kz + k̃z
δ(kz − qz),∫ ∞

−∞
dz χR,k χL,q = 4π

√
kzk̃z

kz + k̃z
δ(kz − qz). (2.12)

Finally, we would like to comment that, in general, bound states may also appear in
the spectrum, in addition to the scattering states studied above, if the function m2

ϕ(z) is
non-monotonic and has minima in the vicinity of the domain wall. These are of the form
ϕb ∝ e−ik

nxnχb(z), with χb exponentially decaying for |z| → ∞ and should be included in
the upcoming expansion eq. (2.13).

2.2 Quantisation

Now that we have a complete orthonormal basis of eigenstates in the presence of the wall, we
can proceed to quantise the theory. The field ϕ can be expanded in the form11

ϕ(x, t) =
∑
I=R,L

∫
d3k

(2π)3√2k0

(
aI,kϕI,k + a†I,kϕ

∗
I,k

)
,

where ϕL,k ≡ 0 for E < m̃ , (2.13)

where d3k ≡ dkzd2k⊥, we recall E ≡
√
k2

0 − k2
⊥ and kz runs between [0,∞). We choose to

label states by their quantum numbers outside the wall.12 Note we have trivially extended
the definition of the left moving modes to the region E < m̃ for convenience.

Using eqs. (2.10) and (2.12), one can show that

aI,p =
∫

dz√
2p0

eip0tχ∗
I,p(iπ + p0ϕ) , (2.14)

11We use normalisation conventions in line with [71].
12This is more convenient than labeling with respect to k̃z since this becomes imaginary for the branch 0 <

kz < ∆m.

– 9 –
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where π ≡ ∂tϕ. Promoting Poisson brackets of ϕ and its conjugate momentum π to canonical
commutation relations gives the familiar commutation algebra

[aI,k, a†J,q] = (2π)3δ(k⃗ − q⃗)δIJ ,

[aI,k, aJ,q] = [a†I,k, a
†
J,q] = 0 , I, J ∈ {R,L} .

(2.15)

We can define two types of states

|kR⟩ ≡
√
2k0 a

†
R,k |0⟩ , (2.16)

|kL⟩ ≡
√
2k0 a

†
L,k |0⟩ , (2.17)

which should be thought of as independent external states in any process. The space of
physical states is thus the Fock space defined by arbitrary powers of a†R,k and a†L,k acting
on the vacuum.

2.3 Out-going eigenstates of momenta

In the previous subsections we chose to quantise the orthonormal basis {ϕR,k , ϕL,k} and
defined associated one-particle states |kR⟩ and |kL⟩. As we explain in more detail in appendix A
by the use of wave-packets, these should be thought of as describing incoming particles with
definite z-momenta kz and −k̃z respectively at t→ −∞, but at t→ +∞ they correspond to
a superposition between a transmitted and reflected particle. As a consequence, the functions
ϕR,L are eigenstates of momenta only at t→ −∞. They are well-suited for processes with
asymptotic in-state ϕ particles.

On the other hand, in this work we will be interested in the momentum transfer to
the wall, so it is more convenient to have a ϕ particle emitted as an asymptotic out-state
with well-defined momentum at t → ∞. A complete orthonormal basis of such late-time
eigenstates of momentum is given by

ϕout
L,k ≡ e−iknx

n
ζL,k(z) = e−iknx

n
χ∗
R,k(z) = e−iknx

n

r∗R,k χR,k + t∗R,k

√
k̃z

kz
χL,k

 , (2.18)

ϕout
R,k ≡ e−iknx

n
ζR,k(z) = e−iknx

n
χ∗
L,k(z) = e−iknx

n

r∗L,k χL,k + t∗L,k

√
kz

k̃z
χR,k

 , (2.19)

where in the last equalities we related them to the basis of section 2.1. We emphasise again
that in our notation kz, k̃z > 0 always. ϕout

L,k and ϕout
R,k should be thought of as describing

an outgoing final state particle with −kz and +k̃z momentum respectively. Recall that the
function χL,k vanishes for kz < ∆m and the corresponding Θ functions are implicit. At
t→ −∞ they are both superpositions of incoming particles from z = ±∞ and do not have
well defined momentum. In practice we need to calculate the amplitudes with ζL,R = χ∗

R,L

wave functions. At the level of states, we have

|kout
L ⟩ = r∗R,k|kR⟩+ t∗R,k

√
k̃z/kz |kL⟩ Θ(kz −∆m) , (2.20)

|kout
R ⟩ = t∗L,k

√
kz/k̃z |kR⟩+ r∗L,k|kL⟩ , (2.21)
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Figure 4. Summary of asymptotic external states with definite 4-momentum, to be used in calculating
any process in the background of a domain wall (or any localised z-dependent potential). The upper
panels represent in-state particles incoming from z = −∞ and z = ∞. In the plane wave limit they
correspond to states |kR⟩ and |kL⟩ with wavefunctions eqs. (2.3) and (2.4) respectively. The lower
panels represent out-state particles travelling out towards z = −∞ and z = ∞. They correspond to
states eqs. (2.20) and (2.21) with wavefunctions eqs. (2.18) and (2.19) respectively.

where we explicitly remind ourselves that when 0 < kz < ∆m the left mover state does not
exist. The different asymptotic states are illustrated in the figure 4.

We emphasise that both bases can be used to quantise the theory. In our present paper
however we will consider only outgoing ϕ particles so that the basis {ϕout

R,k, ϕ
out
L,k} is actually

more convenient. From now on we drop the label ‘out‘ and we will refer to R (L) emission
meaning using the mode functions {ζR, ζL}, if not stated otherwise.

2.4 Amplitudes

We now finally turn to compute the amplitude for the process ψ → ψϕ in the background of
a domain wall. We have not discussed the quantisation of ψ since it does not feel the wall
directly and there are no complications with respect to the standard theory. In the previous
sections we argued that there are two processes we have to consider separately: the emission
of a left and right moving ϕ particle, with respective wavefunctions ζL(ζR). Having quantised
the free theory, the treatment of perturbative interactions proceeds as standard, by defining
an S-matrix in terms of the interaction Hamiltonian S = T exp

(
−i
∫
d4xHInt

)
where T here

denotes time ordering. We have the amplitudes of interest

⟨kout
I q| S |p⟩ ≡ (2π)3δ(3)(pn − kn − qn)iMI

tree= −i
∫
d4x⟨kout

I q| HInt |p⟩ (2.22)

with I = L,R ,

where p and q stand for the initial and final one particle states for the ψ field and their
respective 4-momenta, and the last equality is up to leading order in perturbation theory

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
2
9
4

(tree level). Notice we have defined the matrix element M as closely as possible to standard
theory. Of course, we cannot extract a z-momentum conserving delta function but rather
M still contains the integral over z.

For the theory of scalars of eq. (2.1), we have HInt = −iyψ2(x)ϕ(x) and we can now
proceed to explicitly computing amplitudes. In the case of a ζL mode emission (where the
emitted scalar has −kz momentum), the amplitude takes the form

ML =
∫ ∞

−∞
dz y(z)ei(pz−qz)z

[
ζL,k = χ∗

R,k(z)
]∗

=
[ −iy
pz − qz + kz

+ rR,k
−iy

pz − qz − kz
− tR,k

−iỹ
pz − qz + k̃z

]
. (2.23)

Instead, in the case of ζR mode emission (where the emitted scalar has +k̃z momentum):

MR =
∫ ∞

−∞
dz y(z)ei(pz−qz)z

[
ζR,k = χ∗

L,k(z)
]∗

=
√
kz

k̃z

[
tL,k

−iy
pz − qz − kz

− −iỹ
pz − qz − k̃z

− rL,k
−iỹ

pz − qz + k̃z

]
, (2.24)

where the square root factor comes from the normalisation condition in eq. (2.4). To compute
the total friction from ψ → ψϕ we must sum the contributions from both processes. Then
we can compute the amplitude squared for the emission of a right/left mover, under the
assumption that y = const., we obtain

|MR|2 = y2 4kzk̃z(kz − k̃z)2

(k̃2
z − (pz − qz)2)2(kz − pz + qz)2 , (2.25)

|ML|2 = y2 4k2
z

(k2
z − (pz − qz)2)2


(kz−k̃z)2

(k̃z+pz−qz)2 , kz > ∆m,

∆m2

∆m2−k2
z+(pz−qz)2 , kz < ∆m,

(2.26)

where for L emission we distinguished between the two branches corresponding to k̃z purely
real and imaginary, and used eq. (2.8) to simplify in the latter case.

2.5 Phase space integration

We can now compute the average exchanged momentum due to transition radiation, ⟨∆p⟩ due
to a single incoming particle. We integrate over the whole allowed phase space of the final
two particles, weighting the amplitude squared for ψ to emit ϕ by the momentum lost. We
add separately contributions from left and right movers with their respective slightly different
phase space. ⟨∆p⟩(p) is in general a function of the four-momentum p of the incoming ψ.
From ⟨∆p⟩ we can compute the total friction pressure by integrating over the incoming flux.

For simplicity we take p⃗⊥ = 0 and parameterise the kinematics of the 1 → 2 process
as follows

pµ =
(
p0, 0, 0,

√
p2

0 −m2
ψ

)
, qµ = (q0,−k⊥, 0, qz),

kµ = (k0, k⊥, 0, kz), k̃µ = (k0, k⊥, 0, k̃z), (2.27)

– 12 –
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where k̃z is defined in eq. (2.5) and qz =
√
q2

0 − k2
⊥ −m2

ψ, with q0 = p0 − k0 from energy
conservation. Note we have used the cylindrical symmetry of the set up to make the second
spatial component of kµ zero. ⟨∆p⟩ is given by the sum of left and right contributions

⟨∆p⟩ = ⟨∆pR⟩+ ⟨∆pL⟩

≡
∫
dPψ→ψϕR (pz − qz − k̃z)︸ ︷︷ ︸

∆pzR

+
∫
dPψ→ψϕL (pz − qz + kz)︸ ︷︷ ︸

∆pzL

, (2.28)

where dPψ→ψϕI is the differential probability. The first and second terms on the r.h.s. of
eq. (2.28), will be different in their lower limits on the kz integrals. The second term,
left-mover emission, contains also the modes k0 < m̃ which are exponentially decaying inside
the wall. In appendix A.2 we show that∫

dPψ→ψϕI∆pzI =
∫ kzmax

kz,Imin

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[ 1
2|qz| |MI |2∆pzI

]
qz=±qz

k

, (2.29)

where I = R,L and [. . .]qz=±qz
k

is intended to be the sum over qz = ±qzk. The contribution
with qz = −qzk corresponds to the reflection of the incoming particle ψ, a branch missing in
the previous literature. Of course, in the ultra-relativistic regime, it is expected that this
should be highly suppressed.13 The limits of integration of eq. (2.29) are found demanding
the reality of the qz momentum, obtaining for the (R) modes

(Right) : kz,Rmin ≡ ∆m ≤ kz ≤ kzmax ≡
√
(p0 −mψ)2 −m2,

0 ≤ k2
⊥ ≤ k2

⊥,max ≡ 1
4p2

0
(p2

0 + k2
z +m2 −m2

ψ)2 − k2
z −m2. (2.30)

For the (L) modes, the only difference is

(Left) : kz,Lmin ≡ 0 ≤ kz ≤ kzmax . (2.31)

Following this discussion, in general, there will be four contributions:

⟨∆pq
z<0
L ⟩, ⟨∆pq

z>0
L ⟩, ⟨∆pq

z<0
R ⟩, ⟨∆pq

z>0
R ⟩.

However, we explicitly checked that in all cases of interest, the contributions with qz < 0 are
largely subdominant and we will ignore them completely in the rest of this paper.

2.6 Emission in the WKB regime

So far we have been treating the bubble wall as a step function. This is a good approximation
if the z momentum of the emitted particle is less than the inverse scale over which the
background (in the case of eq. (2.1), the mass) changes significantly, i.e. kz ≲ L−1

w . How can
we proceed if the particles’ momentum becomes comparable or larger than the width of the
wall? First of all, if we know the shape of the potential exactly, we can solve for the left and
right mover solutions as we did above for the step-wall, and proceed with these functions in

13Notice that the sign change in ∆pzR means that a process with qz < 0 contributes more to momentum
exchange, but it is the amplitude which is generally suppressed.
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precisely the same way as before. In principle, this can always be done numerically. However,
we will argue that even in the case when we do not know the exact shape of the potential,
we can still obtain reliable results.

Let us consider a particle hitting the wall with momentum kz ≫ L−1
w . Reflection will be

suppressed and the WKB approximation, which has been used extensively in the literature [63,
65, 66], becomes applicable. The approximate form of the z-dependent wavefunctions are now
χ ≈

√
kz(z0)/kz(z)e

±i
∫ z
z0
kz(z′)dz′ , with z0 some reference position. Having the approximate

solutions to the χR,L(ζR,L) basis functions, we proceed in the same way as in section 2.4.
Thus, in practice this means separating the phase space into two regions:

region (1) kzϕ ≪ L−1
w , step wall,

region (2) kzϕ ≫ L−1
w WKB.

