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SUMMARY 

While the effect of genetic variants on phenotypes has been widely investigated and led to several 

groundbreaking findings in the field of human, animal, and plant genetics, our understanding of the effects 

of such variants on gene expression is still relatively limited.  

In this study, we present a whole genome analysis of regulatory variation in grapevine, analyzing gene 

expression of three tissues, namely leaves, hard, and soft berries in 98 cultivars of Vitis vinifera, selected to 

represent the diversity of the spp. sativa.    

We performed an expression Quantitative Trait Loci (eQTL) analysis, finding that genomic variants explain 

the variation of the expression of thousands of genes in each tissue (eGenes). Both cis- and trans-eQTL were 

mapped, highlighting the effect of different variants, acting on near genes or distally, through diffusible 

factors. We then characterized the eGenes, finding that they show higher variability and lower selective 

constraints on their coding regions than non-eGenes. Subsequently, we performed an allele-specific 

expression (ASE) analysis on the same samples to identify differences in expression between the two alleles 

of each polymorphic gene. This corresponds to indirectly testing the cis-acting effect of genomic variants on 

the regulation of gene expression. Our results showed that cis-acting variants have largely tissue-dependent 

effects and that a single gene can show differences in cis-regulation between tissues. Moreover, we found 

that the genes in berries tissues showed overall higher levels of ASE than in leaves. eQTL mapping and ASE 

analysis represent two independent experiments, both studying the same problem from different 

perspectives, and they produced overall consistent results. In fact, according to our findings, the eGenes have 

a higher probability to show ASE. Both eGenes and genes with noticeable ASE patterns, show fewer selection 

constraints. 

Finally, we inferred for every gene its allelic variants at the DNA sequence level in the available cultivars of V. 

vinifera spp. sativa, and combined this information with the ASE analysis to elaborate a model capable of 

measuring the net contribution of every allele to the expression of the gene. This enabled the simultaneous 

comparison of all the possible allelic variants of a gene and a deeper comprehension of their expression 

patterns within the V. vinifera group, highlighting the very frequent occurrence of multiple cis-regulatory 

alleles with very different effects on gene expression.  

This project gave us a first perspective of how genomic variants influence gene expression in V. vinifera and 

created a database of information, gathering for every gene a set of information about the trans- and cis-

acting variants that influence its expression as well as the number, sequences, and level of expression of its 

alleles. 
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1. INTRODUCTION 

1.1. The role of non-coding DNA 

Since the discovery that the majority of eukaryotic genomes is made of non-coding DNA (Ohno, 1972), 

scientists struggled to define its role and evolutionary origin. In the beginning, it was thought to be useless 

and famously named “junk DNA”. Most of the researchers investigating genome function focused on the 

study of the genes, but soon some studies aimed to investigate the function of non-coding DNA were 

undertaken (Zuckerandl, 1992; Nowak, 1994).   

Non-coding DNA plays a major role in gene expression regulation and understanding how this happens is 

pivotal to comprehending the structure and organization of the genomes. Great progress has been made in 

classifying regulatory sequences and understanding their functions, especially in the human genome, with 

the contribution of projects such as the Encyclopedia of DNA Elements (The ENCODE Project Consortium, 

2020) and the Genotype-Tissue Expression Project (GTEx consortium, 2020). Regulatory elements can be 

divided into two categories, based on their action mechanism: cis-regulatory DNA elements and sequences 

that encode for diffusible factors carrying out their regulatory effect in trans.  Regulatory elements acting in 

cis can be sequences adjacent to the target genes (promoter elements, typically found from 1000 bp 

upstream to 200 bp downstream the TSS of the gene), or DNA elements located far from the gene, upstream 

or downstream on the chromosome (enhancer, silencer, insulator elements). Compared to a promoter, it is 

difficult to identify the location of an enhancer and its target gene, since the two elements could be distant 

up to several hundred kilobases from each other and other elements and genes could be positioned between 

the two (Elkon and Agami, 2016). Moreover, multiple cis- and trans-non-coding elements can affect the 

expression of a gene simultaneously, and their activity can be synchronous or be carried out through 

transcription factor proteins, which presence or concentration is in turn regulated by other coding and non-

coding sequences affecting the expression of the corresponding genes. In conclusion, locating a regulatory 

element or identifying its effect could be a harsh challenge.   
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1.2. Genome-Wide Association Studies and eQTL analysis 

GWAS are experiments that aim to find associations between genetic variants and a phenotype. To do so the 

genomes of a large number of individuals are scanned in order to find variants with a correlation with a given 

phenotype. This type of study was first introduced in human genetic epidemiology, which enabled the study 

of complex diseases, controlled by multiple genetic loci. This approach brought a better understanding of 

various conditions in different medical fields including major depressive disorder, anorexia nervosa, cancers, 

and coronary artery disease (Tam et al., 2019).  

If the phenotype of interest is the expression of all the genes of the transcriptome (or a subset of interest), 

the genomic variants associated with gene expression will be variants potentially acting as regulatory 

elements of said gene. This kind of analysis is called eQTLs (expression Quantitative Trait Loci) mapping. An 

expression Quantitative Trait Locus is defined as a genomic variant that can explain the variation of 

expression of a gene, across a population (Nica and Dermitzakis, 2013).   

Ultimately, to discover an eQTL we look for a statistical association between the genotype of a variant and 

the expression levels of a gene in a population of samples. In figure 1.1a (from Elkon and Agami, 2017), we 

see a graphical representation of the phenomenon: the boxplot depicts the expression levels in a population 

of individuals for a given gene, divided into three classes depending on the genotype of the variant, in this 

case, a SNP located in an enhancer region. The two homozygous conditions, reference and alternative, are 

correlated with respectively lower and higher values, while the heterozygous samples show intermediate 

levels of expression of the gene. So, it is possible to test the statistical significance of such a correlation, in 

this case using an additive model, where each allele of the SNP is associated with a given level of expression 

and the two can be added to determine the genotype’s value of the expected gene expression. In an eQTL 

mapping study, DNA sequence variants genotyped in a population will be tested against the expression values 

of all the genes, looking for significant correlations. The genes and the variant involved in an eQTL are 

commonly referred in the literature as eGenes and eVariants. eVariants can also be divided into eSNPs, 

eInsertions, and eDeletions according to the sequence variant that is associated with the phenotype. The 

distance and chromosomal location between eGene and eVariant is generally taken as a proxy to assume the 

mechanism of control of the expression, thus dividing the eQTLs into cis- or trans-eQTLs (Gilad et al., 2009).  
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1.2.1.  The Linkage Disequilibrium 

Association studies (thus including eQTL mapping) rely on the presence of Linkage Disequilibrium. Linkage 

Disequilibrium (LD) is the non-random association of alleles at two or more loci (Single and Thomson, 2016). 

This means that, in a given population, if two variants are in LD, we will observe them together in the 

individuals more frequently than expected. In the context of an eQTL mapping, this could lead to the situation 

depicted in figure 1.1b, taken from the study of Astle and Balding (2009): two variants are in a condition of 

strong LD. One, unobserved in the experiment, is the cause of a variation in a genotype (in our case the 

expression level in a gene). Due to the LD, the second variant can establish a correlation with the gene 

expression level, resulting in the mapping of an eQTL. The value of LD that links different variants is specific 

for a given population and depends on several factors. Generally speaking, the more diverse a population is 

and the more distant in time are the ancestors that link the individuals of the population, the less LD we will 

register among variants, due to the accumulation of historical recombination events. This means that two 

variants located close to each other will be in LD with high probability and, in an eQTL mapping study, it’s 

common to see clusters of variants establish eQTLs with the same gene. These correlations are probably the 

record of a unique biological event, where one single causal variant causes numerous indirect associations. 

 

Figure 2.1   

a) graphical representation of a variant (SNP G/A 

located on an enhancer sequence) acting in cis on a 

gene. At the top of the panel, a boxplot represents 

the association between the three genotypes of the 

variant and the expression level of the gene (eQTL). 

The same phenomenon is detectable by measuring 

the allelic imbalance present in the gene, but only 

in those samples where a SNP (T/C) in LD with the 

SNP G/A is present on an exon of the studied gene 

(Elkon and Agami, 2017). 

b) Graphical outline of an indirect association 

between a variant and a phenotype, caused by the 

LD between the observed variant and the 

unobserved, causal one (Astle and Balding, 2009) 

a) b) 
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1.2.2. Bias in eQTLs studies due to population characteristics 

A key factor to consider when designing a GWAS is the structure and characteristics of the given population, 

which could cause confounding effects and produce significant biases in the results, mainly in the form of 

false positive associations. The main concerns are relative to population structure or stratification, cryptic 

relatedness, and rare variants (Price et al., 2010). 

Population Stratification is the situation where in a population there are groups of individuals with large-

scale systematic differences in ancestry (Astle and Balding, 2009). The consequence is that there are groups 

with differences in the frequency of some alleles compared with the rest of the population. When population 

stratification occurs, we should theoretically be able to distinguish one or more sub-populations by observing 

their genotypes (Hellwege et al., 2017), but the situation is not always so well-defined. When the population 

is not constituted by distinguishable sub-populations (island model) but has a more complex composition, 

the term Population Structure is preferred (Astle and Balding, 2009). When population structure is present, 

several variants across the genome may be informative about an individual’s subpopulation of origin, and 

thus be (wrongly) associated with any phenotype that varies across subpopulations. Another occurrence that 

can happen in a population is cryptic relatedness, which means the undetected presence of close relatives in 

a population of otherwise unrelated individuals (ibidem). If this occurs, we will have some similar genomes 

among the rest and this will pose as a confounder in the study, causing once again spurious associations if 

not adjusted. 

Finally, rare variants can introduce biases in a GWAS. Several studies have focused on rare variants, especially 

in human genetic epidemiology (Bush and Moore, 2012). That is because rare variants represent the majority 

of the annotated variants and possibly explain a substantial share of the heritability of phenotypes 

(Tennessen et al., 2012 analyzing common, complex diseases) and genes (Hernandez et al., 2019). Moreover, 

they have a frequently larger effect than common variants, as can be explained by the effect of purifying 

selection (Eyre-Walker, 2010). However, in an eQTL mapping, since the number of individuals that carry a 

rare variant is low and the number of tested associations is equal to the number of tested genes, there is a 

high risk of false positives, indistinguishable from the real ones. To prevent such cases, in eQTL studies a filter 

on minimal allele frequency in the population is applied, or alternatively a threshold on the minimal number 

of occurrences of a certain genotype. Such filters are set according to statistical power given by the size and 

the diversity of the population used for the study (Huang et al. 2018). 

 

1.2.3. eQTLs effect size estimation 

The expression of a gene is determined by both genetic as well as environmental factors. When we perform 

an eQTL study, we aim to minimize the second component by the choice of an appropriate experimental 
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design and search for a possible explanation for the latter, called heritability. The definition of broad-sense 

heritability, valid for gene expression as well as any other measurable phenotype, is “the proportion of 

phenotypic variance that is due to all genetic effects” (Holland et al., 2002). When we call an eQTL, we are 

trying to explain part of this variability based on the genotypes observed for a genomic variant. The 

magnitude of the influence of the eVariant on the eGene is called effect size of the eQTL (Mohammadi et al., 

2017). An eQTL with a small effect size represents a variant with a small impact on the expression of a gene, 

therefore requiring a greater statistical power to be correctly identified. This case can occur for different 

reasons: a gene with small heritability, a gene influenced by several variants, each accountable for a small 

portion of his variance and so with small effect sizes, an eVariant linked to the causal variant by a low LD, 

since the effect size of the eQTL is reduced by a low correlation between the genotypes of the two in the 

population. 

 

1.3. Allele-specific expression analysis 

Another way to explore the role of cis-acting variants in the regulation of the genes is the Allelic Specific 

Expression (ASE) analysis. This kind of study aims to assess the difference in expression between the two 

alleles of the same gene in a heterozygous individual. Microarrays (Schena et al., 1995) or quantitative RT-

PCR (Yan et al., 2002) were used in early experiments to assess these metrics in a few genes, but NGS 

technologies gave the possibility to measure ASE of all the genes of a species in a population of individuals 

through RNA-seq (Pastinen, 2010).  A graphical example of ASE in a gene and the requirement to 

measure it is in figure 1.1. As we can see, the variation of the SNP of genotype G/A located in the enhancer 

is associated with variations in the level of gene expression, due to a boost of the transcription of the G 

genotype, which causes a boost of transcription of the gene in the same haplotype. If we identify one or more 

SNP in the transcribed sequence of the gene, we can measure the impact of the variation on the gene, as 

seen in the quantification of reads carrying the genotype C of the SNP C/G, located in the exon of that gene. 

In other words, the ASE of a gene doesn’t give us any information on the causal cis-variant, but measures its 

effect with precision. 

 

1.3.1. Haplotype reconstruction 

The first step in the measurement of the ASE of a gene is the phasing of the SNPs present on the transcribed 

region, obtaining the two haplotypes of the gene. This goal can be achieved with different methods, based 

on laboratory or computational approaches.   

The most used method consists of a family-based approach and is performed by sequencing the parents and 

other relatives of the studied individual and then inferring the haplotypes using Mendel’s laws. This method, 
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although straightforward and capable to provide good-quality results, can leave some loci un-resolved and 

requires the genomes of the relatives, not always available (Choi et al., 2017).   

Laboratory-based methods provide sequencing protocol to obtain phased assembly for the samples. For 

example, 10X Genomics is a system that manages to barcode sequences obtained by a single molecule of ss-

DNA, enabling a strand-aware assembly. An example of a project that used this approach can be found in 

Zheng et al. (2016). In the last few years, single molecule sequencing gave the possibility of obtaining 

haplotype resolved assemblies or, when mapping reads to a genome, very long stretches of haplotypes 

reconstructed by a single DNA molecule. This is the case, for example, of the PacBio and Oxford Nanopore 

technology. An advantage that laboratory-based methods have is that they don’t need any accessory 

information about the genotypes of the family or the population to which the studied individual belongs.  

They share this characteristic with computational reads-based approaches, such as HapCUT2 (Edge et al., 

2016). This software uses genome sequencing output to reconstruct haplotypes, overlapping sequencing 

fragments with two or more polymorphic sites. This method doesn’t require a dedicated sequencing step, 

and therefore is more approachable, but, even if its performance is related to the quality and the length of 

the input reads, the length of the phased blocks achievable is limited compared to the other methods (Choi 

et al., 2017).  

 If the genome-wide genotypes of a population of individuals are available, population-based approaches 

offer a cheap and accurate alternative. With this approach, various computational processes based on hidden 

Markov models, are used to infer the most probable haplotypes present in the population, and then assign 

them to each individual. Examples of these software are SHAPEIT (Delanau et al., 2019), Eagle2 (Loh et al., 

2016), and Beagle (Browning et al., 2021). In some cases, accessory information can be provided to the 

algorithm, in order to boost its velocity and accuracy. For example, sequencing reads, known population 

haplotypes, and parental genotypes can be fed to SHAPEIT, improving its performance (Choi et al., 2017). 

 

1.3.2. Haplotype-aware reads alignment  

Once obtained the two haplotypes of each individual under study, the RNA-seq reads will be aligned on the 

sequences and all the reads aligned on a heterozygous site will be considered informative for allele-specific 

expression analysis. The number of aligned reads on the two different haplotypes will give an indication of 

the allelic expression imbalance present between the two alleles. In order to prevent possible errors, besides 

the necessary procedures to perform a quality RNA-seq alignment (Conesa et al., 2016), it is necessary to 

account for a systematic bias known as “reference bias” (Degner et al., 2009). This systematic error can 

happen when one of the two alleles is more similar to the reference used for the alignment. In this case, the 

software can align reads to this allele with greater efficiency, inflating its expression level. To avoid this, 

Pandey et al. (2013) proposed a two-part solution implemented in their software ALLIM: first with the 
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information of the phased SNPs two reference sequences are built, one for each haplotype, and both are 

used for the alignment process. Moreover, a simulation tool estimates for every gene the probable reference 

bias produced, and this information is used to correct the final output. 

 

1.4. Comparing the results of cis-acting variant detection obtained with eQTL mapping and ASE 

analyses 

eQTL mapping and ASE analysis are two different, independent methods to study the effect of variants on 

the cis-regulation of the genes. eQTL mapping is a population-oriented analysis, where each gene is studied 

by comparing all the individuals, aiming to understand if it can be considered an eGene or not. Therefore, 

the resulting information for the single individual is not complete: we can obtain in a single individual the 

genotype of the eVariant and therefore infer the gene regulation, but the cases where a lot of eVariants are 

correlated with the same eGene are the majority, and the regulation of gene expression is probably the result 

of a multi-factor action determined by numerous SNPs, each one concurring at a single eQTL and explaining 

only a fraction of the variance of the expression level. In this scenario, it is difficult to single out the regulation 

of the eGene in a single individual. On the other hand, ASE analysis considers one sample at a time, assessing 

if the gene shows an allelic imbalance in expression in that specific genetic makeup. In this case, we don’t 

have any information about the hypothetical causal variant or variants, their type, number, or location, but 

we register their effect. We can do so only in the genes that can be analyzed, which means the genes with 

heterozygous variants in their transcribed sequence, and that have enough aligned reads covering their 

polymorphic sites, in order to perform the analysis with statistical relevance. In this scenario, we are not able 

to study the gene ASE in all individuals of the population. Different factors can affect the sensibility of the 

two analyses. eQTLs mapping requires a certain size of population and information about its structure to 

have enough statistical power to correctly identify eQTLs. Even with correction procedures, the risk of 

unknown confounders causing spurious associations cannot be eliminated, and environmental effects on 

gene expression introduce undesired variation in the data. Other limitations in terms of sensibility have to 

be taken into account: eQTL with small effect sizes are difficult to identify. This is an important factor when 

it comes to assessing the regulation of expression of eGenes influenced by many different variants. 

Moreover, as recalled in paragraph 1.2.2., we must exclude from the analysis the rare variants. This is a big 

loss of power in the analysis, as this category of variants is a major driver of genome diversity, and they are 

frequently associated with bigger effect sizes than average. Another confounding effect can be the presence 

of multiple cis-acting eVariants, with different effect sizes, if they are not adequately tagged by eSNPs, when 

the GWAS analysis is performed using individual SNP genotypes and not haplotypes.  

ASE analysis isn’t affected by the size or structure of the analyzed population, and a big advantage of this 

method is that isn’t affected by the environment: factors independent from the genome affect equally both 
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alleles of the gene. Since the output of the analysis is the ratio between the expression of the two alleles, 

factors that affect both in equal measure are less confounding.  

In conclusion, the use of both ASE analysis and eQTLs mapping on the same subject can offer different views 

on the same phenomenon, independent validation of the results, and reciprocally cover their blind spots. For 

this reason, the two approaches are often used together (for example in studies such as GTEx consortium, 

2017; Cheng et al., 2021; Khansefid et al., 2018; Hasin-Brumshtein et al., 2014). At the same time, the 

literature underlines the difficulty to integrate the results of the two methods, since the set of observable 

cases in one analysis only partially overlaps the input set of the other. Moreover, the different focus of the 

two (analysis of one gene in a whole population in eQTL mapping and analysis of all the heterozygous genes 

in a single individual) forces us to adopt some simplifications in order to be able to compare the two. 

 

1.5. The study of regulatory variants in Vitis vinifera 

1.5.1. eQTLs studies in plants  

Understanding how genetic diversity in a population shapes phenotypic traits was the first goal of GWAS 

and QTL studies. We have previously cited the contributions of this methodology applied to human 

populations regarding the epidemiology field. The application of association studies in plants was initially 

focused on the identification of genes related to phenotypes of commercial interest in crops, often using 

highly homozygous Recombinant Inbred Lines (RILs). For example, regulation of gene expression in 

association with the response of Brassica rapa to various soil phosphorus concentrations (Hammond et al., 

2011), or with dry weight in Oryza sativa shoots (Wang et al., 2010). However, eQTL studies can help us to 

understand the mechanism that regulates heritable expression traits and the evolutionary forces that 

shape the process (Cubillos et al., 2012). Several studies focused on the non-coding regions of plants 

genomes, characterizing the role of transposable elements (Morgante, 2006; Catlin and Josephs, 2022) and 

structural variants (Marroni et al., 2014), and their contribution to the phenotype determination is 

assessed. Association studies could help to better define the general mechanism that underlies these 

regulations as proven by the work in other species of interest as Populus trichocarpa (Mähler et al., 2017) 

and Zingiber officinalis (Cheng et al., 2021). 
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1.5.2 Vitis vinifera  

Grapevine as a crop has a long history: its domestication dates more than 6000 years ago in Southwestern 

Asia (Ramos-Madrigal et al., 2019) and since then it dispersed across Europe, northern Africa, and Western 

Asia following human trades and migration. The domesticated varieties shared the habitat with their wild 

relatives, and that could have favored the adoption of vegetative propagation as a way to preserve valuable 

phenotypes arising from spontaneous crosses, in fact, we know that such a practice is at least 900 years old, 

since the discovery of grape seeds from 1100 AD with a genome matching the one of Savagnin Blanc, a 

cultivar used nowadays (ibidem).   

Both domestication and vegetative propagation are two factors that could represent an evolutionary 

bottleneck, lowering the diversity of germplasm of V. vinifera spp. sativa. However, Magris et al. (2021) 

proved that the genomic diversity among cultivated grapevine is similar to the one registered among their 

wild relatives, an effect probably caused by gene flow between the two groups.   

