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A B S T R A C T 

We re-examine the contentious question of constraints on anisotropic expansion from Type Ia supernovae (SNIa) in the light 
of a no v el determination of peculiar velocities, which are crucial to test isotropy with SNe out to distances ∼< 

200 h 

−1 Mpc. 
We re-analyse the Joint Light-Curve Analysis (JLA) Supernovae (SNe) data, improving on previous treatments of peculiar 
velocity corrections and their uncertainties (both statistical and systematic) by adopting state-of-the-art flow models constrained 

independently via the 2M ++ galaxy redshift compilation. We also introduce a no v el procedure to account for colour-based 

selection effects, and adjust the redshift of low- z SNe self-consistently in the light of our impro v ed peculiar v elocity model. We 
adopt the Bayesian hierarchical model BAHAMAS to constrain a dipole in the distance modulus in the context of the Lambda 
cold dark matter ( � CDM) model and the deceleration parameter in a phenomenological Cosmographic expansion. We do not 
find any evidence for anisotropic expansion, and place a tight upper bound on the amplitude of a dipole, | D μ| < 5.93 × 10 

−4 

(95 per cent credible interval) in a � CDM setting, and | D q 0 | < 6 . 29 × 10 

−2 in the Cosmographic expansion approach. Using 

Bayesian model comparison, we obtain posterior odds in excess of 900:1 (640:1) against a constant-in-redshift dipole for � CDM 

(the Cosmographic expansion). In the isotropic case, an accelerating universe is fa v oured with odds of ∼1100:1 with respect to 

a decelerating one. 

Key words: methods: statistical – supernovae: general – cosmological parameters – cosmology: observations – dark energy. 
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 I N T RO D U C T I O N  

 fundamental assumption underpinning the cosmological concor- 
ance model is the cosmological principle, namely that the universe 
s homogeneous and isotropic on sufficiently large scales. Given 
he ubiquity of the cosmological principle, an observational test of 
his assumption is an important step towards validating our best 
escription of the large-scale universe. Testing of homogeneity is 
ampered by the need of surv e ying e xtremely large scales (see
aartens 2011 ), although recent studies have found the transition 

o homogeneity at high ( z ∼ 2) redshift consistent with expectations 
rom the Lambda cold dark matter ( � CDM) cosmological concor- 
ance model (Gon c ¸alves et al. 2018 , 2021 ). 

The assumption of isotropy has been tested o v er a range of redshifts
nd with many different probes, from the relatively local universe 
ut to the redshift of recombination. Analyses of Cosmic Microwave 
ackground (CMB) anisotropies data obtained by the Wilkinson Mi- 
row ave Anisotrop y Probe (WMAP) and the Planck satellite found 
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p to ∼3 σ evidence of breaches of statistical isotropy in the form
f power asymmetry between hemispheres, multipole alignments, 
nomalous clustering of directions, although the significance of 
hese results is difficult to assess, partially because of issues of a
osteriori testing (Bennett et al. 2013 ; Akrami et al. 2014 ; Planck
ollaboration XVI 2016 ; Schwarz et al. 2016 ). Quasar polarization
irections also appear to be aligned along anomalous directions in the
MB (Hutsem ́ekers et al. 2005 ) and with coherence scales in excess
f 500 Mpc (Hutsem ́ekers et al. 2014 ), in potential disagreement with
he cosmological principle. Investigating the distribution of galaxies 
n large scales, Sarkar, P ande y & Khatri ( 2019 ) found ho we ver good
greement between the predictions of � CDM and the Sloan Digital
ky Survey data, with a transition to isotropy observ ed be yond a
ength-scale of 200 h −1 Mpc (where h is the dimensionless Hubble-
ema ̂ ıtre parameter). More recently, Secrest et al. ( 2020 ) reported a
ne-sided 4.9 σ rejection of the hypothesis that the dipole in a sample
f 1.3 million quasars is purely due to our motion with respect to the
MB. 
Supernovae Type Ia (SNIa) can be used to test the second

xpression of the cosmological principle, namely that the expansion 
f the universe is isotropic. SNIa are a sub-class of supernovae (SNe),
is is an Open Access article distributed under the terms of the Creative 
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esulting from the thermonuclear explosion of CO white dwarfs
ccreting mass near the Chandrasekhar limit, whose spectra exhibit
o hydrogen lines but strong silicon lines. A series of corrections can
e applied to account for correlations of absolute peak magnitude
ith their light curve decline rate and colour. The correlation with

ight curve decline rate were first observed by Rust ( 1974 ) and further
orroborated later by Pskovskii ( 1977 , 1984 ) and Phillips ( 1993 )
sing larger samples of SNe type Ia. Later a correlation with colour
as also observed and it was noticed that brighter SNIa had a bluer

olour (Hamuy et al. 1995 ; Riess, Press & Kirshner 1996 ; Perlmutter
t al. 1997 ). Empirical corrections that account for correlations of
bsolute peak magnitude with their decline time and colour can
hen be applied to standardize the SNIa data (Tripp 1998 ; Phillips
t al. 1999 ). Light curves of SNe type Ia can be standardized so that
he residual scatter of their peak B -band magnitude is sufficiently
mall ( ∼0.1 mag) to infer cosmological parameters, as was first
emonstrated by Riess et al. ( 1998 ) and Perlmutter et al. ( 1999 ). SNe
ype Ia observations can also be used to test the hypothesis of isotropy
n the expansion of the universe underpinning the Friedemann–
ema ̂ ıtre–Robertson–Walker (FLRW) metric of the concordance
osmological model, which exhibits an isotropic scale factor a ( t ).
o this end, various authors have analysed increasingly large SNIa
ompilations with different statistical approaches, often with sharply
iscordant results. 
After early works (Kolatt & Lahav 2001 ; Schwarz & Weinhorst

007 ; Gupta, Saini & Laskar 2008 ), Cooke & Lynden-Bell ( 2010 )
nalysed a subset of 250 SNIa from the Union compilation (Kowalski
t al. 2008 ) with z > 0.2 with a maximum likelihood approach to
onstrain a dipolar modulation to the luminosity distance, finding
o significant deviation from isotropy. However, Cai & Tuo ( 2012 )
laimed that the deceleration parameter shows a preferred direction
n the Union2 (Amanullah et al. 2010 ) compilation of 557 SNIa, a
esult corroborated by the analysis of Antoniou & Perivolaropoulos
 2010 ), who combined SNIa data with other cosmological probes.
im ́enez, Salzano & Lazkoz ( 2015 ) analysed the same Union2 data,
dditionally including the SNLS3 data, and showed that previous
laims of anisotropy disappear if one accounts for correlations among
he observations by including the full data covariance matrix in the
nalysis. Other null results of anisotropic expansion include Heneka,
arra & Amendola ( 2014 ) and Lin et al. ( 2016a ), who investigated

he Joint Light-curve Analysis (JLA) compilation (Betoule et al.
014 ) of 740 SNIa [see also Sun & Wang ( 2019 ), who obtain
iscrepant results from three different compilations of SNIa namely
nion 2.1, JLA and Constitution (Hicken et al. 2009 )]. Similarly
ndrade et al. ( 2018a ), find the JLA data prefers isotropy, with the

esults being inconclusive on the Union2.1 data. Javanmardi et al.
 2015 ) ho we ver, find that the null hypothesis of isotropy cannot be
ejected unless ones specifically takes into account its alignment with
he dipole of the Cosmic Microwave Background (CMB), in which
ase the null hypothesis can be rejected at a level ranging from 95
o 99 per cent confidence. An important distinction between these
ata sets is that Union2/2.1 and Constitution have no corrections for
he peculiar velocities of the SNe host galaxies, whereas JLA does.
ernal, C ́ardenas & Motta ( 2017 ) found from Union2 and LOSS
ata potential differences between hemispheres in the isotropy of the
eceleration parameter. 
The situation becomes more confused when considering the largest

NIa compilation to date, Pantheon, encompassing 1048 objects in
he redshift range 0.01 < z < 2.3 (Scolnic et al. 2018b ). A major
urdle to any re-analysis that uses Pantheon is the lack of a publicly
vailable full correlation matrix for its SNIa light-curve standard-
zation coefficients, which hampers a principled statistical approach.
NRAS 514, 139–163 (2022) 
e vertheless, se veral papers have attempted to use P antheon-deriv ed
easurements of the distance modulus as a function of redshift to

nvestigate potential deviations from an isotropic expansion, finding
sotropy is still fa v oured (Andrade et al. 2018b ; Sun & Wang 2018b ;
oltis et al. 2019 ; Zhao, Zhou & Chang 2019 ). 
Despite the existence of substantially larger compilations like

antheon, the JLA remains a useful data set for analyses of this
ind, because all the necessary statistical and systematics covariance
atrixes are publicly available, unlike e.g. the Pantheon set. Recently,
olin et al. ( 2019b ) (henceforth C19) claimed 3.9 σ evidence for a
ipole in the deceleration parameter from a maximum likelihood
nalysis of JLA data, leading to a lack of statistical evidence for
cceleration in the expansion. The claim was disputed by Rubin &
eitlauf ( 2020 ) (henceforth, RH20), who pointed out the incorrect
se of heliocentric redshifts in C19 and other technical assumptions
bout selection effects which, when corrected, remo v e the preference
or a dipole and restore the high significance for an accelerated
xpansion [see also the discussion in Rubin & Hayden ( 2016 ), itself
 rebuttal of Nielsen, Guffanti & Sarkar ( 2016 ).] A further reply by
olin et al. ( 2019a ) appears to concede some technical points, but
ot the o v erall conclusion on the actual lack of statistical significance
or an accelerated expansion. 

The aim of this work is to clarify the status of claims for a
tatistically significant dipole in the accelerated expansion of the
niverse, especially in light of the ongoing controversy. In so doing,
e also revisit the important question of the level of statistical

vidence in fa v our of the accelerated expansion in an isotropic
niverse from SNIa data alone. We address the criticisms of the
ublished JLA data made by C19, who claimed that the peculiar
elocity corrections made to the JLA SNIa data based on local bulk
ows are incorrect. In this paper, we introduce a state-of-the-art

reatment of peculiar velocities, which are independently constrained
sing the 2M ++ galaxy catalogue (Lavaux & Hudson 2011 ; Boruah,
udson & Lav aux 2020 , 2021 ), re-deri ve correlated peculiar velocity
ncertainties (both statistical and systematic) from a fully consistent
ow model, and upgrade the Bayesian hierarchical model BAHAMAS
hariff et al. ( 2016 ) to include an new treatment of residual colour-
ased selection effects in SNIa data. 
The remaining of this paper is structured as follows: Section 2 in-

roduces the cosmological model, the anisotropy model, our Bayesian
ramework, the data used, our new peculiar velocities treatment
nd our new colour-based selection effects correction. Section 3
emonstrates the performance of our method on simulated data. Our
esults from the JLA data, both in terms of parameter inference
nd Bayesian model comparison, are presented in Section 4 . Our
onclusions are given in Section 5 . 

 M E T H O D O L O G Y  A N D  DATA  

.1 Cosmological model and dipole modulation 

e investigate the isotropy of the expansion in both a model-
pecific and a model-independent way: first, we consider the � CDM
odel for the underlying cosmology; secondly, we use the so-called

Cosmographic expansion’ (i.e. a Taylor expansion of the scale factor
s a function in time) as a model-independent description of the
nderlying matter-energy density of the universe. 
The � CDM model has cosmological parameters P 1 =

 �m 

, �� 

, H 0 } , where �m and �� 

are the density parameters of
atter (both baryonic and dark) and cosmological constant, � ,

espectively, in units of the critical energy density; H 0 is the Hubble–
ema ̂ ıtre constant (which we fix to H 0 = 72 km s −1 Mpc −1 , as it is
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 xactly de generate with the SNIa intrinsic magnitude). The curvature 
arameter �κ is given by 

κ = 1 − �m 

− �� 

(1) 

nd we assume a universe with constant dark energy equation of
tate, w( z) = −1. We denote by z̄ the redshift of a comoving galaxy
een by an observer who is also at rest w.r.t. to the CMB restframe
i.e. the ‘cosmological’ redshift, with no peculiar velocities from 

ither the source or the observer) and by z hel the redshift for an
bserver in the Sun’s frame of reference. 1 The measured redshift in 
ur heliocentric frame of reference is given by ̂  z hel , and it differs from
 hel by measurement noise. The redshift in our heliocentric frame of
eference, z hel , differs from the redshift of a como ving observ er, z̄ ,
y virtue of peculiar velocities of the source and the observer, and
ravitational red/blueshifts due to the local gravitational potential at 
he location of the source and observer. In the following, we neglect
ravitational effects, which are subdominant (see ho we ver Calcino 
 Davis 2017 ) and focus instead on the impact of peculiar velocities.
The relationship between heliocentric redshift, z hel , and the red- 

hift of a comoving galaxy as seen by an observer at rest w.r.t. the
MB, z̄ is given by 

1 + z hel ) = (1 + z CMB ) 
(
1 + z �pec 

)
(2) 

1 + z CMB ) = (1 + ̄z ) 
(
1 + z SN 

pec 

)
, (3) 

here z �pec is the redshift induced by the peculiar velocity of the Solar
ystem w.r.t. the CMB rest frame, while z SN 

pec is the redshift caused by
he peculiar velocity of the SNIa w.r.t. the CMB frame. The second
quality introduces the redshift in the CMB rest frame, z CMB , i.e.
he frame in which our motion w.r.t. the CMB has been remo v ed. 2 

ith the abo v e definitions, we can write the luminosity distance to
edshift z̄ , as (Davis et al. 2011 ) 

 L 

(
z̄ , z �pec , z 

SN 
pec , P 1 

) = 

c 

H 0 

(1 + ̄z ) 
(
1 + z �pec 

)(
1 + z SN 

pec 

)2 

√ | �κ | 

× sinn 

{√ 

| �κ | 
∫ z̄ 

0 

dz 

E( z) 

}
. (4) 

 ( z) depends on our choice of cosmology and for the � CDM
niverse, is given by 

 

2 ( z) = �M 

(1 + z) 3 + �� 

+ �κ (1 + z) 2 . (5) 

he sinn( x ) function is defined as 

inn ( x) = 

⎧ ⎨ 

⎩ 

x if �κ = 0 
sin ( x) if �κ < 0 
sinh ( x) if �κ > 0 

. (6) 

In our model-independent approach, we follow Visser ( 2004 ) and 
aylor-expand the scale factor of the FLRW metric up to third order
 We neglect the distinction between geocentric and heliocentric frames of 
eferences (the difference due to the ∼30 km s −1 orbital speed of the Earth is 
f order �z ∼ 10 −5 ), since redshift measurements are routinely reported in 
he heliocentric frame and also already corrected for atmospheric refraction. 
 A source of confusion in the literature is the widespread use of the term 