(2.32)

In the WKB regime the amplitude for a general 1 → many right-movers14 process, allowing
for all masses to vary, can be schematically written as follows

Mwkb =
∫ +∞

−∞
dz V (z) exp

[
i

∫ z

0
∆p(z′)dz′

]∏
i

√
piz(0)
piz(z)

,

∆p(z′) ≡ pz(z′)−
∑
i

pzi (z′) = pz(z′)−
∑
i

√
(pi0)2 − (pi⊥)2 −m2

i (z′) , (2.33)

where i sums over final state particle momenta. Naively, computing this integral requires
knowledge of the functions mi(z). However, these are changing only in the vicinity of the
wall, while outside they quickly reach the asymptotic constant values. This means we can
split the amplitude into two pieces

Mwkb =
∫ 0

−∞
dzV (−∞)ei∆pz(−∞)z + ei

∫ Lw
0 dz′∆p(z′)

∫ ∞

0
dzV (+∞)ei∆pz(+∞)z︸ ︷︷ ︸

Moutside

+
∫ Lw

0
dzV (z)ei

∫ z
0 dz′∆p(z′)︸ ︷︷ ︸

Minside

, (2.34)

where the assumption is that things are varying only between z ∈ [0, Lw]. In the WKB
regime, all the momenta of the particles are much larger than the inverse width of the wall
pzLw ≫ 1 so the overall modification of momenta p(+∞)− p(−∞) ≪ p(∞) is much less than
its absolute value (if the wall is not too thick m(z)L ≲ 1), this is why we have approximated∏√

p/p(z) → 1. Similarly ∆p(+∞) − ∆p(−∞) ≪ ∆p(∞), then from basic properties of
Fourier transformations the amplitude

M → 0, if ∆pmax
z Lw ≫ 1 , (2.35)

with ∆pmax
z = Max[∆pz(±∞)]. The physics behind this relation is very simple: the wall

of the width Lw can lead to the momentum loss ∆pz at most L−1
w . This is expected since

14We will see later on how left mover emission is negligible for us in the WKB regime.
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the processes with ∆pz ≫ L−1
w happen at distances ∼ ∆p−1

z , much shorter than the typical
wall width. However, at such small distances we recover translational symmetry along the
z direction and transition radiation must be forbidden (we checked these statements for
various wall ansatzes in appendix H). From these arguments, we can see that independently
of the wall ansatz the particle emission will be dominated by the region ∆pzLw ≲ 1. Then
we can approximate the amplitude as follows

Mwkb =
∫ 0

−∞
dzV (−∞)ei∆pz(−∞)z +

∫ ∞

0
dzV (+∞)ei∆pz(+∞)z

+
∫ Lw

0
dzV (z)ei

∫
dz̃∆p(z̃) . (2.36)

Performing the z integrals for the first two terms is trivial and, using eq. (2.11), we get

Mwkb ≈ V (−∞)
i∆pz(−∞) −

V (+∞)
i∆pz(+∞) +

∫ Lw

0
dzV (z)ei

∫
dz̃∆p(z̃) . (2.37)

The last term scales very roughly as V (z ∈ [0, Lw])Lw then assuming V (z ∈ [0, Lw]) ∼
V (∞) ∼ V (−∞) we can see it will be suppressed by the condition ∆pLw ≲ 1. Thus we arrive
at the Bodeker-Moore formula [63] for reduced matrix element

Mwkb red. = V (−∞)
i∆pz(−∞) −

V (+∞)
i∆pz(+∞) . (2.38)

Now one can take this formula and perform the phase space integration. However, we would
like to emphasise a simple but important point. Since we have ignored the contribution
inside the wall, there is no guarantee that the matrix element will be suppressed in the region
with ∆pzLw ≫ 1. In all of our calculations we always:

• impose ∆pzLw < 1 − Fourier decomposition properties

• verify that Minside ≪ Moutside − applicability of BM approximation (we will see that
satisfying this inequality turns out to be non-trivial for longitudinal vector bosons).

Finally, from this discussion it is clear that we should not worry about left emission in the
WKB regime since for left movers with kz > L−1

w the total loss of momenta ∆pz = pz − qz +
kz > L−1

w , meaning these processes must be strongly suppressed and we can safely ignore them.

Scalars example. Let us apply this very generic discussion to the case of scalar radiation.
Then the matrix element will be given by

Mwkb red. = −iy
pz − qz − kz

− −iy
pz − qz − k̃z

, (2.39)

for the contribution outside of the wall. The contribution inside the wall (which we ignore)
scales roughly as

Minside
wkb

Mwkb red. ∼ ∆pzLw , (2.40)

which is always less than one. We conclude that the neglected corrections coming from inside
of the wall contributions are indeed negligible for scalars.
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2.7 Procedure for the momentum transfer calculation: summary

In this section we summarise the previous results and give a concise prescription for the
momentum transfer calculation independent of the wall shape details. There are three
contributions:

⟨∆pstep
L ⟩ , ⟨∆pstep

R ⟩ , ⟨∆pwkb⟩ , (2.41)

where the first two correspond to emission to the left and right in the step wall regime and
the last one to the emission to the right in the WKB regime. These are given explicitly
by the following phase space integrals:

⟨∆pstep
L ⟩ =

∫ kzmax

0

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[ 1
2|qz| |ML|2(pz − qz + kz)

]
Θ(L−1

w − kz) ,

⟨∆pstep
R ⟩ =

∫ kzmax

∆m

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[ 1
2|qz| |MR|2(pz − qz − k̃z)

]
Θ(L−1

w − kz) ,

⟨∆pwkb⟩ =
∫ kzmax

∆m

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[ 1
2|qz| |M

wkb red.|2(pz − qz − k̃z)
]

×Θ
(
kz − L−1

w

)
Θ
(
L−1
w − (pz − qz − k̃z)

)
, (2.42)

where the limits kzmax, k
2
⊥,max were defined in eq. (2.30) but we repeat them here for the

reader’s convenience,

kmax
z ≡

√
(p0 −mψ)2 −m2 ,

k2
⊥,max ≡ 1

4p2
0
(p2

0 + k2
z +m2 −m2

ψ)2 − k2
z −m2 , (2.43)

and also recall that ∆m2 ≡ m̃2 −m2. ML,MR are the amplitudes for the process calculated
using the step wall ansatz (see section 2.4) and Mwkb red. is the amplitude in the WKB
approximation, without the contribution inside the wall, calculated following the discus-
sion in section 2.6. Note the presence of various Theta functions imposing cuts on phase
space. For the ⟨∆pstep

L,R⟩ cases, these ensure that kz < L−1
w , i.e. a step wall approximation

is valid. Similarly Θ(kz − L−1
w ) for the WKB regime. For the latter, the second constraint

Θ
(
L−1
w − (pz − qz − k̃z)

)
imposes that the momentum transfer not surpass the inverse wall

width (see discussion near eq. (2.35)). In practice, all constraints can be implemented
by cutting the integration limits, as is shown in table 1. The Θ(±(L−1

w − kz)) are easily
implemented by cutting the kz integration appropriately. For the WKB regime, the extra
constraint pz − qz − k̃z < L−1

w amounts to cutting also the k2
⊥ integration as follows

k2
⊥ ≤

k2
⊥,wkb , kz < kz∗

k2
⊥,max , kz > kz∗

(WKB red.) (2.44)

where

k2
⊥,wkb ≡ 1

4p2
0

(
p2

0 + k2
z +m2 −m2

ψ − (pz − k̃z − L−1
w )2

)2
− k2

z −m2 , (2.45)

kz∗ ≡
√
(pz − L−1

w )2 +∆m2 . (2.46)
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Phase space integration limits

L-step R-step WKB red.

kz

[
0,Min[L−1

w , kzmax]
] [

∆m,Min[L−1
w , kzmax]

] [
L−1
w ,Max[L−1

w , kz∗]
] [

Max[L−1
w , kz∗], kzmax

]
k2
⊥ [0, k2

⊥,max] [0, k2
⊥,max] [0, k2

⊥,wkb] [0, k2
⊥,max]

Table 1. We report here all phase space integration limits for each emission contribution after
explicitly taking into account constraints imposed by Theta functions in eq. (2.42). The WKB regime
is divided into two regions having imposed the constraint ∆pzLw < 1, as explained in section 2.7. All
definitions Max & Min functions are included to also capture low p0 or large L−1

w .

To derive this, note that if pz − k̃z − L−1
w < 0, the positivity of qz means we are done with

no extra condition. If instead pz − k̃z − L−1
w > 0, squaring the constraint and solving for

k2
⊥ gives eq. (2.45).

2.8 Momentum transfer from scalar emission

Using the expressions summarised in section 2.7, we calculate the momentum transfer from
scalar emission ψ → ψϕ in our toy model eq. (2.1). As explained above, the total averaged
momentum transfer is the sum of three separate contributions ⟨∆pstep

L,R⟩, ⟨∆pwkb
R ⟩. Numerical

integration is relatively straightforward and representative results are shown in figure 5.
Analytical expressions can be derived, with some details given in appendix E.1, and are
presented when deemed useful. There are several parameters in the problem so which of
the three contributions dominates is a function of different hierarchies. Generically we
find that at large energies p0 → ∞ the WKB contribution always dominates and falls off
as 1/p0. Computing the phase space integrals in this asymptotic limit, we obtain a very
good approximation

⟨∆ptotal⟩
∣∣∣
p0≫L−1

w Max[1, mψ/m]
≈ ⟨∆pwkb

R ⟩ ≈ y2m̃

32π2m2
ψ

(2.47)

× p−1
0
2m̃

[
2m̃2 ln

(
m

m̃

)
+

2(m2 + m̃2)m2
ψ −m2m̃2

S(m) ln [D(m)] + S(m̃) ln [D(m̃)]
]
,

where

D(m) ≡
m2 − 2m2

ψ + S(m)
2m2

ψ

, S(m) ≡ im
√
4m2

ψ −m2 .

On the other hand, at low and intermediate relativistic energies, the step function contributions
typically dominate. This behaviour is amplified in two independent regimes. For very thin
wall Lw → 0 the WKB contribution naturally only turns on at higher energies p0 ≫ L−1

w , with
⟨∆pstep

R ⟩ temporarily dominating in its place (see bottom-right panel of figure 5). Nonetheless,
the trend is still reasonably approximated by interpolating backward the asymptotic result
of eq. (2.47).

More interesting is the case when the initial mass of ϕ is very light m≪ m̃,mψ. Each
contribution to momentum transfer becomes constant for an inter-relativistic plateau as
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Figure 5. Numerical results for the averaged momentum transfer to the wall for each of the three
contributions in eq. (2.42) as a function of incoming particle energy. Black and orange curves stand
for right and left emission of soft quanta (using step wall), while blue is for the energetic quanta
(using WKB). The vertical red dashed lines are the lower bounds on the minimal energy the incoming
particle can have to emit right and left modes. We show four cases of interest, that respectively
are: m̃ ≫ m, m̃ ∼ O(1)m, m̃−m ≪ 1 and L−1

w ≫ m̃. The horizontal and oblique dashed lines are
analytical estimates in eq. (2.47) (⟨∆pwkb

ζR
⟩), in eq. (E.12) (⟨∆pstep

ζL
⟩) and in eq. (E.13) (⟨∆pstep

ζR
⟩). At

the highest scales, the WKB contribution always dominates and falls as p−1
0 (while both step wall

contributions fall as p−2
0 ). In the limit Lw → 0, R emission also falls off as p−1

0 . Most interestingly,
for large hierarchy mψ/m, ⟨∆p⟩ is constant until p0 ≲ m̃mψ/m.

can be observed in the leftmost panel of figure 5. Moreover, it is actually ⟨∆pstep
L ⟩ that

dominates, with a value

⟨∆ptotal⟩ ≈ ⟨∆pstep
L ⟩ ≈ y2m̃

8π2m2
ψ

for p0 ≲ m̃mψ/m . (2.48)

Further details can be found in appendix E.1.

2.9 Pressure from scalar emission

The pressure induced on the bubble wall from scalar emission is finally obtained by integrating
over the incoming flux

P =
∫

d3p

(2π)3 fψ(T, γw)×
pz

p0
⟨∆ptotal⟩ , (2.49)

where fψ is the phase space distribution of incoming ψ particles in the frame of the wall.
Let us first focus on the interesting regime when m ≪ mψ, identified in eq. (2.48), where
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⟨∆p⟩total is constant for a plateau lasting till p0 ≲ m̃mψ/m. In the ultra-relativistic limit
pz/p0 → 1, and the integration gives simply

Pscalar = nψ(T, γw)⟨∆ptotal⟩ = γwnψ(T )⟨∆ptotal⟩ , p0 ≲
m̃mψ

m
. (2.50)

To go from the second equality to the third we used that the number density of ψ in the wall
frame is boosted with respect to the FRW frame number density. Thus, even scalar emission
can cause friction pressure that grows with γw. Combining the plateau and asymptotic
contributions for scalar emission, we have approximately, for an incident thermal population,

Pscalar ≈


T 3

8π4
y2m̃
m2
ψ
× γw , γw ≲ m̃mψ

mT

T 2

64π3
y2m̃2

mψm
, γw ≳ m̃mψ

mT

, (2.51)

where the second expression was obtained by expanding eq. (2.47) for small m and simply
multiplying by nψ(T ) ≈ T 3/π2. The asymptotic constant pressure can be compared with
the LO contribution from a thermal population of ϕ particles crossing the wall as per
eq. (1.1), which gives ∼ T 2m̃2. We observe that the NLO contribution is more important
when y2

64πmψm ≳ 1.
We remind the reader that our results for scalar emission pressure were obtained for a

particularly simple choice of interactions in the Lagrangian eq. (2.1) (with y = const) and we
highlighted here a particular regime of parameters. Our main goal was to mimic as much as
possible the vector radiation to be discussed in the next section. We will return to whether
the pressure in eq. (2.51) can be phenomenologically relevant in future work.

3 Spontaneously broken gauge theories

We now proceed to the phase transitions related to the spontaneous breaking of gauge
symmetry and the emission of vector bosons. The procedure will in essence be exactly the
same as what we presented for the case of the scalar emission. We will quantise the theory
of a gauge field in the background of a domain wall interpolating between a symmetric
and broken phase. As should be expected, the extra difficulty will involve dealing with
gauge-fixing, spin and the change of degrees of freedom due to the spatially-dependent
rearrangement of the vacuum.

For simplicity, we will consider the Abelian Higgs model of a charged complex scalar
H, whose potential V (

√
2|H|) is responsible for the spontaneous breaking of the U(1) gauge

symmetry. A second scalar field ψ charged under the same U(1) will play the role of matter;
its potential is trivial. The Lagrangian is

L = −1
4FµνF

µν + |DµH|2 − V
(√

2|H|
)
+ |Dµψ|2 −m2

ψ|ψ|2, (3.1)

where we are using the convention Dµψ = (∂µ + igAµ)ψ and Aµ is the vector gauge field.
We will in general not need to commit to a specific potential but will simply assume that
it has two minima at

√
2|H| = v, ṽ, where v → 0 corresponds to the symmetric phase. We

will quantise the theory in the background of a domain wall
√
2⟨|H|⟩ = v(z). We will also be
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interested, both as a computational tool and as a phenomenological case in its own right,
in imagining a distorted or more general class of potential with non-zero v < ṽ. We will
call this scenario a broken to broken phase transition, in opposition to the more familiar
case of symmetric to broken phase transitions.

To work with the theory described by eq. (3.1), one has to make two independent choices:
what field coordinates to use for H, such as Cartesian or polar, and what gauge to impose.
The value of each choice is determined by the particular application. Much of the following
pages will be dedicated to arguing for the most convenient choices for our application.

