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1 I N T R O D U C T I O N

This thesis deals with the physics of impurities in a host system. The term
”impurity” is here used in a broad sense to identify a ”simple” system, such
as a particle, that is distinguishable from the environment in which it is em-
bedded. Impurity problems have been a workhorse of condensed matter
physics since its early decades, because they involve very general questions
of both conceptual and practical importance. They also played a pivotal role
in one of the major developments of the discipline, namely the first appli-
cation of renormalisation group ideas by P.W. Anderson [2] to the Kondo
model.

A very natural question one can ask about an impurity is how its proper-
ties (e.g. mass) are modified by the interaction with the environment. This is,
for instance, the core of the very prolific field of polarons [22, 66], which aims
to describe the electric transport properties of polar crystals. In these sys-
tems, it is argued that the interaction of the electrons with the dynamic po-
larisation of the ionic lattice (described in terms of its quantised vibrations—
phonons), gives rise to a new quasiparticle, the above-mentioned polaron,
which is actual the carrier of electric charge. This topic has had a long and
successful history, dating back to the work of L.D. Landau [57] and of Lan-
dau and S.I. Pekar [56], and then developed by many others. The relevant
feature of polaron theory is that it deals with impurities that are allowed to
move within their environment. This is a situation that is frequently encoun-
tered in disparate physical systems, from the above-mentioned ionic solids
to 3He atoms in liquid 4He and to diffusion of fast particles in metals [79].
A long-debated question for these systems is whether the polaron can be-
come localised (i.e. with a diverging effective mass) for a sufficiently strong
coupling [25, 30, 90].

A second line of research analyses the properties of systems hosting im-
mobile impurities, often endowed with some kind of internal degree of free-
dom (e.g. spin). For this second kind of impurities, the most frequent kind
of investigation takes the opposite perspective: how does the presence of
impurities affect the properties of the host system, that is, the environment1?
This is a very practical question, since most2 system samples naturally and
unavoidably host foreign atomic species, i.e the impurities. In this scenario,
the basic focus is on the transport properties of the environment. While the
obvious effect of impurities is to hinder transport, i.e. augmenting the re-
sistance of the environment, there may be unexpected effects, as in what is
arguably the most famous impurity problem in condensed matter physics—
the Kondo problem [1, 43, 66]. This problem emerged in the 1930’s with

1 Nonetheless, the enquiry about the modification of the properties of fixed impurity can be a
very active line of research, as in spin-boson models and the like [61].

2 There are nowadays exceptionally clean systems, both solid-state [32] but especially in the
field of ultracold atoms [9, 62].
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the experimental study of the resistance properties of nonmagnetic metals
doped with magnetic impurities [43], in which it was found that below a
certain temperature the electric resistance unexpectedly increased with de-
creasing temperature. This unusual behaviour was explained by J. Kondo
[52] with a model that featured a gas of noninteracting fermions (the con-
duction electrons) scattering off a single spinful, immobile impurity because
of an antiferromagnetic interaction. The peculiar properties of this model,
and the theoretical challenges that it posed, stimulated many other studies,
including the above-mentioned paper by Anderson [2].

Another aspect of impurity problems which is relevant for this work is
the so-called orthogonality catastrophe (OC). This phenomenon was first no-
ticed by P.W. Anderson [3], in an immobile-impurity setting. He pointed
out that if a fixed scattering centre is introduced within a metal (such as
a positively charged ion created by an X-ray), the new ground state of the
conduction sea is orthogonal to the one without the scattering centre when
the thermodynamic limit is taken. In particular, the overlap between the two
decreases as a power-law N

-�/2 of the number of electrons N. This is a
genuinely many-body phenomenon: the wave function of each electron is
subjected only to a small modification, but the cumulative effect is a vanish-
ing overlap between the many body states. It is also quite general, occurring
both in fermionic and bosonic systems (see, for instance, refs. [24, 40, 76]),
albeit it is much more commonly analysed in the former case. Of course, the
functional form of the decay of the overlap for a growing number of particles
depends on the type of system, impurity and interactions—the power law
being the most common case for fermions.

The OC plays a central role in another area of impurity problems which is
of interest here, namely the physics of absorption spectra of X-rays [31, 33,
66], in which the scattering centre is the immobile hole in a core atomic state
that is left after the ionisation caused by the absorption of an X-ray photon.
It is in this context that the name ”catastrophe” emerged (also in the alter-
native name of X-ray catastrophe), because the naive expectation was that
the amplitude for the absorption should have been the overlap between the
ground states before and after the creation of the hole, which is vanishing,
however—hence, the transition should be forbidden. The resolution of the
paradox lies in the observation that in this context the OC has to be seen as
a dynamical phenomenon: the impurity (the hole) is suddenly injected into
the environment (the conduction electrons), and the subsequent excitation
of particle-hole pairs allows the conduction sea to relax. However, the or-
thogonality of the two ground states (before and after) is manifested in the
very slow relaxation, which actually takes place only in an infinite amount
of time.

A convenient quantity to measure this effect is the return amplitude3 [31,
33, 51, 66]

L(t) = h⌦|de-iHVtd
†|⌦i , (1.0.1)

in which d, d† are the annihilation and creation operators of the impurity,
|⌦i is the ground state of the system without the impurity, and HV is the

3 Throughout this thesis we will set the reduced Planck’s constant to one,  h = 1, unless noted
otherwise.
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Figure 1.1: Schematic depiction of the effect of the orthogonality catastrophe on
the X-ray absorption spectrum A(!): the naive prediction of a step
function (dashed, blue) is suppressed in a power-law fashion near to
the threshold "d (continuous red line).

Hamiltonian of the system in the presence of the hole. We assume is has
the form HV = H0 + d

†
dV , where H0 is the Hamiltonian of the system

without the impurity and V is the operator describing the scattering of the
environment states off the hole. The squared absolute value of L(t) is the
fidelity of the initial state, namely the probability of returning to the initial
state at a time t after the creation of the hole, which is assumed to happen at
t = 0. For brevity, we will also call L(t) the fidelity. For the problem at hand,
this quantity coincides, up to a global phase, with the Loschmidt echo4 [35]

L(t) ⌘ h⌦|deiH0te-iHVt
d
†|⌦i (1.0.2)

and to the retarded Green’s function [1, 42, 66]

G(t) ⌘ -i✓(t) h⌦|d(t)d†|⌦i (1.0.3)

for t > 0. In the above equations, d(t) is the time-evolved annihilation op-
erator in the Heisenberg picture, and ✓(t) is the Heaviside step function.
The two quantities (1.0.2) and (1.0.3) correspond to two conceptually differ-
ent ways to assess the time evolution of the system, which in the present
case give the same object. The Loschmidt echo compares [35] the interacting
time-evolved state e-iHVt

d
† |⌦i with the evolved state in the absence of the

interaction with the hole5, e-iH0td† |⌦i. The Green’s function is a funda-
mental object for perturbation theory, and corresponds to the hypothetical
procedure of probing the system by introducing the hole and removing it at
a later time.

Whatever the quantity one chooses to measure, the main result is that at
a sufficiently long time [31, 33, 66, 86]

|L(t)| ⇠ t
-� , (1.0.4)

where � is related to the scattering phase against the impurity, and it is the
same exponent regulating the decay of the overlap of the ground states with
the system size. The equation above shows the dynamical manifestation of

4 As with the fidelity, the actual Loschmidt echo is the squared absolute value of the quantity
reported.

5 Of course, the hole creation operator has to be present in order for the overlap ti be nonzero,
but it has no effect on the evolution induced by H0.
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the OC: the system relaxes very slowly to the introduction of the impurity,
without an intrinsic timescale. As the X-ray absorption spectrum is related
to the Fourier transform of L(t), the effect of the dynamical OC is that the
spectrum amplitude close to the threshold for absorption becomes rounded
to a power-law behaviour in frequency, growing from zero instead of jump-
ing to a finite value6 [66]. In other words, the OC inhibits the absorption.
This is illustrated schematically in figure 1.1.

In general, the existence of the OC depends both on the environment and
on the impurity. It is typical of gapless environments, in which there is
plenty of low-energy modes to be excited. In particular, the phase space for
scattering with the impurity must allow for a significant density of states
at low energy, i.e. the number of available states should not decrease too
fast with energy. This has the interesting consequence that mobile impu-
rities in two or more dimensions show no OC, in the sense that the over-
lap of the ground states does not vanish in the thermodynamic limit and
that the Green’s function tends to a finite constant, limt!+1 |G(t)| 6= 0 [79].
This is because [79, 84] the finite mass of a mobile impurity introduces a
non-vanishing recoil energy p

2
R/(2M) that limits the available phase space.

Here, pR is a relevant exchanged momentum, such as the momentum of the
particle-hole pairs excited in a fermionic environment.

However, even this limitation of phase space is not sufficient to suppress
the OC if the impurity is confined to move in one dimension (1D). Actually,
also the usual OC for fixed impurities in higher-dimensional metals is a
”disguised” 1D problem. In intuitive terms, within each angular momentum
channel, the scattering of the bath particles off the impurity involves only
the radial motion, that is, 1D motion on a half-line [31, 33, 66, 86].

The connection of the OC to 1D physics is only a facet of the rich phe-
nomenology emerging from constrained geometry. Impurities interacting
with 1D baths have enjoyed a prolonged theoretical interest, because the re-
stricted motion allows for a conceptual simplification of the problem, and
for the use of theoretical tools that are essentially unique to 1D. The most
renowned of these techniques is bosonisation [1, 12, 31, 33, 41], which is a
nonlinear mapping from chiral massless (i.e. linearly dispersing) fermions
to bosons. In many cases, such mapping allows to transform interacting
fermionic Hamiltonians to solvable, quadratic bosonic models. Bosonisation
is an exact correspondence, albeit it can be applied only for states close to the
Fermi surface, whose dispersion can be linearised7. It is thus convenient for
extracting universal, low-energy properties of 1D systems. Indeed, many 1D
fermionic and bosonic systems with short-range interactions fall in the uni-
versality class known as Tomonaga-Luttinger Liquid (TLL), which describes
a gapless state with critical (i.e. power-law) correlation function. In more
physical terms, bosonisation works because the only possible low-energy
excitations allowed by the 1D geometry are collective density fluctuations,
namely acoustic phonons—which are bosons.

6 It is also possible to observe a divergent power law behaviour, caused by exciton effects [66].
The final sign of the exponent depends on the competition between these effects and the OC.

7 A systematic inclusion of nonlinearities in the dispersion can be built on bosonisation: see
[45].
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The conclusion from the discussion in the previous paragraph is that an
advantage of working with impurities in 1D is that we have a good de-
scription of the baths, even in the case they are interacting. Moreover, the
analytic techniques provided by bosonisation can be harnessed to analyse
the properties of systems including impurities. For instance, this is the case
for static impurities, beginning from simple scattering centres immersed in
the TLL, whose effect on the transport properties of 1D systems has been as-
sessed with the language of bosonisation and renormalisation group in [48,
49] (also discussed in more didactic terms in [31, 33]). The outcome of these
studies is that even a single impurity can completely suppress conduction
if the interactions within the bath are repulsive. Also problems related to
the X-ray response have been analysed, both for TLL themselves [59, 72] and
exploiting the mapping of three-dimensional metals to 1D [86]. Analogous
considerations apply to the bosonisation treatment of the Kondo model [31,
33].

Models featuring mobile impurities embedded within TLLs have been
analysed with these techniques, from weak to strong impurity-bath coupling
and focusing either on mobility [14, 16, 55], or on the spectral properties [47,
50, 54]. Besides bosonisation, the kinematic constraints coming from the
restricted 1D motion has allowed theoreticians to tackle impurity problems
with a huge variety of techniques, among which we recall Feynman-Vernon
influence functional [11, 15, 36], approaches based on Schwinger-Keldysh
formalism and hydrodynamics [4, 28, 82], ingenious applications of semi-
classical solutions at strong coupling [13], direct integration of the equations
of motion [10], and effective field theories [79, 80]. Moreover, various in-
sights have come from a number of solvable impurity models [59, 69] and
related 1D models [29, 64] that are integrable via Bethe Ansatz. These exact
solutions have been leveraged to compute both static and dynamical proper-
ties of impurities [68, 95], and to benchmark some of the approximate meth-
ods listed above. In addition to the mainly analytic approaches mentioned
above, various flavours of Monte Carlo have been applied [38, 75]. Together
with bosonisation, another set of numerical techniques that are particularly
successful in 1D are the ones based on matrix-product states (MPS). The
MPS representation can be applied both to determine ground-state proper-
ties (through the density-matrix renormalisation group [85]) and to simulate
the dynamics [73], and has been applied to mobile impurities in 1D [46, 47,
50].

The interest in impurity problems originated in experimental solid-state
physics, and has been fuelled by the conceptual challenges they posed to
the theory. The appeal of these problems has seen a reinvigoration since the
advent of ultracold atom technologies [9, 62, 77]. These technologies allow
a high degree of control over the characteristics of the physical systems that
can be realised, and this allowed to study impurities, from different perspec-
tives, beyond those offered by traditional solid-state experiments. On the
one hand, a large set of interaction regimes can be explored even in a single
experimental setup. On the other hand, the exceptionally low temperature
and low density of ultracold gases implies that the timescales for the dy-
namics are greatly dilated, hence the time evolution can be observed. These
new experimental possibilities have stimulated a great deal of studies on
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polarons [81], both immersed in Bose-Einstein condensates (Bose polarons)
[39, 87] and in degenerate Fermi gases (Fermi polarons) [67]. The issue of
OC has seen a revived interest, as well, both in the usual fermionic setting
[51, 84] and in the bosonic one [24, 40]. In the next chapter we will provide
more details on the experimental techniques that have been used to produce,
manipulate and measure ultracold atomic systems with impurities.

The present thesis work takes inspiration from these theoretical and ex-
perimental studies. It aims to contribute to the ongoing research on impu-
rity problems with some perspectives on a little-explored model. As we
remarked above, polaron problems in 1D have been investigated in quite a
detail in theory, albeit we will see in the next chapter that they are far less
explored in experiments. We will also see that in general, experiments deal
with systems composed of many 1D baths, each one endowed with its own
impurity. Each of the latter propagates within its own bath, so that these
real systems are made of many copies of the impurity-bath system meant to
be studied. The model we analyse in this thesis takes a first step towards a
multi-bath scenario in which the impurity can actually access more than one
bath: it considers two independent 1D baths coupled to the impurity, so that
the latter can propagate along each bath but also hop from one to the other.
We will describe this model in full detail in section 2.2, and we will also
consider a more general many-baths setup in section 4.2. The model we are
proposing is thus a rather natural generalisation of the usual scenario of a
single bath, and within the reach of present experiments. Its main point of in-
terest concerns the dynamics of the impurity, namely the interplay between
longitudinal (i.e. within one bath) and transverse motion (i.e. from one bath
to the other), the former being continuous while the latter oscillatory in na-
ture. Moreover, it raises the question on the effect on the extra degree of
freedom on the usual OC that characterises the 1D motion. A similar model
has been addressed in ref. [47], but in a complementary setting in which
the impurity is confined to one of the baths, while the baths themselves are
coupled with each other by exchange of particles. A generalisation of the
spin-boson model including two different baths has been proposed in the lit-
erature, as in ref. [71], for instance. As we will see, this extended spin-boson
model is a close relative of the static-impurity limit of our model. During
our work, we became aware that the same two-bath model we are proposing
was also considered in [46], with a similar analysis of the impurity Green’s
function.

In this thesis, we considered several aspects of the impurity-baths system.
A first important point was to understand the OC in the system, and in
general the behaviour of the impurity Green’s function (1.0.3), which is ex-
perimentally relevant. The following step had a twofold purpose: we aimed
to get a picture of the dynamics of the impurity, and to obtain a more com-
plete view on its observables. As a byproduct of this effort, we were able to
look at the dynamics of the baths themselves, which is seldom done in po-
laron studies, but that is worth looking at in the context of ultracold atoms.
In our theoretical approach we tried to obtain a simple view on the very de-
manding problem of simulating the dynamics of quantum systems, keeping
the numerical efforts as low as possible. Therefore, we mainly employed var-
ious flavours of perturbation theory, which allowed us to work close to the
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continuum limit (which is crucial for a correct description of the OC) and to
access the time evolution of impurity wave packets.

This thesis is organised as follows. In the following chapter 2 we will de-
scribe some experimental setups and techniques for the realisation of impu-
rity systems with ultracold atoms in section 2.1, then we will introduce our
model in section 2.2, along with all the approximations and simplification in-
volved, and finally in section 2.3 we perform a warm-up calculation with an
integrable model, that already contains much of the physics involved in the
full model. In chapter 3 we present our results for the impurity Green’s func-
tion, obtained with the Linked Cluster Expansion (LCE). After introducing
this perturbative technique, in section 3.1 we perform a detailed asymptotic
analysis of the LCE result, in order to elucidate the physics of the system.
This analytic discussion is complemented in section 3.2 by a study of the
results obtained by numerical computation of the LCE formulae. In sec-
tion 3.3, we employ both analytic and numerical insights to investigate the
effect of the OC on the impurity spectral function. We end the chapter with
section 3.4, in which we extend the previous LCE results to baths possessing
a finite temperature, which is relevant to actual experiments.

In chapter 4 we develop a perturbative approach that allows us to have
a more comprehensive view of the impurity-baths system. We employ this
results to take the unusual perspective of looking to the time evolution of
observables describing the baths. After introducing a useful unitary transfor-
mation in 4.0.1, in section 4.1 we describe the techniques and its results. The
technical details are reported in 4.1.2, while in the following two parts we
describe analytic and numeric results for the impurity 4.1.3 and for the baths
4.1.4. In section 4.2 we extend the same approach to explore a general model
with an arbitrary number of baths. We also included some ongoing research
in appendix B, where we introduce a unitary transformation that completely
decouples the impurity from the baths, and sketch how to employ it in a
simple mean-field approach. Finally, in 5 we provide some conclusions and
outlook.

List of publications

This thesis is based on the original results presented in the following publi-
cations:

• M. Stefanini, M. Capone, and A. Silva
Motion of an impurity in a two-leg ladder
Phys. Rev. B 103 094310 (2021),

• M. Stefanini, M. Capone, and A. Silva
(Forthcoming, 2022),

and on some unpublished work that is still under development. The author
also collaborated to

• F. Caleffi, M. Stefanini, M. F. Ludovico
(Forthcoming, 2022),

whose topics will not be discussed in the present thesis.
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2 M O D E L A N D E X P E R I M E N T S

In this chapter, we make some preliminary steps before describing our work.
First, we will give a brief introduction to the experimental realisation of
impurity models with ultracold atoms. This description serves to motivate
the model that we will study, and it gives an idea on what observables can be
measured. Then, we will introduce the model that we are going to analyse
in the following chapters, and discuss the assumptions it rests on. Finally,
we will do a warm-up calculation on a solvable impurity model, that will
illustrate some important physical points.

�.� ������������ �����������

In this work, we explored a number of theoretical and conceptual issues, but
we also tried to keep in mind the possibility of realising our model in an
experiment. In fact, the model itself has been partially inspired by experi-
ments done with ultracold atoms. In this section, we give a brief account on
the experimental realisation of 1D systems with mobile and immobile impu-
rities. The author is not an experimentalist, so the account will be mostly
qualitative in nature.

Ultracold atoms have emerged as an unrivalled platform for the study
and simulation of quantum many-body physics, besides a growing number
of technological applications. As the topic has been much better detailed in
reviews [9] and books [62, 77], we will not describe the fundamental aspects
of these experimental techniques. Rather, we will concentrate on experi-
ments more relevant to impurity problems in one dimension. References [17,
74] and [70] provide paradigmatic examples on the actual realisation of this
kind of systems. In all three cases, a cloud of O

�
10

5
�

bosonic atoms (87Rb
for the first two refs., 133Cs for the last one) is first trapped and cooled to a
few hundreds of nK. Then, the three-dimensional cloud is adiabatically im-
mersed in a two-dimensional optical lattice created by two (or four) crossed
laser beams. The result is that the cloud becomes partitioned into a 2D lattice
of elongated clouds, as depicted in figure 2.1. Besides the overall, harmonic
3D confinement of the whole system, the potential provided by the optical
lattice around each site can be considered to be harmonic as well. If this
potential has oscillator frequencies in the transverse directions that are large
enough with respect to the temperature and chemical potential of each cloud,
then the atoms in the latter are actually confined to 1D. Each cloud contains
from a few tens to a few hundred atoms, depending on its position in the 2D
lattice. These atoms constitute the bath, or environment, for the impurities.
Impurity atoms can be introduced in the system in two different ways. The
first is to perform the above procedure in presence a small concentration of
another kind of atoms (41K in the case of [17], with a concentration of about

1
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Figure 2.1: Typical appearance of a cold atom setup for an impurity in a 1D bath: a
2D lattice of elongated clouds of atoms. The magnification of one cloud
shows the atoms constituting the bath as blue spheres and one impurity
atom in red.

3%) already present in the system. This setup needs some care because of
the different confining potentials seen by the two species. The whole setup
can nonetheless be adjusted so that on average there is about one impurity
atom per 1D cloud. The impurities can be addressed and manipulated by a
species-selective dipole potential, namely a laser beam that acts on the im-
purity atoms only, that is used in [17] to prepare the potassium atoms in
the centres of the baths. An important point is that during the preparation
of the system the inter-species interaction is held at a vanishing value with
the help of a magnetic field at a suitable intensity (by the well-known phe-
nomenon of Feschbach resonance [9, 21, 62, 77]). The system dynamics is
initiated by ramping up the magnetic field to the value corresponding to the
desired scattering strength between the two species.

In [74] and [70], the impurity atoms are introduced by an entirely differ-
ent method. In cold-atom experiments, usually the atoms are prepared in a
known hyperfine level, in order to control their response properties to exter-
nal magnetic fields. In [70, 74], impurities are simply a small subset of the
bath atoms driven to a different hyperfine level by a radio-frequency pulse
with frequency, size and duration suitably chosen so that only a few impu-
rities per bath are generated in the desired positions. Hence, this method
provides impurities whose individual properties (such as the mass) are iden-
tical to the bath atoms, and this is relevant because in this case there can be
interesting kinematic effects (e.g. see [28]) and exactly solvable models are
available [29]. Moreover, the different hyperfine level implies that impurities
respond differently to the confining fields, a fact is exploited in [70] and [74]
to let the impurities accelerate freely in the gravitational field.
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For either scenario of impurity creation, the impurities effectively appear
to be suddenly injected in the systems. It is possible to reconstruct the subse-
quent time evolution of both impurities and bath atoms by various imaging
techniques. The creation of a whole lattice of baths, each with its own im-
purity, means that during each run the experiments are actually observing
the dynamics of many copies of the same system in parallel, with obvious
advantages in terms of statistical analysis and increased signal-to-noise ra-
tio with respect to a single 1D subsystem. On the other hand, the various
”copies” of the subsystem are actually not perfectly identical with each other,
because of the inhomogeneous density of the initial atom cloud and of the
non-deterministic number of impurities in each bath. This is a source of
statistical uncertainty in the data.

We also mention the setup on ref. [26], in which the starting point is a
gas of O

�
10

2
�

87Rb atoms confined to form a 2D system, which is then
partitioned into a collection of parallel 1D system of O(10) atoms by turning
on a 2D optical lattice. The impurities are created by changing the hyperfine
state of a fraction of the atoms, and then they are imaged individually to
follow their time evolution. An important difference with respect to the three
references reported in the previous paragraphs is that in this experiment
both the impurity and the bath atoms move in a 1D lattice, instead of being
only subjected to the shallow confinement in the longitudinal direction.

The experimental examples presented so far all have baths composed of
bosons1. Indeed, it appears that the subject of impurities moving in 1D
fermionic baths is under-explored in experiments. For instance, the authors
of ref. [94] developed a system of an impurity and other few fermions in an
elongated trap, but their intent was to investigate the approach to the ther-
modynamic limit as the number of atoms increased, rather than observing
any impurity physics. There is nevertheless a burgeoning field devoted to
the understanding of Fermi polarons [67, 83], which studies the properties
of mixtures of fermionic species in which one is significantly more diluted
than the other. These studies, however, mainly deal with 2D or 3D systems,
in which definite polaron quasiparticles exist. The experimental investiga-
tion of fermionic systems displaying the OC is even more recent [18], but
only at the level of fixed impurities in higher-dimensional baths, which are
simpler to analyse theoretically [51]. The reason for the different levels of de-
velopment of experiments for boson and fermion 1D systems is not entirely
clear, it may be historical (as the field of Bose-Einstein condensation devel-
oped earlier than degenerate Fermi systems [9, 62]), but nowadays we are
not aware of any strong technical hindrance to the extension of the above-
mentioned techniques to fermionic systems. In any case, from a conceptual
point of view, there is little difference between bosonic and fermionic 1D sys-
tems at low energy, as both kind of systems can be described as TLLs [31, 33].
For instance, the discrepancies emerge only in certain correlation functions
[31]. In the next section we will build the model we will use throughout
this work, and we will retain only the lowest-momentum contribution to
the bath density, that does not distinguish between a fermionic or bosonic

1 Also the impurities are bosonic, but as long as their mutual interactions can be neglected,
their statistics is irrelevant for the ”single-particle” polaronic properties.
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bath. Therefore, the results we will obtain are equally applicable to bosonic
or fermionic baths.

In chapter 1 we introduced one of the main characters of the present work,
namely the OC. Besides its conceptual importance in fermionic systems, it
can be experimentally characterised by measuring either one of the equiva-
lent quantities (1.0.1), (1.0.2), (1.0.3) in real time or in frequency (i.e. their
Fourier transform). In both cases, the measurement relies on the possibility
to tune the impurity-bath interaction, and in particular on the possibility to
tune it to zero.

Let us begin with the measurement in the frequency domain, which is per-
formed via the so-called radio-frequency (RF) spectroscopy [51, 84]. Let us
name |0i the state of the impurity corresponding to zero coupling with the
bath, and |1i the state in which the coupling is finite2. The RF spectroscopy
is then a standard linear-response measurement, in which the system is sub-
jected to a weak RF field capable of switching the impurity state from |0i
to |1i and vice-versa, and the absorption amplitude of the RF signal is mea-
sured. At lowest order in the perturbing field, the absorption amplitude
for a monochromatic RF probe of frequency ! can be calculated through
Fermi’s Golden Rule [84]:

A(!) = 2⇡⌦
2
R

X

f,i

pi| hf|F|ii|2�(!- Ef + Ei) , (2.1.1)

where ⌦R is the Rabi frequency that quantifies the intensity of the incoming
field, whereas F = |0ih1|+ |1ih0| is the operator corresponding to the pertur-
bation. As usual in Fermi’s Golden Rule calculations, the sum in the above
equation runs on the initial |ii and final |fi many-body eigenstates of the
Hamiltonian describing the whole impurity-bath system, having energies Ei

and Ef, respectively, with the initial states weighted by their occupation prob-
ability pi ⌘ hi|⇢in|ii in the initial density matrix ⇢in. Calling Hin and Hfin the
initial and final Hamiltonian, and assuming that ⇢in commutes with Hin (it
could be its ground state, for instance), we can re-write equation (2.1.1) as

A(!) = ⌦2
R

Z

R

dt ei!t Tr
h
eiHinte-iHfint⇢in

i
=

= 2⌦
2
R Re

Z+1

0
dt ei!t Tr

h
eiHinte-iHfint⇢in

i (2.1.2)

If we start with the impurity in its interacting state |1i, then we obtain the
standard (or ejection) RF absorption spectrum. On the other hand, we can
start from the impurity in the noninteracting state |0i and perform the so-
called reverse (or injection) RF spectroscopy. If the bath in its ground state
|⌦i, then in the notation of the previous section Hin = H0 and Hfin = HV ,
so that

A(!) / Re
Z+1

0
dt ei!tL(t) (2.1.3)

precisely corresponds to the Fourier transform of the return amplitude. In
terms of the Green’s function (1.0.3), A(!) / - Im

R+1
0 dt ei!t

G(t), which
is nothing but the spectral function of the impurity [42, 66].

2 Refs. [51, 84] deal with immobile impurities, whose only degree of freedom is whether they
are present or absent in the system. We are following their presentation, keeping in mind
that the generalisation to mobile impurities gives the same results. See [87], for instance.
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The RF spectroscopy described in the previous paragraphs is a standard
linear response measurement, in the spirit of traditional solid state physics.
The ultracold atom setup allows for a different approach, known as Ramsey
interferometry, that is able to track L(t) in real time. Conceptually, it works
as follows [34, 51, 84]. We prepare the impurity in its noninteracting state |0i,
while the bath is in its ground state |⌦i. We begin the dynamics by applying
a ⇡/2 pulse that rotates3 the impurity state |0, 1i ! |±i = (|0i± |1i)/21/2,
so that at t = 0 we have the state (|0i± |1i)/21/2 |⌦i. The subsequent time
evolution reads

| (t)i = 1
21/2 |0i e-iH0t |⌦i+ 1

21/2 |1i e-iHVt |⌦i . (2.1.4)

After waiting the desired evolution time, a second ⇡/2 pulse is applied, and
the expectation value of �z ⌘ |0ih0|- |1ih1| is measured, yielding

h�zi = Re h⌦|eiH0te-iHVt|⌦i = ReL(t) . (2.1.5)

Alternatively, the same information can be extracted from the probability
of finding the impurity in the |0i [|1i] state, which is (1+ ReL(t))/2 [(1-
ReL(t))/2]. If the second ⇡/2 pulse also adds a known phase |0, 1i ! |±i =
(|0i± ei' |1i)/21/2, then h�zi = Re[ei'L(t)] and the whole complex L(t) can
be measured.

The use of these two techniques (RF spectroscopy and Ramsey interfer-
ence) for the characterisation of the OC in fermionic systems have been
experimentally demonstrated in ref. [18] for the case of 40K impurities im-
mersed in a cloud of 6Li. This setup is an example in which the both the
particles of the bath and the impurities are fermions. However, the large
mass ratio between the two species was chosen so that the impurities could
be considered immobile, and the whole system was three-dimensional.

�.� ���������� �� ��� �����

In this section we define our model and the main assumptions and approxi-
mations behind it.

Figure 2.2 illustrates the system we want to analyse. We consider a pair
of parallel, one-dimensional (1D) wires, or baths, made of spinless fermions
(or bosons). These particles interact among themselves within each bath,
but otherwise the two subsystems are independent of each other4. Then, we
consider a spinless impurity that interacts locally with the particles of the
baths, and that is allowed to move within the wires, or to tunnel from one
to the other. As we remarked in the introduction, this model represents a
generalisation of the well-studied single-bath problem. From the perspective
of experiments with ultracold atoms, it can be seen as a ”building block” for
the many-baths setup, but it can also be realised directly by confining the
atoms in a double-well potential [37, 44].

3 For the procedure to give clean results, the ⇡/2 pulse should be fast enough so that the bath
state is not affected by it, a requirement that may be not trivial in an actual experiment.

4 This model is thus complementary to the ones analysed in refs. [47] and [46], where the baths
can exchange particles.
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Figure 2.2: The system under analysis is composed of a particle (an impurity)
which is able to move through a ladder, whose legs host two indepen-
dent fermion baths inter-acting with the impurity

The Hamiltonian has the generic form

H = Himp +Hbath +Hc , (2.2.1)

where the three terms describe the free impurity, the baths and the impurity-
bath coupling, respectively. The impurity motion can be thought of as taking
place on a ladder, with a free Hamiltonian

Himp = 2Jk
X

j�

d
†
j�dj� - Jk

X

j�

(d†
j+1,�dj,� + h.c.)- J?

X

j�

d
†
j�̄dj� , (2.2.2)

where dj� is the annihilation operator for a fermion at site j along the bath
� 2 {", #}:

{dj�,dj0�0} = {d†
j�,d†

j0�0} = 0, {dj�,d†
j0�0} = �j�,j0�0 (2.2.3)

We choose the impurity to be a fermion, but all subsequent results equally
apply to a bosonic impurity, because statistics is irrelevant for a single par-
ticle. The matrix elements Jk and J? are the hopping amplitudes along and
between the chains, respectively. We will assume that the inter-bath hopping
J? is (much) smaller than the intra-bath one Jk, but this is not a crucial as-
sumption. We take the length of the system to be L = Na (a being the lattice
spacing), and we work in periodic boundary conditions (pbc), both for the
impurity and the baths. The choice of working on a lattice is only a matter
of theoretical convenience. Indeed, we will consider the low-momentum be-
haviour of the system, for which a continuum description applies. Hence,
our conclusions are not altered by the presence of a lattice. In the long-
wavelength limit the impurity dispersion is parabolic5:

E(p) =
p
2

2M
, (2.2.4)

of course, with a mass M = 1/(2Jka
2). We can write a continuum Hamilto-

nian

Himp =
X

�

Z
dx [d†

�(x)E(-i d/dx)d�(x)- J?d
†
�̄(x)d�(x)] , (2.2.5)

5 We use units such that  h = 1
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where d�(x) ⌘ dj�/a
1/2, x = ja. The impurity Hamiltonian (2.2.2) can be

diagonalised by going to the momentum space,

dj� =
1

N1/2

X

p

eipaj
dp� , (2.2.6)

and then forming the even (e) and odd (o) modes

dp,µ=e/o ⌘ 1
21/2 (dp" ± dp#) ) Himp =

X

pµ

�pµd
†
pµdpµ , (2.2.7)

(which is nothing but a Fourier transform in the transverse direction), where
the labelling refers to the parity of the corresponding impurity states with
respect to the exchange of the bath index. Thus, the noninteracting impurity
has two bands (even and odd, or bonding and anti-bonding)

�pµ = E(p)- µJ? , (2.2.8)

separated by a gap 2J?. We introduce the shorthand notation for which
µ = e(o) corresponds to +1(-1) when it is used as a multiplicative factor in
expressions. We will always work in a subspace of the fermionic Fock space
that can have either one or zero particles, where either

X

j�

d
†
j�dj� = 1 (2.2.9)

or

|0ih0|+
X

j�

d
†
j�dj� = 1 (2.2.10)

hold true, |0i being the fermion vacuum.
At long wavelength and low energy, the baths can be described6 by two

independent Tomonaga-Luttinger Liquid (TLL) Hamiltonians [31]

Hbath =
X

�

v�

Z
dx
2⇡


K�

✓
d✓�
dx

◆2

+
1

K�

✓
d��

dx

◆2�
, (2.2.11)

where v� is the speed of sound in bath �, while the dimensionless Luttinger
parameter K� measures the interaction of the particles constituting the bath.
In particular, for a fermionic bath, K� < 1 (K� > 1) for repulsive (attractive)
interactions. For a bosonic bath, typically K� > 1 [31].

Finally, in the spirit of ultracold atom physics, the bath-impurity coupling
is described as a contact density-density interaction

Hc =
X

�

g�

Z
dxd†

�(x)d�(x)⇢�(x) , (2.2.12)

with ⇢�(x) being the particle density of the bath � and g� is the coupling
constant. The chosen form of the interaction corresponds to the situation in

6 We are using equilibrium bosonization. While the operator identities are true independently
of the state of the system, the translation of generic initial conditions from the fermionic
to the bosonic description generally leads to a non-quadratic theory for the bosons out of
equilibrium [12, 41]. As the baths will always start in a thermal state (the ground state), this
subtleties will not be an issue.
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real experiments, in which the dilution of the system and the low temper-
atures make s-wave scattering dominant. The coupling constant is usually
expressed as7 [9, 62, 67, 77, 81] g� = 2⇡a�/mr� in terms of the scattering
length a� between impurity and � bath atoms, and their reduced mass mr�.
At the level of our treatment (long wavelength, weak coupling), this interac-
tion can be either repulsive or attractive (i.e. g� > 0 or < 0), as it will enter in
most quantities only as g

2
�. We will generally take g� > 0 for concreteness8.

In the following, we will refer to the case of symmetric baths whenever
their properties, namely the sound velocities v�, the Luttinger parameters
K� and the couplings g� are the same, independently of the bath index �.
Most of the results that will be presented will be referred to this condition. If
any of the parameters of the system depends on the bath being considered,
we will refer to the setup as being asymmetric.

Bosonization [31] provides a link between density fluctuations and the
boson field �:

⇢�(x) = ⇢̄� -
1

⇡

d
dx
��(x) + ⇢̄�

X

n6=0

A
�
|n|e

2ni(⇡⇢̄�x-��(x)) , (2.2.13)

where ⇢̄� is the average density of the bath �, and A
�
|n| are nonuniversal

coefficients. The third term describes backscattering, that is, fluctuations
with large wavenumbers 2n⇡⇢̄� in which bath fermions can be exchanged
between the two Fermi points ±kF = ±⇡⇢̄�. If we assume that the impu-
rity momenta are always much smaller than this momentum, then we keep
only the first two. The discarded terms are important only in case we want
to describe fast impurities, where they give rise to effects like the pseudo-
Bloch oscillations. The constant term can be adsorbed in �� by a canonical
transformation, hence the final expression of the coupling Hamiltonian is

Hc = -
X

�

g�

⇡

Z
dxd†

�(x)d�(x)
d

dx
��(x) . (2.2.14)

Following ref. [31], we can diagonalise Hbath by expressing ��(x), ✓�(x) in
terms of the phonon modes bq� according to9:

��(x) = -i⇡
K
1/2
�

L1/2

X

p6=0

V(p)

p
e-ipx(b†

p� + b-p�) , (2.2.15a)

✓�(x) = +i⇡
1

L1/2K
1/2
�

X

p6=0

V(p)

|p|
e-ipx(b†

p� - b-p�) . (2.2.15b)

7 We are neglecting the issue of UV regularisation: g� depends on the momentum cutoff,
whereas a� is a physical quantity.

8 Of course, in presence of an attraction between the impurity and the particles making up the
baths there will be the possibility of formation of bound states, which cannot be captured by
the approaches we use in this work.

9 We are implicitly dropping terms of O(1/L), that give vanishing contributions in the thermo-
dynamic limit. These terms should be kept if we were including also backscattering in the
interaction.
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The Hamiltonian in momentum space reads:

Himp =
X

p�

⇣
E(p)d†

p�dp� - J?d
†
p�̄dp�

⌘
, (2.2.16a)

Hbath =
X

p6=0,�

v�|p|b
†
p�bp� , (2.2.16b)

Hc =
X

�

g�K
1/2
�

L1/2

X

p 6=0

V(p)N�(p)(b
†
p� + b-p�) . (2.2.16c)

In the above formulae, N�(p) =
P

k d
†
k-p,�dk� is the Fourier transform of

the impurity density, and

V(p) =

✓
|p|

2⇡

◆1/2

e-
↵|p|
2 ,

where ↵ is a small length providing an ultraviolet momentum cutoff (it
can be loosely identified with the underlying lattice spacing). This cutoff
is needed because the TLL description of the baths is an effective theory,
valid only for small energies and momenta [31, 33, 66]. The choice of the
shape of the cutoff function is rather arbitrary. The above one is best suited
for TLL calculations. In the following, for mathematical convenience, we
will often switch to a cutoff in energy ⇤-1 ⇠ M↵

2, rather than momentum.
Most of the interesting quantities that we will compute will be independent
of the cutoff scheme.

We can see that the role of Luttinger parameters K� is to rescale the bare
interaction to

g̃� = g�K
1/2
� . (2.2.17)

This implies that baths with attractive interactions (K� > 1) are coupled
more strongly to the impurity than baths whose particles repel each other
(K� < 1).