CMB rest frame’ to denote what we call z̄ (i.e. the cosmological redshift, 
ith no peculiar motions from either source nor observer). This misleading 
omenclature is for example used by Betoule et al. ( 2014 ), as well as in the 
ata products of the JLA data release. 

c

w
m

μ

w  

l
a  

q

q

n time around t 0 (today), as 

( t) = a 0 

{
1 + H 0 ( t − t 0 ) − 1 

2 
q 0 H 

2 
0 ( t − t 0 ) 

2 + 

1 

3! 
j 0 H 

3 
0 ( t − t 0 ) 

3 

+ O([ t − t 0 ] 
4 ) 

}
, (7) 

here q 0 is the dimensionless deceleration parameter, defined as 

 0 = − 1 

a 

d 2 a 

d t 2 

[
1 

a 

d a 

d t 

]−2 

t= t 0 

(8) 

nd j 0 is the so-called ‘jerk’, 

 0 = + 

1 

a 

d 3 a 

d t 3 

[
1 

a 

d a 

d t 

]−3 

t= t 0 

, (9) 

hich is also dimensionless. This model-independent expansion only 
elies on the FLRW metric but makes no assumption about the
nderlying matter-energy density, and leads to the following form 

f the luminosity distance at redshift z̄ : 

 L 

(
z̄ , z �pec , z 

SN 
pec , P 2 

) = 

(
1 + z �pec 

)(
1 + z SN 

pec 

)2 

1 + ̄z 

c ̄z 

H 0 

[
1 + 

1 

2 
(1 − q 0 ) ̄z 

− 1 

6 
(1 − q 0 − 3 q 2 0 + j 0 − �κ ) ̄z 2 + O( ̄z 3 ) 

]
,

(10

here c is the speed of light and the model-independent parameters
re P 2 = { H 0 , q 0 , j 0 , �κ} . From expressions ( 4 ) or ( 10 ), we obtain
he isotropic distance modulus, μI , using the standard formula 

I 

(
z̄ , z �pec , z 

SN 
pec , P a 

) = 25 + 5 log 10 

d L 
(
z̄ , z �pec , z 

SN 
pec , P a 

)
1 Mpc 

, (11) 

here a = 1, 2 depending on the chosen parametrization. 
There are several different ways one can parametrize the possibility 

f anisotropic expansion, depending on the underlying physical 
rigin for the effect. A spherical harmonics expansion introduces, 
o lowest order, a dipolar modulation in the direction of a SNIa
ituated at redshift z̄ and in direction n SN in the sky, with n SN a unit
ector pointing from the centre of the coordinate system (the Earth)
o the location of the SNIa on the celestial sphere. Different authors
ave taken different approaches in the literature, with no consensus 
s to which quantity should be modulated: one could expand the
cale factor a ( t ), the luminosity distance, the comoving distance,
he Hubble parameter, the matter density, the cosmological constant 
ensity, or the distance modulus. Each of these possibilities leads 
o a different anisotropic imprint on to the Hubble–Lema ̂ ıtre law.
 dipole moment that is constant with distance, r , in the peculiar
elocity field (i.e. a bulk flow) leads to 

 ̄z ≈ H 0 r + D v ( n dip · n SN ) . (12) 

y contrast, a constant dipole in either H 0 or r leads to 

 ̄z ≈ H 0 r + H 0 D H 

r( n dip · n SN ) , (13) 

hich increases linearly with distance. Another possibility is to 
odulate the distance modulus directly: 

= μI ( ̄z , z hel , P a ) 
(
1 + D μF ( ̄z )( n dip · n SN ) 

)
, (14) 

here F ( z) is a function of redshift alone which can be used to
ocalize the dipole at a given length-scale. Yet another approach, 
dopted by C19, is to model the dipole on the deceleration parameter,
 0 , in a Cosmographic expansion: 

 0 ( z) = q m 

+ D q F ( ̄z )( n dip · n SN ) . (15) 
MNRAS 514, 139–163 (2022) 
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n this paper, we add the dipole to either the distance modulus,
quation ( 14 ), or to the deceleration parameter, equation ( 15 ),
nd consider both F ( z) = 1 and, following C19, an exponentially
ecaying function of redshift with characteristic scale given by the
ree parameter S , namely F ( z) = exp ( −z/ S ). These two forms have
he effect of either creating a dipole that is constant in redshift or
onstrained to a local scale which could arise for reasons such as
xisting within a cosmic void. 

As noted in previous works, a phenomenological approach as the
ne taken here that perturbs an underlying FLRW metric may not
e entirely consistent. An alternative route would require specifying
 physical model for the anisotropy, and then derive the ensuing
redictions for the distance modulus and compare those with obser-
ations, as done for example in the context of an ellipsoidal universe
rom Bianchi type I models (Campanelli et al. 2011 ). Ho we ver, the
dvantage of a purely phenomenological approach is that it remains
gnostic about the underlying cause of any anisotropy, and it provides
onstraints on the level of anisotropy that can then be applied to other
odels. 

.2 Bayesian Hierarchical Model 

n this paper, we impro v e on previous works constraining anisotropy
rom SNe data by adopting a fully Bayesian hierarchical model
BHM) for the statistical analysis of SNIa data, called BAHAMAS .
Hierarchical’ here refers to the existence, within the model, of a
ayer of unobserved (so-called ‘latent’) variables for each SNIa,
orresponding to the true value of their light curv e-deriv ed properties
as opposed to the noisy measured value). The latent variables are
arginalized o v er in the inference, and are constrained in virtue

f the fact that they are all generated from the same underlying
opulation distribution, which is modelled with a set of hyperpa-
ameters, themselves determined from the data. This approach has
een shown to have better coverage statistics overall than the χ2 

ethod traditionally employed, and leads to a reduction of mean
quared errors for the reco v ered cosmological parameters by a factor
f ∼2–3 when deployed on simulated data (March et al. 2011 ; Shariff
t al. 2016 ). Furthermore, the BAHAMAS framework can be used for
rincipled Bayesian model comparison of the kind we perform in
ection 4.2 , as it correctly marginalizes out all nuisance parameters.
y contrast, the heuristic χ2 approach traditionally adopted is an
pproximation to the BAHAMAS likelihood, and cannot be used to
ompute Bayes factors or for formal Bayesian model comparison. 

The Bayesian methodology pioneered in March et al. ( 2011 )
as been adopted and extended in several other papers, including
.g. UNITY (Rubin et al. 2015 ), STEVE (Hinton et al. 2018 ), and
imple-BayeSN (Mandel et al. 2017 ). (See also Nielsen et al. ( 2016 )
or a profile likelihood interpretation.) Here, we briefly summarize
ur Bayesian Hierarchical model, which builds on BAHAMAS , refer-
ing the reader to March et al. ( 2011 ) and Shariff et al. ( 2016 ) for
uller details. 

We denote with a hat symbol observed quantities, in order to
istinguish them from the latent (i.e. unobserved) variables in our
odel. For each SNIa i , the data d i can be summarized by a vector 

 i = { ̂ z hel ,i , ̂  c i , ̂  x 1 i , ˆ m B i , 
ˆ 	 C,i } , (16) 

here ̂  z hel ,i is the observed heliocentric redshift, ˆ m B i is the observed
eak B -band apparent magnitude, ˆ x 1 i and ˆ c i are observed ‘stretch’
nd ‘colour’ corrections, which are summary statistics of the light
urve of the SNIa obtained with the light curve fitter SALT2 (Guy
t al. 2005 , 2007 ) during the standardization procedure. Furthermore,
ˆ 
 C,i = Cov ( ̂ c i , ̂  x 1 i , ˆ m B i ) is a 3 × 3 v ariance-cov ariance matrix that
NRAS 514, 139–163 (2022) 
escribes the measurement error on the observables. On the standard
eviation scale, the measurement error for redshift for SNIa with
pectroscopic follow-up is σ sp SN 

z ∼ 5 × 10 −3 when the redshift is
etermined from the SNIa spectrum alone, and σ sp host 

z ∼ 5 × 10 −4 

hen it is obtained from host-galaxy spectra (Zheng et al. 2008 ).
he redshift measurements are independent from each other and

rom all other observables. We discuss this uncertainty further in
ection 2.6 . (See also Calcino & Davis ( 2017 ) for the potentially

mportant impact of systematic redshift errors as small as �z ∼
0 −4 .) 
In BAHAMAS , we introduce latent variables for each SNIa in

rder to model each source of uncertainty according to its ori-
in: measurement error , population scatter , and intrinsic (residual)
ariability. A probabilistic hierarchical model is built as follows:
ach SNIa has latent variables M 

ε
i , x 1 i , and c i , representing the

bjects’ ‘true’ (i.e. noiseless) absolute magnitude, stretch correction,
nd colour correction, respectively. These latent variables follow
ormal distributions, representing population variability of the SNe
nd parametrized by their means and variances: 

 1 i ∼ N 

(
x 1 � , R 

2 
x 1 

)
, (17) 

 i ∼ N 

(
c � , R 

2 
c 

)
, (18) 

 

ε
i ∼ N 

(
M 

ε
0 , σ

2 
res 

)
, (19) 

here x 1 � , c � , and M 

ε
0 are the population means and R 

2 
x 1 

, R 

2 
c , and σ 2 

res 

re the population variances, all of which are also estimated from
he data. We collect the population-level parameters in a vector of
ariables ϑ ≡ { x 1 � , c � , M 

ε
0 , R 

2 
x 1 

, R 

2 
c , σ

2 
res } . The intrinsic magnitude

f each SNIa M i , is modified by applying the linear ‘Tripp relation’
Tripp 1998 ), so that M i → M 

ε
i ≡ M i + αx 1 i − βc i , where α and

are nuisance parameters that control the slope of the stretch and
olour correction, respectively. Therefore, M 

ε
i is a linear function

f M i that features a lower population variance, represented by
2 
res . In astrophysical parlance, M 

ε
i is referred to as ‘the corrected

ntrinsic magnitude’ of the SNIa. Thanks to the standardization
rocedure, the residual standard deviation of the SNe type Ia’s
orrected intrinsic magnitude can be sufficiently reduced so that
hey can be used as luminosity distance indicators. Shariff et al.
 2016 ) used the BAHAMAS model to determine the residual standard
eviation of the corrected intrinsic magnitude, finding (from JLA
ata) a value σ res ∼0.104 ± 0.005, similar to (if somewhat smaller
han) the value obtained with a χ2 method by Betoule et al. ( 2014 ).
t the latent level, the apparent peak magnitude m Bi is related to

he standardized intrinsic magnitude M 

ε
i via the isotropic distance

odulus of equation ( 11 ): 

 Bi = μI ( z hel ,i , ̄z , i , P a ) − αx 1 i + βc i + M 

ε
i . (20) 

inally, the observed values of { ̂  m B i , ̂  x 1 i , ̂  c i } are modelled as nor-
ally distributed around their latent values, with variance-covariance
atrix given by ˆ 	 C,i . Additionally, a systematic errors covariance
atrix that correlates different SNIe (for example, because of

alibration uncertainties common between SNIe within the same
urv e y) is included when available. Inference is based on the
arginal distribution of the quantities of interest, P a , which includes

ncertainty at all levels of the hierarchy. 
It has become common practice to split the SNe into two groups,

ased on their host-galaxy stellar mass (Sulli v an et al. 2010 ), with
he mass threshold between the two groups being around value of
og 10 ( M g ) = 10, where M g is the host-galaxy mass measured in solar

asses. Smith et al. ( 2020 ) found a difference of up to 0.04 mag in
he average intrinsic magnitude of the two groups, and application
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Figure 1. A plot of the JLA SNe showing their location in the sky in Galactic 
coordinates, as well as the direction of the CMB dipole (left-pointing triangle) 
and bulk flow (right-pointing triangle), as determined by Boruah et al. ( 2021 ). 
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f the Tripp relation to the two groups separately may further reduce
he residual dispersion in SNIa absolute magnitudes. (See also Thorp 
t al. ( 2021 ) for a similar result obtained using a Bayesian hierarchical
pproach.) Ho we ver, Brout & Scolnic ( 2021 ) have recently cast doubt
n the robustness of this mass-step correction, which they ascribed 
nstead to incorrect dust modelling. The ultimate origin of the mass
tep remains unclear, and it might relate to stellar population age 
Childress, Wolf & Zahid 2014 ) and metallicity (Sulli v an et al. 2010 ).
n any case, Shariff et al. ( 2016 ) showed that adding a mass-step or
 more general linear covariate as a function of host-galaxy mass
as little impact on the ensuing cosmological parameters inference. 
herefore, in this paper we do not adopt a mass-step correction. We

efer the reader to March et al. ( 2011 ) and Shariff et al. ( 2016 ) for
he full mathematical detail of the BAHAMAS model, marginalization 
rocedure and algorithms used for sampling the resulting posterior 
istribution. 

.3 Data 

he largest SNIa compilation to date is the ‘Pantheon sample’ (Scol-
ic et al. 2018a ), which contains 1048 spectroscopically confirmed 
NIa. This compilation includes 279 new SNIa disco v ered by the
an-STARRS1 (PS1) Medium Deep Surv e y (Chambers et al. 2016 )

n addition to the previous SNe disco v ered by previous catalogues to
reate the total. 

Unfortunately, the Pantheon sample only provides estimates (and 
ssociated uncertainties) of the distance modulus for each SNIa but 
oes not include the covariance matrices of both the measurement 
rror for each SNIa and the systematic covariance matrix across 
he whole data set. Because our Bayesian hierarchical model also 
equires these covariances over the light-curve fit parameters as 
pposed to the covariance over distance modulus provided by 
he Pantheon data, we instead use the smaller ‘Joint Light-Curve 
nalysis’ (JLA) compilation (Betoule et al. 2014 ). Very recently, 
 ‘Pantheon + ’ data set has been presented in Brout et al. ( 2022 ),
ncreasing the set of spectroscopically confirmed SNe to 1550 in the 
edshift span 0.001 to 2.26. The data products of this larger set have
ot yet been released, so unfortunately we cannot use these data in
ur framework. The JLA data contains 740 SNIa including 374 SNIa 
rom the SDSS-II surv e y (Frieman et al. 2008 ; Sako et al. 2018 ), 239
rom SNLS (Conley et al. 2011 ; Sulli v an et al. 2011 ), a lo w- z sample
f 118 SNIa at z < 0.1 which is comprised of numerous smaller
urv e ys and nine Hubble Space Telescope SNIa. These have been
t and standardized using the SALT2 Light-Curve Fitter (Guy et al. 
007 ). 
An o v erview of the distribution of JLA objects in the sky is

rovided in Fig. 1 . The long stripe in the lower left hemisphere
s from the SDSS objects. It is clear to see that the distribution of the
LA objects in the sky is highly anisotropic. 