If we are interested in studying the geometry of the vacuum manifold, polar coordinates
H = 1√

2(h+ v)eiθ are most convenient. The potential depends only on the modulus. In the
symmetric phase however, this coordinate choice is singular. On the other hand, Cartesian
coordinates are well-defined everywhere

H = 1√
2
(h1 + ih2) ≡

1√
2
(h+ v(z) + ih2) , (3.2)

where we have expanded around the background solution h1 = v(z). The Lagrangian for
the Higgs and gauge fields becomes

LA,H = −1
4FµνF

µν + 1
2(∂h)

2 + 1
2(∂h2)2 − gAµ [h2∂µv(z)− v(z)∂µh2]

+ 1
2g

2v2(z)A2 − 1
2∂

2
1V (v(z))h2 − 1

2∂
2
2V (v(z))h2

2 + . . . ,
(3.3)

up to quadratic terms, where ∂i ≡ ∂/∂hi, so that the last two terms are the z-dependent
mass terms of h and h2.

At a non-zero minimum of the potential, h2 becomes massless and is the would-be
Nambu-Goldstone boson (NGB). As always for gauge theories, when v ̸= 0 a mixing term
appears between this goldstone boson and the gauge boson. However, in the context of
a varying background, there is also an extra mixing proportional to ∂zv. When v is a
constant, the mixing can be eliminated completely while also gauge fixing by adding the
so called Rξ gauge term

δLg.f. = − 1
2ξ (∂µA

µ − ξgvh2)2 , (3.4)

and integrating by parts. For v = v(z), adding this same (now z-dependent) gauge-fixing
term does not get rid of mixing entirely but localises it to the region of the wall

LA,H + δLg.f. =− 1
4FµνF

µν − 1
2ξ (∂µA

µ)2 + 1
2(∂h)

2 + 1
2(∂h2)2

− 2gh2A
z∂zv(z) +

1
2g

2v(z)2A2 − 1
2∂

2
1V (v(z))h2

− 1
2
[
∂2

2V (v(z)) + ξg2v2(z)
]
h2

2 + . . . .

(3.5)

3.1 Particle content in the asymptotic regions

We briefly remind ourselves of the spectrum of the theory in the asymptotic regions v = 0
and ṽ at z → −∞ and z → ∞ respectively, before discussing the full interpolating space.
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Symmetric phase. The theory eq. (3.5) around the symmetric point minimum v = 0
describes two scalars h1,2, with equal mass by symmetry

m2
h,s ≡ ∂2

1V (0) = ∂2
2V (0) (3.6)

The gauge-fixing affects only the Maxwell equations of motion for the massless vector Aµ.
Whatever the value of ξ, we can identify two physical transverse (in the sense that Aµkµ=0)
degrees of freedom with polarisation vectors given by

ϵµT1
= (0, 0, 1, 0) , ϵµT2

= 1√
k2
⊥ + k2

z

(0, kz, 0,−k⊥) , (3.7)

for kµ = (k0, k⊥, 0, kz). The only (well-known) subtlety involves imposing on the Hilbert
space a constraint to project out unphysical states, the so-called Gupta-Bleuler condition [72].

Broken phase(s). At a symmetry breaking minimum ∂2
2V (ṽ) = 0 and h2 describes the

would-be NGB. A particularly convenient choice is ‘unitary gauge’, corresponding to ξ → ∞
in which the NGB decouples completely, making manifest the spectrum. We are left with
a single massive scalar (the Higgs) h with mass squared equal to ∂2

1V (ṽ) and a massive
vector boson Aµ with mass

m̃ ≡ gṽ , (3.8)

and satisfying the Proca equation

∂µF
µν + m̃2Aν = 0 . (3.9)

This reduces to a Klein-Gordon equation for each component of Aµ supplemented by the
Lorentz condition:

=⇒ ∂2Aµ + m̃2Aµ = 0 , ∂µA
µ = 0 . (3.10)

Solving this is straightforward and one adds to the transverse polarisations of eq. (3.7) a
third longitudinal one parallel to 3-momentum

ϵµL =
(
k2

0 −m2

k0
, k⊥, 0, kz

)
k0

m
√
k2

0 −m2
. (3.11)

3.2 Global degrees of freedom

Here will analyse the fields defined over the entire region and identify the appropriate global
modes to quantise, where by global we simply mean they are good across the wall.

In principle, one could choose a convenient value of ξ in eq. (3.5) and push ahead with
quantisation. However, we would have to deal with mixing when solving for the mode
functions, as well as taking care to impose a non-trivial Gupta-Bleuler like condition on
physical states. Luckily, we will argue that even when asymptotically approaching the
symmetric point as z → −∞, it is possible to work with unitary gauge ξ → ∞ with impunity.
This approach was already made at the classical level in ref. [69], and we will re-derive and
tweak some of their results using a slightly different language, before quantising.
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In unitary gauge, the h2 degree of freedom decouples and the theory becomes

LU.G.A,H = −1
4FµνF

µν + 1
2g

2v2(z)A2 + 1
2(∂h)

2 − 1
2∂

2
1V (v)h2 + . . . , (3.12)

and the equations of motion for eq. (3.3) reduce to just two uncoupled equations

□h = −V ′′(v)h , (3.13)
∂νF

µν = g2v2(z)Aµ . (3.14)

The first one is the equation of motion for the physical Higgs boson h and we will not have
any more to say about it here. The second will be the focus of our attention. While v(z) > 0,
the theory is always in a broken phase and Aµ describes a massive vector. Unitary gauge
is then manifestly a valid choice. Note that the usual transversality condition for massive
vector bosons in this case becomes

∂µ∂νF
µν = ∂µ(g2v2Aµ) = 0 , (3.15)

=⇒ ∂nA
n + ∂zA

z = −∂zv
2

v2 Az , (3.16)

which, in the presence of the domain wall, generalises the standard Lorentz condition for
massive electrodynamics in eq. (3.10). The constraint above ensures this vector field has
three polarisation degrees of freedom. Subbing this back into eq. (3.14) we get

∂2Aµ + ∂µ
[(

∂zv
2

v2

)
Az
]
+ g2v2Aµ = 0 . (3.17)

The general Fourier mode can be written as

Aµk0,k⊥
= e−iknx

n∑
l

al χ
µ
l,kn(z) , (3.18)

where l runs over three indices, al are some constant Fourier coefficients and the functions
χµl,k0,k⊥

(z) have to be found by solving eq. (3.17). One might be tempted to define left and
right moving χµ modes by fixing the incoming piece at infinity in terms of conventional
transverse and longitudinal modes eqs. (3.7) and (3.11). However, under such a choice,
transmitted and reflected pieces would contain also other polarisations. Fundamentally, this is
because for non-zero k⊥, rotations around k⃗ are not a symmetry and conventional spin is not
conserved. We now construct more convenient ‘wall polarisations’, which instead do not mix.

τ polarisations. It is useful to define what we call τ−polarisations by the condition Az = 0,
since for these we recover the Lorentz condition ∂µA

µ = 0, which in Fourier space reduces to

knχ
n
τ ≡ k0χ

0
τ − k⊥χ

⊥
τ = 0 , (3.19)

and has solutions in terms of two constant vectors

χµτ = ϵµτ1,2 χτ1,2(z) , (3.20)
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where

ϵµτ1 = (0, 0, 1, 0), ϵµτ2 = (k⊥, k0, 0, 0)/
√
k2

0 − k2
⊥ , (3.21)

and the equations of motion eq. (3.17) become the Klein-Gordon-like[
−E2 − ∂2

z + g2v2(z)
]
χτ1,2(z) = 0 , (3.22)

where we remind the reader of the definition E =
√
k2

0 − k2
⊥. Note that ϵµτ1 is one of the

standard transverse polarisations, but ϵτ2 is not, since it has a non-zero time component,
and is not orthogonal to three momentum. The wave equation to solve across the wall for
τ d.o.f. is thus identical to the scalar case studied in section 2.

λ polarisation. It remains to solve for the remaining degree of freedom with Az ̸= 0. The
wave equation to solve for is obtained by setting µ = z in eq. (3.17). We note already that it
is significantly more complicated than what we found for τ . Whatever the solution for Az,
the other components of the vector are fixed. Requiring orthogonality with χµτ implies the
form χµλ(z) = (−iknα(z), χzλ) where we recall n = 0,⊥. The generalised Lorentz condition
in eq. (3.16) immediately leads to the relation

α(z) = ∂z
(
v2χzλ

)
E2 v2 . (3.23)

Plugging this back into the eq. (3.17), we obtain the equation in terms of the χz only

−E2χzλ − ∂z

( 1
v2∂z(v

2χzλ)
)
+ g2v2(z)χzλ = 0 . (3.24)

We can get rid of the linear in derivative term if we introduce a new function λ(z)

χzλ = E

gv(z)λ(z) , (3.25)

and eq. (3.24) becomes Schrodinger-like(
−E2 − ∂2

z + Uλ(z)
)
λ = 0 , (3.26)

with effective potential

Uλ(z) = g2v2(z)− v ∂z

(
∂zv

v2

)
= g2v2(z) + 2

(
∂zv

v

)2
− ∂2

zv

v
.

(3.27)

The solutions in terms of λ, unlike χzλ, satisfy the usual orthogonality relations∫
dzλk(z)λ∗q(z) = 2πδ(kz − qz) . (3.28)

It is easy to prove − and we do so explicitly in appendix D − that for an interpolating
solution v(z) of a completely arbitrary Higgs potential V , we have (v′/v)2, v′′/v → m2

h,s as
z → −∞ so that Uλ(z) is always finite even if v = 0. More precisely

lim
z→−∞

Uλ(z) =

g2v2 , v ̸= 0
m2
h,s , v = 0

≡ m2
λ . (3.29)
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We see that λ is the perfect cross-wall field. It interpolates between one of the massive
(Higgs) degrees of freedom on the symmetric v = 0 side z → −∞ and a third component
of the massive vector in the broken region z → ∞. If instead v ̸= 0, λ simply interpolates
between the different mass vectors.

Let us look more closely at the Aµ vector formed by the λ field. Using the equations
of motion forces the on-shell relation:

χzλ = E2∂zα

E2 − g2v2(z) ⇒

χµλ = (−iknα(z), χzλ) = (−ikn, ∂z) α(z) + g2v2(z)
E2 χzλ(0, 0, 0, 1)

= (−ikn, ∂z) α(z) + gv(z)
E

λ(z)(0, 0, 0, 1) (3.30)

So that the vector can be written as a total derivative plus a term sub-leading in energy.
This form will turn out to be very useful in calculating the amplitudes for physical processes.
Far from the wall, when v → const, we can introduce the polarisation vector ϵµλ such that

χµλ ∝ ϵµλ, ϵλµϵ
λµ = −1

ϵµλ =
(
kn
kz

E2 , 1
)
× E

gv

= kz

Egv
kµ + gv

E
(0 , 0 , 0 , 1) . (3.31)

We emphasise again that these λ and τ differ from the conventional transverse and longitudinal
polarisations. Far from the wall, all polarisations satisfy the same equation of motion and
one can use any linear combination of either basis to decompose the vector field. We can
relate the wall polarisations to the conventional longitudinal and transverse ones in eqs. (3.7)
and (3.11) via the rotation matrix

 ϵT1

ϵT2

ϵL

 =


1 0 0
0 k0kz

E
√
k2

0−m2 − k⊥m

E
√
k2

0−m2

0 k⊥m

E
√
k2

0−m2
k0kz

E
√
k2

0−m2


 ϵτ1

ϵτ2

ϵλ

 . (3.32)

In the case of a very large kz, E ≫ k⊥,m the mixing angle between τ, λ transverse and
longitudinal scales as m/E. We can see that the two bases of polarisations are exactly the
same for the case k⊥ = 0. This is expected since for this configuration of momenta T1, T2
polarisations have zero components in the z direction. Using the unbroken part of the Lorentz
symmetry (boosts in x− y direction) we can obtain the polarisations for generic momenta,
which indeed agrees with the τ, λ basis derived before. Our goal in this paper is to calculate
the total pressure acting on the domain wall and for this, we sum the contributions from all
polarisations. We perform all of the calculations in the τ, λ basis, without even reporting
the results for T, L polarisations.

3.2.1 v → 0 limit

All of the previous discussion applied most manifestly for the case when the vev of the
symmetry breaking field is v ̸= 0. What happens in the case when the domain wall on one
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 

 

 

 

 

Figure 6. The potential for the λ degree of freedom, which is defined everywhere. Recall m = gv and
m̃ = gṽ, plus thermal corrections. As v → 0 a growing plateau develops ending at z ∼ m−1

h,s ln (v/ṽ)
with value m2

h,s — the symmetric side mass of the Higgs in the case v = 0 exactly. These curves were
drawn using the explicit profile eq. (3.38).

side approaches a vacuum where the gauge symmetry is unbroken? We saw in the previous
section that the potential of the λ mode has a property that as v → 0 then Uλ(z) → m2

h,s,
which together with our expectations from the Higgs phenomena hints that on the unbroken
side λ should correspond to the would-be NGB

λz→−∞ → h2 . (3.33)

To understand this matching better, let us look at the χµλ vector in the limit v → 0

χµλ = (−iknα(z), χzλ) =
(−ikn∂z(vλ)

gEv2 ,
E

gv
λ

)
= λ

gv

(
− ik

n

E

[
v′

v
+ λ′

λ

]
, E

)
v→0

= e−ikx

gv

(
kn

E
[−imh,s + kz] , E

)
, (3.34)

where we have used that λ becomes a plane wave far from the wall and v′/v → mh,s. Note
that the factor (−imh,s + kz)/E is a pure phase if the λ dof is on shell. Let us see whether
we can build exactly the same vector but from the field h2. Indeed if we consider the vector

∂µ
(
h2
gv

)
= −e

−ikx

gv

(
kn, kz + i

v′

v

)
= −iEe−ikx

gv(kz − imh,s)

(
kn

E
[−imh,s + kz] , E

)
. (3.35)

So we can see, comparing with eq. (3.34), that the two vectors χµλ and ∂µ(h2/gv) are exactly
the same apart from the constant phase factor, so indeed λ field in the z → −∞ limit
corresponds to the Goldstone boson.