Vitis vinifera, given its cultural and economic relevance, is an extensively studied species. It was the fourth 

plant to be sequenced, the second woody one after Populus trichocarpa, and the first among the perennial 

crops. An obstacle to its sequencing was that Vitis vinifera is a highly heterozygous species, so The French-

Italian Public Consortium for Grapevine Genome Characterization, that produced its first genome draft 

(2007), selected and sequenced a highly homozygous clone, named PN40024. The size of the genome of Vitis 

vinifera resulted in approximately 500 Mb, divided into 19 chromosomes. A total of 31 922 genes were 

predicted by Vitulo et al. (2014). Subsequently de-novo sequencing of other Vitis vinifera spp. sativa 

accessions was performed, such as a heterozygous clone of the Pinot cultivar (Velasco et al., 2007) and a 

clone of the Nebbiolo cultivar (Gambino et al., 2017). In recent years a number of specimens of both V. 

vinifera and its wild relatives were sequenced (Minio and Cantu, 2022). Thanks to the technological and 

computational advances (Chin et al., 2016; Minio et al., 2022), many of the reference now available are 

phased diploid genome, meaning that both haplotypes are resolved (Minio et al., 2017; Minio et al., 2019). 

 

Given its relevance, many of its phenotypes of interest were the subject of QTL studies or GWAS, for example, 

the levels of metabolites in the ripening of the berries (Reshef et al., 2022), resistance to diseases (Fu et al., 

2020), or abiotic stresses (Trenti et al, 2021; Wang et al., 2021), but they don’t provide a general picture of 

the expression regulation of the genes through the genome. Similarly, Martinez-Garcìa et al. (2022) mapped 

the cis-eQTL to validate a small number of genes differentially expressed in different ripening stages of 

berries among 10 cultivated grapevines. Finally, Magris et al. (2019) studied the gene expression regulation 

among 10 Vitis vinifera cultivars comparing genes in equal or different cis-regulation conditions. 
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2. OBJECTIVES 

The present work aims to perform a whole genome analysis of the effect of genetic variants on gene 

expression in Vitis vinifera.  

Several studies can be found in the literature concerning the role of regulatory sequences in cultivated 

grapevine (paragraph 1.5.2), but a comprehensive description of how genomic variants affect gene 

expression has never been published. Our study aims to fill this gap using two independent analyses: an eQTL 

mapping and an ASE analysis. The interest in this subject is due not only to the economic relevance of Vitis 

vinifera but also to its unique genomic characteristics. This species has a relatively small genome with high 

genomic diversity among the cultivars, despite its long domestication history and being reproduced through 

vegetative propagation. Moreover, a study of allele-specific expression of its genes is of particular interest, 

given its well-known high level of heterozygosity. This second step of our study is rarely applied to crops, 

given that these projects often involve inbred lines. Given these particularities, this project can achieve two 

goals: describe a comprehensive picture of Vitis vinifera transcriptome regulation and provide a useful set of 

data for every gene, ready to be browsed in case of need for information about the regulation of genes of 

interest. 

We selected 98 cultivars representative of the variability present in the population of Vitis vinifera spp. sativa 

from which we obtained RNA-seq data from three tissues: leaves, and berries at two different stages of 

development: hard berries (target developmental stage: 5.2 °Brix) and soft berries (target developmental 

stage: 6.4 °Brix). Using a database of variants consisting of known genotypes of SNPs and large indels 

obtained from whole genome resequencing data, we mapped the variants correlated with variations in 

expression levels and characterized the genes targeted by this effect. 

Allele-specific expression analysis, performed on the same samples, provided new information on the same 

subject from a different point of view. We measured ASE levels for the different tissues and cultivars, 

assessing noticeable differences between the samples and the tissues. 

Lastly, we performed an investigation gathering all the allelic variants present for every gene in the selected 

population, assessing for each its net contribution to the expression of the gene. This contributed to giving 

us an understanding of the existing diversity for cis-regulatory alleles across the population. 



 

12 
 

 

 

 



Chapter 3 - MATERIALS AND METHODS              

13 
 

3. MATERIALS AND METHODS 

3.1. SNP and SV genotype data  

We used a grapevine variants database previously produced by our research group (Magris et al., 2021), 

consisting of 10 393 171 SNPs, 52 427 large insertions, and 22 312 large deletions. Each variant, whether it 

is a SNP or a SV, is biallelic, so every cultivar can be homozygous with both alleles equal to the reference 

genome, heterozygous, homozygous with both alleles alternative to the reference, or not known. 

The variants were filtered independently for every RNASeq dataset according to the following rules: 

• A variant must be polymorphic 

• Every genotype, if present in that variant, must be recorded in at least five cultivars 

• The genotype of a variant must be known in at least half of the cultivars 

The numbers of variants selected for the analyses are listed in table 3.1. 

The dN/dS values for Vitis genes were taken from the same study (ibidem) 

 SNPs deletions insertions 

Leaves 3 095 950 8 837 18 731 

Hard Berries 2 287 437 6 171 12 960 

Soft Berries 2 251 894 6 081 12 697 

 

Table 3.1: Number of input variants in eQTL analyses 

 

3.2. Sampling and sequencing for RNASeq data production 

Berries and leaves samples were collected, used for library preparation, and sequenced by our research 

group  (Magris et al. 2021).  

The varieties (replicated twice) were forced to root in potted soil. A single shoot per cutting was raised until 

the stage of 10–12 leaves in a common garden experiment. At that stage, the fourth distal (fully expanded) 

leaf was sampled from each replicate and variety at the same time and frozen immediately for RNA 

extraction. Berries were sampled at the same developmental stage on different dates, from two replicated 

field plots. From each plot, two batches of asynchronous berries were collected over the same bunches, one 

composed of hard berries (target developmental stage: 5.2 °Brix), the other composed of soft berries (target 

developmental stage: 6.4 °Brix), both sorted by firmness to the touch. The accuracy of berry sorting was 

validated by subsampling from each batch random subsets of berries for destructive measurements, e.g. 
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soluble solids concentration. Each accession was sampled at a single time-point, corresponding to the exact 

day when hard and berries coexisted on the same bunches.  

RNA was extracted using the Spectrum Plant Total RNA Kit (Sigma-Aldrich, Saint Louis, MO). Approximately 

500 ng of RNA was used for library construction with the TruSeq Stranded mRNA Kit (Illumina, San Diego, CA) 

for leaf RNA and with the Universal Plus mRNA-Seq Library Preparation Kit (Tecan Genomics, Redwood City, 

CA) for berry RNA. Paired-end reads were obtained from Illumina HiSeq2000 and HiSeq2500 sequencers 

The raw reads were filtered with ERNE-filter v.1.4.6 (Del Fabbro et al., 2013), to filter chloroplast reads and 

remove reads of low quality and shorter than 50 pb. The alignment of the reads to the reference genome of 

Vitis vinifera was performed with the software STAR v2.5 (Dobin et al., 2013) with the subsequent setting of 

parameters: --outMultimapperOrder Random, --outSAMmultNmax 10, --outWigStrand Stranded,  

--twopassMode Basic. The total count of filtered and aligned reads is in Supplementary material, table 1. 

A quality assessment of the samples was performed, considering the percentage of read duplicates in the 

alignment and the outliers obtained with a Principal Component Analysis of the aligned reads. This led to the 

exclusion of the subsequent samples in Soft Berries: Nebbiolo replicates (rep) 1 and 2, Cabernet Sauvignon 

rep1, Sultanina rep2, Falanghina rep1, Raboso Piave rep 1 and 2, and V294 rep 1 and 2. In Hard Berries Greco 

di Tufo rep 1 and 2, Raboso Piave rep 1 and 2, Schioppettino rep1, 411 rep1, and Nebbiolo rep1 were 

discarded. In Leaves samples none of the replicates showed high levels of duplicates. 

An analysis of the SNPs in RNA samples was executed, in order to check that every sample was assigned to 

the correct cultivar. The 300 most expressed genes for every tissue were selected and a SNP calling for the 

reads mapped on those genes was performed. The tool used was GATK v.3.3 HaplotypeCaller (Poplin et al., 

2018), with the following parameters: heterozygosity = 0.01, maximum number of alleles per position = 6. 

For each sample we compared the resulting SNPs genotypes with the corresponding data from genomic 

sequences, verifying that the transcriptomic sequences belong to the correct cultivar.  

 

3.3 eQTL analysis 

3.3.1. Expression data filtering and normalization 

The number of reads mapping on each gene was computed using STAR. In samples with replicates available, 

the reads count of the replicates was summed across genes. The genes were then filtered to exclude the less 

expressed genes. In every tissue, only the genes that registered at least 10 reads in more than 10% of the 

cultivars (9 CVs in leaves and 6 CVs in both berries soft and berries hard) were kept. Moreover, identified all 
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the genes that were potentially pseudogenes, transposable element products or misannotated. This quality 

control was performed as described below: 

• The sequences of the primary transcript of the V2.1 annotation (Vitulo et al., 2014) were used as a 

query for a blastx analysis (Altschul et al., 1990) against a database with all Viridiplantae (NCBI: 

txid33090) non-redundant proteins. From this database, we excluded the Vitis vinifera (NCBI: 

txid29760) proteins. A total of 246 transcript sequences did not align against any other sequence. 

Those genes were discarded from all the subsequent analyses of the project. 

• A list of probable transposable elements to discard from the analysis was compiled using the program 

repeatmasker (Smit and Hubley, 2008) with the default setting, adding a library of identified TE in 

Vitis, previously elaborated by our group, with the function “-lib”. 

A total of 22 546 genes were retained for the analysis in leaves, 24 179 genes in hard berries, and 23 865 

genes in soft berries. 

Read counts were normalized using the method median of ratios implemented in the R package DESeq2 

version 1.26.0 (Love et al., 2014). The normalization was performed independently for the three tissues, 

setting at one the number of different conditions across the samples. 

 

3.3.2. eQTL mapping 

The eQTL analysis was performed using the R function Matrix_eQTL_main of the MatrixEQTL package 

(Shabalin et al. 2012). The three tissues were analyzed independently, using as input the genotype and 

expression data previously described. The effect of the genotypes on the gene expression was assumed to 

be additive linear.  

After the first run of the model, we analyzed the distribution of the resulting p-values, and a significant 

deviation from the normal distribution was observed. This was expected, caused by false association due to 

population structure and hidden confounders. A measure of this effect is the inflation factor λ, which is the 

ratio of the median of the observed distribution of the test statistic to the expected median. This index was 

calculated with the R function P_lambda of the package QCEWAS (Van der Most et al., 2017).  

 

In order to correct for population structure and hidden confounders (cf. paragraph 1.2.2.), we adopted the 

principal component (PC) adjustment method (Astle and Balding, 2009). To carry out this method principal 

components of both the genotypes and expression data were computed. matrixEQTL was then run 

including in the linear model as covariates the first components of the two analyses. For every tissue the 

model was executed using as covariates from 0 to 22 PCs of the genotypes and from 0 to 10 PCs of the 

expression data, testing all the combinations between the two. For these analyses we used a reduced 
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dataset as input, randomly selecting 1000 genes and 40000 variants, computing for every analysis the λ 

factor using a distribution of 8 x 108 p-values.  

Finally, we selected the smallest number of PCs necessary to achieve a λ factor near 1. For the final eQTL 

analysis 20 genotypes PCs and 2 expression PCs for leaves (estimated λ factor= 1.0306), 4 genotypes PCs 

and 0 expression PCs for hard berries (estimated λ factor = 1.005196), and 3 genotypes PCs and 0 

expression PCs for soft berries (estimated λ factor = 1.029024) were used as covariates in the model.    

The analysis was performed by separating the output between local eQTL and distant eQTL depending on 

the relative distance between the TSS of the gene and the position of the variant. Gene and variant closer 

to each other than 100 kb were assigned to local eQTL, while the ones separated by more than 100 kb or 

belonging to different chromosomes were considered distant eQTLs. This threshold wassup decided by 

observing the decrease of eQTLs p-values according to the distance of eVariant to the TSS of eGenes 

(supplementary material, figure S1) and is the same to the one adopted in a similar study in Populus 

trichocarpa (Mähler et al., 2017). The positions of the genes were obtained from the V2.1 annotation 

(Vitulo et al., 2014), while the coordinates of SNPs and SVs were present in the source files. Since deletions 

could consist of more than one base, the middle point between start and end was used, while for insertions 

we assume as their position the mean point of insertion.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Histograms with p-values distribution of cis-eQTL (above) and trans-eQTLs (below) after the 

correction with the principal component adjustment method 
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3.3.3. FDR correction 

We assessed the false discovery rate (FDR) of the p-values using two different methods. For local-eQTLs we 

adopted a hierarchical procedure described by Huang et al. (2018). Since this method cannot be used in the 

case of distant-eQTLs we implemented a permutation-based procedure as in Peters et al. (2016). 

The hierarchical method of FDR control is structured in three steps: 

1. Taking into account one gene at a time, the p-values of its eQTL are adjusted for multiple testing 

(locally-adjusted p-values) 

2. A table is built with the eQTLs with the smallest p-value for every gene and their locally-adjusted p-

value are once again adjusted for multiple testing (globally-adjusted p-values). The highest locally-

adjusted p-value corresponding to a globally-adjusted p-value smaller than 0.05 is set as the 

threshold value 

3. For every gene, the eQTLs with locally-adjusted p-values equal to or smaller than the threshold are 

considered significant 

Taking the leaves matrix-eQTL output as testing data, we performed nine times the described procedure, 

testing three different methods of p-value adjustment in each of the two adjustment steps: Bonferroni’s, 

Benjamini-Hochberg’s (Benjamini and Hochberg, 1995) and Benjamini-Yekuteli’s (Benjamini and Yekuteli, 

2001) FDR correction methods. Finally, we selected the more stringent correction approach, formed by 

Benjamini-Yekuteli’s method for the local adjustment and Bonferroni’s method for the global adjustment. 

The adjustment of the distant-eQTL p-values was performed with the use of permutations. It was carried out 

one gene at a time, as follows:  

1. The expression values in all the cultivars for that gene were randomly shuffled 10 000 times and all 

the vectors were put together in a matrix of 10 000 lines. 

2. This matrix was used as an expression input for a matrix-eQTL analysis performed with the same 

other inputs and parameters as in the analysis previously described 

3. For every eQTL’s p-value belonging to the analyzed gene an FDR threshold was computed following 

the subsequent formula, given an eQTL “i”: 

 

Where Ri is the position of eQTL i p-value in a ranked vector from lowest to highest of all the p-values 

of eQTLs generated by the permutations, ri is the position of eQTL i p-value in a ranked vector from 

lowest to highest of all the p-value of the eQTLs belonging to the analyzed gene, N is the number of 

permutations 
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4. All the eQTLs with an FDR ≤ 0.01 were considered significant. 

Consistently with the current literature, we called eGenes the genes with one or more significant eQTLs, and 

we called eSNPs, eInsertion, and eDeletion the variants involved in a significant eQTL. 

The estimate of eQTLs effect size was performed by taking the proportion of explained variance (r2) as a 

measure of the effect size (Mohammadi et al., 2017), computed by the formula: 

 

With t indicating the t-statistic value of every eQTL (obtained by matrixEQTL output) and df are the degrees 

of freedom in the linear model (i.e. the number of samples considered for that eQTL minus one) 

 

3.3.4. Functional annotation and Gene Ontology category enrichment 

A functional annotation of all Vitis vinifera genes was obtained from an analysis previously carried out by our 

group with the program blast2go (Götz et al., 2008). The category enrichment analyses performed on the list 

of eGenes were performed with the function runTest of R package topGO (Alexa and Rahnenfuhrer, 2022), 

using the parameters algorithm = “classic” and statistic = “fisher”. We considered as enriched the categories 

with fisher’s test p-value < 0.05 and a number of total genes belonging to that category higher than 10. 

 

3.4. Allele-Specific Expression analysis 

3.4.1.  Haplotype phasing 

SHAPEIT2 (Delaneau et al. 2013) was used to infer the haplotypes of the samples. Haplotype inference was 

performed using a previously obtained set of SNPs (see paragraph above). The performance of population-

based software for haplotypes reconstruction depends also on the size of the population in input: the bigger 

the population, the more accurate are the output haplotypes. So, we used the genomic data of all the cultivar 

of Vitis vinifera spp. sativa in the disponibility of our group, consisting in a pool of 144 samples.   

We filtered these SNPs discarding the ones without a known genotype in less than 50% of the cultivars. We 

then selected only the SNPs located in the exonic regions, according to the V2.1 annotation (Vitulo et al., 

2014). 

We chose the read-aware option of SHAPEIT2; therefore, we performed the extractPIRs function of the 

program, using as inputs the alignment files of genomic sequence reads of the cultivars and the genotype 
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data in VCF format; both alignment and VCF data were previously obtained by our research group. In order 

to maximize the accuracy, we tested different combinations of parameters. For every combination, we ran 

SHAPEIT2 on two chromosome regions: chromosome 4 from 1Mb to 6Mb and chromosome 15 from 12.5Mb 

to 17.5Mb. The results were then compared to the known haplotypes of 5 cultivars, previously obtained with 

the sequencing of selfed progenies (Alice Fornasiero Ph.D. thesis). We counted the number of identical exons 

and identical genes between the SHAPEIT2-obtained haplotype and the reference haplotypes, obtaining a 

percentage representing the quality of the phasing. Referring to SHAPEIT2 manual, we tested the following 

values: --family: 10000 and 1000; --rho: 1e-2, 5e-3, 1e-3 and 1e-4; --burn: 7,10 and 15; --prune: 8 and 10; --

main: 20 and 50; --states: 100, 150, 200 and 250.   

During this set of tests, we noticed that the majority of errors were caused by missing data in the SNPs 

genotype, so we performed one analysis for each cultivar, providing SHAPEIT2 with the genotypes of all the 

cultivars as inputs, but excluding all the positions for which the SNPs was not known in the studied cultivar. 

After this evaluation on the test dataset, SHAPEIT2 was performed on the whole genome with the following 

settings: --family 1000, --rho 1e-3, --burn 7, --prune 8, --main 50, --states 250, --window 0.1. Aiming to make 

the analysis repeatable we used a single thread and set the seed for the random numbers' generator at 5. 

With these parameters, the comparison between the output of the analysis and the aforementioned data of 

5 cultivars, indicated a percentage of identical genic haplotypes between 96 and 98% of all the genes in the 

analysis. This result is similar to the one presented by Choi et al. (2017) as the best achievable for a similar 

analysis. The quality of the phasing process was measured again for every chromosome of the 5 reference 

cultivars, to check that no regions of the genome registered a lower quality of the analysis (Table 3.2). 

 

3.4.2. Allele-specific mapping of transcriptomic reads 

Based on a previous analysis of the chromosomal regions where each cultivar is homozygous (Magris et al., 

2021) SNPs eventually located in those regions were pruned from the SHAPEIT2 output, as they most 

probably represent genotyping errors.  

We then integrated the information of the phased SNPs with the reference genome in FASTA format 

obtaining the sequences of the two haplotypes in all the cultivars. This operation was carried out with the 

functions readDNAStringSet, DNAString, replaceLetterAt, and writeXStringSet from the R package Biostrings 

(Pagès et al., 2022). 

We then used the software ALLIM v1.1 (Pandey et al. 2013) to estimate the allele-specific expression of the 

genes in all the tissues and cultivars. For every sample, the inputs were the two FASTA files with the 

haplotypes, a GTF file with the reference annotation v.2.1, the calculated insert size, and the fastq files with 

the RNA-seq reads. The program assigned the transcriptomic reads to one of the two alleles, measuring the 



Chapter 3 - MATERIALS AND METHODS              

20 
 

allele-specific expression. We filtered all the genes that, among the different replicas of the sample, didn’t 

reach a total of 50 reads informative about the ASE.  

The significance of an allelic imbalance was assessed with the Stouffer method for meta-analysis (Stouffer et 

al., 1949) 

 

 

 

  Cabernet Franc Pinot Noir Rkatsiteli Sangiovese Savagnin Blanc 

chr1 0.96 0.98 0.98 0.98 0.98 

chr2 0.96 0.98 0.98 0.97 0.98 

chr3 0.95 0.97 0.97 0.95 0.96 

chr4 0.96 0.99 0.98 0.97 0.97 

chr5 0.97 0.98 0.97 0.97 0.98 

chr6 0.98 0.98 0.97 0.98 0.98 

chr7 0.98 0.98 0.97 0.98 0.98 

chr8 0.99 0.99 0.98 0.98 0.97 

chr9 0.94 0.95 0.95 0.95 0.92 

chr10 0.95 0.98 0.96 0.96 0.94 

chr11 0.97 0.96 0.97 0.98 0.97 

chr12 0.96 0.98 0.97 0.97 0.96 

chr13 0.97 0.98 0.95 0.97 0.96 

chr14 0.97 0.98 0.96 0.96 0.96 

chr15 0.97 0.99 0.96 0.95 0.98 

chr16 0.96 0.97 0.98 0.97 0.95 

chr17 0.95 0.97 0.98 0.99 0.97 

chr18 0.97 0.99 0.97 0.97 0.97 

chr19 0.96 0.96 0.96 0.95 0.95 

chrUn 0.95 0.98 0.97 0.94 0.97 

 

Table 3.2: Percentage of genes in every chromosome where the SHAPEIT2 obtained haplotypes identical to 

the haplotypes used as reference. 

 



Chapter 3 - MATERIALS AND METHODS              

21 
 

3.4.3 Allelic Imbalance assessment 

For this analysis, a gene was considered homozygous when all the SNPs present in the same collection used 

for eQTL mapping (cf. Par. 3.1.), with a position between 1 kb upstream of the TSS of the gene and 1kb 

downstream of the end of the transcribed region were homozygous. The information in annotation v.2.1 was 

used to derive gene coordinates. If a gene was not considered homozygous but didn’t have any SNPs in exonic 

regions, and therefore was impossible to analyze with ALLIM, it was assigned to the category “no exonic 

SNPs”. 

As stated before, the genes that were not expressed or with less than 50 informative reads for ALLIM analysis 

were filtered (category “low informative reads”), while for all the other genes their allelic imbalance (AI) was 

calculated with the subsequent formula 

 

Where hapA and hapB are the two haplotypes of the gene. If only one of the two haplotypes was expressed, 

and therefore was no longer possible to compute the logarithm, we substituted the zero with a value equal 

to 1/100 the number of reads of the other haplotypes, obtaining an AI of 6.64. All the AI values were then 

evaluated for significance as described before.  