.4 Accounting for colour-dependent selection effects 

owards the high end of the redshift range of a given survey, SNe
hat are intrinsically brighter (smaller M i ) or bluer (smaller c i ) are

ore likely to be observed and to be followed up spectroscopically 
o confirm their type. This selection bias must be accounted for to
 v oid bias in the estimates of the cosmological parameters. Ignoring
agnitude-based selection effects leads to estimates of the distance 
odulus that are biased low: at a given redshift, the average observed
agnitude is smaller (i.e. the observed peak flux brighter) than the 

opulation mean, which leads to an estimated distance modulus that 
s biased lo w. This ef fect reduces or even obliterates the preference
or a non-zero cosmological constant. Traditionally, this has been 
ddressed by ‘correcting back’ the estimates of the distance modulus 
y the average bias in each redshift bin, established with forward
imulations of data subject to selection effects. This approach is 
dopted e.g. by Betoule et al. ( 2014 ). More recently, this method
as been extended and refined with the so-called ‘BEAMS with 
ias Corrections’ (BBC) method (Kessler & Scolnic 2017 ). The 

LA analysis only corrected for magnitude-based selection effects, 
oncluding that no additional correction were necessary for colour 
Betoule et al. ( 2014 ), Fig. 11 ], despite observing a downward trend
n observed colour with redshift for SNSL and SDSS . 

In the context of a Bayesian analysis, ho we ver, selection ef fects
re treated differently: the posterior is conditional on the observed 
ata (Kelly 2007 ), which leads to a re-weighing factor increasing
he statistical weight of SNe that are less likely to be observed
see equation 23 below). Rubin et al. ( 2015 ) introduced a general
ormalism for the selection function that was further developed by 
inton et al. ( 2018 ). In practice, ho we ver, this formalism typically

equires several simplifying assumptions that may be difficult to 
ustify (e.g. a well-sampled SNIa redshift distribution, a selection 
unction that is described by a normal cumulative distribution 
unction (CDF), independence of the selection probability from 

he underlying cosmology). We will present an impro v ed selection
ffects treatment in an upcoming, dedicated work. 

Rubin & Hayden ( 2016 ) argue that uncorrected-for colour- 
ependent selection effects remaining in the JLA data (after bias 
orrection of the data) should be addressed by introducing a pop-
lation colour mean that is both redshift- and surv e y-dependent.
o we ver, at the top level of the BHM we w ould lik e a physi-

ally meaningful population mean that describes the underlying, 
opulation-level latent mean colour, itself a reflection of the physical 
roperties of the SNe. Such a colour mean can be a function of
edshift, to reflect evolution in the physical properties of SNe with
ookback time, but it cannot be surv e y-dependent, for clearly the
atter dependency is caused by surv e y-specific selection effects and,
n virtue of being surv e y-specific, cannot be the consequence of
hanging underlying physical properties of the SNe being observed. 
hus, by using population-level variables to address a surv e y-

nduced selection effect, the method advocated by Rubin & Hayden 
 2016 ) goes against the physical interpretability of the BHM; we
refer the population-le vel v ariables to be tied to the physics of the
NIa explosion mechanism rather than the survey-induced selection 
MNRAS 514, 139–163 (2022) 
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ffects. Furthermore, as pointed out by Dam, Heinesen & Wiltshire
 2017 ), modelling residual colour drift with redshift as advocated by
ubin & Hayden ( 2016 ) introduces undesirable degeneracies with
osmological parameters in the cosmographic expansion. 

Here, we account for residual colour-based selection effects with
n approximate method that captures the spirit of the correct Bayesian
rocedure. (We will present a more complete exposition in an
pcoming work.) In general, we aim to base the likelihood function
n the distribution of the data d i for SNIa i conditional on it having
een observed, which is denoted by an indicator variable I i = 1.
 I i = 0 would indicate that SNIa i is not observed.) Denote by
ˆ 
 = { ̂  d 1 , . . . , ˆ d n } a random sample of SNe where all SNe have equal

robability of being observed (i.e. there are no selection effects in ˆ D ).
n the presence of selection effects, we observe a non-representative
ample of n obs < n SNe from 

ˆ D , whereby a SNIa i is observed with
robability given by the selection function p( I i = 1 | ̂  d i , �), where ˆ d i 
re the observed (noisy) data, and � are parameters describing the
election function (assumed known). The distribution of the observed
ˆ 
 i , conditional on SNIa i being observed, is given by 

( ̂  d i | I i = 1 , �, � ) = 

p( I i = 1 | ̂  d i , �) p( ̂  d i | � ) 

p( I i = 1 | �, � ) 
, (21) 

here � = { P a , ϑ} are the parameters of the hierarchical model
including the parametrization of the distance modulus, P a , and
he population-level distribution parameters, ϑ). We assume that the
election probability conditional on the observed data, ˆ d i , i.e. p( I i =
 | ̂  d i , �) in the numerator of ( 21 ), does not depend on � and thus is an
gnorable constant if (as we assume here) the selection function and
ts parameter � are known. The quantity p( ̂  d i | � ) is the likelihood
n the absence of selection effects, and the denominator gives the
robability of observing a SNIa, irrespective of the value of the
ata: 

( I i = 1 | �, � ) = 

∫ 
d ̂  d i p( I i = 1 | ̂  d i , �) p( ̂  d i | � ) . (22) 

mitting the ignorable multiplicative constants in the numerator of
 21 ) yields the likelihood function of � including selection effects
or a sample of n obs observed SNe, ˆ d obs ≡ { ̂  d 1 , . . . , ˆ d n obs } , 

( ̂  d obs |{ I i = 1 } n obs 
i= 1 , �, � ) ∝ 

p( ̂  d obs | � ) 

p( I = 1 | �, � ) n obs 

, (23) 

here we have dropped the dummy index i in the denominator. There-
ore, selection effects are accounted for by dividing the likelihood
unction of the observed data, p( ̂  d obs | � ), by a ‘correction factor’ that
ives the probability of making n obs observations. 
Thus far, we have been entirely general. Next we specify the form

f the selection function, p( I i = 1 | ̂  d i , �), entering in equation ( 22 ).
he probability of a SNIa being selected, and spectroscopically

ollowed-up to determine its type, depends primarily on its magnitude
nd colour. (SNe with larger stretch parameter x 1 are slower declining
nd thus remain visible and potentially detectable for longer, but this
ffect is subdominant.) The data correction procedure in Betoule et al.
 2014 ) should in principle account for both magnitude- and colour-
ased selection, but their discussion makes it clear that there are
arge uncertainties in the determination of the selection probability
hat enters their forward simulation of the data. For example,
etoule et al. ( 2014 ) mention that the SDSS spectroscopic follow-up

arget selection fa v ours intrinsically bluer SNe, introducing complex
olour-dependency in the selection function. In light of such difficult-
o-simulate selection effects, we advocate a method that estimates
ny residual selection effect [after the data correction procedure of
etoule et al. ( 2014 )] directly from the observed data. 
NRAS 514, 139–163 (2022) 
We wish to account for residual colour-based selection effects that
ay remain in the data. Therefore, we assume that p( I i = 1 | ̂  d i , �)

epends only on ˆ c i and ˆ z hel ,i , with the N s redshift bins for surv e y s
hosen as discussed in Section 2.3 , and factorize both the selection
unction and the likelihood in a product o v er redshift and surv e y bins,
ssumed independent of each other. Within each redshift, and surv e y
in, we allow a different selection function, which is derived below.
ith these assumptions, the probability of observing n obs SNe is (with

he shorthand notation I n obs = 1 denoting { I 1 = 1 , . . . , I n obs = 1 } ): 
( I n obs = 1 | �, � ) 

= 

4 ∏ 

s= 1 

N s ∏ 

j= 1 

(∫ 
d ̂  d i p sj ( I i = 1 | ̂  d i , �) p sj ( ̂  d i | � ) 

)N sj 

, (24) 

here N s is the number of bins for surv e y s and N sj the number
f observed SNe in bin sj . Within each redshift bin for survey
 , we parametrize the selection function as a normal cumulative
istribution function (CDF), and assume that we observe a SNIa i
ith colour ˆ c i with probability: 

 sj ( I i = 1 | ̂  d i , �) = � 

( 

c obs 
sj − ˆ c i 
σ obs 

sj 

) 

, (25) 

here 

 ( x) = 

∫ x 

−∞ 

N y (0 , 1)d y (26) 

s the CDF of a standard normal, and N y ( μ, σ 2 ) is a Gaussian
istribution in y with mean μ and variance σ 2 . In equation ( 25 ),
 

obs 
sj is the colour value at which there is a 50 per cent probability
f observing a SNIa in redshift bin j and for survey s ; σ obs 

sj denotes
he width of the transition from the regime where all objects are
bserved, i.e. for ( c obs 

sj − ˆ c i ) /σ obs 
sj 
 0, to the regime where no

bjects are observed, where ( c obs 
sj − ˆ c i ) /σ obs 

sj � 0, for the bin sj being
onsidered. In equations ( 31 )–( 32 ) below we sho w ho w to estimate
he selection function parameters � = { ( c obs 

sj , σ
obs 
sj ) } ( s = 1, . . . , 4,

 = 1, . . . . N s ). As an approximation, we ignore uncertainty in the
esulting estimates and assume the parameters are known exactly. 3 

In principle, we would like to use the likelihood function of March
t al. ( 2011 ) and Shariff et al. ( 2016 ) as the second term of the
ntegrand in equation ( 22 ). Since we only wish to account for residual
olour-based selection ef fects, ho we ver, we ignore the part of the
AHAMAS likelihood that relates colour to magnitude via the Tripp

inear relation [equation (C2) in March et al. ( 2011 )], and instead
nly consider the distribution of colour values that one would obtain
hen integrating out the latent colour variables conditional on all
ther variables in the BHM, leading to the simple expression for the
ikelihood entering into equation ( 24 ): 

 sj ( ̂  d i | � ) = N ˆ c i 

(
c � , R 

2 
c + σ̄ 2 

c,sj 

)
, (27) 

here σ̄c,sj is the average colour measurement error for the n sj SNe
n bin sj (for simplicity, we assume all n sj SNe in bin sj have the same
olour measurement error, given by σ̄c ; we also ignore correlation
etween colour and stretch and magnitude). 

Equation ( 27 ) features a redshift-independent conditional expec-
ation of colour, described by c � . This formalizes the assumption of
ubin & Hayden ( 2016 ) within BAHAMAS that the observed drift to
luer SNe with redshift within a surv e y is a consequence of selection
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ffects and not of a change in the underlying population colour 
istribution with redshift. 
With the abo v e elements, we can compute the probability of

bserving SNIa i in redshift bin j for surv e y s by inte grating o v er its
olour, ˆ c i , obtaining 4 

 sj ( I i = 1 | �, � ) = � 

⎛ 

⎝ 

c obs 
sj − c � √ (

σ obs 
sj 

)2 + R 

2 
c + σ̄ 2 

c,sj 

⎞ 

⎠ . (28) 

or a given sj bin, when c � 
 c obs 
sj selection effects are irrelevant,

ecause the surv e y is seeing the entire colour population, and
ccordingly p ( I i = 1 | �, � ) → 1 from equation ( 28 ). Ho we ver, p ( I i =
 | �, � ) becomes smaller for values of c � > c obs 

sj , with the difference
easured in units of the total standard deviation, i.e. when the surv e y

s preferentially seeing the bluer part of the population because of
olour-based selection bias. In this case, the observed distribution 
f the N sj objects in the sj bin deviates from the latent distribution,
nd the likelihood that ignores selection effects would incorrectly 
enalize this value of c � . According to equation ( 23 ), the correction
actor in the denominator of equation ( 23 ) increases the weight given
o observed SNe with c � > c obs 

sj . 
Finally, there remains the issue of determining the value of �,

he selection function parameters. Ideally, one would do so from 

orward simulation of surv e ys, but this is unpractical for our purposes,
nd unfeasible for the low- z sample, which is obtained from a
ollection of telescopes with poorly understood selection functions. 
urthermore, as noted earlier, colour-based selection effects might 
scape ab initio modelling of this kind, as indicated in e.g. Betoule
t al. ( 2014 ). As an alternative, we estimate the value of � in each
edshift- and surv e y-bin sj , by matching the first and second moment
f the empirical colour distribution within the bin to the marginal 
istribution of colour based on the right-hand side of ( 23 ), understood
s a distribution o v er observ ed colour values ˆ c i within each bin. Let
 C ( t ) denote the moment generating function of the random variable
 (the observed colour), defined as 

 C ( t) ≡
∫ ∞ 

−∞ 

e ty f C ( y )d y , (29) 

here f C ( c ) in our case is given by (in the bin under consideration) 

 C ( c) = 

N c 

(
c � , R 

2 
c + σ̄ 2 

c,sj 

)
� 

(
c obs 
sj 

−c 

σ obs 
sj 

)
p sj ( I i = 1 | �, � ) 

, (30) 

ith denominator given by equation ( 28 ). Our strategy, known as the
ethod of moments , is to analytically compute the first two moments
f the distribution, set them equal to the empirical moments, and solve 
he resulting system of equations to obtain estimates of the selection 
unction parameters in each surv e y and redshift bin, { c obs 

sj , σ
obs 
sj } .

etails of the calculation are presented in Appendix A , where we
how that the moment generating function is given by equation ( A5 ),
ts first moment, d M C ( t )/d t | t = 0 , by equation ( A18 ), and its second
oment, d 2 M C ( t )/d t 2 | t = 0 , by equation ( A19 ). Specifically, in each

in, we set the first moment equal to the empirical mean, and set the
econd central moment equal to the empirical variance: 

d M C ( t) 

d t 

∣∣∣
t= 0 

= 〈 ̂ c i 〉 , (31) 
 It is useful to recall that 
∫ ∞ 

−∞ 

� 

(
μ−x 

σ

)
N x ( ν, τ 2 )d x = � 

(
μ−ν√ 

σ 2 + τ2 

)
. 

n  

u
d  

m  

z  
d 2 M C ( t) 

d t 2 

∣∣∣
t= 0 

− d M C ( t) 

d t 

∣∣∣2 

t= 0 
= 

1 

1 − N sj 

N sj ∑ 

i= 1 

( ̂ c i − 〈 ̂ c i 〉 ) 2 , (32) 

here 〈 ̂ c i 〉 = 

1 
N sj 

∑ N sj 
i= 1 ˆ c i is the empirical mean. We set the pop-

lation mean and standard deviation to c � = −0.0022 and R c =
.0758, the empirical mean and standard deviation from the lowest 
wo bins of the SDSS , SNLS, and low- z surv e ys, where colour-based
election effects are expected to be negligible. We then solve the
esulting coupled equations to determine { c obs 

sj , σ
obs 
sj } . 