It has to be pointed out that the validity of the model holds under various
restrictions. First of all, we neglected the ⇠ cos(2n⇢̄�x- 2n��(x)) terms
[31] in the long-wavelength expansion of the bosonized bath density. These
terms would allow the bath fermions to jump between the two Fermi points,
exchanging a multiple of momentum 2⇡⇢̄� = 2kF� with the impurity, thus
we are excluding the possibility to observe pseudo-Bloch oscillations [70].
This, however, should be a good approximation as long as the impurity
momentum is much smaller than 2⇡⇢̄�. Moreover, this cosine term is less
relevant than -1/⇡ d��(x)/dx in a renormalization-group sense whenever
K� > 1, i.e. for an attractive interaction between the fermions in the baths
(see [31]).

The calculations described in this thesis are non-perturbative in J?, thus in
principle the inter-chain hopping could take any value. However, we will see
that the coupling to the baths causes the odd mode to decay, with emission
of phonons of energy ⇡ 2J?. Then, this energy (or, equivalently, the wave
number q ⇠ 2J?/v�) must be small enough so that the bosonized description
of the baths in terms of sound modes applies. Therefore, we take 2J? ⌧ ⇤,
where ⇤ is a suitable energy cutoff for the TLL. Moreover, we must also have
2J? ⌧ 2kF�v� in order to ensure that we can neglect the above-mentioned
cosine term in the bosonized density.
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In this section we will study a simple integrable model that features some
of the core elements of the treatments that we will perform later on. In
particular, we will show how the OC and its dynamical counterpart emerge.

Let us suppose that we have one TLL in its ground state and that a static
fermionic impurity is suddenly introduced in it [59, 66]. The low-energy
bosonized Hamiltonian is

H = "dd
†
d+

X

q6=0

v|q|b†
qbq + gd

†
d
K
1/2

L1/2

X

q 6=0

Vq(bq + b
†
q) , (2.3.1)

where x = 0 is the position the impurity (its position is arbitrary, as any possi-
ble complex phase of Vq will not enter in the final result). Again, to keep the
physics simple, we discarded the backscattering term ⇠ cos(2⇡⇢̄x- 2�(x)).
This is legitimate as long as K > 1, otherwise backscattering is relevant in
a renormalisation group sense [31, 33] and has to be included. The Hamil-
tonian above is similar to the ones analysed for the X-ray edge problem [31,
66], where the impurity d would play the role of a static hole suddenly cre-
ated in a metal by the absorption of an X-ray photon. Real metals are of
course three-dimensional, but it turns out that the fermionic bath surround-
ing the impurity can be bosonised, by considering that within each angular
momentum sector of the impurity potential the relevant motion is only ra-
dial, i.e. 1D (with a boundary) [31, 33]. The resulting physics is consequently
also similar to our toy model above, and goes under the name of X-ray or
orthogonality catastrophe (OC) [66].

The word ”catastrophe” refers to the fact that the ground state of equa-
tion (2.3.1) after the introduction of the impurity is orthogonal to the one
before. When no impurity is present, the ground state of H(d†

d = 0) =P
q 6=0 v|q|b

†
qbq is of course |!i, namely the ground state of the TLL. After

the impurity is introduced, we have

H(d†
d = 1) = "d +

X

q6=0

v|q|b†
qbq + g

K
1/2

L1/2

X

q6=0

Vq(bq + b
†
q) , (2.3.2)

which can be diagonalised by a suitable displacement of the bosonic oscilla-
tors D

†[-fq]bqD[-fq] = bq - fq, where

D[↵q] ⌘ e
P

q6=0(↵qb
†
q-h.c.) (2.3.3)

is the displacement operator, and fq ⌘ gK1/2Vq

"qL1/2 . The result is

D
†[-fq]H(d†

d = 1)D[-fq] = "d -
g
2
K

L

X

q 6=0

V
2
q

"q
+
X

q6=0

v|q|b†
qbq ⌘ HD ,

(2.3.4)
where "q ⌘ v|q|. Hence, the new eigenstates10 are of the form D[-fq] |ni,
where n is a vector whose components nq specify the number of bosons

10 One may notice that the second term of the shifted Hamiltonian (2.3.4) is divergent. However,
this is a harmless ultraviolet divergence, that merely signals that the overall energy shift is
too sensitive to the precise form of the underlying model to be predicted with accuracy by
the effective model (2.3.1).
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populating the state at momentum q. In particular, the new ground state
|!1i is a coherent state:

|!1i = D[-fq] |!i ⌘ |coh[-fq]i . (2.3.5)

The overlap with the initial state is

h!|!1i = h!|D[-fq]|!i = e-
1
2

P
q6=0 f

2
q .

The exponent is

-
1

2

X

q 6=0

f
2
q = -

g
2
K

2L

X

q 6=0

V
2
q

"2q
⇡ -

g
2
K

(2⇡v)2

Z+1

2⇡/L

e-↵q

q
=

= -
g
2
K

(2⇡v)2
E1

�
2⇡↵
L

�
⇠ -

g
2
K

(2⇡v)2
ln
✓

L

2⇡e�↵

◆
,

where we used the momentum 2⇡/L as an infrared cutoff, and used the
definition and properties of the exponential integral function E1(x) (� is the
Euler-Mascheroni constant; see [23]). The overall result is that the overlap
decreases as a power-law in the size of the system:

h!|!1i =
✓

L

2⇡e�↵

◆-�OC/2

, �OC =
g
2
K

2(⇡v)2
. (2.3.6)

As advertised earlier, the two ground states are orthogonal in the thermo-
dynamic limit. Physically, this occurs because the host system is charac-
terised by gapless excitations (the phonons, i.e. the particle-hole pairs in the
fermionic languages), which can be generated in large numbers at a very low
energy cost by the introduction of a scattering centre (the static impurity). In
fact,

h!1|b
†
qbq|!1i = f

2
q =

g
2
K

L

V
2
q

"2q
⇠

1

|q|
for |q| ! 0 (2.3.7)

diverges in the long-wavelength limit, and as a consequence the total number
of phonons Nb ⌘

P
q 6=0 b

†
qbq diverges in the thermodynamic limit 11. The

scaling with the system size (i.e, with the number of modes available to the
system) shows that the OC is also a genuine many-body effect. As we are
dealing with an independent particle model (the phonons are not coupled),
we can also rephrase the vanishing of the overlap as the cumulative effect of
many small changes in the state of each mode.

The OC phenomenon has also a dynamic analogue. We can ask ourselves:
how fast does the system departs from the initial state after the introduction
of the impurity? As mentioned in 1, the relevant quantity is the fidelity

L(t) ⌘ h⌦|de-iHt
d
†|⌦i = h⌦|d(t)d†|⌦i = iG(t), t > 0 , (2.3.8)

where |⌦i ⌘ |0i |!i is the product of the fermionic and bosonic vacua. In the
second equality we introduced the impurity time-ordered Green’s function

G(t) ⌘ -i h⌦|Td(t)d†|⌦i = -i✓(t) h⌦|d(t)d†|⌦i , (2.3.9)

11 One immediately sees that h!|!1i = exp(- hNbi /2), so that the vanishing of the overlap
and the divergence of the number of excitations are actually two faces of the same coin.
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where d(t) ⌘ eiHt
d e-iHt is the Heinsenberg evolution of the impurity an-

nihilation operator and T is the time-ordering symbol. In this case, where
the average is on the fermionic vacuum, there is no difference between the
time-ordered Green’s function and the retarded one. The fidelity is easily
computed, with the help of equation (2.3.4):

L(t) = h⌦|dd
†e-iH(d†d=1)t|⌦i = h0|dd

†|0i h!|e-iH(d†d=1)t|!i =
= h!|D[-fq]e-iHDt

D
†[-fq]|!i =

= e-i("d+�E0)t hcoh[fq]|e-it
P

q 6=0 "qb
†
qbq |coh[fq]i =

= e-i("d+�E0)t
⌦
coh[fq]

��coh[e-it"qfq]
↵
=

= e-i("d+�E0)t-
P

q 6=0 f
2
q(1-e-i"qt) .

In the manipulations above, we defined �E0 ⌘ -g2K
L

P
q 6=0

V2
q

"q
and we used

a couple of useful properties of coherent states:

ei
P

q hqb
†
qbq |coh[fq]i =

��coh[eihqfq]
↵

, (2.3.10a)

hcoh[↵q]|coh[�q]i = e-
1
2

P
q6=0 (|↵q|

2+|�q|
2-2↵⇤

q�q) . (2.3.10b)

Summing up, the fidelity can be written as

L(t) = e-i"dt+F(t) , (2.3.11)

where

F(t) = -i�E0t-
X

q 6=0

f
2
q(1- e-i"qt) = -

g
2
K

L

X

q 6=0

V
2
q
1- it"q - e-i"qt

"2q
.

(2.3.12)
This function can be calculated in the continuum limit L ! 1 by introducing
the density:

R(") ⌘ g
2
K

L

X

q6=0

V
2
q�("- "q) = �OC✓(")"e-"/⇤, ⇤ ⌘ v

↵
, (2.3.13)

from which

F(t) = -

Z+1

-1
d"R(")

1- i"t- e-i"t

"2
=

= -�OC

Z+1

0
d" e-"/⇤ 1- i"t- e-i"t

"
=

= -�OC

h
- i⇤t+ ln(1+ i⇤t)

i
⇠

⇠ -�OC

"

- i
⇣
⇤-

⇡

2

⌘
t+ ln(⇤t) +O

✓
1

⇤t

◆#

,

where the last (asymptotic) equality is valid for times larger than the inverse
energy cutoff, i.e for vt � ↵ (for shorter times the effective Hamiltonian is
not reliable, anyway). Thus, we find

L(t) = e-i("d-�OC⇤)t(1+ i⇤t)-�OC =

⇠ e-i("d-�OC⇤+⇡�OC/2)t(⇤t)-�OC
⇥
1+O

�
(⇤t)-1

�⇤
(2.3.14)
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As in the static version of the OC, we find a power-law decrease, but in time
in this case, and the scaling exponent is the same12 we found when varying
the size, equation (2.3.6). This is the typical dynamical equivalent of the
OC: the fidelity decays as a power law, without a timescale. Physically, this
means that the bath relaxes very slowly to the introduction of the impurity.

Once again, we find that an equivalent signature of the OC is the excitation
of many low-energy phonons,

h⌦|deiHt
b
†
qbqe-iHt

d
†|⌦i = 2

g
2
K

L

1- cos("qt)
"2q

⇠ t
2 as |q| ! 0 , (2.3.15)

and the consequent divergence of their total number, as time goes on:

hNbi (t) = -2Re F(t) ⇠ 2�OC ln⇤t+O
�
(⇤t)-1

�
. (2.3.16)

As in the static case, the link between these two perspectives on the OC
is confirmed by a relation between the fidelity and the number of excited
phonons:

|L(t)| = e-hNbi(t)/2 . (2.3.17)

Another quantity that is useful to calculate is the impurity spectral func-
tion

A(!) ⌘ -2 ImG(!) , (2.3.18)

where G(!) is the Fourier transform of the impurity retarded Green’s func-
tion,

G(!) ⌘
Z1

0
dt ei!+t

G(t) .

In the equation above, we used G(t) / ✓(t) and we defined !+ ⌘ !+ i0+,
in order to ensure convergence. The above time integral can be performed
exactly by deforming the integration path on the branch cut on the positive
imaginary semi-axis (see also [66]), yielding

G(!) = e-i�OC⇡⇤
-�OCe-(!-"̃d)/⇤

�(1-�OC,-(!- "̃d)/⇤)

(!+ - "̃d)1-�OC
, (2.3.19)

where we defined "̃d = "d - �OC⇤ + ⇡�OC/2, and �(a, z) is the incom-
plete Gamma function [23]. We find that the Green’s function has a power
law behaviour for ! ! "̃d

13. This could be easily be guessed by a simple
rescaling argument from the definition of G(!). Neglecting the frequency
dependence of the incomplete Gamma function, we get the spectral function

A(!) = 2✓(!- "̃d)⇤
-�OCe-(!-"̃d)/⇤

�(1-�OC) sin�OC⇡

(!- "̃d)1-�OC
. (2.3.20)

This threshold behaviour is the hallmark of the OC in the frequency domain
[31, 33, 45, 66], and it is widely known in the X-ray problem. If �OC 6 1, the

12 The identity of the exponent can be explained as a light-cone effect: if we assume that |L(t)| ⇠
|h!|!1(L(t))i|2 ⇠ [L(t)]-�OC converges to the square of the static ground state overlap (i.e.
the quasiparticle residue [79]), but only involving the portion of the bath that has been able
to feel the presence of the impurity, then the finite speed of sound in the bath implies that
N(t) ⇠ vt, and we obtain the power law in time.

13 This is true only for �OC 6= 1. If �OC = 1, the result is a milder logarithmic divergence.
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singular part is divergent at the threshold, unlike the regular part, so that
Asing(!) gives the dominant contribution. This behaviour is in stark contrast
with the fairly common situation of quasiparticles, whose spectral function
has a Lorentzian shape centred on the renormalised energy [1, 66]. In this
problem, we recover a delta peak only in the limit in which the impurity is
not interacting with the bath.

In concluding this chapter, we notice that equation (2.3.11) for the fidelity
implies an interesting form of the impurity Green’s function:

G(t) = G0(t)eF(t) , (2.3.21)

where G0(t) ⌘ -i✓(t)e-i"dt is the noninteracting impurity Green’s function.
We will see that this will provide the basis for the perturbative calculation
that we will develop in the following chapter.



3 L I N K E D C L U S T E R E X PA N S I O N

In this chapter1, we take a first look at the dynamics of the impurity by em-
ploying a technique known as Linked Cluster Expansion (LCE) to calculate
its Green’s function. From the numerical evaluation of the latter, and from
its asymptotic expansion we infer a number of properties of the interacting
impurity.

Let us imagine the following setup: we have prepared the baths in their
respective ground state, |!i ⌘ |!i" |!i#, and at time t = 0 we inject the
impurity in the bath labelled � with a given momentum p.2 We want to
characterise the subsequent evolution of the whole system. As discussed
in 1 and 2, a basic quantity to observe is the overlap between the initial
state d

†
p |0id |!ib, and its evolved counterpart e-iHt

d
†
p |0id |!ib, a quantity

whose squared norm yields the fidelity. As in the case of the static impurity
in section 2.3, this overlap is related to the Green’s function

G�0�(p
0,p; t) ⌘ -i h⌦|Tdp0�0(t)d†

p�|⌦i = -i✓(t) h⌦|dp0�0(t)d†
p�|⌦i , (3.0.1)

where we defined |⌦i = |0id |!ib as the product of the impurity vacuum
|0id and the (interacting) ground state of the baths, |!ib. The above Green’s
function also measures the amplitude for elastic scattering, namely the am-
plitude for the initial state to end up in any other impurity state without
exciting any phonon in the bath. Moreover, we remind the reader that in
ultracold atomic experiments the return amplitude, iG��(p,p; t), is a mea-
surable quantity, both in real time and in frequency (see section 2.1 and
references therein).

The choice of the Green’s function (3.0.1) has the advantage that we can
compute it with the usual zero-temperature perturbative technique, despite
that it is meant to describe a nonequilibrium situation. This is because |⌦i
is the ground state of the full H in the Hilbert space sector with no impu-
rities present (H conserves the number of impurities, hence the dynamics
cannot bring the state outside a given sector): H |⌦i = 0, and coincides
with the noninteracting ground state in the same sector. This fact allows
us to use Gell-Mann-Low theorem to compute (3.0.1) within the standard
zero-temperature perturbation theory.

�.�.� The perturbative series

We will construct a perturbation series for the impurity Green’s function us-
ing Himp +Hbath as the unperturbed Hamiltonian and expanding in the effec-
tive coupling g�K

1/2
� . Strictly speaking, g� has dimensions [Energy·Length],

1 This chapter is based on the paper [92].
2 The sudden introduction of an impurity in a system is actually a common procedure with

ultracold atoms, see chapter 2.1.

15
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(a) (b)

Figure 3.1: Perturbative series for the impurity Green’s function. (a) Dyson equa-
tion. Thin lines indicate Ĝ0, thick lines the interacting Ĝ and the hatched
circle is the self-energy. (b) the expansion of the self-energy up to fourth
order. The dashed lines are the bosonic propagators.

i.e. a velocity, as [Energy] = [Time-1] with  h = 1. The natural speed char-
acterising the noninteracting dynamics is the sound speed v�, so that the
perturbation series is actually an expansion in the dimensionless coupling3

g�K
1/2
� /v�. As the system has translational invariance, it is useful to go to

momentum space. However, for the present chapter we will work in real
time instead of frequency.

The basic ingredients of the perturbative series are the noninteracting im-
purity Green’s function,

G
0
µ(p, t) = -i✓(t)e-i�pµt () G

0
��0(p, t) = -

i
2
✓(t)(e-i�pet + ��0e-i�pot) ,

(3.0.2a)

and the bosonic propagator

D
0
�(p, t) ⌘ -i h⌦|T(b†

p�eiv�|p|t + b-p�e-iv�|p|t)(b†
-p� + bp�)|⌦i0 =

= -i✓(t)e-iv�|p|t - i✓(-t)eiv�|p|t . (3.0.2b)

In the � basis the vertices and phonon lines conserve the bath index, whereas
the free propagation G0 changes it. In the rotated (e,o) basis the free propa-
gation conserves the band index, while only interactions may change it.

The perturbation series is described pictorially in figure 3.1, namely it is
made of a sequence of free impurity lines to which any number of (possibly
interlaced) phonons ”arcs” are attached. There are no tadpole diagrams,
because:

• there are no zero momentum phonons;

• the impurity loops give a vanishing density -i(G0)��(p, t = 0
-) =

= h⌦|d†
p�dp�|⌦i = 0.

Analogously, Ĝ0(p, t < 0) = 0 forbids the existence of any loop made of
impurity lines. This is consistent with the property that the theory conserves
the number of impurities: there is only one of them, and so no particle-hole
pairs can be generated.

3 If the impurity were static, g�K1/2
/v� would be the low-energy, 1D scattering phase of the

bath fermions on the impurity.



������ ������� ��������� 17

Figure 3.2: All self-energy diagrams with the ”Non Crossing Approximation” struc-
ture are diagonal in bath index.

The momentum index is conserved, because all phonon lines begin and
end on the continuous sequence of impurity free propagators, therefore

Ĝ(p0,p; , t) = �p0pĜ(p, t) , (3.0.3)

where we use a hat ˆ to indicate matrices in bath index space. The bare
Green’s function equation (3.0.2a) is symmetric in this index, while in gen-
eral the interaction with the baths could alter the symmetry. All self-energy
diagrams in the ”Non-Crossing Approximation” form (figure 3.2), includ-
ing the lowest-order one, are diagonal in bath index and thus they yield a
symmetric Green’s function. The lowest-order diagrams which may be not
diagonal are the fourth-order crossed diagram, namely the last two terms
in figure 3.1b. However, if the two sound speeds are identical these are still
diagonal in bath index space. In appendix B we will show that Ĝ must be
symmetric if the baths are symmetric, but we do not know if the same is
true in the asymmetric case.

The lowest-order contribution to the self-energy is at the second order:

⌃̂
(2)(p, t) =

✓
⌃"(p, t) 0

0 ⌃#(p, t)

◆
, (3.0.4a)

where

⌃�(p, t) = ig2�K�
1

L

X

q 6=0

V
2(q)(G0)��(p- q, t)D0

�(q, t) =

= -ig̃2�✓(t) cos J?t
Z

dq
2⇡

V
2(q) e-i(Ep-q+v�|q|)t ,

(3.0.4b)

and we defined a renormalised coupling

g̃� = g�K
1/2
� (3.0.5)

It is possible to perform the momentum integral to obtain ⌃̂
(2) in closed

form, but in later calculations it turns out that it is more useful to keep it in
this form.

�.�.� The Linked Cluster Expansion (LCE)

The Linked Cluster Expansion is a resummation scheme for the Green’s func-
tion perturbative expansion, which has been historically successful in the
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treatment of impurities from weak up to intermediate coupling. See [66],
for instance. It amounts to a cumulant expansion of the Green’s function or,
equivalently, to making the Ansatz:

Ĝ(p, t) = Ĝ0(p, t)eF̂(p,t) (3.0.6)

where F̂(p, t) has to be determined as a perturbative expansion F̂(p, t) =P1
n=1 F̂n(p, t), F̂n = O(g̃n�/v

n
�). Then, we expand eF̂(p,t) and match its terms

with the ordinary perturbation series, order by order:

Ĝ0(p, t)
�
1̂+ F̂1(p, t) + 1

2 F̂
2
1(p, t) + F̂2(p, t) + . . .

�
=

= Ĝ0(p, t) + (Ĝ0 ⇤ ⌃̂(2) ⇤ Ĝ0)(p, t) + . . . ,
(3.0.7)

where ⇤ stands for time convolution and ⌃(n) is the impurity self-energy at
order n. There are only even orders, so F̂2n+1 = 0, 8n > 0. The lowest-order
Fns are determined by

Ĝ0(p, t) · F̂2(p, t) = (Ĝ0 ⇤ ⌃̂(2) ⇤ Ĝ0)(p, t) , (3.0.8a)

Ĝ0(p, t) · F̂4(p, t) = (Ĝ0 ⇤ ⌃̂(4) ⇤ Ĝ0)(p, t)+

+ (Ĝ0 ⇤ ⌃̂(2) ⇤ Ĝ0 ⇤ ⌃̂(2) ⇤ Ĝ0)(p, t)-
1

2
F̂
2
2(p, t) , (3.0.8b)

. . .

We will stop at the lowest nontrivial order, namely the second-order expres-
sion

F̂2(p, t) = Ĝ
-1
0 (p, t)

Z

R2
dt1 dt2 Ĝ0(p, t- t1)⌃̂

(2)(p, t1 - t2)Ĝ0(p, t2) ,

(3.0.9)
where Ĝ

-1
0 (p, t) means an inverse in bath index space.

Before proceeding with the calculation, we notice that the LCE Ansatz (3)
is remarkably similar to equation (2.3.21). In fact, the latter equation implies
that for a static impurity (i.e. infinitely massive) the second-order LCE ac-
tually gives the exact result. In our opinion, this could be a justification for
the reliability of the LCE in impurity problems, and points to the possibility
that it may become less so if the impurity mass is too low.

To compute F̂2 from equation (3.0.9), it is convenient to first switch to
the parity basis in which Ĝ0(p, t) is diagonal. Most importantly, it is ad-
vantageous to perform the momentum integration in the self-energy equa-
tion .(3.0.4b) after the time convolution. To obtain the LCE Green’s function,
we have to take the exponential of F̂2, and this is simpler if we decompose
it in the Pauli matrices basis �̂ ⌘ (�1,�2,�3), along with the 2⇥ 2 identity
matrix 1

F̂2(p, t) = A(p, t)1+ (B(p, t),C(p, t),D(p, t)) · �̂ , (3.0.10)

where A, B, C, D are complex functions which will be defined shortly. The
exponential is now easily computed (omitting the (p, t) arguments):

eF̂2(p,t) = eA
⇣

cosh �1+
sinh �
�

(B,C,D) · �̂
⌘

, (3.0.11)
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where
�(p, t) ⌘

q
B2(p, t) +C2(p, t) +D2(p, t) (3.0.12)

(any of the two complex roots can be chosen).
The meaning and physical role of the above functions will become clear

in the next paragraphs, but for now we point out that the the C(p, t) and
D(p, t) functions are nonzero only if there is an asymmetry between the
baths (in any of the v�, K� or in g�). The other A(p, t) and B(p, t) functions
are less sensitive to asymmetries, and will be shown to encapsulate most of
the physics of the problem.

Putting together equation (3.0.11) and equation (3.0.2a) we obtain the full
expression for the Green’s function:

G��(p, t) = -i✓(t)e-iE(p)t+A(p,t)⇥ cosh � cos(J?t) + i sinh�
� B sin(J?t)+

+� sinh�
� (D cos(J?t)-C sin(J?t))

⇤
, (3.0.13a)

G��̄(p, t) = -i✓(t)e-iE(p)t+A(p,t)⇥i cosh � sin(J?t) + sinh�
� B cos(J?t)

⇤
.

(3.0.13b)

In writing the second of these equations, we have anticipated that the C(p, t)
and D(p, t) functions satisfy the relation C(p, t) cos J?t+D(p, t) sin J?t = 0,
which makes the off-diagonal elements of Ĝ(p, t) equal, just as in the non-
interacting case. This relation is specific to the second order in perturbation
theory, because it ultimately depends on the self-energy being diagonal in
bath index space [see equation (3.0.4a)]. Going to the next perturbative order
(the fourth) allows for the inclusions of vertex corrections, which generally
provide4 the self-energy ⌃̂ with off-diagonal elements. In appendix B, we
will prove that if the baths are symmetric, then the exact Green’s function is
indeed symmetric in the bath indices.

The four components of F̂2(p, t) have the expressions

A(p, t) = Fp(0, t) +
1

2
(Fp(J?, t) + Fp(-J?, t)) , (3.0.14a)

B(p, t) =
1

2
(Fp(-J?, t)- Fp(J?, t)) , (3.0.14b)

C(p, t) = i
1- cos 2J?t

J?
Hp(0, t)+

+
sin J?t

J?

⇥
-e-iJ?t

Hp(J?, t) + eiJ?t
Hp(-J?, t)

⇤
, (3.0.14c)

D(p, t) = -i
sin 2J?t

J?
Hp(0, t)+

+
cos J?t
J?

⇥
e-iJ?t

Hp(J?, t)- eiJ?t
Hp(-J?, t)

⇤
, (3.0.14d)

in terms of the functions

Fp(J, t) ⌘
X

�

Fp�(J, t) , (3.0.15a)

Hp(J, t) ⌘
X

�

Hp�(J, t) , (3.0.15b)

4 However, this may not happen if g̃" 6= g̃#, but the sound speeds v� are the same.
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defined as

Fp�(J, t) ⌘ -
1

4

Z

R

d"
1- i"t- e-i"t

"2
Rp�("+ 2J) , (3.0.16a)

Hp�(J, t) ⌘ �
1

8

Z

R

d"
1- e-i"t

"
Rp�("+ 2J) ⌘ i

�

2

@Fp�(J, t)
@t

, (3.0.16b)

for J = ±J? or 0. The function Rp�(") is defined as:

Rp�(") ⌘ g̃
2
�

Z

R

dq
2⇡V

2(q)�(E(p- q) + v�|q|- E(p)- ") . (3.0.17)

The latter expression can be interpreted as the density of states available for
scattering between the impurity and the phonons. Expressions like equa-
tion (3.0.16) and equation (3.0.17) are recurrent when dealing with the OC
[66, 86]. It also coincides with the ”spectral function” of the baths that is fre-
quently encountered in the literature regarding the spin-boson model [61].

Recalling that the noninteracting impurity dispersion is given by two
bands �e,op = E(p) ⌥ J?, it can be seen that for " ! 0 Rp�(") depends
on intra-band processes, while Rp�(" ± 2J?) give the effect of inter-band
transitions.

Notice that all the results above hold for a generic bare impurity disper-
sion E(p), as long as it is independent of the bath index.

Now we can take advantage of the quadratic dispersion E(p) = p
2
/2M,

which allows us to explicitly compute Rp�("). In the subsonic regime |p| <

Mmax{v", v#} it reads:

Rp�(") = g̃
2
�

M

(2⇡)2


2-

X

s=±

1p
1+ "/ks�(p)

�
e-|"|/⇤

✓(") , (3.0.18)

where

ks�(p) ⌘
(Mv� + sp)2

2M
, s = ±1 . (3.0.19)

In obtaining equation (3.0.18), we have traded the momentum cutoff ↵-1

with an energy cutoff ⇤-1 ⇠ M↵
2, which is easier to handle analytically.

The low-energy physics should not be sensitive to the cutoff scheme used.
At small energies " ⌧ Mv

2
�, R(") is linear, so that the Luttinger-liquid

baths are classified as ohmic:

Rp�(") = ✓(")"e-
"
⇤

g̃
2
�

2⇡2v2�

1+ (p/Mv�)2

(1- (p/Mv�)2)2
+O

⇣
"2

M2v4
�

⌘
= (3.0.20)

= ✓(")"e-
"
⇤�

sb
� (p) +O

⇣
"2

M2v4
�

⌘
. (3.0.21)

The quantity

�
sb
� (p) ⌘ g̃

2
�

2⇡2v2�

1+ (p/Mv�)2

(1- (p/Mv�)2)2
(3.0.22)

is the single-bath OC exponent [47, 50].
For supersonic momenta, the density of states has an additional term

�R
super
� (") = g̃

2
�

2M

(2⇡)2
e-|"|/⇤

✓(-")
X

s=±1

✓("+ ks�(p))
1p

1+ "/ks�(p)
.

(3.0.23)
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Before embarking in the calculation of the various components of F̂2, we
wish to comment on the physical content of the LCE Ansatz. In fact, the
behaviour of the impurity depends on the long-time asymptotic form of
F̂2(p, t), that generally has the structure

F̂2(p, t) ⇠ X̂(p)t+ Ŷ(p) + �̂nl(p, t) +O
�
1
t

�
(3.0.24)

for t ! 1. The first two terms on the right-hand side of this equation
describe quasiparticle physics: the imaginary part of the X̂(p) matrix renor-
malises the single-particle properties (i.e. the mass and inter-bath hopping
J?), while its (negative) real part endows the momentum state with a fi-
nite lifetime. The Ŷ(p) matrix quantifies the quasiparticle residue through
Ẑ = exp Ŷ. If only these two terms are present, the Green’s function de-
scribes the propagation of a so-called quasiparticle, which is analogous to a
free particle, except for a possible finite lifetime. However, it is possible that
the asymptotic expansion of F̂2(p, t) contains a growing—yet subleading—
nonlinear function of time, indicated by the third term. If any of such terms
is present, it causes the Green’s function to depart from the quasiparticle
picture. In two and three dimensions the asymptotic expansion of F̂2 does
not contain any nonlinearity, and the impurity behaves as a quasiparticle,
the polaron [66, 79]. In one dimension and with one bath, it was shown [50,
79] that there is a logarithmic term, which causes the Green’s function to
acquire a power-law decay at long times. This is related to the orthogonal-
ity catastrophe [3, 31, 33, 51, 54, 66]. In the following, we will see that in
our double-bath scenario there is an analogous power-law behaviour. The
considerations above may become clearer if we specialise the LCE to the
symmetric case, in which

G�0�(p, t) = -
i
2
✓(t)

�
e-i�pet+Fp(0,t)+Fp(-J?,t) + �0�e-i�pot+Fp(0,t)+Fp(J?,t)� ,

(3.0.25a)

or

Gµµ(p, t) = -i✓(t)e-i�pet+Fp(0,t)+Fp(-µJ?,t) . (3.0.25b)

This form is actually valid to all orders for the LCE, one just substitutes
Fp(0, t) + Fp(-µJ?, t) with the generic component Fµµ(p, t) in the parity ba-
sis (in the symmetric case, F̂(p, t) is diagonal in this basis). Therefore, we see
that the F functions ”renormalise” the phases and amplitudes of the Green’s
function.

We point out that the Green’s function is invariant under momentum in-
version p ! -p. It can be observed either because of the invariance of
Ĝ0(p, t) and ⌃̂(2)(p, t) or by inspecting the parity of the density Rp�("). This
invariance is valid at all orders, because it can be seen as a consequence
of the time-reversal symmetry or of the space inversion symmetry enjoyed
by the Hamiltonian. Thanks to this symmetry, we will usually present the
results for positive momenta, with the understanding that they represent
equally the negative momenta.
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This section is heavily mathematical in nature. We derive detailed expres-
sions for the asymptotic expansions of the F and H functions in the long-
time limit. As a byproduct, we also find a way to efficiently compute their
full expressions by numerical integration, avoiding the unstable oscillatory
integrals involved in their definitions equations (3.0.16).

�.�.� Fp� functions

The full expression for the Fp�(p, t) function is

Fp�(J, t) = -
Mg̃

2
�

(4⇡)2

Z1

-2J
d"

1- i"t- e-i"t

"2
e-|"|/⇤⇥

⇥

2-

X

s=±

1p
1+ (2J+ ")/ks�(p)

�
, (3.1.1)

It is useful to separate the cases J 6= 0 from J = 0.

J 6= 0 case
Omitting the prefactor, the integral in equation (3.1.1) can be naturally split
into two addends, and the first one can be calculated analytically:

f(J, t) ⌘ 2

Z1

-2J
d"

1- i"t- e-i"t

"2
e-|"|/⇤ =

= ⇡t+ 2tSi(2Jt)-
1- cos 2Jt

J
+ 2it


ln 2|J|

⇤e-� + ReE1(2i|J|t) +
sin 2Jt

2Jt

�
,

(3.1.2)

where Si(z) is the sine integral function, and E1(z) is the exponential integral
function [23]. The symbol � = 0.57721 . . . denotes the Euler-Mascheroni
constant. In the above equation (3.1.2) we have performed the limit ⇤ ! 1
whenever this did not cause divergences. It can be seen that the only the
imaginary part of f(J, t) is (weakly) dependent on ⇤.

When5
J?t � 1 equation (3.1.2) has the asymptotic expansion (putting

J = ±J?)

f(J?, t) = 2

⇣
⇡+ i ln 2J?

⇤e-�

⌘
t-

1

J?
+ i

e2iJ?t

2J2?t
+O

✓
1

(J?t)2

◆
, (3.1.3a)

f(-J?, t) = 2i ln 2J?
⇤e-� t+

1

J?
+ i

e-2iJ?t

2J2?t
+O

✓
1

(J?t)2

◆
. (3.1.3b)

These expressions have been found using the large-z expansions for Si(z)
and E1(z), and the property Si(z) is odd [23].

5 Notice that there are two timescales in our problem, namely the inter-bath tunnelling ampli-
tude J? and the intra-bath one, ks�(p) ⇠ Mv

2
�/2. We expect the realistic case to be the one in

which the former is far smaller than the latter, and so we will often assume that 1/J? is the
longest timescale in the problem. However, this assumption is violated for p close to Mv�.
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-2J⟂ -2J⟂+r

-2J⟂+ir

Re(u)

Im(u)

γ↓

γ→

γc

Figure 3.3: Paths of integration in the complex plane. Black: original path. Blue:
deformed path. Dotted red: branch cut. It has been chosen to show the
J > 0 case, the J 6 0 ones are analogous.

The remaining part of the integral is in the form

Z1

-2J
d"

1- i"t- e-i"t

"2

1p
1+ (2J+ ")/k

,

which is finite when the cutoff is removed. The above equation can be simpli-
fied by doing the integral in the complex plane. The main idea is to integrate
parallel to the imaginary axis, i.e. "! iu, so that the integrand changes from
oscillatory to exponentially damped and the numerical integration can be
tackled more efficiently. As a byproduct, some pieces of the final expression
can be computed analytically. Moreover, this procedure provides a shorter
route to obtaining the asymptotic form when t ! 1.

The first step is a deformation of the integration path, as depicted in fig-
ure 3.3. The path goes from a segment on the real axis to a contour made of
a vertical segment, followed by a quarter of circumference of radius r. The
only singularity of the integrand is the branch cut of the square root, which
is chosen to lie on the real axis, to the left of -k- 2J, so this manipulation
does not alter the value of the integral. Moreover, it is easy to see that the
integral on the quarter of circumference vanishes as 1/

p
r when r ! 1, and

we obtain:

Z1

-2J
d"

1- i"t- e-i"t

"2

1p
1+ ("+ 2J)/k

=

= -i
Z1

0
du

1+ i(iu+ 2J)t- e2iJt-ut

(iu+ 2J)2
1p

1- iu/k
=

= -i
1

k
�1(

2J
k ) + t�2(

2J
k )- ie2iJt

Z1

0
du

e-ut

(iu+ 2J)2
1p

1- iu/k
, (3.1.4)

where

�1(x) ⌘
Z1

0
du

1

(iu+ x)2
1p

1- iu
(3.1.5a)

�2(x) ⌘
Z1

0
du

1

iu+ x

1p
1- iu

(3.1.5b)
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This is the sought-for expression. The two functions (3.1.5) can be computed
exactly by going back to the real axis6:

�1(x) =

8
<

:

1
2x(1+x)3/2

h
⇡x- 2i

⇣p
x+ 1+ x arcsinh( 1p

x
)
⌘i

, x > 0

i
|x|(1-|x|) -

i
(1-|x|)3/2

arccosh( 1p
|x|

) x < 0
,

(3.1.6)

�2(x) =

8
<

:

1p
1+x

h
⇡- 2i arcsinh( 1p

x
)
i
, x > 0

- 2ip
1-|x|

arccosh( 1p
|x|

) x < 0
, (3.1.7)

in which it is understood that

arccosh(x) = i arccos x for |x| < 1 .

The numerical evaluation of the last integral in equation (3.1.4) is rapidly
converging.

When J?t � 1 one can easily find an asymptotic approximation of this
term, using the general expansion [23]

Z1

a
du e-tu

q(u) ⇠ e-at
1X

n=0

q
(n)(0)

tn+1
, (3.1.8)

which is valid when the function q(u) is infinitely differentiable around u =
a. Applying this relation to the last integral in equation (3.1.4) we obtain:

Z1

0
du

e-ut

(iu+ 2J)2
1p

1- iu/k
⇠

1

(2J)2t
+O

✓
1

(Jt)2

◆
.

Therefore, the contribution of this term to the integral becomes small quite
rapidly in the long-time limit.

Summing up, we can write

Z1

-2J
d"

1- i"t- e-i"t

"2

1p
1+ ("+ 2J)/k

⇠

⇠ t�2(
2J
k )- i

1

k
�1(

2J
k )- i

e2iJt

(2J)2t
+O

✓
1

(2Jt)2

◆
, (3.1.9)

6 One may exploit the observation that �1(x) = -d�2

dx .
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and inserting this into equation (3.1.2), we find the desired asymptotic ap-
proximation:

Fp�(J?, t) ⇠ -g̃
2
�

M

(4⇡)2

"

-
1

J?
+ i

X

s=±1

1

ks�(p)
�1(

2J?
ks�(p)

)+

+
⇣
2⇡+ 2i ln 2J?

⇤e-� -
X

s=±1

�2

� 2J?
ks�(p)

�⌘
t+

+ i
e2iJ?t

J2?t
+O

✓
1

(J?t)2

◆#

(3.1.10a)

Fp�(-J?, t) ⇠ -g̃
2
�

M

(4⇡)2

"
1

J?
+ i

X

s=±1

1

ks�(p)
�1

�
- 2J?

ks�(p)

�
+

+
⇣
2i ln 2J?

