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1 Introduction

In this paper, we study analytical approaches to solve the differential equations describing
black hole (BH) linear perturbation theory. The concrete problem consists in the study of
Einstein equations with a cosmological constant, approximated around a particular BH so-
lution to first order in perturbation theory.1 Because of the symmetries of the Schwarzschild
(anti) de Sitter solution, the linearised equations separate and reduce to a second-order lin-
ear ODE of Fuchsian type; we refer to [1] for a review and a list of references. In the partic-
ular cases we study in this work, the relevant equation has four or five regular singularities.
Fuchsian equations appear in many fields of theoretical and mathematical physics, and the
relevance of the parametric analysis of their solutions and the corresponding connection
coefficients goes well beyond the application to BH perturbation theory. In this paper, we
employ two distinct, complementary strategies to analytically study such equations.

First, by following modern developments in the context of the supersymmetric gauge
theories, we tackle such problems using the Nekrasov-Shatashvili (NS) functions [2] (see
appendix A for their definition). These functions have been shown to be building blocks
to compute quantum periods [2–6], eigenfunctions [7–13], Fredholm determinants [14, 15],
and connection coefficients [12] for Fuchsian differential equations and their irregular lim-
its. These techniques were recently applied to studying spectral problems describing black
hole perturbation theory. Initially introduced in [16] for the study of quasinormal modes
(QNMs) in four-dimensional asymptotically flat black holes, this approach has been gen-
eralized to various gravitational backgrounds and extends beyond the QNMs computa-
tion [17–34].2 Other interesting related results have been elaborated in [41–64].

In this paper, we further extend this approach to the framework of four-dimensional
BHs in the de Sitter (dS) background. More precisely, we compute the relevant connection
formulae following the methodology developed in [12], where exact connection formulae
for the Heun equation were obtained from the classical limit of Virasoro conformal blocks,
which is, in turn, related to NS functions.3

The approach based on the NS functions can be applied in its simplest form only when
the boundary conditions of the spectral problem are imposed at singular points of the
differential equation. However, there are cases when this condition is not satisfied. For
example, when considering gravitational or conformally coupled scalar perturbations of
black holes in a four-dimensional anti-de Sitter (AdS) spacetime, see section 4. Moreover,
the NS functions expansion is potent but only in some regions of parameter space, and to
explore other regions, it is sometimes necessary to resort to other analytic methods. This
happens, for instance, in studying the so-called hydrodynamic limit.4 In these situations,

1Higher orders in perturbation theory can also be studied with the methods we develop here, but this is
beyond the scope of this work.

2See also [35–40] for another approach based on Painlevé equations.
3For a discussion of these connection formulae from a mathematical viewpoint, see [65].
4Indeed, the natural expansion in this limit does not map to the instanton expansion in gauge theory.

This obstacle may be overcome by using TBA techniques for the computation of the NS functions and the
corresponding quantum periods, see [29–31]. However, we will not explore this path in this work.
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we analyze the equation using an alternative “polylog” method where we reduce the relevant
problem to recurrence relations which we solve in terms of multiple polylogarithms.

This paper is structured as follows.
In section 2, we briefly describe the NS and the polylog methods and comment on their

implementation.
In section 3, we study conformally coupled scalar, electromagnetic, and vector-type

gravitational perturbations of four-dimensional Schwarzschild de Sitter black holes (SdS),
where both methods are applicable. We use the Heun connection formulae to obtain the
quantization condition in section 3.1, which gives the quasinormal frequencies as series
expansions in the radius of the black hole horizon Rh. In section 3.2, we apply the polylog
method and express the corresponding wave functions in terms of multiple polylogarithms
in one variable. By gluing the relevant local solutions, we determine the frequencies of the
QNMs, and the resulting series expansions in Rh agree with the ones obtained in section 3.1.
In all computed orders, we find purely imaginary QNM frequencies in agreement with the
earlier observations made by numerical computations [66–68].

In section 4, we study the same class of perturbations of section 3 in the case of
four-dimensional Schwarzschild anti-de Sitter black holes (SAdS) imposing Dirichlet
boundary conditions at spatial infinity. For these perturbations, one of the boundary
conditions is imposed at a regular point of the equation. Hence the method based on
the NS function is more complicated to implement, and we apply the polylog method
instead. As in the Schwarzschild de Sitter case, the two local solutions are described in
terms of multiple polylogarithms in one variable. We check our analytic results against
the numerical values of [69].5 Our results suggest that the leading order of the imaginary
part of the QNM frequencies is −cR2ℓ+2

h in the small Rh approximation, where ℓ is the
angular quantum number and c is a real positive constant depending on all the quantum
numbers. This is consistent with earlier numerical results obtained via the Breit-Wigner
approach [71] and some earlier analytic studies in [72].