In cases where N sj is small ( ∼10) and the sample variance is small,
he method of moments yields an estimate of σ obs 

sj near or equal to
ero. This is similar to a well-known pathology in the estimation of
he shape parameter in the skew-normal distribution (see e.g. Azzalini 
 Arellano-Valle 2012 ). A simple solution is to impose a lo wer cutof f

o the value of σ obs 
sj . We chose a cutoff value σ obs 

sj > 0 . 01, since any
maller value leads to a selection function indistinguishable from a 
tep function. Tests of our method of moments on simulated data are
rovided in Appendix A . 
Because our selection effect model assumes in equation ( 27 ) that

he colour observations are independent, we set the corresponding 
ovariances in the variance-covariance matrix for the systematic 
ffects to zero. This has a minor effect on our estimates of the
osmological parameters, as those terms are subdominant with 
espect to other off-diagonal terms. 

We apply the method of moments to estimate � to each the four
ub-surv e ys separately, and we verify its accuracy by simulating
olour observations from the model of equation ( 27 ), assuming a
ormal constant-in-redshift latent colour distribution with mean c � = 

 and standard deviation R c = 0.1. We then apply the reconstructed
election function in each redshift bin, and compare the resulting 
istribution of simulated SNe with the observed sample within that 
in. This comparison is shown in Fig. 2 . For the simulation study
nd the real JLA data in Section 3.2 , we divided each sub-surv e y
n 5 approximately equal-spaced redshift bins, with the following 
xceptions: the HST data is treated in one single bin owing to the
mall number of SNIa in HST . For the same reason, in the low- z
urv e y data, the two highest redshift bins are combined into a single
in. For the SDSS survey, the right edge of the 4th bin has its boundary
hifted 0.015 in redshift space to the right, in order to account for
 discontinuity in the data, where the population of objects have a
ower colour and are separated by a gap in redshift. The agreement
etween real data and simulation is excellent, thus validating our 
pproach. 

.5 A new deri v ation of peculiar velocity corrections 

ur motion w.r.t. the CMB frame is measured precisely by the
emperature dipole observed in CMB anisotropies. The most accurate 
esult is from Planck Collaboration I ( 2020 ), giving a velocity
 � − CMB = 369.82 ± 0.11 km s −1 in the direction l = 264.021 ◦

0.011 ◦, b = 48.253 ◦ ± 0.005 ◦. This induces in the non-relativistic
imit a redshift correction (Davis et al. 2011 ) 

 

�
pec ≈ −v �−CMB 

c 
( n CMB · n SN ) � 10 −3 , (33) 

here n CMB is a unit vector in the direction of the CMB dipole and
 SN is a unit vector in the direction of the SNIa. Given the small
ncertainties in the measurement for v � − CMB and the CMB dipole 
irection, we can consider z �pec as known exactly, and thus neglect
easurement error on this quantity (as it is ∼3 × 10 −7 ). Estimating
 

SN 
pec = v SN 

pec /c requires knowledge of the peculiar velocity of the SNIa
MNRAS 514, 139–163 (2022) 
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Figure 2. Colour-based selection function in binned JLA data, with redshift bins boundaries indicated by the vertical black lines.The blue circles are the 
individual SNe, the blue errorbars represent the data mean and standard deviation within each top-hat bin, while the orange errorbars give the mean and standard 
deviation of simulated data from the model using the reconstructed selection function in that bin (shifted horizontally for ease of comparison). 
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n the CMB frame, v SN 
pec . This can be measured either from a peculiar

 elocity field surv e y [for e xample, by using the Fundamental Plane
FP) relation or the Tully–Fisher (TF) relation to measure the distance
o a galaxy, and then subtracting from the observed velocity the
xpansion component obtained from the Hubble–Lema ̂ ıtre law) or
erived from linear perturbation theory applied to a smoothed density
eld. The latter approach has a long history, originally having been
sed to predict the peculiar velocities of FP and TF samples (Hudson
993 ; Strauss & Willick 1995 ; Davis, Nusser & Willick 1996 ) but
ore recently applied to peculiar velocity data that include SNe type

a. (Riess et al. 1997 ; Radburn-Smith, Lucey & Hudson 2004 ; Pike
 Hudson 2005 ; Neill, Hudson & Conley 2007 ; Turnbull et al. 2012 ;
arrick et al. 2015 ; Boruah et al. 2020 ; Lilow & Nusser 2021 ; Stahl
t al. 2021 ). 

While the peculiar velocity of the SNIa becomes rapidly neg-
igible for z � 0.1, it is important for local objects ( z 
 0.1),
here it can be significant w.r.t. the expansion velocity (up to
30 per cent ) and where it leads to much larger changes in the

pparent magnitude, due to the steeper gradient of the distance
odulus at low redshift. For example, at z = 0.01 an uncor-

ected SNIa peculiar velocity v SN 
pec induces a redshift systematic

rror δz = v SN 
pec /c, which corresponds to a significant change in

he theoretical distance modulus δμ ≈ d μ
d z δz ≈ 5 / ln (10)( δv / ( cz)) =

 . 14 mag for v SN 
pec = 200 km s −1 . To a v oid difficulties with peculiar

elocities, earlier SNIa cosmological analyses routinely adopted
 lower redshift cutoff z cut , removing SNe below z cut ; for exam-
le, Kessler et al. ( 2009 ) used z cut = 0.02; Riess et al. ( 2007 )
sed z cut = 0.023. Recently, Huterer ( 2020 ) estimated the impact
f uncorrected peculiar velocities on the Pantheon sample from
umerical N -body simulations, and recommended a cutoff z cut =
.02 to protect against significant bias to cosmological parameters.
NRAS 514, 139–163 (2022) 
o we ver, a better way that does not discard useful data at low
edshift is to assign uncertainties that scale with distance, as we
o here. 
The JLA sample contains 37 SNe with z hel < 0.02, and 110 with

 hel < 0.05, for which an appropriate treatment of peculiar velocities
s required if they are to be used in the cosmological analysis –
articularly in our case, where we wish to use them to constrain a
ocal dipole in the expansion. To first order in redshift equation ( 2 )
ives 

¯ = z hel − z �pec − z SN 
pec , (34) 

eaning that the redshift of a comoving observer, ̄z , is obtained from
he measured heliocentric redshift by subtracting our local dipole
 z �pec ) and the redshift due to the SNIa peculiar velocity, z SN 

pec . 
The model used in Betoule et al. ( 2014 ) to estimate z SN 

pec has
een criticized by C19, who highlighted potential bulk flow velocity
iscontinuities at z = 0.04, pointed out that peculiar velocity
orrections arbitrarily disappear beyond 200 h −1 Mpc ( z ∼ 0.067,
he limit of the galaxy density field measurements from which the
eculiar velocities were derived) and that the residual uncorrelated
elocity dispersion of σ v = 150 km s −1 might be underestimated.
hile RH20 pointed out technical flaws with the analysis of C19, it

s important in the light of this valid criticism to revisit the issue of
ow-redshift peculiar velocity corrections here. 

To this end, in this work we replace the peculiar velocity correc-
ions used by Betoule et al. ( 2014 ) – which rested on the IRAS PSCz
atalogue from Branchini et al. ( 1999 ) – with the more recent ones
btained by Carrick et al. ( 2015 ). We follow Boruah et al. ( 2020 ,
021 ), who carried out a thorough comparison between density
econstruction from galaxy redshift surv e ys and kernel smoothing of
eculiar velocity data methods. We adopt here their peculiar velocity
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eld inferred from 69 160 galaxies from the 2M ++ galaxy redshift
atalogue (Lavaux & Hudson 2011 ). The catalogue co v ers almost
he entire sky (with the notable exception of the plane of our galaxy),
s highly complete out to 200 h −1 Mpc ( z ∼ 0.067) in the region
o v ered by 6dF and SDSS , and out to 125 h −1 Mpc ( z ∼ 0.041) in
he region covered by 2MRS. We thus remove 5 the SNIa peculiar 
elocity corrections for the low- z JLA sample that are in common
ith the A2 sample of Boruah et al. ( 2021 ) (107 objects), and replace

hem with new values obtained as follows. 
The radial peculiar velocity for a SNIa at comoving distance r and

irection n SN is obtained from the luminosity-weighted density field 
 gal as 

 

SN 
pec ( r, n SN , θ ) = n SN · ( βv v gal ( r, n SN ) + V ext ) , (35) 

here θ = { βv , V ext } , with a rescaling parameter βv = 0.411 ± 0.020
nd external residual bulk flow velocity (in Galactic Cartesian 
oordinates) V ext = [52 ± 20, −163 ± 21, 49 ± 16] km s −1 (how we
reat and propagate the uncertainties in these values is addressed in 
ection 2.6 ). We follow the methodology of Boruah et al. ( 2021 ), with

he difference that we only use the SFI ++ peculiar velocity sample
therefore not including A2 SNe data) in order to a v oid circularity
i.e. using SNe data to predict the peculiar velocity correction for the
ame SNe data). 

We do not wish to use the distance modulus information from a
NIa at this stage of the analysis, only its observed redshift in the
MB rest frame, ˆ z CMB ≡ ˆ z hel − z �pec . First, the observed redshift in 

he CMB rest frame is corrected to the average redshift of the group
o which the host galaxy belongs. Differently from JLA, we correct 
he CMB rest frame redshift for all host galaxies, including those in
lusters and poorer groups. This is necessary to suppress the highly 
on-linear velocity contribution to the observed redshift, and it leads 
o deviations of a few percent in ̂  z CMB in most low- z SNe, compared
ith the value used by JLA, see Fig. 3 . However, there are 6 SNe

hat show much larger changes in their CMB frame redshift, up to
30 per cent (highlighted in green in Fig. 3 ); two of them ( sn2007ci

nd sn2001cz ) are in common with the outliers in peculiar velocity,
dentified in Fig. 4 . It is worth noting that Carr et al. ( 2021 ) re vie wed
ype Ia SNe literature and disco v ered that some SNIa had been
eported with incorrect redshifts and/or positions due to misprints. 
wo of the outliers in Fig. 4 , sn2008bf and sn1996c , are among the
NIa identified by Carr et al. ( 2021 ) as requiring updates: sn2008bf
uffers from an uncertain host galaxy identification, while sn1996c 
ad an incorrect sk y location. Man y other SNIa had their redshifts
nd positions updated by Carr et al. ( 2021 ), but their data set is not
ublicly available yet and therefore we cannot make use of their 
ndings. 
We compute the expected peculiar velocity by marginalizing o v er 

he unknown comoving distance of the SNIa, r : 

 v SN 
pec 〉 = 

∫ 
d rp( r | c ̂ z CMB ) v 

SN 
pec ( r , n SN ) , (36) 

here v SN 
pec is computed self-consistently from the flow model, 

quation ( 35 ), and p( r| ̂ z CMB ) is the probability density function (pdf)
or r given the observed redshift. This can be linked via a variable
ransformation to the pdf for the true (latent) CMB redshift of the
 Differently from C19, we do not remo v e the magnitude bias corrections 
ade to the JLA SNe, as they are important to account for selection effects, 

or do we neglect the contribution of peculiar velocities uncertainty to the 
ovariance matrix, which we re-derive for our case. 

 

s

6

t
a

NIa, z CMB ( r ), via: 

( r| c ̂ z CMB ) = p( c z CMB ( r) | c ̂ z CMB ) 

∣∣∣∣∂c z CMB ( r) 

∂r 

∣∣∣∣, (37) 

here from equation ( 3 ) 

 CMB ( r) = z̄ ( r) + (1 + ̄z ( r)) v SN 
pec ( r, n SN ) /c, (38) 

nd the cosmological redshift at comoving distance r , z̄ ( r), is
omputed for the � CDM concordance model, with parameters 
s in Table 1 . Note that the transformation between r and z CMB 

ay not be unique due to the existence of triple-valued regions.
o we ver, in practice we checked that the reconstructed velocity field

ndeed leads to unique transformation between r and z CMB for the
arameters under consideration. Nevertheless, it can lead to ‘flat’ 
egions in redshift space (i.e., where ∂z CMB 

∂r 
≈ 0), which result in 

arge uncertainties in the expected peculiar velocity. 
The 2M ++ reconstruction employs linear perturbation theory 

o predict the velocities. As shown in Carrick et al. ( 2015 ), this
eads to an uncertainty due to non-linearities of σ NL 

v = 150 km s −1 .
herefore, assuming a Gaussian uncertainty, we can write the 
robability of the predicted redshift in the CMB frame for a SNIa at
omoving distance r given its observed redshift transformed in the 
MB frame in equation ( 37 ) as 

( c z CMB ( r) | c ̂ z CMB ) = N 

(
c ̂ z CMB , 

(
σ NL 

v 

)2 )
. (39) 

As a check for the robustness of our method, we also estimated
he predicted peculiar velocity using an iterative prescription. In 
his alternative method, we start from the observed CMB rest 
rame redshift as an initial, rough approximation for the comoving 
istance (under the fiducial � CDM assumption), taking v SN 

pec = 0. In
ubsequent iterations, an updated estimate for the comoving distance 
s obtained using equation ( 38 ) and the velocity estimate we get
rom the reconstruction at the given comoving distance. This step 
s repeated until convergence. The iterative method gives broadly 
onsistent results as the marginalization-based method described 
bo v e. Ho we ver, the iterati ve prescription may underestimate the
ncertainty in the vicinity of triple-valued regions, and therefore we 
lected to use the marginalization method instead. 

Our new peculiar velocity corrections obtained from equation ( 36 )
re compared against those used in Betoule et al. ( 2014 ) in Fig. 4 ,
hich are obtained from the JLA data products via 6 

 corr, JLA = c 

( 

1 + z hel 

(1 + ̄z ) 
(
1 + z �pec 

) − 1 

) 

. (40) 

he correlation coefficient between our peculiar velocity corrections 
nd that used in Betoule et al. ( 2014 ) is only ∼0.60. There are also 6
Ne (labelled in Fig. 4 ) that are more than 3 standard deviations of the
ample away from the identity line. Several reasons can explain the
ifferences between our peculiar velocities and those used in JLA: 
rst, the density field used to predict peculiar velocities in JLA was
ased on the IRAS PSCz surv e y, which is likely to be noisier than
M ++ everywhere. Secondly, in the JLA analysis only galaxies in
ich clusters are corrected to the mean redshift of the cluster, whereas
ere we correct the CMB rest frame redshift for all host galaxies,
ncluding those in clusters and poorer groups. 