What about starting from a finite value and taking v → 0? For concreteness let us
consider the potential

V = λh(|h| − v)2(|h| − ṽ)2. (3.36)

First of all the potential has a cusp at |h| = 0 so the limit v → 0 becomes discontinuous. This
can be seen also in the form of Uλ(z). As v becomes smaller a longer finite plateau develops
in the potential with value ≈ m2

h,s, as is shown in figure 6. No matter how small v eventually
the potential turns down and asymptotes to g2v2 as is to be expected. Thus for any finite
though tiny v the asymptotic states at z → −∞ are those of a massive vector.
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3.3 The step wall case

In order to proceed further we need to solve the equations of motion. In general, it is a
complicated problem depending on the shape of the effective potential Veff(h) at the time of
the phase transition. One needs to find the solitonic solution v(z) connecting false and true
vacuum and later the wavemodes describing perturbations of each field on this background.
In the particular case of the domain wall

v(z) = 1
2 ṽ
(
1 + tanh

(
z

Lw

))
, (3.37)

solutions were found in [69] in terms of hypergeometric functions. In this paper, we will
consider an even simpler case, namely a step function ansatz for the wall. This approximation
will of course be valid only if the momentum of the particle during the passage is (much)
less than the inverse width of the wall k, k̃ ≪ L−1

w . Typically, this width is controlled by
the mass of the Higgs L−1

w ≈ mh.
The solution of the equations of motion can be written down on each side immediately

and the only challenge becomes deriving and implementing matching conditions. In this
section, we report the matching conditions for τ and λ polarisations and write down the
corresponding wave functions. We will do so first for the broken to broken case v > 0. As
an explicit example, we can imagine distorting eq. (3.37) to

v(z) → v + 1
2 (ṽ − v)

(
1 + tanh

(
z

Lw

))
. (3.38)

We then comment on the v → 0 limit, which is straightforward for τ degrees of freedom
but more delicate for λ.

3.3.1 (τ ) polarisations

For the τ polarisations, we showed in section 3.2 that the equations of motion are exactly
the same as for the scalar field (□Aµ(τ) = −g2v2Aµ(τ)) and so for the step wall the matching
conditions become:

χτi |<0 = χτi |>0 , (3.39)
∂zχτi |<0 = ∂zχτi |>0 , (3.40)

with i = 1, 2. The reflection and transmission coefficients are thus the same as for scalars
and the wave functions become

χµτi,R,k(z) = ϵµτi

eik
zz + rτke

−ikzz , z < 0
tτk e

ik̃zz , z > 0
, (3.41)

χµτi,L,k(z) = ϵµτi

√
kz

k̃z


k̃z

kz t
τ
k e

−ikzz , z < 0
e−ik̃

zz − rτke
ik̃zz , z > 0

, (3.42)

where

rτk = kz − k̃z

kz + k̃z
, tτk = 2kz

kz + k̃z
, (3.43)

k0 =
√
k2
z +m2

τ + k2
⊥ , k̃z =

√
k2

0 − m̃2
τ − k2

⊥ , mτ ≡ gv , m̃τ ≡ gṽ .

– 26 –



J
H
E
P
0
5
(
2
0
2
4
)
2
9
4

Taking the v → 0 limit for these degrees of freedom is simple and we approach the v = 0
case smoothly.

3.3.2 (λ) polarisation

The λ modes require more work. Again we first focus on the broken to broken case of v > 0.
Matching conditions are easy to derive by integrating the wave equation for λ once and twice
respectively (most easily done at the level of eq. (3.24)). These are

∂zλ

v(z)

∣∣∣∣
<0

= ∂zλ

v(z)

∣∣∣∣
>0

,

v(z)λ|<0 = v(z)λ|>0 , (3.44)

which allows us to write down the expressions for (in-state) ‘left’ and ‘right’ movers:

λR,k(z) =

eik
zz + rλke

−ikzz , z < 0
tλk e

ik̃zz , z > 0
(3.45)

λL,k(z) =
√
kz

k̃z


k̃z

kz t
λ
ke

−ikzz , z < 0
e−ik̃

zz − rλke
ik̃zz , z > 0

(3.46)

where

rλk = ṽ2kz − v2k̃z

ṽ2kz + v2k̃z
, tλk = 2kzvṽ

ṽ2kz + v2k̃z
, (3.47)

k0 =
√
k2
z +m2

λ + k2
⊥ , k̃z =

√
k2

0 − m̃2
λ − k2

⊥ , mλ ≡ gv , m̃λ ≡ gṽ .

Notice that in the relativistic limit

rλk → ṽ2 − v2

ṽ2 + v2 , for kz ≫ mλ, m̃λ , (3.48)

so that λ maintains a finite reflection probability as long as the step function is a valid
approximation, as was pointed out in [67].

Interestingly we can see that rλk → 1 in the limit v → 0, i.e. the wall becomes completely
non-transparent for the λ polarisations in this limit. This in-penetrability of the wall deserves
some discussion. Consider the explicit form of Uλ(z) for the case of the tanh profile in
eq. (3.38). As mentioned in section 3.2.1 and sketched in figure 6, in the limit of v → 0, Uλ(z)
develops a growing plateau with a height ≈ L−2

w ∼ m2
h,s and width Lplateau ∼ Lw log ṽ/v. In

the step function approximation, the first scale is effectively treated as infinite. For v = 0
exactly, since mλ(−∞) = mh,s, obviously there are no oscillating λR,k modes at all in the step
regime, while λL,k are completely reflected. For v tiny but non-zero the potential eventually
does instead relax to m2

λ = g2v2 and both oscillating λL,R solutions exist, though strongly
constrained to live on opposite sides of the wall:15 |rk| = 1−O(v2/ṽ2). Back to the v = 0
exact case, one can also consider theories in which the two scales Lw and mh,s are decoupled

15One might question the validity of the step wall approximation for kz ≳ L−1
w when the potential function

Uλ(z) has a very long plateau v ≪ ṽ. However, the solutions eqs. (3.45) and (3.46) capture exactly the
qualitative behaviour described.
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(e.g. set mh,s = 0 as an extreme case). Then again oscillating λL,R modes will exist on both
sides of the wall even as Lw → 0. Still, by numerical inspection, we find total reflection
(|rk| → 1) in the step wall limit, though we leave a proper proof to future work.

In conclusion, calculations in the step function regime for the symmetric to broken transi-
tion case (v = 0) can be computed starting from the v ̸= 0 case, using wavemodes eqs. (3.45)
and (3.46), and then finally setting v → 0 in the amplitude at the end. Notice instead
that the asymptotic masses in the phase space kinematics will need to be discontinuously
changed from gv to mh,s.

A comment on bound states. We have so far considered ‘scattering state’ solutions to
the equations of motion, i.e. those which are plane waves far from the wall. What about
bound states? In principle, such states are possible for λ polarisation. Ref. [69] found the
existence of one for the case v = 0 when the potential satisfies some specific constraints. The
form of the potential for v > 0, for example, as sketched in figure 6, suggests that a bound
state might generically appear. The mass of these bound states is controlled by the scale
L−1
w , as is obvious by its absence in the step wall limit. One could in principle calculate

in the WKB limit the amplitude for an incoming particle to excite this bound state. We
leave this interesting exercise to future work.

3.4 Quantisation

Following on from the previous sections, we can expand the field into a complete basis of
eigenmodes of the free theory in the background vev v(z),

Aµ =
∑
I,ℓ

∫
d3k

(2π)3√2k0

(
ain
ℓ,I,k e

−i(k0t−k⃗⊥x⃗) χµℓ,I,k(z) + h.c.
)

=
∑
I,ℓ

∫
d3k

(2π)3√2k0

(
aout
ℓ,I,k e

−i(k0t−k⃗⊥x⃗) ζµℓ,I,k(z) + h.c.
)
,

(3.49)

where I = R,L denote right and left movers, ℓ = τ1, τ2, λ sums over different wall polarisations.
The wave modes χµ(z) are in general constructed via

χµτi,I,k = ϵµτi χτi,I,k(z) , (3.50)

χµλ,I,k =
(−ikn∂z(vλI,k)

gEv2 ,
E

gv
λI,k

)
on shell= ∂̄µ

∂z
(
vλzI,k

)
Eg v2

+ gv(z)
E

λI,k δ
µ
z , (3.51)

where ∂̄µ ≡ (−ikn, ∂z), with the explicit form of scalar fields χτi,I,k(z) and λI,k(z) obtained
by solving the respective Schrodinger-like wave eqs. (3.22) and (3.26) with appropriate
R,L-mover boundary conditions. In the step wall approximation for the vev v(z), these are
given analytically in eqs. (3.41), (3.42), (3.45) and (3.46). In complete analogy to the case of
fundamental scalars,16 the modes χµℓ,I,k should be thought of as describing incoming (early
time) eigenstates of momentum (particles) in the plane wave limit with physical z-momentum

16See section 2.3 and appendix A.
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kz > 0 and −kz for R and L respectively. Modes describing outgoing (late time) eigenstates
of momenta ζµℓ,I,k are instead obtained via

ζµτi,{L,R} = ϵµτi χ
∗
τi,{R,L}(z), (3.52)

ζµλ,{L,R} =
(
−ikn∂z(vλ∗{R,L})

gEv2 ,
E

gv
λ∗{R,L}

)
on shell= ∂̄µ

(
∂z(vλ∗{R,L})
Eg v2

)
+ gv(z)

E
λ∗{R,L} δ

µ
z ,

(3.53)

where we have dropped k labels to not clutter the notation. Notice the switch in L,R —
labels. Both sets of eigenmodes form a complete orthonormal basis and can be used to expand
the field operator in eq. (3.49). The associated Fourier operators carry in and out labels to
emphasise that they create/annihilate in and out states in the S-matrix language∣∣∣kin

ℓ,I

〉
≡
√
2k0 (ain

ℓ,I,k)† |0⟩ , (3.54)∣∣∣kout
ℓ,I

〉
≡
√
2k0 (aout

ℓ,I,k)† |0⟩ , I ∈ R,L & ℓ ∈ τ1, τ2, λ . (3.55)

Both satisfy the usual algebra eq. (2.15) upon quantisation.

Ward identity and current conservation. We now comment on current conservation in
the case of spontaneously broken Lorentz symmetry. If the gauge symmetry is preserved, vector
bosons can couple only to conserved currents. This is not the case when it is spontaneously
broken, but we may still choose to consider coupling to a conserved current.17 In the Lorentz
invariant theory, the statement of the current conservation can be expressed in terms of
amplitudes. Given an arbitrary process with an external vector leg with momentum kµ,
we have the following identity

M(4,J) ≡ ϵµkM
(4,J)
µ = (ϵµk + kµ)M(4,J)

µ , (no wall), (3.56)

where the (4, J) label indicates full 4-momentum conservation and the process is mediated
by the conserved current Jµ, and ϵµk is the external particle’s polarisation vector. This
Ward identity implies that substituting the latter for the particle’s momentum kµ makes
the amplitude vanish.

In the presence of a domain wall in the z direction, the generalised matrix element M(3)

as defined in eq. (2.22) includes an integral over z and the polarisation tensor is also a function
thereof. The expression of conservation closest to eq. (3.56) is

M(3,J) ≡
∫
dz χµℓ,I,k(z)M

(3,J)
µ (z) =

∫
dz

(
χµℓ,I,k(z) + ∂̄µf(z)

)
M(3,J)

µ (z) , (3.57)

where ∂̄µ ≡ (−ikn, ∂z) , (with wall)

and f(z) is an arbitrary function.
To make this discussion more concrete we consider the coupling of the gauge field to

the conserved current made out of ψ fields we introduced in eq. (3.1):

L = igAµJ
µ, Jµ = i

(
ψ†∂µψ − ψ∂µψ†

)
, ∂µJµ = 0 . (3.58)

17For example this is the case for the coupling of W boson to light quarks, in the high energy regime when
the quark masses can be approximately neglected.
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Then the amplitude (defined in eq. (2.22)) corresponding to the emission of the (l, I) po-
larisation from the current will be equal to

⟨kout
I q| S |p⟩ ≡ (2π)3δ(3)(pn − kn − qn)

∫
dz
(
ζµl,I,k(z)

)∗
(p+ q)µei(p

z−qz)z , (3.59)

where as usual p, q are the initial and final momentum of the ψ particle. Note, modulo
a numerical factor, the same expression will be valid for the emission of the vector boson
from an arbitrary conserved current (not necessarily one made from scalars). The current
conservation imposes that any interaction which can be written in the form

Jµ∂µf ⇒ ⟨final| Sf |initial⟩ =
∫
d4x ∂µf(x)Jµ(x) = 0 , (3.60)

has a vanishing matrix element. We see now the use of writing the polarisation vector for the
λ d.o.f. as we did in eq. (3.53). The dangerous-looking first term is actually a total derivative
and can be subtracted when computing amplitudes (see appendix B). We comment further
on this in the next section as well as discuss the case of non-conserved current in appendix C.

3.5 Subtleties with WKB regime

Before we start computing the amplitudes of interest, we highlight some important subtleties
related to the calculation in the WKB regime. As we have discussed in section 2.6, our formulas
are valid only if the contribution inside the wall can be ignored. Let us check whether this is
a reasonable approximation for the vector emission. Consider the λ and τ cases separately:

• τ polarisation

For the τ polarisations we can estimate the contribution to the amplitude inside and
outside of the wall and we find:

Mτ
inside

Mτ
outside

≃ ∆pzLw . (3.61)

Similarly to the scalar case discussed in the section 2.6, the contribution inside the wall
can be safely ignored.

• λ polarisation

Now let us look at the λ polarisation, and the interactions between the current and λ

field. Using the expansion for χµλ field (see for example eq. (3.34)) we get:

gJµAµ(λ) = g(Jn∂nα− Jzχ
λ
z )

= Jn

[ −ikn
Ev(z)2∂z (v(z)λ(z))

]
− Jz

E

v(z)λ(z) , (3.62)

outside of the wall, when λ = eikx this becomes

Jn

[
knk

z

Ev(z)

]
− Jz

E

v(z)λ = gJµ · ϵ(λ)
µ , (3.63)

see eq. (3.31). Let us consider the domain wall connecting the vacua with broken and
restored gauge symmetry. In this case, the λ polarisation will interact with the ψ
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particle only on the broken side. Then the amplitude originating from the integration
outside of the wall will be equal to

Mwkb red.
λ ∝ −

(
(p+ q)µϵ(λ)

µ (z → −∞)
pz − qz − k̃z

)
≃ −

(
k̃z(pz + qz)

ṽE

)
,

ṽ ≡ v(z → +∞) , (3.64)

where we have kept only the leading term in energy in the polarisation vector and
simplified using the conservation of the current, p2 = q2. We can see that this matrix
element is growing with energy and is singular in the limit ṽ → 0, which are very
worrisome properties since the limit ṽ → 0 corresponds to the no domain wall and
therefore no transition radiation, i.e. M → 0! Let us look now at the contribution
coming from the integration inside the wall, using the interaction form of eq. (3.62)

Minside ≃
∫ Lw

0
dze−i(p−q)

zz(p+ q)n
[ −ikn
Ev(z)2 (∂zv(z) + v(z)∂z)

]
e−i

∫ z
0 dz̃kz(z̃)

−
∫ Lw

0
dze−i(p−q)

zz(p+ q)z
E

v(z)e
−i
∫ z

0 dz̃kz(z̃) . (3.65)

In the first integral there is a term ∝ ∂zv(z), which upon integration will necessarily
lead to

Minside ∼
(p+ q)0

E

1
ṽ
, (3.66)

which is of the same size as the contribution outside of the wall. We see that the
amplitude Mwkb red.