In section 5, we study the low-lying modes of the scalar sector of gravitational per-
turbations of Schwarzschild anti-de Sitter black holes in the big Rh limit. In this section,
we use Robin boundary conditions at spatial infinity, which preserve the metric at the
boundary and, as such, are more suited for holography. The corresponding differential
equation has five regular singular points, and we use the polylog method to compute the
relevant local solutions as Taylor expansions in 1/Rh. To make this computation more
efficient, we introduce three local regions. In the region near the horizon, the local solution
is given in terms of multiple polylogarithms in several variables (all but the first argument
are constants). The local solutions are described in terms of Laurent polynomials in the
other two regions. The QNM frequencies are obtained by gluing the three local solutions,
and the first two orders in 1/Rh agree with the results from [73]. Theoretically, one can
compute the QNM frequency up to any given order in 1/Rh. However, due to the expo-
nential growth of the number of polylogarithm functions that appear in each order in the

5With the current version of Mathematica (12.1 or higher), one can use the numerical implementation of
Heun functions to get very accurate results for the QNM frequencies for most quantum numbers, see e.g [70].
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perturbative expansion, we could determine the QNM frequency up to order 1/R6
h. By

taking the hydrodynamic limit, we can also reproduce the results from [74] and obtain four
additional corrections in the expansion.

Appendix A introduces the notations and conventions used in the main text for the
NS functions. Appendix B reports relevant identities between classical polylogarithms and
multiple polylogarithms and relations for multiple zeta values. In appendix C, we prove
by induction on K ∈ N that the local solutions at order RK

h in section 3 and section 4 are
given in terms of multiple polylogarithms in one variable of weight at most K. Appendix D
presents the linear basis of multiple polylogarithms in several variables that describes the
local solution near the horizon in section 5. We also show how nontrivial identities arise
between multiple polylogarithms at a fixed level. In appendix E, we write the Heun con-
nection formula relevant to the Schwarzschild anti-de Sitter case. We obtain the first order
correction in Rh of the QNM frequency with n = 0, ℓ = s = 1, which matches the result
obtained in section 4, although the procedure is more involved and less efficient.

The interested reader can find the relevant Mathematica files on
https://github.com/GlebAminov/BH_PolyLog. More precisely

• In the folders “(A)dS General n,l,s”, we list explicit results for some quantum num-
bers (n, ℓ, s) and also include executable files to make the computation at higher
quantum numbers. This can be done just by specifying (n, ℓ, s) at the beginning
of the file “Nf4−exe” in the subfolder “Executable files”. In the subfolder “Heun
wave functions”, one can find the expansion to the first orders of the solutions to the
differential equation in both left and right regions.

• In the folder “Robin general m”, we include the relevant orders for our computa-
tions of the solutions to the differential equation in the three regions in the files
“WFL−Robin.m”, “WFM−Robin.m”, and “WFR−Robin.m”. Moreover, in the file
“Robin−QNM”, we list the first seven orders of the expansion of the low-lying QNM
frequencies ωk and their hydrodynamic limit in the file “Robin−QNM−hydro”.

More details are given in the README.md and Comments.md files on the GitHub link above.
The notebooks with the computed frequencies can also be found as supplementary material
attached to this article.

2 Methodology

2.1 The gauge theory approach

Following [16–28], our first approach to study black hole perturbation theory is to identify
the differential equations coming from the gravitational side with the differential equations
originating from Seiberg-Witten theory or, equivalently, satisfied by conformal blocks with
a degenerate primary insertion; hence use the NS functions to solve the corresponding spec-
tral problem. In particular, we apply this method when dealing with the Heun equation,
which is a second-order differential equation with four regular singularities, for which the
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connection formulae are given in [12]. The Heun equation is given by(
d2

dz2 +
(
γ

z
+ δ

z − 1 + ϵ

z − t

)
d

dz
+ αβz − q

z(z − 1)(z − t)

)
ψ(z) = 0,

α+ β + 1 = γ + δ + ϵ.