F or SNe be yond z = 0.067 (in the SNLS, SDSS and high- z
amples), the relative importance of the peculiar velocity corrections 
MNRAS 514, 139–163 (2022) 

 In equation ( 40 ) we use the notation introduced in this paper but we notice 
hat our z̄ is (confusingly) denoted ‘ z CMB ’ in the Betoule et al. ( 2014 ) and 
ssociated data products. 
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Figure 3. Left-hand panel: comparison of the CMB rest-frame redshift used in this work for the low-redshift sample (horizontal axis, 107 SNe) with that of 
the JLA analysis (vertical axis). There are 6 SNe (highlighted in green) with a difference exceeding 3 standard deviations around the identity line (dashed). 
Right-hand panel: the same comparison but showing the fractional differences between redshifts on the vertical axis. 

Figure 4. Comparison of the peculiar velocity corrections used in this work 
(horizontal axis) with those adopted in the JLA analysis (vertical axis) for the 
107 SNe in the A2 low-redshift sample common to the JLA data. The colour 
coding gives the CMB rest-frame redshift used in this work. Outliers (defined 
as more than 3 standard deviations away from the dashed identity line) are 
labelled. 
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iminishes as the recession velocity of the Hubble flow increases, so
he detailed treatment becomes less important. In the JLA analysis,
eculiar corrections have been set to 0 beyond redshift z ∼ 0.067, the
imit of the galaxy surv e y from which said corrections were derived.

e do the same here, noting that beyond redshift z ∼ 0.067 the exact
reatment of peculiar velocity correction becomes less crucial since
heir relative importance diminished quickly. 

.6 Peculiar velocity correction uncertainties 

s we have replaced the peculiar velocities of JLA with our own,
ew estimates, we also update their error analysis associated with
he peculiar velocities treatment. First, we remove the diagonal
NRAS 514, 139–163 (2022) 
erm from the JLA statistical covariance matrix representing the
ncertainty from peculiar velocity corrections. We also remo v e the
pecvel’ contribution to the systematic covariance matrix. We replace
hem with the follo wing terms, flo wing from our updated treatment
f peculiar velocity corrections. 
From equation ( 34 ), the covariance of the cosmological redshift

alue for SNe i , j is given by (without including the negligible error
n z �pec ) is given by 

 

2 
z,ij = δK 

ij σ
2 
z,i + 	 

2 
z,ij , (41) 

 

2 
z,ij = δK 

ij 

(
σ 2 

NL + σ 2 
2M ++ 

( z CMB ) + σ 2 
v,i 

)
/c 2 + C 

flow 
ij /c 2 , (42) 

here σ z, i is the spectroscopic redshift measurement uncertainty,
NL = 150 km s −1 is the uncertainty in the peculiar velocity due to
on-linearities, σ 2M ++ 

is the redshift-dependent uncertainty due to
urv e y incompleteness, σ v, i is the standard deviation of the average
eculiar velocity prediction, equation ( 36 ), and C 

flow 
ij is the correlated

ovariance coming from uncertainty in the flow model ( δK 
ij is the

ronecker delta). We address each term in turn. 
For the 107 low- z SNe in our analysis, the largest reported

tatistical uncertainty in their redshift measurement in the JLA
ata release is max i σ JLA 

z,i = 0 . 0014, corresponding to a velocity
ncertainty of 420 km s −1 . The JLA data release also has σ JLA 

z,i = 0
or 10 of the 107 low- z SNe and σ JLA 

z,i < 0 for 42 SNIa. In order
o resolve the issue of 0 or negative redshift uncertainties and to be
onserv ati ve, we adopt the following prescription for the standard
eviation of the spectroscopic uncertainty: 

z,i = max 
(
σ JLA 

z,i , 5 × 10 −4 
)
, (43) 

here the floor value of 5 × 10 −4 represents the typical uncertainty
f spectroscopic redshift determination from host galaxies spectra. 
The term σ 2 

NL = 150 km s −1 represents uncertainty in the linear
elocity prediction due to unaccounted-for non-linearities, which we
x at the value recommended in Carrick et al. ( 2015 ). However,

he uncertainty in our reconstructed peculiar velocity increases with
edshift, an effect that was ignored in previous work: first, the
redicted peculiar velocities for tracers near the outer edge of the
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Table 1. Supernova population parameters, cosmological parameters, and dipole model parameters adopted in this work, together with 
the prior choices and fiducial values for simulation studies. ‘SD’ stands for standard deviation. 

SNIa population distributions and covariates Symbol Fiducial value Prior distribution 

Mean absolute magnitude of SNIa M 0 −19.3 M 0 ∼ Normal ( −19.3, 2 2 ) 
Residual scatter of SNIa magnitude after corrections σ res 0.1 σ res ∼ InvGamma (0.003, 0.003) 
Coefficient of stretch covariate α 0.14 α ∼ Uniform (0, 1) 
Coefficient of colour covariate β 3.2 β ∼ Uniform (0, 4) 
Mean of stretch x ∗ 0.0 x ∗ ∼ Normal (0, 10 2 ) 
Mean of colour c ∗ 0.0 c ∗ ∼ Normal (0, 1 2 ) 
SD of stretch distribution R x 1.0 R x ∼ LogUniform ( −5, 2) 
SD of colour distribution R c 0.1 R c ∼ LogUniform ( −5, 2) 

Parameters controlling the expansion history 
Matter energy density �M 

0.3 �M 

∼ Uniform (0, 2) 
Dark energy density �� 

0.7 �� 

∼ Uniform (0, 2) 
Deceleration Parameter q 0 −0.55 q 0 ∼ Uniform ( −2, 1) 
Jerk and spatial curvature j 0 − �K 1 j 0 − �K ∼ Uniform ( −2, 2) 
Hubble–Lema ̂ ıtre constant (km 

−1 s −1 Mpc −1 ) H 0 72 Fixed 

Anisotropic expansion parameters 
Galactic longitude of dipole (rad) l d { −, 4.60 } l d ∼ Uniform (0, 2 π ) 
Galactic latitude of dipole (rad) b d { −, 0.84 } cos ( b d ) ∼ Uniform (0, 1), b d ∈ [0, π /2] 
Amplitude of dipole on μ D μ { 0, 0.02 } D μ ∼ Uniform ( −0.2, 0.2) 
Amplitude of dipole on q 0 D q 0 { 0, 10 } D q 0 ∼ Uniform ( −30 , 30) 
Exponential scale of dipole S { –, 0.026 } S ∼ Uniform (0.01, 0.10) 
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M ++ catalogue (200 Mpc h −1 ) have larger uncertainty because of
naccounted-for structures outside of the surv e y limits, as well as
ecause of lack of co v erage be yond 125 Mpc h −1 for part of the
ky (Hollinger & Hudson 2021 ); secondly, the noise increases at 
arger distances due to the smaller number of galaxies with larger 
eights that are used to represent the density field (Lilow & Nusser
021 ). We capture these effects via the redshift-dependent term: 

2M ++ 

( z CMB ) = 

{
σ1 z CMB for z CMB < z 400 , 

σ1 z 400 for z CMB ≥ z 400 , 
(44) 

here z 400 = 0.138 is the redshift corresponding to a radial 
omoving distance of 400 h −1 Mpc, and σ 1 is chosen so that the
otal peculiar velocity rms beyond z 400 , i.e. ( σ 2 

NL + σ 2 
2M ++ 

( z 400 )) 1 / 2 ,
quals 380 km s −1 . This prescription also approximately matches 
he � CDM prediction at the 2M ++ boundary, z = 0.067, where
 σ 2 

NL + σ 2 
2M ++ 

(0 . 067)) 1 / 2 = 227 (km s −1 ). This is in contrast with the
riginal JLA analysis which uses a redshift-independent 150 km s −1 

ncertainty throughout the redshift range. 
The term σ 2 

v,i is the variance of v SN 
pec under the distribution given 

y equation ( 37 ), i.e. 

2 
v,i = 

〈(
v SN 

pec 

)2 〉 − 〈
v SN 

pec 

〉2 
. (45) 

inally, we translate the redshift covariance of equation ( 41 ) into
 magnitude covariance via linear propagation of errors using the 
sotropic distance modulus of equation ( 11 ), i.e. 

2 
m,ij = 	 

2 
z,ij 

∂μI 

∂ ̄z 

∣∣∣∣ z hel = ˆ z hel ,i 

z̄ = z̄ i 

∂μI 

∂ ̄z 

∣∣∣∣ z hel = ˆ z hel ,j 

z̄ = z̄ j 

+ δK 
ij σ

2 
z,i 

⎛ 

⎜ ⎝ 

∂μI 

∂z hel 

∣∣∣∣ z hel = ˆ z hel ,i 

z̄ = z̄ i 

⎞ 

⎟ ⎠ 

2 

(46) 

here z̄ i is computed from equation ( 34 ), and the distance modulus
eri v ati ves are e v aluated at the fiducial cosmological parameter
 alues gi ven in Table 1 . 
So far, we have considered a fixed value for the flow parameters,
= { βv , V ext } entering in equation ( 35 ). The uncertainties in

he inferred flow parameters lead to correlated uncertainties in the 
eculiar velocities which needs to be accounted for, and that in
revious work are usually considered a source of systematic error. 
ur parametrized flow model allows us to translate them into a

tatistical error, as follows. In order to estimate the covariance 
oming from uncertainty in the flow model parameters, we draw 

0 4 posterior samples of the flow parameters θ k ( k = 1, . . . , 10 4 )
rom the fitted flow model, using the method of Boruah et al. ( 2020 ),
nd we calculate the average peculiar velocity, 〈 v SN 

pec , i 〉 for all the
07 SNe in our low- z sample from those samples. We then estimate
he covariance of the average peculiar velocity between SNIa i and
 as C 

flow 
ij = Cov ( 〈 v SN 

pec , i 
〉 , 〈 v SN 

pec , j 
〉 ), where the covariance matrix is

omputed from the k samples. Since the value of σ v, i abo v e varies
mong the k samples (although the variation is small, ∼< 

10 per cent ),
e use the average of σ v, i from the 10 4 posterior samples. In

ccord with terminology used in the literature, we call this term the
systematic uncertainty’, although as noted abo v e we have actually
ranslated it into a statistical uncertainty. There are no changes to the
 1 and c terms of the covariance and these are left unchanged from
he original JLA analysis. 

We show in the left-hand panel of Fig. 5 the square root of
he diagonal entries of the peculiar v elocities co variance matrix,
ranslated into magnitude covariance, i.e. σ m , ii in equation ( 46 ). The
ight-hand panel shows the square root of the diagonal entries of
he total magnitude covariance matrix (including all other magnitude 
ncertainties). Our values are compared with the original JLA values 
n the same figure. The largest difference in the total value of σ m 

ppears in the low redshift range, where our re-analysis modifies the
ssociated peculiar velocities, which are dominant in this redshift 
ange. In general, the net effect is to increase the statistical uncertainty
hile decreasing the systematic uncertainty with respect to the JLA 

nalysis: at the median redshift of the low- z sample, z = 0.0243,
he average diagonal σ m due to statistical uncertainty in the peculiar 
elocities is 0.076 in our analysis (versus 0.045 JLA), while the
MNRAS 514, 139–163 (2022) 
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Figure 5. Left-hand panel: statistical and systematic (diagonal entries of the covariance matrix only) uncertainties in the apparent magnitude induced by peculiar 
velocity corrections for our re-analysis compared with JLA. Right-hand panel: total diagonal σm for our reanalysed and original JLA data. These components 
include the statistical error from the SALT2 fits and peculiar velocities as well systematics from several other components that are outlined in Betoule et al. 
( 2014 ). 
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verage systematic diagonal error is 0.020 in our work (versus
.039 JLA). Overall, the total magnitude uncertainty due to peculiar
elocities is increased by ∼30 per cent in our analysis (at the median
edshift) compared to JLA. In the right-hand panel of Fig. 5 , we
ompare the total uncertainties on the apparent magnitude (including
ll statistical and systematic uncertainties) between this work and the
LA analysis, showing that our magnitude uncertainties are generally
arger, especially at low redshifts where the new peculiar velocity
ncertainties dominate the error budget. 

.7 Choice of priors 

s al w ays in a Bayesian analysis, particular attention must be paid
o priors, especially in the present case where we are interested in
erforming not only parameter inference but also model comparison
for an o v erview of the issue, see e.g. Trotta 2008 ). 

The priors for the cosmological parameters P 1 and for the other
arameters in the hierarchical model are chosen as in Shariff et al.
 2016 ), to which we refer for fuller details. A summary is provided
n Table 1 . For the cosmographic expansion parameters P 2 , the
niform(0, 2) priors in �m 

, �� 

translate into the following non-
niform prior for the deceleration parameter q 0 = �m 

/ 2 − �� 

: 

( q 0 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

2 
3 ( q + 2) for − 2 ≤ q 0 < −1 , 

2 / 3 for − 1 ≤ q 0 < 0 , 
2 
3 (1 − q) for 0 ≤ q 0 ≤ 1 , 

0 otherwise . 