A functional annotation and GO enrichment analysis was performed on the genes with significant AI in more 

than 80% of the cultivars analyzed or homozygous and the genes with only one expressed allele in at least 

one cultivar. The method used is as described in paragraph 3.3.4. 

 

3.5. Haplotype reconstruction and analysis of the allelic variant population 

3.5.1. Reconstruction of haplotypes present in the population 

We used the 144 couples of genic haplotypes produced with SHAPEIT2 (cf. paragraph. 3.4.1) as starting data 

to reconstruct the allele population of every gene. We chose to adopt a parsimonious procedure, aiming to 

explain the variability of the population with as few as possible alleles. We did it taking one gene at a time, 

with a procedure structured as follows: 

1. We searched among the 288 haplotypes the ones without missing data. For every one of them, if not 

already present in the “library” of existing alleles of that gene, we added to it 

2. Every haplotype with missing data was compared, one at a time, with the library of existing alleles 

excluding the missing position. If only one match is found, the haplotype is assigned to that allele. If 

there is more than one match, the haplotype is marked as ambiguous with the names of all the 
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“candidate” alleles. If no match is found the considered sequence is put in a second collection of 

incomplete alleles. 

3. In this second collection the first two incomplete alleles are compared. If the two are compatible 

(i.e., they are identical once the missing positions of the two are excluded) they are merged in one 

allele, filling some of the missing positions they didn’t share. If not compatible, they are listed as two 

separate alleles. Then the third haplotype is taken into account and compared with the ones listed 

before him and so on. If the considered sequence matches with more than one allele, it isn’t taken 

into account for the rest of the analysis, due to the high number of missing data.  

This comparison between all the alleles with missing data is performed a second time because some 

alleles are progressively filled with information in this process, and a haplotype that wasn’t assigned 

in the first step could find a suitable sequence in a second run of the algorithm. 

4. The alleles obtained in step 2 and 3 are, together, our collection of alleles for the gene. We then 

assign to every haplotype of cultivars one allele, a combination of possible alleles (as in step 2 if the 

sequence could identify more than one allele), or a marker for missing data (as in step 3 if too many 

positions are unknown)   

These operations were performed in R with the packages dplyr and data.table.  

The final result is the list of all the alleles observed in the study sample for each gene.  

 

3.5.2. Estimating the cis-regulatory values of alleles from ASE population data 

For each gene, an assessment was made about the contribution of each haplotype to allelic imbalance. 

For every gene in a specific tissue all the samples with the following characteristics were considered:  

a) they are heterozygous   

b) the two alleles are both known   

c) the two alleles are not unique (i.e. are present in other samples of the filtered collection) 

d) the sample had more than 50 informative reads between the two haplotypes for the AI measurement (as 

in par. 3.4.2.) 

For every allele present in this population, its relative contribution to allele-specific expression was computed 

as the ratio between the sum of the reads attributed to the haplotype and the sum of all the reads attributed 

to the alternative haplotypes. A comparison between two alleles was considered significant according to the 

same procedure adopted for assessing the significance of AI in the ALLIM analysis with the Stouffer method 

for meta-analysis (Stouffer et al., 1949). Here were considered as replicates all the samples for which the two 

considered alleles were the haplotypes. 
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Spearman’s correlation was measured between the relative expression observed in the data and the 

estimated relative expression.  

All the statistical operations were performed in R. 

 

3.5.3. Identification of the genes with an abnormal distribution of low or high AI among the sample 

population 

For every gene for which was possible to perform the analysis described in the previous paragraph all the 

alleles without a computed estimate of net contribution on general ASE were discarded, and the frequencies 

of the remaining alleles were calculated.  An index, here called ψ, was calculated with this formula 

 

where A refers to the set of alleles, i and j to two alleles, f to the frequency observed of the genotype, and ε 

to the estimate of net contribution on the general ASE of the allele.  

The alleles present in the population for that gene were then randomly associated in genotypes, according 

to their frequencies, generating a new population of casual genotypes, for which the index ψ was calculated. 

The process was repeated 1000 times, generating a distribution of indexes ψ that constituted our null 

population. The index ψ of the observed gene population was then ranked among the null distribution and 

its genotypes distribution was considered significantly divergent from the expected if its position was in the 

top or bottom 5% of the values.
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4. RESULTS AND DISCUSSION 

4.1 RNA sequencing 

RNA samples from 90 cultivars in leaves, 58 in hard berries, and 57 in soft berries were sequenced. Among 

the three tissues, we have at least one sample for 98 different cultivars, while 49 have data for all three 

tissues. One of the two replicas could be missing due to samples with technical problems or batch errors. The 

metrics of the sequencing results are listed in tables S1, S2, and S3 of supplementary materials. 

 

4.2. eQTL analysis 

4.2.1 eQTLs overview 

The results of the eQTL analysis are summarized in table 4.1. The higher number of eQTLs identified in leaves 

is expected, as a result of the higher number of cultivars used for the analysis and therefore higher statistical 

power. In all the tissues the majority of eQTLs were identified between genes and variants located in the 

same chromosome, and a significant fraction of the variants were distant less than 100 Kbp from the TSS of 

the genes. In these cases, the eQTL capture the regulatory effect of a variant situated near the gene, and 

therefore we assign them to the “cis-eQTL” category. On the other hand, the effect of a variant on a gene 

located on a different chromosome is an effect mediated by a diffusible factor. We assigned these signals to 

the category of “trans-eQTL inter chromosomes”. Another category consists of variants linked to a gene with 

the TSS located further than 100 Kbp, but on the same chromosome. These are variants that could be due to 

a trans-effect, but their very large number (7 to 8 times larger than the number of trans-effects detected in 

the other 18 chromosomes, when we would expect that inter-chromosome effects are 18 times more 

frequent than intra-chromosome ones if trans-acting effects were randomly distributed among the 19 

grapevine chromosomes) and the observation that LD blocks in the analysed population often extends over 

more than 100 Kbp, makes us believe that these could be the effect of long LD relationships with cis-

regulatory variants closer to the gene. We assign them to a third class, the “trans-eQTL intra chromosome”. 

Lastly, a fourth group is made of all the eQTLs that have the eGene or the eVariant located in a scaffold not 

assembled in a chromosome in the genome assembly used for our analysis. In this case, we cannot define 

the distance between the gene and the variant, and therefore we cannot assign these eQTLs to one of the 

other three groups. The number of eQTLs in this last category is substantial, since the total size of the 

aforementioned scaffold is roughly 60 Mbp, more than 12% of the total size of the genome and is sufficient 

that one between the eGene or the eVariant is situated on this region to assign the eQTL to this class. Since 

the information on the distance between the two members of the eQTL is not available, we will not consider 

these eQTLs when assessing the relative abundance of the different groups.  
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categories Leaves Hard Berries Soft Berries 

eQTL number 487 293 266 415 364 959 

 cis-eQTL 104 205 39 570 46 796 

 trans-eQTL intra chromosome 252 340 146 512 216 235 

 trans-eQTL inter chromosomes 28 726 20 734 32 166 

 eQTL on non-assembled scaffold 102 022 59 599 69 762 

eSNP 327 369 196 656 246 991 

 cis-eSNP 86 867 34 935 41 702 

 trans-eSNP intra chromosome 187 697 120 396 159 790 

 trans-eSNP inter chromosomes 26 926 17 275 28 774 

 eSNP of eQTL on non-assembled scaffold 57 499 40 331 45 068 

eInsertion 1 397 787 1 046 

 cis-eInsertion 283 110 135 

 trans-eInsertion intra chromosome 856 501 711 

 trans-eInsertion inter chromosomes 153 69 151 

 eInsertion of eQTL on non-assembled scaffold 239 172 180 

eDeletion 714 489 612 

 cis-eDeletion 192 68 81 

 trans-eDeletion intra chromosome 433 325 466 

 trans-eDeletion inter chromosomes 41 37 56 

 eDeletion of eQTL on non-assembled scaffold 136 82 84 

eGenes 3 132 1 740 1 978 

 eGenes non on random 2 590 1 418 1 608 

 eGenes with only cis-eQTL 793 445 443 

 eGenes with only trans-eQTL intra chr 255 157 183 

 eGenes with only trans-eQTL inter chr 289 238 299 

 eGenes with only cis and trans-eQTL (intra) 597 255 294 

 eGenes with only cis and trans-eQTL (inter) 27 22 18 

 eGenes with only trans-eQTL 100 76 91 

 eGenes with eQTL of all categories 529 225 280 

 eGenes with eQTL on non-assembled scaffold 542 322 370 

Table 4.1 – Summary of eQTL mapping results for the three tissues 
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In the table, we see that the bigger group in all the tissues is the one of the trans-eQTLs intra chromosome 

(65% - 73%). This could be a consequence of the high linkage disequilibrium and high haplotype sharing 

observed in Vitis (Magris et al., 2021). Association between a variant and a gene is registered in our results  

as some cis-eQTL and other trans-eQTL on the same chromosome, due to variants in linkage disequilibrium. 

This phenomenon can also be observed in figure 4.1: the bisector of the three scatterplots represents cis-

eQTLs and some trans-eQTLs intra chromosome, identifiable as segments slightly off from the bisector. If 

we compare the number of variants involved in eQTLs with the overall number of variants selected for the 

analysis, we find that neither the tissue nor the type of variants has a big effect on this ratio (8.6% - 11.0% 

for eSNPs, 6.1% - 8.2%, for eInsertions, 7.9% - 10.1% for eDeletions).  

Several studies identified eQTL hotspots, i.e. regions containing variants influencing a large number of 

genes through the genome, (Tian. et al. 2016; Qu et al., 2018; Velez-Irizarry et al., 2019). In our analysis, we 

did not identify any eQTL hotspot. 

eQTLs analyses are based on statistical correlation and, without other types of tests, we cannot define the 

relationship as causal. However, we can assume that, among the eQTLs established in an eGene, the one 

 Leaves Hard Berries Soft Berries 

 number r2 mean r2 ds number r2 mean r2 ds number r2 mean r2 ds 

All eQTLs best pv 3132 0.510 0.116 1740 0.615 0.093 1978 0.616 0.096 

 cis-eQTLs 1564 0.516 0.111 729 0.614 0.088 770 0.625 0.090 

 trans-eQTLs intra chromosome 671 0.491 0.118 388 0.609 0.103 462 0.616 0.103 

 trans-eQTLs inter chromosomes 316 0.493 0.115 269 0.612 0.094 338 0.590 0.094 

 eQTLs on non-assembled scaffold 581 0.524 0.122 354 0.624 0.092 408 0.620 0.097 

eQTLs best pv with eSNPs 2957 0.509 0.116 1649 0.615 0.093 1898 0.616 0.096 

 cis-eQTLs 1487 0.516 0.111 704 0.614 0.087 745 0.625 0.090 

 trans-eQTLs intra chromosome 647 0.491 0.118 378 0.610 0.103 449 0.615 0.103 

 trans-eQTLs inter chromosomes 294 0.493 0.115 239 0.612 0.094 318 0.591 0.095 

 eQTLs on non-assembled scaffold 544 0.524 0.122 336 0.624 0.093 389 0.620 0.097 

eQTLs best pv with eInsertions 17 0.517 0.086 11 0.590 0.096 16 0.604 0.103 

 cis-eQTLs 9 0.557 0.076 4 0.633 0.126 4 0.618 0.030 

 trans-eQTLs intra chromosome 5 0.492 0.086 4 0.559 0.093 4 0.703 0.172 

 trans-eQTLs inter chromosomes 0 -- -- 2 0.567 0.113 7 0.562 0.067 

 eQTLs on non-assembled scaffold 3 0.439 0.065 2 0.588 0.057 1 0.562 -- 

eQTLs best pv with eDeletions 6 0.509 0.128 10 0.623 0.099 6 0.674 0.060 

 cis-eQTLs 4 0.497 0.101 7 0.632 0.118 2 0.691 0.095 

 trans-eQTLs intra chromosome 1 0.378 -- 1 0.562 -- 4 0.666 0.052 

 trans-eQTLs inter chromosomes 0 -- -- 0 -- -- 0 -- -- 

 eQTLs on non-assembled scaffold 1 0.692 -- 2 0.619 0.018 0 -- -- 

Table 4.2 – count of eQTLs with lowest p-value for every eGene, and their mean and standard deviation of 

r2, according to the type of eVariant and of distance between eGene and eVariant 
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with the lowest p-value is the best candidate to be the causal variant or to be its best proxy. If we consider 

this data set, we find the cis-eQTLs grow from representing 16% - 27% of the eQTLs to 49% - 61%. This could 

be an effect of the different FDR threshold setting methods used for cis-eQTLs, more effective in pruning the 

low p-value eQTLs, but an overall higher significance of cis-eQTLs compared to trans-eQTLs (Zhang et al., 

2020; Mahler et al., 2017) is commonly reported. As a measure of the effect size of the eQTLs, we calculated 

the proportion of explained variance (r2) taking into consideration, for every eGenes, the eQTLs with the 

lower p-value. In table 3 we reported the mean and standard deviation of r2 of the various groups of eQTLs, 

divided according to the causal variant. Consistently to the literature, the cis-eQTLs have higher effect sizes 

(Zhang et al., 2020; Mähler et al., 2017; Wang et al., 2010), while the higher standard deviation in the berries’ 

samples could be a consequence of the smaller sample size in the two analyses in comparison to the leaves 

one. 

If we select the eSNPs, among these candidate causal variants, we can see if there is any enrichment for the 

genomic context of the SNP (figure 4.2) compared with the total of SNPs used as input in the analysis. SNPs 

situated in the exonic regions of genes or their UTRs are significantly enriched (p-value of a fisher test < 0.01 

with the exception of the exonic SNPs in Soft Berries), whereas the SNPs situated in intergenic regions are 

significantly less than expected. We do not register other significant effects on SNPs belonging to other 

regions (splicing, intronic, and upstream and downstream regions). 
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Figure 4.1 – Graphical representation of the 

location in the genome of eGenes and eVariants 

of eQTLs. Every point represents an eQTL, its y-

value is the position of the TSS of the eGenes, 

while the x-value is the position of the eVariant. 

The color of the points represents the 

chromosome of the location of the eVariant: red 

for the even chromosome, green for the odd 

ones, and black for the non-assembled scaffolds. 
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4.2.2 eGenes overview 

Analysing the category of eQTLs established by the eGenes and their relative abundance, we must exclude 

all the eGenes situated in non-assembled scaffolds and eGenes correlated only with eVariants situated in 

said scaffolds (17% - 19% of the total). Most eGenes show cis- and trans- eQTL (41% - 48%). However, the 

biggest share of eGenes is the one with eQTLs only in cis (28% - 31%), followed by the eGenes with eQTLs in 

all the three categories (16% - 20%). Overall, the majority of eGenes have at least one cis-eQTL (64% - 75%). 

In this study, we call this group cis-eGenes, while the eGenes with only trans-eQTLs will be indicated as trans-

eGenes and the genes that don’t have any significant eQTLs as non-eGenes. If we compare the coefficient of 

variation of expression between the three groups (figure 4.3) we find that the cis-eGenes have higher levels 

than the non-eGenes (p-value of Wilcoxon test < 0.01), while the trans eGenes have an intermediate level of 

variation of expression, being significantly higher than non-eGenes and significantly lower than cis-eGenes in 

all the three tissues. These data are consistent with the assumption that the genes whose expression can be 

affected by variants are genes relatively dispensable in the plant, that can undergo a change in expression 

without compromising the fitness of the individual. It is reported that, in an expression network analysis, we 

will find few core genes among the eGenes, while a bigger number of peripheral and dispensable genes will 

be affected by genomic variants (Mähler et al., 2017). We can further confirm this observation with an 

Figure 4.2 – Graphical representation of the genomic distribution of the lowest p-value scoring eSNP per 

eGene compared with the distribution of all the SNP used as input in the analysis. Height of the bars and 

value at their bottom represent the ratio between best-scoring eSNPs number observed and expected, 

divided for gene regions and tissues. The asterisks on the bars mark the comparisons with a fisher test p-

value < 0.01 
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analysis of the dN/dS ratio of the genes, a measure of strength and mode of selection acting on genes (Jeffares 

et al., 2015). If eGenes preferentially consist of genes on which selection constraints are relaxed, we expect 

that they will have a higher ratio between the number of nonsynonymous substitutions per non-synonymous 

site (dN), to the number of synonymous substitutions per synonymous site (dS). This trend is confirmed: cis-

eGenes, trans-eGenes, and non-eGenes establish three significantly different groups with the smallest values 

in the latter. A strong correlation between genes’ variance in expression levels and dN/dS values was found 

in a population of Vitis vinifera by Magris et al. (2019), a result that goes in the same direction as the one 

presented here. 

A comparison between the eGenes found in the three tissues can give us a measure of the tissue-specificity 

of this regulatory mechanism (figure 4.4). Unsurprisingly the tissues that share the bigger number of eGenes 

are the two berries (58% of the hard berries eGenes and 51% of the soft berries ones), but more than half of 

these are also eGenes in leaves, suggesting the existence of a group of gene consistently controlled by 

variants. Understandably the majority of leaves eGenes are unique of that tissue (67%). This is probably an 

effect of more than one factor: the higher sensitivity of the analysis compared to the berries ones, the 

differences in the set of cultivars used and, above all, the overall bigger diversity of the tissue compared to 

the difference between two stages of the same tissue.  

The same patterns can be observed in the distribution of cis-eGenes. 

To characterize the biological process affected by the regulation of genes by eQTL, we performed a functional 

annotation of the eGenes and highlighted the Gene Ontology category enriched in those lists (Supplementary 

material, tables S4, S5, and S6 ).  

In leaves, the majority of the enriched categories are involved in response to external stimuli both biotic (21) 

or abiotic (5). Other notable categories are the production and regulation of primary metabolites (12), and 

nucleic acid replication and maintenance (5). In hard berries, two groups emerge: as in leaves several 

enriched categories can be connected to response to biotic (13) and abiotic stimuli (2); while the second 

group is made of categories related to the regulation of the cell cycle, duplication, and maintenance of nucleic 

acids (20). The soft berries list includes fewer categories related to response to biotic (3) and abiotic stimuli 

(3); on the other hand, there are 19 categories relevant to the regulation of the cell cycle, duplication, and 

maintenance of nucleic acids, 7 to production and transport of primary metabolite and 8 related to the 

transport of RNA molecules from the nucleus. 
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Figure 4.3 – boxplots of the distribution of the coefficient of variation of expression and dN/dS values 

of Vitis genes, divided in tissues and categories of the eQTL analysis: eGenes with at least one cis-

eQTL (cis-eGenes), eGenes with only trans-eQTLs (trans-eGenes) and eGenes without any eQTL (non 

eGenes). Different letters between bars indicate a significant difference between distributions 

calculated with a Wilcoxon test (p-value < 0.01) 

Figure 4.4 – Venn diagrams with the numbers of eGenes (left) and cis-eGenes (right) for every tissue 

or shared between them 
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4.3. ASE analysis 

4.3.1 Overview and classification of genes 

We used the reconstructed haplotypes to perform an ASE analysis on all the genes with the program ALLIM 

(Pandey et al., 2015). In figure 4.5 we present a classification of all the genes in the different cultivars after 

this analysis. We classified a gene as homozygous in a cultivar when no heterozygous SNPs are identified in 

the transcribed portion or in a region between 1kb upstream of its TSS or 1kb downstream of its end. The 

percentage of homozygous genes in the cultivars varies from a minimum of 7.8% (Schioppettino) to a 

maximum of 25.8% (Henab Turki), the mean value across the 98 cultivars is 14.8%. If a gene presents a 

heterozygous SNP in the flanking regions, but not on its coding sequence, even if the SNP is causing allelic 

imbalance, we are not able to detect it, since the transcripts from the two alleles are identical.  These genes 

are classified in the category “no exonic SNPs” (minimum Verdicchio Bianco and Savagnin Blanc: 12.0%, 

maximum Falanghina: 24.0%, overall mean 14.4%). All the genes suitable for ASE analysis underwent further 

quality control, as described in paragraph 3.4.3. Among the analysed genes, some do not present a significant 

allelic imbalance (p-value > 0.05), while we divided the others into three levels based on the measure of 

allelic imbalance (AI), calculated as described in paragraph 3.4.3. 

The number of genes that display a statistically significant allelic imbalance can vary substantially across the 

cultivars in the same tissue. In the leaves samples, the minimum is 13.9% of the genes (Carignan), while the 

maximum is 30.4% (Nebbiolo), with a mean of 28.8%. The levels are higher in the berries’ samples: the range 

is between 24.3% and 44.2% (respectively Aglianico and Heunisch Weiss), with a mean of 30.8% for hard 

berries, while in the case of soft berries the minimum is 18.5% (Falanghina), the maximum 43.8% (Heunisch 

Weiss again) and the mean 29.8%.  