(2.1)

To study the quasinormal modes equation, the gauge theory approach is useful when
the boundary conditions are imposed at the singularities of the problem, like for the SdS
case, analyzed in section 3. Thanks to the power-like behaviour of the local solutions
near the singular points, it is easy to identify the two local solutions selected by the two
boundary conditions. These two solutions are then used to quantize the frequencies, taking
into account the connection formula that relates them. In these cases the quantization
condition is expressed in terms of the quantum periods of the underlying SW geometry,
computed via NS functions (see formula (3.17) and appendix A for the conventions used).
If, as it happens in the SAdS case analyzed in section 4, at least one of the boundary
conditions is imposed in a regular point of the differential equation, the gauge theory
approach is less effective: it is still possible to solve the problem with the connection
formulae, but the quantization condition for the frequency will not be expressed in terms
of NS functions only (see formula (E.3)).

By introducing an appropriate change of variables, we can always transform the pertur-
bation equation with four regular singularities in the Heun form and send the singularities
in z = 0, 1, t,∞. In all the cases in which the connection formulae are used, we will put us
in a regime in which the complex modulus of t is small, |t| ≪ 1, and such that the rele-
vant connection formula is among local solutions in z = t and in z = 1. The independent
solutions of the Heun equation for z ∼ t are

ψ
(t)
− (z) = Heun

(
t

t− 1 ,
q − tαβ

1− t
, α, β, ϵ, δ,

z − t

1− t

)
,

ψ
(t)
+ (z) = (z − t)1−ϵHeun

(
t

t− 1 ,
q − (β − γ − δ)(α− γ − δ)t− γ(ϵ− 1)

1− t
,

− α+ γ + δ,−β + γ + δ, 2− ϵ, δ,
z − t

1− t

)
,

(2.2)

and the ones for z ∼ 1 are

ψ
(1)
− (z) =

(
z − t

1− t

)−α

Heun
(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t

1− z

t− z

)
,

ψ
(1)
+ (z) = (z − 1)1−δ

(
z − t

1− t

)−α−1+δ

Heun
(
t, q − (δ − 1)γt− (β − 1)(α− δ + 1),

− β + γ + 1, α− δ + 1, 2− δ, γ, t
1− z

t− z

)
.

(2.3)

In terms of the connection matrices of hypergeometric functions

Mθθ′(a1, a2; a3) =
Γ(−2θ′a2)Γ(1 + 2θa1)

Γ
(

1
2 + θa1 − θ′a2 + a3

)
Γ
(

1
2 + θa1 − θ′a2 − a3

) , (2.4)
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where θ, θ′ = ±, the connection formula for small t from z ∼ t to z ∼ 1 is given by [12]

t−
1
2 +a0∓at(1− t)− 1

2 +a1e∓
1
2 ∂at F (t)ψ

(t)
± (z) (2.5)

=
(∑

σ=±
M±σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−

σ
2 ∂aF (t)

)
(1− t)− 1

2 +ateiπ(a1+at)e
1
2 ∂a1 F (t)ψ

(1)
− (z)

+
(∑

σ=±
M±σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−

σ
2 ∂aF (t)

)
(1− t)− 1

2 +ateiπ(−a1+at)e−
1
2 ∂a1 F (t)ψ

(1)
+ (z).

Within the examples analyzed in this paper, the gauge theory approach is particularly
effective in computing quasinormal modes at large ℓ in the SdS case (see subsection 3.1.2).

2.2 The multi polylog approach

When the gauge theory approach proves less effective, we solve the QNM spectral problem
order by order in some suitably chosen expansion parameter κ and for fixed values of some
quantum numbers.6 For instance, we can consider perturbation theory in Rh or R−1

h , Rh

being the radius of the black hole horizon. This is like doing Hamiltonian perturbation
theory, and although the numerical implementation of this algorithm is well known (see
e.g. [1, 77–79]), if we want an analytical answer, the calculation quickly becomes cumber-
some. In particular, it is necessary to find suitable stratagems for higher orders. For the
situations we consider in this work, we find that higher orders can be determined system-
atically using the underlying structure that involves multiple polylogarithms (similar tech-
niques are also used to compute Feynman integrals in QCD, see e.g. [80–85] and references
therein). In this section, we sketch the general idea while we give more details in concrete
examples; see section 3, section 4, and section 5. Mathematica notebooks are also attached.

The spectral problems we are interested in are two-point boundary value problems asso-
ciated with differential equations on the sphere with n regular singularities.7 More precisely,
we will focus on the cases n = 4, 5. The boundary conditions are fixed at generic points
z = z1 and z = z2, not necessarily coinciding with the position of the regular singularities.