λ will definitely lead to incorrect results, so how can we proceed?
One possibility would be to take some ansatz for the domain wall and then perform full
WKB calculation keeping the terms inside the wall, which will lead to correct results
without bad properties of eqs. (3.65)−(3.64). However, we can still make progress
even without the knowledge of the shape of the wall using the following trick. By
construction, we have been focusing on the case where the current built out of ψ fields
is conserved

Jµ = i(ψ†∂µψ − ψ∂µψ
†) , ∂µJ

µ = 0 . (3.67)

On the other hand, the λ mode can be written as a complete derivative plus a term
subleading in energy (eq. (3.30))

A(λ)
µ = ∂µα+ gv(z)

E
λ(z)(0, 0, 0, 1) . (3.68)

The part ∂µα does not couple to a conserved current, meaning that

gJµA(λ)
µ → −g

2v(z)
E

Jzλ . (3.69)

With this simplification, we immediately see that all of the problems with λ polarisations
are cured

Moutside ∼
(p+ q)zg2ṽ

E∆pz
, Minside ∼ Lwg

2ṽ
(p+ q)z

E
,

Minside
Moutside

∼ Lw∆pz . (3.70)
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The contribution inside the wall is suppressed and the matrix element is not growing
with energy but vanishes in the limit ṽ → 0.

So far we have been focusing only on the case when the current made out of ψ fields is
conserved on both sides of the wall. This is not true generically, and in particular for SM
fermions, where the Yukawa interactions will lead to current non-conservation. So how should
one proceed in that case? As explained in more detail in appendix C, it turns out that, with
very minor modifications, a very similar trick can be used.

4 Transition radiation and pressure from vectors

We are now ready to calculate transition radiation and the resultant pressure from vector
boson emission. We are working in the Abelian Higgs theory of eq. (3.1) and calculate
the average momentum transfer during the radiation of a gauge boson from an incoming ψ
particle of energy p0. We evaluate the amplitudes of interest in the next section, comment
on the final state phase space and masses employed in section 4.2, and finally present our
results in section 4.3.

4.1 Amplitudes

All the relevant amplitudes for the particle process ψ → ψA obtained from eq. (3.59) are
reported here. These are τ and λ polarisation emission for left and right movers in the
step wall and WKB regimes,

Mstep
τ,L = −igϵµτ2(p+ q)µ

( 1
∆pr

+ rτk
∆p + tτk

−∆p̃r

)
, (4.1)

Mstep
τ,R = −igϵµτ2(p+ q)µ

√
kz

k̃z

[
k̃z

kz
tτk
∆p − 1

∆p̃ + rτk
∆p̃r

]
, (4.2)

Mwkb red.
τ = −igϵµτ2(p+ q)µ

( 1
∆p − 1

∆p̃

)
, (4.3)

Mstep
λ,L = −i g

E
(pz + qz)

[
gv

(
1

∆pr
+ rλk

∆p

)
− gṽ

tλk
∆p̃r

]
, (4.4)

Mstep
λ,R = −i g

E
(pz + qz)

√
kz

k̃z

[
gv
k̃z

kz
tλk
∆p − gṽ

(
1
∆p̃ − rλk

∆p̃r

)]
, (4.5)

Mwkb red.
λ = −i g

E
(pz + qz)

[
gv

∆p − gṽ

∆p̃

]
, (4.6)

where the scattering coefficients rτ,λk , tτ,λk relevant for the amplitudes in the step wall regime
are defined in sections 3.3.1 and 3.3.2 and the ∆p factors in denominator are defined in
eq. (1.4). We presented amplitudes for v ̸= 0. However, the symmetry-breaking transition
case can be obtained smoothly at this level by sending v → 0. Note that

Mstep
λ,L → 0 as v → 0 , (4.7)

in this limit. The discontinuity in asymptotic d.o.f. (and therefore masses) is hidden here
inside the kinematic factors and are addressed in the following section.
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For λ emission we used current conservation to simplify the computation of these
amplitudes by subtracting the total derivative piece in the wavemode eq. (3.53), as explained
in section 2.2. For Mstep this simplification does not change the final expression since it is exact
(in the limit of a step wall). However, we emphasise again that it does for Mwkb red.

λ , which is
an approximation as described in section 2.6, and the subtraction is necessary to be consistent
with the approximations and avoid unphysical divergences, as explained in section 3.5.

4.2 Phase space integration for vector emission

In going from the amplitudes above to the averaged exchanged momentum ⟨∆pℓ⟩, where
ℓ = τ, λ, we integrate over final state phase space following the prescriptions and kinematics
summarised in section 2.7, using Mstep and Mwkb red. in their respective regimes of validity.
However, there are some important subtleties to discuss compared to the simple theory of
scalars of section 2, particularly for a symmetric to broken transition. In this case, the
mass of the vector (and therefore τ d.o.f.) in the old phase (z → −∞) is zero by gauge
invariance since v = 0. As shown explicitly in appendix E.4, in principle we can get finite
results working with m = 0 and integrating over the full phase space as long as the mass
of the emitter is kept finite mψ ̸= 0. However, thermal corrections ought to be important.
We should expect our calculation to break down for momenta that are too soft (to be
defined precisely), where thermal field theory becomes important. To regularise the log
divergence in transverse emission when mψ is set to zero, [66] cut the k⊥ integration at the
soft thermal scale ∼ gT . This is roughly equivalent to using ‘electric’ thermal masses18 in
all asymptotic state kinematics

(τ) :

m̃ = mτ (z = +∞) ≈ g
√
ṽ2 + T 2 ,

m = mτ (z = −∞) ≈ gT ,

(λ) :

m̃ = mλ(z = +∞) ≈ g
√
ṽ2 + T 2 ,

m = mλ(z = −∞) = mh,s(T ) .

(symmetric to broken) (4.8)

In this work we also impose the IR cut-off in this way, since our primary focus is the proper
calculation of λ emission, which turns out to not need IR regulation. We note however
that eq. (4.8) requires further scrutiny. As is well known, the self energy for A⃗ receives
‘magnetic mass’ thermal corrections only at two loops from charged matter, of parametric
order ∼ g2T . Moreover, we are working in the frame of the wall, so the background plasma
is boosted and standard results should be distorted. We leave the rigorous inclusion of finite
temperature to a follow up study.

In eq. (4.8), mh,s is the mass of the Higgs d.o.f. in the symmetric phase (see
eq. (3.29)) which will also be temperature dependent.19 So now, for example, the in-
tegration limits for the kz integral for ⟨∆pλ,step

R ⟩ in eq. (2.42) become explicitly kz ∈[√
g2ṽ2 + g2T 2 −m2

h,s(T ) , kzmax

]
.20

18This is the thermal mass correction in the self-energy of A0. It is the relevant scale for example in the
Debye screening of the Coulomb field [73].

19We do not discuss the explicit form of it since our results are largely insensitive to it.
20When mh,s(T ) < m̃(T ) we are in line with our set up which assumed m < m̃, but if it is the other way
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It is worth stressing that for τ polarisation what appears in the amplitude and in the
kinematics boundaries of the PS are always the masses m and m̃ as defined in eq. (4.8).
However, for the λ polarisation the coupling appearing in the amplitude is really the bare
gv(→ 0) and does not receive thermal corrections, while in the kinematics and PS integration
what appears is m and m̃ as defined as in eq. (4.8). So eq. (4.7) still holds even at finite T .
For broken to broken transitions the vector masses are, for both λ and τ fields

m ≈ g
√
v2 + T 2 , m̃ ≈ g

√
ṽ2 + T 2 , (broken to broken) . (4.9)

In summary, ⟨∆p⟩ is computed as in section 2.7 with phase space integration limits
in table 1 and asymptotic masses defined here above. In general, there is a total of six
contributions:

⟨∆pτ, step
R ⟩ , ⟨∆pτ,wkb

R ⟩ , ⟨∆pτ, step
L ⟩ ,

⟨∆pλ, step
R ⟩ , ⟨∆pλ,wkb

R ⟩ , ⟨∆pλ, step
L ⟩ . (4.10)

4.3 Pressure on the bubble wall

We now report and comment on our results for the average NLO momentum transfer ⟨∆p⟩
due to transition radiation from a ψ particle travelling across the wall and thereby compute
the total pressure on the bubble wall. We show a break down of figures 2 and 3 into all their
contributions, as well as provide some analytical formulae. A comprehensive comparison
(via numerical integration — see appendix E for some analytical evaluation of phase space
integrals) of all the different parts in eq. (4.10) is shown in figures 7 and 8, as a function of the
energy of the incoming emitter particle, ψ. In the asymptotic p0 → ∞ limit all contributions
are constant. Their relative importance is displayed in figure 9. We now discuss the two
cases of interest v = 0 and v ̸= 0 separately.

Symmetric to broken case (v = 0). We observe in figure 7 that when the emitting
particle is mψ ≲ m the contribution from τ saturates quickly to the constant p0 → ∞ value
(top left in figure 7), but if there is a hierarchy m ≪ mψ, we observe an inter-relativistic
regime of logarithmic dependence on p0 up until p0 ∼ m̃mψ/m. This can be traced to a
collinear log divergence of phase space integration in the limit m = 0 & p0 → ∞ as explained
in appendix E. This behaviour is not present in contributions from λ polarisation emission,
which are insensitive to mψ for relativistic p0, even when the symmetric side mass is set
to zero mh,s = 0.

In the asymptotic p0 → ∞ limit τ contributions depend significantly only on the ratio21

m/m̃, which can be translated to T/ṽ. While individual λ contributions depend also on
L−1
w their sum is constant. The total momentum transfer (summing over all contributions)

around the lower limit of kz becomes imaginary. This is signaling the fact that modes with 0 < k̃ <
√
m2 − m̃2

are now exponentially decaying in the old phase (right) side of the wall. Then it is more appropriate to define
the step wall regime according to k < k̃ ≲ L−1

w and parameterise the PS integrals in terms of (k̃z, k2
⊥). The

integration limits for k̃z for R-mover emission would be k̃z ∈ [0, k̃zmax], where k̃zmax =
√

(p0 −mψ)2 − m̃2.
21See for example the exact evaluation of the dominant contribution eq. (E.16).
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Figure 7. Symmetric → Broken. We present qualitatively the same plot as in figure 3 (left panel),
this time disentangling all the contributions, and highlighting the effect of a hierarchy m≪ mψ for τ
emission. Top Left: Averaged momentum exchange for τ polarisation contributions. The curves quickly
saturate to their constant asymptotic values and the dominant contribution is L-mover emission in
the step wall regime. Thick lines are numerics and the dashed line is the analytical expression in
eq. (E.16). Top Right: Same as previous, but for m/mψ ≪ 1. We see the transient inter-relativistic
regime scaling as log(p0), well described by the m = 0 analytical formulae (dashed lines) found in
appendix E.4. The regime ends around p0 ∼ m̃mψ/m. Bottom: λ polarisation contributions. The
result is quite insensitive to the symmetric side λ mass mh,s(T ) as long as it is ≲ m̃. We plot for
mψ = 1 [arb.], but varying it does not change much either; unlike for τ , there is no intermediate
regime. Dashed lines are analytical formulae in eqs. (E.24) and (E.25).

can be fitted by the following expression

lim
p0→∞

⟨∆ptotal⟩ ≃ g3ṽ

0.135 log( ṽ
T

+ 2.26
)
− 0.085− 0.2

log
(
ṽ
T + 2.26

)
ṽ/T

+ 0.19
ṽ/T

 . (4.11)

We recall that to obtain this expression we cut the phase space integrals in the IR at
energies ∼ gT . The expression in eq. (4.11) becomes valid for the energies of initial particle
p0 ≳ ṽ

T ×mψ, which in the case of massless emitter mψ → 0 becomes p0 ≳ ṽ. At last we
would like to remind the reader that the expression above was obtained just for the single
vector emission, and one cannot trust it for very large values of log.

The contribution of the longitudinal modes is sub-leading except perhaps for mild
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Figure 8. Broken → Broken. Left: Averaged momentum exchange for λ polarisation emission
for relatively thin wall. The inter-relativistic regime of scaling with p0 lasts till p0 ∼ L−1

w . Taking
∆m ≪ 1 does not qualitatively change anything except for suppressing all values. Notice m ≲ m̃.
Right: Similar to previous, but in the case m≪ m̃. Here we see that the inter-relativistic regime is
distorted at low p0 and also extended up to p0 ∼ L−1

w mψ/m.

super-cooling ṽ/T ∼few, and is equal approximately to

lim
p0→∞

⟨∆pλ⟩ ∼ g3ṽ × cλ(Lw, T, m̃,mψ), cλ ∈ [0.02, 0.03]. (4.12)

This result qualitatively agrees with the estimate in the ref. [63]. An analytical form for
the function cλ is given in eq. (E.26).

So far we have been calculating the momentum transfer from individual collisions. In
order to find the pressure acting on the bubble wall we need to perform the integration
over the flux of incoming particles. This can be easily done in the thermal case since we
know the distributions

P =
∫

d3p

(2π)3 fψ(T, γw)×
pz

p0
⟨∆p⟩. (4.13)

If the average momentum transfer is a constant the integration is simple and we find, since
in the ultra-relativistic case pz/p0 → 1,

P = nψ(T, γw)⟨∆p⟩ = γwnψ(T )⟨∆p⟩, (4.14)

where nψ is the density of emitters ψ defined in the plasma frame. Then, for the symmetric
to broken transition we obtain the following expression for the pressure:

lim
γw→∞

Pth. ≃
ζ(3)γwT 3

π2 (4.15)

× g3ṽ

0.135 log( ṽ
T

+ 2.26
)
− 0.085− 0.2

log
(
ṽ
T + 2.26

)
ṽ/T

+ 0.19
ṽ/T

 ,
where th. stands for thermal.
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Figure 9. Here is presented the same plot as in figure 2, but this time disentangling all the
contributions. Solid lines refer to τ polarisation, while dashed to λ. The red lines are the total sum,
for each polarisation. Top: Symmetric → Broken. It is shown two cases with different wall widths
and it is worth noticing that while the total contribution for τ and λ does not change appreciably, the
single contributions do, like R step wall versus WKB. Bottom: Broken → Broken. Here it happens
the same as in the top panels, but, since in this case, L step contribution from λ polarisation has
to be taken into account, we see that, depending on the value of Lw and the hierarchy between the
different vevs, can be the most relevant contribution.