Taking into consideration only the genes analysed with ALLIM (figure 4.6) once again we see the difference 

between tissues. Nearly half of the genes didn’t show any allelic imbalance in leaves (higher: Lambrusco 

Grasparossa 54.1%, lower Heunisch Weiss 35.6%, mean 44.4%), while in berries the proportion is lower and 

similar between the two: the mean across the cultivars is in both of 31.0%, with ranges only slightly differ: in 

hard berries from 39.5% (Ribolla Gialla) to 17.5% (Heunisch Weiss), in soft berries from 18.8 (Heunisch Weiss) 

to 39.9 (Falanghina). Some cultivars stand out for their high percentages of genes with high levels of allelic 

imbalance. Schioppettino shows a high share of genes with AI>2: 11.9% in leaves (mean 5.4%), 18.4% in hard 

berries (mean 7.7%), and 16.8% in soft berries (mean 7.6%), other cultivars have an overall high percentage 

of genes with AI >1 if compared with the mean level, (for example Kölner Blau and Heunisch Weiss in berries) 

but there is no other outlier as clear as Schioppettino. 
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4.3.2. Regulatory heterozygosity 

With this data, we can estimate for every sample the level of what we called regulatory heterozygosity, an 

assessment of how much cis-regulatory diversity is present within each individual. The computation includes 

all expressed genes in each tissue, those where ASE could be estimated by ALLIM as well as those that were 

homozygous in each individual (where an ASE level of 0 was considered). In figure 4.7 we plotted the 

distribution of AI levels in the 49 cultivars in which we have samples for all three tissues. We include the 

genes analysed by ALLIM that pass the quality controls previously described.  As evident in the boxplot, levels 

of ASE observed in the samples from the berries are higher than the ones from leaves in all the cultivars but 

one, Pignoletto. All the differences were significant according to Wilcoxon’s test. In 19 cultivars the Wilcoxon 

test underlined a significant difference (p-value < 0.01) between the two berries samples, notably the hard 

berries’ ASE levels are significantly higher in Cesanese d'Affile, Chasselas Blanc, Falanghina, Garganega, 

Bombino Bianco, Rkatsiteli, Sangiovese, Schioppettino, Sultanina, and Verdicchio Bianco. On the other hand, 

soft berries show higher ASE in Barbera, Cabernet Franc, Cabernet Sauvignon, Lambrusco di Sorbara, Merlot 

Noir, Montepulciano, Picolit, Riesling Weiss, Savagnin Blanc, Tribidrag, and Vernaccia S.G.   

The overall higher levels of AI detected in berries compared to leaves are consistent with a precedent study 

of our group (unpublished data). Other works underlined the difference in ASE levels between different 

tissues (Cheng et al., 2021). 

 

4.3.3. Comparison of ASE among tissues 

We then assessed if the cis-regulation of gene expression detected with ASE was tissue-specific. For every 

cultivar, if present in more than one tissue dataset, we performed a Fisher test for every gene, comparing 

the number of reads in the two haplotypes and the two tissues. Being the null hypothesis of the test “the 

two samples have the same distribution of reads in the two haplotypes”, in presence of p-values < 0.05 the 

genes have different regulations of the allele-specific expression. In table 4.3 we show, for every cultivar, the 

percentage of genes for which Fisher’s test p-value is lower than an FDR threshold calculated with Benjamin-

Hochberg’s method (Benjamini and Hochberg, 1995), i.e. those showing tissue-specific levels of ASE. In the 

first column, the results concern a test executed with all three tissues, indicating the percentage of genes 

that undergo different haplotypic regulation, while the other three relate to comparisons of two tissues at a 

time, underlying genes with different behaviours between the two. As we can see in all the cultivars more 

than half of the genes show a difference in the regulation of allelic-specific expression (mean 63.7%). 

Unsurprisingly the comparison between the two berries tissues is the one with the lowest share of 

differentially regulated genes in most of the cultivars (mean: 35.0, mean of comparisons between leaves and 

berries: 45.1 for both hard and soft). Some cultivars make exceptions: the two berries are most different in  
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Figure 4.5 – Number of genes in each cultivar and tissue belonging to the following categories: “homozygous” (without 

heterozygous SNPs from 1kb upstream the TSS of the gene to 1kb downstream the end of the transcribed region), “no 

exonic SNPs” (with heterozygous SNPs but not in exonic regions and therefore not analyzed by ALLIM), “low informative 

reads” (genes with less than 50 reads on exonic SNPs), “no significant AI”, “0 ≤ AI < 1”, “1 ≤ AI < 2”, “AI ≥ 2. Red labels point 

out cultivars with only one replicate. 
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Figure 4.6 – Percentage of genes belonging to different category in ALLIM analysis output. Red labels point out 

cultivars with only one replicate. 
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Figure 4.7 – Distribution of AI levels of genes in cultivars with at least one replicate for every tissue. Both genes with 

significant AI calculated by ALLIM as well as homozygous genes expressed in the sample (to which a value of AI = 0 is 

attributed) are used in the graph. 

AI 
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Table 4.3 - Genes with allele-specific expression different between tissues. Column “three way test”: percentage of genes 

showing significant deviations from expectation when comparing all the three tissues with a fisher’s test. Columns 

“Leaves vs Hard Berries”, “Leaves vs Soft Berries” and “Hard vs Soft Berries”: percentage of genes showing significant 

deviations from expectation when comparing the two titular tissues. 

 

 

 (Fisher’s test with q-value < 0.05) between the three tissues (first column) or two tissue ad a time in the pool of 

genes with an ALLIM result.  

  three way test  Leaves vs Hard Berries Leaves vs Soft Berries Hard vs Soft Berries 

Airen 61.3 48.7 46.6 24.3 

Alexandroouli 64.4 43.8 43.6 39.8 

Ansonica 61.8 45.8 45.4 31.0 

Barbera 70.7 47.4 52.0 44.1 

Bayan Shirei 75.8 55.0 53.3 50.9 

Berzamino 56.1 41.1 41.1 23.3 

Bombino Bianco 72.5 53.7 51.9 42.1 

Cabernet Franc 60.4 38.3 39.8 35.2 

Cabernet Sauvignon 76.3 53.7 55.8 49.2 

Cesanese d'Affile 68.6 48.5 45.4 42.1 

Chasselas Blanc 52.2 39.0 38.4 21.7 

Falanghina 68.6 54.1 42.2 36.1 

Fiano 63.4 46.5 48.9 31.4 

Fumat 68.4 46.0 46.7 43.2 

Garganega 62.8 43.0 41.1 38.1 

Garnacha 57.2 42.2 43.2 24.4 

Gordin Verde 57.3 40.9 41.4 30.5 

Heunisch Weiss 82.7 55.8 54.2 65.1 

Kadarka 57.4 42.1 44.1 23.6 

Lambrusco di Sorbara 71.5 45.0 48.9 47.7 

Lambrusco Grasparossa 59.6 36.9 38.4 35.8 

Malvasia Istriana 55.3 41.7 41.8 21.1 

Merlot Noir 64.6 48.1 49.4 28.7 

Montepulciano 66.7 46.2 50.6 37.7 

Muscat a Petits Grains B. 56.8 42.0 44.1 25.2 

Negro Amaro 54.3 38.3 40.2 25.1 

Picolit 55.7 40.9 43.1 21.4 

Pignoletto 65.0 50.9 50.1 26.4 

Pinot Noir 73.7 48.1 48.7 52.3 

Refosco P.R. 59.6 42.6 43.4 29.4 

Ribolla Gialla 55.5 41.5 44.9 17.7 

Riesling Weiss 56.3 39.8 42.2 25.1 

Rkatsiteli 69.5 51.5 46.4 42.5 

Sagrantino 57.2 42.8 41.5 26.0 

Sangiovese 66.3 49.0 40.7 41.4 

Sauvignon Blanc 73.0 50.2 49.1 50.6 

Savagnin Blanc 58.8 38.0 41.3 34.7 

Schiava Grossa 54.3 40.1 40.0 22.3 

Schioppettino 72.3 48.9 45.1 50.7 

Sultanina 64.1 48.6 41.4 34.0 

Tavkveri 62.6 41.3 42.5 37.3 

Tocai Friulano 56.1 41.9 40.5 24.4 

Trebbiano Toscano 61.6 47.5 47.8 25.0 

Tribidrag 57.4 41.3 42.9 26.2 

V411 70.6 46.4 48.7 44.6 

Verdicchio Bianco 69.4 51.4 49.9 38.7 

Verduzzo Friulano 68.8 41.8 43.8 47.3 

Vermentino 56.5 40.6 42.0 25.6 

Vernaccia S.G. 71.3 42.4 44.1 54.0 
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Heunisch Weiss, Pinot Noir, Sauvignon Blanc, Schioppettino, Verduzzo Friulano, and Vernaccia S.G. These 

results indicate the presence of a tissue-dependent regulation of ASE. This is consistent with the diversity 

detected between tissues in the eGene determination. Cheng et al (2021), although detecting an overall 

difference in AI levels between tissues, underline that individual genes have similar AI levels between tissues. 

However, in order to determine that, they divide the genes into categories according to their fold change 

values using as class limits 0, 2, 4 and 8, and then count the genes changing groups between tissues. This 

method is understandably less sensible than a Fisher test on the number of reads and doesn’t register 

eventual cases of reversion of more and less expressed haplotypes in different tissues. 

 

4.3.4. Genes with monoallelic expression 

Allele-specific expression analysis highlighted a group of genes with a noticeable expression pattern: all the 

reads were attributable only to one of the alleles. We called these genes “monoallelic genes” (MAG) and 

counted their distribution among the cultivars with a sample for every tissue (fig 4.8).  The median of the 

monoallelic genes is similar in the three tissues (35 in leaves, 31 in hard berries, 34 in soft berries). 

Unsurprisingly, samples with high median AI tend to have more monoallelic genes (for example Heunisch 

Weiss is the second among the cultivars in berries for both AI median values and monoallelic counts), but the 

two measures aren’t always coupled as can be seen for example in Pignoletto and Sauvignon Blanc.  

A separate discussion must be made for the Schioppettino case. The number of monoallelic genes in this 

cultivar is particularly high in all the tissue and this could partly explain the high level of AI previously 

described in this cultivar, even if the low number of homozygous genes on this sample also concurs to raise 

the AI levels. We didn’t find a biological explanation for this clear outlier, so we have to consider a possible 

technical one. Theoretically, if the sample of one tissue was mislabeled and belonged to another cultivar, we 

should see high numbers of monoallelic genes. That is because if we perform a haplotype-aware alignment 

between two different cultivars, for every gene for which the two share only one allele, the reads will be 

aligned only to that allele and none to the other, making it a monoallelic gene. However, a label switching of 

the tissue samples is highly improbable because the three belong to different biological samples and were 

collected independently. The genome sample may be mislabeled as Schioppettino, but in the early stage of 

this work the correspondence of cultivars between genome and transcriptome samples was checked 

(paragraph 4.1). Moreover, we executed the analysis with a mislabeled cultivar (an unknown cultivar 

assigned to Lambrusco Sorbara) and the number of monoallelic genes obtained was far higher than the one 

observed for Schioppettino (1492 in leaves). A possible explanation of the Schioppettino results is that in the 

tissue used for the genomic sequencing some contaminants from other cultivars were present. This could 

have caused the identification of a lower number of homozygous genes and a higher number of genes with  
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monoallelic expression. If the level of contaminants was low, this could have gone undetected in our analysis 

for cultivar correspondence.  

We checked if the monoallelic genes also had a tissue-dependent distribution. To do so, for every tissue, we 

verify the ALLIM output in the other two tissues of its monoallelic genes. Even if it’s not frequent that a gene 

displays a monoallelic expression in all three tissues (a mean of 10.3% in leaves, 27.1% in hard berries, and  

11.2% in soft berries), the vast majority of MAGs are included in one of the following categories in other 

tissues: either have still a monoallelic expression, or an AI > 2, or have too few reads to be analyzed with 

ALLIM (Supplementary figures S2, S3, and S4). In conclusion, if in a tissue we observe a silenced allele, it’s 

highly probable that in other tissues too we will observe a strong imbalance between the two alleles. 

 

 

  

Figure 4.8 – Number of monoallelic genes in cultivar with at least one sample for every tissue 
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Figure 4.9 - Correlation of allele-specific expression regulation between consecutive genes according to reciprocal distance. 

The boxes represent the distribution of the coefficient of correlation (in absolute value) between vectors constituted by AI 

values in different cultivars of two consecutive genes. On the x-axis the consecutive genes are divided in class depending on 

reciprocal distance, the labels above the boxes are the numerosity of the class of genes. The boxes are colored depending on 

the p-value of a Wilcoxon test between the distribution of correlation coefficients in that class and a similar distribution 

obtained from a population of a randomly selected set of gene pairs belonging to different chromosomes. 

1 
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4.3.5. Correlation of ASE values in contiguous genes 

Since a different expression of two alleles has its roots in heterozygous cis-elements that regulate 

differentially the two haplotypes, we tried to assess if these elements may exert their action not on a single 

gene but rather on multiple physically close genes by testing if physically proximal genes have an allele-

specific expression pattern more correlated compared to two randomly selected genes. Figure 4.9 

summarizes the distribution of the correlation coefficient between AI values of a given pair of genes in each 

cultivar. Consecutive genes were divided into classes according to the distance of the two TSS and compared, 

with a Wilcoxon test, with a distribution of correlation values from randomly generated couples of genes 

belonging to different chromosomes. In all tissues, the statistical test gives a p-value lower than 0.01 to 

continuous genes with a mutual distance of up to 14 kbp. Moreover, the medians of the distribution of each 

class tend to decrease with each increment of the TSS distance. A notable exception is, in leaves and soft 

berries, the median of class 0-1kbp lower than the one belonging to class 1-2 kbp, however, this doesn’t 

surprise us, as this class is probably enriched for genes transcribed on opposite directions, with TSS that are 

near each other, but the rest of sequences are diverging. Class of pairs of genes with distances from 14 to 27 

kb in leaves and hard berries and to 29 kb in soft berries, sometimes are significantly more correlated than 

the reference class, but give us more uncertain results, due to a lowering of the median of the distribution of 

the class, but also due to the lower number of the population of genes available.  

These results are consistent with the hypothesis that the allele-specific regulation of genes has a local effect, 

and that more than one gene could be affected by the same mechanism of haplotype regulation. This finding 

is consistent with the result of a similar analysis carried out in Vitis vinifera’s berries by Magris et al. (2019). 

In that work, the authors measured the correlation of expression levels of consecutive genes dividing them 

into groups according to the distance of their TSS and compared them to values relative to couples of genes 

randomly paired. Consecutive genes showed significantly higher correlation values up to a TSS distance of 27 

kb. 

 

4.3.6. Gene ontology categories enrichment in genes with strong evidence of ASE  

Lastly, this data gives us the opportunity to investigate if some genes more than others are subject to cis-

regulatory effects and, if so, which characteristics they have. We selected the genes that, among all the 

cultivars in which they have been tested with ALLIM plus the cultivars where the gene is homozygous, have 

80% or more of the results with significant AI. On these genes, we performed a functional annotation and 

selected the gene ontology categories enriched according to a Fisher’s test (Supplementary material, tables 

S7, S8 and S9 ). Even if the results vary among the tissues, we can aggregate the GO tags in macro-category 

as: reaction to biotic or abiotic stress or stimuli (14 in leaves and hard berries, 13 in soft berries), 
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transmembrane transport, especially of ions and water (11 in leaves, 7 in hard berries, and 3 in soft berries) 

and most importantly biosynthetic and metabolic process of primary metabolites. It is worthy of mention 

that the type of metabolite varies among tissues: in leaves (29 categories) are primarily carbohydrates, lipids, 

waxes, and cellulose; in hard berries (37 categories) we find some carbohydrates and lipids, but most of all 

amino acids and ribonucleotide related compounds; in soft berries (43 categories) in addition to the above 

mentioned ones there are also categories related to glycolysis and oxidative phosphorylation.  

We performed a similar analysis for the monoallelic genes in each tissue (Supplementary material, tables 

S10, S11, S12). In leaves most of the enriched GO categories are related to a response to an external stimulus 

(24), but we find also 8 categories related to secondary metabolism, a process we didn’t find enriched in the 

other cases studied here. In berries is more difficult to find common features between GO terms: the 

categories related to response to external stimuli are 9 in hard berries and 8 in soft, the ones related to 

primary metabolism 6 and 5, respectively, and the GO terms attributable to a secondary metabolism process 

are 4 in hard berries and 8 in soft. A similar analysis was performed in Zingiber officinalis by Cheng et al. 

(2021), and the pathways more represented were related to resistance (response to toxic substance, 

terpenoid biosynthetic process and alkaloid metabolic process) 

 

4.3.7. Comparison between eQTL and ASE analysis results 

Using the same criterion mentioned before (percentage of cultivars where a gene has significant AI) as a 

proxy of how much is a gene subject to allele-specific expression regulation, we can do a comparison between 

the ASE behavior of a gene and its status of cis-eGenes or not. As discussed in the introduction, the two 

measures have complementary blind spots and even if a cis-regulation of the expression of a gene can be 

effectively measured by both, there are many cases where only one of the two is able to detect and assess 

the phenomenon. This is well described in figure 4.10. The more are the cultivars in which a gene shows an 

AI, more likely it is that it has a cis-eQTL, even if the majority of the genes in all the categories are not 

identified as eGenes. In the graphic, we can also appreciate the better sensitivity of the eQTL leaves analysis. 

The proportion of non tested cis-eQTL is higher in the group of genes with a low percentage of “AI-cultivars". 

This is probably due to the fact that in these groups there is a bigger share of homozygous genes, likely to be 

discarded as non-informative or with heterozygous genotypes too rare for the eQTL analysis (and filtered out 

as in paragraph 3.4.3.). Moreover, a decrease in significant ASE cases is expected in genes with overall low 

expression, and therefore not tested in eQTL analysis: in these cases it will be more probable that moderate 

AI will be assessed as not significant, due to the small sample size of informative reads. The same 

phenomenon can explain the slightly higher share of cis-eGenes in the class of genes with AI in less than 20% 

of the tested cultivar. Still, if the genotypes heterozygous and alternative homozygous pass the filter, there 

will be few points for the linear model of the eQTL analysis, and in this situation can occur the risk of high p-



Chapter 4 - RESULTS AND DISCUSSION              

44 
 

value due to low sample size.  

The difficulty to cross the results of the two analyses was registered by other authors. For example, Khansefid 

et al. (2018) in their work on Bos taurus noticed that, although the eQTL mapping and the ASE analysis gave 

similar results in terms of the number and effect of cis-acting variants described, only half of the cases were 

identified by both the analyses. 

A second approach could be to assess if genes with high ASE regulation have low selective constrain, sharing 

this feature with eGenes. As we can see in figure 4.11 there is a positive correlation between the dN/dS index 

of the Vitis genes and the mean AI measured across all samples. Similarly, genes with high dN/dS show 

significant AI in more cultivars than the others. The same correlation was observed by Cheng et al. (2021). 

This is an indirect observation, but we can conclude that both eGenes (and particularly cis-eGenes) and genes 

with frequent or high AI regulations are genes with fewer selective constraints. 
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Figure 4.10 - Partition of genes in categories from ASE analysis and eQTL analysis. The different bars in the three tissue 

contain genes divided according to how many cultivars that gene recorded significant AI (percentage of significant Ai cultivar 

on total ALLIM record for the gene plus homozygous cases). The numerosity of the group is indicated at the top of the bar. The 

colors of the bars represent the eQTL classification between cis-eGene, non cis-eGene (that means that have no eQTLs or only 

trans-eQTLs) and are not analyzed by matrix-eQTL (low expression gene).  

 

Figure 4.11 – boxplots of AI genes metrics observed in 5 groups of genes divided according to dN/dS values. 

a) AI mean of the gene in all the observed AI significant value across the cultivar. b) ratio between the number of sample 

where the gene shows a significant AI on the total of sample tested for that gene (samples analyzed by allim + sample 

homozygous for that gene). In both a and b different letters between bars indicate a significant difference between 

distributions calculated with a Wilcoxon test (p-value < 0.01) 
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4.4. Analysis of the allelic variant population of the genes  

If we aim to understand how the expression of a gene is regulated by genetic variation in a population, both 

the eQTL and ASE analyses are, as presented, useful to investigate the phenomenon. Nevertheless, both 

methods have some shortcomings.  

With eQTLs mapping we are able to investigate the different regulations of a gene through different samples, 

catching a measure of its variation in the population for the selected tissue. On the other hand, we can 

observe the variation of the gene only in relation to a singular biallelic variant at a time, independently from 

the others. As a result, we can’t detect the effect of the combination of more than one variant on the 

expression of the gene.  

With the analysis of allelic-specific expression of the genes we take into consideration all the differences 

between two haplotypes that have an effect on the two alleles of a gene, but it can be done only one sample 

at a time, comparing a single pair of alleles. Consequently, it’s difficult to make assumptions about the 

regulation of the gene in the population.  

To overcome these drawbacks, we investigated the ASE results taking into consideration one gene at a time, 

across all the individuals analysed for each tissue. Our aim is to estimate the relative cis-regulatory value of 

each gene allele observed in the population of analysed individuals by combining the information obtained 

from all the heterozygous combinations in which that haplotype is observed. This would allow us to infer the 

number of different cis-regulatory alleles present in the population and quantify their relative expression 

differences. An important assumption behind this analysis that may not always be met is that when the same 

genic allele is found in different individuals it is always linked with the same set of cis-regulatory variants, i.e. 

that LD extends well beyond the genic region to the flanking regulatory regions. This assumption is somewhat 

supported by the very frequent observation of cis-eSNPs over long distances (see also the previous discussion 

on the high frequency of trans-eQTLs intra chromosome). The estimation of the cis-regulatory value of each 

allele would also allow us to extend population genetics concepts such as those of expected and observed 

heterozygosity that are applied to sequence variation to regulatory variation. 

 

4.4.1 Estimate of the impact of haplotype variants on expression 

With the data obtained from the haplotypes of each cultivar, we compiled a comprehensive list of all allelic 

variants present for each gene in the population and coupled every cultivar with its two alleles (or singular 

allele if homozygous). We were able to obtain a haplotype collection for 26 336 genes, with a median of 22 

alleles per gene (minimum 2, maximum 164). 

Integrating this information with the ASE data, we measured the average relative contribution of each 

haplotype to the expression of the gene. The procedure is briefly described in paragraph 3.5.2. Figure 4.12a 
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shows the estimated net contribution (from now on ENC) of the individual alleles on an example gene. As we 

can see, we obtain a ranking of all the allelic variants and are now able to compare haplotypes that are never 

observed together in a genotype. To assess the robustness of the model we can calculate the correlation 

between the values of AI measured with ALLIM and the values expected for that pair of alleles using their 

ENCs (figure 4.12b). This example shows a high level of variation in expression among haplotypes with the 

most extreme haplotypes showing an approximately 64 fold difference (26) in expression and a range of 

haplotypes with intermediate levels.  