For the problems at hand, we can use the following Ansatz for the eigenfunctions in
each region of the patch decomposition8 of the n-punctured sphere

ψ (z) = f0 (z) +
∑
K≥1

fK(z)κK . (2.6)

Sometimes, it is useful to introduce additional regions with respect to the minimal patch
decomposition to optimize the efficiency of perturbation theory. Different scalings in κ of

6Here “suitably chosen” means that the 0th order is solvable in terms of relatively simple functions
(e.g. rational functions or logarithms). In addition, we would like good convergence properties for the
expansions in κ in the spectral problem. We believe that this is the case, at least for the example of section 3
where κ is related to the instanton counting parameter t of the underlying gauge theory (see [25, 75, 76]
for the study of convergence properties in gauge theory).

7The case of irregular singularities will appear elsewhere [86].
8We remark that the expansions in z of the local solutions, performed around a given singularity of the

problem, hold in an open disk centered in that singularity. The radius of this disk is equal to the distance
between that singularity and the closest one.
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the regular singularities of the equation under the scale redefinitions z → κcz determine
the possible number of regions. We assume that in the differential equation (and therefore
in the position of the singularities too), only integer powers of κ appear, therefore c ∈ Z.
The position of the regular singularities can depend on the perturbation parameter κ.
Therefore, in the perturbative expansion in κ ∼ 0, the singularities will tend to cluster
differently as we change the critical parameter c. These different clustering schemes define
the different regions for the perturbative expansion and determine a finer structure in the
patch decomposition, which also considers the different geometric situations describing the
potential terms in the differential equation. For a nontrivial example, see section 5. At
each order in κ, ψ (z) is determined by a second-order equation

(fK(z))′′ + φ (z) (fK(z))′ + ν(z)fK(z) + ηK(z) = 0, (2.7)

which we solve by using the method of variation of parameters. The functions φ and ν

in (2.7) are known,9 and the non-homogeneous part of the differential equation ηK(z) is
fully determined by the solutions to the previous orders fm with m ≤ K − 1. Let f0, g0 be
the two solutions of the homogeneous part of (2.7).10 Then we write the generic solution
to (2.7) as11

fK(z) = bKg0(z)+cKf0(z)−g0(z)
∫ z

f0(z′)
ηK(z′)
W0(z′)

dz′+f0(z)
∫ z

g0(z′)
ηK(z′)
W0(z′)

dz′, (2.8)

where W0 is the Wronskian of the two leading order solutions

W0 ≡ f0 (g0)′ − (f0)′ g0. (2.9)

In each region, the integration constants cK ’s can be absorbed into a normalization of
the solution, and they can be fixed to zero without loss of generality. Imposing the two
boundary conditions and gluing the local solutions fixes the integration constants bK and
gives the quantization of the frequency of the perturbation. If either z1,2 has a non-trivial
dependence on the parameter κ, the boundary condition is applied by expanding ψ (z1,2)
in powers of κ. In the following sections, we will be more detailed in describing how this
expansion works case by case.

In principle, the relations (2.8) allow us to compute the wave function up to any given
order in κ. However, to implement this algorithm in practice, there is still a non-trivial
step: explicitly compute the integrals in (2.8). In all our examples, the leading order
solutions are described in terms of rational or logarithmic functions, and their Wronskian
is a rational function. Hence the wave function at order κK is described in terms of multiple
polylogarithms of weight K and lower. In the cases analyzed in sections 3 and 4, up to order
R4

h, one can avoid using multiple polylogarithms due to identities (B.6)–(B.9) presented
9The wave equation is understood to be Taylor expanded as ψ′′ +

∑+∞
H=0 κ

H(φHψ
′ + νHψ) = 0, so that

one finds explicitly ηK =
∑K

L=1(φLf
′
K−L + νLfK−L). In the text φ0 = φ and ν0 = ν.

10These are the two solutions of the leading order equation, g0 being the one that does not satisfy the
relevant boundary condition.

11The integrals appearing in (2.8) are the indefinite ones.
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in appendix B. However, from order R5
h on, the expansions in multiple polylogarithms

cannot be avoided to our knowledge. Here we would like to mention that a more general
statement about multiple polylogarithms in several variables is well-known. According to
Theorem D of [87], not every multiple polylogarithm of weight ≥ 4 can be expressed as a
finite combination of classical polylogarithms. Since, in sections 3 and 4, we only deal with
multiple polylogarithms in a single variable, we can push this bound to weight 5.