(47) 

iven that the likelihood’s support is almost entirely within the region
1.0 � q 0 � 0, we choose the slightly simplified, uniform prior q 0 ∼
niform ( −2, 1). Since the jerk j 0 and spatial curvature �κ appear in

he degenerate combination j 0 − �κ in the second-order term in the
osmographic expansion, equation ( 10 ), we adopt a uniform prior on
his combination, with ranges moti v ated by the range of physically
lausible curvature values. 
The dipole amplitude parameter, D μ, is a positive quantity for

hich the obvious choices of priors are a uniform or log-uniform
rior. The lower boundary of the former is naturally 0, while for
he latter a lower cutoff must be imposed in order for the prior to be
NRAS 514, 139–163 (2022) 
roper (i.e. normalizable). This ho we ver is problematic for the model
election outcome: as the likelihood becomes flat (i.e. insensitive
o the value of D μ) once D μ drops below a certain threshold, the
arginal posterior becomes equal to the marginal prior for arbitrarily

o wer v alues of D μ with a log-uniform prior. This has an influence
n the Bayes factor, as a larger prior range (i.e. a lo wer D μ cut-of f
n a log-uniform prior) leads to a less fa v ourable model selection
utcome for the anisotropic model. In order to a v oid this difficulty,
e choose a uniform prior on D μ itself. The upper prior cutoff is set
y the characteristic scale expected by a dipole signal. This could
e gleaned from a theoretical model, or, in a phenomenological
pproach such as ours, guided by the order of magnitude of previous
pper limits on the parameter, which is of order ∼10 −3 . Such upper
imits can ho we ver be considerably relaxed in the case of a dipole
hat is decaying with redshift, leading to upper limits of order ∼10 −1 

ven when no dipole is present (see our simulated case of Fig. 8 ). In
rder to accommodate such a scenario, we choose a uniform prior
 μ ∼ Uniform(0, 0.2). 
We choose to sample the area of the sky in a uninformative
anner since we do not have any prior belief of the directions a

ipole might be pointing to. Requiring rotational invariance on the
urface of the 2-sphere leads to a uniform distribution on the Galactic
ongitude of the dipole vector, l d ∼ Uniform(0, 2 π ) (in radians), and
 uniform distribution on the cosine of the latitude of the dipole
ector, cos ( b d ) ∼ Uniform[0, 1], with b d ∈ [0, π /2]. Flipping the
ign of b d is equi v alent to the transformation l d → l d + π mod 2 π
nd D μ → −D μ. Hence in order to co v er the possibility of a dipole
ointing in a direction in the southern Galactic hemisphere, we extend
he dipole amplitude to ne gativ e values, and therefore our prior is

odified to D μ ∼ Uniform( −0.2, 0.2). Similar considerations lead
o a prior for the dipole amplitude on the deceleration parameter
 q 0 ∼ Uniform( −30 , 30) . 
For the prior on the exponential scale parameter, S , we need to

elect a lower boundary (lest D μ becomes unidentifiable and to stop
athologies associated with S = 0), which we take to be the scale of
he lowest redshift SNe in our data, namely S = 0.01; for the upper
oundary, we take S = 0.1 as it is known that the bulk flow does not
isappear at least out to z ∼ 0.067. In summary, our prior is thus S

Uniform [0.01, 0.1]. 
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 SIMULATIONS  A N D  TESTS  O F  

E T H O D O L O G Y  

.1 Simulated data 

o test the ability of our setup to reco v er the anisotropy parameters
ithin the BAHAMAS framework, we forward simulate data from our 
odel in a similar manner to March et al. ( 2011 ), adding ho we ver

LA-like Galactic coordinates to our simulated SNe in order to 
arry out inference on a potential dipole. The fiducial values for the
arameters are listed in Table 1 . We consider a case with no dipole
 D μ = 0) and a case with a large dipole ( D μ = 0.02), pointing in the
pproximate direction of the CMB dipole and with an exponential 
cale, S = 0.026, matching the value preferred by the results of C19.
he steps to generate the simulated data are as follows: 

(i) Draw a value for the latent CMB restframe redshift, z CMB, i , for
ach SNIa. z hel is assumed to equal this CMB redshift. We draw 740
bjects at the same redshifts as the real JLA data to ensure the binning
f the data is the same when applying selection effects correction on
imulated data as it is on real data. Notice that our simulations do not
nclude the issue of peculiar velocity corrections, which are assumed 
o have already been performed. 

(ii) Compute μi ( ̂ z , � ) using the fiducial values for our chosen
osmology, whether � CDM or the Cosmographic expansion. 

(iii) Apply the dipolar modulation to the distance modulus using 
 14 ). 

(iv) Draw the latent parameters x 1 i , c i , and M i from the normal
istributions, x 1 i ∼ N ( x ∗, R 

2 
x ), c i ∼ N ( c ∗, R 

2 
c ), and M i ∼ N ( M 0 ,

res 
2 ), respectively. 

(v) Compute m Bi using x 1 i , c i , M i , and the Phillip’s relation
quation in ( 11 ). 

(vi) Draw the value of the standard deviations σx 1 i , σc i , and σm i 
, 

rom the appropriate normal distributions fitted to the errors in the 
LA data and use them to construct the 3 × 3 covariance matrix for
ach SNe as C = diag ( σ 2 

c i 
, σ 2 

x 1 i 
, σ 2 

m i 
). 

(vii) Draw the observed SALT2 parameters from ˆ x 1 i ∼
 ( x 1 i , σ 2 

x 1 i 
), ˆ c i ∼ N ( c i , σ 2 

ci ) and ˆ m Bi ∼ N ( m Bi , σ
2 
mi ). 

(viii) Apply the selection function on the colour values drawn in 
he previous step. We use the values of σ obs 

sj and c obs 
sj inferred from

he real JLA data in Section 2.4 for the redshift bins the SNIa falls in.
f a given SNIa is not selected, we cycle back to step (iv) and redraw
hat SNIa. The process ends when all 740 objects are selected. 

(ix) Generate positions for SNIa in the sky which match the 
ositions of the JLA data. The non-isotropic distribution of the data 
as an effect on our ability to constrain a dipole, so it is important to
atch the real JLA SNIa positions for a realistic simulation. 

An example of the simulated data, compared with the JLA data 
et, is shown in Figs 6 and 7 , for a � CDM realization. Some banding
f the data can be seen of the plots for σx 1 , σ c , and σm B 

. This results
rom the different surv e y components comprising the JLA data. We
an see that our simulated data does not capture this banding in the
rrors because we draw our errors from Gaussian distrib utions, b ut
his approximation has no quantitative effect on our simulations. The 
ell defined ‘stripe’ in the plot of the Galactic coordinates of the
ata is from the SDSS component of the JLA data. 
We test the ability of our method to retrieve the true fiducial values

isted in Table 1 from the simulated data under the seven different
cenarios below: 

(i) � CDM-Isotropic simulates an isotropic universe ( D μ = 0) 
rom � CDM and the inference also assumes a � CDM cosmology. 
(ii) � CDM-D simulates a dipole ( D μ = 0.02) with F ( z) = 1 from
 CDM and the inference also assumes a � CDM cosmology. 
(iii) � CDM-D-exp simulates a dipole ( D μ = 0.02) with F ( z) =

xp ( −z/ S ) from � CDM and inference also assumes a � CDM
osmology, with the additional free parameter S . 

(iv) Cosmographic-Isotropic simulates an isotropic universe 
 D μ = 0) from a cosmographic expansion and inference also assumes
 cosmographic expansion. 

(v) Cosmographic-D simulates a dipole with F ( z) = 1 from a cos-
ographic expansions and inference also assumes a cosmographic 

xpansion. 
(vi) Cosmographic-D-exp simulates a dipole ( D μ = 0.02) with 

 ( z) = exp ( −z/ S ) and inference also assumes a cosmographic
xpansion, with the additional free parameter S . 

(vii) Cosmographic-D-exp ∗ simulates data as in � CDM-D-exp 
ut the reconstruction adopts the cosmographic expansion instead. 
his serves to assess the bias in parameter reconstruction from the
osmographic expansion when the reconstruction model is miss- 
pecified. 

For each parametrization we generate 10 realizations of the data; 
ach realisation contains 740 SNIa objects to be similar in size to the
LA data. The posterior results are averaged over the 10 realizations
or each parametrization when we reconstruct the parameters in 
ection 3.2 . We do not use the Gibbs sampler of Shariff et al. ( 2016 )
or posterior sampling, but rather adopt PyMultiNest (Buchner 
t al. 2014 ), an implementation of the Nested Sampling algorithm
ultinest (Feroz & Hobson 2008 ; Feroz, Hobson & Bridges 
009 ; Feroz et al. 2019 ). The benefit is that we can also compute the
ayesian evidence which we will use for Bayesian model comparison 

n section 4.2 . 

.2 Parameter Reconstruction from Simulations 

e use BAHAMAS to construct posterior distributions (averaged over 
0 data realizations) for the set of cosmological parameters P 1 

i.e. � CDM) or P 2 (i.e. cosmographic expansion) and anisotropy 
arameters { l d , b d , D μ, S } . Although they are sampled o v er during
econstruction, SNe population parameters and SALT2 coefficients 
re numerically marginalized o v er in corner plots and not visualized
s they are not the focus of this paper. The difference between the
D marginal posterior mean (av eraged o v er realizations) and the
rue value of each parameter is displayed in Table 2 . We observe
hat in all cases except for the scenario Cosmographic-D-exp ∗
he difference is a fraction of a standard deviation, hence entirely
ithin realization and sampling noise. The model misspecification 
f Cosmographic-D-exp ∗, ho we ver, does lead to shifts of up to ∼1.4 σ
n the reconstructed cosmographic parameters, a reflection of the fact 
hat the data have been generated under a different model, namely
 CDM, than has been assumed in the reconstruction. Ho we ver, the

ifference for the anisotropy parameters remains below 0.5 σ . 
It is instructive to investigate the expected constraints on the 

ipole amplitude when the simulated data are from a isotropic 
ni verse (scenario � CDM-Isotropic), sho wn in Fig. 8 . The 1-sided
5 per cent upper limit we can place on D μ for this simulated data
s D μ ≤ 8.08 × 10 −4 (left-hand panel). When ho we ver we introduce
he additional freedom of an exponential scale parameter S , the
onstraints in D μ degrade by two orders of magnitude, as a small
alue of S confines any anisotropy to very small redshifts where
he statistical power of our data is small and therefore degenerate 
ith many values of D μ which leads to the entire prior space on D μ

eing well explored right up to the prior edge (right-hand panels of
MNRAS 514, 139–163 (2022) 
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Figure 6. Simulated SNIa data generated using the JLA data set as a reference point. The simulations assume a � CDM model and no anisotropy in the distance 
modulus for the left most model. A dipole of value D μ = 0.02 is present for the second plot. The third plot also has this value of the dipole, but restricted to a 
local scale ( z ∼ 0.1) by multiplying the dipole term by the function F ( z) = e xp ( −z/0.026). F or this third plot, the redshift has been truncated to only show the 
redshift range where the dipole is noticeable. 

Figure 7. Simulated SNIa data generated using the JLA data set as a reference point, assuming � CDM as a fiducial model: distribution of colour ( c ), stretch 
( x 1 ), and the respective standard deviation entering the observational error covariance matrix, as well as the SNIa’s sky coordinates. 

Table 2. Difference between the 1D marginal posterior mean and the true value used to simulated JLA-data, averaged over 10 data realizations each, 
�x ≡ x true − x̄ for each parameter x . In parenthesis, the difference is expressed in units of the 1D posterior standard deviation. The top (middle) section shows 
the case where � CDM (Cosmographic expansion) is assumed both for the simulation and the inference; the bottom row assumes � CDM for the simulation and 
the Cosmographic expansion for the inference – a case of model miss-specification. 

Model � q 0 � ( j 0 − �κ ) ��M ��� � l (rad) � b (rad) | � D μ| ( × 10 −2 ) � S ( × 10 −2 ) 

Simulation: � CDM; reconstruction: � CDM 

(ia) � CDM-Isotropic, F ( z) = 0 – – 0.03(0.51 σ ) 0.05(0.36 σ ) – – < 1.00 × 10 −1 (2 σ ) –

(ib) � CDM-Isotropic, F ( z) = exp ( −z/ S ) – – 0.03(0.51 σ ) 0.05(0.36 σ ) – – < 4.96 × 10 −1 (2 σ ) < 9.29 (2 σ ) 

(ii) � CDM-D – – −0.02(0.19 σ ) 0.02(0.10 σ ) −0.003(0.20 σ ) −0.003(0.25 σ ) 0.036(0.13 σ ) –

(iii) � CDM-D-exp – – 0.03(0.91 σ ) 0.07(0.72 σ ) 0.02(0.20 σ ) −0.02(0.17 σ ) −0.16(0.28 σ ) −0.10(0.21 σ ) 

Simulation: Cosmographic; reconstruction: Cosmographic 

(iv) Cosmographic-Isotropic, F ( z) = 0 −0.02(0.20 σ ) 0.03(0.01 σ ) – – – – – –

(v) Cosmographic-D −0.06(0.56 σ ) 0.27(0.58 σ ) – – −0.0116(0.37 σ ) −0.003(0.26 σ ) −0.01(0.35 σ ) –

(vi) Cosmographic-D-exp −0.01(0.10 σ ) −0.05(0.14 σ ) – – −0.04(0.20 σ ) 0.01(0.08 σ ) −0.13(0.30 σ ) 0.16(0.37 σ ) 

Simulation: � CDM; reconstruction: Cosmographic 

(vii) Cosmographic-D-exp −0.11(1.05 σ ) −0.63(1.37 σ ) – – 0.11(0.60 σ ) 0.038(0.37 σ ) −0.128(0.44 σ ) −0.165(0.24 σ ) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/1/139/6577136 by Sissa user on 29 August 2023

art/stac1223_f6.eps
art/stac1223_f7.eps


Anisotropy constraints from SNIa 153 

Figure 8. Posterior distributions from simulated JLA-like data, averaged over 10 data realizations. The simulations assume a � CDM isotropic universe ( D μ = 

0); the reconstructions allow for a dipole in the distance modulus with F ( z) = 1 (left) and F ( z) = exp ( −z/ S ) (right). Contours in 2D plots enclose joint 1 σ , 
2 σ , and 3 σ highest posterior density (HPD) credible re gions; the v ertical dashed line in the 1D marginals for D μ and S delimits the 2 σ upper limit. Notice the 
different scales in the axis of D μ between the two cases. 
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ig. 8 .). The 95 per cent upper bound becomes D μ < 4.36 × 10 −2 

nd S < 4.56 × 10 −2 . Qualitatively similar results apply for the
osmographic expansion. 
The abo v e simulations do not include colour-based selection 

ffects for simplicity. A simulation study including colour-based 
election appears in Appendix A (see Fig. A2 ) and shows that
veraging the posterior distributions across replicates yields 2D and 
D marginal distributions that are centered on the true values of the
arameters. 

 RESULTS  

.1 Parameter Inference 

e begin by presenting the impact of our new treatment of peculiar
elocities and colour selection effects correction on the constraints 
n �m 

, �� 

for the case of an isotropic universe, as shown in Fig. 9 .
n the left-hand panel, we compare the constraints using the old JLA
eculiar velocities and z CMB as in Betoule et al. ( 2014 ) (green) to the
nes obtained using our new, group-corrected values of the CMB rest- 
rame redshifts (blue), and additionally replacing the JLA peculiar 
elocities with our newly derived ones (orange). The constraints 
n the parameters of our models from JLA data are summarized in
able 3 , for both the � CDM model and the Cosmographic expansion.
n the top section we also investigate the impact of our newly
eri ved v alues for z CMB , peculiar velocity corrections and colour-
ased selection effects on �m , �� 

constraints in an isotropic universe. 
tarting from the same treatment as Betoule et al. ( 2014 ), we find
m = 0.306 ± 0.087, in good agreement with the value in Betoule 

t al. ( 2014 ), �m = 0.295 ± 0.034 but with significantly larger
ncertainty, perhaps on account of the different statistical approach. 
hen replacing the CMB rest-frame redshifts used in Betoule et al. 
 2014 ) with the ones presented here, we find �m = 0.253 ± 0.089, a
hift of about half a standard deviation according to our uncertainty,
ut of 1.5 σ in units of the standard deviation quoted by Betoule et al.
 2014 ). The effect of using the new peculiar velocity corrections (with
heir newly derived associated covariance matrix) while maintaining 
he value of CMB rest-frame redshift from Betoule et al. ( 2014 )
esults in a more modest shift, �m = 0.297 ± 0.089 (case 2M ++ ,
ld z CMB ). When using both the new redshift values and our newly
eriv ed peculiar v elocity corrections in combination, we obtain �m =
.273 ± 0.090. All these results do not use our new colour-based
election effects corrections; once those are included, the constraint 
n the matter density shifts back to a value close to the original
LA analysis, namely �m = 0.290 ± 0.091 (but notice the larger 
ncertainty on our result). 
In the right-hand panel of Fig. 9 , we observe a shift in the posterior

o wards lo wer �� 

and larger �m when adding the systematic 
ovariance matrix (including our new peculiar velocity covariances) 
o the statistical covariance matrix, as already noticed by Shariff et al.
 2016 ). Further adding the correction for colour selection effects
hifts the posterior only slightly. 