In some cases, we saw that the correlation values were low and our model not properly fitting the gene’s 

ALLIM data. We will now briefly discuss these cases, in order to identify the possible causes. 

The first common case is the one represented in figure 4.13a. It is noticeable that in the correlation’s 

scatterplot multiple observed AI values correspond to a single estimated AI value, and that these observed 

AI have high variability, resulting in several points vertically aligned. Such a situation occurs when we observe 

in the population many times the same genotype, but the AI values from those samples have high variability. 

This could be caused by one or more of the following: a) the two haplotypes are identical in the known 

sequence, but have in various samples different ASE levels determined by a variant that hasn’t any 

 

  

Figure 4.12 - Graphical representations of the alleles’ ENC for gene VIT_205s0102g01070 in leaves  

a) Estimated relative levels of the contribution of each allele to the expression. The scale on the Y axis is a log2 

scale where the position of the 0 is arbitrary. The letters along the X axis identify the different alleles for which the 

expression contribution is estimated. The letters along the basis of each bar indicate the heterozygous genotypes 

involving that allele where significant AI was detected. b) Scatterplot of the linear model assessing the quality of 

the alleles’ regulatory value estimate. Each dot corresponds to a different heterozygous genotype analysed. Values 

on the Y axis represent observed AI values in every genotype, while values along the x axis are the estimated AI 

values obtained from the model. 

 

 

 

 a) b) 
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Figure 4.13 - Graphical representation of the AI estimates values for three genes (left) and linear correlation 

between observed and estimated AI (right). The analyzed genes are three examples where we obtain low 

correlation values. 

 

 

 

a) 

b) 

c) 
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proxy SNP in the gene exons, or which proxies are in introns, flanking regions or are not correctly identified 

in the SNP calling phase. In other words, those samples have not in fact all the same genotype, but two or 

more allelic variants were mistakenly assigned to the same allele in our model. b) The samples have in fact 

all the same genotype and cis-variants in the considered locus, but the different ASE levels are caused by 

some variant that acts in trans, through a diffusible factor, that regulates differently the expression on the 

two haplotypes of the individuals (figure 4.14). Since this hypothetical trans-variant is not present in all the 

samples, the ASE values differ significantly among them This phenomenon was observed by Magris et al. 

(2019) on a small fraction of Vitis vinifera genes. c) An error, that occurred in the haplotype calling step, 

resulted in the calling of the wrong allele for the samples, that were so assigned to the wrong category.  

The second example of bad fitting of the model is represented in figure 4.13b. In these cases, the magnitude 

of the observed AI is probably too little and the variability between observed AI between samples with the 

same genotypes, even if small in absolute terms, impact significantly on the calculation of ENCs, thus 

invalidating the model. 

  

Figure 4.14 - Graphical representation of a hypothetical case where two individuals with identical genotypes in a 

locus have different AI levels caused by a variant acting in trans. Individuals 1 and 2 have identical genotypes in 

Locus A, in individual 1 the two different enhancer B variants cause different expression levels of Gene A, resulting 

in the green allele being more expressed than the red one. On the other hand, in individual 2 the gene C, situated 

in a different locus, produces a diffusible factor (transcription factor D) that binds only with the purple variant of 

enhancer B, inhibiting its enhancer function and thus acting as a repressor of Gene A’s expression. The result is 

that in individual B the red allele of Gene A is more expressed than the green one 

 

 

 



Chapter 4 - RESULTS AND DISCUSSION              

50 
 

Figure 4.13c depicts the example of a gene where the model wasn’t successful, but from the data, we cannot 

indicate with confidence a probable cause. We can speculate that in these cases some errors in the upstream 

steps have occurred. As said, it’s possible that some SNPs weren’t properly called, or that not all the 

haplotypes were correctly inferred. Another possibility is that in cases of a family of genes with similar 

sequences some reads were assigned with the wrong gene, conditioning the AI calculations. 

In all the described cases we cannot trust the ENCs values, so for the remaining discussion of the results, we 

will not consider genes with low values of the correlation test, putting a threshold on Pearson’s coefficient 

of 0.6. However, if the correlation values are regarded as indicators of the quality of the estimated AI in the 

genes, we must take into consideration some factors that could inflate them, invalidating our assumptions. 

 

  

Figure 4.15 - Graphical representation of the AI estimates values for two genes (left) and linear correlation 

between observed and estimated AI (right). The analyzed genes are two examples where the correlation values 

could be inflated. 

 

 

 

a) 

b) 
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First, in case of a great number of alleles observed in the genes and few cultivars with ALLIM output to put 

in the model, it may occur that one haplotype is observed only once, and in this case the expected relative 

expression will by definition coincide with the observed relative expression, ultimately inflating the r2 

estimate (Figure 4.15a). Since this is a problem relative to the sample size of the analysis, the only possibility 

to preserve the accuracy is to filter out the genes with the ratio between the number of estimated alleles in 

the population and the number of samples used in the model lower than 1.5. 

A second inflation factor is given by the outlier for observed AI values in a population and is well depicted in 

figure 4.15b. As we can see in the example given, the allele A, observed one single time, gave an ENC far 

lower than all the other alleles. As it is well known, Pearson’s correlation coefficient is very sensitive to 

outliers and this can lead to false results (de Winter et al., 2016). A possible solution is to use Spearman’s 

correlation coefficient when assessing the robustness of our model, since is less prone to outlier-driven 

inflation (ibidem). 

In conclusion, we selected for every tissue all the genes that follow these criteria: the number of samples 

used for the AI estimates higher than 1.5 times the total of alleles present in the population for the gene, 

Pearson’s correlation coefficient higher than 0.6, and Spearman’s correlation coefficient higher than 0.7. We 

retained 4488 genes in leaves, 3210 in hard berries, and 3562 in soft berries. The lower number of genes in 

berries tissues is expected since the starting cultivar population in these tissues is smaller.  

A total of 1165 genes pass the filter in all three tissues and comparing them could give us an indication about 

the behaviour of the gene alleles in different tissues. First, we compared the magnitude of the ENCs of the 

alleles: for every gene, we calculate the difference between the lower and the higher ENCs in every tissue 

and then compare them.  We counted the genes with a difference of more than 0.5 between the two ENC 

range (that means that the range displayed by one is 1.4 times the other, since the ENC are in a log scale), 

obtaining 532 genes with different ENC range between leaves and hard berries, 539 between leaves and soft 

berries, 260 between the two berries. 

For a more accurate comparison between ENCs of the same alleles in different tissues, we performed a 

Pearson correlation test for every gene comparing the ENCs values for the alleles present in all the tissues 

and then counted the genes with a coefficient higher than 0.5 and with p-value < 0.05. Among the 1165 

genes, 635 pass these thresholds in the comparison leaves vs hard berries, 624 in leaves vs soft berries, and 

1132 in hard vs soft berries. The low number of genes with a similar pattern of ENCs in leaves and berries 

tissues is probably partly caused by the difference of allele population between the tissues but is fully 

consistent with the tissue-dependent variability of ASE previously observed in this work. In figure 4.16 we 

present an example of a gene with substantial differences between ENCs in the tissues, even if the allele 
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population is identical among the three. It’s difficult to estimate the frequency of the phenomenon, due to 

the drawbacks previously described and all the filters applied to eliminate the possibility of false positives 

but browsing the results we can state that significant shifting of an ENC value of an allele between tissues is 

common  

Figure 4.16: ENC values for the gene VIT_218s0001g10460 in the three tissues. Some alleles show a strong tissue-

dependent expression. For example, allele A is the lowest in leaves but with is among the highes ENC values in 

berries, while E and F have an opposite pattern. 
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4.4.2 Identification of the genes with an abnormal distribution of low or high AI among the sample 

population 

A common analysis in population genetics is to test a gene sequence variant for deviations from the Hardy-

Weinberg proportion. Such deviations can be the result of a number of causes: deviations from random 

mating behaviour such as those due to inbreeding or assortative mating, and selection among others. One of 

the possible explanations for the deviation of the observed genotype frequencies from the expected ones in 

a gene can be that one of its sequence variants influences the fitness of the individuals, and therefore is 

subject to selection (Wang and Shete, 2012). We decided to use the results of the ENC estimation for 

individual haplotypes to compare the observed distribution of cis-regulatory variants in genotypes with that 

expected under a random assortment of individual haplotypes in genotypes. In other terms, we want to 

assess ifthe  selection is favouring either the presence of individuals with large differences in expression 

among alleles or vice versa of individuals with similarity in the expression among alleles.  Unlike the 

traditional Hardy Weinberg equilibrium analysis that considers sequence variants per se without any 

implications for their effects on phenotypes, here we are explicitly considering the cis-regulatory value for 

each haplotype in the analysis.  

An advantage of having an estimate for the net contribution to the expression of a singular allele is that we 

can now have an estimate of what would be the expression level of a gene of a hypothetical individual with 

two alleles never observed together in our population. This enables us to use the traditional methods used 

in population genetics replacing the study of the expression levels of a gene in a population with its AI value. 

In particular, we tried to assess if the AI determined by a genotype could have an impact on the frequency of 

that genotype in the population. With a method explained in paragraph 3.5.3, we compared the AI level of 

the population of the genes with similar AI levels of a null population, searching for genes with unexpected 

distributions of genotypes, that could justify the hypothesis of selection favouring either high-AI genotypes 

or, on the other end, low-AI genotypes.  In each cultivar we found genes in both these categories: on a total 

of 4488 genes tested in leaves, 3210 in hard berries, and 3562 in soft berries lower than expected AI 

genotypes were found in 577 genes in leaves, 291 in hard berries, and 306 in soft berries (these are cases 

that represent lower observed regulatory heterozygosity than expected), while higher than expected AI 

genotypes were found in 41 genes in leaves, 40 genes in hard berries and 41 in soft berries.  
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5. CONCLUSIONS 

 

Vitis vinifera is a cultivated species with a high level of heterozygosity and this was reflected in the mapping 

of a high number of eQTL in our work in all three tissues, while the high level of LD observed in this species 

was probably the cause of the high number of significant associations per eGene. The difference in the 

number of significant associations found in the three tissues may be due to the difference in the sample size, 

and hence power, in the tissues. Consistently with previous findings, the eGenes showed more variability in 

their expression levels and less selective constraint. This resonates with other studies, and with the idea that 

non-coding regions with low selective constraints can introduce variability, acting preferably on dispensable 

genes than on core, essential ones. After the functional annotation of the eGenes, we found that many 

enriched GO categories belonged to response mechanisms to biotic and abiotic stimuli, a set of genes known 

for their variability. 

The Allele-specific expression analysis, together with the identification of the homozygous expressed genes 

in every cultivar, enabled the development of an index that we called “regulatory heterozygosity”, a measure 

of how much the transcriptome of an individual is regulated by the allele-specific expression of his genes. 

Levels of regulatory heterozygosity varied across cultivars and were generally higher in berries than in leaves. 

These results are coherent with data from previous projects of our group and indicate that the genes 

responsible for the AI levels have a tissue-specific expression, or that allele-specific expression can be a 

tissue-dependent mechanism of regulation. Our results validate the latter hypothesis, showing that the 

majority of genes with AI have different expression patterns depending on the tissues. On the other hand, 

contiguous genes with physical proximity tend to have similar ASE patterns, introducing the idea of “islands” 

of cis-acting regulation. 

The results of ASE analysis and eQTL mapping are overall coherent with each other, and covering the 

reciprocal blind spots, gave us a more comprehensive scenario of the cis-regulation in Vitis. We found that 

genes showing ASE more frequently in the population are more likely to have a cis-eQTL. Moreover, genes 

with high levels of allele-specific expression or with AI in many samples, tend to show lower selective 

constraints, like the eGenes. 

In conclusion, with this project we gathered and organized a complete set of information about gene 

expression regulation due to genomic variants. This dataset can be investigated from three different 

perspectives: considering the tree tissues, we defined in each one the set of genes more prone to be 

controlled by genomic variants. In addition, we measured the level of regulatory heterozygosity in the 

different tissues of each cultivar. Finally, looking at the single genes, we gathered a series of interconnected 

information: if it can be considered an eGene, in which cultivar it shows AI, if this behaviour changes in 
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different tissues, its number of allelic variants across the population and the difference in expression between 

these allelic variants. This is the first comprehensive description in Vitis vinifera on how variants in the 

genome can shape the regulation of its transcriptome and can be of assistance in the studies of pathways of 

interest and the basis for further investigation on the topic.
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7. SUPPLEMENTARY MATERIALS 

 

Table S1 – sequencing and alignment metrics for leaves samples, divided according the two replicates. The 

four column are: “output reads”: the number of sequenced reads; “trimmed pairs”: number reads that 

successfully passed the quality filter described in paragraph 3.2. This number refer to the pair of reads as 

the unpaired ones were discarded; “mapped pairs”: number of reads pair uniquely mapped to the reference; 

“number genes”: number of genes with a minimum of 5 reads uniquely mapped on. 

 

LEAVES SAMPLES  
Replicate 1  Replicate 2  

output reads  trimmed pairs  mapped pairs  number genes  output reads  trimmed pairs  mapped pairs  number genes  

Agadai  32 620 130  14 449 212  13 573 193  18 943  25 570 760  12 167 262  11 368 342  18 943  

Airen  4 402 800  2 007 239  1 798 714  21 194  96 813 304  45 886 318  42 951 954  21 194  

Alexandroouli  33 291 254  15 736 009  14 741 485  18 201  21 083 306  10 074 007  9 312 660  18 201  

Ansonica  36 229 330  17 132 032  16 129 478  20 191  57 371 514  26 968 781  25 028 146  20 191  

Ararati  33 184 918  16 202 802  15 376 910  18 057  23 740 156  11 214 010  10 264 024  18 057  

Assyrtiko  30 866 730  15 066 929  14 275 650  18 797  25 670 356  12 066 933  11 291 620  18 797  

Asyl Kara  36 710 412  17 772 361  16 825 963  20 439  62 896 086  29 364 346  27 330 036  20 439  

Barbera  33 508 268  16 097 916  15 113 921  19 733  37 786 178  17 840 198  16 597 612  19 733  

Bayan Shirei  33 148 052  15 905 598  14 904 052  20 335  58 580 436  28 155 208  26 385 695  20 335  

Berzamino  40 816 948  18 527 359  17 426 373  19 608  --  --  --  --  

Bombino Bianco  34 597 402  16 745 886  15 743 270  20 610  61 839 232  29 832 348  27 543 847  20 610  

Cabernet Franc  30 969 004  14 803 422  13 912 973  14 394  --  --  --  --  

Cabernet Sauvignon  36 098 312  17 462 932  16 441 975  20 413  68 197 912  32 492 427  30 441 232  20 413  

Carignan  32 848 410  15 355 174  14 382 059  14 012  --  --  --  --  

Catarratto B.C.  35 589 934  16 894 830  15 791 325  17 378  11 843 098  5 641 971  5 258 643  17 378  

Cesanese d'Affile  33 651 760  16 163 330  15 251 201  17 962  21 065 830  10 023 859  9 202 506  17 962  

Chaouch Blanc  128 703 158  62 224 367  58 654 424  20 983  --  --  --  --  

Chasselas Blanc  35 369 058  16 705 035  15 552 020  15 551  --  --  --  --  

Coarna Alba  37 644 790  18 181 157  17 071 143  18 856  22 096 334  10 592 738  9 738 732  18 856  

Daphnia  30 300 098  14 501 988  13 626 099  19 777  62 208 780  29 764 286  27 701 352  19 777  

Falanghina  32 744 878  15 608 447  14 556 801  20 078  50 213 050  24 058 146  22 113 130  20 078  

Fiano  76 863 950  36 988 118  34 468 035  17 390  28 464 362  13 381 832  12 220 489  17 390  

Fumat  33 406 276  14 957 278  13 224 544  17 940  17 954 412  8 446 203  7 848 405  17 940  

Garganega  37 304 516  17 952 967  16 937 175  16 994  --  --  --  --  

Garnacha  29 282 916  13 936 064  12 967 480  19 227  36 653 636  17 644 171  16 424 241  19 227  

Glera  31 621 810  14 638 887  13 817 405  13 666  --  --  --  --  

Gordin Verde  30 233 854  14 031 368  12 860 582  16 806  10 811 866  5 141 894  4 791 886  16 806  

Gorula  32 330 250  15 275 035  14 317 629  20 832  100 951 022  47 138 755  43 306 360  20 832  

Gyulyabi Dagestanskii  30 949 294  14 296 330  13 403 213  19 133  26 761 920  12 958 887  12 181 409  19 133  

Harslevelue  36 098 512  17 101 060  15 901 411  20 709  68 712 940  32 895 838  30 481 999  20 709  

Henab Turki  27 996 078  13 315 223  12 473 108  19 127  34 748 994  16 672 080  15 395 948  19 127  

Heunisch Weiss  31 832 384  15 073 886  14 128 596  18 569  24 347 490  11 728 735  10 872 168  18 569  
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Italia  35 967 570  17 264 395  16 346 782  18 870  25 961 822  12 486 027  11 662 578  18 870  

Kadarka  31 674 678  14 809 178  13 661 955  19 340  25 244 352  11 890 475  11 024 914  19 340  

Kandahari Siah  50 478 944  24 010 349  22 541 761  19 928  --  --  --  --  

Kishmish Vatkana  25 939 070  12 317 487  11 535 575  19 638  39 411 508  18 634 208  17 182 444  19 638  

Lambrusco di Sorbara  30 017 290  14 129 864  13 387 223  17 205  14 350 576  6 547 558  6 162 417  17 205  

Lambrusco Grasparossa  27 032 590  12 724 655  11 495 087  14 261  --  --  --  --  

Limnio  37 312 962  17 816 923  16 566 822  18 199  15 914 698  7 646 351  6 986 593  18 199  

Malvasia Bianca  32 048 124  15 516 192  14 572 304  17 872  17 269 654  7 838 233  7 269 791  17 872  

Malvasia Istriana  32 709 566  15 559 660  14 640 099  16 734  33 147 122  15 964 694  14 902 611  16 734  

Mauzac Blanc  30 699 834  13 970 226  12 517 361  20 133  54 405 754  26 365 816  24 669 102  20 133  

Mavrodaphni  30 568 736  14 768 581  13 706 110  19 694  46 658 444  22 386 380  20 672 500  19 694  

Merlot Noir  33 545 228  16 181 298  15 291 015  20 777  97 867 170  46 760 987  43 298 063  20 777  

Montepulciano  35 556 060  13 032 304  11 117 990  20 253  63 564 830  30 150 312  27 951 772  20 253  

Mtsvane Kachuri  32 355 900  15 464 253  14 032 323  19 652  38 662 774  18 658 052  17 261 731  19 652  

Muscat a Petits Grains B.  32 686 922  15 769 320  14 955 209  19 230  31 028 666  14 914 907  13 854 760  19 230  

Narma  27 891 196  13 271 201  12 514 523  19 853  43 672 504  20 952 175  19 455 479  19 853  

Nebbiolo  36 121 202  17 327 359  16 370 240  20 468  90 393 982  42 267 139  39 080 833  20 468  

Negro Amaro  32 132 000  15 366 573  14 494 195  17 490  11 428 252  5 462 364  5 080 252  17 490  

Ojaleshi  37 668 600  18 050 631  16 527 746  20 272  61 342 394  28 948 852  26 675 184  20 272  

Picolit  36 402 024  17 737 421  16 622 996  19 022  22 055 022  10 546 375  9 563 604  19 022  

Pignoletto  37 624 502  18 373 445  17 259 418  19 202  34 047 702  16 276 713  15 124 748  19 202  

Pinot Noir  27 627 974  13 240 359  12 548 107  18 263  21 610 264  10 032 468  9 315 507  18 263  

Plechistik  35 153 522  16 706 209  15 365 739  19 035  --  --  --  --  

Raboso Piave  35 926 086  16 645 404  15 514 097  19 123  --  --  --  --  

Refosco P.R.  33 568 032  15 981 765  14 874 149  18 532  18 939 744  8 741 878  8 044 249  18 532  

Ribolla Gialla  33 807 946  16 101 759  14 814 830  19 723  64 273 686  29 739 964  27 481 746  19 723  

Riesling Weiss  34 092 132  16 386 124  15 359 268  17 730  19 127 574  9 058 080  8 408 855  17 730  

Rkatsiteli  29 003 790  13 866 012  13 166 204  20 067  50 820 664  24 284 487  22 683 528  20 067  

Sagrantino  31 757 388  14 893 844  13 347 152  18 717  25 776 582  12 282 586  11 394 210  18 717  

Sangiovese  30 780 574  14 848 457  13 955 234  16 400  29 264 652  14 208 687  13 481 833  16 400  

Sauvignon Blanc  29 042 282  13 781 960  12 975 887  19 395  33 653 076  16 165 180  15 158 847  19 395  

Savagnin Blanc  34 806 104  16 586 359  15 711 937  16 388  --  --  --  --  

Schiava Grossa  30 855 098  14 043 623  13 234 487  19 508  32 052 480  15 467 553  14 451 191  19 508  

Schioppettino  29 588 666  14 023 413  13 273 204  16 778  9 271 548  4 464 430  4 129 635  16 778  

Sirgula  77 746 350  37 659 186  35 264 103  17 038  12 940 326  6 140 902  5 680 259  17 038  

Sultanina  32 827 460  15 435 634  14 541 900  18 011  20 850 960  9 899 122  9 130 711  18 011  

Tagobi  34 402 892  16 693 205  15 812 833  19 519  46 747 830  22 045 541  20 455 197  19 519  

Taifi Rozovyi  31 707 338  14 366 568  12 641 289  14 330  32 615 228  15 518 431  14 484 601  14 330  

Tavkveri  37 371 064  18 068 130  17 099 364  15 725  6 630 312  3 206 423  3 006 199  15 725  

Tebrizi  36 972 000  18 007 830  16 918 338  20 602  59 715 736  28 189 704  26 426 799  20 602  

Terbash  34 397 752  16 249 979  15 109 169  17 385  16 755 818  7 941 969  7 161 640  17 385  

Tocai Friulano  34 671 086  16 427 958  15 338 768  17 849  21 603 588  10 087 315  9 480 918  17 849  

Trebbiano Toscano  35 989 688  17 462 411  16 322 566  21 109  118 946 492  56 115 076  51 906 536  21 109  

Tribidrag  45 188 358  22 112 020  20 959 934  18 387  59 638 116  21 896 629  18 568 466  18 387  
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Tschvediansis Tetra  31 124 750  13 656 941  12 004 373  19 340  29 041 234  13 888 117  12 966 522  19 340  

Uva di Troia  33 390 816  15 820 511  14 758 719  19 834  46 857 622  21 818 467  20 208 094  19 834  

V267  32 839 498  15 876 774  14 917 275  19 469  32 015 926  15 344 972  14 193 853  19 469  

V278  32 183 932  15 001 915  14 038 428  12 492  --  --  --  --  

V292  38 838 408  18 799 036  17 644 343  19 982  52 774 534  25 176 348  23 357 166  19 982  

V294  42 223 338  20 534 222  19 435 411  19 078  40 739 488  19 562 383  18 293 707  19 078  

V385  30 487 152  14 721 100  13 894 305  19 592  46 338 596  22 307 399  20 882 363  19 592  

V389  37 952 834  18 345 090  17 380 433  19 159  37 593 386  17 930 103  16 588 991  19 159  

V410  30 199 376  14 175 381  13 244 377  17 813  17 192 836  8 254 191  7 740 221  17 813  

V411  34 141 752  16 432 465  15 405 411  18 854  22 751 914  10 921 572  10 227 552  18 854  

Verdicchio Bianco  35 531 162  16 874 358  15 931 114  19 849  55 836 670  26 695 262  24 871 763  19 849  

Verduzzo Friulano  30 920 864  14 621 638  13 555 227  15 802  --  --  --  --  

Vermentino  32 341 910  14 281 917  12 545 334  19 016  43 236 466  20 474 412  18 824 268  19 016  

Vernaccia S.G.  26 880 474  12 518 468  11 715 446  14 950  --  --  --  --  
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Table S2 – sequencing and alignment metrics for hard berries samples, divided according the two replicates. 