3 Perturbations of de Sitter black holes in four dimensions

3.1 Schwarzschild de Sitter black hole

The metric describing the de Sitter Schwarzschild black hole in four dimensions (SdS4) is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 (3.1)

with
f(r) = 1− 2M

r
− Λ

3 r
2, (3.2)

where M is the mass of the black hole and Λ > 0 is the cosmological constant. In what
follows, we will fix Λ = 3, and then we suppose M to be in the range 0 < M2 < 1/27 to
have three real roots for the equation rf(r) = 0, since otherwise we would have unphysical
solutions. We will denote these roots by

Rh, R±, (3.3)

where Rh ∈]0, 1/
√
3[ is the smallest positive real root, and R± are real and given in terms

of Rh by

R± =
−Rh ±

√
4− 3R2

h

2 . (3.4)

We will study a class of linear perturbations of the SdS4 geometry with spin s ∈ {0, 1, 2},
encoded in the following radial equation (see [1] and reference therein)(

∂2
r + f ′(r)

f(r) ∂r +
ω2 − V (r)
f(r)2

)
Φ(r) = 0, (3.5)

where the potential is

V (r) = f(r)
[
ℓ(ℓ+ 1)
r2 + (1− s2)

(2M
r3

)]
. (3.6)

For s = 0, this equation describes conformally coupled scalar perturbations; for s = 1,
electromagnetic perturbations; and for s = 2, odd (Regge-Wheeler or vector-type) gravi-
tational perturbations.

The boundary conditions we impose on the wave function are the presence of only
ingoing modes at the event horizon Rh and the presence of only outgoing modes at the
cosmological horizon R+. These conditions can be made explicit by introducing the tortoise
coordinate r∗ defined by

dr∗ =
dr
f(r) . (3.7)

– 8 –
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In terms of r∗, the behavior of Φ near Rh, R+ is described by plane waves, so we ask that Φ
behaves as exp(−iωr∗) for r ∼ Rh and as exp(iωr∗) for r ∼ R+. The latter radial equation
apparently has five regular singular points located at r = {0, Rh, R±,∞}. However, as
pointed out in [88], under the change of variable

z(r) = r(R+ −R−)
R+(r −R−)

, (3.8)

and redefinition of the wave function

ψ(z) = z−γ/2(z − 1)−δ/2(z − t)−ϵ/2
√
f(r) R−(R+ −R−)

R+(r −R−)
Φ(r), (3.9)

where

t = Rh(R− −R+)
R+(R− −Rh)

,

γ = 1− 2s,

δ = 1− 2i ω R+
(R+ −Rh)(R+ −R−)

,

ϵ = 1 + 2iωRh

1− 3R2
h

,

(3.10)

the singularity at infinity is removed, and the equation becomes a Heun equation (2.1) with

α = 1− s+ 2i ω R−
(R− −Rh)(R− −R+)

,

β = 1− s,

q = ℓ(ℓ+ 1)
R+(R− −Rh)

+ (1− s)2Rh

Rh −R−
−

s(1− s)R2
−

R+(Rh −R−)
.

(3.11)

In the z coordinate, the horizon r = Rh is mapped to z = t, the cosmological horizons
r = R± are mapped to z = 1 and z = ∞, respectively, while the origin, r = 0, is mapped
to z = 0.

The boundary conditions described for Φ imply the following behaviors for the
function ψ:

ψ(z) ∼ 1 for z ∼ 1,
ψ(z) ∼ (z − t)1−ϵ for z ∼ t.

(3.12)

We now want to obtain the analytic formula from which the quasinormal modes can
be computed in the limit where t is small, 0 < t≪ 1, or, equivalently, Rh is small, Rh ≪ 1.
For this purpose, we write the following dictionary for the gauge parameters in terms of

– 9 –
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Heun’s parameters and gravitational quantities (see appendix A for the conventions used):

t = Rh(R− −R+)
R+(R− −Rh)

,

a0 = 1− γ

2 = s ,

a1 = 1− δ

2 = i ω R+
(R+ −Rh)(R+ −R−)

,

at =
1− ϵ

2 = − iωRh

1− 3R2
h

,

a∞ = α− β

2 = i ω R−
(R− −Rh)(R− −R+)

,

u(0) = −2q + 2tαβ + γϵ− t(γ + δ)ϵ
2(t− 1) .