⇤e-� -
X

s=±1

�2

�
- 2J?

ks�(p)

�⌘
t+

+ i
e-2iJ?t

J2?t
+O

✓
1

(J?t)2

◆#

. (3.1.10b)

J = 0 case

As in the previous case, the first part of equation (3.1.1) can be calculated
exactly:

f(0, t) ⌘ 2

Z1

0
d"

1- i"t- e-i"t

"2
e-|"|/⇤ = ⇡t- 2it ln ⇤t

e . (3.1.11)

The remaining integrals can again be converted from oscillatory to expo-
nentially damped by deformation of the integration contour,

Z1

0
d"

1+ i"t- e-i"t

"2

1p
1+ "/k

=

= i
Z1

0
du

1- ut- e-ut

u2

1p
1- iu/k

, (3.1.12)

and this can be helpful for their numerical evaluation. However, on the
analytical side, they cannot be separated into three components as in the
J 6= 0 case, because we have to treat the ”kernel” (1-ut- e-ut)/u2 carefully
at the u = 0 integration limit. We can do the following:

Z1

0
d"

1- i"t- e-i"t

"2

1p
1+ "/k

=

= t

" Z "̄

0
d"

1- i"- e-i"

"2

1p
1+ "/"̄

| {z }
I

+

Z1

"̄
d"

1- i"- e-i"

"2

1p
1+ "/"̄

| {z }
II

#

,

(3.1.13)
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where we performed the substitution " ! "/t and we introduced the nota-
tion "̄ ⌘ kt. The first integral can be estimated for large t, i.e. for large "̄, by
expanding the square root in powers of "/"̄:

I ⇠

1X

n=0

✓
-1/2

n

◆
1

"̄n

Z "̄

0
d"

1- i"- e-i"

"2
"
n =

=
⇡

2
-
⇣
1+

�

2
- c1

⌘
1

"̄
-

ln "̄
"̄

+ i
⇣
1- �- c0 - ln "̄-

⇡

4"̄

⌘
+O

�
1
"̄2

�
, (3.1.14)

where

c0 ⌘
X

n>1

✓
-1/2

n

◆
1

n
= ln 4- 2arcsinh(1) , (3.1.15a)

c1 ⌘
X

n>2

✓
-1/2

n

◆
1

n- 1
=

3- 2
p
2

2
- ln 2+ arcsinh(1) . (3.1.15b)

These results were obtained by explicitly integrating all terms in the series,
and expanding them up to O

�
"̄
-2
�
. As we can see, a real term containing

ln "̄ ⇠ ln t has appeared. This originates from the structure of the kernel
(1+ i"- ei")/"2 for " ⇠ 0.

The second integral, II, avoids the neighbourhood of " = 0 and therefore
it can be computed straightforwardly by evaluating each piece separately:

II =

Z1

"̄
d"

1

"2
p
1+ "/"̄

| {z }
IIa

-i
Z1

"̄
d"

1

"
p
1+ "/"̄

| {z }
IIb

-

Z1

"̄
d"

e-i"

"2
p
1+ "/"̄

| {z }
IIc

, (3.1.16)

yielding

IIa =
1

"̄

Z1

1
d"

1

"2
p
1+ "

=

p
2- arcsinh(1)

"̄
,

IIb = -i
Z1

1
d"

1

"
p
1+ "

= -2iarcsinh(1) ,

IIc = -

Z1

"̄
d"

e-i"

"2
p
1+ "/"̄

⇠
ie-i"̄
p
2"̄2

+O
�

1
"̄3

�
, "̄� 1 ,

where for the last estimate we used the analogous of equation (3.1.8) [23]:
Z1

a
d" eix"

q(") ⇠ eiax
1X

n=0

q
(n)(a)

� i
x

�n+1, x � 1 . (3.1.17)

Therefore,

II ⇠ -2iarcsinh(1) +
p
2- arcsinh(1)

"̄
+

ie-i"̄
p
2"̄2

+O
�

1
"̄3

�
.

Unlike the I integral, this one does not contain any term depending logarith-
mically on "̄.

The final estimate is
Z1

0
d"

1+ i"t- ei"t

"2

1p
1+ "/k

= t(I+ II) ⇠

⇠ -
a1

k
-

lnkt

2k
+
⇡

2
t+ i

h
-
⇡

4k
- t lnkt+ (1- �- ln 4)t

i
+O

�
1
t

�
, (3.1.18)
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where
a1 ⌘ ln 2-

1- �

2
= 0.481755 . . . . (3.1.19)

Gathering all terms together, we obtain the asymptotic approximation

Fp�(0, t) ⇠ -g̃
2
�

M

(4⇡)2

h�
2a1 + i

⇡

2

� X

s=±1

M

(Mv� + sp)2
+

+
X

s=±1

M

(Mv� + sp)2
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2M
+

+ 2it ln
2
��M2

v
2
� - p

2
��

M⇤e-�
+O

⇣
2M

(Mv�±p)2t

⌘i
,

for
(Mv� ± p)2t

2M
� 1 . (3.1.20)

�.�.� Hp� functions

The Hp� functions are obtained from the Fp� ones by differentiation

Hp�(J, t) = i
�

2

@Fp�(J, t)
@t

.

Their fast-converging integral expression is

Hp�(J, t) = �
g̃
2
�M

2(4⇡)2


h(J, t) + i

X
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✓
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-
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1- i"/ks�(p)

◆�
, (3.1.21)

where

h(±J?, t) = 2 ln 2J?
⇤e-� + 2ReE1(2iJ?t)- i

�
⇡± 2Si(2J?t)

�
⇠

⇠ 2 ln 2J?
⇤e-� - i(1± 1)⇡± i

e±2iJ?t

J?t
+O

⇣
1

(J?t)2

⌘
, (3.1.22a)

h(0, t) = -2 ln⇤t- i⇡ . (3.1.22b)

The asymptotic expansions are

Hp�(J?, t) = �
g̃
2
�M

2(4⇡)2

h
2 ln 2J?

⇤e-� - 2i⇡+

+i
X
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, (3.1.23a)

Hp�(-J?, t) = �
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e-2iJ?t
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⇣
1

(J?t)2

⌘i
, (3.1.23b)

Hp�(0, t) = �
g̃
2
�M

2(4⇡)2

h
2 ln 2|p2-M2v2

�|
M⇤e-� + i

X

s=±1

1

2ks�(p)t
+O

⇣
1

(J?t)2

⌘i
.

(3.1.23c)

All these functions tend to a constant at t ! 1. In fact, they are the deriva-
tives of asymptotically linear functions Fp�(p, t).



28 ������ ������� ���������

�.�.� Results: asymptotic expansion of the Green’s function.

In the previous section we found the necessary ingredients to compute the
leading asymptotic behaviour of the F̂2(p, t) function.

We can introduce the asymptotic expressions for F̃p� and H̃p� into equa-
tions (3.0.14) to obtain:

A(p, t) ⇠ -�(p)t- i�E(p)t-�(p) ln t/t0 + cA(p, t0) +O
�
1
t

�
, (3.1.24a)

B(p, t) ⇠ �(p)t+ i�J?(p)t+ cB(p) +O
�
1
t

�
, (3.1.24b)

C(p, t) ⇠ i
1- cos 2J?t

J?
c
(0)
H +

sin J?t

J?

�
c
(-)
H eiJ?t - c

(+)
H e-iJ?t

�
+O

�
1
t

�
,

(3.1.24c)

D(p, t) ⇠ -i
sin 2J?t

J?
c
(0)
H +

cos J?t
J?

�
c
(+)
H e-iJ?t - c

(-)
H eiJ?t

�
+O

�
1
t

�
,

(3.1.24d)

where the coefficients are

�(p) =
M

2(4⇡)2

X

s,�

g̃
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ks�(p)
, (3.1.25a)
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32⇡
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✓
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1+ 2J?/ks�(p)

◆
, (3.1.25b)

cA(p, t0) = -
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2(4⇡)2

X
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⇣
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� 2J?
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+�1

�
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�
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2

⌘i
, (3.1.25c)

cB(p) = -
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2(4⇡)2

X
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2
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h
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+ i
⇣
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-2J?
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� 2J?
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(3.1.25d)
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X
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p
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�
, (3.1.25e)
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(4⇡)2
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(3.1.25f)

and

c
(+)
H (p) =

M

2(4⇡)2

X

s,�
�g̃

2
�

⇣
ln 2J?

⇤e-� - i⇡+ i�2

� 2J?
ks�(p)

�⌘
, (3.1.26a)

c
(-)
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M

2(4⇡)2

X

s,�
�g̃

2
�

⇣
ln 2J?

⇤e-� + i�2

�
- 2J?

ks�(p)

�⌘
, (3.1.26b)

c
(0)
H (p) =

M

(4⇡)2

X

�

�g̃
2
� ln 2|M2v2

�-p2|
M⇤e-� . (3.1.26c)

We also introduced an arbitrary timescale t0, so that the physical dimensions
are consistent.
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At this point, we can finally put everything together and state our main
result, namely the asymptotic form of the Green’s function. From equa-
tions (3.1.24), we see that the leading behaviour of the A(p, t) and B(p, t)
functions is linear in time, while the C(p, t) and D(p, t) functions are purely
oscillating. This is in accord with our general discussion on the physical
content of the LCE Ansatz: F̂2(p, t) has the structure advertised in equa-
tion (3.0.24), with A(p, t) and B(p, t) making most of the linear and constant
contributions, while C(p, t) and D(p, t) give only an oscillatory part to �̂nl(t).
The most important term of this function is given by the logarithmic term in
A(p, t). This is the hallmark of the breakdown of the quasiparticle descrip-
tion. To see the consequences of this term, we approximate equation (3.0.12)
with

�(p, t) =
q

B2(p, t) +C2(p, t) +D2(p, t) = B(p, t) +O
�
1
t

�
,

because at sufficiently large times B(p, t) is much larger than C(p, t) and
D(p, t). We can finally write a relatively simple asymptotic expression for
the Green’s function, which represents our first important result:

G��0(p, t) ⇠ - i
2

�t0
t

��(p)
h
Ze(p, t0)e-i�̃e(p)t+

+ ��0Zo(p, t0)e-2�(p)t-i�̃o(p)t
i�
1+O

�
1
t

��
. (3.1.27)

In writing the above equation, we introduced the complex ”quasiparticle
weights”

Ze,o(p, t0) ⌘ ecA(p,t0)±cB(p) (3.1.28)

and the renormalised bands

�̃e,o(p) ⌘ E(p) +�E(p)⌥ (J? +�J?(p)) ⌘ Ẽ(p)⌥ J̃?(p) . (3.1.29)

Transforming to the (e,o) basis, the Green’s function reads

Gee(p, t) ⇠ -iZe(p, t0)
�t0

t

��(p)e-i�̃e(p)t ,

Goo(p, t) ⇠ -iZo(p, t0)
�t0

t

��(p)e-2�(p)t-i�̃o(p)t , (3.1.30)
Gµ̄µ(p, t) ⇠ O

�
1
t

�
.

The equations above have a suggestive structure, namely a renormalised
version of the noninteracting Green’s function [cfr. equation (3.0.2a)] multi-
plied by a decreasing power-law ⇠ t

-�(p). This is the distinctive signature
of the OC (compare with the results in 2.3), which ”spoils” what would be a
quasiparticle behaviour.

One should notice that only �E(p) and the three cH(p)s bear a (logarith-
mic) dependence on the cutoff ⇤. The former is an energy shift, so it is
reasonable that it depends sensitively on the behaviour of the theory at high
energy. Conversely, measurable quantities like J̃? ⌘ J? +�J? and �(p) are
cutoff-independent and thus proper low-energy properties.

Before analysing the properties of the asymptotic Green’s function, we
would like to make some remarks about the region of validity of the asymp-
totic expansions equation (3.1.24). Figures 3.4 shows the comparison of the
Green’s function calculated with the approximation equation (3.1.24) with
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Figure 3.4: Relative accuracy of the asymptotic expansions (3.1.24) for the Green’s
function. Figure (a) refers to a symmetric case with g̃

2 = 0.5v2 and
J? = 0.01Mv

2. Figure (b) refers to an asymmetric coupling g̃
2
" = 0.5v2,

g̃
2
# = 0.25v2, while J? = 0.01Mv

2 and ⇤ = 10
3
Mv

2.

the one obtained by the numerical evaluation of the F(p, t) and H(p, t) in-
tegrals. It can be appreciated that the asymptotic expansion gives rather
accurate results for G�,�0(p, t) even for times as low as J?t ⇡ 0.1 if the mo-
mentum is sufficiently close to zero. Under this condition, equation (3.1.24)
is a good approximation for practically any relevant time. Increasing the
impurity momentum causes one of the ks�(p) to become small, and hence
the asymptotic expressions retain their reliability only at larger times t �
max{1/J?, 1/ks�(p)}. For symmetric baths this is equivalent to say that equa-
tion (3.1.27) at small momentum is a good approximation at almost any time.
This is not true for asymmetric baths. While equation (3.1.24) still yield a re-
liable approximation, equation (3.1.27) turns out to be valid only at exceed-
ingly large times. Notice that we have chosen to show the relative accuracy
of the approximation for G""(p, t) and for a fixed J?, but the plots are qual-
itatively the same also for the off-diagonal components G�̄�(p, t) and for
various choices of the parameters.

Now we turn to the discussion of the properties of the impurity Green’s
function equation (3.1.27).

������������� ����������� The first thing we want to point out is
that the Green’s function (3.1.27) is characterised by a single OC exponent
�(p) for all components. Explicitly, it has the expression:

�(p) =
1

8⇡2

X

�

g
2
�K�

v2�

1+ (p/Mv�)2

(1- (p/Mv�)2)2
=

=
1

2
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�
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2
�K�

(2⇡v�)
2

"

1+ 3

✓
p

Mv�

◆2
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 ✓
p

Mv�

◆4
!#

. (3.1.31)

A comparison with ref. [50] shows that it is proportional to the sum of the
analogous single-bath exponents �sb

� (p),

�(p) = 1
4(�

sb
" (p) +�sb

# (p)) , (3.1.32)

or half the average of the two single-chain ones. For instance, if the baths
have identical properties then the OC exponent is halved by the presence of
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Figure 3.5: Typical appearance of the short-time Green’s function compared to its
single-bath counterpart (the upper curve, in black), showing the dimen-
sional crossover. The parameters used are p = 0 and g̃

2 = 0.5v2, in the
symmetric case.

a second bath: �(p) = �sb(p)/2. This happens irrespective of the magnitude
of the inter-chain hopping J?. We want to stress that the above results are
non-perturbative in J?. We are lead to the conclusion that the addition of
the bath degree of freedom is able to weaken the orthogonality catastrophe,
but not to destroy it.

The existence of a single OC exponent characterising both baths is simply
explained by noticing that this phenomenon is observed in the limit J?t � 1,
namely when the impurity has had enough time to repeatedly interact with
each bath. In fact, the numeric evaluation of the Green’s function shows
that for short times J?t ⌧ 1 there is a ”dimensional crossover”. Its typical
appearance is depicted in figure 3.5. From t = 0, G��(p, t) evolves close to
the single-bath G

sb
� (p, t), with its characteristic power-law �

sb
� rapidly estab-

lished. Then, the impurity starts to populate the other bath and the Green’s
function acquires the two-bath shape. This qualitative behaviour is the same
for any momentum and also for the asymmetric case. We found numerically
that the time at which the two-bath curve departs from the single-bath one
by more than a few percent scales as J

-1
? .

Our explanation for �(p) being less than the average of the single-bath
exponents is based on the observation at weak coupling the impurity is able
to spread across both baths. As a hand-waving argument, we may think that
each bath effectively sees only ”half” of the impurity, so that the actual cou-
plings become g̃�/2. In this picture, equation (3.1.32) would only state that
�(p) is the sum of the single-bath exponents computed with g̃�/2 instead of
g̃�, because all of these quantities are proportional to g̃

2
�. This line of reason-

ing will be supported by the extension of our model to the case of N baths,
which we will present in section 4.2. Within our present hand-waving rea-
soning, in the case of Nb baths we would predict that �Nb(p) =

P
i �

sb
i /N

2
b.

Indeed, we will see that this expression is essentially correct (albeit it misses
a factor that has interesting consequences). This relation implies that the ex-
ponent vanishes in the Nb ! 1 limit. This is the natural expectation simply
because in this limit the impurity moves in an effectively two-dimensional
bosonic bath. Such a system does not display any OC [88]. Of course, despite
the expectation is completely generic, our results are limited to the second-
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Figure 3.6: Behaviour of the decay rate for g̃
2
",# = 0.5v2 as a function of inter-bath

hopping amplitude and longitudinal momentum.

order of perturbation theory and we can not assume that the exact value
of �Nb vanishes following the same functional behaviour �Nb / 1/Nb as a
function of Nb.

Let us also comment on the noticeable divergence of �(p) close to the
threshold for phonon emission p = Mv�. In fact, many quantities in equa-
tions (3.1.25) and (3.1.26) have a singular behaviour at this threshold. Al-
though intriguing, this behaviour is in a range of momenta were the long-
wavelength approximation for the impurity dispersion and for the bosonised
density are likely to be poor. Their validity depends on the (possible) lattice
constant and how the Fermi wave vector of the baths compares with Mv�/2.
Besides, we stopped the LCE at second perturbative order, hence it may
deemed reliable only if the predicted F̂2(p, t) is ”small” in some sense, e.g. if
�(p) is small. Therefore, we cannot claim that the LCE is valid when F̂2(p, t)
diverges.

”�������������” ���������� Now we proceed to analyse the would-be
quasiparticle properties exhibited by equation (3.1.27). Ignoring the power-
law behaviour, the interaction with the bath natural has the two effects: the
even and odd bands (hence, the hopping rate J?) become renormalised, and
the upper band becomes unstable. Its decay rate 2�(p) is given by

2�(p) =
M

16⇡

X

�,s=±1

g
2
�K�

 

1-
1p

1+ 2J?/ks�(p)

!

. (3.1.33)

For J? = 0 this expression vanishes, and this is consistent with the observa-
tion that in the absence of inter-bath tunnelling there cannot be emission of
phonons by an impurity with subsonic speed, because momentum and en-
ergy conservation cannot be simultaneously satisfied. This simple kinematic
constraint hinders any decay in the symmetric, low energy band, while inter-
band decay of the anti-symmetric one can be accompanied by the emission
of phonons, causing the finite relaxation rate.

The typical behaviour of 2�(p) is depicted in figure 3.6 for symmetric
baths. The decay rate is a monotonically increasing function of both momen-
tum and inter-bath hopping, upper bounded by M

P
� g̃

2
�/(8⇡) for either

J? ! +1 or p ! Mv�. Both these limits, however, lie beyond the regime of
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Figure 3.7: Behaviour of the inter-bath hopping frequency correction for (a) varying
J? and (b) varying momentum p. The impurity-bath coupling is g̃
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",# =

0.5v2, and the baths are symmetric.

validity of our low-energy model. In the long-wavelength limit in which it
is reliable, a humbler expression for 2�(p) is

2�(p) =
M

8⇡

X

�

g
2
�K�

✓
1-
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1+ µ�

◆
+

+
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Mv�

�4⌘ (3.1.34)

where
µ� ⌘ 4J?

Mv2�
(3.1.35)

quantifies the relevance of transverse hopping with respect to the longitudi-
nal one.

At small inter-bath hopping, the decay rate is approximately linear in J?:

2�(p) = 2⇡�(p)J? +O
�
J
2
?
�

. (3.1.36)

This is an unexpected link between the decay rate and the OC exponent,
namely that �(p) is nothing but the derivative of �(p) with respect to J?,
�(p) = 1/⇡ @�(p, J? = 0)/@J? . From a more physical perspective, this means
that the number of free oscillation periods 2⇡/J? it takes to the odd mode
to decay of a factor e is 1/(4⇡2�(p)) in the J? ! 0 limit. We find the above
equation particularly noteworthy, because �(p) is ”easy” to compute by a
straightforward Fermi Golden Rule calculation, while �(p) can be calculated
only by summing infinite subdiagrams in perturbation theory (which is pre-
cisely what the LCE does). Unfortunately, we could not rationalise this result
in simple terms and, for the same reason, we do not have arguments about
its validity beyond second-order perturbation theory.

Now we focus on the renormalised energy bands, equation (3.1.29). In the
present model, the presence of the power-law behaviour of the Green’s func-
tion prevents us from a straightforward interpretation of these expressions
as actual dispersions of some excitation within the system. Their role will
be clearer in section 3.3, when we will discuss the spectral function of the
impurity. This will clarify that these bands are the locations of the only two
sharp features in the spectrum. The even band represents the lower thresh-
old of the energy spectrum of the whole system (hence, �e(p = 0) is the
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ground-state energy), while the odd band corresponds to a higher-energy
peak.

In more detail, the bands are rigidly shifted by the same function �E(p),
while their energy difference is increased by 2�J?(p). The energy shift is
always negative, and it contains a logarithmic divergence as a function of
the TLL cutoff ⇤ (of course, this divergence is harmless because it is the
same for all momenta). The renormalised gap 2J̃?(p) = 2(J? + �J?(p)) is
always lesser than the bare gap, and it is explicitly momentum-dependent.
In more practical terms, this means that the modulus of the Green’s function
will oscillate with a reduced frequency with respect to the free impurity,
with each momentum having its own renormalised frequency. In the next
chapter we will see that this oscillation reflects the actual oscillation of the
impurity between the two baths. The typical behaviour of the correction to
the gap is shown in figures 3.7. For a given momentum (figure 3.7a), its
absolute value grows while increasing J?, reaches its maximum, then slowly
decreases. The J? yielding the maximum absolute is of the order of Mv

2,
which is quite large. Notice that �J?(p) is not analytic as J? ! 0, where it
behaves as J? ln J?. As a function of momentum, figure 3.7b, the inter-bath
hopping renormalisation is slightly increasing in modulus, before turning
abruptly to zero as |p| approaches the threshold Mv. In the small-coupling
regime, |�J?(p)| ⌧ J?, unless J? is exponentially small in g̃.

The overall shape modification of the two bands is rather minimal in the
perturbative regime, except from a logarithmic divergence for |p| ! Mv�,
coming from �E(p). Once again, this momentum region is likely to be out-
side of the region of validity of our model.

It is interesting to look at the effective dispersion of the two bands in the
low-momentum regime:

�̃e,o(p) = �E0 +
p
2

2Me,o
⌥ (J? +�J?0) +O

✓⇣
p

Mv�

⌘4◆
, (3.1.37)

where the new band curvatures define two ”effective masses”
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We also introduced the constants
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The first, �E0, is just a UV-divergent overall energy shift, while �J0 is the
constant part of the renormalisation of the gap between the bands. The
behaviour of the two masses as a function of J? is shown in figure 3.8. They
are always larger than the bare mass, but the two behave quite differently.
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Figure 3.8: ”Effective masses” of the even and odd mode [equations (3.1.38)] for the
symmetric case, at a coupling g̃

2 = 0.5v2. The dashed line shows the
limiting value of both masses.

Both functions start with the same value [1- 2
P

�(g̃�/(2⇡v�))
2]-1 at J? = 0

(as they should, because at J? = 0 the impurity dispersion has only one
band), but while the even mass decreases monotonically, the odd band mass
first reaches a maximum7, then decreases below the even mass and forms
a very broad minimum. Eventually, the two masses converge to the same
limit, [1-

P
�(g̃�/(2⇡v�))

2]-1. Of course, the limit J? ! +1 lies beyond
the region of validity of our bosonised model.

We end this section by commenting about the physical interpretation of
the effective masses we just computed, beyond the obvious definition of
being the curvatures of the bands. This uncertainty arises because our 1D
”polaron” is not a quasiparticle in the usual sense, because of the power-law
decay of its Green’s function. In the case of the even band, it is possible that
effective mass defined above may actually have a dynamical meaning. This
is because there are no states with energy below �̃e(p), so we could imagine
that the impurity prepared in the p = 0 ground state may follow the even
band dispersion when adiabatically dragged by a very small constant force.
However, this band is the lower edge of a continuum of states (whose density
is actually diverging close to the threshold-see section 3.3), and thus there
is no guarantee that adiabaticity will not break down as soon as the force is
nonzero. For the upper band, the situation is even worse, as it is immersed
in a continuum of states, and has a finite lifetime.

������ ���������� It is worth discussing the cutoff dependence of our
results, both the general formulae (3.0.13) and the asymptotic ones (3.1.27).
Relevant measurable quantities, like �(p) and �(p), are independent of the
high-energy physics of the baths. The same does not hold for the whole
Green’s function. The TLL cutoff ⇤ is involved only in two terms, through
ln⇤ in both cases. The first occurrence is within �E(p). This is perfectly
reasonable, and this cutoff dependence enters simply as an overall energy
shift. The second dependence is within the C(p, t) and D(p, t) functions, and
it can be found also in their asymptotic coefficients c

0,±
H . These functions

contribute with oscillating factors [see equation (3.0.14)] which cannot be
accounted for by simple overall phases of the Green’s function. Therefore,
while in the case of equal baths G�0,�(p, t) is well-defined except for an
overall phase, when the baths are different the Green’s function is cutoff-

7 When the speeds of sound of the baths are equal, this maximum occurs at J? ⇡ 0.016912Mv
2.
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Figure 3.9: Green’s function for symmetric baths, obtained numerically. (a) G"" and
G"# have similar shapes, but they oscillate out of phase. (b) Coherence
is lost at higher p. These plots allow to observe the relation between the
oscillating and power-law regimes.

dependent.8 The asymptotic expression equation (3.1.27) assures that even
in the asymmetric case the cutoff dependence must be washed out for very
long times, but the numerical results of section 3.2 show that this regime
may require exceedingly long times.

�.� ��������� ������� ��� ��� ����� ’� ��������

In this section we analyse the behaviour of the full Green’s function (3.0.13)
obtained by direct numerical integration of equation (3.0.16), after the sim-
plifications explained in the previous section. It thus complements the ana-
lytical results discussed so far.

The simplest case of symmetric baths is shown in figures 3.9 and 3.10b.
We choose to display the quantity |G��0 |2, because it is easier to interpret,
and also because for � = �

0 it has the intuitive meaning of the probability
of return to the initial state. The Green’s function generally looks as follows:
initially, |G��0 |2 oscillates at the renormalised frequency 2J̃?(p) and with an
amplitude that decays exponentially as e-2�(p)t. After a variable number
of periods, the oscillations essentially disappear, and the absolute value of
both Gk ⌘ G�� and of G? ⌘ G��̄ become equal. In this regime, they decay
as the very weak9 power law t

-2�(p). The diagonal G"" = G## and off-
diagonal components share the same overall shape, with the only difference
that their oscillations are out of phase (just as in the noninteracting case,
equation (3.0.2a)). This is shown in figure 3.9a.

The asymptotic expression equation (3.1.27) is able to account for all these
features. In fact, as we already pointed out before, for symmetric baths
the equation (3.1.27) gives an excellent approximation of the full Green’s
function equation (3.0.13) basically for all times (except for J?t . 0.1) when

8 The disappearance of the cutoff in the symmetric case requires that the two baths have the
same value of ⇤. We always assume that this is true, even for dissimilar baths.

9 Indeed, in the perturbative, low-momentum regime we are working in, �(p) is a rather small
number. From equation (3.1.31) it is easy to see that even for the possibly large value g̃� = 1,
�(0) is of the order of 1/(2⇡)2 ⇡ 0.025.
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Figure 3.10: (a) Increasing J? causes the oscillations to live relatively longer (please
notice that the timescale is J?t). (b) Green’s function for increasing
strength of the impurity-bath interaction, showing how larger cou-
plings quench the oscillations and decrease |G|2.
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Figure 3.11: Numerically obtained
��G""(p, t)

��2 when g̃#/v is lower than the fixed
g̃"/v. (a) The Green’s function decreases faster at higher momenta.
Inset: |G��|

2 is larger on the more interacting bath, although the dif-
ference decreases with time. (b) The amplitude of the oscillations in-
creases the more different the baths are.

p is not too large. From equation (3.1.27), we can see that the oscillations of
|G(p, t)|2 are easily interpreted as a consequence of the interference between
the even and odd contributions. As the antisymmetric mode decays, the
oscillations disappear, and this is a manifestation of decoherence.

In figures 3.9b, 3.10a and 3.10b we show how the Green’s function changes
quantitatively as we vary various parameters and momentum. It can be
observed that the number of oscillations before the power-law regime sets
in decreases as p or g̃� increase, or as J? tends to 0 (consistently with the
observation that for J? = 0 there cannot be any oscillation, obviously). This
behaviour is in agreement with the property that the decay constant of the
antisymmetric mode, 2�(p), is an increasing function of p, g̃� and J? (see its
expression in equation (3.1.33)). Moreover, it can be noticed that a decrease
in the number of oscillations is concomitant with a suppression the overall
value of the Green’s function. This can be traced back, at least partially, to
the increase of �(p) for larger momentum and/or coupling.
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Figure 3.12: Plots of the Green’s function for asymmetric baths as the inter-chain
hopping is lowered. (a): a smaller J? causes |G|2 to become noisier
at early times and characteristically ”spiked” at later times. (b) shows
that a larger cutoff favours wider oscillations at late times.

When we introduce an asymmetry between the baths the Green’s function
changes rather drastically. The breaking of symmetry can be caused by ei-
ther different bath parameters v�, K� or by different couplings g�.10 Within
our low-momentum approximation, g� and K� always appear together as
the effective coupling g̃� = g�K

1/2
� , but the actual dimensionless coupling

constants are g̃�/v�. Therefore, we can choose to vary g̃� only while keep-
ing the sound speeds constant, because the following qualitative remarks
are equally valid if v" 6= v#.

figures 3.11 and 3.12 show some examples of the Green’s function for
asymmetric baths. Comparing these plots with the corresponding ones in
the symmetric case reveals that |G(p, t)|2 increases or decreases when the
parameters are varied in the same fashion. Apart from these large-scale
qualitative tendencies, the plots are starkly different from the symmetric
case. The most prominent feature is that the Green’s function generally
shows wider and more persisting oscillations.

Also in this case, we can distinguish two different regimes, namely short
and longer times. The first few oscillation cycles are distinctly noisy, with
peaks and valleys whose shapes become increasingly irregular for higher
momenta and (overall) couplings (see figures 3.11a and 3.11b), and especially
for the lowest J?s (figure 3.12). We have observed that the detailed behaviour
in this region depends strongly on the cutoff. This dependence suggests that
this regime is dominated by the interference between the various terms of
equation (3.0.13), each one quite sensitive to the value of ⇤ through the
C(p, t) and D(p, t) functions.

At longer times the oscillations acquire a more regular shape, with a fre-
quency 2J̃?(p), and a slowly decreasing amplitude. These oscillations seem
to be more persistent than in the symmetric scenario, so the power-law de-
cline can be explicitly seen only by looking at the average (unless we go to
extremely long times,). The variation of �(p) as g̃� are changed does not ap-
pear to be responsible for this behaviour. In fact, we get the same results as

10 Strictly speaking, one could allow also for different cutoffs ⇤�. We preferred to avoid this
complication.
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figure 3.11b even if we vary the couplings in a way to keep �(p) fixed. More-
over, this phenomenon is rather sharp, as a few percent difference between
g̃" and g̃# is sufficient to observe it. Its root lies in the UV logarithmic diver-
gence of the C(p, t) and D(p, t) functions, and this is confirmed by varying
⇤, as we show int the inset in figure 3.12: a larger cutoff increases the depth
of the oscillations (but leaves the maxima unchanged).

The above discussion implies that even for large times the C(p, t) and
D(p, t) functions still have a relevant role in determining the Green’s func-
tion, despite being asymptotically sub-leading. This is true in particular
when J? is very small, as we show in figure 3.12. In this interesting pa-
rameter regime, the long-time oscillations have a distinctive ”spiked” shape,
which is keenly different from all the other cases discussed so far. We can hy-
potesise that the cutoff-dependence allows the coherence between the sym-
metric and antisymmetric modes to be retained longer, as soon as the two
baths are made unequal. However, this can only be a qualitative explana-
tion, because the explicit dependence of the Green’s function on the cutoff
means that its actual behaviour is sensitive to the details of the microscopic
Hamiltonian of the baths, beyond the universal description provided by the
TLL theory.

�.� ��� �������� �������� ��������

In this section, we compute and analyse the spectral function obtained from
the LCE Green’s function.

The spectral function

Â(p,!) ⌘ -2 Im Ĝ(p,!) (3.3.1)

yields information about the energy spectrum of the theory [66], and in gen-
eral it is a measurable quantity by means of radio-frequency spectroscopy
[87]. In analogy with the calculation at the end of 2.3, we can have an an-
alytical insight on the behaviour of Â(p,!) from the asymptotic expansion,
equation (3.1.27). We can already anticipate that we will find a power-law
also in the frequency domain.

As Ĝ(p, t) / ✓(t), we have

Ĝ(p,!) =

Z1

0
dt ei!+t

Ĝ(p, t) =
Z t̄

0
dt ei!+t

Ĝ(p, t)
| {z }

Ĝreg

+

Z1

t̄
dt ei!+t

Ĝ(p, t)
| {z }

Ĝas

,

where !+ ⌘ !+ i0+ and t̄ is an arbitrary time. We choose it to be large
enough so that for later times we can well approximate the Green’s function
by its asymptotic expression (3.1.27). Then, the integral for Ĝ

as is made of
terms of the form

Z1

t̄
dt

eizt

t�
=

�
�(1-�,-izt̄)
(-iz)1-� , if � 6= 1 ,

E1(-izt̄) if � = 1 ,
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Figure 3.13: Numerically computed spectral function in the symmetric case, for
g
2
K = 0.5v2, p = 0. At each value of J? the double-peak structure

can be appreciated. The frequencies are measured with respect to the
noninteracting impurity ground-state energy E(p = 0).

where �(a, z) is the incomplete Gamma function (see [23]). We are working
in the regime of weak coupling and small impurity momentum, so we expect
that �(p) < 1. The result is

G
as
��0(p,!) ⇡ -

i
2
t
�p

0

�

Ze(p, t0)
�(1-�p,-i(!+ - �̃pe)t̄)

[-i(!+ - �̃pe)]1-�p
+

+ � · �0 Zo(p, t0)
�(1-�p,-i(!- �̃po + 2i�p)t̄)

[-i(!- �̃po + 2i�p)]1-�p

✏

,

where most of the momentum arguments have been transformed into sub-
scripts to improve readability.

As we anticipated, the power-law decay at long times is mirrored by a
power-law divergence at the frequencies of the renormalized bands.11 On
the contrary, Ĝreg is the integral of a regular function over a finite domain,
so it yields a non-singular contribution to the Green’s function. We can
conclude that for �(p) 6 1, and frequencies around �̃e(p) (possibly, also
around �̃o(p)), Ĝas is the dominant contribution:

G��0(p,!) ⇡ -
i
2
t
�p

0

�

Ze(p, t0)
�(1-�p,-i(!+ - �̃pe)t̄)

[-i(!+ - �̃pe)]1-�p
+

+ � · �0 Zo(p, t0)
�(1-�p,-i(!- �̃po + 2i�p)t̄)

[-i(!- �̃po + 2i�p)]1-�p

✏

+

+ regular terms for !! �̃e,o (3.3.2)

The imaginary part of the above expression features a threshold-like sharper
peak at ! = �̃e(p) and a broadened one around ! = �̃o(p). These are, of
course, the remnants of the original noninteracting bands, ”dressed” by the
phonons in the baths. This structure can be clearly appreciated in figure 3.13,
which shows the result of the direct computation of A��(p,!) from the
numerical Fourier transform of the Green’s function.

11 �(a, z) = �(a) +O(z) for z ! 0, so the singular behaviour does not change as long as a 6= 0,
i.e. �(p) 6= 1. For �(p) = 1 one has a weaker logarithmic divergence.
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We can also evaluate the analytical expression of the spectral function very
close to �̃e(p). In this region, we can further simplify the Green’s function
(3.3.2) to

G��(p,!) ⇠ -
i
2
t
�p

0 |Ze(p, t0)|�(1-�p)
ei�e(p)

[-i(!+ - �̃pe)]1-�p
,

where �e(p) ⌘ argZe(p) = Im(cA(p, t0) + cB(p)). Substituting cA(p) and
cB(p) from equation (3.1.25) we obtain the interesting relation

�e(p) = Im(cA(p, t0) + cB(p)) = -
⇡

2
�(p) .

Then

A��(p,!) ⌘ -2 Im(G��(p,!)) ⇠

⇠ -t
�p

0 |Ze(p, t0)|�(1-�p) Im
⇣ -iei�e

[-i(!+ - �̃pe)]1-�p

⌘
=

= -t
�p

0 |Ze(p, t0)|�(1-�p) Im
⇣ (-i)2�p

ei⇡(1-�p)✓(�̃pe-!)

⌘
=

= -
t
�p

0 |Ze(p, t0)|�(1-�p)��!- �̃pe
��1-�p

Im e-i⇡((1-�p)✓(�̃pe-!)+�p)

and finally12

A��(p,!) ⇠ ✓(!- �̃pe)t
�p

0 |Ze(p, t0)|
�(1-�p) sin�p⇡

(!- �̃pe)1-�p
. (3.3.3)

The above equation clearly indicates that there is a threshold singularity at
! = �̃e(p): there are no eigenstates with energies below �̃e(p), while im-
mediately above it there is a (integrable) divergence of the density of states.
This can be interpreted as the impurity becoming ”dressed” with an arbi-
trarily large number of very low-energy phonons. This edge singularity is
an a well-known feature of impurities in 1D [45, 50, 54, 66], and it is related
to the well-known X-ray threshold problem. In fact, equation (3.3.3) shows a
remarkable resemblance to the spectral function of the X-ray edge problem
[66].

The higher-energy peak corresponds to an unstable state and has a width
of order 2�(p), but the shape is only approximately Lorentzian. If we assume
that the expression (3.3.2) is the most relevant contribution also around the
odd mode energy �̃o(p), we can repeat a calculation similar to the one re-
ported above to find that for !! �̃o(p)

A��(p,!) ⇠ t
�p

0 |Zo(p, t0)|
�(1-�(p))

⇥
(!- �̃po)2 + 4�2p

⇤1-�p

2

⇥

⇥ sin
⇥
�p⇡- �o(p) + (1-�p) arg(!- �̃po + 2i�p)

⇤
,

(3.3.4)

where

�o(p) ⌘ Im(cA(p)- cB(p)) +
⇡

2
�(p) = -

M

32⇡

X

s,�

g̃
2
�

ks�(p)
⇣
1+ 2J?

ks�(p)

⌘3/2 ,

(3.3.5)

12 We notice, en passant, that �(1 - �p) sin�p⇡ = ⇡/�(�p) by a well-known relation of the
Gamma function [23].
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arg(!- �̃po + 2i�p) = ⇡✓(-!+ �̃po) + arctan
�
2�p/(!- �̃po)

�
and we have

approximated �(1-�p,-i(!- �̃po + 2i�p)t̄) ⇡ �(1-�p), which is accurate
as long as 2�pt̄ and �p are small. We can emphasise the difference with a
usual quasiparticle peak by expanding the sine function in equation (3.3.4):

A��(p,!) ⇠ t
�p

0 |Zo(p, t0)|
�(1-�(p))

⇥
(!- �̃po)2 + 4�2p

⇤1-�p

2

⇥

⇥
�
2�p cos

⇥
�p(arg(-!+ �̃po + 2i�p))- �o(p)

⇤
+

+! sin
⇥
�p(arg(-!+ �̃po + 2i�p))- �o(p)

⇤ 
.

(3.3.6)

In this expression, we can see two effects of the OC on the spectral function.
The first is that the would-be Lorentzian peak

⇥
(!- �̃po)2 + 4�

2
p

⇤-1 that is
usually encountered in quasiparticle states is actually raised to the power 1-
�p/2, which means that its width is slightly enlarged. The second is caused
by the terms in curly braces, which make the spectral function asymmetric
around �̃po, increasing the spectral weight above the band with respect to
below it. In the perturbative regime, the smallness of the OC exponent �p

implies that both effects are rather small (indeed, the terms in curly braces
approximate to 2�p +O

�
g̃
2
/v

2
�
), so these deviations are difficult to observe

(see figure 3.13). Even with such a small �p, the asymmetry of the peak
would be visible if �p were sufficiently small, but this does not seem to be
the case in the parameter regime we have investigated. However, it could still
occur happen for the even mode in cases when it is endowed with a finite
lifetime, such as in the case of a finite baths temperature (as considered in
the next section) or in presence of external reservoirs of impurities [42].

�.� ��� �� ������ �����������

In actual experiments, the temperature of the baths is always different from
zero, and it can be significant for fermionic baths [9, 18, 51, 62]. Therefore,
it is important to assess its effects on the Green’s function computed in the
previous section. In particular, it may affect the visibility of the initial oscilla-
tions (i.e increase decoherence) and the ease of observation of the power-law
decay at longer times. In this section, we lay the foundations for this analy-
sis.