Broken to broken case (v ̸= 0). In figure 8 we show the evolution of ⟨∆p⟩(p0) for a
broken to broken transition. We focus only on λ contributions since the ones from τ are
essentially the same as in figure 7 with suitable re-interpretation of what m, m̃ mean (see
section 4.2). Again the curves eventually saturate to a constant value but we highlight the
strongly Lw−dependent novel contribution from L-mover emission, which easily comes to
dominate in the thin wall regime. As in figure 3, we highlight that in the left panel, we
can clearly distinguish the inter-relativistic region where this last contribution develops a
linear growth in p0. In figure 9 we see the dependence of the saturation value of the averaged
exchanged momentum (in the limit p0 → ∞) on the ratio between vevs (lower panels).

Broken to broken transitions were recently studied at leading order by [67] and it was
found that reflection of the longitudinal vectors is efficient for the energies below L−1

w (inverse
width of the wall). This in its turn leads to the pressure scaling as γ2

w, as long as p0 < L−1
w .

We find that a reminiscent effect happens at NLO level, the main difference is that the
momentum of the vector is not fixed by the speed of the bubble expansion and is always
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integrated over all possible values. We find that the momentum transfer is dominated by left-
mover modes and for the values of the energies of incoming particle p0 < L−1

w Max[1,mψ/m]
it is proportional to ∝ p0

lim
p0<L

−1
w Max[1,mψ/m]

⟨∆pv ̸=0⟩ ∼ 10−2 × g2 (v2 − ṽ2)2

(v2 + ṽ2)2 × p0
Max[1,mψ/m] . (4.16)

In the case of large hierarchy 0 < m ≪ mψ, not only is the saturation point delayed, but
a further slight distortion occurs at low p0, as shown in figure 8. Once the energy of the
initial particle becomes larger than ∼ L−1

w Max[1,mψ/m], we have

lim
p0→∞,Lw→0

⟨∆pv ̸=0⟩ ≃ 0.05g2 (v2 − ṽ2)2

(v2 + ṽ2)2L
−1
w . (4.17)

Momentum transfer stops growing and reaches the saturation value. Note that the maximal
value of this pressure is controlled by L−1

w and not by the mass of the vector gṽ. This is related
to the fact that at high energies Goldstone Boson equivalence theorem relates the longitudinal
vectors to the Goldstone bosons, and the strength of their interaction with the bubble wall
(Higgs field) is controlled by the mass of the Higgs (wall width). Consequently, in the case of
broken to broken transition, there is an additional contribution to the pressure which scales as

lim
γw→∞

Pλ
v ̸=0 ∼ 0.05ζ(3)γwT

3

π2 × g2 (v2 − ṽ2)2

(v2 + ṽ2)2 × L−1
w , (4.18)

with an intermediate regime scaling as Pλ ∝ γ2
w for the values of boost factor γw < (LwT )−1.

5 Summary

We conclude by summarising the main results of our work. We analyzed in detail the
phenomena of transition radiation in the presence of domain walls. We quantised from first
principles scalar and vector theories on a translation-violating background and identified the
correct asymptotic states. We split emission into soft and UV regimes and used a step wall
and WKB approximation respectively to compute the desired matrix elements for transition
radiation. Quantisation of vector field theories was naturally performed via the introduction of
new degrees of freedom which do not coincide with the traditional transverse and longitudinal
polarisation but are a convenient admixture. In this way, we have resolved some puzzles
regarding the inclusion of longitudinal polarisations in the calculation of transition radiation.

We applied these results to calculate the pressure experienced by the bubble wall during
the ultra-relativistic expansion. For the phase transitions with spontaneous breaking of the
gauge symmetries in the regime of strong supercooling, we find the pressure which scales as

P ∝ γwg
3ṽT 3 log ṽ

T
, for ṽ/T ≫ 1, (5.1)

and is dominated by the emission back out of the wall of transverse-like polarisations with
momenta kz ∈ (0,∆m). This result qualitatively agrees with the previous literature on the
subject. For moderate ratio ṽ/T ∼ few we find that the contribution from the longitudinal-like
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polarisations can lead to significant corrections. We provide an updated fitted formula for
the total pressure in eq. (4.15).

We also analyzed the pressure in the case of transition between two vacua with broken
gauge symmetry. Interestingly we find in this case the contribution from the longitudinal-like
polarisation can easily become dominant for thin walls, with the asymptotic value controlled
by the inverse wall width Pmax ∝ γwg

2T 3L−1
w . Moreover, we find a transient intermediate

regime of P ∝ γ2
w scaling for p0 ≲ L−1

w .
Our results make an advance in understanding the balance between bubble acceleration

and friction which plays a crucial role in determining most phenomenological consequences of
FOPTs as well as their detection prospect at upcoming gravitational wave detectors.

Future outlook. The work can be improved and generalised in several ways. An important
remaining question is the inclusion of finite temperature effects in a robust first principles
fashion (see for example the discussion in section 4.2). It is relatively easy, though cumbersome,
to allow also for the emitting particle to feel the wall mψ → mψ(z). Though in the γw → ∞
limit, any dependence on mψ(z) should drop out, we saw how mψ can distort the intermediate
shape of PNLO(γw) and ultimately finding the equilibrium velocity vw will require full
knowledge of this curve. Similarly one could rigorously quantise fermionic fields that change
mass across the wall.

A possibly important direction is the analysis of multiple vector emissions, particularly
in regimes with large logs, possible IR enhancements, and back-reaction effects coming from
the overdensity of soft vector bosons around the wall (see discussion in [66]). Furthermore, it
would be interesting to compare our wall-shape-independent results with a full numerical
calculation using a specific smooth wall ansatz (for example tanh). Finally, with some tweaks,
our expressions can be used to analyse pressure in qualitatively different types of FOPTs,
such as spontaneous breaking of global symmetries, or even symmetry restoring transitions.

While our interest here was in friction, we emphasise that our set up is useful for
rigorously computing any process / Feynman diagram22 in the presence of background walls
which are not treated as a perturbation. Just as an example, one can easily re-purpose our
expressions to compute the number of particles of a given species produced from collisions
between an expanding bubble and surrounding particles.23 The spontaneous breaking of
Lorentz/translational symmetry in the early universe results in a rich phenomenology that
is only starting to be explored systematically.
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A Wavepackets and asymptotic states

No wall. Let us recall a few things in the usual manifestly translation-invariant case (no
wall background). For clarity, we will first focus on 1+1 dimensions. For a scalar field theory,
the field operator ψ(t, z) is interpreted as creating a particle at position z at time t = 0. The
position space wavefunction of a state is thus given by its inner product with ⟨0|ψ. The
wavefunction of a single particle eigenstate of momentum |k⟩ =

√
2k0a†k|0⟩ is, as expected,

⟨0|ψ(t, z)|k⟩ = e−ikµx
µ
. (A.1)

To derive formulae for observables such as scattering cross sections or emission probabilities
involving realistic particles we have to crucially go through appropriately defined wavepackets
that describe those asymptotic states, taking a limit of sharp momentum only at the end.
A wavepacket state describing a particle with momentum peaked around p and localised
in space is given by

|Ψp⟩ ≡
∫ ∞

−∞

dkz

(2π)
√
2k0

fp(kz)|k⟩ , ⟨Ψp|Ψp⟩ =
∫

dkz

(2π) |fp(k
z)|2 = 1 , (A.2)

where fp(kz) is like a sharp Gaussian in kz peaked at pz. Note there is no spacetime
dependence in this expression (we are always in the Heisenberg picture). The limit to recover
a momentum eigenmode is fp(kz) −→ (2π)3

√
2k0δ(pz − kz). However, the more appropriate

limit used in the derivation of physical rates makes use of the normalisation condition above

|fp(kz)|2 −→ (2π)δ(pz − kz) , (peaked momentum limit) . (A.3)

To see the localisation we can look at the wavefunction of the wavepacket state:

⟨0|ψ(t, z)|Ψp⟩ =
∫ ∞

−∞

dkz

(2π)
√
2k0

fp(kz)e−ikµx
µ
. (A.4)

At t = 0 this is an oscillating function of z (with wavelength controlled by p) with a Gaussian
envelope so that it is indeed localised at z = 0. As a function of time, the wavepacket moves
in the direction of sign(p). Because each mode has a slightly different dispersion relation,
the spatial width of the wavepacket tends to widen in time (dispersion) but this can be
counteracted by making fp(k) a sharper Gaussian, taking an appropriate order of limits.

A.1 Asymptotic states in the wall background

In the presence of the wall we should still define asymptotic particle states as appropriate
wavepackets to compute formulae for physical rates. A slight complication comes from the fact
that the one particle states |kL,R⟩ we quantise are not eigenstates of momentum. Moreover,
in general, the same state describes different types of particles in different regions of space.24

Defining the asymptotic state carefully will get rid of any ambiguity.
24This can be simply because the mass changes or, as in the case of λ(x) in a symmetric to broken transition,

the field interpolates even between particles of different spin.
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We now consider an operator that feels the wall ϕ(t, x⃗) expanded in left and right mover
modes as in eq. (2.13). As before, the action of this on the vacuum should be thought
of as creating a particle localised at xµ = 0. Contracting a state with ⟨0|ϕ still gives the
wavefunction understood in the usual sense. In fact

⟨0|ϕ(t, x⃗)|kI⟩ = e−iknx
n
χI,k(z) , (A.5)

with I = R,L. To gain physical intuition of the one particle states |kI⟩, consider constructing
wavepackets by superimposing exclusively right (left) movers:

|Φin
I,p⟩ ≡

∫ ∞

0,∆m

dkz

(2π)
√
2k0

fp(kz)|kI⟩ , (A.6)

where again we focus on 1+1 dimensions and where the lower limit is 0 (∆m) for R (L) movers
respectively. The ‘in’ labels will become clear shortly. Their wavefunctions are respectively

⟨0|ϕ(t, z)|Φin
I,p⟩ ≡

∫ ∞

0,∆m

dkz

(2π)
√
2k0

fp(kz)e−ik
0tχI,k(z) . (A.7)

Ignoring the slight dispersion mentioned at the end of the previous subsection, the time
evolution of eq. (A.7) for I = R(L) describes an isolated localised wavepacket travelling in
towards the wall from z < 0 (z > 0) when t < 0. This wavemode scatters off the wall and for
t > 0 splits into reflected and transmitted wavemodes travelling in opposite directions. Thus,
|ϕin
R,p⟩ (|ϕin

R,p⟩) is a good asymptotic state for an incoming particle with positive (negative)
z-momentum. It cannot however be used as an asymptotic state for any single outgoing
asymptotic particle since at late times it describes a superposition.

So what about single localised outgoing particles? Clearly, when the wave equation is
reduced to Schrodinger-like form with a real potential, these can be obtained by complex
conjugation of the spacial part of the wavefunction. In other words we require states |Φout

I,p ⟩
such that

⟨0|ϕ(t, z)|Φout
I,p ⟩ ≡

∫ ∞

∆m, 0

dkz

(2π)
√
2k0

fp(kz)e−ik
0tζI,k(z) ,

with ζR,L(z) = χ∗
L,R(z) .

(A.8)

In time, these correspond to two waves coming from opposite sides of the wall, hitting the
wall around t ≈ 0 and interfering in just the right way so that at late time there is only one
wavemode travelling towards z → −∞ or z → ∞ respectively. Notice the swap in labels. We
adopt the convention that the right-mover R (left-mover L) label always denotes a particle
of positive (negative) z-momentum. It is an easy exercise to write the ζR,L in terms of a
linear composition of the complete basis χR,L as explicitly done in eqs. (2.18) and (2.19).
The appropriate wavepacket for an outgoing state is thus

|Φout
I,p ⟩ ≡

∫ ∞

∆m, 0

dkz

(2π)
√
2k0

fp(kz)|kout
I ⟩ , (A.9)

where |kout
I ⟩ are the one-particle states with wavefunctions ζI,k(z) and are related to the |kI⟩ by

|kout
L ⟩ = r∗R,k|kR⟩+ t∗R,k

√
k̃z/kz |kL⟩ Θ(kz −∆m) , (A.10)

|kout
R ⟩ = t∗L,k

√
kz/k̃z |kR⟩+ r∗L,k|kL⟩ , (A.11)
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where the reflection and transmission coefficients were defined in general for scalar d.o.f. in
section 2.1, and given explicit form in the case of a step wall for fundamental scalars also
in section 2.1 and for different vector polarisations in section 3.3.