The second section of Table 3 presents our constraints on the
istance modulus dipole parameters, also comparing the impact 
f using the colour selection effect correction (as indicated in the
hird column), which is found to be quite minor on all constraints.
osterior 1D and 2D distributions are shown in Fig. 10 for the � CDM
odel and in Fig. 11 for the Cosmographic expansion. The posterior

istribution for the dipole | D μ| in the left-hand panel of Fig. 10 for
he � CDM model with F ( z) = 1 peaks at 0, and we set a 1-tailed
5 per cent upper bound of | D μ| < 5.93 × 10 −4 (95.45 per cent
robability) – a factor of ∼2 tighter than the limits derived by Lin
t al. ( 2016a ) from the same data, namely | D μ| < 1.98 × 10 −3 (see
able 4 ). The dipole direction is correspondingly unconstrained. 
MNRAS 514, 139–163 (2022) 
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M

Figure 9. Impact of our new treatment of peculiar velocities and colour selection effects correction on the constraints on �m , �� 

for the case of an isotropic 
universe. Left-hand panel: comparison of marginal posteriors �m , �� 

using the old JLA peculiar velocity uncertainties and z CMB (green) to the ones obtained 
using our new, group-corrected values of the CMB rest-frame redshifts (blue), and additionally replacing the JLA peculiar velocity uncertainties with our newly 
derived ones (orange). Right-hand panel: posterior using only the statistical covariance matrix (green), adding the systematic covariance matrix (including our 
new peculiar velocity covariances, blue) and further adding colour selection effects corrections (orange). In this panel, we adopt our newly derived, group-corrects 
CMB rest-frame redshifts. 
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In the second case, shown in the right-hand panel of Fig. 10 , a
cale function of the form F ( z) = exp ( −z/ S ) is used to constrain the
ipole to local region. As expected from our simulations, we find a
e generac y between the dipole parameter and its scale, whose effect
s to degrade the upper limits on the dipole amplitude to | D μ| <
.05 × 10 −2 for the � CDM case. We can see | D μ| is well explored
gain, right up to its prior edge because of this de generac y, which
ontributes to these weaker constraints. The limits on the dipole scale
 are also weak, with the 1D marginal distribution stretching all the
ay to the prior boundary ( S = 0.10), but peaking near the lower
rior boundary. The very weak preference for a non-zero dipole (seen
n the peak away from 0 in the 1D marginal distribution) could be
n indication of a residual effects of the bulk flow, which points
roadly in the same direction as the more prominent peak in the
 d posterior distribution. Such departures from perfect isotropy are
eak, and not dissimilar from what we observed in our isotropic
niverse simulations (Fig. 8 , right-hand panel) – hence they can
e easily ascribed to the result of random noise. With regards to
onstraints on cosmological parameters, with respect to the � CDM-
sotropic case, we observe only a very mild shift in their value as a
onsequence of the introduction of a potential dipole in the model,
 ��M 

| = 0.005 and | ��� 

| = 0.006. Both are shifts of less than 0.1
tandard deviations of the posterior, and are similar in scale for the
ase with F ( z) = 1. A similar result is seen in the Cosmographic case
ith | � q 0 | = 0.009 which is also quite minor relative to the posterior

tandard deviation. 
For the isotropic Cosmographic expansion, the posterior mean for

he deceleration parameter increases from q 0 = −0.352 ± 0.092
hen using the old PSCz velocity corrections and z CMB to q 0 =
0.302 ± 0.090 when updating both velocity corrections and CMB

est-frame redshifts to the ne w v alues we derived here (the error
ndicates the standard deviation of the posterior, not the uncertainty
n the mean). When introducing the possibility of a dipole, the
osterior mean for q 0 ho v ers around −0.30, depending on the dipole
odel and whether we adopt the colour selection effects corrections.
hese values are quite a bit larger than the expectation under � CDM,
amely q 0 = −0.55, but not as large as the results reported in table 2
f Colin et al. ( 2019b ) ( q 0 = −0.157 in our notation), who ascribed
NRAS 514, 139–163 (2022) 
he shift of the deceleration parameter towards 0 to evidence for an
nisotropic universe. Our analysis (with its improved treatments of
eculiar velocities and colour selection effects) disagrees with those
onclusions: the marginal posterior probability (obtained from our
osterior samples, not a Gaussian approximation to the posterior)
or q 0 ≥ 0 (i.e. no acceleration) for the F ( z) = 1 case with selection
ffects corrections and a distance modulus dipole is 9.3 × 10 −4 . We
eturn on this question from the point of view of Bayesian model
omparison in Section 4.2 . 

The constraints on the dipole parameters for the Cosmographic
xpansion model are qualitatively similar to those presented for the
 CDM model, as shown in Fig. 11 and detailed in the central two

ections of Table 3 . For the F ( z) = 1 case, the posterior dipole
mplitude peaks at 0 and we set a 95 per cent upper limit | D q 0 | <
 . 32 × 10 −4 . There is no significant evidence for a dipole moment
n the Cosmographic expansion case under our data and models. A
ualitatively similar picture holds for the F ( z) = exp ( −z/ S ) case,
lbeit with weaker limits on the dipole amplitude owing to the
e generac y with the scale parameter S . 
For a more direct comparison with the results of C19, we have also

nvestigated the same model as C19, where the dipole modulation is
pplied to the deceleration parameter q 0 , as in equation ( 15 ), rather
han to the distance modulus μ. Differently from C19, we did not
emo v e the bias corrections to the magnitude, we kept the direction
f the dipole free (as opposed to being fixed in the CMB dipole
irection), used our new peculiar velocity corrections and CMB rest-
rame redshifts (as opposed to heliocentric redshifts) and applied our
ew colour selection effects. The resulting posteriors are shown in
ig. 12 and constraints presented in the bottom section of Table 3 . 
We see qualitatively similar results to the case where we model

he dipole on q 0 in the Cosmographic e xpansion. F or the F ( z) = 1
ase, the posterior dipole amplitude again peaks at 0 and we set a
5 per cent upper limit | D q 0 | < 6 . 29 × 10 −2 . A qualitatively similar
icture holds for the F ( z) = exp ( −z/ S ) case with a preference for a
mall S value. This is in contrast with Colin et al. ( 2019b ), who saw a
reference of a scale value S = 0.0262, a likely consequence of their
emoval of peculiar velocity correction and the use of heliocentric
edshifts. 
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M

Table 4. Comparison of our results with previous searches for a dipolar modulation. We only include comparable results that utilize the ‘dipole fitting’ approach 
(as opposed to the ‘hemisphere comparison’ method). Reported detections (at higher than 95 per cent significance) are highlighted in boldface. The third column 
‘ v pec corr’ states whether peculiar velocity corrections were adopted, and if so from which data set they were derived. It should be noted here, previous significant 
detections involved data that had no peculiar velocity corrections. 

Reference Data v pec corr l d (deg) b d (deg) Dipole amplitude Quantity modulated 

Cooke & Lynden-Bell ( 2010 ) Union None 309 43 0.14 ± 0.12 d L 

Lin, Li & Chang ( 2016b ) Union2.1 None 171 . 8 + 42 . 0 
−42 . 0 9 . 9 + 20 . 3 

−20 . 3 0.160 ± 0.115 �m 

Mariano & Perivolaropoulos ( 2012 ) Union2 None 309 + 18 
−18 −15 . 1 + 11 . 5 

−11 . 5 (1.3 ± 0.6) × 10 −3 μ

Yang, Wang & Chu ( 2014 ) Union2.1 None 307 . 1 + 16 . 2 
−16 . 2 −14 . 3 + 10 . 1 

−10 . 1 (1.2 ± 0.5) × 10 −3 μ

Wang & Wang ( 2014 ) Union2.1 + GRB None 309 . 2 + 15 . 8 
−15 . 8 −8 . 6 + 10 . 5 

−10 . 5 (1.37 ± 0.57) × 10 −3 μ

Lin et al. ( 2016a ) JLA PSCz 316 + 107 
−110 −5 + 41 

−60 < 1 . 98 ×
10 −3 (95 per cent ) 

μ

Sun & Wang ( 2018a ) Union2.1 None 309 + 15 . 5 
−15 . 7 −8 . 9 + 11 . 2 

−9 . 8 (1.46 ± 0.56) × 10 −3 μ

Sun & Wang ( 2018a ) Constitution None 67 . 0 + 66 . 5 
−66 . 2 −0 . 6 + 25 . 2 

−26 . 3 (4.4 ± 5.0) × 10 −4 μ

Sun & Wang ( 2018a ) JLA PSCz Unconstrained Unconstrained Unconstrained μ

Sun & Wang ( 2018b ) Pantheon 2M ++ 329 + 101 
−28 37 + 52 

−21 (3 . 7 + 2 , 5 −3 . 7 ) ×
10 −4 (95 per cent ) 

μ

Zhao et al. ( 2019 ) Pantheon 2M ++ 306 . 00 + 82 . 95 
−125 . 01 −34 . 20 + 16 . 82 

−54 . 93 < 1 . 16 ×
10 −4 (95 per cent ) 

μ

This work JLA 2M ++ Unconstrained Unconstrained < 5 . 93 ×
10 −4 (95 per cent ) 

μ, F ( z) = 1 

This work JLA 2M ++ Unconstrained Unconstrained < 1 . 05 ×
10 −2 (95 per cent ) 

μ, F ( z) = exp ( −z/ S ) 

Colin et al. ( 2019b ) JLA None 264.021 (fixed) 48.253 (fixed) −8 . 03 + 2 . 05 
−2 . 05 q 0 , F ( z) = exp ( −z/ S ) 

Rubin & Heitlauf ( 2020 ) JLA None 264.021 (fixed) 48.253 (fixed) −8 . 65 + 2 . 2 −2 . 6 q 0 , F ( z) = exp ( −z/ S ) 

Rubin & Heitlauf ( 2020 ) JLA PCSz 264.021 (fixed) 48.253 (fixed) −1 . 1 + 3 . 2 −3 . 4 q 0 , F ( z) = exp ( −z/ S ) 

This work JLA 2M ++ Unconstrained Unconstrained < 6.32 × 10 −2 

(95 per cent ) 
q 0 , F ( z) = 1 

This work JLA 2M ++ Unconstrained Unconstrained < 13.68 (95 per cent ) q 0 , F ( z) = exp ( −z/ S ) 

Figure 10. Posterior inference allowing for a distance modulus dipole from JLA data, assuming the � CDM model with F ( z) = 1 (left) and F ( z) = exp ( −z/ S ) 
(right), including colour-based selection effects correction. Contours in 2D plots enclose joint 1 σ , 2 σ , and 3 σ HPD credible regions; the vertical dashed line in 
the 1D marginals for D μ and S delimits the 2 σ upper limit. 
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Figure 11. Posterior inference allowing for a distance modulus dipole from JLA data, assuming the Cosmographic expansion model with F ( z) = 1 (left) and 
F ( z) = exp ( −z/ S ) (right), including colour-based selection effects correction. Contours in 2D plots enclose joint 1 σ , 2 σ , and 3 σ HPD credible regions; the 
vertical dashed line in the 1D marginals for D μ and S delimits the 2 σ upper limit. 

Figure 12. Posterior inference allowing for a distance modulus dipole from JLA data, assuming the Cosmographic expansion model with F ( z) = 1 (left) and 
F ( z) = exp ( −z/ S ) (right), including colour-based selection effects correction. Contours in 2D plots enclose joint 1 σ , 2 σ , and 3 σ HPD credible regions; the 
vertical dashed line in the 1D marginals for D q 0 and S delimits the 2 σ upper limit. The dipole here is modelled directly on the deceleration parameter rather 
than the distance modulus, similar to C19. 
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.2 Bayesian model comparison 

e compare the isotropic expansion model to the alternatives 
eaturing a dipole via Bayesian model comparison, and report the 
ifference in the log of the Bayesian evidence (i.e. the log of the
ayes factor) in Table 3 : 

 ln ( Z) = ln B D 

− ln B I , (48) 

here B I is the Bayesian evidence for the isotropic model (either
MNRAS 514, 139–163 (2022) 
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 CDM or Cosmographic expansion) and B D is the evidence for
 model featuring a dipole, with priors as in Table 1 . A value
f � ln ( Z ) < 0 indicates a preference for the isotropic model.
ccording to the Jaynes’ scale for the strength of e vidence, v alues
f | � ln ( Z ) | = 2.5(5.0) correspond to moderate (strong) evidence for
ne of the models being compared. For equal prior probability for
he models, the quantity exp ( � ln ( Z )) = B D / B I gives the posterior
dds between the isotropic and the dipole expansion models, which
re approximately 12:1 (150:1) for moderate (strong) evidence [see
rotta ( 2008 ) for details on Bayesian model comparison]. When
onsidering the numerical odds derived from the Bayesian evidence,
t is important to bear in mind that these can be very sensitive to the
hoice of prior distribution, particularly the prior on the parameters
hat only appears in the more complicated model (i.e. the model
eaturing the dipole). While we believe that our choices of prior
istributions are well justified in Section 2.7 , researchers that make
ther choices for their prior distributions may compute odds ratios
hat differ from those that we report. 

In Table 1 we only carry out pair-wise model comparisons
etween models that use the same data and same treatment of colour
election effects, for comparing models with different data and/or
ssumptions about the data generating process would be meaningless.
he evidences (and associated uncertainties) are estimated with
yMultinest , which was run with 400 live points and an evidence

olerance of 0.5. We observe that the isotropic model is fa v oured
 v er all others: in the � CDM scenario, the constant dipole model
s disfa v oured with odds ranging from 900:1 to almost 6000:1,
epending on the adoption of colour selection effects. The model
ith a dipole falling off with redshift is also disfa v oured, albeit with

maller odds ranging between 32:1 and 194:1. 
A similar pictures holds for comparison between models in the

osmographic expansion case. Here, the odds against the anistropic
odels are generally smaller than in � CDM, owing to the smaller

arameter space volume ratio between posterior and prior, which
ontrol the strength of the Occam’s razor effect in fa v our of the
sotropic model. We also note that when introducing a dipole scale
arameter S , despite the larger number of free parameters in this
odel w.r.t. the case where the dipole is constant in redshift, the
ayes factor against it is actually smaller than the constant-in-redshift
ipole case. This can be explained by noting that the introduction
f S as a free parameter leads to much less stringent limits on the
ipole amplitude because of the de generac y e xplained abo v e. Since
 itself is only weakly constrained, the Occam’s razor effect for these
wo parameters is weakened, leading to a weaker preference for the
sotropic model. As a consequence, the Cosmographic-D-Exp model
here the dipole is on the deceleration parameter is only very mildly
isfa v oured (odds smaller than 5:1) w.r.t. the isotropic model – a
onsequence of the fact that the additional parameters for this model
annot be strongly constrained, and hence the posterior odds remain
pproximately equal to the prior odds. 