Following [53], we can easily incorporate a finite temperature by extend-
ing the LCE to the nonequilibrium Green’s function formalism [42], that
allows us to work in real time.13 Out of equilibrium, we have to consider
(at least) two different Green’s functions (for instance, the greater and the
lesser), but the presence of only one impurity in the system implies that
there is only one independent impurity Green’s function:

G
<
�0�(p, t) = 0 G

R
�0�(p, t) = ✓(t)G>

�0�(p, t)

G
>
�0�(p, t) ⌘ -i

D
dp�0(t)d†

p�

E
G

A
�0�(p, t) = -✓(-t)G>

�0�(p, t)
. (3.4.1)

13 Performing the LCE in the imaginary time formalism and then making the analytic extension
to real time appears to yield the same results.
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These relations are valid also for the free one, (G0)�0�(p, t). Here, we are
anticipating that, in analogy with the zero-temperature case, the interacting
Green’s function is diagonal in the momentum label p. The average hOi =
Tr(O⇢0) is taken on the mixed state

⇢0 ⌘ |0ih0|⌦ e-Hbath/T

Z(T)
, Z(T) ⌘ Trbath e-Hbath/T (3.4.2)

which is the thermal state of the baths14 at temperature T (setting Boltz-
mann’s constant kB = 1) in the absence of the impurity. Because of equa-
tions (3.4.1) above we can make the LCE Ansatz either on the retarded (or
advanced) or the greater component, as one necessarily implies the other.
As usual with nonequilibrium Green’s functions, the perturbative series is
formally identical with the equilibrium one, the only difference being that
the time convolutions run on the Keldysh contour, and we have to use Lan-
greth rules [42] to go back on the real time axis. The Dyson equation for the
retarded component coincides with the equilibrium one,

Ĝ
R(p, t) = Ĝ

R
0 (p, t) + (ĜR

0 ⇤ ⌃̂R
2 ⇤ ĜR

0 )(p, t) + . . . , (3.4.3)

with the usual hat notation for matrices in bath index space. Assuming the
LCE Ansatz Ĝ

R(p, t) = Ĝ
R
0 (p, t)eF̂2(p,t), we find that F̂2(p, t) is determined

by
Ĝ

R
0 (p, t)F̂2(p, t) = (ĜR

0 ⇤ ⌃̂R
2 ⇤ ĜR

0 )(p, t) , (3.4.4)

in perfect correspondence with the zero-temperature scenario. The second-
order self-energy defined on the Keldysh contour ⌧ 2 C is formally identical
with equation (3.0.4b):

⌃2�(p, ⌧) = ig2�K�
1

L

X

q 6=0

V
2(q)(G0)��(p- q, ⌧)D0

�(q, ⌧) . (3.4.5)

Its retarded component is

⌃
R
2�(p, t) = ig2�K�

1

L

X

q 6=0

V
2(q)

h
(GR

0 )��(p- q, t)D0,<
� (q, t)+

+ (G<
0 )��(p- q, t)D0,R

� (q, t) + (GR
0 )��(p- q, t)D0,R

� (q, t)
i
=

= ig2�K�
1

L

X

q 6=0

V
2(q)(GR

0 )��(p- q, t)
h
D

0,<
� (q, t) +D

0,R
� (q, t)

i
.

Since there is an overall ✓(t) factor coming from G
R
0 , we have D

0,<
� (q, t) +

D
0,R
� (q, t) = D

0,<
� (q, t)+D

0,>
� (q, t)-D

0,<
� (q, t) = D

0,>
� (q, t), from which we

find

⌃
R
2�(p, t) = ig2�K�

1

L

X

q 6=0

V
2(q)(GR

0 )��(p- q, t)D>,0
� (q, t) =

= ig2�K�✓(t)
1

L

X

q 6=0

V
2(q)(G>

0 )��(p- q, t)D>,0
� (q, t) ,

(3.4.6)

14 The extension to different temperatures of the baths is straightforward, amounting to a mere
substitution T ! T� in the following formulae, and B(", T) ! (B(", T") + B(", T#))/2 in the
final results, B(", T) being the Bose distribution.
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which is noting but ✓(t)⌃>
2�(p, t), as it could have been determined directly

by taking the greater component of the self-energy. The retarded Green’s
function for the noninteracting impurity is the same as at zero temperature,
equation (3.0.2), whereas

D
0,>
� (q, t) ⌘ -i

D
(b†

q�eiv�|q|t + b-q�e-iv�|q|t)(b†
-q� + bq�)

E
=

= -i
⇥
1+B(v�|q|)

⇤
e-iv�|q|t - iB(v�|q|)eiv�|q|t ,

(3.4.7)

where B(") ⌘ (e"/T - 1)-1 is the Bose distribution.
From now on, we will restrict ourselves to the symmetric case. For this

setup it is convenient to work in the parity basis, in which Ĝ0 (and hence
the LCE approximation of Ĝ) is diagonal, and it turns out that ˆ̃

F2 = ŴF̂2Ŵ

is diagonal, too. Here,

Ŵ = Ŵ
† ⌘ 1

21/2

✓
1 1

1 -1

◆
(3.4.8)

is the matrix that administers the change of basis from the bath index to the
parity bands. The diagonal components of ˆ̃

F2 are

(F̃2)µµ(p, t) = -
X

q

W2
q

2L

⌦
B(v|q|)1+i(v|q|+E(q)-E(p-q))t-ei(v|q|+E(q)-E(p-q))t

(v|q|+E(p)-E(p-q))2
+

+B(v|q|)1+i(v|q|+E(p)-E(p-q)-2µJ?)t-ei(v|q|+E(p)-E(p-q)-2µJ?)t

(v|q|+E(p)-E(p-q)-2µJ?)2
+

+
⇥
1+B(v|q|)

⇤1-i(v|q|+E(p-q)-E(p))t-e-i(v|q|+E(p-q)-E(p))t

(v|q|+E(p-q)-E(p))2
+

+
⇥
1+B(v|q|)

⇤1-i(v|q|+E(p-q)-E(p)-2µJ?)t-e-i(v|q|+E(p-q)-E(p)+2µJ?)t

(v|q|+E(p-q)-E(p)+2µJ?)2

↵
,

(3.4.9)
where Wq ⌘ gK

1/2
V(q). Introducing the kernel

Kt(") ⌘
1- i"t- e-i"t

"2
(3.4.10)

and going from momentum summations to integration in energy, we can
write

(F̃2)µµ(p, t) = -1
2

Z
d"
h
R

abs
p (") + R

em
p (")

i
[Kt(") +Kt("+ 2µJ?)] , (3.4.11)

where

R
abs
p (") ⌘ 1

L

X

q

W
2
qB(v|q|)�(v|q|+ E(p)- E(p- q) + ") (3.4.12)

is the density of states for absorption of thermally excited phonons, and

R
em
p (") ⌘ 1

L

X

q

W
2
q

⇥
B(v|q|) + 1

⇤
�(v|q|- E(p) + E(p- q)- ") (3.4.13)

is the density of states for emission of phonons. The latter can be separated
into a stimulated and spontaneous emission part:

R
em
p (") = 1

L

X

q

W
2
qB(v|q|)�(v|q|- E(p) + E(p- q)- ")+

+ 1
L

X

q

W
2
q�(v|q|- E(p) + E(p- q)- ") ⌘

⌘ �Rem
p (") + R0(") .

(3.4.14)
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It is easy to recognise R0(") as equation (3.0.17). This means that the F̃2

function can be split into a thermal contribution, and a zero-temperature
contribution, which we already calculated in the previous section:

(F̃2)µµ(p, t) = (�F̃2)µµ(p, t) + Fp(0, t) + Fp(-µJ?, t) . (3.4.15)

Therefore, all the results obtained so far at zero temperature form part of the
solution also at finite temperature, and we only need to assess the behaviour
of the thermal contribution. We expect to find that the latter induces a ther-
mal lifetime for both the even and the odd states of the impurity, and so we
will focus on calculating it.

The absorption density of states for subsonic momentum |p| < Mv reads

R
abs
p (") = g̃2

(2⇡)2

⌦
✓("+k+)

(1+"/k+)1/2

h
q>
+(")
v+
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�
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>
+(")

�
+ ✓(-")
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-(")
v+
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�
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>
-(")

�i
+

+ ✓("+k-)
(1+"/k-)1/2


|q<

-(")|
v+

B
�
v
��q<

-(")
���+ ✓(-") |q

<
+(")|
v+

B
�
v
��q<

+(")
���
�↵

,

(3.4.16)
where we recall that v± = v±(p) ⌘ v± p/M and k± = k±(p) ⌘ Mv

2
±/2 =

(Mv± p)2/(2M), while

q
>
±(") ⌘ Mv+


1±

⇣
1+ "

k+(p)

⌘1/2�
, (3.4.17a)

q
<
±(") ⌘ Mv-


-1±

⇣
1+ "

k-(p)

⌘1/2�
, (3.4.17b)

are the positive and negative solutions to v|q| + E(p) - E(p - q) + " = 0,
respectively. Namely, q>

± > 0 and q
<
± 6 0, when they are real. For " > 0

there are only two real solutions, whereas for min{-k+(p),-k-(p)} 6 " 6 0

there are four. This means that Rabs
p (") has a jump discontinuity at " = 0:

R
abs
p (0-) = g̃2
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. (3.4.18b)

More explicitly, in the above formulae q
>
+(0) = 2Mv+ and q

<
-(0) = -2Mv-,

which means that the leading contribution to R
abs
p (0+±) is linear in temper-

ature, for T ⌧ Mv
2.

For the stimulated emission part we have

�R
em
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(2⇡)2
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h
q>
e (")
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i
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where

q
>
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�
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�1/2i > 0 , (3.4.20a)

q
<
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h
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�
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k+(p)

�1/2i 6 0 (3.4.20b)

are the positive and negative solutions of v|q| + E(p - q) - E(p) - " = 0,
which exist only for " > 0. This density of states has a finite limit for "! 0

+:

�R
em
p (0+) = g̃2

(2⇡)2
( 1
v-

+ 1
v+

)Tv . (3.4.21)
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Figure 3.14: Effect of the temperature on the LCE Green’s function, showing the
increasing rate of decoherence as the temperature grows. The parame-
ters are g

2
K = 0.5v2, J? = 0.1Mv

2 and p = 0, for symmetric baths.

In general, both R
abs
p (") and �R

em
p (") decrease exponentially for " ! +1

and T ! 0, because of the presence of the Bose distributions.
Figure 3.14 shows the square modulus of the LCE Green’s function, cal-

culated numerically using equation (3.4.11). We can see that the main effect
of temperature is to decrease its magnitude, and that the rate of decrease
is particularly strong when 2J? . T , when only the very first oscillations
can be clearly observed. This increased decay is of course to be expected on
physical grounds, as the presence of thermally excited phonons in the baths
can only increase the number of available decay channels. As the possibility
of observing the coherent oscillations, and possibly measuring the the OC
exponent, is limited by the enhanced decay rate, we now turn to its study.

�.�.� Analytic results: thermal decay constant

From the discussion of equation (3.0.24) and from section 3.1.3, we know that
at long times the imaginary part of (F̃2)µµ(p, t) quantifies the renormalisa-
tion of the impurity energy bands, whereas its real part contains the Green’s
function decay, either exponential or power-law. Therefore, we concentrate
on the real part:

Re(�F̃2)µµ(p, t) = -1
2

Z
d"
h
R

abs
p (") + R

em
p (")+

+ R
abs
p ("- 2µJ?) + R

em
p ("- 2µJ?)

i
1-cos"t

"2 .

For long times, the kernel (1- cos "t)/"2 gets narrower and narrower, so that
the most relevant contributions will come from |"| . t

-1. From section 3.1
we know that any correction to the OC exponent, namely a term with a log-
arithmic dependence on t, would originate from a Ohmic density of states:
R(") ⇠ " for " ! 0. However, we just saw that the thermal contributions to
the density of states are finite in this limit, and this rules out the possibility
of a thermal correction to the OC exponent. The finite density of states at
zero energy allows us to use a simple trick to obtain the thermal contribution
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to the decay constant. We notice that the kernel is simply a smeared Dirac
delta:

lim
t!+1

1
⇡t

1-cos"t
"2 = �(") . (3.4.22)

Then, we can get the leading contribution to (�F̃2)µµ(p, t) at long times by
simply replacing (1- cos "t)/"2 with ⇡t�("). We should just pay attention
to the discontinuity of R

abs
p (") at " = 0, which is easily resolved because

(1- cos "t)/"2 is an even function of ", hence the weight of the nascent delta
is equally distributed between positive and negative energies, and so we
should take the average of the " ! 0

± limits. Analogously, the integral of
the stimulated emission part is limited to " > 0, and so we should attribute
it a weight of 1/2. The final result is

Re(�F̃2)µµ(p, t) ⇠ -�th
pµt+O

�
t
0
�

, (3.4.23)

where

�
th
pµ ⌘ ⇡

2

h
1
2

�
R

abs
p (0-) + R

abs
p (0+)

�
+ 1

2�R
em
p (0+)+

+ R
abs
p (-2µJ?) +�R

em
p (-2µJ?)

i
(3.4.24)

is the sought thermal contribution to the decay constant. More explicitly,

�
th
pe = ⇡

2

h
1
2

�
R

abs
p (0-) + R

abs
p (0+)

�
+1

2�R
em
p (0+) + R

abs
p (-2J?)

i
, (3.4.25a)

�
th
po ⌘ ⇡

2

h
1
2

�
R

abs
p (0-) + R

abs
p (0+)

�
+1

2�R
em
p (0+)+

+R
abs
p (2J?) +�R

em
p (2J?)

i
, (3.4.25b)

where in the first equation R
abs
p (-2J?) 6= 0 only if 2J? 6 max{k-(p),k+(p)}.

Therefore, we see that also the even mode acquires a finite lifetime, while the
odd mode decay constant increases. Notice that the coherent oscillations of
|G�0�(p, t)|2 = [

P
µ |Gµ(p, t)|2 + 2�

0
�Re(G⇤

e(p, t)Go(p, t))]/4 arise from the
interference term Re(G⇤

e(p, t)Go(p, t)), so their amplitude decays with the
constant

�
osc
p ⌘ �th

pe + �
th
po + 2�p . (3.4.26)

When T ⌧ J?,Mv
2, namely when the temperature is the smallest energy

scale, we can discard all the Bose functions present in the densities of states
in equation (3.4.24) and we find that the decay constants of both bands are
proportional to T :

�
th
pµ ⇡ g̃2

8⇡

⇣
1

v+(p) +
1

v-(p)

⌘
T
v = g̃2

4⇡v2
T

1-
⇣ p
Mv

⌘2 . (3.4.27)

This formula is usually quite accurate, as the neglected terms are exponen-
tially small in v|q<>(±2J?)|/T ⇠ max{Mv

2, 2J?}/T . The above result is con-
sistent with the one reported in [84] for an immobile impurity suddenly
immersed in a gas of free fermions.15

15 In the cited ref., there is more than one contribution to the decay constant, because the full
spectrum of free fermions is considered, and not only a low-energy approximation, so that
different scattering processes may set in. Our decay constants should be compared with the
”Fermi surface contribution” �0.
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Figure 3.15: Plots of the thermal contributions to the decay constants as functions
of J? and for various momenta p. Plot (a) is for low temperature
T = 0.01Mv

2, while (b) is for the relatively high T = 0.2Mv
2. In

each one, the continuous lines represent �th
pe, the dashed ones �th

po

and the dotted-dashed show the zero-temperature contribution 2�p

for comparison. The coupling constant is g
2
K = 0.5v2 for both graphs.

There is a case, however, in which the approximation (3.4.27) fails, namely
when one of the singularities of R

abs
p (") at " = -k±(p) is hit. This condi-

tion requires " < 0, so the singular behaviour affects only �th
pe, when the

condition 2J? ⇡ k±(p) is satisfied. These divergences have the same ori-
gin as the well-known van Hove singularity of the density of states for free
particles at zero energy in 1D [66]. Albeit virtually these singularities are
always possible to reach, we will see that they can be observed only when
some conditions are met: there is either a relatively large J? or a significant
momentum p, 2J? has to be very close to k±(p) and, moreover, the tempera-
ture has to be large enough (i.e. at least comparable to 2J?) so that the Bose
factor does not suppresses the amplitude of the divergence.

We show the typical behaviour of the thermal decay constants (3.4.25)
in figures 3.15. Plot 3.15a shows the low-temperature behaviour at T =
0.01Mv

2: �th
pe (continuous line) and �th

po (dashed line) are essentially coin-
ciding, and show a steep decrease as J? increases beyond the temperature
T . For 2J? & T , both constants converge to the low-temperature limit equa-
tion (3.4.27). The plots also show that the decay constants increase with
p.16 They show very little variation until p ⇡ 0.5Mv, and then increase very
rapidly as the supersonic threshold p = Mv is approached. The plot also
compares the thermal decay constants to the zero-temperature contribution
to the decay constant of the odd mode, 2�p [equation (3.1.33)], displayed as
a dashed-dotted line. It can be seen that at T = 0.01Mv

2, the thermal decay
constants are usually only a tiny correction, except for 2J? . T , when they
are the dominant ones because �th

pµ(J? = 0) is finite, while �p(J? = 0) = 0.
Notice that the two constants always coincide at vanishing inter-bath hop-
ping, �th

pe(J? = 0) = �th
po(J? = 0) = 2 limJ?!+1 �

th
pµ.

There are qualitatively new features in the second plot, figure 3.15b, which
shows the situation for a relatively high temperature of T = 0.2Mv

2. The
most visible feature is the presence of various divergences in �th

pe, in contrast

16 We recall that all these expressions are invariant under momentum inversion p ! -p, be-
cause of the time-reversal and inversion symmetry of the model.
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Figure 3.16: The behaviour of the figure of merit of the decoherence J?/(2⇡�osc
p )

as a function of temperature and inter-bath hopping. The larger the
value, the more visible are the oscillations of the Green’s function. The
best visibility is attained for large J? and small T . The parameters are
g
2
K = 0.5v2 and p = 0.25Mv.

with the smooth appearance of �th
po. As already noticed before, these are al-

ways present for 2J? ⇡ -k±(p), but for low temperature the amplitude of
their rising part is exponentially reduced and they can be seen only infinites-
imally close to the threshold, so that in plot 3.15a they seem to be absent.
For p 6= 0, there are two of them, and as p increases there is one that comes
closer to J? = 0, while the other goes towards J? = Mv

2. For p = 0.2Mv and
p = 0.4Mv both peaks can be observed in figure 3.15b (for larger momentum,
they occur beyond the range of J? shown), but the amplitude of the higher
peaks is much more suppressed than the lowest ones, so that they are barely
visible. Apart from these divergences, figure 3.15b allows us to observe how
both decay constants coincide at J? ! 0 and J? ! +1, and that they gen-
erally decrease with J? (except for close to the singular points of �th

pe). Also,
at this large temperature the thermal contributions to decoherence are com-
parable, or larger, than the one from the spontaneous decay, even if the latter
surpasses the former in magnitude for a sufficiently large J? and low mo-
mentum. Notice that both plots in 3.15 would not change qualitatively if the
coupling gK

1/2 were modified, because all decay constants are proportional
to its square.

We can assess the influence of the finite temperature on the visibility of the
oscillations of the Green’s function by plotting the ratio of their characteristic
decay time 1/�

osc
p , to the (noninteracting) oscillation period 2⇡/J?. We plot

this figure of merit in figure 3.16. A large value of J?/(2⇡�osc
p ) means that it

takes many oscillations before the Green’s function becomes exponentially
small. From the contour plot, we can observe that this situation can be ob-
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tained by decreasing the temperature or increasing J?.17 If, for instance, we
would like to have J?/(2⇡�osc

p ) larger than 2, we can infer that the tempera-
ture should be kept under about J?. Of course, the singularities of �th

pe cause
an infinitely fast decay (visible in figure 3.16 as two ”cuts” in the contours at
J? = 0.14Mv

2 and 0.39Mv
2) and should be avoided.

The visibility of the power-law decay at finite temperature depends cru-
cially on keeping the thermal contributions to the decay as small as possible,
which again implies small T and large J?. As for any T > 0 also the even
component of the Green’s function is subjected to decoherence, there is no
parameter regime in which the pure power-law decay can be observed (more-
over, �(p) cannot altered by neither T , nor J?). Hence, in an experiment the
value of the OC exponent could be computed only by fitting the data with
the asymptotic form of the Green’s function. Nevertheless, the clearest view
of the would-be power-law regime occurs when the odd mode is completely
decayed, while the even mode thermal decay should be as small as possible,
so one should try to look into the regime in which �th

pe ⌧ �
osc
p .

17 With the warning that if J? is too large the bosonisation approach we used for building our
model is expected to break down, and so the validity of the plot becomes questionable. The
threshold for this breakdown depends on the details of the microscopic Hamiltonian, hence
on the experimental implementation of the model.



4 A G LO B A L V I E W

In this chapter1 we take a more encompassing perspective on the impurity
model we are examining. We do so by developing a perturbative expansion
for the dynamics of the state of the whole system. We can then access the
time evolution of observables both of the impurity and of the baths. At the
end of the chapter, we give a first look to the generalisation of our model to
more than two baths.

�.�.� The Lee-Low-Pines transformation

The model considered so far, defined by equations (2.2.16), has translational
invariance, thanks to the periodic boundary conditions we chose. This im-
plies that the total system momentum (i.e. what we could call the polaron
momentum) Ptot =

P
p� pd

†
p�dp� +

P
q 6=0,� qb

†
q�bq� is a conserved quan-

tity. As it is usual in quantum mechanics, changing the basis to the one in
which a conserved operator is diagonal allows for a great simplification2. In
the context of polaron physics, i.e. of mobile impurities, this change of basis
is known as the Lee-Low-Pines transformation [60]. Its form can be easily
derived by the following argument. Suppose we want to build an eigenstate�� Q

↵
of the total momentum operator with eigenvalue Q. We can always

decompose it as

�� Q

↵
=

X

p,�,↵
 (p,�,↵) |p,�id |P↵ib ,

where |p�id, |P↵ib are eigenstates of the impurity and baths momenta

Pd ⌘
X

p�

pd
†
p�dp� ,

Pb ⌘
X

q6=0,�

qb
†
q�bq�

with respective eigenvalues p and P↵. In the present model, the label ↵
would be the list of all bosonic occupation numbers in the modes q� of the
baths, and the states |P↵i would coincide with the eigenstates of the unper-
turbed baths. We would like to impose Ptot

�� Q

↵
= Q

�� Q

↵
, which is satis-

fied if the state
�� Q

↵
has components only on momentum states respecting

the constraint p+ P↵ = Q,
�� Q

↵
=
X

�,↵
 (p = Q- P↵,�,↵) |Q- P↵,�id |P↵ib .

1 This chapter is largely based on [91].
2 In the case of symmetric baths, there is also a conserved quantity for the transverse motion

that allows a complete decoupling of the impurity from the baths: see appendix B.

51
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We can re-write this state as follows. Let us define

X = a

X

j�

jd
†
j�dj�

to be the impurity position operator.3 Then, the operator e-iqX (namely the
Fourier transform of the impurity density operator) implements translations
in momentum space, e-iqX |p,�id = |p- q,�id, and so we can write

�� Q

↵
= e-iPbX

X

�,↵
 

0(Q,�,↵) |Q,�id |P↵ib ,

where  0(Q,�,↵) ⌘  (p = Q- P↵,�,↵), which means that the eigenstates
of the total momentum are obtained by applying e-iPbX to states in which
the impurity has momentum equal to the total momentum. The operator

ULLP = e-iPbX (4.0.1)

is the sought unitary change of basis [60]. This transformation acts on the
annihilation operators as

U
†
LLPdj�ULLP = e-iajPbdj� , (4.0.2a)

U
†
LLPbq�ULLP = e-iqX

bq� . (4.0.2b)

In the single-impurity subspace of the Hilbert space we can use the relation
d
†
j�dj�eiqX = eiqaj

d
†
j�dj�, and we obtain the transformed Hamiltonian

HLLP ⌘ U
†
LLPHULLP =

X

p�

E(p- Pb)d
†
p�dp� - J?

X

p�

d
†
p�̄dp�+

+
X

q6=0,�

"q�b
†
q�bq� +

X

q 6=0,�

Wq�

L1/2

X

j

d
†
j�dj�(b

†
q� + b-q�) . (4.0.3)

We can see the effect of the change of basis: the new Hamiltonian is decom-
posed in a sum over all impurity momentum sectors (recall that

P
j d

†
j�dj� =

P
p d

†
p�dp�), which is another way of saying that the impurity momentum

Pd is now conserved. This conservation occurs because in the LLP frame Pd

equals the total momentum of the system. We can work within a given mo-
mentum sector, corresponding with a given momentum eigenvalue p. The
only dynamical impurity degree of freedom that is left is the bath index,
which is conveniently described by the pseudo-spin variables

�i ⌘
X

p,�,�0

(�̂i)��0d
†
p�dp�0 =

X

j,�,�0

(�̂i)��0d
†
j�dj�0 . (4.0.4)

In the above equation, (�̂i)��0 is the i-th Pauli matrix. Taking into account
that

P
p� d

†
p�dp� = 1 (i.e. there is only one impurity in the system), we can

write

HLLP(p) =
(p-Pb)

2

2M - J?�1 +
X

q 6=0,�

v�|q|b
†
q�bq�+

+
X

q6=0,�

Wq�

L1/2
1+��3

2 (b†
q� + b-q�) . (4.0.5)

3 In pbc the position operator is of course ill-defined. However, the operator e-iqX is perfectly
defined because all momenta q are quantized in multiples of 2⇡/L, so that e-iqX is periodic
with period L. The same holds true for the LLP operator.
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Thus, we end up with a Hamiltonian that is somewhat reminiscent of a
spin-boson model [61]. We see that the price for disentangling the impu-
rity momentum degree of freedom from the description is that the bath
becomes interacting through the first term of equation (4.0.5). The latter
reflects the phenomenon that phonons can indirectly exchange momentum
between themselves by being adsorbed and emitted by the impurity. The
Hamiltonian (4.0.5) will be the basis of the following analysis.

�.� ����-��������� ������������ ������

As in the previous chapter, we assume that the baths have been initially
prepared in their ground state |!i, and that at time t = 0 the impurity is
suddenly introduced in the system. In general, we allow the impurity to be
in an arbitrary4 wave packet:

| lab(0)i =
X

pµ

cpµ |pµid |!ib . (4.1.1)

We use the labels lab and LLP to distinguish the state before and after the
LLP transformation, respectively. As the baths are in their ground state, the
transformation acts as the identity:

| LLP(0)i = U
†
LLP | lab(0)i =

X

pµ

cpµ |pµid |!ib . (4.1.2)

For the sake of readability, from now on we will omit the LLP label on the
states, and use the label lab when needed.

�.�.� Choice of the unperturbed Hamiltonian

We want to set up a perturbative expansion in powers of g�K
1/2
� /v� that is

able to capture the OC. In the usual diagrammatic perturbation theory for
the Green’s function, this is accomplished by the so-called parquet resum-
mation [33, 66], which is, however, rather unwieldy, especially for mobile
impurities. Instead, we will pursue a less technical route by choosing an
unperturbed Hamiltonian that already contains this phenomenon. We can
better illustrate how such a Hamiltonian can be found in the case of sym-
metric baths, i.e. for v� = v, K� = K and g� = g (hence, Wq� ⌘ Wq). In this
situation, it is natural to introduce even and odd bath modes, analogous to
the impurity ones,

bqµ=e/o ⌘ 1
21/2 (bq" ± bq#) , (4.1.3)

4 Almost arbitrary, actually. First, the number of momentum components is limited by the in-
creasing computational cost, depending on the observables we measure. Second, we will
always work in the subsonic regime, |p| < Mmin{v", v#}, and the validity of the long-
wavelength model we are using is restricted to small p. This still leaves room for a large
variety of wave packets.
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and rewrite the Hamiltonian (4.0.5) as5

HLLP(p) =
(p-Pe-Po)2

2M - J?�1+
X

q 6=0

v|q|b†
qebqe+

X

q 6=0

Wq

(2L)1/2
(bqe+b

†
qe)+

+
X

q 6=0

v|q|b†
qobqo + �3

X

q6=0

Wq

(2L)1/2
(bqo + b

†
qo) , (4.1.4)

where

Pµ ⌘
X

q 6=0

qb
†
qµbqµ (4.1.5)

is the momentum of the µ bath modes. From the above equation (4.1.4) it
is evident that the even and odd bath modes become partially independent
of each other, and that they have different roles. In fact, the bath degree
of freedom of the impurity is coupled only to the odd bath modes, and
thus the deexcitation of the odd impurity band will directly generate only
odd phonons. The even modes feel the effect of the impurity only indirectly,
through the momentum-momentum coupling with the odd modes provided
by the first term. If the impurity were fixed, namely for M ! +1, even and
odd phonon modes would be completely decoupled from each other.

With this separation in mind, it is natural to attempt a first approxima-
tion in which the bath parity modes evolve independently. This would be
exact if the impurity had infinite mass, but we can expect it to be approx-
imately valid for a finite (but possibly large) mass if the coupling to the
impurity is small. In this regime, the number of excited phonons should be
small, and thus the product PePo/M should be small as well.6 Moreover,
odd phonon modes can be generated only when the impurity transitions
between the even and odd bands, exchanging an energy of order 2J? with
the bath. In a perturbative perspective, this implies that the the number
of excited odd phonons will be further suppressed by powers of 2J?. This
hand-waving argument boils down to the following choice for the separation
of the Hamiltonian in an unperturbed part H0 and a perturbation �H:

HLLP(p) = H0(p) +�H(p) , (4.1.6a)

H0(p) ⌘ E(p)- J?�1 +
X

q 6=0

⇥
⌦q(p)b

†
qebqe +

Wq

(2L)1/2
(bqe + b

†
qe)
⇤
+

+
X

q 6=0

⌦q(p)b
†
qobqo , (4.1.6b)

�H(p) ⌘ �3
X

q6=0

Wq

(2L)1/2
(bqo + b

†
qo) +

PePo
M +

X

µ

:P2
µ:

2M , (4.1.6c)

where

⌦q(p) ⌘ v|q|- qp
M + q2

2M (4.1.7)

5 Notice that we used Wq = W-q to change the sign of the momentum label of the annihilation
operators in the coupling terms.

6 This low-density approach is similar to spin-wave theory in spirit [7].
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and the colons : · : stand for normal-ordering with respect to the phonon
vacuum |!i. If we now go back to the � basis for the bath and to the general
situation, the separated Hamiltonian reads

H0(p) ⌘ E(p)- J?�1+

+
X

q6=0,�

⇥
⌦q�(p)b

†
q�bq� +

Wq�

2L1/2 (b
†
q� + bq�)

⇤
, (4.1.8a)

�H(p) ⌘ �3V+ :
P2
b

2M : , (4.1.8b)

V ⌘
X

q 6=0,�

�
Wq�

2L1/2 (b
†
q� + bq�) , (4.1.8c)

and we have introduced the shorthand

⌦q�(p) ⌘ v�|q|-
qp
M + q2

2M . (4.1.9)

We also introduce the bath part of the unperturbed Hamiltonian,

h0(p) ⌘
X

q 6=0,�

⇥
⌦q�(p)b

†
q�bq� +

Wq�

2L1/2 (b
†
q� + bq�)

⇤
. (4.1.10)

Notice that we chose to treat : P2
b : /2M as a perturbation, despite its formal

independence of the coupling constant. This is justified when the initial
bath state is the vacuum, as then phonons modes will start to be populated
only because of the interaction. This is in the spirit of spin-wave theory for
magnetic systems [1, 7].

The physical meaning of the particular splitting of the Hamiltonian can
be seen from different perspectives. Firstly, we point out that H0 contains
g�K

1/2
� , so that the perturbative calculation we are going to describe actually

yields an infinite-order result. This is akin to a resummation of the standard
perturbative series for the Green’s function, and from the previous chap-
ter we know that this is necessary to correctly capture the OC. We can see
that H0 incorporates ”half” of the original interaction term, which is easily
traced back through equation (4.0.3) to the intra-band processes d

†
p-qµdpµ

before the LLP transformation. These are the only ones which may involve
the exchange of arbitrarily small energies between the bath and the impurity,
hence the only ones that can be responsible for the OC.7 Thus, our choice of
H0 is taking into account these processes in an exact way, and this is made
possible only by the LLP transformation. The rest of the impurity-bath inter-
action is the term proportional to �3, which is nothing but the coupling of
the phonons to inter-band processes. These processes always involve a finite
amount of energy of order 2J?, and thus cannot modify the OC exponents
at low perturbative order.

The take-home message of this hand-waving discussion is that our split-
ting of the Hamiltonian is equivalent to including intra-band processes ex-
actly, while expanding in the inter-band ones (while assuming that the num-
ber of phonons is small, so that also the recoil term : P2

b/2M : can be consid-
ered to be a perturbation).

7 Of course, this is true only at low orders in perturbation theory. We expect the OC to be in-
fluenced by higher order processes, namely the absorption or emission of multiple phonons,
because the evolution with H0 is able to provide only the leading-order term of �(p).
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A third way of rephrasing of the perturbative splitting of the Hamiltonian
is that in the bath index basis we are splitting the impurity population in
bath �, (1 + ��3)/2, into 1/2 and ��3/2, and including the former into H0.
In intuitive terms, we are choosing to incorporate in the unperturbed dy-
namics the interaction of the bath with the ”averaged” impurity population,
1/2(

P
j d

†
j"dj"+

P
j d

†
j#dj#) = 1/2. This choice can be expected to be sensible

in the perturbative regime, namely when we are close to the free impurity
behaviour, whose eigenstates |pµi occupy both baths with equal probability.
In this scenario, we can say that H0 describes the modification of the baths
arising from the very ”presence” of the impurity in the system.

Apart from the question of how we can rationalise the choice of the un-
perturbed Hamiltonian, the foremost check of the sensibleness of this choice
is that it fulfils the first goal that we stated at the beginning of this section,
namely the ability of describing the OC. In fact, the zeroth-order approxima-
tion to the state already reproduces the LCE OC exponent, �(p). In detail,
��� (0)

p� (t)
E
= e-iH0t |p�id |!ib = e-i(E(p)-J?�1)t |p�id |!p(t)ib , (4.1.11)

where

|!p(t)i ⌘ e-ih0t |!i = ei ImFp(0,t)
���coh

⇥
-

Wq�

2L1/2
1-e-i⌦q�(p)t

⌦q�(p)

⇤E
, (4.1.12)

is the zeroth order evolution of the initial bath vacuum state. The notation
|coh[zq�]i stands for a normalised coherent state [1]

|coh[zq�]i ⌘ e
P

q6=0,� (zq�b
†
q�-z⇤q�bq�) |!i , (4.1.13)

and the phase is written in terms of the Fp(J = 0, t) function introduced in
the previous chapter. The impurity Green’s function is

G�0,�(p, t) = -i
D
 

(0)
p�0(0)

��� (0)
p� (t)

E
= G

0
�0,�(p, t) h!|!p(t)i , (4.1.14)

where G
0
�0,�(p, t) is the free impurity Green’s function, and h!|!p(t)i is

easily calculated using the property h!|coh[zq�]i = exp
⇣
-1

2

P
q6=0,� |zq�|

2
⌘

of coherent states, from which

h!|!p(t)i = e
i ImFp(0,t)-1

2
P

q 6=0,�
W2

q�

4L 2
1-cos⌦q�(p)t

(⌦q�(p))2 =

= eFp(J=0,t) ⇠ t
-�p ,

(4.1.15)

where Fp(J, t) is the family of functions introduced in the previous chap-
ter. As we claimed, the zeroth order approximation already gives a Green’s
function reminiscent of the LCE one, with the same OC exponent.

�.�.� Improved perturbation theory

We are going to describe the technical details of the perturbative calculation
of the time-evolved state. We are going to follow the procedure of Ref. [58],
that is designed to avoid the appearance of secular terms. These are terms
that grow indefinitely in time [8], whose presence invalidates the naive time-
dependent perturbation theory.
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We begin from the case in which the initial | (0)i is factorised as |pµid |!ib ⌘
|pµ,!i ⌘ | pµ(0)i. We will be able to reconstruct the general case of a wave
packet by superposition of the result. As usual in perturbation theory, the
first step is to go to the interaction picture:

| pµ(t)i = e-iH0t
�� I

pµ(t)
↵

,

i
d
dt
�� I

pµ(t)
↵
= �H(t)

�� I
pµ(t)

↵
,

(4.1.16)

where �H(t) ⌘ eiH0t�He-iH0t. Then, we split the vector
�� I

pµ(t)
↵

into a
complex function aµ(t) and a state |�pµi that in general is not normalised
to 1. �� I

pµ(t)
↵
= apµ(t) |�pµ(t)i . (4.1.17)

The arbitrariness of this splitting is removed requiring that

hpµ,!|�pµ(t)i ⌘ 1 (4.1.18)

at all times (and order by order in perturbation strength). This condition
ensures that secular terms will be resummed to all orders into apµ(t). Sub-
stituting the equations above into the Schrödinger equation in the interaction
picture we obtain a set of two independent equations for apµ(t) and |�pµ(t)i:

i
d
dt

|�pµ(t)i = (�H(t)-�Epµ(t)) |�pµ(t)i , (4.1.19a)

i
dapµ

dt
= �Epµ(t)apµ, apµ(0) = 1 , (4.1.19b)

where

�Epµ(t) ⌘ hpµ,!|�H(t)|�pµ(t)i . (4.1.19c)

The equation for apµ has been obtained by projecting the Schrödinger equa-
tion onto |pµ,!i. The equation for apµ is straightforwardly solved:

apµ(t) = e-i
Rt
0dt0�Epµ(t0) . (4.1.20)

Of course, the above set of equations would be equivalent to the original
Schrödinger equation if we were able to solve it exactly. Instead, we will
solve it in a perturbative fashion, assuming the that the state |�pµ(t)i can be
expanded in powers of g�K

1/2
� /v�:

|�pµ(t)i = |pµ,!i+
����(1)

pµ

E
+
����(2)

pµ

E
+ . . . , (4.1.21)

where
����(n)

pµ

E
= O

⇣
[g�K

1/2
� /v�]n

⌘
. As the condition equation (4.1.18) must

be satisfied order by order, the vectors
����(n)

pµ

E
are orthogonal to the initial

state |pµ,!i. Substituting the above expansion in equations (4.1.19a) and
(4.1.19c), and matching terms of the same order, we generate a hierarchy of
equations for

����(n)
pµ (t)

E
. Owing to equation (4.1.19c), the function �Epµ(t)

is itself a series in powers of the coupling, and the result at a given order
is then substituted into equation (4.1.20), namely it appears in the exponent,
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yielding a formally infinite-order approximation. In the present case, the
matching of powers of g�K

1/2
� /v� is non-trivial because H0 already contains

the coupling constant, and because the perturbation contains the recoil term
:

P2
b

2M :, which is formally of order 0. This means that �H(t)
����(n)

pµ

E
may give

terms of different orders, greater or equal to n.
In more detail, the interaction-picture perturbation Hamiltonian is

�H(t) ⌘ eiH0t
�
�3V+ :

P2
b

2M :
�
e-iH0t =

= �3(t)
�
V̂(t) + hV(t)i

�
+ :

P2
b

2M : (t) (4.1.22)

where8

�3(t) =
X

µ

e-2iµJ?t |pµihpµ̄| , (4.1.23a)

V̂(t) =
X

q 6=0,�

�
Wq�

2L1/2 (bq�e-i⌦q�t + b
†
q�ei⌦q�t) , (4.1.23b)

hV(t)i = -2

X

q 6=0,�

�
W2

q�

4L
1-cos⌦q�t

⌦q�
, (4.1.23c)

and for brevity we avoid to expand the last term. In the following, we will
use the property

�3(t) |pµi = e2iµJ?t |pµ̄i . (4.1.24)

Now we insert the perturbative expansion of |�pµi in equation (4.1.19).
The initial state generates terms of first to fourth order:

�H(t) |pµ,!i =
X

q 6=0,�

�
Wq�

2L1/2 ei⌦+µ
q� (p)t

b
†
q� |pµ̄,!i+

+ e2iµJ?t hV(t)i |pµ̄,!i+ :P2
b:

2M (t) |pµ,!i . (4.1.25)

Once more, we have introduced a new shorthand

⌦
±µ
q� (p) ⌘ ⌦q�(p)± 2µJ? . (4.1.26)

The last term :P2
b:

2M (t) |pµ,!i generates contributions from second to fourth

order. If we assume that :P2
b:

2M (t)
����(1)

pµ (t)
E

is of second order (to be verified a
posteriori), then there is no first-order contribution to �Epµ(t), and the first-
order equation is simply

i
d
dt

����(1)
pµ (t)

E
= �3(t)V̂(t) |pµ,!i , (4.1.27)

which is easily integrated:
����(1)

µ (t)
E
=

X

q6=0,�

�
Wq�

2L1/2
1-ei⌦+µ

q� t

⌦+µ
q�

b
†
q� |pµ̄!i . (4.1.28)

From this result, it is easily verified that :P2
b:

2M (t)
����(1)

pµ (t)
E

is of second order,
as claimed above. The correct (perturbative) normalisation of the state is
guaranteed by computing �Epµ(t) to the second order:

�Epµ(t) = �E
(2)
pµ (t) =

D
µ!