The four column are: “output reads”: the number of sequenced reads; “trimmed pairs”: number reads that 

successfully passed the quality filter described in paragraph 3.2. This number refer to the pair of reads as 

the unpaired ones were discarded; “mapped pairs”: number of reads pair uniquely mapped to the reference; 

“number genes”: number of genes with a minimum of 5 reads uniquely mapped on. 

 

HARD BERRIES 
SAMPLES  

Replica 1  Replica 2  

output reads  trimmed pairs  mapped pairs  number genes  output reads  trimmed pairs  mapped pairs  number genes  

Aglianico  43 929 004  21 310 811  16 966 826  19 343  50 943 118  24 586 201  18 701 408  19 268  

Airen  76 373 490  37 279 265  33 765 558  20 875  42 549 360  20 708 019  18 725 906  19 894  

Alexandroouli  47 364 728  23 441 125  21 186 705  22 155  40 717 686  20 150 199  18 268 662  20 673  

Ansonica  42 403 838  20 786 599  18 629 018  19 635  42 759 750  20 938 559  18 753 739  19 671  

Barbera  40 644 928  19 686 211  16 987 547  19 544  43 646 428  21 144 276  18 182 424  19 627  

Bayan Shirei  40 085 226  19 464 594  17 439 301  18 356  211 607 014  102 743 060  88 872 275  22 475  

Berzamino  42 983 788  21 107 445  19 459 738  19 729  46 255 450  22 711 260  20 841 905  19 921  

Bombino Bianco  45 602 954  22 123 680  19 294 630  18 912  44 680 752  21 549 400  18 605 027  19 194  

Cabernet Franc  42 228 350  20 583 815  18 136 672  18 662  41 639 752  20 232 543  17 383 542  18 490  

Cabernet Sauvignon  54 512 998  26 325 842  23 120 812  19 786  40 041 264  18 781 678  16 242 700  18 643  

Cesanese d'Affile  54 556 198  26 209 538  20 223 894  18 473  46 399 726  22 618 189  19 462 955  19 927  

Chasselas Blanc  39 593 700  19 513 400  17 861 607  19 451  38 737 526  18 982 341  17 226 130  19 865  

Falanghina  76 433 796  37 513 594  33 589 201  20 831  43 302 490  21 017 406  18 272 834  19 849  

Fiano  45 562 998  22 344 846  19 358 256  18 897  50 216 740  24 561 308  21 371 057  19 638  

Fumat  63 501 306  30 950 901  27 499 170  19 954  97 963 066  47 363 332  41 803 881  21 617  

Garganega  39 947 050  19 634 276  17 622 459  18 840  44 121 480  21 752 938  19 555 944  19 820  

Garnacha  42 707 966  20 924 453  18 002 384  19 503  52 974 038  26 018 366  22 892 379  20 335  

Gordin Verde  123 418 342  60 504 328  55 207 673  22 448  42 405 086  20 887 232  19 022 138  20 058  

Grignolino  43 033 934  20 747 986  18 631 887  18 693  145 556 426  69 274 627  61 996 938  21 520  

Heunisch Weiss  85 312 374  41 799 659  36 280 592  20 690  168 191 178  82 463 208  71 476 388  24 440  

Kadarka  52 375 392  25 889 613  23 721 276  20 448  49 538 276  24 456 515  22 399 608  20 129  

Kölner Blau  41 870 030  20 285 115  17 572 577  18 236  39 170 188  18 977 146  17 577 873  18 241  

Lambrusco di Sorbara  51 913 452  25 328 106  21 262 068  18 999  44 632 142  21 738 308  18 489 900  19 346  

Lambrusco Grasparossa  47 995 070  23 453 576  20 529 622  19 767  43 271 808  21 129 944  17 639 669  18 971  

Malvasia Istriana  38 877 758  19 053 321  17 040 254  19 479  41 646 040  20 466 771  18 387 715  20 019  

Merlot Noir  45 781 604  22 370 672  19 689 423  19 573  37 142 796  18 184 810  15 938 924  18 948  

Montepulciano  44 349 988  21 734 487  18 942 206  19 723  51 673 872  25 036 697  20 526 576  19 904  

Muscat a Petits Grains B.  54 788 062  26 800 679  24 006 154  20 070  41 678 008  20 510 294  18 474 762  19 737  

Nebbiolo  --  --  --  --  43 226 028  20 922 523  18 471 951  19 337  

Negro Amaro  54 040 428  26 178 896  22 175 666  19 672  55 242 762  26 604 347  23 257 829  20 158  

Pecorino  50 786 872  24 267 048  20 161 442  19 748  50 732 736  23 737 812  20 380 267  19 717  

Picolit  40 666 954  19 938 346  17 475 355  19 517  38 860 400  19 123 304  17 086 084  19 611  

Pignoletto  43 446 782  21 275 932  18 550 316  18 882  46 922 806  22 947 836  20 808 500  19 788  

Pinot Noir  51 351 734  25 402 717  23 799 364  19 663  52 358 820  25 954 643  24 447 384  19 724  

Refosco P.R.  59 184 334  29 087 120  25 478 410  20 212  47 634 008  23 285 044  19 880 906  19 541  

Ribolla Gialla  41 309 582  20 235 678  18 332 147  19 708  38 810 182  19 068 198  17 162 785  19 169  
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Riesling Weiss  43 941 828  21 576 066  18 864 917  20 031  40 543 484  19 960 204  17 744 118  20 013  

Rkatsiteli  49 986 798  24 418 092  19 466 041  19 720  62 069 892  30 430 496  23 473 389  18 739  

Sagrantino  51 205 122  25 067 915  22 322 414  19 855  58 530 872  28 663 228  25 690 141  20 125  

Sangiovese  48 598 248  23 675 934  20 134 077  19 481  39 655 000  19 403 892  16 535 640  19 176  

Sauvignon Blanc  46 780 800  22 811 973  18 719 853  19 212  41 253 482  20 224 919  17 898 043  19 193  

Savagnin Blanc  45 866 890  22 677 538  20 761 551  19 881  39 904 202  19 630 302  17 749 766  20 023  

Schiava Grossa  45 025 040  21 864 865  17 510 430  19 611  53 930 496  26 387 509  22 278 142  19 643  

Schioppettino  --  --  --  --  85 218 728  41 757 452  36 541 664  20 527  

Sciavtsitska  42 487 332  20 810 498  18 527 522  20 020  50 576 418  24 691 419  21 612 863  20 409  

Sultanina  41 929 316  20 570 044  18 485 329  18 282  45 194 170  22 041 381  18 590 397  17 960  

Tavkveri  39 107 242  19 066 912  17 164 173  19 806  44 623 896  21 920 495  19 955 522  20 895  

Terrano  39 537 866  19 340 741  17 145 399  18 742  42 843 132  20 828 482  17 992 364  19 263  

Tocai Friulano  65 074 566  31 942 108  27 312 223  21 649  39 068 572  19 112 077  17 112 669  19 725  

Trebbiano Toscano  42 002 868  20 517 502  17 987 131  19 330  45 126 570  22 008 461  18 513 866  19 642  

Tribidrag  38 911 986  19 197 060  17 421 252  19 587  40 967 178  20 152 000  17 902 050  20 455  

V294  114 874 540  55 916 257  42 685 984  25 121  64 717 098  31 611 455  27 139 824  20 257  

V411  --  --  --  --  84 984 096  41 502 819  35 271 499  20 461  

Verdicchio Bianco  43 070 564  20 746 847  18 143 429  18 016  53 134 776  25 756 193  22 612 241  19 435  

Verduzzo Friulano  46 209 082  22 120 404  17 885 784  18 909  40 847 602  19 993 849  17 934 966  19 727  

Vermentino  44 684 564  21 899 956  19 443 588  19 087  57 955 668  28 478 940  25 533 706  19 932  

Vernaccia S.G.  144 817 356  70 542 453  62 734 620  21 972  120 638 456  58 644 173  51 750 586  21 399  

Welschriesling  39 632 572  19 428 545  17 525 921  20 187  40 700 474  19 967 144  18 262 491  19 807  
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Table S3 – sequencing and alignment metrics for soft berries samples, divided according the two replicates. 

The four column are: “output reads”: the number of sequenced reads; “trimmed pairs”: number reads that 

successfully passed the quality filter described in paragraph 3.2. This number refer to the pair of reads as 

the unpaired ones were discarded; “mapped pairs”: number of reads pair uniquely mapped to the reference; 

“number genes”: number of genes with a minimum of 5 reads uniquely mapped on. 

 

SOFT BERRIES 
SAMPLES  

Replica 1  Replica 2  

output reads  trimmed pairs  mapped pairs  number genes  output reads  trimmed pairs  mapped pairs  number genes  

Aglianico  44 360 498  21 611 641  18 224 352  19 300  46 723 338  22 732 442  18 414 420  19 286  

Airen  42 857 404  20 969 555  18 863 384  19 352  56 726 572  27 759 899  24 883 312  19 785  

Alexandroouli  53 435 940  6 595 383  6 121 541  19 532  48 517 646  23 994 137  21 956 400  19 130  

Ansonica  39 690 788  19 557 992  17 938 763  19 021  47 609 816  23 445 964  21 423 244  19 513  

Barbera  50 102 786  24 329 531  21 341 136  18 878  50 031 604  24 319 647  21 098 790  19 437  

Bayan Shirei  96 111 668  46 145 984  40 515 441  20 186  170 249 516  82 233 119  71 974 682  21 417  

Berzamino  47 220 988  23 255 128  21 507 531  20 018  50 586 646  24 887 124  22 837 481  19 852  

Bombino Bianco  58 020 834  28 207 115  26 011 495  19 113  40 180 810  19 349 514  16 604 608  18 430  

Cabernet Franc  38 621 790  18 854 392  16 688 453  17 916  35 339 626  17 271 275  14 980 310  17 875  

Cabernet Sauvignon  --  --  --  --  45 737 816  22 282 938  19 641 512  19 125  

Cesanese d'Affile  52 116 848  25 676 756  22 808 736  19 860  43 254 916  21 105 743  17 781 479  18 551  

Chasselas Blanc  42 480 782  20 814 521  19 252 108  19 488  40 411 606  19 864 961  18 092 224  19 215  

Falanghina  --  --  --  --  45 579 440  22 276 245  1 896 853  19 164  

Fiano  47 173 668  23 132 776  20 343 723  19 089  50 212 308  24 685 725  22 419 776  18 992  

Fumat  45 865 760  22 295 509  20 106 812  19 001  101 478 066  48 831 891  42 392 460  20 743  

Garganega  50 284 810  24 913 197  22 977 680  19 326  51 461 894  25 425 835  22 939 209  18 973  

Garnacha  39 475 810  19 447 536  17 406 204  18 690  41 321 810  20 279 159  18 232 683  19 016  

Gordin Verde  47 287 594  23 429 026  21 502 644  19 338  51 216 174  25 375 497  23 363 229  19 694  

Greco di Tufo  179 976 284  88 196 231  75 592 048  24 931  78 851 510  38 906 944  32 970 760  20 054  

Grignolino  106 253 872  51 655 615  45 920 506  20 956  118 373 436  57 687 702  51 527 485  21 141  

Heunisch Weiss  186 621 988  90 737 302  70 806 563  26 225  57 924 358  28 419 051  24 977 348  20 383  

Kadarka  42 363 102  20 921 414  19 148 571  19 523  51 427 152  25 473 483  23 825 883  20 163  

Kölner Blau  104 923 188  50 162 043  43 840 240  20 629  112 750 928  54 019 346  48 755 049  20 554  

Lambrusco di Sorbara  52 714 666  25 668 385  21 600 698  18 389  43 761 318  21 477 471  18 261 603  18 483  

Lambrusco Grasparossa  45 784 240  22 438 183  19 175 896  19 263  48 899 178  24 015 497  20 767 434  18 689  

Malvasia Istriana  38 717 848  18 992 307  17 123 608  19 136  44 430 930  21 818 854  19 618 738  19 471  

Merlot Noir  44 761 942  21 963 463  19 462 706  19 027  36 224 368  17 788 961  15 589 807  18 265  

Montepulciano  65 664 644  32 069 128  28 539 605  19 649  46 430 504  22 684 310  20 363 843  19 175  

Muscat a Petits Grains 
B.  

46 557 010  22 985 124  21 134 454  19 473  51 871 942  25 510 276  23 430 433  19 503  

Negro Amaro  56 758 730  27 512 975  22 576 620  19 692  45 597 716  22 234 195  18 107 236  19 086  

Pecorino  46 129 714  22 602 080  19 499 326  17 866  34 798 196  17 125 702  15 080 686  18 499  

Picolit  50 512 280  24 786 999  21 650 905  19 445  62 819 900  30 885 180  27 279 371  20 491  

Pignoletto  42 008 410  20 584 914  18 181 244  19 450  43 972 876  21 603 166  19 237 272  19 519  

Pinot Noir  41 304 698  20 449 833  19 219 590  17 841  42 817 778  13 737 023  12 642 774  19 303  

Refosco P.R.  55 790 722  27 593 473  25 288 907  19 916  52 876 856  26 049 149  23 328 085  19 721  



 
Chapter 7 – SUPPLEMENTARY MATERIALS 

72 
 

Ribolla Gialla  39 285 084  19 237 854  16 985 261  18 627  41 823 740  20 494 462  18 520 546  19 024  

Riesling Weiss  40 717 102  20 015 452  17 275 404  19 293  43 140 784  21 233 034  18 779 470  19 491  

Rkatsiteli  48 199 900  23 749 716  20 655 000  19 182  58 019 382  28 619 824  25 487 553  19 645  

Sagrantino  47 148 954  23 214 224  20 880 383  19 040  50 636 538  24 833 509  22 129 219  19 494  

Sangiovese  46 213 766  22 437 440  19 011 127  19 690  46 981 416  22 912 017  20 015 079  19 665  

Sauvignon Blanc  40 530 358  19 918 120  17 544 592  18 467  224 483 232  109 212 468  94 330 079  21 574  

Savagnin Blanc  50 069 436  24 778 043  22 641 247  18 472  56 987 310  28 059 121  24 935 086  20 920  

Schiava Grossa  44 291 248  21 515 144  18 025 612  19 148  52 093 394  25 424 879  21 624 674  19 605  

Schioppettino  76 954 910  37 884 956  34 156 939  20 205  76 469 696  37 552 324  32 265 327  20 086  

Sciavtsitska  48 803 692  9 424 526  8 608 061  19 836  48 339 704  23 941 755  21 465 460  20 183  

Sultanina  48 864 542  24 060 852  21 766 171  18 352  --  --  --  --  

Tavkveri  59 729 760  29 294 011  26 880 399  20 381  67 234 080  32 816 080  29 177 214  20 463  

Terrano  43 957 248  21 640 945  19 429 861  19 071  50 822 770  24 835 496  20 789 136  19 046  

Tocai Friulano  42 328 070  20 788 920  18 551 997  19 502  42 321 548  20 756 849  18 785 545  19 314  

Trebbiano Toscano  43 058 642  21 106 262  18 274 667  19 080  43 162 682  21 046 140  18 780 721  18 762  

Tribidrag  38 906 600  19 232 234  17 574 573  19 814  43 540 634  21 497 380  19 210 053  19 344  

V411  75 316 166  37 051 742  33 005 761  20 095  105 881 934  52 236 569  46 422 037  21 349  

Verdicchio Bianco  45 204 774  22 122 047  20 321 871  19 224  49 622 676  24 339 203  22 409 929  19 676  

Verduzzo Friulano  52 793 072  25 741 787  23 510 964  19 491  69 233 452  34 018 616  29 930 011  20 078  

Vermentino  42 588 456  21 023 613  18 902 406  18 492  47 361 012  23 434 557  21 544 559  19 034  

Vernaccia S.G.  127 407 800  60 860 435  54 730 166  21 085  157 965 058  75 503 764  68 457 689  21 558  

Welschriesling  68 150 132  33 773 284  31 186 528  20 513  51 747 310  25 617 929  23 624 489  20 019  

 

Figure S1: Scatterplot of relation between p-value of eQTLs and distance between eVariant and eGene. The 

y coordinates fo the point are the -log10 of eQTL pvalue, while in the x-axis are the distances in bp, with the 

0 centered on the eGene TSS. The red lines mark the -1e5 and 1e5 distances.  
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Table S4: Gene Ontology category enriched in eGenes obtained in eQTLs analysis in leaves. The first two 

column are the GO tag of the category and its description. “Annotated” is the number of genes belonging to 

that category present in the reference group, “eGenes” is the number of gene of that category present in 

our eGene list and “expected” the number of genes expected if the category was not enriched. The last 

column is the p-value of the enrichment test (fisher test).  

GO.ID  Term  Annotated  eGenes  Expected  classicFisher  

GO:0006952  defence response  1898  450  263.78  < 1e-30  

GO:0008299  isoprenoid biosynthetic process  229  53  31.83  1.00E-04  

GO:0006720  isoprenoid metabolic process  253  57  35.16  1.20E-04  

GO:0006721  terpenoid metabolic process  213  49  29.6  2.10E-04  

GO:0016114  terpenoid biosynthetic process  192  45  26.68  2.40E-04  

GO:0009863  salicylic acid mediated signalling pathways  78  23  10.84  2.70E-04  

GO:0043207  response to external biotic stimulus  1108  194  153.99  2.70E-04  

GO:0051707  response to other organism  1108  194  153.99  2.70E-04  

GO:2000031  regulation of salicylic acid mediated signalling pathway  46  16  6.39  2.90E-04  

GO:0016045  detection of bacterium  22  10  3.06  3.40E-04  

GO:0071732  cellular response to nitric oxide  12  7  1.67  4.10E-04  

GO:0002229  defence response to oomycetes  116  30  16.12  4.40E-04  

GO:0071236  cellular response to antibiotic  97  26  13.48  5.80E-04  

GO:0051704  multi-organism process  1662  275  230.98  7.00E-04  

GO:0071731  response to nitric oxide  13  7  1.81  7.90E-04  

GO:0009607  response to biotic stimulus  1159  198  161.07  8.60E-04  

GO:1900150  regulation of defence response to fungus  65  19  9.03  1.00E-03  

GO:0006857  oligopeptide transport  51  16  7.09  1.07E-03  

GO:0006268  DNA unwinding involved in DNA replication  21  9  2.92  1.15E-03  

GO:0009861  jasmonic acid and ethylene-dependent systemic resistance  21  9  2.92  1.15E-03  

GO:0046777  protein autophosphorylation  277  57  38.5  1.33E-03  

GO:0008655  pyrimidine-containing compound salvage  14  7  1.95  1.39E-03  

GO:0009605  response to external stimulus  1529  252  212.5  1.47E-03  

GO:0060249  anatomical structure homeostasis  77  21  10.7  1.48E-03  

GO:0019264  glycine biosynthetic process from serine  11  6  1.53  1.76E-03  

GO:0071407  cellular response to organic cyclic compound  199  43  27.66  1.88E-03  

GO:0006563  L-serine metabolic process  35  12  4.86  1.89E-03  

GO:0035672  oligopeptide transmembrane transport  49  15  6.81  1.99E-03  

GO:0002833  positive regulation of response to biotic stimulus  74  20  10.28  2.14E-03  

GO:0031347  regulation of defence response  295  59  41  2.23E-03  

GO:0045088  regulation of innate immune response  123  29  17.09  2.58E-03  

GO:1900426  positive regulation of defence response to bacterium  60  17  8.34  2.61E-03  

GO:0071281  cellular response to iron ion  28  10  3.89  3.17E-03  

GO:0032103  positive regulation of response to external stimulus  77  20  10.7  3.55E-03  

GO:0009130  pyrimidine nucleoside monophosphate biosynthetic process  20  8  2.78  3.64E-03  

GO:0034614  cellular response to reactive oxygen species  57  16  7.92  3.81E-03  

GO:0006545  glycine biosynthetic process  13  6  1.81  5.11E-03  

GO:0098781  ncRNA transcription  17  7  2.36  5.38E-03  

GO:0000723  telomere maintenance  70  18  9.73  6.16E-03  

GO:0016098  monoterpenoid metabolic process  26  9  3.61  6.39E-03  
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GO:0043173  nucleotide salvage  26  9  3.61  6.39E-03  

GO:0043902  positive regulation of multi-organism process  81  20  11.26  6.55E-03  

GO:1900424  regulation of defence response to bacterium  87  21  12.09  7.14E-03  

GO:0009129  pyrimidine nucleoside monophosphate metabolic process  22  8  3.06  7.16E-03  

GO:0009870  defence response signalling pathway  18  7  2.5  7.76E-03  

GO:0007004  telomere maintenance via telomerase  36  11  5  7.77E-03  

GO:0030048  actin filament-based movement  36  11  5  7.77E-03  
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Table S5 - Gene Ontology category enriched in eGenes obtained in eQTLs analysis in hard berries. The first 

two column are the GO tag of the category and its description. “Annotated” is the number of genes 

belonging to that category present in the reference group, “eGenes” is the number of gene of that category 

present in our eGene list and “expected” the number of genes expected if the category was not enriched. 