(3.13)

3.1.1 Connection problem

The computation of quasinormal mode frequencies is obtained by imposing purely ingoing
boundary conditions at the event horizon z = t and purely outgoing at the positive cosmo-
logical horizon z = 1. The independent solutions of the Heun equation for z ∼ t are given
in (2.2), and the ones for z ∼ 1 are given in (2.3). Taking into account the boundary con-
ditions (3.12), the connection coefficient between ψ

(t)
+ and ψ(1)

+ has to be set equal to zero.
The connection formula [12]12 for small t from z ∼ t to z ∼ 1 is given by

t−
1
2 +a0−at(1− t)− 1

2 +a1e−
1
2 ∂at F (t)ψ

(t)
+ (z) (3.14)

=
(∑

σ=±
M+σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−

σ
2 ∂aF (t)

)
(1− t)− 1

2 +ateiπ(a1+at)e
1
2 ∂a1 F (t)ψ

(1)
− (z)

+
(∑

σ=±
M+σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−

σ
2 ∂aF (t)

)
(1− t)− 1

2 +ateiπ(−a1+at)e−
1
2 ∂a1 F (t)ψ

(1)
+ (z).

This leads us to the quantization condition for the quasinormal modes in the form∑
σ=±

M+σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−
σ
2 ∂aF (t) = 0, (3.15)

which can be rewritten as

Γ(1+2a)2Γ( 1
2 −a+at+a0)Γ( 1

2 −a+at−a0)Γ( 1
2 −a−a1−a∞)Γ( 1

2 −a−a1+a∞)
Γ(1−2a)2Γ( 1

2 +a+at+a0)Γ( 1
2 +a+at−a0)Γ( 1

2 +a−a1−a∞)Γ( 1
2 +a−a1+a∞)

t−2ae∂aF (t) =1.

(3.16)
Note that this is nothing but (see appendix A)

exp (∂aFfull(t)) = 1, (3.17)

where Ffull(t) is the full NS free energy, since the ratio of Gamma functions in (3.17)
represents the 1-loop corrections.

12For the computation of the traces of monodromies of the Heun equation, see also [9, 89].
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3.1.2 QNMs at large ℓ

The previous quantization condition gets simplified in the large ℓ limit, where we neglect
non-perturbative effects in ℓ of the form Rℓ

h. This regime was studied for AdS5 black holes
in [23, 90], since in this limit, the quasinormal mode frequencies become real, and, via
the AdS/CFT correspondence, they compute the dimensions of certain operators in the
holographic conformal field theory, see [91–98] and references therein. In the dS case, in this
regime, the quasinormal mode frequencies are purely imaginary, and their interpretation
from the point of view of holography is, at present, less clear (at least to us).

In the leading order in Rh, a ∼ ±
(
ℓ+ 1

2

)
. Choosing the plus sign, the quantization

condition ∑
σ=±

M+σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−
σ
2 ∂aF (t) = 0 (3.18)

simplifies to
M+−(at, a; a0)M++(a, a1; a∞)t−ae

1
2 ∂aF (t) = 0, (3.19)

since the other term is exponentially suppressed. This condition is satisfied if and only if
Γ(2a)Γ(1− 2at)Γ(1 + 2a)Γ(−2a1)

Γ(1
2 + a+ at + a0)Γ(1

2 + a+ at − a0)Γ(1
2 + a− a1 − a∞)Γ(1

2 + a− a1 + a∞)
= 0, (3.20)

which is solved at the poles of the Gamma functions in the denominator. Only the last
one admits poles among the four Gamma functions in the denominator, consistently with
our regime Rh ≪ 1. These are given by condition

1
2 + a− a1 + a∞ = −n, with n ∈ Z≥0. (3.21)

Expanding the parameters in Rh and writing ω as

ω =
∞∑

k=0
ωkR

k
h, (3.22)

we obtain from this condition

ω0 = i(−ℓ−n−1);
ω1 =0;

ω2 =− i

8ℓ(ℓ+1)(2ℓ+1)(2ℓ−1)(2ℓ+3)
{
ℓ4
(
60n2+60n+22

)
+ℓ3

(
120n2+48ns2+122n

+24s2+45
)
+ℓ2

[
8n2

(
3s2+2

)
+n

(
96s2+19

)
+8s4+44s2+8

]
+ℓ
[
4n2

(
6s2−11

)
+n

(
24s4−43

)
+20s4−4s2−15

]
+12(n+1)2s2

(
s2−2

)}
;