����3(t)V̂(t)
����(1)

µ (t)
E
= -

X

q�

W2
q�

4L
1-e-i⌦+µ

q� t

⌦+µ
q�

.

8 Notice that hV(t)i is logarithmically divergent in the TLL cutoff if the baths are asymmetric.
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Then, the normalisation factor is:

apµ(t) = e-i
Rt
0dt1�E

(2)
pµ(t1) = e

-
P

q�

W2
q�

4L
1-i⌦+µ

q� t-e-i⌦+µ
q� t

(⌦+µ
q� )2 = eFp(-µJ?,t) .

(4.1.29)
For the computation of inter-bath correlation functions we will need also

the second-order correction to |�pµ(t)i, which is more involved. The per-
turbative procedure requires that we find the various second-order contribu-
tions among all terms in the expansion:

(�H(t) |pµ,!i)(2) = e2iµJ?t hV(t)i |pµ̄,!i+

+
X

q�,q0�0

qq0

2M

Wq�Wq0�0
4L �

⇤
t(⌦q�)�

⇤
t(⌦q0�0)b†

q�b
†
q0�0 |pµ,!i , (4.1.30a)

✓
�H(t)

����(1)
pµ

E
(t)

◆(2)

= �E(2)
pµ |pµ,!i+

+
X

q�,q0�0

��
0Wq�Wq0�0

4L �
⇤
t(⌦

+µ
q� (p))e

i⌦-µ
q0�0tb

†
q�b

†
q0�0 |pµ,!i+

+
X

q�,q0�0

�
qq0

M

Wq�Wq0�0
4L �

⇤
t(⌦

+µ
q� (p))�

⇤
t(⌦q0�0(p))b†

q�b
†
q0�0 |pµ̄,!i .

(4.1.30b)

In the above equations we introduced the function

�t(") ⌘
1- e-i"t

"
(4.1.31)

to lighten the formulae. We can see that the second-order terms either in-
volve no phonon creation operators or two of them. The first set comprises
the first term on the right-hand side of equation (4.1.30a) and the first term
on the right-hand side of equation (4.1.30b). The former yields

����1�
(2)
pµ (t)

E
= -i

Zt

0
dt0 e2iµJ?t

⌦
V(t0)

↵
|pµ̄,!i =

= 1
2µJ?

X

q6=0,�

�
W2

q�

4L

⇥
e2iµJ?t

2Re�t(⌦q�(p))+

- �t(⌦
-µ
q� (p))- �

⇤
t(⌦

+µ
q� (p))

⇤
|pµ̄,!i ⌘

⌘ Bpµ(t) |pµ̄,!i . (4.1.32)

The latter would integrate to the secular term -i�E(2)
pµt |pµ,!i, but it is ex-

actly cancelled by the perturbative procedure [see equation (4.1.19)].
The remaining contributions involve pairs of bosonic creation operators

and, in analogy with the first-order correction equation (4.1.28), we assume
that they give rise to a state of the form

����2�
(2)
pµ (t)

E
=
X

⌫

X

q�,q0�0

A
µ⌫
q�,q0�0(p, t)b†

q�b
†
q0�0 |p⌫,!i , (4.1.33)

where A
µ⌫
q�,q0�0(p, t) is assumed to be of order two in the interaction, and

symmetric upon exchange of q� with q
0
�
0. Then, we see that the action
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of the recoil term : P2
b/2M : (t)

����2�
(2)
pµ (t)

E
generates a term of the second

order:
✓
�H(t)

����2�
(2)
pµ

E
(t)

◆(2)

=
P2
b

2M

����(2)
pµ (t)

E
=

=
X

⌫

X

q�,q0�0

qq0

M A
µ⌫
q�,q0�0(p, t)b†

q�b
†
q0�0 |p⌫,!i . (4.1.34)

The second order is the lowest order at which we loose the usual hierarchi-
cal structure of perturbative expansions, in which terms of order n are the
sources for the next order. Nonetheless, the equation for Aµ⌫

q�,q0�0(t) is linear
and thus solvable:

i
d
dt

����2�
(2)
pµ (t)

E
=
X

⌫

X

q�,q0�0

i
d
dt

A
µ⌫
q�,q0�0(p, t)b†

q�b
†
q0�0 |p⌫,!i =

=
X

⌫

X

q�,q0�0

�qq0

M A
µ⌫
q�,q0�0(p, t) + S

µ⌫
q�,q0�0(p, t)

�
b
†
q�b

†
q0�0 |p⌫,!i , (4.1.35)

where we merged all terms in equations (4.1.30a) and (4.1.30b) that involve
two creation operators into the matrix S

µ⌫
q�,q0�0(p, t). If we multiply the above

equation by hp⌫,!|bq0�0bq� to the left, and we take into account that, unlike
A

µ⌫
q�,q0�0(p, t), Sµ⌫

q�,q0�0(p, t) is not symmetric under exchange of q� and q
0
�
0,

we find

i
d
dt

A
µ⌫
q�,q0�0(p, t) = qq0

M A
µ⌫
q�,q0�0(p, t) + 1

2

�
S
µ⌫
q�,q0�0(p, t) + S

µ⌫
q0�0,q�(p, t)

�
,

(4.1.36)

which is readily integrated with the initial condition A
µ⌫
q�,q0�0(p, 0) = 0 (be-

cause
����(n)

pµ (t = 0)
E
= 0 8n > 1):

A
µ⌫
q�,q0�0(p, t) = - i

2e-iqq
0

M t
Zt

0
dt0 eiqq

0

M t0�
S
µ⌫
q�,q0�0(p, t0) + S

µ⌫
q0�0,q�(p, t0)

�
.

The integral yields

A
µµ
q�,q0�0(p, t) = Wq�Wq0�0

4L

�qq0

2M
1

⌦q�⌦q0�0
⇥

⇥
⇥
ei⌦q�t�t(⌦q� + qq0

M ) + ei⌦q0�0t�t(⌦q0�0 + qq0

M )+

- �t(
qq0

M )- ei(⌦q�+⌦q0�0)t�t(⌦q� +⌦q0�0 + qq0

M )
⇤
+

+ ��0

2

⇥
1

⌦+µ
q0�0

�
ei(⌦q�+⌦q0�0)t�t(⌦q� +⌦q0�0 + qq0

M )- ei⌦-µ
q� t
�t(⌦

-µ
q� + qq0

M )
�
+

+ 1
⌦+µ

q�

�
ei(⌦q�+⌦q0�0)t�t(⌦q� +⌦q0�0 + qq0

M )- ei⌦-µ
q0�0t�t(⌦

-µ
q0�0 +

qq0

M )
�⇤ 

(4.1.37)

A
µµ̄
q�,q0�0(p, t) = 1

2

Wq�Wq0�0
4L

�
�

⌦+µ
q�⌦q0�0

⇥
⇥
ei⌦+µ

q� t
�t(⌦

+µ
q� + qq0

M ) + ei⌦q0�0t�t(⌦q0�0 + qq0

M )+

- �t(
qq0

M )- ei(⌦+µ
q�+⌦q0�0)t�t(⌦

+µ
q� +⌦q0�0 + qq0

M )
⇤
+

+ �0

⌦+µ
q0�0⌦q�

⇥
ei⌦+µ

q0�0t�t(⌦
+µ
q0�0 +

qq0

M ) + ei⌦q�t�t(⌦q� + qq0

M )+

- �t(
qq0

M )- ei(⌦q�+⌦+µ
q0�0)t�t(⌦q� +⌦+µ

q0�0 +
qq0

M )
⇤ 

. (4.1.38)
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In the above equations, all ⌦q�s and ⌦±µ
q� s are understood to be evaluated

at momentum p, i.e. as ⌦q�(p) and ⌦±µ
q� (p).

At this point, we can finally write our second-order approximation to the
state. For the initial condition | pµ(0)i = |pµ,!i, we have

| pµ(t)i = apµ(t)e-ih0(p)t


e-i�pµt |pµ,!i+

+ e-i�pµ̄t
X

q 6=0,�

�
Wq�

2L1/2
1-ei⌦+µ

q� (p)t

⌦+µ
q� (p)

b
†
q� |pµ̄,!i+

+ e-i�pµ̄tBpµ(t) |pµ̄,!i+

+
X

⌫

X

q�,q0�0

e-i�p⌫tA
µ⌫
q�,q0�0(p, t)b†

q�b
†
q0�0 |p⌫,!i

�
. (4.1.39)

Alternatively, we can let e-ih0(p)t act on the bath states, to obtain

| pµ(t)i = apµ(t)


e-i�pµt |pµi |!p(t)i+

- e-i(�pµ̄-2µJ?)t
X

q 6=0,�

�
Wq�

2L1/2
1-e-i⌦+µ

q� (p)t

⌦+µ
q� (p)

b
†
q� |pµ̄i |!p(t)i+

+ e-i�pµ̄tB̃pµ(t) |pµ̄i |!p(t)i+

+
X

⌫

X

q�,q0�0

e-i�p⌫tA
µ⌫
q�,q0�0(p, t)e-i(⌦q�(p)+⌦q0�0(p))t⇥

⇥ b
†
q�b

†
q0�0 |p⌫i |!p(t)i

�
, (4.1.40)

We also introduced

B̃pµ(t) = Bpµ(t)-
X

q 6=0,�

�
W2

q�

4L �
⇤
t(⌦

+µ
q� (p))�t(⌦q�(p)) . (4.1.41)

This function has a logarithmic divergence in the TLL cutoff, but it is van-
ishing if the two baths share identical properties (v�, K�, g�). This is an
indication that the properties in the asymmetric scenario will depend explic-
itly on the UV cutoff, i.e. are sensitive to the microscopic model underlying
the effective TLL Hamiltonian, just as the LCE Green’s function did. For this
reason, we will mostly focus on the symmetric case, where we can discard
this term and obtain universal results.

In general, we will be interested to calculate observables at the leading
perturbative order, and this means that for most of the times the first-order
approximation to the state will suffice, namely equations (4.1.39) and (4.1.40)
with As and Bs set to zero.

Equations (4.1.39) and (4.1.40) suggest a clear physical picture of the evo-
lution of the system. As we have seen in 2.3 for a static impurity, in the
bosonic language the OC corresponds to the bath state becoming a coherent
state with a diverging number of boson excited (either in time or in system
size). In the present theory we see the same description of the phenomenon
in the ”zeroth” order solution [equations (4.1.14) and (4.1.15)], thanks to the
choice of H0 and to the LLP transformation. In this basis, each momen-
tum state p of the impurity becomes ”dressed” with its own coherent state
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of the baths, |!p(t)i, causing a momentum-dependent OC. These states de-
scribe how the baths slowly relax to the sudden injection of the impurity into
the system. The parameters fq�(t) ⌘ -Wq�/(2L)�t(⌦q�(p)) that describe
the state |!p(t)i [equation (4.1.12)] are formally analogous to the ones in
the static case, the only difference is the substitution of the bath dispersion
"q = v|q| with ⌦q�(p) = v�|q|- pq/M+ q

2
/2M, which incorporates the ef-

fect of the finite impurity speed (-pq/M) and of the recoil energy (q2
/2M)

caused by the finite mass. In the limit M ! 1, the case of a static impurity
is recovered.

In our model, the OC does not exhaust the physics, as there is also the
emission of phonons from the deexcitation |poi ! |pei. In our perturba-
tive solution, equations (4.1.39) and (4.1.40), this process is described by the
first order correction (4.1.28) and by the J?-dependent terms in the second-
order one [equations (4.1.37), (4.1.38)]. Both these terms feature phonons
added on top of the coherent-state background. This is in accord with our
splitting of the impurity-bath interaction in intra- and inter-band processes.
The J?-independent terms in equations (4.1.37) and (4.1.38) account for the
correlation effects of the recoil energy : P2

b/2M :.
The time evolution of a wave packet | (0)i =

P
pµ cpµ |pµ,!i is simply

reconstructed by the superposition of equation (4.1.39) or (4.1.40):

| (t)i =
X

pµ

e-i�pµt |pµi e-ih0(p)t


(cpµapµ + cpµ̄apµ̄Bpµ̄(t)) |!i+

+ cpµ̄apµ̄

X
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Wq�

2L1/2
1-ei⌦-µ

q� t

⌦-µ
q�

b
†
q� |!i+

+
X

q�,q0�0

�
cpµapµA

µµ
q�,q0�0(p, t) + cpµ̄apµ̄A

µ̄µ
q�,q0�0(p, t)
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or

| (t)i =
X

pµ

e-i�pµt |pµi

(cpµapµ + cpµ̄apµ̄B̃pµ̄(t)) |!p(t)i
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†
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†
q�b

†
q0�0 |!p(t)i

�
(4.1.43)

The calculation and characterisation of the normalisation factors apµ(t)
follows from the discussion of the Fp(J, t) functions in the previous chapter.
To be clear, we just recall the asymptotic behaviours

ape(t) ⇠ ezpe-i��pet+O(1/t) (4.1.44a)

apo(t) ⇠ ezpo-i��pot-2�pt+O(1/t) , (4.1.44b)

where zpµ are two complex constants (zpe,o = cA(p, t0)± cB(p) in the nota-
tion of chapter 3).
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The main limitation of the present perturbative solution is that the nor-
malisation is perturbative as well. For instance, for the first-order result

h pµ(t)| pµ(t)i = |apµ|
2

0

@1+ 2

X

q6=0,�

W2
q�

4L
1-cos⌦q�(p)+µt

(⌦q�(p)+µ)2
+O

⇣
g̃4

v4

⌘
1

A =

= e2ReFp(-µJ?,t)[1- 2Re Fp(-µJ?, t) +O
⇣
g̃4

v4

⌘
] ⇠

⇠ 1+O
⇣⇥

Re Fp(-µJ?, t)
⇤2⌘

= 1+O
⇣
g̃4

v4

⌘
. (4.1.45)

The deviation from the unit norm is formally of the fourth order. However,
the amount of norm loss h pµ(t)| pµ(t)i - 1 depends on time, and there
is no guarantee that the higher perturbative order implies that the norm
loss remains small for all times. This turns out to be the case for the even
mode, for which Re Fp(-J?, t) is asymptotically constant. For the odd mode,
Re Fp(J?, t) ⇠ 2�pt, and eventually the norm will decrease to 0. This means
that as time goes on the states with more than one phonon added to |!pi
become important. The timescale for the decrease is set by the decay time
⌧

dec
p ⌘ (2�p)-1: the norm decreases to 0.9 in a time of about 0.25⌧dec

p , and to
0.5 in about 0.8⌧dec

p . This is usually not a very stringent limitation, because
the decay time is of order O

�
v
2
/g̃

2
�

and so it can be rather long in the
perturbative regime of small coupling. Therefore, we will always consider
the evolution for times not beyond 0.5⌧dec

p . There will be observables for
which the norm loss will cause evidently wrong behaviours at long times,
whereas the qualitative behaviour of some other observables will not be
affected by the loss of normalisation.

As a check of the reliability of this solution, we can calculate the Green’s
function Gk(p, t) = -i hp�,!|e-iHt|p�,!i in this approach and compare it
with the one from the LCE from the previous chapter. In general

G��(p, t) = -i hp�|e-iHt|p�i = 1
2

X

µ

⇥
Gµµ(p, t) + �Gµ̄µ(p, t)

⇤
, (4.1.46a)

G�̄�(p, t) = -i hp�̄|e-iHt|p�i = 1
2

X

µ

⇥
Gµµ(p, t)- �Gµ̄µ(p, t)

⇤
, (4.1.46b)

where
Gµ⌫(p, t) ⌘ -i hpµ,!|e-iHt|p⌫,!i . (4.1.47)

In our perturbative approximation e-iHt |pµ,!i ⇡ | pµi, and using either
equation (4.1.39) or (4.1.40) we obtain

Gµµ(p, t) = -iapµ(t)e-i�pµt h!|!p(t)i , (4.1.48a)

Gµ̄µ(p, t) = -iapµ(t)e-i�pµ̄t h!|!p(t)i B̃pµ(t) . (4.1.48b)

We have already recognised that apµ(t) = eF(-µJ?,t), and calculated that
h!|!p(t)i = eF(0,t) [equation (4.1.15)]. Therefore, in the symmetric case
when B̃pµ(t) = 0, we recover exactly equation (3.0.25). Therefore, we can say
that the ”improved” perturbative treatment we have just developed should
be equivalent to the LCE.

The comparison with the LCE Green’s function in the asymmetric case is
less clear, because both in the LCE and in the perturbative technique of this
work the corresponding function depends explicitly on the cutoff ⇤.
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For some purposes, it may be useful to have an expression for the time-
evolving state in the laboratory frame, namely before the LLP transforma-
tion. This state can be easily obtained by applying ULLP = e-iXPb to equa-
tion (4.1.43). The transformation is simpler to perform in the position basis
for the impurity:

| lab(t)i ⌘ e-iXPb | LLP(t)i = e-iXPb
X

pµ

|pµid | pµ(t)ib =

=
1

N1/2
e-iqXPb

X

jpµ

eipaj |jµid | pµ(t)ib =

=
1

N1/2

X

jpµ

eipaj |jµid e-iajPb | pµ(t)ib .

Using the properties of the coherent states, we find
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�
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b
†
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�
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(4.1.49)
where

��!0
p(j, t)

↵
⌘ e-iqajPb |!p(t)i =

= ei ImFp(0,t)
���coh

h
-

Wq�

2L1/2�t(⌦q�(p))e-iqaj
iE

.
(4.1.50)

���� ������� In the following paragraphs we will show the numerical
results for the evolution of the impurity probability density, the bath den-
sity and bath momentum density when the impurity is initialised in a wave
packet within the " bath. The present perturbative method allows for virtu-
ally arbitrary wave packets, compatibly with the low-momentum conditions
for the validity of the long-wavelength model. We will usually choose a
Gaussian profile in momentum space:

cpµ = 2
-1/2

N(p0, �p)e-
(p-p0)

2

4�p2 -ix0p , (4.1.51)

where p0 is the average momentum, �p is the width of the distribution,
x0 is the average initial position and N(p0, �p) is chosen to ensure thatP

pµ |cpµ|
2 = 1. Notice that the above momentum profile corresponds to a

wave function that is factorised between space and bath index, but more gen-
eral states can be equally considered. The relation cpe = cpo ensures that the
impurity is injected in the " bath. We work in a finite-size system of length
L (L = 1000(Mv)-1, unless noted otherwise), with periodic boundary condi-
tions. Momenta are then quantized according to pn = 2⇡/L ·n, n 2 Z, and
we take a wave packet composed of Np momenta, distributed symmetrically
around p0. More specifically, we define np0 2 Z such that p0 = 2⇡/Lnp0 ,
then we take pn = 2⇡/L(np0 + n) where n = -Np/2 + 1, . . . ,Np/2 when
Np is even, and n = -(Np - 1)/2, . . . , (Np - 1)/2 when Np is odd. In our
calculations, the number of momenta ranged from Np = 16 up to Np = 128.
We also played with non-Gaussian profiles.



�.� ����-��������� ������������ ������ 65

�.�.� Results for impurity observables

In the following paragraphs, we will present both analytical and numeri-
cal results for the dynamics of various impurity observables. We will see
that the present perturbative approach shows its limits when describing the
properties of the impurity.

Impurity oscillations
The simplest observable is the probability that the impurity is found in the
bath �, which is the expectation value of the operator

n� ⌘
X

j

d
†
j�dj� . (4.1.52)

After the LLP transformation and the mapping to pseudo-spins, it reads
[compare with equation (4.0.3) and equation (4.0.5)]

n� =
1

2
(1+ ��3) . (4.1.53)

Using the notation
| (t)i =

X

pµ

|pµid | pµ(t)ib (4.1.54)

for the evolved state (notice that the bath states are not normalised to one),
we find9

hn�it =
1

2
+
�

2

X

pµ

h pµ(t)| pµ̄(t)i . (4.1.55)

In the following, we will use the shorthand

hOit ⌘ h (t)|O| (t)i (4.1.56)

for indicating the expectation value of an observable O at time t. The over-
laps in equation (4.1.55) are easily calculated to be
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(4.1.57)

9 Notice that we are setting explicitly h (t)| (t)i ⌘ 1. However, this is true only for short times
with respect to minp(2�p)-1, because of the perturbative normalisation. If we were to take
this into account, we would have

P
� hn�i decreasing from 1 in time.



66 � ������ ����

J/Mv2

0.01

0.03

0.05

0.07

0.1

2 4 6 8 10 12
J⟂t

0.2

0.4

0.6

0.8

1.0

〈n↑〉t

(a)

g2K/v2

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12
J⟂t

0.2

0.4

0.6

0.8

1.0

〈n↑〉t

(b)

Figure 4.1: Time evolution of
⌦
n"
↵

for the wave packet equation (4.1.51), with p0 =
0.1Mv, �p = 0.02, and Np = 32. In plot (a) the coupling is kept fixed to
g
2
K = 0.5v2, while J? is varied, while in plot (b) we vary the coupling

while keeping a constant J? = 0.05Mv
2. Notice that in (a) the time is

expressed in units of J-1
? , which is different for different plots.

at second order. We can express the equation above in terms of simpler
function. For instance, in the symmetric case, it reads

h pµ(t)| pµ̄(t)i = e-2iµJ?t(cpµapµ)
⇤
cpµ̄apµ̄+

- µ
2J?

e2iµJ?t(cpµ̄apµ̄)
⇤
cpµapµ

�
(HS

p(µJ?, t))⇤ -H
S
p(-µJ?, t)+

+ e-2iµJ?t
⇥
H

S
p(µJ?, t)- (HS

p(-µJ?, t))⇤
⇤ 

, (4.1.58)

where we introduced the function

H
S
p(J, t) ⌘ -

X

q 6=0,�
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q� (p)t
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q� (p)
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2

@

@t
Fp(J, t) . (4.1.59)

In figures 4.1a and 4.1b we show the time evolution of
⌦
n"
↵
t
, namely the

probability of finding the impurity in bath " at time t (the probability for the
other bath is simply

⌦
n#
↵
t
= 1-

⌦
n"
↵
t
). We can observe that the interaction

with the baths has two effects. First, the amplitude of the oscillations around
the average value 1/2 becomes a decreasing function of time. This decay is
more pronounced for larger coupling (figure 4.1b) and larger J? (figure 4.1a,
once the time is measured in J?-independent units). Second, the frequency
of the oscillations is decreased, by an amount that is larger for increasing
coupling (figure 4.1b) and decreasing J? (figure 4.1a).

We can have an analytic insight on these observations by examining the
expression equation (4.1.55) for

⌦
n"
↵
t
. In particular, if we keep only the first

term in the bath states overlap equation (4.1.57), which gives the leading
contribution, and we use the asymptotic relations equations (4.1.44) for apµ,
we find

hn�it ⇠ 1
2 + �Re

X

p

ez
⇤
pe+zpoc

⇤
pecpoe-2iJ̃?,pt-2�pt , (4.1.60)

where J̃?,p is the renormalised inter-bath hopping amplitude. In particular,
if the impurity is initially in bath �0, then �3 | (0)i = �0 | (0)i implies that
cpµ̄ = �0cpµ (and therefore

P
p |cpµ|

2 = 1/2 from normalisation). Substitut-
ing in the equation above we obtain

hn�it ⇠ 1
2 + ��0

X

p

|cpe|
2e-2�pteRe(zpe+zpo) cos[2J̃?,pt+ Im(zpe - zpo)] ,
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From this expression we can see that hn�it - 1/2 is given by a superposition
of damped oscillating contributions, one for each momentum in the wave
packet. For comparison, in the non-interacting case we would have

hn�i(0)t = 1
2 + �Re

X

p

c
†
pecpoe-2iJ?t , (4.1.61)

and for the usual initial condition within bath �0

hn�i(0)t = 1
2 + ��0

X

p

|cpe|
2 cos 2J?t ,

which shows that the impurity periodically switches from one bath to the
other. In the weak-coupling regime we are examining, the interaction with
the baths decreases the hopping frequency (J̃?,p < J?), while the ampli-
tude of the oscillations decreases exponentially with a decay time of 1/(2�p).
While our solution ceases to be accurate beyond this decay time, it hints at
the property that hn�it ! 1/2 eventually. This limiting behaviour is what
we would expect from physical intuition: in a sufficiently long time, the im-
purity put in contact with a thermal bath at zero temperature should reach
its ground state, |pf, eid, in which it is equally likely to be found in any of
the baths.

We write the asymptotic momentum as pf because there is no guarantee
that it may vanish. Indeed, as we have already noticed, at zero temperature
intra-band scattering with emission of phonons is forbidden by energy and
momentum conservation, and the only phonons emitted, capable to carry
away the impurity momentum, come from the deexcitation of the odd band
to the even one. The amount of energy available to these phonons is there-
fore limited to about 2J? (this is a rough estimate, neglecting the recoil of the
impurity), and as each emitted phonon of momentum q contributes with an
energy v�|q| we see that there must be a limit to the amount of momentum
that is possible to transfer to the baths. On the other hand, there is no (clas-
sical) kinematic constraint that would forbid a complete decoherence of the
odd mode. Although these considerations concern a timescale which is not
attainable in our present formalism, we can say on a nonperturbative ground
that for a sufficiently large momentum or small inter-bath hopping we ex-
pect the impurity to retain a finite asymptotic speed. Similar phenomena
have been already observed in the single-bath case [28, 68].

Impurity momentum

In problems concerning mobile impurities, a natural observable to be consid-
ered is the impurity momentum. In the LLP basis, it reads Pd = P - Pb, so,
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as P is a constant of motion, all that is required to compute is the momentum
carried by the baths. The latter is given by
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(4.1.62)
The sums over the momenta can be converted into energy integrals by intro-
ducing the appropriate density of states
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which in the continuum limit is given by
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(4.1.63)

Unlike the previously used R�("), this density of states behaves as "2 for
"! 0.

The expression (4.1.62) is composed of three contributions. The first two
are contributions coming from the deexcitation of the odd mode, as signalled
by their explicit dependence on J?. The second of these two accounts for the
asymmetries in the bath index, as it is vanishes if the baths are symmetric
or if the impurity is initialised in one of its noninteracting eigenstates. The
last part of equation (4.1.62) comes from the coherent background |!p(t)i
term of the baths state, and is independent of the initial bath index of the
impurity. It quantifies the momentum adsorbed by the baths as they adjust
to the injection of the impurity.

We will see that it is possible to define a different measure of the impurity
speed, using a definition of average position that is appropriate with the
pbc. The properties of this alternative speed are in accord with the ones of
the true impurity momentum defined above.

The time evolution of the impurity momentum is displayed in figures 4.2
and 4.3, as function of the various parameters of the model. In all plots,
the impurity is initialised in the " bath with a definite momentum10

p0. We

10 As we did with hn�it, writing it as 1/2+ � h�3it /2, we take hPit = hPit=0 = p0, i.e. we
ignore the effect of the loss of normalisation on the conserved total momentum.
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Figure 4.2: Time evolution of the impurity momentum for the initial state |p0 "id,
and symmetric baths. Plots (a) and (b) are for p0 = 0.1Mv, g2K = 0.5v2

and show the effect of increasing J?. Plot (b) shows the decomposition
of the bath momentum in (a) in a background component (dashed line)
and a decay component. Plot (c) has p0 = 0.1Mv, J? = 0.05Mv

2 and
shows the effect of increasing the coupling.
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Figure 4.3: Time evolution of the impurity momentum for the initial state |p0 "id,
symmetric baths, and increasing p0. The other parameters are g

2
K =

0.5v2 and J? = 0.05Mv
2. In (b) we show the ratio hP- Pbit / hPi =

1- hPbit /p0.
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observe that the momentum decay can be divided in two phases: an initial
abrupt drop followed by a decrease at a milder rate. At later times, some
curves tend to bend upward. This increase is likely not physical, because
it can be attributed to the loss of state normalisation, that causes hPbit to
shrink in magnitude. Figure 4.2a shows the effect of the inter-bath hopping
on the momentum. We can see that the initial rapid decrease is basically un-
affected by J?, while the subsequent decay is faster for larger hopping. This
suggests that the two phases of the decay originate from two different pro-
cesses. To have a clearer picture of this separation, in figure 4.2b we display
the decomposition of the baths momentum reported in 4.2a. The dashed
line is the third term of equation (4.1.62), which is J?-independent, while
the other lines give the first term of the equation (the second contribution is
absent in the symmetric case). With the aid of this plot, we interpret the two
phases of momentum decay in the following way. The first, fast-decreasing
region is caused by the baths relaxing to the injection of the impurity, while
in the second phase the impurity momentum is carried away by the phonons
generated from the deexcitation of the odd mode.

Indeed, this first phase occurs on a timescale that appears to be indepen-
dent of J?, and well before the impurity starts oscillating into the # bath.11

From figure 4.2b we see that the first and last terms of equation (4.1.62) con-
tribute equally to the bath momentum during this initial phase. After the
initial transient, the background contribution saturates to a constant value,
while the first term of equation (4.1.62) continues to grow, albeit at a slower
rate (except for the unphysical decrease at late times). The timescale of this
growth is shorter the larger is J?, which is what we expect from the fact
that the odd mode decay constant 2�(p0) is an increasing function of J?. At
the lowest inter-bath hopping we considered, J? = 0.01Mv

2, the timescale is
so long that the contribution to hPbit from the odd mode decay appears to
converge to a value slightly below that of the background.

The dependence of the impurity momentum on the coupling is shown in
figure 4.2c. As expected, the decrease is more marked for stronger coupling,
while the two-phase structure is kept unaltered. A larger gK

1/2
/v increases

the fraction of momentum that is lost in the initial transient, but not the
timescale in which it occurs.

The following figures 4.3 show the slowdown of the impurity momentum
at different initial momenta. We can recognise the initial transient and the
subsequent slower decay, with the former being faster and lasting longer for
larger momenta. The entity of the decrease may be also traced back to the
increase of the decay rate 2�(p) with p0, which implies that the production
of phonons caused by the odd mode deexcitation occurs earlier and more
rapidly. It is useful to compare the various graphs by taking the ratio with
the initial momentum (i.e. the total one), as is reported in figure 4.2b. In this
figure, we can observe that the initial transient actually follows a common
shape for all momenta at small times. After the transient, we see that for
increasing p0 not only the absolute value of momentum that is transferred
to the baths becomes larger, but also the relative amount of it. Instead, at
smaller momenta |p| . 0.2Mv the ratio hPdit /p0 tends to a common profile,

11 We suspect that the timescale of the first phase is comparable with that of the dimensional
crossover we highlighted in chapter 3.
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independent of p0. This is explained by noticing that R�
1 (";p0) is linear in p0

for small momentum |p0| ⌧ Mv�, hence for a single momentum component
hPbi (t) = �(t)p0/(Mv) +O

�
p
2
0/(Mv)2

�
, with �(t) independent of p0.

Impurity density

Our perturbative solution allows us to directly access the probability of find-
ing the impurity at the site j and in the bath �, namely the expectation value
of the number operator d

†
j�dj�. This is invariant under the LLP transforma-

tion [see equation (4.0.2)]. Using d
†
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p eipajP
k d
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. (4.1.64)

Notice that equation (4.1.64) correctly reproduces equation (4.1.55) when
summed on all sites. The fundamental ingredients of the above equation are
the overlaps of the bath states, which read
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The overlap of the coherent states is given by
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For any p 6= k it has a slow, power-law decrease in time and it is a non-
analytic function of the momenta in p = k. Of course, for p = k it is
identically equal to 1 (as |!p(t)i is normalised), which is also its maximum
absolute value.

We wish to briefly comment on the numerical effort required to com-
pute the impurity density (4.1.64), using equation (4.1.57). Equation (4.1.64)
implies that if we have Np momenta in the initial impurity wave packet,
we have to compute 2 ·Np(Np + 1)/2 overlaps h pµ(t)| k⌫(t)i, and each
one of these requires the evaluation of a few sums over bath momenta q.
Therefore, if we cutoff the sums to Nq bath momenta, the total number of
function evaluations scales as Np(Np + 1)Nq. The sum over the p momen-
tum in equation (4.1.64) is easily recognised as a Fourier Transform, and
so it can be performed by means of any Fast-Fourier Transform algorithm,
which is inexpensive for the low number of impurity momenta considered
in this work (at most of the order of Np ⇠ 10

2). Also the evaluation of the
apµ(t) = exp Fp(-µJ?, t) factors is rather fast, if the optimised approach for
exp Fp(-µJ?, t) presented in the previous chapter is employed. In general,
we have tried to express the various sums over bath momenta as integrals
over appropriate densities of states, and then to relate these to the Fp(J, t)
and Hp(J, t) functions introduced in chapter 3. When this is possible, the
resulting expressions can be computed in a fast way in the continuum limit.
However, we have not been able to perform this procedure in all sums in-
volving ⌦q�(p) evaluated at two different impurity momenta p [indicated
as p and k in equation (4.1.57)], so that these terms have to be explicitly
summed or integrated in q. Moreover, we could not find a complex inte-
gration path for q that removes the oscillating behaviour of the integrands,
implying that the convergence of the integrals (or sums) is slowed down.
Therefore, these terms that are ”off-diagonal” in the impurity momentum
are the slowest part of the computation of the impurity density, and of many
of the observables that we will analyse in the following paragraphs. As a
consequence, the computation of these terms sets the speed of the whole
numerical calculations.

In figures 4.4 and 4.5 we compare the time evolution of the probability
density of the impurity in the free and interacting cases. The baths are sym-
metric, as usual, and the two figures refer to two different values of J?. Vary-
ing g� produces analogous results. The two figures show that the motion of
the wave packet interacting with the baths is qualitatively similar to the free
one: the whole probability distribution oscillates between the two baths with
a frequency of about 2J?, while moving to the right at a speed of around
p0/M. In fact, in the perturbative regime the absolute effect of the baths on
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(a) g
2
K = 0 (b) g

2
K = 0.5v2

Figure 4.4: Comparison of the time evolution of probability density for (a) the free
and (b) the interacting impurity with g

2
K = 0.5v2. In both figures the

wave packet is initialised with the Gaussian distribution (4.1.51) of 64

momenta around p0 = 0.1Mv, with standard deviation �p = 0.04Mv.
The baths are symmetric, and J? = 0.1Mv

2. The total length of the
system is L = 1000 (Mv)-1, but only its central part is depicted. The
colour scale for the two figures is the same.

(a) g
2
K = 0 (b) g

2
K = 0.5v2

Figure 4.5: Comparison of the time evolution of probability density for (a) the free
and (b) the interacting impurity with g

2
K = 0.5v2. In both figures the

wave packet is initialised with the Gaussian distribution (4.1.51) of 64

momenta around p0 = 0.1Mv, with standard deviation �p = 0.04Mv.
The baths are symmetric, and J? = 0.01Mv

2. The total length of the
system is L = 1000 (Mv)-1, but only its central part is depicted. The
colour scale for the two figures is the same.
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Figure 4.6: Logarithmic plot of the impurity probability density at different times,
showing the rapid flow of the distribution weight towards the tails. The
dashed portions of the graphs correspond to regions of (unphysical)
negative probability density. The parameters are the same as figures 4.4
and 4.5, except for J? = 0.03Mv

2.

the impurity momentum and frequency of oscillation is rather small. The
most prominent differences in the time evolution of the wave packet are
two, namely the larger spread in the ”time direction” and the visible decay
of the amplitude. The former can be traced back to the property that the
renormalised inter-bath hopping J̃?p depends on the system momentum p,
implying that each momentum component in the wave packet oscillates at
its own rhythm. This explains at least partially the increased ”fuzziness” of
the probability density. The loss of synchronisation might not be the full
reason for this effect, because the momentum variance of the wave packet
is rather small, and the J̃?ps are very close to J? in the perturbative regime.
Moreover, the dependence of the various renormalised parameters on p is
rather small if p is far from Mv (see 3.1.3 and 3.2). A second reason for the
phenomenon is decoherence, namely the decay of the odd component of the
impurity state, so that eventually any oscillation should disappear. In this
perspective, the spread in the time direction is the initial evidence of this
process, as the distinction between successive oscillations tends to fade out.

The other most visible difference between the interacting and the free den-
sity evolution is the enhanced rate of decrease of the height of the wave
packet. This arises partly from the progressive loss of normalisation, and
partly from the rapid flowing of probability towards the the tails of the dis-
tribution. This is not visible on the scale of figures 4.4 and 4.5, and it is better
appreciated in logarithmic scale, as depicted in figure 4.6. This figure shows
that the tails are much ”fatter” than the noninteracting case (which would
correspond to a translated version of the t = 0 plot, with a slight widen-
ing of the central part), and that this extra weight is established faster than
the sound speed. Moreover, up to a certain time the far edges of the distri-
bution are not even positive, which is clearly unphysical. While these tails
could signal an actual tendency of the impurity to spread, their unrealistic
features (faster-than-sound build-up and partially negative sign) lead us to
conclude that this behaviour is likely to be an artefact of the perturbative
method. Therefore, the approach we developed in the present chapter is not
particularly suited to the quantitative description of the impurity density.



�.� ����-��������� ������������ ������ 75

J⟂ /Mv2

0.1

0.05

0.03

0.01

100 200 300 400 500 600
Mv2t

-4

-3

-2

-1

Mv(〈X〉t
pbc-x0-p0t/M)

(a)

g2K/v2

0.1

0.2

0.3

0.4

0.5

50 100 150 200
Mv2t

-2.0

-1.5

-1.0

-0.5

Mv(〈X〉t
pbc-x0-p0t/M)

(b)

Figure 4.7: Deviation of the average impurity position from the noninteracting tra-
jectory x(t) = x0 + hPi t/M. A nonlinear slowdown is found, more
marked for (a) large J? and (b) large g. The wave packet is Gaussian
with p0 = 0.1Mv, x0 = 0, �p = 0.02Mv and Np = 32. The parameters
are g

2
K = 0.5v2 for (a), and J? = 0.05Mv

2 for (b).
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Figure 4.8: Time evolution of the average impurity speed computed as a numerical
derivative of the average position defined in equations (4.1.67). The
parameters for the two plots are the same as figures 4.7.