Reflection and transmission probabilities. As a consistency check, we can compute
reflection and transmission probabilities in this language. Focusing on the identity part
of the S matrix S = 1 +✟✟iT , the amplitude for a particle incoming from z < 0 to reflect
and transmit should be, respectively:

⟨ϕout
L,p|ϕin

R,p⟩ =
∫ ∞

0

dk

2π |fp(k)|
2 rR,k → rR,p , (A.12)

⟨ϕout
R,p|ϕin

R,p⟩ =
∫ ∞

∆m

dk

2π |fp(k)|
2 tL,k

√
k̃z/kz →

tL,p
√
p/p̃ , p > ∆m

0 , p < ∆m
, (A.13)

where the arrow denotes taking the peaked momentum limit eq. (A.3) in the end. So
the relative probability for a peaked-around-p incoming mode to reflect/transmit into a
peaked-around-p outgoing mode is what one could have already guessed

Reflection probability = |⟨ϕout
L,p|ϕin

R,p⟩|2 → |rR,p|2 , (A.14)

Transmission probability = |⟨ϕout
R,p|ϕin

R,p⟩|2 →

|tL,p|2p/p̃ , p > ∆m
0 , p < ∆m

. (A.15)

A.2 Phase space derivation from wavepackets

In this section we will obtain formulae for the averaged momentum exchanged by transition
radiation processes in the background of the wall, deriving eq. (2.29) in the main text. Treating
the incoming particle as a wavepacket as in eq. (A.2), we find the amplitude squared for
splitting into ℓ particles, which may or may not feel the wall. These outgoing states are late-
time eigenstates of momentum, obtained as limits of their own wave-packet forms. We have

|⟨kout
1 . . . kout

ℓ |Φp⟩|2 =
∫
d3p1d

3p2√
4p0

1p
0
2

fp(p1)f∗p (p2)δ(3)
(
p1 −

ℓ
Σ
i=1
ki

)
δ(3)

(
p2 −

ℓ
Σ
j=1

ki

)
|M(3)

1→ℓ|
2

=
∫
d3p1dp

z
2√

4p0
1p

0
2

fp(p1)f∗p (p2)δ(3)
(
p1 −

ℓ
Σ
i=1
ki

)
p0

1
|pz1|

δ (pz1 − pz2) |M
(3)
1→ℓ|

2

=
∫
d3p1
2|pz1|

|fp(p1)|2δ(3)
(
p1 −

ℓ
Σ
i=1
ki

)
|M(3)

1→ℓ|
2

−→ (2π)3

2|pz| δ
(3)
(
p−

ℓ
Σ
i=1
ki

)
|M(3)

1→ℓ|
2 , (A.16)

where the temporary label (3) on M emphasises only three of 4-momentum are conserved.
In the last step, we take the peaked momentum limit of eq. (A.3). For the particular case

– 42 –



J
H
E
P
0
5
(
2
0
2
4
)
2
9
4

of a 1 → 2 process as discussed in this work, we have

⟨∆pzI=R,L⟩ ≡
∫

Pp→qkout
I

∆pzI =
∫

d3k

(2π)32k0

∫
d3q

(2π)32q0 |⟨q k
out
I |Φp⟩|2∆pzI

=
∫

d3kd3q

(2π)38pzk0q0 δ
(3) (p− k − q) |M(3)

I |2∆pzI

=
∫

d3k

(2π)38pzk0|qzk|

[
|M(3)

I |2∆pzI
]
qz=±qz

k

(A.17)

where in going to the last line we have used

δ
(
p0 − k0 − q0

)
= q0

|qzk|
[δ(qz − qzk) + δ(qz + qzk)]

with qzk =
√
(p0 − k0)2 − k2

⊥ −m2
q

(A.18)

Thus, in principle, one should sum contributions from both signs of qz to obtain the full
integrated rate. In practice, the qz < 0 branch will be highly sub-leading at large energies.

Comparison with decay formula. One might wonder how to recover the familiar decay
formula in the limit of no wall. The latter can be derived in terms of the full 4-momentum
conserving matrix element M(4) as

|⟨k1 . . . kℓ|p⟩|2 =
∫
d3p1d

3p2(2π)2√
4p0

1p
0
2

fp(p1)f∗p (p2)δ(4)
(
p1 −

ℓ
Σ
i=1
ki

)
δ(4) (p2 − p2) |M(4)

1→ℓ|
2

=
∫
d3p1(2π)2

2p0
1

|fp(p1)|2δ(4)
(
p1 −

ℓ
Σ
i=1
ki

)
δ (0)︸ ︷︷ ︸
T/2π

|M(4)
1→ℓ|

2

−→ (2π)4

2p0
T δ(4)

(
p−

ℓ
Σ
i=1
ki

)
|M(4)

1→ℓ|
2 , (A.19)

where T is total time (one can only define a decay probability per unit time). We can see
how eq. (A.16) reduces to this result. In the absence of the wall, the matrix element gives

|M(3)
1→ℓ|

2 = 2π Lzδ
(
pz −

ℓ
Σ
i=1

)
|M(4)

1→ℓ|
2 (A.20)

where Lz is the distance traversed in the z direction. Finally, using that Lz = T pz/p0,
eq. (A.16) reduces to eq. (A.19).

B Current conservation in the presence of the wall

In the main text, we have discussed the modifications of the Ward identities in the presence
of the wall and that in general the conserved current coupled to the total derivative must
give zero matrix element,

Jµ∂µf ⇒ ⟨final| Sf |initial⟩ = 0 . (B.1)
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Let us discuss the effects of various choices of the gauge transformation function f . For
example let us consider f = χτ1,2(z), where χτ1,2 are the wave functions for the τ polarisations
(see section 3.2). Then the matrix element will be equal to

Jµ ∝ (p+ q)µ ⇒ M = (p+ q)µkµ
∆p + rτk

(p+ q)µkµr
∆pr

− tτk
(p+ q)µk̃µ

∆p̃ ,

kµr ≡ (km,−kz), k̃µ ≡ (km, k̃z) . (B.2)

We can simplify the amplitude using the following identities:

(p+ q)µkµ = (p+ q)mkm − (p+ q)zkz

km=(p−q)m= (p+ q)m(p− k)m − (p+ q)zkz

= p2
z +m2

ψ − q2
z − m̃2

ψ − (p+ q)zkz

m2
ψ=m̃2

ψ= (p+ q)z(p− q − k)z = (p+ q)z∆p . (B.3)

Performing similar manipulations for all of the terms we get:

M = (p+ q)z(1 + rτk − tτk) = 0 , (B.4)

where we used the fact that 1 + rτk − tτk = 0 for τ polarisations, as expected. Similarly we
can choose f = α(z), of the λ. Then from the eq. (3.45) we can get

α|z<0 = ikz

gvE

(
eik

zz − rλke
−ikzz

)
,

α|z>0 = itλk ×
k̃z

gEṽ
eik̃

zz , (B.5)

where we have used that α = 1
gv2E∂z(vλ) →

1
gEv∂zλ outside of the wall. Using the expression

for reflection and transmission coefficients from eq. (3.47)

rλk = ṽ2kz − v2k̃z

ṽ2kz + v2k̃z
, tλk = 2kzvṽ

ṽ2kz + v2k̃z
, (B.6)

we can compute the amplitude for the processes Jµ → χµλ corresponding to the interaction
Jµχ

µ
λ. The computation goes as follows

M = kz

gEv

(p+ q)µkµ
∆p − kz

Egv
rλk

(p+ q)µkµr
∆pr

− k̃z

gEṽ
tλk
(p+ q)µk̃µ

∆p̃

= (p+ q)z
E

(
kz

gv
− kz

gv
rλk −

k̃z

gṽ
tλk

)
︸ ︷︷ ︸

=0

= 0 , (B.7)

the last expression in brackets is the matching condition for the λ field (eq. (3.44)) which
must be satisfied. Note that terms cancelling each other in the brackets are growing in
energy, which makes crucially important the calculation of exact values of reflection and
transmission coefficients.
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C WKB regime in the case of current non-conservation

In the main text we focus only on the transition radiation from the conserved current. How
we can perform a similar calculation in the case when the current is not conserved? Let us
consider the following example with scalar fields

L = −1
4FµνF

µν + |DµH|2 − V (|H|) + |Dµϕ|2 −m2
ψ|ϕ|2 +

(
κϕ2H + h.c.

)
. (C.1)

The charges under the gauged U(1) symmetry are as follows: QU(1)(H) = 1, QU(1)(ϕ) = −1/2.
In the section 3.5, in order to perform the WKB calculation and get rid of interactions that
can potentially lead to the divergences we have used the current conservation equations to
modify the expression for the matrix elements. In the case of the system in eq. (C.1) the
divergence of the current becomes equal to:

∂µJ
µ
ϕ =

√
2v(z)

(
κ∗ϕ∗2 − κϕ2

)
, Jµϕ = i(ϕ∗∂µϕ− ϕ∂µϕ∗) . (C.2)

The interaction between the λ polarisation and Jµϕ and can be written as follows:

gQϕJ
µ
ϕA

(λ)
µ → Qϕ

[
−
√
2
(
κ∗ϕ∗2 − κϕ2

) 1
Ev(z)∂z (v(z)λ(z))−

g2v(z)
E

λ(z)Jz
]
. (C.3)

We can see that on top of the term λJz present in the conserved current case, there is an
additional interaction. However, this interaction is not growing with energy, and in the
limit v(z) → 0, it is finite (see discussion in the appendix D), thus the calculation of the
vector emission becomes straightforward.

D Properties of the potential for λ field

In the main text we have shown that λ field satisfies the following equation of motion
eq. (3.26)−(3.27) (

−E2 − ∂2
z + Uλ(z)

)
λ = 0 ,

Uλ(z) = g2v2(z) + 2
(
∂zv

v

)2
− ∂2

zv

v
. (D.1)

Let us investigate the properties of the function Uλz .

Broken→ broken. In this case

vz→±∞ ̸= 0 , (D.2)

and the potential has the limits:

Uλ(z)|z→±∞ = g2v2(z → ±∞) , (D.3)

where we have used that v′, v′′ → 0 outside of the wall. Physics wise this result is expected
since λ mode must have the mass of the vector gv outside of the wall.
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Symmetric→broken. Here we will assume

v(z → −∞) = 0 , v(z → ∞) = ṽ ̸= 0 . (D.4)

On the broken side as expected

Uλ(z → ∞) = g2v2(z → ∞) = g2ṽ2 , (D.5)

the potential becomes equal to the mass square of the vector boson. To find its limit on
the symmetric side we need to look at the equation defining v(z):

∂2
zv(z) = V ′(v(z)) , (D.6)

where the prime stands for a derivative with respect to v(z). Integrating this equation we get

1
2 (∂zv(z))2 = V (v(z))− C , (D.7)

where C = −(∂zv(z0))2 + V (v(z0)) is a ‘constant of integration’. We can choose z0 → −∞,
then using v′, v → 0 we get C = V (v(−∞)) = V (0), which need not to be zero. Now we look
at the limits as z → −∞. At this point, using eqs. (D.6) and (D.7) we can write the various
terms of the Uλ function in terms of the potential V and its derivatives V ′:

∂2
zv(z)
v(z) = ∂2

zv

v
= V ′(v)

v
v→0−→ V ′′(0) ,(

∂zv(z)
v(z)

)2
=
(
∂zv

v

)2
= 2V (v)− V (0)

v2
v→0−→ V ′′(0) . (D.8)

However, in the limit z → −∞, v → 0, we know that the first derivative of the potential
V must be equal to zero at this point

∂V

∂v

∣∣∣∣
v→0

= 0 , (D.9)

since there is a local minimum at v = 0. Thus in the region v → 0 we can write down:

V (v)|v→0 = V ′′(0)v2

2 + V (0) ⇒

V ′(v))
v

∣∣∣∣
v→0

= V ′′(0) , 2V (v)− V (0)
v2 = V ′′(0) . (D.10)

Combining these results we can see that

lim
z→−∞

Uλ(z) = V ′′(0) = m2
h,s , (D.11)

where mh,s is the mass of the scalar on the symmetric side. We can see that as was discussed
in the section 3.2 Uλ has the correct properties for a potential of a d.o.f interpolating between
the scalar field and λ polarisation on different sides of the wall.
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E Evaluation of phase space integrals

In this appendix, we provide some details regarding the evaluation of the phase space integrals,
and how to derive analytical expressions. We will always be interested in the limit of large
incoming energy p0 ≫ all masses. The types of integrals we deal with are all of the form

I(p0) =
∫ l1(p0)

const
dk

∫ l2(p0,k)

const′
dk2

⊥ Int(p0, k, k2
⊥) , (E.1)

where the dependence on couplings and masses mi is implicit. When I(p0) admits an
expansion around infinity, this can be obtained in principle straightforwardly as

I(p0) = I(1/x)|x→0 +
d

dx
I(1/x)

∣∣∣∣
x→0

1
p0 + . . . (E.2)

and one can sometimes take this ‘exact’ approach. However, such an expansion does not
always exist,25 or if it does, its coefficients might in practice be difficult to evaluate. Moreover,
in the presence of large mass hierarchies, the regime where eq. (E.2) is actually a good
approximation can begin at arbitrarily high energies.26 One can often successfully use a
different expansion instead, which we call ‘collinear expansion’, of p0, kz ≫ k⊥,mi where mi

stands for all masses. Keeping the leading term, reduces integrands to the form

Int(p0, k, k2
⊥) =

N(k, k⊥,mi)[
(kIR⊥,m)2 + k2

⊥

]2 for p0, kz ≫ k⊥,mi, (E.3)

where

k2
⊥ ≲ (kIR⊥,m)2 ≡

k2
zm

2
ψ − kzm2p0

(p0)2 +m2 > 0 . (E.4)

The function N depends on the contribution in question but we wish to highlight the factor
in denominator. This form makes most manifest the properties of the phase space structure
in particular for τ polarisation (and scalars), most importantly when m (and possibly mψ)
is very small. For a given kz, the integrand is peaked for k2

⊥ ≲ (kIR⊥,m)2. Notice the role of
kIR⊥,m — its presence regulates an otherwise logarithmically IR divergent integral. Indeed the
momentum transfer diverges in the limit of m,mψ → 0. It is easy to prove that kIR⊥,m < kz

for small m, justifying the expansion. When m/mψ is very small, clearly there are two
relativistic regimes, the first given by

p0 ≲ kzmψ/m , (E.5)

where kz should be taken in the dominant region. Typically kz ∼ m̃ for step function
contributions and ∼ L−1

w for WKB. Above this scale instead one reaches the true asymptotic
behaviour where eq. (E.2) is valid.

25For example, in vector emission in symmetry breaking transitions, for m = 0 we find logarithmic growth.
26We saw this for example when there are large scale other than p0 such as m̃mψ/m in plots in the main

text figures 3, 5, 7 and 8.
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E.1 Scalars

Scalar R-mover emission (WKB). We begin with the most dominant contribution
to scalar emission at the highest of energies p0 → ∞. The amplitude is the simplest that
one can encounter,

Mwkb
R =

(
y

i∆p + ỹ

−i∆p̃

)
, (E.6)

and

⟨∆pwkb
R ⟩ =

∫ kzmax

L−1
w

dkz
∫ k2

⊥,cut

0

dk2
⊥
2

|Mwkb
R |2

(2π)28pzqzk0
∆pR . (E.7)

For m ̸= 0, properly evaluating the expansion eq. (E.2) for this case is tricky.27 However,
the collinear expansion eq. (E.3) works extremely well, giving

⟨∆pwkb
R ⟩ ≈ y2∆m4

32π2

∫ kzmax

L−1
w

dkz
∫ k2

⊥,cut

0
dk2

⊥
(kz − p0)2/(p0)4[

(kIR⊥,m)2 + k2
⊥

]2 [
(kIR⊥,m̃)2 + k2

⊥

] , (E.8)

where kIR⊥ is given by eq. (E.4). We see indeed that for large p0 the integrand is relatively
flat in kz while k⊥ is strongly IR dominated as anticipated in the preamble above, justifying
the expansion. The integrals can now be computed exactly and we obtain eq. (2.47). We can
see clearly however that there is also an intermediate regime for small m/mψ characterised
by a plateau:

⟨∆pwkb
R ⟩ ≈


y2m̃2Lw
32π2m2

ψ
, L−1

w ≪ p0 ≲ L−1
w

mψ
m

eq. (2.47) , p0 ≳ L−1
w

mψ
m

, (E.9)

where we remind ourselves that there is no WKB contribution at all unless we can emit modes
greater than the inverse wall length. The value of the plateau is easily obtained by setting
m = 0 at the start and computing the leading order in eq. (E.2). However, in this regime, we
find the step function contributions are more important and we move on there now.