The last column is the p-value of the enrichment test (fisher test).  

 

GO.ID  Term  Annotated  eGenes  Expected  classicFisher  

GO:0051704  multi-organism process  1761  166  129.01  3.20E-04  

GO:1903047  mitotic cell cycle process  341  43  24.98  3.40E-04  

GO:0022402  cell cycle process  556  63  40.73  3.50E-04  

GO:0050896  response to stimulus  6198  510  454.05  4.00E-04  

GO:0006268  DNA unwinding involved in DNA replication  21  7  1.54  5.20E-04  

GO:0000724  double-strand break repair via homologous recombination   96  17  7.03  5.60E-04  

GO:0016045  detection of bacterium  22  7  1.61  7.10E-04  

GO:0009820  alkaloid metabolic process  42  10  3.08  7.30E-04  

GO:0000725  recombinational repair  99  17  7.25  8.00E-04  

GO:0000278  mitotic cell cycle  380  45  27.84  9.60E-04  

GO:0033554  cellular response to stress  1164  113  85.27  1.11E-03  

GO:0043207  response to external biotic stimulus  1174  112  86  2.11E-03  

GO:0007049  cell cycle  835  83  61.17  2.62E-03  

GO:0009856  pollination  351  40  25.71  3.57E-03  

GO:0044706  multi-multicellular organism process  351  40  25.71  3.57E-03  

GO:0006302  double-strand break repair  144  20  10.55  4.19E-03  

GO:0098542  defence response to other organism  936  90  68.57  4.53E-03  

GO:0007004  telomere maintenance via telomerase  37  8  2.71  4.62E-03  

GO:0009607  response to biotic stimulus  1228  114  89.96  4.68E-03  

GO:0009605  response to external stimulus  1599  144  117.14  4.77E-03  

GO:0051646  mitochondrion localization  17  5  1.25  6.15E-03  

GO:0010389  regulation of G2/M transition of mitotic cell cycle  31  7  2.27  6.16E-03  

GO:0006432  phenylalanyl-tRNA aminoacylation  11  4  0.81  6.23E-03  

GO:0043162  ubiquitin-dependent protein catabolic process via the 
multivesicular body sorting pathway  

11  4  0.81  6.23E-03  

GO:0042742  defence response to bacterium  533  55  39.05  6.23E-03  

GO:0051259  protein complex oligomerization  91  14  6.67  6.26E-03  

GO:0000723  telomere maintenance  74  12  5.42  7.21E-03  

GO:0010833  telomere maintenance via telomere lengthening  40  8  2.93  7.58E-03  

GO:0034614  cellular response to reactive oxygen species 57  57  10  4.18  7.84E-03  

GO:0000086  G2/M transition of mitotic cell cycle  33  7  2.42  8.81E-03  

GO:0006278  RNA-dependent DNA biosynthetic process  41  8  3  8.82E-03  

GO:0051321  meiotic cell cycle  217  26  15.9  9.01E-03  

GO:0009814  defence response, incompatible interaction  218  26  15.97  9.54E-03  

GO:0007093  mitotic cell cycle checkpoint  50  9  3.66  9.64E-03  

GO:0016973  poly(A)+ mRNA export from nucleus  26  6  1.9  9.86E-03  

GO:0080186  developmental vegetative growth  19  5  1.39  1.02E-02  

GO:0006739  NADP metabolic process  34  7  2.49  1.04E-02  

GO:0007215  glutamate receptor signalling pathway  27  6  1.98  1.19E-02  
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GO:0045144  meiotic sister chromatid segregation  13  4  0.95  1.20E-02  

GO:1902749  regulation of cell cycle G2/M phase transition  35  7  2.56  1.22E-02  

GO:0006468  protein phosphorylation  1522  134  111.5  1.32E-02  

GO:0009617  response to bacterium  626  61  45.86  1.35E-02  

GO:0000070  mitotic sister chromatid segregation  71  11  5.2  1.38E-02  

GO:0060249  anatomical structure homeostasis  81  12  5.93  1.45E-02  

GO:0007346  regulation of mitotic cell cycle  141  18  10.33  1.48E-02  
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Table S6 - Gene Ontology category enriched in eGenes obtained in eQTLs analysis in soft berries. The first 

two column are the GO tag of the category and its description. “Annotated” is the number of genes 

belonging to that category present in the reference group, “eGenes” is the number of gene of that category 

present in our eGene list and “expected” the number of genes expected if the category was not enriched. 

The last column is the p-value of the enrichment test (fisher test)  

 

GO.ID  Term  Annotated  eGenes  Expected  classicFisher  

GO:0016973  poly(A)+ mRNA export from nucleus  25  9  2.14  1.40E-04  

GO:1903047  mitotic cell cycle process  339  47  28.96  6.40E-04  

GO:0042136  neurotransmitter biosynthetic process  30  9  2.56  6.50E-04  

GO:0000278  mitotic cell cycle  378  51  32.29  7.30E-04  

GO:0050829  defence response to Gram-negative bacterium  44  11  3.76  9.30E-04  

GO:0006268  DNA unwinding involved in DNA replication   21  7  1.79  1.30E-03  

GO:0043162  ubiquitin-dependent protein catabolic process via the 
multivesicular body sorting pathway  

11  5  0.94  1.35E-03  

GO:0030048  actin filament-based movement  34  9  2.9  1.74E-03  

GO:0016045  detection of bacterium  22  7  1.88  1.77E-03  

GO:0051646  mitochondrion localization  17  6  1.45  2.09E-03  

GO:0022402  cell cycle process  552  67  47.16  2.12E-03  

GO:0055114  oxidation-reduction process  1827  188  156.07  3.22E-03  

GO:0006950  response to stress  3930  378  335.72  3.58E-03  

GO:0042133  neurotransmitter metabolic process  52  11  4.44  3.90E-03  

GO:0006405  RNA export from nucleus  67  13  5.72  3.95E-03  

GO:0007049  cell cycle  825  92  70.48  4.70E-03  

GO:0071166  ribonucleoprotein complex localization  62  12  5.3  5.63E-03  

GO:0071426  ribonucleoprotein complex export from nucleus  62  12  5.3  5.63E-03  

GO:0000463  maturation of LSU-rRNA from tricistronic rRNA transcript 
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)  

21  6  1.79  6.80E-03  

GO:0051704  multi-organism process  1730  175  147.79  8.68E-03  

GO:0080147  root hair cell development  50  10  4.27  8.74E-03  

GO:0048768  root hair cell tip growth  16  5  1.37  8.87E-03  

GO:0031503  protein-containing complex localization  74  13  6.32  9.36E-03  

GO:0010193  response to ozone  29  7  2.48  9.57E-03  

GO:0007004  telomere maintenance via telomerase  36  8  3.08  9.67E-03  

GO:0006545  glycine biosynthetic process  11  4  0.94  1.07E-02  

GO:0042138  meiotic DNA double-strand break formation   11  4  0.94  1.07E-02  

GO:0015740  C4-dicarboxylate transport  23  6  1.96  1.09E-02  

GO:0010389  regulation of G2/M transition of mitotic cell cycle  30  7  2.56  1.16E-02  

GO:0030001  metal ion transport  355  43  30.33  1.25E-02  

GO:0048588  developmental cell growth  120  18  10.25  1.32E-02  

GO:0009820  alkaloid metabolic process  38  8  3.25  1.34E-02  

GO:0000281  mitotic cytokinesis  147  21  12.56  1.35E-02  

GO:0006406  mRNA export from nucleus  46  9  3.93  1.45E-02  

GO:0071427  mRNA-containing ribonucleoprotein complex export from 
nucleus  

46  9  3.93  1.45E-02  

GO:0000724  double-strand break repair via homologous recombination  95  15  8.12  1.45E-02  

GO:0006611  protein export from nucleus  70  12  5.98  1.48E-02  
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GO:0006544  glycine metabolic process  18  5  1.54  1.51E-02  

GO:0019742  pentacyclic triterpenoid metabolic process  18  5  1.54  1.51E-02  

GO:0051321  meiotic cell cycle  214  28  18.28  1.55E-02  

GO:0010833  telomere maintenance via telomere lengthening   39  8  3.33  1.57E-02  

GO:1901991  negative regulation of mitotic cell cycle phase transition  39  8  3.33  1.57E-02  

GO:0051168  nuclear export  79  13  6.75  1.59E-02  

GO:0000086  G2/M transition of mitotic cell cycle  32  7  2.73  1.65E-02  

GO:0006563  L-serine metabolic process  32  7  2.73  1.65E-02  

GO:0061640  cytoskeleton-dependent cytokinesis  150  21  12.81  1.67E-02  

GO:0001505  regulation of neurotransmitter levels  63  11  5.38  1.68E-02  

GO:0006812  cation transport  606  67  51.77  1.71E-02  

GO:0006278  RNA-dependent DNA biosynthetic process  40  8  3.42  1.82E-02  

GO:0000725  recombinational repair  98  15  8.37  1.89E-02  

GO:0071804  cellular potassium ion transport  81  13  6.92  1.93E-02  

GO:0010014  meristem initiation  33  7  2.82  1.94E-02  

GO:0051640  organelle localization  162  22  13.84  2.01E-02  

GO:0000723  telomere maintenance  73  12  6.24  2.02E-02  

GO:0030007  cellular potassium ion homeostasis  13  4  1.11  2.03E-02  

GO:0045144  meiotic sister chromatid segregation  13  4  1.11  2.03E-02  
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Figure S2 - AI levels, divided in categories, in Hard and Soft berries of genes wich display a monoallelic 

expression in leaves, in every cultivar. The categories are “MAG” (monoallelic), “AI > 2”, “1 < AI <2” and “AI 

< 1” following the AI level, and are divided in “agreeing” and “disagreeing”. This indicate if the haplotype 

more expressed in the tissue is the same allele expressed in leaves, or if it is the silenced one. “low 

informative reads” refers to the cases with too few reads to be analyzed. 
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Figure S3 - AI levels, divided in categories, in leaves and soft berries of genes which display a monoallelic 

expression in hard berries, in every cultivar. The categories are “MAG”: monoallelic, “AI > 2”, “1 < AI <2” and 

“AI < 1” following the AI level, and are divided in “agreeing” and “disagreeing”. This indicate if the 

haplotype more expressed in the tissue is the same allele expressed in hard berries, or if it is the silenced 

one. “low informative reads” refers to the cases with too few reads to be analyzed. 
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Figure S4 - AI levels, divided in categories, in leaves and hard berries of genes which display a monoallelic 

expression in soft berries, in every cultivar. The categories are “MAG”: monoallelic, “AI > 2”, “1 < AI <2” and 

“AI < 1” following the AI level, and are divided in “agreeing” and “disagreeing”. This indicate if the 

haplotype more expressed in the tissue is the same allele expressed in soft berries, or if it is the silenced one. 

“low informative reads” refers to the cases with too few reads to be analyzed. 
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Table S7 - Gene Ontology category enriched in genes with allelic imbalance in more than 80% of the 

cultivars tested in leaves. The first two columns are the GO tag of the category and its description. 

“Annotated” is the number of genes belonging to that category present in the reference group, “Significant” 

is the number of gene of that category present in our gene list and “expected” the number of genes 

expected if the category was not enriched. The last column is the p-value of the enrichment test (fisher 

test).  

Gene Ontology ID  Category description  Annotated  Significant  Expected  Fisher p-value  

GO:0019722  calcium-mediated signaling  44  9  2.06  0.00017  

GO:0006952  defense response  1562  103  73.09  0.00017  

GO:0030001  metal ion transport  286  28  13.38  0.00018  

GO:0006950  response to stress  3136  183  146.73  0.00039  

GO:0043200  response to amino acid  49  9  2.29  0.00039  

GO:0016051  carbohydrate biosynthetic process  315  29  14.74  0.0004  

GO:0006857  oligopeptide transport  51  9  2.39  0.00053  

GO:0070588  calcium ion transmembrane transport  87  12  4.07  0.00071  

GO:0006816  calcium ion transport  88  12  4.12  0.00078  

GO:0006811  ion transport  763  55  35.7  0.0009  

GO:0071417  cellular response to organonitrogen compound  67  10  3.13  0.00104  

GO:0009311  oligosaccharide metabolic process  79  11  3.7  0.00108  

GO:0005975  carbohydrate metabolic process  883  61  41.32  0.00136  

GO:1901699  cellular response to nitrogen compound  95  12  4.45  0.00155  

GO:1901615  organic hydroxy compound metabolic process  283  25  13.24  0.00175  

GO:0098662  inorganic cation transmembrane transport  364  30  17.03  0.00191  

GO:0009250  glucan biosynthetic process  140  15  6.55  0.00232  

GO:0098655  cation transmembrane transport  402  32  18.81  0.00238  

GO:0019740  nitrogen utilization  13  4  0.61  0.00242  

GO:0030244  cellulose biosynthetic process  88  11  4.12  0.00261  

GO:0010025  wax biosynthetic process  41  7  1.92  0.00266  

GO:0009820  alkaloid metabolic process  31  6  1.45  0.00277  

GO:0055085  transmembrane transport  1039  68  48.62  0.00287  

GO:0006629  lipid metabolic process  912  61  42.67  0.00289  

GO:0010166  wax metabolic process  42  7  1.97  0.00307  

GO:0034637  cellular carbohydrate biosynthetic process  219  20  10.25  0.00332  

GO:0044262  cellular carbohydrate metabolic process  402  31  18.81  0.00442  

GO:0009699  phenylpropanoid biosynthetic process  122  13  5.71  0.00463  

GO:0006082  organic acid metabolic process  1024  66  47.91  0.0047  

GO:0098660  inorganic ion transmembrane transport  407  31  19.04  0.00528  

GO:0034308  primary alcohol metabolic process  16  4  0.75  0.00551  

GO:0009607  response to biotic stimulus  995  64  46.56  0.00559  

GO:0010038  response to metal ion  262  22  12.26  0.00585  

GO:0051274  beta-glucan biosynthetic process  98  11  4.59  0.00601  

GO:0006749  glutathione metabolic process  36  6  1.68  0.00601  

GO:0043436  oxoacid metabolic process  1019  65  47.68  0.00631  

GO:0000302  response to reactive oxygen species  141  14  6.6  0.00632  

GO:0010035  response to inorganic substance  656  45  30.69  0.0064  

GO:0030243  cellulose metabolic process  99  11  4.63  0.00648  
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GO:1901570  fatty acid derivative biosynthetic process  48  7  2.25  0.00658  

GO:0009067  aspartate family amino acid biosynthetic process  38  6  1.78  0.00788  

GO:0044281  small molecule metabolic process  1566  93  73.27  0.00872  

GO:0006833  water transport  28  5  1.31  0.00886  

GO:0072511  divalent inorganic cation transport  134  13  6.27  0.01003  

GO:0005984  disaccharide metabolic process  52  7  2.43  0.01019  

GO:0006081  cellular aldehyde metabolic process  78  9  3.65  0.0104  

GO:0006766  vitamin metabolic process  92  10  4.3  0.0107  

GO:0000097  sulfur amino acid biosynthetic process  41  6  1.92  0.0114  

GO:0000281  mitotic cytokinesis  108  11  5.05  0.01218  

GO:0009086  methionine biosynthetic process  20  4  0.94  0.01264  

GO:0005986  sucrose biosynthetic process  11  3  0.51  0.01269  

GO:0006073  cellular glucan metabolic process  217  18  10.15  0.01342  

GO:0044042  glucan metabolic process  217  18  10.15  0.01342  

GO:0019752  carboxylic acid metabolic process  944  59  44.17  0.01351  

GO:0009765  photosynthesis, light harvesting  31  5  1.45  0.01366  

GO:0061640  cytoskeleton-dependent cytokinesis  110  11  5.15  0.01386  

GO:0015979  photosynthesis  186  16  8.7  0.01392  

GO:0001101  response to acid chemical  1021  63  47.77  0.01405  

GO:0080167  response to karrikin  82  9  3.84  0.01419  

GO:0051273  beta-glucan metabolic process  111  11  5.19  0.01475  

GO:0034220  ion transmembrane transport  563  38  26.34  0.01482  

GO:0046364  monosaccharide biosynthetic process  32  5  1.5  0.01558  
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Table S8 - Gene Ontology category enriched in genes with allelic imbalance in more than 80% of the 

cultivars tested in hard berries. The first two columns are the GO tag of the category and its description. 

“Annotated” is the number of genes belonging to that category present in the reference group, “eGenes” is 

the number of gene of that category present in our gene list and “expected” the number of genes expected 

if the category was not enriched. The last column is the p-value of the enrichment test (fisher test).  

 

Gene Ontology ID  Category description  Annotated  Significant  Expected  Fisher p-value  

GO:1901607  alpha-amino acid biosynthetic process  171  34  17.45  0.00011  

GO:0009636  response to toxic substance  294  51  30.01  0.00011  

GO:0008652  cellular amino acid biosynthetic process  193  37  19.7  0.00012  

GO:0008610  lipid biosynthetic process  590  87  60.22  0.00026  

GO:0009607  response to biotic stimulus  1068  143  109.01  0.00035  

GO:0006629  lipid metabolic process  1003  135  102.38  0.00041  

GO:0097164  ammonium ion metabolic process  63  16  6.43  0.00045  

GO:0006833  water transport  30  10  3.06  0.00053  

GO:0055085  transmembrane transport  1154  151  117.79  0.00067  

GO:1901605  alpha-amino acid metabolic process  294  48  30.01  0.0007  

GO:0017144  drug metabolic process  688  96  70.23  0.00088  

GO:0019742  pentacyclic triterpenoid metabolic process  17  7  1.74  0.00088  

GO:0072329  monocarboxylic acid catabolic process  73  17  7.45  0.00089  

GO:0006006  glucose metabolic process  43  12  4.39  0.00093  

GO:0016052  carbohydrate catabolic process  290  47  29.6  0.00093  

GO:0098754  detoxification  156  29  15.92  0.00103  

GO:0044282  small molecule catabolic process  230  39  23.48  0.00104  

GO:0098660  inorganic ion transmembrane transport  462  68  47.16  0.00123  

GO:0016053  organic acid biosynthetic process  604  85  61.65  0.00132  

GO:0009070  serine family amino acid biosynthetic process  39  11  3.98  0.00136  

GO:0010038  response to metal ion  280  45  28.58  0.00141  

GO:0006520  cellular amino acid metabolic process  424  63  43.28  0.00145  

GO:0009407  toxin catabolic process  19  7  1.94  0.0019  

GO:0044255  cellular lipid metabolic process  765  103  78.09  0.00192  

GO:0009404  toxin metabolic process  35  10  3.57  0.00201  

GO:0009833  plant-type primary cell wall biogenesis  53  13  5.41  0.00211  

GO:0046686  response to cadmium ion  172  30  17.56  0.00241  

GO:0006595  polyamine metabolic process  25  8  2.55  0.00255  

GO:0031407  oxylipin metabolic process  42  11  4.29  0.00262  

GO:0031408  oxylipin biosynthetic process  42  11  4.29  0.00262  

GO:0006812  cation transport  551  77  56.24  0.00262  

GO:1901566  organonitrogen compound biosynthetic process  1472  182  150.25  0.0028  

GO:0044283  small molecule biosynthetic process  792  105  80.84  0.00287  

GO:0006722  triterpenoid metabolic process  26  8  2.65  0.00336  

GO:0009199  ribonucleoside triphosphate metabolic process  146  26  14.9  0.00339  

GO:0046395  carboxylic acid catabolic process  161  28  16.43  0.00344  

GO:0006811  ion transport  849  111  86.66  0.00347  

GO:0006596  polyamine biosynthetic process  16  6  1.63  0.00364  

GO:0031640  killing of cells of other organism  16  6  1.63  0.00364  
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GO:0000097  sulfur amino acid biosynthetic process  44  11  4.49  0.00388  

GO:0016054  organic acid catabolic process  163  28  16.64  0.00411  

GO:0032787  monocarboxylic acid metabolic process  544  75  55.53  0.00418  

GO:0009620  response to fungus  371  54  37.87  0.0047  

GO:0006549  isoleucine metabolic process  12  5  1.22  0.00472  

GO:0009205  purine ribonucleoside triphosphate metabolic process   135  24  13.78  0.00485  

GO:0006576  cellular biogenic amine metabolic process  58  13  5.92  0.0049  

GO:0019693  ribose phosphate metabolic process  275  42  28.07  0.00513  

GO:0019319  hexose biosynthetic process  17  6  1.74  0.00514  

GO:0030308  negative regulation of cell growth  17  6  1.74  0.00514  

GO:0098662  inorganic cation transmembrane transport  415  59  42.36  0.00542  

GO:0006952  defense response  1687  203  172.2  0.00554  

GO:1901700  response to oxygen-containing compound  1460  178  149.03  0.00555  

GO:0009259  ribonucleotide metabolic process  253  39  25.82  0.00583  

GO:0009144  purine nucleoside triphosphate metabolic process  138  24  14.09  0.00643  

GO:0046777  protein autophosphorylation  255  39  26.03  0.00665  

GO:0008216  spermidine metabolic process  13  5  1.33  0.00703  

GO:0006631  fatty acid metabolic process  265  40  27.05  0.00755  

GO:1902600  proton transmembrane transport  202  32  20.62  0.00792  

GO:0044272  sulfur compound biosynthetic process  133  23  13.58  0.00806  

GO:0000302  response to reactive oxygen species  156  26  15.92  0.00826  

GO:0009201  ribonucleoside triphosphate biosynthetic process   111  20  11.33  0.00826  

GO:0016104  triterpenoid biosynthetic process  24  7  2.45  0.00828  

GO:0009260  ribonucleotide biosynthetic process  180  29  18.37  0.00882  

GO:0046470  phosphatidylcholine metabolic process  19  6  1.94  0.00944  

GO:0046390  ribose phosphate biosynthetic process  181  29  18.48  0.00951  
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Table S9 -  Gene Ontology category enriched in genes with allelic imbalance in more than 80% of the 

cultivars tested in soft berries. The first two columns are the GO tag of the category and its description. 