On the other hand, it could still be useful at a qualitative level. For instance,
from figure 4.6 we can see the shape of the packet around its centre remains
Gaussian with good approximation.

We can further characterise the effect of the baths on the impurity by
measuring other observables, but keeping in mind the possibility that the
tails of the distribution might affect the final results.

In 4.1.3, we have measured the impurity speed by a direct calculation of
the momentum carried by the baths (remember that hPdit = hPi0 - hPbit).
A different definition of the speed can be obtained by measuring the time
evolution of the impurity position. In periodic boundary conditions, the
position operator is ill-defined, therefore we measure the average position
and variance of the position as

hXipbc
t ⌘ L

2⇡ Im ln
D

ei2⇡X/L
E

t
(4.1.67a)

Varpbc(X, t) ⌘ -2
L2

(2⇡)2
Re ln

D
ei2⇡X/L

E

t
. (4.1.67b)

These equations reduce to the trivial expressions of position mean and vari-
ance in the L ! +1 limit. The average hXipbc

t introduced above is defined
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Figure 4.9: Time evolution of the standard deviation of the impurity position calcu-
lated from equations (4.1.67). The parameters for the two plots are the
same as figures 4.7.

only modulo L, as it should be in pbc. In particular, in the single-impurity
subspace we have

eiqX =
X

j�

eiqaj
d
†
j�dj� , (4.1.68)

hence we can compute
⌦
eiqX↵ simply by weighting eiqaj with

D
d
†
j�dj�

E
.

The results of these calculations are shown in figures 4.7. These plots show
the deviation of the average impurity position from the trajectory x(t) =
x0 + hPi0 t/M that the impurity would follow in the absence of the baths.
The first plot, figure 4.7a, compares different values of J?, while the second,
figure 4.7b, displays a varying coupling. Both plots clearly indicate that the
interaction with the baths slows down the impurity motion, an effect that
is more pronounced for larger coupling or larger inter-bath hopping. Of
course, this behaviour is expected, because both the relaxation of the baths
to the injection of the impurity, and the phonon emission from the odd mode
decay transfer the impurity momentum to the baths. This transfer is obvi-
ously faster for larger coupling, and its enhancement with J? is explained
by the increase of the odd mode decay rate (2�(p) is an increasing function
of J?).

The plots figures 4.7 also show that the slowing down of the impurity
occurs in a nonlinear fashion. We can investigate this aspect further by tak-
ing a numerical derivative of the average position, which yields a possible
estimate of the impurity speed. The time evolution of this observable is dis-
played in figures 4.8. We can recognise the same behaviour that we noticed
above, namely that the speed diminution is more severe for larger inter-bath
hopping figure 4.8a and larger coupling figure 4.8b. But the most interest-
ing feature that these figures reveal is how the speed changes with time: it
decreases very rapidly in the very first instants of the time evolution, then
it tends to settle or increase again. While the increase at late times can be
attributed to the loss of normalisation, the rapid initial decrease is presum-
ably a genuine physical prediction. It shows that a significant fraction of the
momentum is lost in a time much shorter than the odd mode decay time
(2�(p))-1, and therefore it cannot be attributed to the emission of phonons
from decoherence. Then, it must be associated with the baths relaxation to
the presence of the impurity, which has to occur on a quite short timescale.
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Figure 4.10: Comparison of the impurity speed calculated from the pbc average
(4.1.67) (lines with markers) with the one calculated from the bath mo-
mentum (4.1.62) (thin lines), for various values of J?. The former over-
estimates the latter, but has the same qualitative behaviour. The system
parameters are the same as figure 4.7a

Indeed, we have already observed this two-step behaviour of the impurity
speed in 4.1.3. We compare the two definitions of impurity speed in fig-
ure 4.10. We can see that the speed calculated from the pbc average position
(4.1.67) is generally higher than the one calculated from hPdit = hPi0- hPbit.
Indeed, there is no reason for the two definitions to yield coinciding results.
However, they follow the same pattern, namely a steep decrease at short
times, followed by a milder decay.12

For completeness, in figures 4.9 we report the time evolution of the stan-
dard deviation �pbc

t = [Varpbc(X, t)]1/2 of the impurity position. We observe
that, after a slight decrease at short times, the standard deviation rapidly
rises well above its noninteracting value. This growth is faster for larger J?
(figure 4.9a) and for stronger coupling (figure 4.9b). What these plots are
measuring is nothing but the build-up of probability in the tail regions of
the impurity distribution function (see figure 4.6), a feature that we already
discussed as being probably non-physical.

�.�.� Results for bath observables

In models of mobile impurities, most often the main focus is on the prop-
erties of the interacting impurity. Here, we take a complementary view,
investigating the time evolution of observables which characterise the baths.
This possibility is offered by the perturbative technique we developed, as
it gives an approximation of the state describing the whole impurity-bath
system. Besides yielding useful insights on the dynamics of the system, ob-
servables such as the bath density can be actually accessed in ultracold atom
experiments (see [74], for instance).

12 It is evident that the tendency of the speed to increase at later times is stronger for the pbc
average. This might due to the loss of normalisation or to the unphysical properties of the
tail regions of the impurity density.
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������ �� ������� ������� We will first look at a very simple observ-
able, the number of excited phonons in a given bath �:
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(4.1.70)
The number of phonons in each bath can be clearly divided into three con-
tributions. The first is proportional to -2Re Fp�(-µJ?, t), which for µ = o

gives a factor of 2�(p)t. This is the rapid increase of phonons caused by
the spontaneous emission from the odd impurity mode, and represents the
leading term. The second contribution has a sign depending on the bath
index �, and it is essentially an oscillating term. This part takes into account
the differences between the evolution of the two baths that are caused by
the initialisation of the impurity, namely in which bath it is first injected (in
fact, it vanishes if only one parity band is occupied). On the contrary, the
third term does not care about the initial bath of the impurity, only its very
presence in the system, and at late times it shows a slow, logarithmic growth:
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This behaviour is strongly reminiscent of the one encountered in section 2.3,
namely equation (2.3.16), and can be seen as the signature of the OC. We
show the behaviour of equation (4.1.69) in figures 4.11 and 4.12. The first two
figures compare the time evolution of the number of phonons in the " (thick
lines) and # baths (dashed lines), for two different values of the inter-bath
hopping. In both plots we can see that Nph

" and N
ph
# oscillate out of phase

around a mean value that has a steep increase at very short times and then
slows down its growth as time goes on. As the impurity is initialised in the "
bath, Nph

" has the fastest growth, initially. The slight tendency to decrease at
later times is caused by the loss of state normalisation beyond the odd mode
decay time. The difference between the plots (a) and (b) is that the first refers
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Figure 4.11: Number of phonons in the " (thick lines) and # (dashed lines) baths,
for an impurity initialised in bath " at zero momentum. Plot (a) refers
to a symmetric scenario with g

2
K = 0.5v2, while (b) is for asymmetric

couplings g
2
"K = 0.5v2 and g

2
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Figure 4.12: Number of phonons generated in the " bath for various values of J?
(a) and p, showing that the growth is more pronounced for larger mo-
menta and smaller inter-bath hopping. The baths are symmetric, with
couplings g

2
K = 0.5v2 and p = 0 for (a), while J? = 0.05Mv

2 for (b).
Notice that the time is measured in units of J-1

? .
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to a symmetric situation, whereas in the second the impurity-bath coupling
to the " bath is larger than the one to the # bath. As a consequence, Nph

"

increases to higher values than13
N

ph
# . In both settings, the plots show that

lower values of J? cause a larger number of phonons to be excited, albeit on a
slower timescale (as the whole dynamics slows down when J? is decreased).

The next figures 4.12 show the number of excited phonons in the " bath
for different inter-bath hopping (a) and for increasing momentum (b). The
first one expands the observation made above, namely that when the time
evolution of Nph

� is compared measuring time in the appropriate unit J-1
? (i.e

the bare oscillation period), the number of phonons grows monotonically as
J? is lowered. The second plot proves that the same monotonic growth oc-
curs upon increasing the initial impurity momentum (the re-scaling of time
in units of the period is not necessary in this case). As a last observation, we
remark that the number of phonons in each bath does not always grows in
time, as it actually decreases a bit during each oscillation (the total number
of phonons,

P
�N

ph
� (t) is monotonically increasing in time, though). We are

not sure if this is a consequence of the approximation, the loss of normal-
isation or if it is a genuine physical feature. If the latter case were true, it
would mean that whenever the impurity changes bath, it adsorbs some of
the previously emitted phonons.

����������� ��������� We now turn to more complex observables,
namely averages and correlation functions of the bath densities ⇢�(x) and
conjugate momenta [31] ⇧�(x),

⇢�(x) = -
1

⇡

d
dx
��(x) =

K
1/2
�

L1/2

X

q 6=0

Vq(eiqx
bq� + e-iqx

b
†
q�) (4.1.71a)

⇧�(x) =
1

⇡

d
dx
✓�(x) =

1

K
1/2
� L1/2

X

q 6=0

sgn(q)Vq(eiqx
bq� + e-iqx

b
†
q�) ,

(4.1.71b)

where sgn(q) is the sign function. We remark that we understand ⇢�(x) as
the fluctuation part of the density, that is, we already subtracted the average
density ⇢(0)� from it. While the physical meaning of ⇢�(x) is obvious, it
may be less so for the momentum density ⇧�(x). The equation of motion
for the density (i.e. the continuity equation) shows that, within our long-
wavelength approximation, ⇧�(x) is proportional to the particle current of
the baths: j�(x) = v�K�⇧�(x).

To use the perturbative solution we found, we must first perform a LLP
transformation [equation (4.0.2)], which replaces bq� ! bq�e-iqX. There-
fore, we have

h⇢�(x)it = 2Re
h
K

1/2
�

L1/2

X

q 6=0

Vqeiqx ⌦e-iqX
bq�

↵
t

i
, (4.1.72a)

h⇧�(x)it = 2Re
h

1

K
1/2
� L1/2

X

q 6=0

sgn(q)Vqeiqx ⌦e-iqX
bq�

↵
t

i
. (4.1.72b)

13 The choice of initialising the impurity in the strongest-interacting bath is irrelevant at late
times. We have verified that if it were prepared in the # bath, Nph

# would increase above N
ph
"

only at very early times.
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Using expression (4.1.42) [or (4.1.43)] and the property that e-iqX |pµi =
|p- qµi, we find

⌦
e-iqX

bq�

↵
t
= -

Wq�

2L1/2

X

pµ

ei(Ep-q-Ep)t h!p-q(t)|!p(t)i⇥

⇥ (cp-q,µap-q,µ(t))
⇤⇥
cpµapµ(t)�t(⌦q�(p))+

+ �e-iµ2J?t
cpµ̄apµ̄(t)�t(⌦

-µ
q� (p))

⇤
+O

⇣
(gK1/2

/v)3
⌘

, (4.1.73)

at the lowest order. It can immediately be seen that the two densities h⇢�(x)it
and h⇧�(x)it vanish unless the initial impurity state contains more than one
momentum. This is physically consistent with the intuition that the impurity
in a well-defined momentum state is uniformly distributed along the bath(s).

We would like to remark that the higher-order harmonics in the bosonised
bath density equation (2.2.13) yield only a finite-size correction to the equa-
tions (4.1.72). For instance, let us take the first correction to the bath density,
that reads

h�2⇢�(x)ilab
t = 2A2⇢̄� hcos(2⇢̄�x- 2��(x))ilab

t =

= 2A2⇢̄� Re


e2i⇢̄�x
D

e-2i��(x)
Elab

t

�
,

(4.1.74)

where A2 is a non-universal, dimensionless amplitude and h·ilab
t means that

the average is taken over the state in the laboratory frame, equation (4.1.49).
Let us start with the ”zeroth-order” approximation to the state, i.e. keeping
only the coherent state contributions.

D
e-2i��(x)

Elab

t
= 1

N

X

j,p,µ
j0,p0,µ0

ei(p0aj0-paj)-i(�p0µ0-�pµ)tc
⇤
pµa

⇤
pµcp0µ0ap0µ0⇥

⇥
⌦
j
0
µ
0��jµ
↵ ⌦
!p(j, t)

��e-2i��(x)
��!p0(j0, t)

↵
+O(g) =

= 1
N

X

p,p0,µ,j

ei(p0-p)aj-i(�p0µ-�pµ)t⇥

⇥ c
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pµcp0µ0ap0µ0

⌦
!p(j, t)

��e-2i��(x)
��!p0(j, t)

↵
+O(g)

The matrix element between the coherent bath states can be computed by
first expressing e-2i��(x) in normal-ordered form [see equation (2.2.15)]:

e-2i��(x) = e-2⇡2 K�
L

P
q 6=0

V2
q

q2 e-2⇡
K

1/2
�

L1/2

P
q6=0

Vq

q e-iqxb†
qe2⇡

K
1/2
�

L1/2

P
q 6=0

Vq

q eiqxbq ,
(4.1.75)

which is obtained using the Baker-Campbell-Hausdorff formula eAeB =
eA+Be1/2 [A,B] truncated for the present case in which [A,B] / 1. Then

⌦
!p(j, t)

��e-2i��(x)
��!p0(j, t)

↵
=
⌦
!p(j, t)

��!p0(j, t)
↵

e-2⇡2 K�
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P
q 6=0

V2
q

q2 ⇥

⇥ e2⇡
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1/2
�
2L

P
q6=0

Vq

q Wq�[e-iq(x-aj)�⇤
t(⌦q�(p))-eiq(x-aj)�t(⌦q�(p0))] . (4.1.76)

The overlap
⌦
!p(j, t)

��!p0(j, t)
↵

turns out to coincide with
⌦
!p(t)

��!p0(t)
↵
,

which is given by equation (4.1.15) and is a finite quantity. Analogously, the
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last exponential in the above equation gives a finite contribution, because
the summed function behaves like VqWq�/q ⇠ V

2
q/q ⇠ |q|/q for small mo-

mentum. On the contrary, the first exponential (coming from the normal
ordering of e-2i��(x)) turns out to be decreasing as a power-law in the sys-
tem length L. In fact, approximating the momentum sum in the exponent
with an integral in the continuum limit, we obtain

2⇡
2K�

L

X

q6=0

V2
q

q2 ⇡ 2⇡
2
K�

Z+1

-1

dq
2⇡

V2
q

q2 = K�

Z+1

0
dq q

q2 e-↵q ,

which is divergent at small momenta. Since in pbc momentum is quantised
in units of 2⇡/L and the original sum excludes q = 0, we cut off the integral
as

2⇡
2K�

L

X

q 6=0

V2
q

q2 ⇡ K�

Z+1

2⇡/L
dq 1

qe-↵q = -K�E1(
2⇡↵
L ) .

Since E1(z) ⇠ -�- ln z+O(z) for z ! 0 [23], the equation above means that
the density correction is suppressed by a factor

e�K�
�

L
2⇡↵

�-K� . (4.1.77)

The extension of the above calculations to the first-order contribution to the
state yields again only finite terms in the large-size limit, except for the above
suppression factor that is carried around by the e-2i��(x) operator. There-
fore, unless A2 compensates for (4.1.77)14, we conclude that the correction
to the bath density coming from the first harmonics in the bosonised den-
sity (2.2.13) (and, analogously, for all higher harmonics) is only a finite-size
effect, which is smaller the larger is the Luttinger parameter K�. Notice that
the suppression factor does not depend on any of the impurity properties.
Albeit encouraging with regard to the accuracy of the approximations of our
model, the observation that the correction to the density is small does not
imply that the cosine term in the density is always irrelevant for the physics,
because we are not including it in the interaction term in the Hamiltonian.
Rather, it implies that there is some kind of self-consistency in the approx-
imation, as a term neglected in the Hamiltonian does not resurface in an
observable.

As the impurity is exchanged between the baths, these will become corre-
lated. We will measure the amount of inter-bath correlation by computing
the equal-time connected correlation functions

h⇢�(x)⇢�̄(y)ict ⌘ h⇢�(x)⇢�̄(y)it - h⇢�(x)it h⇢�̄(y)it (4.1.78a)
h⇧�(x)⇧�̄(y)ict ⌘ h⇧�(x)⇧�̄(y)it - h⇧�(x)it h⇧�̄(y)it , (4.1.78b)

14 This depends on the model underlying the TLL effective field theory. However, the A2 non-
universality means that it is a UV-sensitive quantity, so we do not expect a IR divergence like
the one needed to compensate equation (4.1.77).
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whose expressions are
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(4.1.79b)

The relevant averages are given by
D
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. (4.1.80b)

As we can see, these averages depend on the amplitudes A
µ⌫ of the two-

phonon terms in the state evolution. We point out that in the limit J? ! 0

the baths become decoupled from each other, so we expect that inter-bath
correlations factorise as h⇢�(x)⇢�̄(y)it

��
J?=0

= h⇢�(x)it
��
J?=0

h⇢�̄(y)it
��
J?=0

(and analogously for momentum). However, this is not true for the perturba-
tive expressions equations (4.1.80) given above. This is explained by noticing
that in our perturbative solution we broke up the interaction in two terms,
treating one exactly while expanding in the second one. When J? = 0, this
separation is unjustified, and it actually gives rise to a spurious (yet small)
inter-bath correlation.15 On the other hand, observables such as h⇢�(x)it and

15 This behaviour can be understood as follows: at J? = 0, and neglecting recoil, the time
evolution operator for the baths is e-i(h0(p)+�3V). The correct solution is to set �3 to
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h⇧�(x)it converge to the right limit for J? ! 0. Among the observables we
have analysed, it seems that only the inter-bath correlation functions has a
problematic J? ! 0 limit. To avoid analysing the resulting unphysical corre-
lations, we choose to work with the correlation functions with their J? = 0

values subtracted.
Before illustrating the results of the numerical evaluation of densities and

correlation functions, it is worth to comment on the algorithmic complexity
for their computation. The densities equations (4.1.72) are quite cheap to
compute, as they require to evaluate equation (4.1.73) (2 ·Np terms for the
Np momentum components of the wave packet) for each of the Nq bath
momenta. The slowest part of the terms that have to be summed is the over-
lap h!p-q(t)|!p(t)i, because it contains a term ”off-diagonal” in momen-
tum [see equation (4.1.15)] that has to be integrated without optimisation
strategies, as we discussed for the impurity density. Still, there is only one
non-optimised term, and as a result the computation is rather fast.16

On the contrary, the inter-bath correlation functions are much more expen-
sive to compute. From equations (4.1.79) and (4.1.80) it is evident that one
needs to sum O

�
N

2
qN

2
p

�
oscillating terms.

Numerical results: bath density evolution
In figure 4.13 we show the bath density evolution for increasing values of J?,
keeping all other parameters constant. The baths have identical properties.
The initial impurity wave packet starts in the " bath, with an average position
x0 = L/2 and a momentum distribution that is centred around p0 = 0.1Mv,
with a width (standard deviation) of �p = 0.04Mv (correspondingly, the spa-
tial width of the wave packet is about �x ⇠ 1/(2�p) = 12.5(Mv)-1 ). These
figures show that the density evolution has a common structure: a trough
that follows the impurity (notice how it is inclined to the right, owing to
the nonzero average momentum p0), flanked by two wave fronts that ”ra-
diate” in opposite directions at the speed of sound (which is v = 1 in our
units). As time goes on, the region between these features (the ”light-cone”
|x| 6 vt) becomes filled with density ripples, which can be seen as a manifes-
tation of the emission of real phonons because of the deexcitation from the
odd to the even mode. This interpretation follows from the observation that
these ripples ultimately come from the b

†
q� |!p(t)i terms (i.e. from the the

last term of equation (4.1.73)), which we interpreted as representing sponta-
neous emission. On the other hand, the trough and the wave front are all
contained in the coherent states |!p(t)i. More physically, the ripples have
a wavelength that is inversely proportional to J?, corresponding roughly to
the wave vectors q± that solve ⌦q±�(p0) = 2J? (the negative and positive
solutions of this equation apply to backward and forward emission, respec-

one of its eigenvalues (depending on the initial bath index of the impurity), and then
to diagonalise the resulting Hamiltonian. Our interaction-splitting procedure is roughly
equivalent to insisting on treating �3V as a perturbation, obtaining e-i(h0(p)+�3V) ⇡
e-ih0(p)t[1 - i�3

Rt
0 dt1 V(t1) -

Rt
0 dt1

Rt1
0 dt2 V(t1)V(t2)], which is a rather poor approxi-

mation to the exact dynamics. The V(t1)V(t2) term is the one responsible for the spurious
correlations.

16 It takes only a few minutes to generate the time evolution of the density for Np = 32 mo-
menta on the author’s laptop, without need for parallelisation.
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(a) J? = 0.1Mv
2

(b) J? = 0.03Mv
2

(c) J? = 0.01Mv
2

Figure 4.13: Dynamics of the density perturbation of bath " caused by the intro-
duction of an impurity wave packet. The parameters are g

2
K = 0.5v2,

K = 2 for both baths (we take M = 1, v = 1). The wave packet has
the form (4.1.51) with Np = 64 and �p = 0.04Mv. The cutoffs are
Mv↵ = 0.5 and ⇤ = 10Mv

2. Plots (a) to (c) differ in the inter-bath
hopping J?.
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(a) J? = 0.1Mv
2

(b) J? = 0.03Mv
2

Figure 4.14: Comparison of the dynamics of the density fluctuation in the baths
(colour scale) and of the impurity density (black contours). The oscil-
lations are nearly out of phase for (a) large J? while they synchronise
at (b) lower J?. The parameters are the same as figure 4.13.

tively). These observations support our view of the perturbative solution
as being decomposed into a ”bath relaxation” (trough and wave fronts) and
spontaneous emission.

As J? becomes smaller, the ripples become higher and of longer wave-
length, and the whole density profile becomes wider. Ad the same time, the
depth of the minimum oscillates more and more evidently, as the impurity
oscillation becomes slower. This agrees with the intuition that at J? = 0 the
single-bath situation should be recovered, in which the impurity remains in
its initial bath.

We observe that the ripples are emitted when the trough reaches its maxi-
mal depth, which we can interpret as the moment when the impurity transits
in the bath. This observation suggests an alternative, semiclassical way of
looking at the phonon emission: as the impurity leaves a bath for the other,
the original one tends to relax back to equilibrium (i.e., zero average density),
but then the impurity oscillates back into the bath, and so another pair of
wave fronts is emitted. Overall, the result is a series of ripples, as observed in
figures 4.13. This interpretation is supported by comparing the bath density
evolution with the one of the impurity density, as depicted in figures 4.14.
Indeed, we observe that the oscillations in the depth of the central dip in
the bath density do follow the position and bath oscillations of the impurity
wave packet. However, as the baths relax rather slowly, in general the time at
which the trough reaches its maximal depth lags behind the moment of max-
imal height of the impurity density. This delay is particularly relevant for
the larger values of J? (figure 4.14a), whereas for lower inter-bath hopping
the oscillations are almost synchronised (figure 4.14b).

The bath are identical in their properties and initial state, the only source
of asymmetry in their behaviour is the initial position of the impurity, which
we chose to be the " bath. This causes the # bath to interact with the impurity



�.� ����-��������� ������������ ������ 87

〈ρ↑(x)〉t
〈ρ↓(x)〉t

200 400 600 800 1000
Mv x

-0.003

-0.002

-0.001

0.001

0.002
〈ρσ (x)〉t /Mv

Mv2 t=140.

(a) J? = 0.1Mv
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(b) J? = 0.03Mv
2

Figure 4.15: Density profile in both baths at a given instant of time. The parameters
are the same as figure 4.13.

a little later than the " one (roughly after a fraction of the bare oscillation pe-
riod 2⇡/J?). Because of this, the density profile of the # bath is qualitatively
similar to the " one, but it is ”delayed” by the time it takes the impurity
to change its initial bath. This is shown in figure 4.15, in which the " bath
density is shown in blue and the # one in red. At large J?, the impurity is
rapidly exchanged, and therefore the density profiles of the baths are ”syn-
chronised”, almost coinciding with each other (except from the ripples), and
with very little relative lag. As J? is decreased, the oscillations in the trough
depth become wider and wider and thus can be clearly seen to be out of
phase, while the wave fronts are always in phase, but show a visible lag.
Moreover, the wave fronts in the # bath decrease in height with respect to
their " counterparts when J? assumes smaller values. The ripples are rigor-
ously out of phase. In fact, we have already remarked that the ripples come
from the second term in the square brackets in equation (4.1.73), which is
multiplied by � = ±1.

From figures 4.13 and especially from 4.15 it is immediate to notice that
the density profile is not symmetric around x = L/2. The reason is, of course,
that we endowed the impurity with a finite average momentum, so that the
forward and backward direction are not equivalent. Indeed, not only the
position of the central trough moves to the right, away from x = L/2, but also
the profiles of the wave fronts and ripples on the right of the impurity differ
from those on the left. The wave fronts emitted in the forward directions
are always taller than the ones emitted backwards. The height of the ripples
does not follow the same scheme (indeed, we will see that it depends also on
other factors), but their wavelength is smaller in the forward direction. As
we mentioned before, this wavelength corresponds to the wave vectors q±
that solve17

⌦q±�(p0) = 2J?, which is nothing but the equation imposing
energy conservation in the emission of a phonon during a transition from the
odd to the even impurity mode. The relation q+(p0) > |q-(p0)| is simply
the Doppler shift of the wavelength caused by the motion of the source,
albeit the magnitude of the shift does not follow the usual classical formula

17 There is one such pair of phonon momenta for each impurity momentum contributing to the
wave packet, but the differences are rather small and so we keep only the central momentum,
for clarity.
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Figure 4.16: Density profile in the " baths at a given instant of time, for decreasing
width 1/(2�p) of the initial wave packets. The system parameters are
the same as figure 4.13.

q±(p0) = q±(p0 = 0)/(1⌥ p0/Mv) because of the finite recoil energy of the
impurity.

Another feature that can be clearly seen in figure 4.15 is that the trough
and wave fronts have a distinct shape from that of the ripples. This is also
evident from the observation that the wavelength of the ripples depends on
J?, whereas the width of the other two does not. Indeed, it is not hard to
guess that trough and wave fronts are essentially ”images” of the Gaussian
profile of the impurity wave packet, albeit slightly distorted. The shape of
the ripples is instead more or less sinusoidal, and this suggests that their
behaviour is governed by the intrinsic dynamics of the baths, rather than by
the details of the shape of the wave packet.

These observations are substantiated by investigating the effect of the ini-
tial wave packet width on the bath density profile. This is shown in fig-
ures 4.16, in which the density profile of the " bath at a given time is com-
pared for decreasing widths �x ⇠ 1/(2�p), for two values of the inter-bath
hopping. To keep the wave packet shape unaltered while decreasing its stan-
dard deviation, we have kept the ratio �p/Np constant.18 The main effect
of a smaller width is that the magnitude of the density fluctuations is in-
creased. This is easily understood for the wave fronts and the central trough
if we trust the observation that they have the same shape as the wave packet,
as a narrower Gaussian is also taller. On the other hand, the influence on
the height of the ripples can be partially understood by observing that wave
packets with maximal width (equal to the length of the system) are made of
only one momentum, and therefore (compare with equations (4.1.72)) pro-
duce no density perturbation in the baths. Then, a continuity argument
suggests that wider wave packets should give rise to smaller density fluctua-
tions, including the ripples. We will return to this point in a few paragraphs.

We also notice that the dependence of the density fluctuation amplitude is
more prominent for the ripples than for the through and wave fronts, to the
point that a wide enough wave packet is able to effectively suppress the rip-
ples altogether. This effect is more noticeable for larger inter-bath hopping

18 A large �p with a small Np means that the Fourier components of the initial wave packet
vanish more or less abruptly at larger momenta, and the impurity density would then show
oscillations according to Gibbs’ phenomenon [23]
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Figure 4.17: Momentum density evolution. Figure (a) shows a snapshot of the mo-
mentum density profiles for both baths, while figure (b) shows the full
evolution of the " bath momentum density. The parameter settings are
g
2
K = 0.5v2, K = 2 for both baths, and J? = 0.03Mv

2

J?, as from figures 4.16 we can see that �p = 0.02Mv is sufficient to cancel
the ripples at J? = 0.1Mv

2, whereas at J? = 0.03Mv
2 it is not. On the con-

trary, the wavelength of the ripples is not affected by the wave packet width,
whereas the central dip and the wave fronts change their shape, becoming
narrower and more peaked as �p is increased. This is in accord with our
observation that they should be shifted images of the initial wave packet.

We have also computed the momentum density h⇧�(x)it, whose typical
behaviour is illustrated in figures 4.17. The time evolution of the momentum
density shares many qualitative features with the density. There is a central
part that follows the motion of the impurity, made of a relative minimum
and a maximum that oscillate in time, cyclically exchanging their roles. From
them, two trains of ripples expand in opposite directions, up to two wave
fronts. Contrary to the density, these wave fronts are out of phase: the left-
moving one is positive, while the right-moving one is negative. This does not
seem to be related to the sign of the momenta in the wave packet. As in the
case of the density, the central part and the wave fronts are always present for
any J?, whereas the ripples increase their amplitude as J? becomes smaller.
Moreover, all features except from the wave fronts are out of phase between
the two baths.

We want to briefly comment upon the scaling of the densities with Lut-
tinger parameters K�. In the long-wavelength effective Hamiltonian (2.2.16),
K� enters only through the combination g̃� ⌘ g�K

1/2
� , hence the expectation

value equation (4.1.73) of
⌦
e-iqX

bq�

↵
only depend on g̃�. On the other hand,

the densities equation (4.1.73) explicitly contain K�, and we can express their
scaling as

h⇢�(x)it = K
1/2
� f⇢(g

2
"K",g2#K#) , (4.1.81a)

h⇧�(x)it = K
-1/2
� f⇧(g

2
"K",g2#K#) , (4.1.81b)
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where f⇢ and f⇧ are two appropriate functions that we do not need to specify
here. From the equations above, we can deduce that the shape of the density
profiles is controlled only by the effective coupling g̃�, while if one varies K�

while keeping g̃� = g�K
1/2
� fixed the density or momentum profile only gets

rescaled. Thus, each of the figures shown above can be taken to represent a
family of density profiles.

Insights from the equations of motion
The results presented thus far can be interpreted in the light of the linear
relation between the bath density and the impurity density. In fact, the
Heisenberg equations of motion for ⇢�(x, t) and ⇧�(x, t) read

@t⇢(x, t) = -@x[v�K�⇧�(x, t)] (4.1.82a)

@t⇧�(x, t) = -v�@x

⇥
1
K�
⇢�(x) +

g�
⇡v�

d
†
�(x, t)d�(x, t)

⇤
. (4.1.82b)

We are taking the continuum limit a ! 0 for the impurity, to keep the nota-
tion simple.19 The equation of motion for the density alone can be derived
by combining the above equations:

⇣
1
v2
�
@
2
t - @

2
x

⌘
⇢�(x, t) = g�K�

⇡v�
@
2
x[d

†
�(x, t)d�(x, t)] . (4.1.83)

Albeit we can explicitly solve this equation for ⇢�(x, t) using the Green’s
function for the d’Alembert operator v

-2
� @

2
t - @2x, we can easily guess the

solution by recognising that we can use the results from linear response
theory. In fact, if the impurity density were a classical field we would obtain
the same equation. But the equation is linear in both the density and the
source, so linear response theory yields the exact result, and the operator
nature of the ”external field” g�d

†
�(x, t)d�(x, t) never comes up. Therefore,

we obtain

⇢�(x, t) = ⇢�(x, 0)+

+ g�

Z

R

dx0
Zt

0
dt0 ��(x- x

0, t- t
0)d†

�(x
0, t0)d�(x

0, t0) , (4.1.84)

where ⇢�(x, 0) is the noninteracting density, equation (4.1.71). We remark
that, unlike linear response theory that deals with expectation values, the
above equation is a relation between operators. This difference will show up
in the next paragraphs. The above equation is valid within the approxima-
tion that the bosonised density retains only the longest-wavelength contri-
bution -1/⇡@x��(x), which guarantees that the equations of motion for the
densities are linear. The kernel ��(x, t) is the retarded density-density linear
response function for the baths,

��(x, t) ⌘ -i✓(t) h!|[⇢�(x, t), ⇢�(0, 0)]|!i =
= ✓(t)K�

2⇡

⇥
�
0
↵(x+ v�t)- �

0
↵(x- v�t)

⇤
, (4.1.85)

19 These results are easily translated to the lattice case with the substitution d
†
�(x, t)d�(x, t) !P

j �(x- aj)d†j�(t)dj�(t).
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where the prime indicates a derivative with respect to the argument of the
function

�↵(x) ⌘
1

⇡

↵

x2 +↵2
. (4.1.86)

This is a smeared representation of the Dirac delta function, whose smearing
parameter ↵ is the length that serves as a UV cutoff for the TLL.

If we take the average of equation(4.1.84) over the initial state, we obtain
the relation

h⇢�(x)it = g�

Z

R

dx0
Zt

0
dt0 ��(x- x

0, t- t
0)
D
d
†
�(x

0)d�(x
0)
E

t0
(4.1.87)

between the bath and impurity density. If we compare equations (4.1.72),
(4.1.73) and (4.1.64) we see that the above relation can be satisfied only ap-
proximately by our perturbative solution, but it can still provide a guide to
the interpretation of the numerical results. For instance, it gives a founda-
tion to the ”semi-classical” behaviour of h⇢�(x)it. In fact, substituting the
expression for the retarded response function with ↵! 0 we get

h⇢�(x)it =
g�K�
2⇡

Zt

0
dt0

@x0

D
d
†
�(x

0)d�(x
0)
E

t0

����
x0=x+v�(t-t0)

+

- @x0

D
d
†
�(x

0)d�(x
0)
E

t0

����
x0=x-v�(t-t0)

�
, (4.1.88)

where the spatial arguments x± v�(t - t
0) have to be interpreted modulo

translation by the length of the system, L, because of the pbc. This equation
helps us to understand the features of the time evolution of the bath den-
sity that we highlighted in the previous paragraphs. Indeed, it shows that
the density a coordinates (x, t) is a superposition of the all the values of the
(gradients of the) impurity density on the light-cone of the given space-time
point. Besides showing that the baths have rather long ”memory”, the su-
perposition of the various images of the non-positive-definite gradient of the
impurity density paves the way to interference effects. Indeed, it is possible
to show that the behaviour of the ripples amplitude (i.e. their suppression
for sufficiently large J? or small �x) can be explained as an interference ef-
fect, in which there is a cancellation between opposite-sign terms at different
times in the past. In appendix A we show that this destructive interference
occurs only if the initial wave packet is large enough, according to the rela-
tion

�x & �x±c,�(p0, J?), �x
±
c,�(p0, J?) ⌘

�
v� ± p0

M

� ⇡

2J̃?,p0

, (4.1.89)

or, equivalently, if the momentum distribution is sufficiently narrow:

�p . �p±
c,�(p0, J?), �p

±
c,�(p0, J?) ⌘

J̃?,p0

⇡
�
v� ± p0

M

� , (4.1.90)

Ignoring for a moment the dependence on p0, we see that �p±
c,�(p0, J?) is

about 0.03Mv for J? = 0.1Mv
2 and 0.01Mv for J? = 0.03Mv

2. Indeed, look-
ing at figures 4.16, we see that all three plots showing no sign of ripples (two
for J? = 0.1Mv

2 and one for J? = 0.03Mv
2) occur precisely if the above in-

equality is satisfied at the respective value of J?. The positive or negative



92 � ������ ����

sign in equations (4.1.89) and (4.1.90) refer to the ripples emitted backward
or forward, respectively. This directional dependence allows us to justify the
asymmetric height of the ripples, as the critical width for backward emis-
sion is larger than the one for the forward emission, which implies that the
cancellation effect is less effective in the backward direction, resulting in the
larger ripple amplitude that we observed.

As the equations of motion (4.1.82) are also linear for the momentum den-
sity ⇧�(x, t), we can use linear response theory to relate this quantity to the
impurity density, in analogy with equation (4.1.84):

⇧�(x, t) = ⇧�(x, 0)+

+ g�

Z

R

dx0
Zt

0
dt0 �⇧⇢

� (x- x
0, t- t

0)d†
�(x

0, t0)d�(x
0, t0) , (4.1.91)

where �⇧⇢
� (x, t) is the momentum-density retarded response function:

�
⇧⇢
� (x, t) ⌘ -i✓(t) h!|[⇧�(x, t), ⇢�(0, 0)]|!i =

= -✓(t) 1
2⇡

⇥
�
0
↵(x+ v�t) + �

0
↵(x- v�t)

⇤
. (4.1.92)

The same arguments for the interpretation of h⇢�(x)it can be repeated for
h⇧�(x)it.

We notice en passant that equations (4.1.82) imply a proportionality rela-
tion between the densities in a stationary state (including thermal equilib-
rium). In fact, in such a state @t h⇧�(x)iss = 0, so that

h⇢�(x)iss = const. - g�K�
v�⇡

D
d
†
�(x)d�(x)

E

ss
.

The arbitrary constant is fixed by requiring that
R

dx ⇢�(x) = 0:

h⇢�(x)iss =
g�K�
v�⇡

h
1
Ln

ss
� -

D
d
†
�(x)d�(x)

E

ss

i
, (4.1.93)

where n
ss
� ⌘

R
dx
D
d
†
�(x)d�(x)

E

ss
is the total probability that the impurity is

in bath �.

Numerical results: correlation functions
The typical behaviour of the equal-time correlation function is shown in
figures 4.18, 4.19 and 4.20. The initial impurity wave packet is a similar to
the one of the previous paragraphs, namely a Gaussian made up of Np =
32 momenta, centred around p0 = 0.1Mv, with standard deviation �p =
0.02Mv. All plots refer to the same g�, while we vary J?.

Figures 4.18a and 4.18b show a sequence of ”snapshots” of the full spatial
behaviour of the correlation function at various moments of time. These
show that the correlations are concentrated within two ”lobes”, with a series
of ripples between them. As time advances, the lobes move apart from each
other, while both their amplitude and spatial width increase. The expansion
is roughly ballistic, that is, all distances increase linearly in time, albeit with
a larger speed in the relative r = x- y direction than in the ”centre-of-mass”
R = (x+ y)/2 one. As this expansion takes place, in the region between the
lobes a series of ripples is formed, whose amplitude increases in time.
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(a) J? = 0.1Mv
2

(b) J? = 0.01Mv
2

Figure 4.18: Time evolution of the connected density-density correlation function.
The baths are identical, with parameters g

2
K = 0.5v2 and K = 2. The

wave packet is Gaussian, with p0 = 0.1Mv, �p = 0.02Mv and Np = 32.
The colour scale is normalised to the last ”snapshot” of each set of
plots.

(a) (b)

Figure 4.19: Two ”slices” of the density correlation function evolution at J? =
0.1Mv

2 (figure 4.18a). The parameters are the same as figure 4.18.
Figure (a) shows it as a function of the relative coordinate r = x- y,
while (b) uses the centre of mass coordinate R = (x+ y)/2.



94 � ������ ����

(a) (b)

Figure 4.20: Two ”slices” of the density correlation function evolution at J? =
0.01Mv

2 (figure 4.18b). The parameters are the same as figure 4.18.
Figure (a) shows it as a function of the relative coordinate r = x- y,
while (b) uses the centre of mass coordinate R = (x+ y)/2

We remark that we have stopped all calculations before the light cone get
too close to the edges of the system20, in order to avoid finite-size effects
(besides the discretisation of momenta). Therefore, the observed features
should be a result of the intrinsic dynamics of the system under investiga-
tion, rather than an effect of interference through the boundaries.