Scalar R and L-mover emission (step wall). The step wall case is an interesting theory
exercise in its own right, since everything can be done exactly. For scalars the contributions are

⟨∆pstep
R ⟩ =

∫ L−1
w

∆m
dkz

∫ k2
⊥,max

0

dk2
⊥
2

|Mstep
R |2

(2π)28pzqzk0
∆pR . (E.10)

⟨∆pstep
L ⟩ =

∫ L−1
w

0
dkz

∫ k2
⊥,max

0

dk2
⊥
2

|Mstep
L |2

(2π)28pzqzk0
∆pL , (E.11)

27The coefficient of the 1/p0 term in eq. (E.2) is the first non-zero contribution as expected from figure 5.
Out of the three terms to evaluate only one is non-zero in the x→ 0 limit. Said limit cannot be taken before
the integral is evaluated however and such a task proves unnecessarily difficult.
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where the matrix elements are given by eqs. (2.25) and (2.26). Evaluating these in the
asymptotic limit we obtain

⟨∆pstep
L ⟩ ≈ y2m̃

32π2m2
ψ

4 , p0 ≲ m̃mψ/m
4m2

ψ∆m
3m̃m2p2

0

[
m2

(
ln m2

m̃2 − 1
)
+ m̃2

]
, p0 ≳ m̃mψ/m

(E.12)

⟨∆pstep
R ⟩ ≈ y2m̃

32π2m2
ψ


1− m̃Lw , p0 ≲ 4 m̃mψ/m
m2
ψ(L−1

w −∆m)
4m̃m2p2

0

[
∆m2 + 2m2 ln

(
m
m̃

)]
, p0 ≳ L−1

w mψ/m
(E.13)

For the R-contribution there is an intermediate regime well approximated by the WKB
asymptotic formula in (2.47), as can be seen from figure 5 (bottom right panel).

E.2 Vectors: τ emission

The three relevant amplitudes are repeated here again

Mstep
τ,L = −igϵµτ2(p+ q)µ

( 1
∆pr

+ rτ,k
∆p + tτ,k

−∆p̃r

)
,

Mstep
τ,R = −ig

√
kz

k̃z
ϵµτ2(p+ q)µ

[
k̃z

kz
tk
∆p − 1

∆p̃ + rk
∆p̃r

]
,

Mwkb
τ = −igϵµτ2(p+ q)µ

( 1
∆pr

+ 1
−∆p̃

)
.

(E.14)

For τ polarisation we can treat both types of transitions of interest at the same time by
interpreting the m, m̃ correctly.

E.3 m ̸= 0 asymptotic p0 regime

We present now the dominant contribution Mstep
τ,L in detail.28 The amplitude squared is

∣∣∣Mstep
τ,L

∣∣∣2 = 16g2k2
zk

2
⊥p

2
0

(k2
z +m2)(k2

z − (pz − qz)2)2


∆m2

∆m2−k2
z+(pz−qz)2 , kz < ∆m

(kz−k̃z)2

(k̃z+pz−qz)2 , kz > ∆m
, (E.15)

where, as usual, we make a distinction between two branches distinguished by k̃ being
imaginary or real. We can explicitly evaluate the leading term in the large p0 expansion
eq. (E.2) for the total momentum exchanged. We report only the first, dominant, branch

⟨∆pτ,step
L ⟩ −→ g2m̃

8π2 F
step
τ,L (r ≡ m̃/m) , kz < ∆m branch , (E.16)

where the dimensionless function defined is

F step
τ,L (r) = 1

(r2 − 1)
{
2
(
π(1 + r)2 − (1 + r2) csc−1[r]

)
ln
[
r −

√
r2 − 1

]
− 2 tan−1

[√
r2 − 1

]
− 4(1 + r)2

(
G−ℑLi2

[
i
(
r +

√
r2 − 1

)])
− 2(r2 − 1)

(
r − 1 +

√
r2 − 1

)
+ 2πr cosh−1[r]

− r2
(
8
√
r2 − 1 coth−1

[
1− 2r√

r2 − 1

]
+ tan−1

[√
r2 − 1

] (
4
√
r2 − 1 + 4 log[r]− 2

))}
.

28Similar asymptotic expressions can be derived for all contributions but we do not believe it useful to fill
the paper with multiple complicated formulae. We deem the total fitted formulae in the main text of more
practical use given the overall uncertainties in the physics of FOPTs in the early universe.
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Figure 10. Analytically derived exact formulae for the exchanged momentum in the asymptotic
limit p0 → ∞ from the emission of λ polarisations. Dashed lines correspond to the small m̃Lw
approximations reported in eq. (E.24). The sum of the two different contributions is roughly constant.

G ≈ 0.916 is Catalan’s constant and ℑ stands for imaginary part. We caution the reader
that, while the analytical evaluation of integrals is a fun endeavour, we believe that, at least
at the present time, the numerical fits presented in the main text are more useful.

E.4 The m → 0 regime

The inter-relativistic regime of growth ∝ log (p0) discussed in the main text when m/mψ ≪ 1
can be found analytically by simply setting m = 0, keeping mψ ̸= 0, and using the collinear
expansion eq. (E.3) to evaluate the phase space integrals. We obtain

⟨∆pτ,step
L ⟩ ≃ g2m̃

2π2

(
1 + 2 ln

(
p0
mψ

))
, (E.17)

⟨∆pτ,step
R ⟩ ≃ g2m̃

1800π2

[
526− 900G− 195π + 480 ln

(√
2p0
mψ

)]

+ g2m̃2Lw
8π2

[
3− 2 ln

(
m̃Lwp0
mψ

)]
+O

(
(m̃L)2

)
, (E.18)

⟨∆pτ,wkb
R ⟩ ≃ g2m̃2Lw

8π2

[
2 ln

(
m̃Lwp0
mψ

)
− 3

]
, (E.19)

where G ≈ 0.916 is Catalan’s constant. The total contribution is dominated by L emission
and then scales like

⟨∆pτ, tot⟩ ≃ ⟨∆pτ, step
L ⟩ ≃ g2m̃

2π2

(
1 + 2 ln

(
p0
mψ

))
. (E.20)

We remind the reader that these are the results for the single vector emission, to the expression
above cannot be trusted for the large values of the log.
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E.5 Vectors: λ emission

We report again the relevant amplitudes here with general v ̸= 0:

Mstep
λ,L = −i g

E
(pz + qz)

[
gv

(
1

∆pr
+ rλk

∆p

)
− gṽ

tλk
∆p̃r

]
, (E.21)

Mstep
λ,R = −i g

E
(pz + qz)

√
kz

k̃z

[
gv
k̃z

kz
tλk
∆p − gṽ

(
1
∆p̃ − rλk

∆p̃r

)]
, (E.22)

Mwkb red.
λ = −i g

E
(pz + qz)

[
gv

∆p − gṽ

∆p̃

]
. (E.23)

Unlike the case of τ we must consider the two transitions of interest separately.

Symmetric to broken (v = 0). The symmetric side mass of the λ degree of freedom is
mh,s − the mass of the Higgs in that phase. We find however that taking mh,s = 0 incurs
an error which is at most ∼ 10% when mh,s ∼ few × m̃. One can rigorously prove that
in the limit p0 → ∞ we have

⟨∆pλ,step
R ⟩ −→ g4ṽ2

8π2m̃
F step
λ,R (m̃Lw) (E.24)

= g4ṽ2

8π2m̃
[2 + 4G− π + m̃Lw (2 ln(m̃Lw)− 2 ln(2)− 1)] +O

(
(m̃Lw)3

)
,

⟨∆pλ,wkb
R ⟩ −→ g4ṽ2

8π2m̃

[
tan−1

(
m̃Lw√

1− m̃2L2
w

)
− m̃L ln

(
1−

√
1− m̃2L2

w

)]
, (E.25)

where G ≈ 0.916 is Catalan’s constant. F step
λ,R has a closed form in terms of (hyperbolic) trig

functions and the dilogarithm, but we have deemed it more useful to explicitly report only
its small m̃Lw limit — an excellent approximation, as can be seen in figure 10. There we
also see that the sum of the two contributions is roughly constant, giving

⟨∆pλ,total⟩ ≈ ⟨∆pλ,step
R ⟩+ ⟨∆pλ,wkb

R ⟩ ≃ g4v2

8π2m̃
[2 + 4G− π − m̃Lw ln(2)] , (E.26)

to leading orders in m̃Lw. A more accurate expression when m̃Lw ∼ 1 is eq. (E.25).

F Pressure in the EW phase transition

In this work, we computed the pressure in the context of an Abelian toy model, where the U(1)
gauge boson was emitted by a complex scalar. Emission from fermions will not significantly
change our result per degree of freedom. Moreover, the emission can be straightforwardly
expanded to the non-Abelian case.

For the SM case, the pressure at 1 → 2 level originates from the vertices inducing
ψ → Zψ (where the first particle in the final state is soft and ψ is some fermion of the SM),
ψ →W±ψ for the gauge bosons emitted from fermions H →W±H, H → ZH for the gauge
bosons emitted from the Higgs and A→ WW,W → WA, Z → WW,W → WZ,W → ZW

for gauge bosons emitting gauge bosons. The careful counting of all the processes involved in
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the pressure was presented in appendix C of [45]. This leads to a final pressure of the form

PSM,1→2 ≈ 157× αemMZ
4γwζ(3)T 3

π

[
0.135 log

(
ṽ

T
+ 2.26

)

− 0.085− 0.2
log

(
ṽ
T + 2.26

)
ṽ/T

+ 0.19
ṽ/T

]
, (F.1)

where every contribution is normalised to the fine structure constant αem and the Z boson
mass MZ in the broken phase. We caution the reader that this expression is still an estimate
and may incur future revision, for example, from a better understanding of finite temperature
corrections — see section 4.2.

G Sensitivity to wall width

In this work we separated the phase space of particles according to when the step wall and
WKB approximations are justified

• kz < L−1
w , Step wall

• kz > L−1
w , WKB

where Lw is the width of the wall. However, this is a somewhat arbitrary quantity, significant
up to some order 1 factor. Although we have discussed the sensitivity of our results to Lw
in several places, we summarise it in this dedicated appendix.

We study numerically how pressure changes with wall width. For scalars, the dominant
contribution comes from the WKB regime and dependence on Lw vanishes, as can be seen in
explicitly by the analytical formulae eqs. (2.47) and (E.12). The results for vector emission
are highlighted in figure 11. The left and right columns show left and right mover emission
respectively, while top and lower panels correspond to τ and λ polarisations. The first thing
to notice is that ⟨∆pτ, step

L ⟩, which is the dominant contribution for super-cooled symmetric
to broken transitions is largely insensitive to Lw. Secondly, ⟨∆pλ, step

R ⟩ and ⟨∆pλ,wkb
R ⟩ show

almost linear dependence around Lw ∼ few m̃ but their sum is largely constant. This point
was made also in figure 10 using analytical asymptotic formulae. Instead, ⟨∆pλ, step

L ⟩, which
exists only in broken to broken transitions is linearly dependent on the cut-off (see eq. (4.17)).

H The suppressed region ∆pzLw ≫ 1: the Fourier constraint

In section 2.6 and afterward, we stated that in WKB approximation the region ∆pzLw ≫ 1
should have a very suppressed contribution to the pressure. In this appendix, we bring some
arguments to this claim (see also appendix B.1 of [66] and section V of [63] for previous
discussion). The function that we have to study is typically the following integral

M ≈
∫ ∞

−∞
dzV (z)ei

∫ z
−∞ ∆pz(z′)dz′

, (H.1)

where far from the wall both ∆p(z) and V (z) are constant. In this case, we can always
absorb V (z) = V0 exp[

∫ z
0 (V ′/V )dz] inside the exponent (redefining ∆p) and thus we can
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Figure 11. Dependence of various contributions to average momentum transfer, due to the emission
of a vector boson, on the inverse wall width L−1

w in the limit p0 → ∞. Top (Bottom) panels refer to τ
(λ) emission, while left (right) column refers to L (R) emission. In this limit, any dependence on the
mass of the emitter (mψ) vanishes.

focus only on the integrals where V (z) = V0

M ≈ V0

∫ ∞

−∞
dzei

∫ z
0 ∆pz(z′)dz′ . (H.2)

In general, these integrals must be evaluated numerically for various wall shapes. However,
for particular choices like

∆pz(z) = ∆pz +
ϵ

2 tanh z/Lw, (H.3)

we can evaluate the integrals analytically. In eq. (H.3), ϵ parameterises the change of the
phase across the wall. This leads to

M = V0

∫ ∞

−∞
dz exp [i∆pzz + iϵf(z)] , (H.4)

f(z) = Lw
2 log cosh z

Lw
, (H.5)

and give finally

|M|2 = πϵLw|V0|2

2∆p2
z − ϵ2/2 × sinh (πϵLw/2)

sinh (π(∆pz − ϵ/2)Lw/2) sinh (π(∆pz + ϵ/2)Lw/2)
(H.6)

≈ πϵLw|V0|2

2∆p2
z

× sinh (πϵLw/2)
sinh2 (π∆pzLw/2)

. (H.7)
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For ϵLw ≲ 1,∆pzLw ≫ 1, we obtain

|M|2 ≈ πϵLw|V0|2

4∆p2
z

× πϵLwe
−π∆pzLw = (πϵLw)2|V0|2

4∆p2
z

× e−π∆pzLw (H.8)

which shows that |M|2 ∝ e−π∆pzLw and then decay exponentially with ∆pzLw ≫ 1. We have
also checked numerically the behaviour of the amplitude for other wall shapes, with a similar
behaviour (for example Erf function) and always find exponential suppression.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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