“Annotated” is the number of genes belonging to that category present in the reference group, “eGenes” is 

the number of gene of that category present in our gene list and “expected” the number of genes expected 

if the category was not enriched. The last column is the p-value of the enrichment test (fisher test).  

 

Gene Ontology ID  Category description  Annotated  Significant  Expected  Fisher p-value  

GO:0072329  monocarboxylic acid catabolic process  77  21  8.83  0.00011  

GO:0042447  hormone catabolic process  28  11  3.21  0.00015  

GO:0006952  defense response  1690  240  193.75  0.00015  

GO:0009651  response to salt stress  505  85  57.89  0.00016  

GO:0000272  polysaccharide catabolic process  176  37  20.18  0.00018  

GO:0046244  salicylic acid catabolic process  13  7  1.49  0.00024  

GO:0009205  purine ribonucleoside triphosphate metabolic process  129  29  14.79  0.00026  

GO:0042737  drug catabolic process  232  45  26.6  0.00027  

GO:0042493  response to drug  558  91  63.97  0.0003  

GO:0044275  cellular carbohydrate catabolic process  61  17  6.99  0.00036  

GO:0000302  response to reactive oxygen species  157  33  18  0.00039  

GO:0009144  purine nucleoside triphosphate metabolic process  132  29  15.13  0.0004  

GO:0006081  cellular aldehyde metabolic process  84  21  9.63  0.0004  

GO:0009201  ribonucleoside triphosphate biosynthetic process  108  25  12.38  0.00043  

GO:0009607  response to biotic stimulus  1070  157  122.67  0.00054  

GO:0019362  pyridine nucleotide metabolic process  111  25  12.73  0.00066  

GO:0009407  toxin catabolic process  19  8  2.18  0.00069  

GO:0019336  phenol-containing compound catabolic process  15  7  1.72  0.00072  

GO:0009141  nucleoside triphosphate metabolic process  156  32  17.88  0.00073  

GO:0046677  response to antibiotic  314  55  36  0.00086  

GO:0010193  response to ozone  24  9  2.75  0.00088  

GO:0006631  fatty acid metabolic process  273  49  31.3  0.00094  

GO:0044247  cellular polysaccharide catabolic process  44  13  5.04  0.00095  

GO:0046034  ATP metabolic process  120  26  13.76  0.00096  

GO:0042221  response to chemical  2592  344  297.15  0.00099  

GO:0009142  nucleoside triphosphate biosynthetic process  114  25  13.07  0.00099  

GO:0046777  protein autophosphorylation  253  46  29  0.001  

GO:0072521  purine-containing compound metabolic process  253  46  29  0.001  

GO:0009145  purine nucleoside triphosphate biosynthetic process  97  22  11.12  0.00123  

GO:0006970  response to osmotic stress  577  90  66.15  0.00138  

GO:1901700  response to oxygen-containing compound  1482  206  169.9  0.0014  

GO:0006754  ATP biosynthetic process  92  21  10.55  0.00144  

GO:0055086  nucleobase-containing small molecule metabolic process  444  72  50.9  0.00144  

GO:0019359  nicotinamide nucleotide biosynthetic process  80  19  9.17  0.00145  

GO:0098754  detoxification  163  32  18.69  0.00158  

GO:0072524  pyridine-containing compound metabolic process  118  25  13.53  0.00166  

GO:0006629  lipid metabolic process  996  144  114.18  0.00167  

GO:0019363  pyridine nucleotide biosynthetic process  81  19  9.29  0.00169  

GO:0044042  glucan metabolic process  253  45  29  0.00178  
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GO:0009056  catabolic process  1546  213  177.24  0.00181  

GO:0055085  transmembrane transport  1149  163  131.72  0.00192  

GO:0006096  glycolytic process  70  17  8.03  0.00195  

GO:0019693  ribose phosphate metabolic process  270  47  30.95  0.00225  

GO:0072525  pyridine-containing compound biosynthetic process  89  20  10.2  0.00225  

GO:1901135  carbohydrate derivative metabolic process  747  111  85.64  0.00227  

GO:0042866  pyruvate biosynthetic process  71  17  8.14  0.0023  

GO:0044264  cellular polysaccharide metabolic process  314  53  36  0.00245  

GO:0006733  oxidoreduction coenzyme metabolic process  128  26  14.67  0.00254  

GO:0009311  oligosaccharide metabolic process  90  20  10.32  0.00259  

GO:0015851  nucleobase transport  14  6  1.61  0.00299  

GO:0044255  cellular lipid metabolic process  769  113  88.16  0.00302  

GO:0006165  nucleoside diphosphate phosphorylation  79  18  9.06  0.00311  

GO:0009135  purine nucleoside diphosphate metabolic process  73  17  8.37  0.00314  

GO:0009833  plant-type primary cell wall biogenesis  50  13  5.73  0.00339  

GO:0051259  protein complex oligomerization  86  19  9.86  0.0035  

GO:0006753  nucleoside phosphate metabolic process  364  59  41.73  0.00373  

GO:0046939  nucleotide phosphorylation  81  18  9.29  0.00413  

GO:1901575  organic substance catabolic process  1375  188  157.63  0.00465  

GO:0006812  cation transport  548  83  62.82  0.00467  

GO:0009132  nucleoside diphosphate metabolic process  82  18  9.4  0.00474  

GO:0009117  nucleotide metabolic process  361  58  41.39  0.00485  

GO:0044283  small molecule biosynthetic process  789  114  90.45  0.00501  

GO:0006805  xenobiotic metabolic process  11  5  1.26  0.00502  
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Table S10 -  Gene Ontology category enriched in genes monoallelic expression in leaves. The first two 

column are the GO tag of the category and its description. “Annotated” is the number of genes belonging to 

that category present in the reference group, “Monoallelic” is the number of gene of that category present 

in our monoallelic gene list list and “expected” the number of genes expected if the category was not 

enriched. The last column is the p-value of the enrichment test (fisher test).  

Gene Ontology ID  Category description  Annotated  Monoallelic  Expected  Fisher p-value  

GO:0006418  tRNA aminoacylation for protein translat...  60  16  5.79  0.00013  

GO:0043038  amino acid activation  64  16  6.18  0.00029  

GO:0043039  tRNA aminoacylation  64  16  6.18  0.00029  

GO:1902290  positive regulation of defense response to oomycetes  36  11  3.48  0.0004  

GO:0016098  monoterpenoid metabolic process  21  8  2.03  0.00048  

GO:0021700  developmental maturation  153  28  14.77  0.00068  

GO:0035235  ionotropic glutamate receptor signaling pathway   28  9  2.7  0.0009  

GO:0031640  killing of cells of other organism  14  6  1.35  0.00122  

GO:0009699  phenylpropanoid biosynthetic process  122  23  11.78  0.0013  

GO:0071236  cellular response to antibiotic  81  17  7.82  0.00162  

GO:0019748  secondary metabolic process  241  38  23.27  0.00168  

GO:0071695  anatomical structure maturation  132  24  12.74  0.00173  

GO:0048765  root hair cell differentiation  62  14  5.99  0.00198  

GO:0009820  alkaloid metabolic process  31  9  2.99  0.00201  

GO:1902288  regulation of defense response to oomycetes  43  11  4.15  0.00205  

GO:0071446  cellular response to salicylic acid stimulus  69  15  6.66  0.00207  

GO:0035834  indole alkaloid metabolic process  11  5  1.06  0.00234  

GO:0042742  defense response to bacterium  442  61  42.67  0.00265  

GO:0048469  cell maturation  64  14  6.18  0.00271  

GO:0002239  response to oomycetes  107  20  10.33  0.0029  

GO:0048544  recognition of pollen  93  18  8.98  0.0031  

GO:0009863  salicylic acid mediated signaling pathway   65  14  6.28  0.00315  

GO:0007215  glutamate receptor signaling pathway  33  9  3.19  0.00322  

GO:0050826  response to freezing  33  9  3.19  0.00322  

GO:0009620  response to fungus  352  50  33.98  0.00346  

GO:0008037  cell recognition  95  18  9.17  0.00394  

GO:0071230  cellular response to amino acid stimulus  34  9  3.28  0.00401  

GO:0010054  trichoblast differentiation  67  14  6.47  0.00422  

GO:0009875  pollen-pistil interaction  104  19  10.04  0.00472  

GO:0009698  phenylpropanoid metabolic process  143  24  13.81  0.00508  

GO:0051704  multi-organism process  1400  163  135.16  0.0053  

GO:0006749  glutathione metabolic process  36  9  3.48  0.00604  

GO:0002229  defense response to oomycetes  99  18  9.56  0.00617  

GO:0016137  glycoside metabolic process  30  8  2.9  0.00625  

GO:0044550  secondary metabolite biosynthetic process  155  25  14.96  0.00722  

GO:0050832  defense response to fungus  297  42  28.67  0.00752  

GO:0006349  regulation of gene expression  by genomic imprinting  14  5  1.35  0.00792  

GO:0019722  calcium-mediated signaling  44  10  4.25  0.00798  

GO:0048646  
anatomical structure formation involved in 
morphogenesis  173  27  16.7  0.00837  

GO:0016138  glycoside biosynthetic process  26  7  2.51  0.00979  
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GO:2000031  regulation of salicylic acid mediated signaling pathway  39  9  3.77  0.01046  

GO:0071514  genetic imprinting  15  5  1.45  0.01095  

GO:0019932  second-messenger-mediated signaling  46  10  4.44  0.01099  

GO:0006518  peptide metabolic process  646  80  62.37  0.01154  

GO:0009751  response to salicylic acid  186  28  17.96  0.01184  

GO:0048571  long-day photoperiodism  40  9  3.86  0.01237  

GO:0048767  root hair elongation  40  9  3.86  0.01237  

GO:0009617  response to bacterium  512  65  49.43  0.01297  

GO:0090627  plant epidermal cell differentiation  91  16  8.79  0.013  

GO:0010053  root epidermal cell differentiation  76  14  7.34  0.01313  

GO:0071407  cellular response to organic cyclic comp...  171  26  16.51  0.01319  

GO:0006399  tRNA metabolic process  196  29  18.92  0.01325  

GO:1900426  positive regulation of defense response ...  55  11  5.31  0.01467  

GO:0051646  mitochondrion localization  16  5  1.54  0.01469  
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Table S11 - : Gene Ontology category enriched in genes monoallelic expression in hard berries. The first two 

column are the GO tag of the category and its description. “Annotated” is the number of genes belonging to 

that category present in the reference group, “Monoallelic” is the number of gene of that category present 

in our monoallelic gene list list and “expected” the number of genes expected if the category was not 

enriched. The last column is the p-value of the enrichment test (fisher test).  

Gene Ontology ID  Category description  Annotated  Monoallelic  Expected  Fisher p-value  

GO:0048544  recognition of pollen  96  18  7.25  0.00027  

GO:0008037  cell recognition  98  18  7.4  0.00035  

GO:0009875  pollen-pistil interaction  108  19  8.15  0.00043  

GO:0009856  pollination  279  36  21.07  0.0011  

GO:0044706  multi-multicellular organism process  279  36  21.07  0.0011  

GO:0030048  actin filament-based movement  30  8  2.27  0.00134  

GO:0016114  terpenoid biosynthetic process  168  24  12.69  0.00184  

GO:0006721  terpenoid metabolic process  189  26  14.27  0.0021  

GO:0006897  endocytosis  103  16  7.78  0.00439  

GO:0050826  response to freezing  36  8  2.72  0.00464  

GO:0030029  actin filament-based process  104  16  7.85  0.00483  

GO:0048768  root hair cell tip growth  16  5  1.21  0.00526  

GO:0030036  actin cytoskeleton organization  96  15  7.25  0.0054  

GO:0051645  Golgi localization  11  4  0.83  0.00694  

GO:0090436  leaf pavement cell development  11  4  0.83  0.00694  

GO:0008299  isoprenoid biosynthetic process  207  26  15.63  0.00717  

GO:0007015  actin filament organization  81  13  6.12  0.00738  

GO:0019722  calcium-mediated signaling  39  8  2.94  0.00772  

GO:0006950  response to stress  3390  289  255.97  0.00874  

GO:0006720  isoprenoid metabolic process  232  28  17.52  0.00922  

GO:0009310  amine catabolic process  12  4  0.91  0.00979  

GO:0006468  protein phosphorylation  1199  112  90.53  0.00987  

GO:0098657  import into cell  123  17  9.29  0.01098  

GO:0021700  developmental maturation  173  22  13.06  0.01105  

GO:0007004  telomere maintenance via telomerase  26  6  1.96  0.01135  

GO:0005984  disaccharide metabolic process  59  10  4.45  0.0122  

GO:0071695  anatomical structure maturation  146  19  11.02  0.01383  

GO:0035235  ionotropic glutamate receptor signaling pathway  20  5  1.51  0.0145  

GO:0070475  rRNA base methylation  20  5  1.51  0.0145  

GO:0071554  cell wall organization or biogenesis  589  59  44.47  0.0154  

GO:0016310  phosphorylation  1499  135  113.19  0.01559  

GO:0008610  lipid biosynthetic process  590  59  44.55  0.0159  

GO:0010833  telomere maintenance via telomere lengthening  28  6  2.11  0.01633  

GO:2000031  regulation of salicylic acid mediated signaling pathway  36  7  2.72  0.01656  

GO:0051090  regulation of DNA-binding transcription factor activity  14  4  1.06  0.01754  

GO:0051194  positive regulation of cofactor metabolic process  14  4  1.06  0.01754  

GO:0000003  reproduction  1518  136  114.62  0.01782  

GO:0010091  trichome branching  37  7  2.79  0.01913  

GO:0006360  transcription by RNA polymerase I  29  6  2.19  0.01931  

GO:1901401  regulation of tetrapyrrole metabolic process  22  5  1.66  0.02173  
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GO:0010075  regulation of meristem growth  38  7  2.87  0.02197  

GO:0120029  proton export across plasma membrane  15  4  1.13  0.02252  

GO:0051704  multi-organism process  1506  134  113.72  0.02273  

GO:0048765  root hair cell differentiation  65  10  4.91  0.02315  

GO:0051193  regulation of cofactor metabolic process  47  8  3.55  0.02318  

GO:0022414  reproductive process  1511  134  114.09  0.02497  

GO:0009832  plant-type cell wall biogenesis  166  20  12.53  0.02537  

GO:0048589  developmental growth  352  37  26.58  0.0254  

GO:0050896  response to stimulus  5340  434  403.21  0.02585  

GO:0035266  meristem growth  57  9  4.3  0.02607  

GO:0010229  inflorescence development  23  5  1.74  0.02608  

GO:0007166  cell surface receptor signaling pathway  220  25  16.61  0.02627  

GO:0045229  external encapsulating structureorganization   468  47  35.34  0.02717  

GO:0006928  movement of cell or subcellular component   126  16  9.51  0.02774  

GO:0006629  lipid metabolic process  1003  92  75.73  0.02796  

GO:0048469  cell maturation  67  10  5.06  0.02803  

GO:0006221  pyrimidine nucleotide biosynthetic process  49  8  3.7  0.02914  

GO:0040007  growth  566  55  42.74  0.03156  
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Table S12 - Gene Ontology category enriched in genes monoallelic expression in soft berries. The first two 

column are the GO tag of the category and its description. “Annotated” is the number of genes belonging to 

that category present in the reference group, “monoallelic” is the number of gene of that category present 

in our monoallelic gene list and “expected” the number of genes expected if the category was not enriched. 

The last column is the p-value of the enrichment test (fisher test).  

Gene 
Ontology ID  Category description  Annotated  Monoallelic  Expected  

Fisher p-
value  

GO:0009310  amine catabolic process  11  5  0.75  0.00047  

GO:0006952  defense response  1690  148  115.08  0.00064  

GO:0016045  detection of bacterium  18  6  1.23  0.0009  

GO:0006468  protein phosphorylation  1193  108  81.24  0.00121  

GO:0009875  pollen-pistil interaction  103  16  7.01  0.00156  

GO:0035235  ionotropic glutamate receptor signaling ...  20  6  1.36  0.00166  

GO:0030048  actin filament-based movement  29  7  1.97  0.00276  

GO:0019748  secondary metabolic process  315  35  21.45  0.00289  

GO:0048544  recognition of pollen  92  14  6.26  0.00363  

GO:0009699  phenylpropanoid biosynthetic process  155  20  10.55  0.00429  

GO:0008037  cell recognition  94  14  6.4  0.00442  

GO:0050829  defense response to Gram-negative bacter...  40  8  2.72  0.0049  

GO:0006576  cellular biogenic amine metabolic process  58  10  3.95  0.00536  

GO:0007215  glutamate receptor signaling pathway  25  6  1.7  0.00567  

GO:0044550  secondary metabolite biosynthetic process  194  23  13.21  0.00661  

GO:1900457  regulation of brassinosteroid mediated  signaling pathway  12  4  0.82  0.0068  

GO:0009698  phenylpropanoid metabolic process  184  22  12.53  0.00707  

GO:0016310  phosphorylation  1490  125  101.46  0.0074  

GO:0071230  cellular response to amino acid stimulus  27  6  1.84  0.00843  

GO:0009856  pollination  268  29  18.25  0.00902  

GO:0044706  multi-multicellular organism process  268  29  18.25  0.00902  

GO:0043090  amino acid import  13  4  0.89  0.0093  

GO:0070475  rRNA base methylation  20  5  1.36  0.00951  

GO:0043038  amino acid activation  63  10  4.29  0.00967  

GO:0010584  pollen exine formation  28  6  1.91  0.01013  

GO:0030036  actin cytoskeleton organization  96  13  6.54  0.01307  

GO:0006749  glutathione metabolic process  47  8  3.2  0.01316  

GO:0040011  locomotion  97  13  6.61  0.01418  

GO:0048767  root hair elongation  39  7  2.66  0.01502  

GO:0055114  oxidation-reduction process  1635  133  111.33  0.01539  

GO:0035834  indole alkaloid metabolic process  15  4  1.02  0.01592  

GO:0044106  cellular amine metabolic process  68  10  4.63  0.01622  

GO:0010927  cellular component assembly involved in morphogenesis  40  7  2.72  0.01717  

GO:0010229  inflorescence development  23  5  1.57  0.01742  

GO:0006418  tRNA aminoacylation for protein translation   59  9  4.02  0.01761  

GO:0043200  response to amino acid  41  7  2.79  0.01952  

GO:0003002  regionalization  146  17  9.94  0.02096  

GO:0007015  actin filament organization  81  11  5.52  0.021  

GO:0006935  chemotaxis  51  8  3.47  0.021  

GO:0018105  peptidyl-serine phosphorylation  52  8  3.54  0.02339  
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GO:0042330  taxis  52  8  3.54  0.02339  

GO:0030029  actin filament-based process  104  13  7.08  0.02412  

GO:0006595  polyamine metabolic process  25  5  1.7  0.02459  

GO:0016132  brassinosteroid biosynthetic process  25  5  1.7  0.02459  

GO:0043009  chordate embryonic development  17  4  1.16  0.02491  

GO:0010208  pollen wall assembly  34  6  2.32  0.02559  

GO:0048646  anatomical structure formation involved in morphogenesis  196  21  13.35  0.02611  

GO:0009308  amine metabolic process  106  13  7.22  0.02773  

GO:0010183  pollen tube guidance  44  7  3  0.02792  

GO:0034754  cellular hormone metabolic process  44  7  3  0.02792  

GO:0048764  trichoblast maturation  64  9  4.36  0.02858  

GO:0048765  root hair cell differentiation  64  9  4.36  0.02858  

GO:0009792  embryo development ending in birth or eg...  18  4  1.23  0.03034  

GO:0009626  plant-type hypersensitive response  176  19  11.98  0.03099  

GO:0034050  host programmed cell death induced by symbiont   176  19  11.98  0.03099  

GO:0018209  peptidyl-serine modification  65  9  4.43  0.03125  

GO:0008215  spermine metabolic process  11  3  0.75  0.03438  

GO:0008593  regulation of Notch signaling pathway  11  3  0.75  0.03438  

 