These inter-bath density (or momentum) correlation functions are not sym-
metric under exchange of x and y, despite the fact that ⇢"(x) (or ⇧"(x)) and
⇢#(y) (⇧#(y)) commute and that the baths have identical properties. This is
because the evolution is made asymmetric by the initial conditions, namely
the impurity starting in bath ", with an average nonzero momentum. How-
ever, from figure 4.18 it is easy to notice an approximate anti-symmetry with
respect to the lines r = 0 and R = L/2.

Analogously to the case of the density averages, the correlation functions
obey a specific scaling with respect to the Luttinger parameters K�:

⌦
⇢"(x)⇢#(y)

↵
t
= (K"K#)

1/2
f⇢⇢(g

2
"K",g2#K#) , (4.1.94a)

⌦
⇧"(x)⇧#(y)

↵
t
= (K"K#)

-1/2
f⇧⇧(g

2
"K",g2#K#) . (4.1.94b)

The scaling of the densities, equation (4.1.81), ensures that the same relation
holds for the connected correlation functions. We have verified numerically
that changing g�K

1/2
� only causes minor changes in the shape of the corre-

lation functions, apart from an obvious change in the amplitude. The most
relevant shape modifications are those induced by a change in J?. At large
J? (figure 4.18a), the correlation function oscillates basically only in the rel-
ative r direction, whereas the profile along R shows less features. As J? is
lowered (figure 4.18b), the shape of the lobes becomes more complex, mainly
because the correlation function oscillates also in the R direction. Moreover,
the ripples ”leak out” of the inter-lobe region.

20 For instance, notice that the ”snapshots” in figure 4.18 cover an area in (r, R) space which is
rather smaller than the whole allowed rectangle [-L,L]⇥ [0,L].
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Since the relative r = x- y and centre-of-mass coordinate R = (x+ y)/2
clearly have different roles, it is useful to look at them one at a time, as we
display in the next figures.

In the time evolution of
⌦
⇢"(x)⇢#(y)

↵c
t

as a function of the coordinate dif-
ference, as shown in figures 4.19a and 4.20a, correlations appear only within
a ”light-cone” |x- y| 6 vt. The maximal amplitude occurs around the light-
cone itself (|x- y| ⇡ vt), while within the interior there are waves that appear
to be radiated from x = y. A comparison with figure 4.18 leads to identify
the light-cone region with the lobes, while the waves in the interior are the
ripples. The wavelength of the latter roughly corresponds to that of the
phonons emitted during the deexcitation of the odd impurity mode. This
identification, as in the case of the density, comes from the analytical expres-
sions [equations (4.1.80)], and from the observation that the wavelength is
essentially independent of g� and K�, while it is inversely correlated with
J?, as can be appreciated by comparing figure 4.19 and figure 4.20. As in
the case of the average densities, the amplitude of these ”ripples” relative to
the light-cone lobes increases for smaller J?.

Summing up, the behaviour of the correlation function along the relative
coordinate basically reflects the ”relativistic” nature of TLL bath dynamics,
namely the property that inter-bath correlations are generated and propa-
gated as linearly dispersing sound modes.

The situation looks different if seen in the centre-of-mass coordinate R, as
figures 4.19b and 4.20b show. Here, we can distinguish a central area in
which two trains of ripples oscillate out of phase, and an outer area formed
of waves that radiate at the speed of sound from the central area. This dis-
tinction is sharp for higher J? (figure 4.19b), as the relative amplitude of
the emitted waves increase with decreasing J?. The inner ripples occupy
an area that spreads very slowly in space, and is centred along the trajec-
tory R = L/2 + p0t/M. Moreover, their oscillations in time occur with a
period of about ⇡/J?, that is, half of the impurity oscillation period. These
clues leads us to identify this ”section” of the correlation function as the
one more closely reflecting the motion of the impurity and the profile of its
wave packet. In order to plot figures 4.19b and 4.20b, we chose a value for r.
Changing it causes two main effects: first, the correlation function is zero up
to a time that increases with r (an effect of the finite sound speed, presum-
ably). Second, as r is decreased the oscillations in time get washed away by
a featureless background contribution, until at r = 0, i.e. x = y, there are no
more visible oscillations. In all our numerical computations,

⌦
⇢"(x)⇢#(x)

↵c
t

is always negative.

These properties of the correlation functions can be rationalised using
equation (4.1.84). Here we can see that this equation implies a whole hi-
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Figure 4.21: Time evolution of the connected momentum density correlation func-
tion. The baths are identical, with parameters g

2
K = 0.5v2, K = 2 and

J? = 0.01Mv
2. The colour scale is normalised to the last ”snapshot”

of each set of plots.

erarchy of relations that go beyond linear response theory. Indeed, we can
compute

h⇢�(x)⇢�̄(y)ict =

= g�

Z
dx1 dt1 ��(x- x1, t- t1)

D
d
†
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E
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Z
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D
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E
+
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�(x1, t1)d�(x1, t1)d

†
�̄(x2, t2)d�̄(x2, t2)

Ec
, (4.1.95)

where we see that the bath density correlation function is related to the
connected impurity density correlation function

D
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†
�(x1, t1)d�(x1, t1)d

†
�̄(x2, t2)d�̄(x2, t2)
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⌘
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†
�(x1, t1)d�(x1, t1)

ED
d
†
�̄(x2, t2)d�̄(x2, t2)

E
, (4.1.96)

which, unlike h⇢�(x)⇢�̄(y)ict , correlates the densities at different times, and
so it cannot be calculated from the knowledge of | (t)i only. Thus, in princi-
ple we could use equation (4.1.95) to compute this impurity density correla-
tion function. For now, we can just point out that thanks to this formula we
have a hint on why h⇢�(x)⇢�̄(y)ict as a function of (x+ y)/2 seems to mirror
the time evolution of the impurity wave packet—indeed, we can now un-
derstand that it is keeping track of the impurity density (and impurity-bath
density) correlation function.

We conclude this section by briefly discussing the connected momentum
correlation function,

⌦
⇧"(x)⇧#(y)

↵c
t
. An example is shown in 4.21. It has

the same qualitative features of the density correlation function, namely a
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(a) (b)

Figure 4.22: The colour plot shows the time evolution of the perturbation in the "
bath density produced by an impurity wave packet in the form (4.1.97).
The contours depict the time evolution of the noninteracting wave
packet. The system parameters are g

2
K = 0.5v2 (symmetric baths),

J? = 0.05Mv
2, Np = 64, �p = 0.05Mv and d = 80(Mv)-1 for (a),

while d = 99(Mv)-1 for (b).

pair of expanding lobes enclosing a region of smaller oscillations. It is distin-
guishable from the density correlation from the more complex pattern of the
ripples, and from the observation that we found that the x = y correlation is
always positive (while it is negative for the density).

Playing with wave packets
We have experimented with a few wave packets with a non-Gaussian initial
momentum distribution. We show two interesting examples in figures 4.22
and 4.23. The first one, 4.22, shows the time evolution of the bath density
when the impurity is initialised with a wave packet defined as

cpµ / e-
(p-p0)

2

4�p2 -ix0p cos
⇣
pd
2

⌘
, (4.1.97)

which in real space translates to a superposition of two Gaussian peaks of
width ⇡ 1/(2�p), separated by a distance d. The time evolution of the nonin-
teracting impurity density is shown as a contour plot for ease of comparison.
We can understand the bath density evolution as the superposition of two
copies of the behaviour we have analysed in the previous paragraphs for
a single Gaussian peak. We can recognise the oscillating central dips that
follow the motion of the two impurity density peaks, each one emitting its
own pair of wave fronts and its trains of ripples. Moreover, the two sets of
perturbations superimpose and give rise to interference effects, such as the
visible time delay between the times of maximum depth of the two troughs,
and the enhanced peak that forms in the middle. These interference effects
are governed by the interplay of the distance between the two peaks and the
period of the impurity oscillations. Indeed, for d = 80(Mv)-1 (figure 4.22a)
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(a) (b)

Figure 4.23: The colour plot shows the time evolution of the perturbation in the "
bath density produced by an impurity wave packet in the form (4.1.98).
The contours depict the time evolution of the noninteracting wave
packet. The system parameters are g

2
K = 0.5v2 (symmetric baths),

J? = 0.05Mv
2, Np = 64 and R = 40(Mv)-1 for (a), R = 80(Mv)-1 for

(b).

the forward emission is suppressed, while for d = 99(Mv)-1 the backward
emission is the one subjected to destructive interference.

Figures 4.23 shows the bath density perturbation that is obtained with the
wave packet

cpµ / e-ix0p
J1 ((p- p0)R)

p- p0
, (4.1.98)

where J1(z) is the first-order Bessel function of the first kind [23]. In the
continuum limit, this wave packet would yield a parabolic initial impurity
density

⇥
1- (x- x0)2/R2

⇤
✓(x-x0+R)✓(R-x+x0). The actual shape of the

finite-length, finite-Np situation is a peak with steep sides and a somewhat
flattened top (except for some extra oscillations emerging at larger R). These
features can be observed in the contour lines depicting the time evolution
of the noninteracting wave packet in both figures 4.23. These plots exhibit
some remarkable interference effects. For the one at a smaller radius R =
40(Mv)-1 (figure 4.23a), these appear to involve only the central trough,
which cyclically splits in two shallower halves that subsequently fuse back
together. For a larger radius R = 80(Mv)-1 (figure 4.23b) we observe that the
central trough takes almost a whole bare oscillation period to deepen, and in
the meanwhile its size is paradoxically shrinking. After this initial transient,
its shape evolves through an intricate pattern, sequentially splitting in two
twin minima or one dip and two satellite ones on its sides. This peculiar
behaviour is probably linked to the motion of the small peaks on the top of
the impurity density. For this wave packet, we also observe some unusually
thick and structured wave fronts, which support the idea that they represent
(possibly distorted) travelling images of the initial impurity density. On the
other hand, ripples have a small amplitude, in comparison. This agrees with
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Figure 4.24: A representation of a two-dimensional lattice of baths. The coordinate
Rk runs parallel to the long dimension of the baths, while R? spans
the plane (or line) perpendicular to them.

the observation we made in the previous paragraphs, that more spread wave
packets suppress the ripples.

�.� ���� ���� ��� �����

In this section we extend the present ”improved” perturbative treatment to
the case in which the impurity has access to many baths, and we observe
the evolution of the orthogonality catastrophe exponent with the number of
baths.

�.�.� Definition of the model and LLP transformation

We shall assume that the baths are arranged in a periodic lattice in one or
two dimensions, parallel to each other, so that the impurity moves in two
(2D) or three dimensions (3D), respectively. For clarity, we will refer to these
two setups as 1+ 1D and 2+ 1D, respectively. A 2+ 1D example is shown
in figure 4.24. For computational simplicity, we assume that the lattice of
baths is simple (i.e. each site corresponds to one bath only—the extension to
non-simple lattices is straightforward) and that it obeys periodic boundary
conditions. The latter requirement is realistic for a 1D lattice of baths, that in
pbc becomes a ring, while it can not be easily realised for a 2D lattice. As in
many different contexts, the choice of pbc is motivated by the advantage of
having translational symmetry, which simplifies the theoretical description.
We will see that the structure of the results we will obtain do not rely on the
choice of boundary conditions for the lattice of baths, and that they can be
easily generalised to open boundary conditions.

We adopt a tight-binding description for the impurity, whose position is
specified by a 2D or 3D vector R, running on the sites of the lattice. We
divide this vector as R ⌘ (Rk,R?), with Rk being the longitudinal direction
along the baths and R? that labels the sites in the lattice of baths. The latter
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defines the transverse direction, analogously to the index � in the two-bath
scenario, and it is a number or a 2D vector if the baths form a row or a 2D
lattice, respectively. We assume that each bath has Nk lattice sites, and that
there are Nb baths. We recover the two-bath scenario analysed before if we
take a row of Nb = 2 baths. As in the latter setup, we assume Nk � Nb, so
that we can adopt a continuum description for the intra-bath (longitudinal)
motion of the impurity, while the inter-bath motion is quantised.

The Hamiltonian has the usual form H = Himp +Hbath +Hc, where

Himp ⌘ -Jk
X

Rk,R?

⇣
d
†
Rk+ak,R?

dRk,R? + h.c. - 2d
†
Rk,R?

dRk,R?

⌘
+

-
X

Rk,R?,e?

Je?

⇣
d
†
Rk,R?+e?

dRk,R? + h.c.
⌘

, (4.2.1a)

Hbath ⌘
X

q6=0R?

vR? |q|b
†
qR?

bqR? , (4.2.1b)

Hc ⌘
X

Rk,R?

gR?d
†
Rk,R?

dRk,R?⇢R?(Rk) =

=
X

q6=0,Rk,R?

gR?K
1/2
R?

Vq

L1/2
d
†
Rk,R?

dRk,R?e-iqRk
⇣
b
†
qR?

+ bqR?

⌘
,

(4.2.1c)

In the above equations, we defined ak to be the lattice spacing in the longitu-
dinal direction, e? runs on the nearest-neighbours in the transverse lattice.
The inter-bath hopping in the direction e? has been denoted as Je? . Notice
that for Nb = 2 the correspondence is Je? = J?/2. The baths are exactly as
in the two-bath case, namely they have length L = Nkak and obey pbc in the
longitudinal direction, so that q is their quantised longitudinal momentum.
Hence, b†

qR?
creates a phonon of momentum q in the bath residing at lattice

point R?.
The free impurity Hamiltonian is diagonalised by building the Bloch sums

dp ⌘ 1

N
1/2
s

X

R

e-ipR
dR , (4.2.2)

where Ns = NkNb is the total number of sites. The diagonalised Hamilto-
nian reads Himp =

P
p �(p)d

†
pdp, where

�(p) ⌘ 2Jk(1- cos
�
pkak

�
)- 2

X

e?

Je? cos(p?e?) . (4.2.3)

In analogy with R, we split the momentum p in longitudinal (pk) and
transverse (p?) components. The transverse components generalise the par-
ity index µ of the two-bath case. As usual, we assume that the longi-
tudinal momentum is small,

��pk
��ak ⌧ 1, so that we can approximate21

2Jk(1- cos
�
pkak

�
) ⇡ p

2
k/(2M) ⌘ E(p), and we call

�(p?) ⌘ -2

X

e?

Je? cos(p?e?) , (4.2.4)

21 Notice that we are defining the mass M to be the one associated with the longitudinal motion.
This is because we are setting ourselves in a situation in which the longitudinal motion is
almost in the continuum limit, whereas the transverse motion is strongly quantised because
the number of baths, Nb, is finite.
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so that �(p) = E(pk)+�(p?). The picture we have in mind is that Nk � Nb,
so that we have a collection of Nb parabolic bands labelled by the transverse
momentum p?.

Now we adopt the same strategy we applied before, namely we use an
appropriate LLP transformation to move to a basis in which the total mo-
mentum conservation is evident. The 1D nature of the baths implies that
they can only carry longitudinal momentum, therefore the LLP transforma-
tion involves only the longitudinal degrees of freedom:

ULLP ⌘ e-i
P

R Rkd
†
RdRPb ,

�
U

†
LLPdRULLP = e-iRkPbdR

U
†
LLPbqR?ULLP = e-iq

P
R Rkd

†
RdRbqR?

, (4.2.5)

where Pb ⌘
P

q 6=0,R?
qb

†
qR?

bqR? is the (longitudinal) baths momentum.
In the LLP basis, the Hamiltonian reads HLLP ⌘ U

†
LLPHULLP = HLLP

imp +

Hbath +HLLP
c , where

HLLP
imp =

X

p

⇥
E(pk - Pb) +�(p?)

⇤
d
†
pdp , (4.2.6a)

HLLP
c =

X

q 6=0,R?

gR?K
1/2
R?

Vq

L1/2

X

Rk,

d
†
Rk,R?

dRk,R?

⇣
b
†
qR?

+ bqR?

⌘
. (4.2.6b)

In this basis, the phonons interact with the impurity only through the com-
bination

nR? ⌘
X

Rk,

d
†
Rk,R?

dRk,R? =

=
1

Nb

X

pk,p?,p0
?

ei(p0
?-p?)

d
†
pkp?dpkp

0
?
=

=
1

Nb
1+

1

Nb

X

pk

X

p?6=p0
?

ei(p0
?-p?)

d
†
pkp?dpkp

0
?

,

(4.2.7)

which is invariant under translations along the baths, as it is diagonal in the
longitudinal momentum pk. Therefore, as in the two-baths case, the whole
Hamiltonian becomes a sum over different total longitudinal momentum
sectors, HLLP(pk). Then, we can work within one of such sectors, with a
fixed value of pk.
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�.�.� Perturbative solution

We follow the steps of the two-bath case, so we split the LLP Hamiltonian
in an unperturbed part and a perturbation, HLLP(pk) = H0(pk) + �H(pk),
where

H0(pk) =
p
2
k

2M
+
X

p?

�(p?)d
†
pkp?dpkp?+

+
X

q 6=0,R?

h
⌦qR?(pk)b

†
qR?

bqR? +
WqR?
NbL1/2 (b

†
qR?

+ bqR?)
i

,

(4.2.8a)

�H(pk) =
X

R?

X

p?6=p0
?

WqR?
NbL1/2 ei(p?-p0

?)R?d
†
pkp

0
?
dpkp?(b

†
qR?

+ bqR?) +
: P2

b :

2M
.

(4.2.8b)

We introduced the quantities

⌦qR?(pk) ⌘ vR? |q|-
pk
M

q+
q
2

2M
, (4.2.9)

and
WqR? ⌘ gR?K

1/2
R?

Vq , (4.2.10)

that generalise ⌦q�(p) and Wq�, for two baths.
We assume that the initial state is | (0)pi =

��pk,p?
↵
d
|!ib ⌘

��pk,p?,!
↵

(which is invariant under the LLP transformation). Then we make the
Ansatz

| p(t)i = ap(t)e-iH0(pk)t
h��pk,p?,!

↵
+
����(1)

p (t)
E
+O

�
g
2
�i

, (4.2.11)

and we introduce it in the opportunely adapted version of equations (4.1.19),
i.e. with pµ ! pk,p?. We obtain22

����(1)
p (t)

E
=

X

q6=0,R?
k?( 6=p?)

WqR?
NbL1/2 ei(p?-k?)R?�

⇤
t(⌦qR?(pk) +�k?p?)⇥

⇥ b
†
qR?

��pkk?,!
↵

(4.2.12)

and

ap(t) = exp

2

4 1

N2
b

X

R?

X

k?( 6=p?)

F
sb
pkR?(-�k?p? , t)

3

5 , (4.2.13)

with
�k?p? ⌘ �(k?)-�(p?) = �(pk,k?)- �(pk,p?) (4.2.14)

and we defined the single-bath F-function

F
sb
pkR?(�, t) ⌘ -

1

L

X

q 6=0

W
2
qR?

1- i(⌦qR?(pk)-�)t- e-i(⌦qR?(pk)-�)t

(⌦qR?(pk)-�)2
.

(4.2.15)

22 We use the notation
P

k?(6=p?) to indicate a sum over all k? that are different from a given
p?.



�.� ���� ���� ��� ����� 103

A comparison with equations (3.0.16) and (4.1.29) shows that it is equal to
4Fp�(J, t), with p = pk, R? playing the role of � and � = 2J. We also define

F
sb
pk
(�, t) ⌘

X

R?

F
sb
pkR?(�, t) . (4.2.16)

As usual, we can re-write the perturbative expansion by letting e-iH0(pk)t

act on the states:

| p(t)i = ap(t)e-i�(p)t
h ��pk,p?

↵ ���!pk(t)
E
+

-
X

q 6=0,R?
k?(6=p?)

WqR?
NbL1/2 ei(p?-k?)R?�t(⌦qR?(pk) +�k?p?)⇥

⇥
��pkk?

↵
b
†
qR?

���!pk(t)
E i

, (4.2.17)

where
���!pk(t)

E
is the analogous to |!p(t)i for two baths, namely the time

evolution of the boson vacuum under the unperturbed Hamiltonian, and it
has a similar expression:

���!pk(t)
E
⌘ e

i 1
N2

b
ImFsb

pk
(0,t)

����coh

-

WqR?
NbL1/2

1-e-i⌦qR?
(pk)t

⌦qR?(pk)

��
. (4.2.18)

For a generic initial condition | (0)i =
P

p cp |p,!i, we get its time evolu-
tion by superimposing the single-momentum solutions.

We want to remark that the perturbative procedure presented thus far
does not rely on the pbc assumed in the transverse direction(s), except for
the explicit form of the free impurity bands. The results obtained thus far
can be easily adapted to other boundary conditions by simply changing the
expression for �(pk,p?), namely

�(pk,p?) = E(pk) +�(p?) ! �(pk,↵) = E(pk) +�(↵) , (4.2.19)

where ↵ is the set of quantum numbers that enumerates the free impurity
bands in the chosen boundary conditions. Accordingly, in all formulae the
transverse momentum indices p? should be substituted with the new in-
dices ↵. The use of pbc in the longitudinal direction can be thought of as
a mere technical choice of momentum discretisation, as we always assume
that we work close enough to the continuum limit ak ! 0 that the differ-
ences associated to the boundary conditions in the longitudinal direction
are expected to be irrelevant.

�.�.� The impurity Green’s function

In the following paragraphs, we will calculate the impurity Green’s func-
tion and discuss its properties. We will show that the many-baths scenario
displays new qualitative features that are not present in the two-baths setup.

The impurity Green’s function for t > 0 is given by

iG(p, t) ⌘ h⌦|dp(t)d
†
p|⌦i = hp,!|e-iHt|p,!i = h p(0)| p(t)i . (4.2.20)
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We are considering only the ”diagonal” components in the transverse mo-
menta (the Green’s function is already diagonal in the longitudinal momen-
tum), so that the above quantity is also the return probability amplitude and
the Loschmidt echo. In the symmetric case, which corresponds to a uniform
1+1D or 2+1D system, these components turn out to be the only nonvanish-
ing ones of the Green’s function. Using equation (4.2.17), we obtain

iG(p, t) = ap(t)e-i�pt
D
!

���!pk(t)
E
=

= ap(t)e-i�pte
i 1
N2

b
ImFsb

pk
(0,t)-1

2
P

q6=0,R?

W2
qR?

N2
bL

|�t(⌦qR?(pk))|
2

=

= ap(t)e-i�pte
1
N2

b
Fsb
pk

(0,t)
,

and finally

G(p, t) = -ie
-i�pt+

1

N2
b

P
R?

P
k?

Fsb
pkR?

(-�k?p? ,t)
. (4.2.21)

This is expression is once again strongly reminiscent of the one we found
in the two-bath scenario, namely the second of equations (3.0.25), which is
in fact a special case of equation (4.2.21). In the Nb = 2 case, Fp(-µJ?, t)
encoded most of the ”quasiparticle” effects, including decoherence, while
Fp(0, t) quantified the OC, giving rise to the power-law behaviour. In partic-
ular, we already noticed that the power law is the same for both bands. How-
ever, in the multi-bath case there is room for some significant differences. In
equation (4.2.21), every factor Fsb

pkR?
(-�k?p? , t) brings about either a renor-

malisation (�k?p? > 0) or a decay (�k?p? < 0) if �k?p? 6= 0, while every
time that �k?p? = 0 in the sum there is a corresponding power law, as
F

sb
pkR?

(0, t) ⇠ -�sb
R?

(pk) ln t + const. We recall that (see 3.1.3 and refs. [46,
50]) the single-bath OC exponent is

�
sb
R?

(pk) =
g
2
R?

KR?

2⇡2v2R?

1+
⇣

p
MvR?

⌘2


1-

⇣
p

MvR?

⌘2�2
. (4.2.22)

The important point is that for generic baths lattices �k?p? = 0 is satisfied
for sets of k? that include more than k? = p? only, as in the case Nb = 2. In
other words, as �k?p? = 0 implies that �(pk,k?) = �(pk,p?), in a generic
lattice we find that the OC exponent depends on the band considered (labelled
by p?) and it is proportional to the energy degeneracy of �(pk,p?), deg(p?).
In formulae,

�
Nb(p) =

deg(p?)

N2
b

X

R?

�
sb
R?

(pk) (4.2.23)

This is the central result of this section. The above equation has many inter-
esting consequences.

The first one regards the scaling of �Nb with Nb. Of course, it is always
bounded by

�
Nb(p) 6 deg(p?)

Nb
max
R?

�
sb
R?

(pk) , (4.2.24)
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Figure 4.25: Energies of the free impurity bands for a row of (a) 8 and (b) 9 baths,
relative to p

2
k/(2M). The red points indicate the actual impurity levels,

whereas the dashed blue line gives the nearest-neighbour dispersion
in the Nb ! 1 limit. Degenerate levels are joined by dotted black
lines. Notice that we took Je? = J?/2.

where the inequality is saturated in the ”symmetric case” in which all baths
have identical properties (gR? ,KR? and vR?):

�
Nb(p) =

deg(p?)

Nb
�

sb(pk) . (4.2.25)

This confirms the hand-waving discussion presented in 3.1.3, namely that
in the perturbative regime the baths effectively ”see” only a fraction 1/Nb

of the impurity, and the coupling constant relevant for the OC becomes
gR?/Nb [this is evident in the interaction piece included in H0, see equa-
tion (4.2.8)]. At the quadratic order in the coupling this reasoning leads to
equation (4.2.23) and to the scaling above, but it misses the degeneracy fac-
tor. We see that if deg(p?) does not grow proportionally to Nb, �Nb(pk) is a
decreasing function of the number of baths, and ultimately goes to zero for
an infinite lattice:

lim
Nb!+1

�
Nb(pk) = 0 . (4.2.26)

This behaviour is consistent with one expected for an impurity in a 2D or
3D phonon bath because, contrary to the 1D case, higher-dimensional mo-
bile impurities usually retain their quasiparticle properties [79]. Notice that
the Nb ! +1 limit leads to a 2D or 3D bosonic bath, not a fermionic one,
because to obtain the latter case one should add the higher harmonics (i.e,
the backscattering terms) in the bosonised density [31]. Nevertheless, the
conclusion would not change, as mobile impurities in dimension 2 or higher
have a finite quasiparticle residue23, i.e. a finite limit limt!+1 |G(p, t)| [79,
88]. The second consequence of equation (4.2.23) concerns the role of the
level degeneracy factor deg(p?), and therefore the band dependence of the
OC exponent.

For instance, let us take a row of baths with lattice spacing a?. The bands
structure is given by

�(p?) = -J? cos(p?a?) ,

23 There are, of course, exceptions, such as Bose polarons immersed in an ideal Bose gas [40]
or at unitarity (i.e. infinite scattering length. Both these scenarios lie outside of the region of
applicability of our approximations.) [88].
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Figure 4.26: (a) Energy levels of the bands of a 9⇥ 9 baths lattice. (b) The band
degeneracies for square lattices with 8⇥ 8 (red circles) and 9⇥ 9 (blue
squares) sites. We took Je? = J?/2 in all nearest-neighbour directions.

where we took Je? = J?/2. We show the band structure in figure 4.25 at a
given pk, for Nb = 8 and Nb = 9. We see that the band bottom p? = 0 is al-
ways non-degenerate, hence �Nb(pk, 0) = �

sb(pk)/Nb. Going up in energy,
we find a series of doubly degenerate states with opposite p?, for which
�
Nb(pk,±p?) = 2�

Nb(pk, 0). Here we find a difference between odd and
even numbers of baths: in the former case, the topmost levels are still dou-
bly degenerate, whereas in the latter there is a state at the very edge of the
Brillouin zone (either at p?a? = ⇡ or -⇡, depending on the chosen con-
vention) which is again nondegenerate. Thus, we see an example of band
dependence of the OC exponent, and we see that the sequence of the differ-
ent exponents is sensitive to the parity of the number of baths. Moreover,
this is a scenario in which all exponents vanish in the limit of infinite baths,
because the maximum degeneracy of any level is 2. Now we see that our
usual Nb = 2 case is a little special in having the same OC exponent for all
bands, because the two bands turn out to be the p? = 0 (that we called even)
and p?a? = ⇡ (odd), which are the only two without degeneracy.

We can observe a larger variety of behaviours if we take the baths to be
arranged in a N? ⇥N? square lattice. In this case we have

�(p?,x,p?,y) = -J?[cos(p?,xa?) + cos
�
p?,ya?

�
] .

An example of the bands energy structure is depicted in figure 4.26a for a
9⇥ 9 lattice. The degeneracies of the various band levels is depicted in fig-
ure 4.26b, for N? = 8 (red circles) and N? = 9 (blue squares). Once more,
the lowest-energy (and the highest one, for even N?) band is not degenerate,
while (almost all) the other levels are 4- or 8-fold degenerate. These degen-
eracies come from the symmetry of �(p?,x,p?,y) under exchange of p?,x
and p?,y (if they are different) and under change of sign p?,x/y ! -p?,x/y,
the two different degeneracy values depending on the independence of these
two sets of transformations. So, we can observe OC exponents that are 4 or
8 times the one of the fundamental band p? = 0. Also in this 2D case, we
observe a strong dependence of the degeneracies on the parity of Nb: while
in the odd Nb case only the p? = 0 band is nondegenerate (the others hav-
ing degeneracy 4 or 8), in the even Nb case there is the state of maximal
energy residing at one corner of the Brillouin zone (e.g. p?a? = (⇡,⇡)),



�.� ���� ���� ��� ����� 107

p⟂a⟂
0

±π /3

±2π /3

π

20 40 60 80
J⟂ t

0.2

0.4

0.6

0.8

1.0

|G(p|| ,p⟂,t) 2

(a)

ΔR⟂/a⟂
0

1, 5

2, 4

3

20 40 60 80
J⟂ t

0.2

0.4

0.6

0.8

1.0

|GΔR⟂ (p|| ,t) 2

10 20 30 40

0.1

0.2

0.3

0.4

(b)

Figure 4.27: Numerical evaluation of the Green’s function for a row of 6 identical
baths, for g

2
K = 0.5v2, 2Je? = J? = 0.05Mv

2 and pk = 0. Plot
(a) shows the return probability for the various transverse momenta,
while (b) displays the Green’s function at various transverse distances.
The inset in (b) magnifies the smaller components.

that is nondegenerate and, most importantly, there is a largely degenerate
level at the middle of the spectrum, that is, �(p?,x,p?,y) = 0. These states
are the ones connected by the well-known nesting symmetry24 of the square
lattice [66], which yield a degeneracy of 2N? - 2. This scaling of the de-
generacy means that its OC exponent would have a unusually slow decay
�
Nb(pk) = O

⇣
N

-1/2
b

⌘
in the Nb ! +1 limit, in which the level becomes

the energy at which lies the well-known van Hove singularity of the square
lattice [66]. Using a rectangular set of baths, i.e. of the type Nx ⇥Ny, brings
further freedom in the possible degeneracies of the spectrum. Playing with
the numbers of sites (Nx,Ny) and their parity, one can obtain a various pat-
terns of degeneracy, including ones that are ”intermediate” with respect to
the two described above for Nx = Ny.

It is important to notice that the expression for the OC exponent (4.2.23)
does not rely on the choice of the boundary conditions. Indeed, we have al-
ready remarked that the present formalism applies for any boundary condi-
tions, with the requirement that we have to trade the transverse momentum
label for the quantum numbers that are appropriate to the noninteracting
impurity bands. However, the numerical relations between the various ex-
ponents that we presented in the previous paragraphs do depend on the
choice of the pbc, because the degeneracy factors are sensitive to the bound-
ary conditions.

We end this theoretical discussion by showing two examples of the Green’s
function equation (4.2.21) calculated numerically in figures 4.27 and 4.28.
The first pair of plots is from a row of Nb = 6 baths, while the second one is
from a square lattice of 4⇥ 4 baths. The first plot of each pair shows the full
set of distinct return probabilities |G(p, t)|2 for various transverse momenta
p?. Because of the symmetries of the spectrum in the Brillouin zone, there
are subset of momenta that give the same |G(p, t)|2. One can appreciate that
there is always the lowest-energy state p? = 0 whose Green’s function only
has a very slow power-law decay, whereas the other excited states decay

24 These states lie on the square with vertices (0, 0), (⇡, 0), (⇡,⇡) and (⇡,⇡), whose parallel edges
differ by the vectors (⇡, 0), (⇡,⇡).
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Figure 4.28: Numerical evaluation of the Green’s function for a plaquette of 4⇥ 4

identical baths, for g
2
K = 0.5v2, 2Je? = J? = 0.05Mv

2 and pk = 0.
Plot (a) shows the five possible return probabilities as functions of
the transverse momentum, while (b) displays the Green’s function for
different shells of neighbouring baths in transverse distances. The inset
in (b) magnifies the smaller components.

exponentially, the decay being faster for higher energy. The dimensional
crossover at short times is readily observable as a very steep decrease of
|G(p, t)|2 from 1, especially for p? = 0.

The second plot in each pair shows the Green’s function in transverse
direction:

GR0
?,R?(pk, t) ⌘ -i h⌦|dpkR

0
?
(t)d†

pkR?
|⌦i =

=
1

Nb

X

p?

eip?(R0
?-R?)

G(pk,p?, t) ,
(4.2.27)

where the second equality refers to the symmetric case, when the Green’s
function is diagonal in momentum. The pbc assumed for the lattice of baths
imply that GR0

?,R?(pk, t) is a function only of the distance �R? = R0
? -R?,

modulo the periodicity of the lattice. This periodic nature of the lattice plays
an important role in determining the interference patterns that shape the
Green’s function for such small ”plaquettes”. From figures 4.27b and 4.28b
we can observe that the interference strongly influences the initial behaviour
of the various components, which is complex and rather unpredictable. Af-
ter a few oscillations, the shape of the oscillations tends to settle to a more
regular one. Interference is responsible also for the fact that in both figures-
the second-largest component of the Green’s function is the one in which
|�R?| maximal, i.e. |�R?| = 3 and |�R?| = 8

1/2 in the 1+ 1D and 2+ 1D
scenarios, respectively. This effect is particularly prominent in the latter
case. Nonetheless, the off-diagonal components (i.e. the ones for �R? 6= 0)
still follow the naive expectation that their rising from zero takes longer the
larger is |�R?|.

������� �� �������� An interesting feature of the many-baths expo-
nent (4.2.23) is that it can be modified by manipulating the degeneracy of
the states. The first and most obvious way to do it is by choosing a different
lattice of baths. We have already given some examples of this possibility in
the case of a row or a square lattice of baths, but we may envisage more
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exotic situations. For instance, the Lieb [63] and kagome [93] lattices both
feature a dispersionless band, whose degeneracy scales as the number of
sites. This extensive degeneracy implies the possibility to reach a rather
large �Nb(p), which moreover would be constant as Nb grows. The exis-
tence of such finite limit for �Nb(p) suggests that the continuum limit of
the present model would feature a finite OC exponent in a bosonic system.
Of course, this argument is highly hand-waving, as lattices yielding a flat
band such as the two mentioned above are necessarily non-simple, and thus
they would need a generalisation of the formulae presented in this section.
Moreover, the presence of a dispersionless band would probably require a
method able to tackle a strong impurity-bath coupling. We are not aware of
any work dealing with the OC of impurities with flat bands.

A second way to alter the degeneracy factors is to use external fields acting
on the impurity. This has the advantage of being far more flexible than
changing the lattice, as external fields can be easily modified, even in real
time, so that the OC exponent could actually become tunable in the course
of an experiment.25 Another important advantage of external fields is that
they can be used to alter the degeneracy of the lowest band. This is relevant
for experiments, as the power-law contribution to the decay of higher-lying
bands may be difficult to observe because of the simultaneous exponential
decay (see figures 4.27a and 4.28a). On the other hand, the decay of the
Green’s function for the band of lowest energy is purely power-law (at zero
temperature, at least).

We illustrate the above ideas with the example of a row of baths in pbc,
namely Nb baths arranged at the vertices of a regular polygon of Nb sides.
Let us suppose that the impurity has a charge q and it is subjected to a
homogeneous magnetic field26 B. By the Peierls substitution [65], the effect
of this magnetic field can be well approximated by adding a phase to the
hopping parameters Je? ! Je?ei✓e? and Jk ! Jkei✓k in the terms of Hd that
connect different sites, namely

Himp(✓k, ✓?) ⌘ -Jk
X

R

⇣
ei✓kd

†
Rk+ak,R?

dRk,R? + h.c. - 2d
†
RdR

⌘
+

-
X

R

Je?

⇣
ei✓?d

†
Rk,R?+a?

dRk,R? + h.c.
⌘

.
(4.2.28)

In particular, the phases have the expressions

✓k = q

Z (Rk+ak,R?)

(Rk,R?)
dx ·A(x) , (4.2.29a)

✓? = q

Z (Rk,R?+a?)

(Rk,R?)
dx ·A(x) , (4.2.29b)

where A(x) is the vector potential in a chosen gauge, and the line integrals
run on any path that joins the two extreme points.

25 Of course, with ultracold atoms is already possible to change the OC exponent by modify-
ing the coupling constant with the aid of external magnetic fields, exploiting the Feschbach
resonances of the atomic species involved.

26 We neglect the effect of the impurity spin. We can imagine that the field is sufficiently strong
to hinder spin flips, so that the impurity spin is conserved, or that the impurity is charged,
but spinless.
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Going to the momentum basis we find that the new energy bands are
obtained from the old ones by shifting the momenta pk,? ! pk,?-✓k,?/ak,?,
i.e.

�✓k,✓?(pk,p?) = �
⇣
pk -

✓k
ak

,p? - ✓?
a?

⌘
=

= 2Jk
⇥
1- cos

�
pkak - ✓k

�⇤
- 2Je? cos(p?a? - ✓?) (4.2.30)

Let us take the simple setting in which the magnetic field points parallel
to the baths, a direction that we take to be z. In the symmetric gauge the
vector potential is A = B⇥x/2 and therefore equations (4.2.29) imply ✓k = 0.
Thus, we can focus on the effect of ✓?. A generic real value of ✓? lifts all
degeneracies of the spectrum. However, there is a subset of rational values
of ✓?/⇡ that entail a nontrivial behaviour. If the phase is an even multiple
of ⇡/Nb the spectrum is unchanged, only shifted by ✓?/a? with respect
to the transverse Brillouin zone. On the contrary, if ✓? is an odd multiple
of ⇡/Nb then the lowest-energy band is doubly degenerate. In this case,
if Nb is even all energy levels are doubly degenerate, whereas for odd Nb

the pattern of degeneracies is inverted with respect to the zero-field case,
namely the energy levels are doubly degenerate except for the highest one,
which is nondegenerate. To sum up, if we focus on the lowest level, we
see that it is nondegenerate for all values of the external field except for
✓? = (2k+ 1)⇡/Nb, k 2 Z. This means that its OC exponent can be doubled
by tuning the magnetic field such that ✓? = (2k+ 1)⇡/Nb.

����������� There are two main limitations to the possibility of observ-
ing the various behaviours of the OC discussed above.

The first one is that in all our examples,the existence and extent of the lev-
els degeneracy strongly relied on the symmetries of the lattice. For instance,
if the square lattice is deformed to a rectangular one by making the hop-
pings Je? different for the two possible directions e?, the degeneracies are
reduced to 2 or 4 (as only the inversion symmetry p? ! -p? remains), un-
less the two Js are in some special ratio. And if the lattice is not perfect, not
even this degeneracy survives in general. This is the same strong sensitivity
to the details of the lattice of baths that allowed us to tune the degeneracy
factors by means of boundary conditions and/or external fields.