As another case, we reproduce the setup used in C19, namely
emoving peculiar velocity corrections entirely, using heliocentric
edshifts [i.e. z hel instead of ̄z in equation ( 34 ), a choice that imprints
he dipole due to the Solar system’s motion on to the data, as pointed
ut by Rubin & Heitlauf ( 2020 )] and removing from the covariance
atrix all uncertainties associated with peculiar velocity corrections.

n this setup, we compare the evidence for an isotropic Cosmographic
xpansion with that of a dipolar modulation of the form F ( z) =
xp ( −z/ S ) either on the deceleration parameter, equation ( 15 ) (as in
19), or on the distance modulus, equation ( 14 ). We adopt a Gaussian
rior with a standard deviation of 10 ◦ on the dipole direction, centred
n the bulk flow direction from Boruah et al. ( 2020 ), namely l bf =
NRAS 514, 139–163 (2022) 
01 ◦ ± 4 ◦, b bf = 0 ◦ ± 3 ◦ (in excellent agreement with the results of
aid et al. ( 2020 ), obtained using the Fundamental–Plane relation,
amely l bf = 304 ◦ ± 4 ◦, b bf = 1 ◦ ± 4 ◦). When the dipole is
odelled on the deceleration parameter, as in C19, the Cosmographic

nisotropic model is still disfa v oured with respect to the isotropic one,
ith odds of approximately 17:1 ( � ln ( Z ) = −2.84 ± 0.08). Although

he anisotropic model achieves a better quality of fit by absorbing
he dipole in the data, from an Occam’s razor perspective it remains
isfa v oured due to its additional, unwarranted model complexity.
e observe a similar effect (if stronger) when the dipole is modelled

nstead on distance modulus μ, with odds of approximately 150:1
 � ln ( Z ) = 5.03 ± 0.03) in fa v our of the isotropic model. We can
epeat this comparison in the isotropic � CDM case and compare that
ith an anisotropic � CDM model with F ( z) = exp ( −z/ S ), finding
 ln ( Z ) = −4.92 ± 0.15, which again fa v ours the isotropic model
ith odds of 136:1. 
Another interesting question is the strength of evidence in fa v our

f an accelerating universe in the isotropic expansion case. The
ayes factor between the isotropic � CDM model and an isotropic
odel with no dark energy ( �� 

= 0) disfa v ours the latter with
dds in excess of 120:1 (including selection effects corrections). For
ompleteness (and to compare the abo v e Bayesian model comparison
esults with a hypothesis testing approach), we have also computed
he log-likelihood difference for the best-fitting parameter values: 

 ln ( L ) = ln ˆ L �� = 0 − ln ˆ L � CDM 

, (49) 

here ˆ L � CDM 

is the maximum likelihood value for the � CDM model
nd ˆ L �� = 0 is the maximum likelihood value for a universe with
o dark energy. We find � ln ( L ) = −6.35 (with selection effects
orrection), which we translate into a p -value using Chernoff theorem
as the hypothesis being tested, �� 

= 0, lies on the boundary of the
llowed parameter space), obtaining a p -value of 5.9 × 10 −3 for the
ypothesis that �� 

= 0. 
In the phenomenological Cosmographic expansion setting, the

ccelerating isotropic model, with a uniform prior on q 0 ∈ [ −2, 0)
s fa v oured with odds of approximately 26:1 when compared to a
oasting universe, i.e. q 0 = 0. The accelerating universe is preferred
ith odds of almost ∼1100:1 when compared with a decelerating
odel, i.e. one with a uniform prior q 0 ∈ (0, 1]. 

 SUMMARY  A N D  C O N C L U S I O N S  

e have revisited the question of a dipolar anisotropy in the
xpansion of the universe, and deri ved ne w constraints on a possible
ipolar modulation from SNIa data. Our approach builds on the
ayesian hierarchical model BAHAMAS , which has been extended

o include a new approximate correction for residual colour-based
election effects. We have also upgraded the treatment of peculiar
elocities and host galaxy redshifts from the original JLA paper, by
dopting state-of-the-art flow models constrained using the 2M ++
alaxy catalogue. Finally, we hav e impro v ed the treatment of both
tatistical and systematic uncertainties pertaining to peculiar velocity
orrections – the dominant source of error for z � 0.1 SNIa, which
re all-important for a robust, accurate and precise measurement of
nisotropy in the local expansion. 

We did not find any evidence for a deviation from isotropy, either
n the framework of � CDM or in phenomenological Cosmographic
xpansion. We placed tight constraints on the amplitude of a
ossible dipole both in the distance modulus and on the deceleration
arameter. Our upper bounds are more stringent by a factor of ∼2
han the results previously obtained from the same data sets with a
omparable approach. We note that all previous searches that have
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laimed a significant detection of anisotropy have neglected peculiar 
elocity corrections. 

We have used the framework of Bayesian model comparison to 
 v aluate the Bayes factor between models featuring a dipole and
n isotropically expanding universe (both in � CDM and in the 
osmographic expansion). We found moderate to strong Bayesian 
vidence against an anisotropic expansion. We have also e v alu- 
ted the evidence in fa v our of acceleration, finding that a non-
ero cosmological constant is preferred, using JLA SNe alone, 
y odds of 120:1, a result corroborated by a more traditional 
 -value approach based on a frequentist hypothesis test, which 
ejects �� 

= 0 with a p -value of 5.9 × 10 −3 . In the Cosmo-
raphic expansion, a decelerating universe is disfa v oured with odds
f almost 1100: 1 w.r.t. an accelerating one. We conclude that 
he preferred model remains the � CDM isotropically expanding 

odel. 
Our work does not address the important question of the so-

alled ‘ H 0 tension’ – the fact that the value of the Hubble–Lema ̂ ıtre
onstant obtained from local distance ladder measurements shows a 
ighly statistical significant discrepancy with respect to the smaller 
alue obtained via CMB anisotropies at high redshift (see e.g. 
i Valentino et al. 2021 for a re vie w). SNe type Ia, on their
wn, only provide a relative distance measurement, given the exact 
e generac y between H 0 and M 0 . Ho we ver, in combination with
alibrated distance indicators, such as Cepheid variables, they deliver 
n absolute distance scale that is used to obtain tight constraints
n H 0 , see Riess et al. ( 2021 ) for the latest results of the SH0ES
ollaboration, and Freedman ( 2021 ), who finds that calibrating SNIa 
ia the tip of the Red Giant Branch (TRGB) instead, the tension with
he CMB anisotropies-determined value is no longer significant. The 
o v el peculiar v elocity corrections presented here have potentially a
earing on this important problem, in that a change in the estimated
eculiar velocity implies a horizontal shift of the SNIa in the Hubble
iagram – potentially even correlated across several SNe. This in 
urn could affect the linear fit that gives, via the slope, the value of
 0 . While we leave the investigation of this effect to future work, we
o provide our new corrections to the JLA data publicly (see Data
vailability section at the end), so that others wishing to use it for

tudies of H 0 can do so. 
In this work we adopted the JLA compilation since we were unable

o use the most recent Pantheon sample, owing to the full covariance
atrix (including systematics) not being publicly available. We plan 

o apply our new framework, including up-to-date peculiar velocity 
orrections, to the Foundation sample (Foley et al. 2018 ; Jones et al.
019 ), together with the recent data release of the Dark Energy
urv e y (Abbot et al. 2019 ). In the near future, we expect to be
ble to obtain even tighter constraints on possible anisotropy in the 
xpansion from upcoming, larger SNIa surveys like the one that will 
e delivered by the Vera Rubin Observatory Le gac y Surv e y of Space
nd Time (LSST) (LSST Science Collaboration 2009 ). 
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PPENDI X  A :  D E R I VAT I O N  A N D  TEST  O F  

E T H O D  O F  M O M E N T S  

e present here the deri v ation of the first and second moment of
he moments generating function. We also demonstrate that our

ethod of moments correctly reco v ers the selection function from
imulations and that inference from replica of the data under the
odel is unbiased. 
Consider the distribution of the random variable C , denoting the

bserved colour within a single survey and redshift bin sj . From
quations ( 29 ) and ( 30 ), we wish to compute the moment generating
unction 

 C ( t) = 

∫ ∞ 

−∞ 

e t ̂ c f C ( ̂ c )d ̂ c (A1) 
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p( I = 1 | �, � ) 
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e t ̂ c . 
1 √ 

2 πσ 2 
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sj 
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d ̂ c , (A2) 

here σ 2 ≡ R 

2 
c + σ 2 

ˆ c , and σ ˆ c is the average measurement noise for
olour observations (which we approximate as being the same for all
ata points in a given survey and redshift bin). 
The abo v e can be recast as: 
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2 σ
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We now compute the first and second moments, set h ( t) ≡
 

c � t + 

1 
2 σ

2 t 2 and g( t) = 

c obs 
sj 

−( c � + σ 2 t) √ 

σ 2 + σ obs 
sj 

2 . A dash ( 
′ 
) symbol indicates a

eri v ati ve with respect to t . Hence: 
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nd 

d 2 M C( t) 

d t 2 

∣∣∣
t= 0 

= 

1 

p( I i = 1 | �, � ) 

[
h 

′′ ( t ) � ( g( t )) + 2 h 

′ ( t) � 

′ (( g( t)) 

+ h ( t ) � 

′′ ( g( t )) 
]
t= 0 

(A7) 

We derive each of the terms h ( t ) , h 

′ ( t ) , h 

′′ ( t ) , � ( g( t )) , � 

′ ( g( t )),
nd � 

′′ 
( g ( t ) e v aluated at t = 0: 

 (0) = 1 . (A8) 

 

′ (0) = h ( t )( c � + σ 2 t ) | t= 0 = c � . (A9) 

 

′′ (0) = h ( t ) σ 2 + h 

′ ( t )( c � + σ 2 t ) | t= 0 = σ 2 + c 2 � . (A10) 

o determine � 

′ 
( g ( t )) and � 

′′ 
( g ( t )) we use the Leibniz rule for

ifferentiating under an integral (the CDF). As a reminder, our CDF
s from the integral of N x (0 , 1) from −∞ up to g ( t ) with c obs 

sj and
obs 
sj used to control the width as opposed to the normal distribution
yperparameters. This gives: 

 ( g( t = 0)) = 

∫ g(0) 
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2 π
.e −
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2 x 
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d x (A11) 

 

′ ( g( t = 0)) | = 
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(A12) 
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sj 
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(A14) 

here g(0) = 

c obs 
sj 

−c � √ 

σ2 + σobs 
sj 

2 
and g ′ ( t) | t= 0 = − σ2 √ 

σ2 + σobs 
sj 

2 
| t= 0 =− σ2 √ 

σ2 + σobs 
sj 

2 
. 

inally, 
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2 π
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2 g( t) 2 g ′ ′ ( t) | t= 0 (A15) 
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2 g( t) 2 ( g ′ ′ ( t) − g ( t) g ′ 2 ( t)) 
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t= 0 

. (A16) 

iven that, g 
′ ′ 
( t ) | t = 0 = 0, this reduces to 

 

′′ ( g ( t)) | t= 0 = − 1 √ 

2 π
.e −

1 
2 g(0) 2 ( g (0) g ′ 2 (0)) . (A17) 
his leads to the first and second moments: v
d M C ( t) 
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(A18)
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c obs 
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( σ 2 + σ obs 
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⎟ ⎠ 

(A19) 

here the normalization constant is given by equation ( 28 ). 
We tested our method of moments to reconstruct the selec- 

ion function on a suite of simulations, with c � = 0.0, R c =
.1, and three different choices of selection function parameters: 
 c obs 
sj , σ

obs 
sj } = { [ −0 , 1 , 0 . 02] , [ −0 . 1 , 0 . 10] , [0 . 0 , 0 . 06] } , chosen the

pan the parameter space of interest in our application. We show
he results of the reconstructed selection function for N sj = 30,
0, 200 (from top to bottom) in Fig. A1 . The results show that
he reconstruction, when averaged over realizations, is extremely 
lose to the underlying true selection function, thus validating the 
ethod. 
We tested parameter inference in the presence of residual colour- 

ased selection effects data simulated according to the method 
resented in Section 3.1 , with colour-based selection effects as 
escribed in Section 2.4 , with selection function parameters for each
urv e y being: 

SDSS = { ( −0.5, 3.4), ( −0.5, 0.57), ( −0.35, 0.29), (0.20, 0.20),
0.20, 0.20) } , 

SNLS = { (0.20, 0.20), ( −0.50, 1.17), (0.14, 0.17), ( −0.06, 0.13),
 −0.18, 0.14) } , 

Low- z = { ( −0.50, 2.95), ( −0.50, 4.47), (0.09, 0.01), (0.017,
.01) } , 
HST = { ( −0.01, 0.12) } , where each tuple gi ves the v alues of

 c obs 
sj , σ

obs 
sj ) in order from lowest redshift bin to highest within each

urv e y. In the reconstruction, we estimate the selection function
arameters as described abo v e, and present 1D and 2D marginal
osteriors on all parameters in Fig. A2 . The posterior distributions
ave been av eraged o v er N = 100 replicas. We observe that the
osterior for all of the parameters has a mode very close to the true
alue, thus validating our methodology. 
MNRAS 514, 139–163 (2022) 
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Figure A1. Reconstructions of the selection function from the two first moments of the moment generating function from simulated data: we show three 
representative choices for the selection function parameters, c obs 

sj , σ obs 
sj (columns) and three different sample sizes (SNe per bin, N sj = 30, 50, 100, top to bottom 

in rows). Blue lines are the individual reconstruction from each of N sim 

= 100 simulations; dashed green is the mean reconstruction averaged over realizations, 
and solid red is the true selection function. 
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Figur e A2. Posterior mar ginal distributions on simulated data with colour-based selection effects, and a simulated dipole, av eraged o v er N = 100 data 
realizations. The posterior includes a correction for colour-based selection effects according to our method. Vertical lines give the true value of the parameters. 
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