ω3 =0;
... (3.23)

Higher orders can also be computed systematically, but their expressions are cumbersome;
hence we do not write them explicitly. Notice that in this limit, all the odd orders ω2k+1
seem to vanish. Moreover, these formulas are correct for finite ℓ up to order R2ℓ+1

h , as will
be shown in section 3.2. We also note that we expect the series (3.22) to be convergent13 in

13The convergence can be inferred from the convergence of the NS functions.
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Rh, the need for non-perturbative effects in ℓ can be inferred from the fact that at higher
orders this series develops some unphysical poles in ℓ. For instance, for s = 0 we have an
unphysical pole at ℓ = 0

ω4|s=0 = i(n+ 1)4

ℓ
+O

(
ℓ0
)
. (3.24)

3.2 Perturbation theory around dS4

3.2.1 QNMs in pure dS4

The pure de Sitter case can be obtained by taking the limit t→ 0 or, equivalently, Rh → 0.
As the event horizon disappears in this limit, it is enough to consider only the region near
the cosmological horizon r = R+. In this limit, the Heun equation becomes a Hypergeo-
metric equation, whose solutions are

zs−ℓ−1
2F1(−ℓ,−ℓ− iω0;−2ℓ; z), zℓ+s

2F1(ℓ+ 1, ℓ+ 1− iω0; 2ℓ+ 2; z), (3.25)

where ω0 is the leading order term in the Rh expansion of the frequency (3.22). Since ℓ is
a non-negative integer, the hypergeometric functions get truncated to polynomials as

2F1(−ℓ,−ℓ−iω0;−2ℓ;z)=
ℓ∑

k=0
(−1)k

(
ℓ

k

)
(−ℓ−iω0)k

(−2ℓ)k

zk,

2F1(ℓ+1,ℓ+1−iω0;2ℓ+2;z)=(−1)ℓ
(
z

2

)−2ℓ−1 ((2ℓ+1)!!)2

2(2ℓ+1)
Γ(iω0−ℓ)

Γ(iω0+ℓ+1) (3.26)

×
ℓ∑

k=0
(−1)k

(
ℓ

k

)
(−ℓ−iω0)k

(−2ℓ)k

(
1−(1−z)iω0 (−ℓ+iω0)k

(−ℓ−iω0)k

)
zk.

The boundary conditions require that the radial part of the gravitational perturbation
Φ (r) is well-defined as r → 0. Using the dictionary for the wave function (3.9), we rewrite
the latter requirement in terms of ψ (z):

zγ/2ψ (z) = z−s+1/2ψ (z) ∼ 1 for z ∼ 0. (3.27)

Thus, we have to pick a regular solution at z ∼ 0 and consider an additional factor of
z−s+1/2. Looking at the first solution from (3.25), we can see that z−ℓ−1/2

2F1(−ℓ,−ℓ −
iω0;−2ℓ; z) is not regular at z ∼ 0 for any allowed value of ℓ. Indeed, the other combination
gives the solution, which is regular at z ∼ 0:

zℓ+1/2
2F1 (ℓ+ 1, ℓ+ 1− iω0; 2ℓ+ 2; z) ∼ zℓ+1/2 ∼ 0. (3.28)

In addition, the boundary conditions at the cosmological horizon require the eigenfunction
to be regular with a well-defined Taylor expansion at z = 1. This is possible only if
iω0 ∈ Z≥0 (due to the term (1− z)iω0 in (3.26)). Moreover, to avoid the poles in the
Gamma functions in (3.26):

Γ (iω0 − ℓ)
Γ (iω0 + ℓ+ 1) =

ℓ∏
k=−ℓ

(iω0 − k)−1 , (3.29)
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we must exclude all the values of iω0 that are smaller or equal to ℓ (these poles indicate
that the second expression in (3.26) have to be rewritten in terms of log (z − 1) for iω0 =
ℓ, ℓ − 1, . . . ,−ℓ + 1,−ℓ). This gives the well-known quantization condition for the QNM
frequencies of the pure dS4:

iω0 = ℓ+ n+ 1, with n ∈ Z≥0. (3.30)

The corresponding eigenfunction is

fL
0 (z) = zℓ+s

n∑
k=0

(−1)k

(
n

k

)
(ℓ+ 1)k

(2ℓ+ 2)k

zk . (3.31)