A second point is that, unless one tunes the ground state degeneracy
by means of external fields, to observe the variety of OC exponents one
has to measure the power-law decay of excited states, which are, however,
prone to decoherence. In equation (4.2.21), every factor of Fsb

pkR?
(-�k?p? , t)

with �k?p? < 0 (i.e. whenever there is a decay channel with �(pk,k?) <

�(pk,p?) for the p state) increases the overall decay constant of the state
with by 2�pk(J? = -�k?p?/2). Therefore, the higher the energy of the
state, the larger its decay constant, both because the number of decay chan-
nel increases and both because 2�pk(J?) is an increasing function of J? =
-�k?p?/2. This means that excited states may become rapidly depopulated,
and their power-law decay at long times may become hard to observe. A
finite temperature of the baths would increase this decay further. However,
given the large number of possibilities on choosing the lattice and the param-
eters, we believe that it should be feasible to observe the effect of the level
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degeneracy on �Nb(p) on the lowest-lying bands in the spectrum. And, of
course, the ground state is always immune from decoherence, except from
the effect of temperature.

As a final warning, we point out that the exact scaling of the OC expo-
nent �Nb(p) with Nb may be different from N

-2
b , because the latter directly

comes from keeping only the second order in perturbation theory. Every
factor of gR? in higher-order terms would always be accompanied by a cor-
responding factor of N

-1
b . Part of these factors can probably be cancelled

by intermediate transverse momentum summations, and we do not know
if there could be terms that would turn out to have the same overall or-
der as the second in N

-1
b . Such a ”large-N” discussion is highly nontriv-

ial on the technical side, because as we have already seen the unperturbed
Hamiltonian already contains the coupling constant, while the recoil term
: P2

b : /(2M) does not, so that the actual number of gR?/Nb is difficult
to guess in advance. Moreover, embarking in such an analysis would be
probably meaningless without including also the backscattering terms in the
bosonised density equation (2.2.13). However, at present we do not have any
intuition on the influence of such terms on the OC exponent, not even at the
lowest perturbative order. The above reasoning equally applies to the exact
scaling of �Nb(p) with the degeneracy of the level. The prediction (4.2.23)
would still represent the exact leading behaviour in the large-Nb limit if ev-
ery higher-order term is proportional to powers of N-1

b higher than 2. Even
if some subset of these higher-order terms would contribute to �Nb(p) with
a factor of order O

�
N

-2
b

�
, this would still be suppressed by a power of gR?

larger than the leading one at weak coupling. This means that there is a
chance that equation (4.2.23) should be a reasonable prediction in the weak-
coupling regime. However, even if it were not valid at a quantitative level,
the overall message of this section would still be valid qualitatively: the OC
exponent depends on the number of baths and on the degeneracy of the
impurity bands, and the latter can be tuned by exploiting lattice symmetries
and external fields.





5 C O N C L U S I O N S A N D F U R T H E R
P E R S P E C T I V E S

In this thesis, we have explored various aspects of the dynamics of an im-
purity moving in more than one 1D bath. A recurring theme has been the
investigation of the orthogonality catastrophe (OC) that follows the injection
of the impurity in the system. This phenomenon has been studied by cal-
culating the Green’s function of the impurity, which also described the time
evolution and spectral features of the latter. The distinctive signature of the
OC is that the Green’s function shows a power-law tail at long times. This
function has been calculated using suitable perturbative expansions in the
impurity-bath coupling, namely the Linked Cluster Expansion (LCE) and a
time-dependent perturbation theory around a nontrivial dynamics. All of
our results are nonperturbative in the inter-bath hopping, J?.

In the two-bath scenario we have performed a detailed asymptotic expan-
sion of the LCE Green’s function at long times, which turned out to be very
accurate in comparison with its numerical evaluation. The expansion has
allowed us to obtain the renormalisation of the dispersion of the impurity
bands, as well as the exponent of the power-law decay and the lifetime of
the odd mode. One of our main results is that the OC, leading to the break-
down of the quasiparticle picture, survives the inclusion of a second 1D
bath and dominates the long-time behaviour of all the components of the
Green’s function. In particular, the exponent characterising the long-time
behaviour of the Green’s function is given by half of the average of the ex-
ponents of the individual baths and, notably, is the same for the intra-bath
Green’s functions and for that connecting the two baths, demonstrating that
the behaviour of the system at long times is dominated by the interactions
within each bath. This implies that, for this system, the motion inside each
bath and the inter-bath motion can not be decoupled.

In the case of two asymmetric baths, the Green’s function is nonuniversal,
acquiring a high-frequency component at short times and exhibiting per-
sistent oscillations at longer times. Only at asymptotically large times the
symmetric Green’s function is recovered.

In real experiments, the temperature of the baths is always finite, so we
have extended the LCE treatment to this scenario. The effect of the temper-
ature is to suppress the Green’s function, limiting the possibility to observe
its coherent oscillations and the power-law tail. At sufficiently long times,
we found analytically that this suppression is exponential in time, with a
different decay constant for the even and odd modes. For low temperatures,
the two decay constants are approximately coinciding, and are proportional
to the temperature, in accord with the literature [84]. On the other hand,
we also found that the OC exponent is not altered by the finite temperature
(within our second-order approximation, at least). We analysed the visibility
conditions of the coherent oscillations of the Green’s function, reaching the
intuitive conclusion that they can be best observed by keeping the tempera-
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ture smaller than the inter-bath hopping J?. The overall exponential decay
hides the power-law tail of the zero-temperature results. Yet, the knowledge
of the analytical behaviour of the thermal decay would allow to extract the
power-law exponent from a numerical fit of the experimental data. This fit
should yield cleaner results if the thermal decay is small, which requires
large J? and small temperature (namely, the same conditions suggested for
the coherent oscillations).

Using a perturbation theory in the inter-band part of the interaction we
have been able to reproduce the LCE Green’s function and the OC with a
method which also allows us to access the evolution of the whole impurity-
bath system. The advantage of this approach is that it provides an analytic
expression for the time evolution of the state of the whole impurity-baths
system. This has allowed us to compute the time evolution of observables
beyond the impurity Green’s function, including the often-neglected proper-
ties of the baths. Moreover, the numerical effort required by the approach
is sufficiently low so that we have been able to treat the case in which the
impurity is initialised in a wave packet of an (almost) arbitrary shape. A
limit of the technique is that it cannot be extended to arbitrary large times,
because the norm of the state decays from one on the time scale of the odd
mode decay time, (2�(p))-1.

On the impurity side, we have analysed the time evolution of its popula-
tion within each bath, observing how the persistent oscillations of the free
impurity are damped and slowed down by the interaction with the baths.
This (expected) phenomenon hints at the eventual thermalisation of the bath
degree of freedom. On the contrary, the impurity momentum does not ap-
pear to converge to zero: within the time scale of validity of the approxima-
tion, it actually shows a tendency to converge to a constant value. Indeed, at
zero temperature there is no friction in a conventional sense in our system.
We have observed that momentum is transferred to the baths in two steps: a
short transient, connected to the bath relaxation and independent of J?, and
a much slower decay caused by the emission of phonons during the deexci-
tation of the odd mode. Finally, we have also examined the time evolution of
the probability density of finding the impurity in a given position and bath,
for various Gaussian wave packets.

We have studied the time evolution of observables describing the dynam-
ics of the baths, which are rarely discussed in the literature on mobile impu-
rities, but are nonetheless accessible to experiments. We have looked at the
number of excited phonons, which shows a slow logarithmic divergence in
time, related to the OC, superimposed with the faster growth caused by the
emission of phonons from the odd mode decay.

The most interesting results have been obtained for the time evolution of
the expectation values and correlation functions of the particle and momen-
tum (current) densities of the baths. The particle density shows a semiclas-
sical behaviour, intuitively similar to that of a pond in which a stone has
been thrown. After the impurity has been injected into one of the baths, a
localised density depletion forms and follows its motion (with a certain time
lag depending on J?). At the same time, two wave fronts are generated and
propagate away (as the ”rings” on the water surface in the pond analogy).
Moreover, each time the impurity oscillates between the baths, a new pair of
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ripples is emitted. Varying the width of the initial Gaussian wave packet of
the impurity and its inter-bath hopping amplitude J?, we have found that
the wave fronts and the trough are approximate images of the wave packet it-
self, and that the emission of ripples can be suppressed by employing wider
wave packets. We have also found that the bath momentum density displays
a behaviour analogous to that of the density. When the initial impurity wave
packet has a markedly non-Gaussian shape, we find complex interference
phenomena, both in the ripples and within the central trough.

The inter-bath, equal-times connected density and momentum density
correlations revealed a rich structure in real space. The correlation is non-
vanishing only in an area in (x,y) space, which expands ballistically. Two
features can be distinguished, a pair of lobes and a series of ripples be-
tween them. Along the relative direction, r = x- y, the correlation function
mainly shows the ”relativistic” dynamics of the bath, with a clear light-cone
as the phonons generated by the impurity spread the correlations. Along
the centre-of-mass direction R = (x+ y)/2, instead, besides the light-cone of
emitted phonons there is a part of the correlations that follows the impurity
wave packet in its motion.

Lastly, we have made the first steps towards a many-baths system, in
which the impurity moves in a 1D or 2D lattice of 1D baths. We have ob-
tained the time evolution of the state of the system with the perturbative
technique developed before. The impurity Green’s function has revealed
qualitative differences from the two-baths setup. First of all, the Green’s
function shows a complex short-time behaviour, caused by interference ef-
fects between the various paths of propagation within the lattice of baths.
More importantly, we have found that each band of the noninteracting im-
purity is characterised by its own OC exponent, which is proportional to the
degeneracy of the band. We have then speculated that it may be possible to
tune the OC exponent either by properly designing the lattice of baths, or
by changing the degeneracies by means of external magnetic fields. We also
shown that for generic lattices of baths, the OC exponents vanish in the limit
of an infinite number of lattice sites.

Finally, we discuss some perspectives for future extensions of this work.
The first aspect that requires further investigations is the effect of backscat-
tering terms of the impurity-bath coupling (i.e. the higher harmonics of the
bosonised density (2.2.13), that we have neglected at small momentum) on
the system dynamics. These terms would allow us to treat higher impurity
momenta, a regime in which qualitatively new features, such as pseudo-
Bloch oscillations, are expected [70, 82]. The perturbative technique that we
developed can be extended to include these interaction terms. Backscatter-
ing can be introduced within the LCE straightforwardly, albeit likely at the
expense of the analytical tractability of the resulting integrals. We are not
aware of works in which the latter calculation has been performed, in any
impurity model.

The weakest spot of the perturbative approach is the loss of normalisation.
This limitation should be cured by adding successive orders in perturbation
theory. However, this would yield excessively cumbersome terms that would
cause the method to loose its analytic attractiveness. A possible way to get
over the limitations of the perturbative approach (and, possibly, to reach a
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stronger coupling regime) is to promote the perturbative solution (4.1.40) to
a variational Ansatz, in which the amplitude of the various terms and the
coefficients of the coherent background state |!p(t)i are the variational pa-
rameters. This Ansatz would be strongly reminiscent of a popular Ansatz for
higher-dimensional Fermi polarons, in which the impurity state is expanded
in terms with an increasing number of particle-hole pairs excited from the
Fermi sphere [20, 67].

A line of research which we deem promising is based on the Generalised
Fulton-Gouterman (GFG) transformation, that we introduced in appendix B.
Besides the advantage of treating the impurity-baths entanglement exactly,
it may help to provide some nonperturbative statements on the system prop-
erties, both dynamic and thermodynamic. The approaches based on the
mean-field Ansätze introduced in appendix B are already under develop-
ment. Moreover, the GFG transformation can be easily adapted to incorpo-
rate the backscattering terms, and it does not even require the bosonisation
of the baths—indeed, it is based on a symmetry that is agnostic on how the
degrees of freedom of the theory are represented. With these extensions,
we may envisage a path to the strong-coupling regime of the model (which
necessarily has to include backscattering).

The regime of strong impurity-baths interaction is an obvious direction
that is worth investigating. In this regime, already the ground-state proper-
ties can be challenging to determine. Indeed, the most important question
for the physics of strong-coupling polarons is the existence of a localisation
transition, namely if the tendency to decrease the energy of the system by
creating a depletion of the bath density surrounding the impurity (acting as
a potential well on it) can actually lead to a spontaneous breaking of trans-
lational symmetry and endow the impurity with a finite position variance.
In our model we have two different possible motions, transverse and longi-
tudinal, that can become localised in principle, thus we could ask ourselves
if one of the two could localise before the other. It is difficult to determine
the occurrence of a localisation transition, as commonly used variational
methods may yield misleading results [19, 89]. For the bath degree of free-
dom, the related spin-boson model is predicted to feature localised phases
for ohmic baths [61]. On the other hand, to the best of our knowledge
there are no definitive proofs of localisation for impurities interacting with
acoustic phonons [25, 30, 90]. These arguments imply that the problem of
strong-coupling localisation will have to be tackled with proper theoretical
techniques.

Finally, we find the many-baths scenario of section 4.2 particularly fasci-
nating, and deserving a deeper analysis. A first motivation is that this setup
is already within the reach of present experiments—indeed, they are per-
formed on lattices of 1D subsystems, as we have described in section 2.1.
From a more theoretical point of view, already the calculation of the Green’s
function has shown that the OC in this system has nontrivial features that
cannot be found in other popular impurity models. We find especially in-
triguing the possibility to tune the OC exponents by altering the degenera-
cies of the impurity spectrum. Beyond the phenomenon of the OC, it seems
promising to study the dynamics of the various observables that characterise
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the system. The perturbative solution that we found can be used for this pur-
pose, and hopefully it will help to unveil some new and interesting physics.





A B AT H D E N S I T Y E V O L U T I O N
F R O M L I N E A R R E S P O N S E

In this appendix, we use equation (4.1.88) of section 4.1.4 to obtain a quali-
tative and quantitative understanding of the observed behaviour of the time
evolution of the bath density profiles.

We repeat here the equation, for clarity:

h⇢�(x)it =
g�K�
2⇡

Zt

0
dt0
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D
d
†
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0)d�(x
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�
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In figures A.1 we show the integrand of equation (4.1.88), using a numer-
ical lattice derivative of the interacting impurity density we computed in
4.1.3 for g

2
K = 0.5v2, in the " bath and for two different values of the inter-

bath hopping. The wave packets are composed of Np = 32 momenta, and
are initially Gaussian with standard deviation �p = 0.02Mv in momentum,
which translates to a spatial width of �x = 1/(2�p) = 25(Mv)-1. In the
notation of equation (4.1.88), the time t at which we want to calculate the
bath density is fixed in each plot (and coincides with the maximum time
shown), while the horizontal and vertical axes of the figures run along the
desired position x and the integration time t

0, respectively. Therefore, the
bath density at a given position is obtained by integration along a verti-
cal line, as the red dotted-dashed lines shown as examples. To highlight
the periodicity of the oscillations, we measure time in the renormalised
period of density oscillations, T̃p0 ⌘ ⇡/J̃?,p0

. As the impurity density is
essentially a Gaussian, its derivative has both a positive and a negative
part, depicted in warm and cold colours, respectively, and this two-lobe
structure is repeated along the lines t

0 = t + (x - x0 - p0t/M)/v-� and
t
0 = t+(x- x0 -p0t/M)/v+�, as dictated by the causality structure of equa-

tion (4.1.88) (we are ignoring the small slowdown of the impurity momen-
tum) and by the periodic oscillations from one bath to the other. Recall that
v±� ⌘ v� ± p0/M. The four tilted lines show the approximate locus of the
maxima and minima: t0 = t+ (x- x0 - p0t/M± �x)/v-� for the black lines
and t

0 = t- (x- x0 - p0t/M± �x)/v-� for the white ones. Notice that we
are neglecting the increase in width of the wave packet during its dynamics.
It can be seen in the figures that it does not seem to play a relevant role, so
we take �x to be the initial standard deviation.

If we compare the bath densities in figures 4.16, we see that figure A.1a cor-
responds to a situation in which there are no ripples, while figure A.1b gives
rise to ripples. Now it is easy to understand how this situation emerges from
equation (4.1.88). Let us take the position corresponding to the red line in
figure A.1a. We see that during the time integration we encounter a positive
contribution and part of two negative lobes belonging to the previous two
impurity oscillations. The results will thus be close to zero. On the other

119



120 ���� ������� ��������� ���� ������ ��������

300 400 500 600 700

1/4·T

p0

3/4·T

p0

5/4·T

p0

7/4·T

p0

9/4·T

p0

11/4·T

p0

13/4·T

p0

Mv x

M
v2
t'

(a) J? = 0.1Mv
2

0 200 400 600 800

1/4·T

p0

3/4·T

p0

5/4·T

p0

7/4·T

p0

9/4·T

p0

11/4·T

p0

13/4·T

p0

Mv x

M
v2
t'

(b) J? = 0.03Mv
2

Figure A.1: Contour plot of the integrand of equation (4.1.88), computed with the
impurity density obtained numerically. Warm colours correspond to
positive values, while cold colours indicate negative values. The cou-
pling is g

2
K = 0.5v2 (symmetric baths), with a Gaussian wave packet

composed of Np = 32 momenta with standard deviation �p = 0.02Mv.
Time is measured in units of the interacting density oscillation period
T̃p0 = ⇡/J̃?,p0

(the absolute timescales of the two plots are therefore
different). For the meaning of the various lines, see the text.

hand, the integration path in figure A.1b only encounters a positive lobe,
and therefore it will give rise to the positive part of a ripple. If we change
position, the same situation occurs: for J? = 0.1Mv

2, any vertical line will
always cross regions of both signs, with the result that it will always close to
zero, while for J? = 0.03Mv

2 it will alternatively cross positive and negative
regions, resulting in oscillations of the density, i.e. the ripples. Thus, we
see that the ripples emerge from an interference effect between subsequent
oscillations of the impurity. The extent of this interference is regulated the
interplay between the periodic impurity oscillations, the sound speed and
the width of the wave packet. We can make a quantitative estimate of the
parameters needed for a destructive interference: it happens whenever the
oscillation period is such that the position of a positive lobe overlaps with
the position of the negative lobe of the previous oscillation. With the help of
figures A.1, this translates to

v±�T̃p0 . 2�x , (A.0.1)

which directly leads to equations (4.1.89) and (4.1.90) in the main text.
The only regions that are exempted from this interference mechanism are

the farthest positions reachable by causality, |x- x0| ⇡ vt, and the ones
around the centre x ⇡ x0+p0t/M, which are easily identified with the wave
fronts and the central dip of the bath density, respectively. Indeed, from
figures A.1 we can see that for |x- x0| ⇡ v�t the time integral intersects
only positive lobes, while around x = x0 + p0t/M there is a region with
only negative contributions. Therefore, we obtain the features we observed
in section 4.1.4, namely that the wave fronts are always positive, while the
trough is always negative. These arguments also show that the wave-fronts
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Figure A.2: Same as figure A.1a (i.e for J? = 0.1Mv
2), but for the bath momentum

density.

are images of the impurity density at the initial time, whereas the trough is
sensitive only to the density in the near past. In the main text, we claimed
that the wave fronts and the central dip were images of the impurity density.
This would be exactly true if the density evolution were given simply by a
translation:

D
d
†
�(x0)d�(x0)

E

t0
= N0(x- x0 - p0t

0
/M), where N0(x- x0) is

the initial profile shape:

h⇢�(x, t)it =
g�K�
2⇡

h
1

v+�
N0(x- x0 + vt)+

-
⇣

1
v+�

- 1
v-�

⌘
N0(x- x0 + p0t/M) + 1

v-�
N0(x- x0 - vt)

i
.

We can easily recognise the first and the last terms as the two counter-
propagating wave fronts, which are translated images of the wave packet,
and a negative trough that follows the impurity. We also see that the heights
of the wave fronts are different from each other, with the backward being
shorter than the forward one, the difference being larger the faster is the
impurity. The equation above is valid only in a highly idealised situation, in
which there is only one bath (J? = 0) and the wave packet does not spread.
In our situation, both hypotheses are false, but we can guess that the most
relevant phenomena are caused by the retardation effects given by the den-
sity oscillations1. For instance, the ratio of the wave fronts heights of the
bath density we computed numerically tends to v+�/v-� at long times.

As a final remark, we point out that the same arguments given above
can be repeated for the bath momentum density, as the momentum-density
response function equation (4.1.92) has the same structure as the density-
density one. In particular, we would obtain the analogous of equation (4.1.88),
but with the two translated density gradients added to each other instead of
being subtracted. We would then obtain an integrand depicted in figure A.2,

1 Indeed, it is possible to obtain an analytic expression of the bath density if we takeD
d
†
�(x

0)d�(x0)
E

t0
= N0(x - x0 - p0t

0
/M)(cos J?t

0)2, that is, if we again discard the wave
packet spreading. In the solution, we can still recognise the presence of the wave fronts and
the trough.
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which clearly shows the characteristic feature of the bath momentum den-
sity that we observed in the main text, namely that the fluctuations emitted
forward and backward are approximately inverted images of each other, in-
stead of being approximately mirror images as in the case of the density.



B M O R E U N I TA R Y
T R A N S F O R M AT I O N S

In this appendix, we present a unitary transformation that diagonalises
the impurity’s bath degree of freedom. We also sketch two mean-field ap-
proaches that rely on this transformation for approximating its ground-state
and dynamical properties. The exposition will have a preliminary character,
because this line of research is still ongoing. We choose to include this topic
because of the conceptual relevance of the transformation.

�.� ��� ����������� ������-��������� ��������-
������

When the baths are identical, it is possible to find a basis in which the impu-
rity is completely decoupled from the baths. In fact, in this case the system
enjoys an additional symmetry, namely the invariance under exchange of
the baths, and this corresponds to a extra conserved quantity. We start from
equation (4.1.4), that we report here for clarity:

HLLP(p) =
(p-Pb)

2

2M - J?�1 +
X

q 6=0,µ

v|q|b†
qµbqµ+

+
X

q6=0

Wq

(2L)1/2
(b†

qe + bqe) + �3
X

q6=0

Wq

(2L)1/2
(b†

qo + bqo) . (B.1.1)

We rewrite the above Hamiltonian as a matrix in the bath index pseudo-spin
space:

HLLP(p) =

✓
Hb(p) + V -J?

-J? Hb(p)- V

◆
, (B.1.2)

where

Hb(p) ⌘ (p-Pb)
2

2M +
X

q 6=0,µ

v|q|b†
qµbqµ +

X

q 6=0

Wqp
2L

(b†
qe + bqe) ,

V ⌘
X

q6=0

Wqp
2L

(b†
qo + bqo) .

Now we apply the unitary transformation1 [78, 89]

UGFG ⌘ 1p
2

✓
1 1

R -R

◆
= 1-R

2
1+i�2p

2
+ 1+R

2
�1+�3p

2
. (B.1.3)

Following [78], we will refer to this as the Generalised Fulton-Gouterman
(GFG) transformation. In the equation above,

R ⌘ ei⇡
P

q 6=0 b
†
qobqo = (-1)No = R

-1 = R
† (B.1.4)

1 Although the original Fulton-Gouterman transformation [27] dates back to 1961, and was
later generalised [78], it has been recently re-discovered in [5] and [6] as a useful tool to treat
impurity problems.
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counts the parity of the number No ⌘
P

q 6=0 b
†
qobqo of odd phonons, and

acts by changing the sign of bqo: R
†
bqoR = -bqo. Hence, R

†
VR = -V ,

while Hb remains unchanged. The remarkable result is that the spin is
diagonalised:

HGFG(p) ⌘ U
†
GFGHLLP(p)UGFG = Hb + V - J?R�3 =

= (p-Pe-Po)2

2M +
X

q 6=0,µ

⇥
v|q|b†

qµbqµ +
Wqp
2L

(b†
qµ + bqµ)

⇤
+

- �3J?ei⇡
P

q6=0 b
†
qobqo =

= p2

2M + PePo
M +

X

µ

:P2
µ:

2M+

+
X

q 6=0,µ

⇥
⌦q(p)b

†
qµbqµ +

Wqp
2L

(b†
qµ + bqµ)

⇤
- �3J?ei⇡

P
q 6=0 b

†
qobqo .

(B.1.5)
Therefore, the dynamics in the GFG frame decomposes into independent
spin components: if | LLP(0)i =

P
pµ cpµ |pµi |!i, then

| GFG(t)i ⌘ U
†
GFGe-iHLLPt | LLP(0)i =

X

p�

cp,µ=� |p�id |'p�(t)ib ,

(B.1.6a)

where

|'p�(t)i ⌘ e-iH�
GFG(p)t |!i , (B.1.6b)

i
d
dt

|'p�(t)i = H�
GFG(p) |'�(t)i ⌘ (Hb(p) + V - �J?R) |'p�(t)i . (B.1.6c)

The notation cp,µ=� means cpe if � =", and cpo if � =#. From the solutions
above, we can go back to the LLP basis

| LLP(t)i = UGFG | GFG(t)i =

= 1p
2

X

p


|p "i

�
cpe

��'p"(t)
↵
+ cpo

��'p#(t)
↵�

+

+ |p #iR
�
cpe

��'p"(t)
↵
- cpo

��'p#(t)
↵� �

=

=
X

p


|pei

�
cpe

1+R
2

��'p"(t)
↵
+ cpo

1-R
2

��'p#(t)
↵�

+

+ |poi
�
cpe

1-R
2

��'p"(t)
↵
+ cpo

1+R
2

��'p#(t)
↵� �

. (B.1.7)

Notice that Q± ⌘ (1 ± R)/2 are two orthogonal projectors: Q+ +Q- = 1,
Q

2
± = Q±, Q+Q- = 0. In particular, if | (0)i = |pei |!i (|poi |!i), the time-

evolved state is | LLP(t)i = |peiQ+

��'p"(t)
↵
+ |poiQ-

��'p#(t)
↵

(| LLP(t)i =
|peiQ-

��'p"(t)
↵
+ |poiQ+

��'p#(t)
↵
). By taking the projection of the latter

with the states |pµi |!i, and using Q+ |!i = |!i, Q- |!i = 0, we find the
Green’s functions:

Gee(p, t) = -i✓(t)
⌦
!
��'p"(t)

↵
, (B.1.8a)

Goo(p, t) = -i✓(t)
⌦
!
��'p#(t)

↵
, (B.1.8b)

Gµ̄µ(p, t) = 0 . (B.1.8c)
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When translating these relations to the bath index basis, we find that

G�0�(p, t) = 1
2(Gee(p, t) + �0�Goo(p, t)) .

Thus, we have proven that the off-diagonal components of G�0�(p, t) are
exactly equal, confirming that what we had observed in chapter 3 in the
LCE approximation is actually true to all orders in perturbation theory.

The advantage of having found a basis where baths and impurity are
decoupled is that we can focus on finding good approximations for the baths
state, while the entanglement with the impurity—which is often hard to
take care of—is perfectly accounted for by the combination of LLP and GFG
transformations. For this reason, in the following paragraphs we describe
how we could use a minimalist mean-field theory for describing the both
the static and dynamical properties of the system

�.� ����-����� ������ ��� ��� ������ �����

As simple application of the GFG transformation we can try to find the
ground state of the system, and its properties. In the GFG basis we have a
family of Hamiltonians H�

GFG(p), so we should find for which momentum
p and spin � the ground-state energy has its minimum.

In a given (p,�) sector, we seek a variational approximation to the ground
state in the form of a coherent state2,

|'p�i = |coh[fqµ]i , (B.2.1)

where the complex coefficients3
fqµ have to be found minimising the energy

E[fqµ, f⇤qµ] ⌘ hcoh[fqµ]|H�
GFG(p)|coh[fqµ]i = p2

2M +
X

q6=0,µ

⌦q(p)|fqµ|
2+

+
X

q 6=0,µ

Wq

(2L)1/2
(fqµ + f

⇤
qµ) +

1
2M

⇥ X

q 6=0,µ

q|fqµ|
2⇤2 - �J?e-2

P
q6=0 |fqo|

2

.

(B.2.2)

This minimisation yields

fqµ = -
Wq

(2L)1/2(⌦q(p- Pb) + 2�µ,o�J?e-2No)
. (B.2.3)

where we defined the total bath momentum Pb and the number of odd
phonons No

Pb ⌘
X

q 6=0,µ

q|fqµ|
2 , (B.2.4a)

No ⌘
X

q 6=0

|fqo|
2 . (B.2.4b)

2 Similar Ansätze have been already used in related models of mobile impurities [87].
3 There is a different set of these coefficients for each �, but we omit the bath index for brevity.
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It is easy to see that equation (B.2.3) coincides with the static saddle-point
condition for the action S when calculating the finite-temperature partition
function as a coherent state path integral [1]

Zp� =

Z
D(b̄qµ(⌧)bqµ(⌧))e-S[b̄qµ(⌧),bqµ(⌧)] . (B.2.5)

This equivalence occurs because the variational energy (B.2.2) is proportional
to the action evaluated on a constant trajectory bqµ(⌧) = fqµ.

We observe from equation (B.2.3) that in our mean-field Ansatz, the cor-
relations between the phonon modes are included via Pb and No. The for-
mer acts by renormalising the impurity momentum in ⌦q(p - Pb), while
the second one describes the reduction of the inter-bath hopping amplitude
J? ! J?e-2No . As our Ansatz does not contain any true correlation between
the phonon states, we expect that it will provide a reasonable approximation
to the ground state of the system only for small couplings.

The formal solution equation (B.2.3) depends on two unknown parameters
No and Pb, that have to be found by requiring self-consistency:

Pb =
X

q 6=0

q
W2

q

2L

h
1

(⌦q(p-Pb))2
+ 1

(⌦q(p-Pb)+�2J?e-2No)2

i
, (B.2.6a)

No =
X

q 6=0

W2
q

2L
1⇥

⌦q(p-Pb)+�2J?e-2No
⇤2 . (B.2.6b)

It is possible to go to the thermodynamic limit by introducing the usual
densities of states

R(";p) ⌘ 1
L

X

q 6=0

W
2
q�("-⌦q(p)) , (B.2.7a)

R1(";p) ⌘ 1
L

X

q 6=0

qW
2
q�("-⌦q(p)) (B.2.7b)

to write

Pb =

Z+1

0
d"R1(";p- Pb)

h
1
"2 +

1
("+�2J?e-2No)2

i
, (B.2.8a)

No =

Z+1

0
d"R(";p- Pb)

1
("+�2J?e-2No)2

. (B.2.8b)

We already encountered the first density of states R(",p- Pb) in chapter 3,
while found the second in 4.1.3. We recall here its expression:

R1(";p) = M2g̃2

(2⇡)2
✓(")e-"/⇤⇥

⇥
X

s=±1

⇥
- s
�
v+ s

p
M

�⇤�
1+ "

ks(p)

�1/2
- 2+

�
1+ "

ks(p)

�-1/2
�

, (B.2.9)

where ks(p) ⌘ (Mv+ sp)2/(2M). It is of order O
�
"
2
�

for " ! 0. Of course,
we have to distinguish the � ="= 1 from the � =#= -1 case in equa-
tions (B.2.8). While the former scenario does not pose any difficulty, we
see that in the latter the equation for No involves a divergent integral for
any No > 0. This implies that N#

o must be infinite, because in this case

N
#
o =

Z+1

0
d"R(";p- P

#
b)

1
"2 ⇠

Z+1

0
d" "e-"/⇤

"2 = +1 (B.2.10)
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and so the self-consistency is guaranteed. In particular, if we approximate
the finite-size situation by introducing an infrared cutoff "min = 2⇡v/L for
the integral, we obtain that N#

o ⇠ lnL, which shows that this divergence is
an instance of the OC. Therefore, in the � =# case, the saddle-point solution
depends on one parameter only, P#

b, which is determined by the equation

P
#
b =

Z+1

0
d"R1(";p- P

#
b)

2
"2 . (B.2.11)

It is possible to find explicit expressions for the integrals in equations (B.2.8).
Using

Z+1

0
d" 1

("+�)2
1

(1+"/k)1/2
= k

�(k-�)


1- �

k
arccosh(k/�)1/2

(1-�/k)1/2

�
, (B.2.12a)

Z+1

0
d" 1

("+�)2

�
1+ "

k

�1/2
= 1

� - �
k

arccosh(k/�)1/2

k(1-�/k)1/2
, (B.2.12b)

we obtain

Pb = M2g̃2

2(2⇡)2

X

s=±1

-s(v+s(p-Pb)/M)
ks(p-Pb)

fP

� 2J?e-2No

ks(p-Pb)

�
, (B.2.13a)

No = Mg̃2

2(2⇡)2

X

s=±1

1
ks(p-Pb)

fN

� 2J?e-2No

ks(p-Pb)

�
, (B.2.13b)

where

fP(x) ⌘ 1+ 1
1-x

⇥
1- x

arccosh(x-1/2)
(1-x)1/2

⇤
, (B.2.14a)

fN(x) ⌘ 1
1-x

⇥ arccosh(x-1/2)
(1-x)1/2

- 1
⇤

(B.2.14b)

with the usual understanding that arccosh(x) = i arccos(x) when |x| < 1.
The above functions (B.2.14) are both monotonically decreasing in x, but
they have different limiting behaviours:

lim
x!0

fP(x) = fP(0) = 2, lim
x!0

fN(x) = +1 , (B.2.15a)

lim
x!+1

fP(x) = 1, lim
x!+1

fN(x) = 0 , (B.2.15b)

The variational estimate of the energy can be written in function of the two
parameters No, Pb:

E
�
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p2

2M +
X

q 6=0,µ

Wq

(2L)1/2
f
�
qµ -

(P�
b)

2

2M - �J?(2N
�
o + 1)e-2N�

o , (B.2.16)
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where
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(B.2.17)

where we recall that � is Euler-Mascheroni constant and E1(x) is the expo-
nential integral function [23]. We notice that, unlike Pb and No, the contri-
bution equation (B.2.17) to the variational energy depends explicitly on the
UV cutoff ⇤ for the baths.

�.� ����-����� ������ ��� ��� ���� ���������

We can extend the coherent state Ansatz to approximate the dynamics:

|'p�(t)i = e-i⇣p�(t) |coh[fqµ(t)]i , (B.3.1)

with the initial conditions ⇣p�(0) = 0, fqµ(0) = 0 when the initial state is
the boson vacuum. The best approximation of the state evolution on the
manifold defined by the equation above can be found by looking for the
extremum of the functional [58]

L[⇣p�(t), fqµ(t), f⇤qµ(t)] = i
2

✓⌧
'p�(t)

����
d
dt
'p�(t)

�
+

-

⌧
d
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����'p�(t)

�◆
- h'p�(t)|H

�
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=
d
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X
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✓
f
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d
dt

fqµ -
d
dt

f
⇤
qµfqµ

◆
- E[fqµ, f⇤qµ] , (B.3.2)

where E[fqµ, f⇤qµ] is the same energy functional (B.2.2). The equation of
motion for fqµ(t) is

i
d
dt

fqµ(t) =
h
⌦q(p- Pb(t)) + 2�µ,o�J?e-2No(t)

i
fqµ(t)-

Wq

(2L)1/2
, (B.3.3)

where Pb(t) and No(t) are defined by equations (B.2.4), as functions of the
time-dependent variational parameters fq�(t). The phase ⇣p�(t) enters in
the above Lagrangian function through a total time derivative, so it cannot
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be fixed by the equations of motion. A possible choice to determine it is to
require that h'p�(t)|i d

dt -H�
GFG(p)|'p�(t)i = 0, which yields

d
dt
⇣p�(t) = E[fqµ, f⇤qµ]- i

2

X

q6=0,µ

✓
f
⇤
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d
dt

fqµ -
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f
⇤
qµfqµ

◆
. (B.3.4)

Equation (B.3.3) is similar to the one for the ground state, equation (B.2.3),
and just like the latter it can be formally solved in terms of the unknown
functions No(t) and Pb(t):

fqµ(t) = fqµ(0)ei
Rt
0dt0[⌦q(p-Pb(t

0))+2�µ,o�J?e-2No(t0)]+
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0
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Setting fqµ(0) = 0, we can write down two self-consistency equations

Pb(t) =
X

q 6=0,µ

q
W2

q

2L

����
Zt

0
dt0 e-i

Rt
t0dt1[⌦q(p-Pb(t1))+2�µ,o�J?e-2No(t1)]

����
2

=

= 1
2

X

µ

Zt

0
dt1

Zt

0
dt2

Z
d"R1

✓
";p- 1

t1-t2

Zt1

t2

dt0 Pb(t0)
◆
⇥

⇥ ei"(t1-t2)+2i�J?�µ,o
Rt1
t2

dt0e-2No(t0)
, (B.3.6a)
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. (B.3.6b)

The second form of these equations could be useful to access the continuum
limit in their numerical solution. Otherwise, we should simply integrate the
equations of motion (B.3.3) numerically.

From equations (B.1.8), we can find the Green’s functions

Gee(p, t) = -i✓(t)e-i⇣p"(t)-
1
2
P

µ N"
µ(t) , (B.3.7a)

Goo(p, t) = -i✓(t)e-i⇣p#(t)-
1
2
P

µ N#
µ(t) (B.3.7b)

Notice the similarity with equation (2.3.17) for the static impurity. This anal-
ogy ultimately comes from the fact that in both cases the bath is in a coherent
state.
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[85] Ulrich Schollwöck. “The density-matrix renormalization group in the
age of matrix product states”. In: Annals of Physics 326.1 (2011). January
2011 Special Issue, pp. 96–192. issn: 0003-4916. doi: https://doi.org/
10.1016/j.aop.2010.09.012.

https://doi.org/10.1103/PhysRevLett.68.3638
https://doi.org/https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevLett.103.150601
https://doi.org/10.1103/PhysRevLett.103.150601
https://doi.org/10.1103/PhysRevA.95.023619
https://doi.org/10.1103/PhysRevA.95.023619
https://doi.org/10.1017/CBO9780511802850
https://doi.org/10.1017/CBO9780511802850
https://doi.org/10.1088/0305-4470/30/8/025
https://doi.org/https://doi.org/10.1080/000187399243446
https://doi.org/https://doi.org/10.1080/000187399243446
https://doi.org/10.1103/PhysRevLett.75.1988
https://arxiv.org/abs/2204.06984
https://doi.org/https://doi.org/10.1016/j.aop.2011.10.001
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012


������������ 137

[86] K. D. Schotte and U. Schotte. “Tomonaga’s Model and the Threshold
Singularity of X-Ray Spectra of Metals”. In: Phys. Rev. 182 (2 June 1969),
pp. 479–482. doi: 10.1103/PhysRev.182.479.

[87] Aditya Shashi et al. “Radio-frequency spectroscopy of polarons in ul-
tracold Bose gases”. In: Phys. Rev. A 89 (5 May 2014), p. 053617. doi:
10.1103/PhysRevA.89.053617.

[88] Yulia E. Shchadilova et al. “Quantum Dynamics of Ultracold Bose Po-
larons”. In: Phys. Rev. Lett. 117 (11 Sept. 2016), p. 113002. doi: 10.1103/
PhysRevLett.117.113002.

[89] Herbert B. Shore and Leonard M. Sander. “Ground State of the Exciton-
Phonon System”. In: Phys. Rev. B 7 (10 May 1973), pp. 4537–4546. doi:
10.1103/PhysRevB.7.4537.

[90] H Spohn. “Roughening and pinning transitions for the polaron”. In:
Journal of Physics A: Mathematical and General 19.4 (Mar. 1986), pp. 533–
545. doi: 10.1088/0305-4470/19/4/014.

[91] Martino Stefanini, Massimo Capone, and Alessandro Silva. A full view
on the dynamics of an impurity coupled to two one-dimensional fermionic
baths. 2022. arXiv: 2206.13478.

[92] Martino Stefanini, Massimo Capone, and Alessandro Silva. “Motion
of an impurity in a two-leg ladder”. In: Phys. Rev. B 103 (9 Mar. 2021),
p. 094310. doi: 10.1103/PhysRevB.103.094310.
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