We also note that the discarded solution is

gL
0 (z) = zs−ℓ−1 (1− z)ℓ+n+1

ℓ∑
k=0

(−1)k

(
ℓ

k

)
(n+ 1)k

(−2ℓ)k

zk . (3.32)

The Wronskian between fL
0 and gL

0 is

WL
0 (z) = −(2ℓ+ 1)z2s−2(1− z)ℓ+n. (3.33)

3.2.2 Left region

Here we call the region near the cosmological horizon r = R+ left region due to the
analogy with the corresponding quantum mechanical problem on the complex plane. The
local variable in this region is z, and the leading order solutions in Rh (and so in t) of the
Heun equation (2.1) are given in (3.31), (3.32). Expanding in small Rh the solution and
the frequencies we get for the outgoing solution ψ

(1)
− at the cosmological horizon

ψ
(1)
− (z) = ℓ! (2ℓ+ n+ 1)!

(2ℓ+ 1)! (ℓ+ n)! f0 (z) +
(−2)ℓ iω1

(iω1 + ℓ+ n+ 1)
n! (2ℓ− 1)!!
(ℓ+ n)! g0(z) +O (Rh) , (3.34)

where ω1 is a coefficient in the Rh expansion of the frequency (3.22). Since g0(z) blows
up as z → 0, it should not be present in the leading order of the wave function in the left
region. Hence, we require ω1 = 0. On the other hand, the incoming wave solution at the
cosmological horizon is

ψ
(1)
+ (z) ∼ (z − 1)iω (1 + iω log (z − 1)Rh) +O

(
R2

h

)
. (3.35)

After we fix ω1 = 0 and proceed with the general method described in section 2.2, the
logarithm function log (z − 1) appears in higher orders in Rh (and t). The only source of
this function is the incoming wave solution (3.35), and we will be canceling any contribu-
tions of log (z − 1) by fixing the coefficients bK in the perturbative expansion of the wave
function (2.6), (2.8).

After establishing the boundary condition, we compute the integrals in (2.8). As we
show in appendix C, these integrals are described in terms of the multiple polylogarithms
in a single variable:

Lis1,...,sk
(z) =

∞∑
n1>n2>···>nk≥1

zn1

ns1
1 . . . nsk

k

. (3.36)
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The latter admits for s1 ≥ 2:

z
d

d zLis1,...,sk
(z) = Lis1−1,...,sk

(z) (3.37)

and for s1 = 1, k ≥ 2:

(1− z) d
d zLi1,s2,...,sk

(z) = Lis2,...,sk
(z) . (3.38)

The weight of the multiple polylogarithm Lis1,...,sk
(z) is s1 + · · · + sk, and the level is k.

At each order tK+1, both integrands in (2.8) are linear combinations of the following terms
with maximum weight K:∑r1

m=0 αm zm

zi1 (z − 1)j1
log (z)p1 ,

∑r2
m=0 βm zm

zi2 (z − 1)j2
Lis1,...,sk

(1− z) , (3.39)

where r1,2, i1,2, j1,2, p1 are some non-negative integers, and 0 ≤ p1 ≤ K, s1 + · · ·+ sk ≤ K.
After taking the integrals, the only new functions that appear are multiple polylogarithms
of maximum weight K + 1. Moreover, both integrals in (2.8) are linear combinations of
terms similar to (3.39):∑r1+1

m=0 γm zm

zi1−1 (z − 1)j1−1 log (z)p1 ,

∑r2+1
m=0 δm zm

zi2−1 (z − 1)j2−1 Lis1,...,sk
(1− z) (3.40)

and terms containing new combinations of logarithms and multiple polylogarithms that
were not present in (3.39):

log (z − 1) , log (z)K+1 , Liŝ1,...,ŝk̂
(1− z) , (3.41)

where the maximum weight is K + 1:

ŝ1 + · · ·+ ŝk̂ ≤ K + 1. (3.42)

One of the differences between (3.39) and (3.40) is that r1,2, i1,2, and j1,2 are shifted by 1
or −1. These shifts are specific to the left region of the SdS4 case (and even then may be
subjected to reevaluation for some values of quantum numbers n, ℓ, and s that we did not
consider). In the right region, the shifts are different but can be determined on the case by
case basis (the details can be found in the attached Mathematica files, where we distinguish
two regimes with ℓ ≤ n and ℓ > n). Even though the optimal choice of shifts depends on
the case at hand, there is a choice of big enough shifts applicable to all quantum numbers
for both regions.

To summarize, we reduced the problem of solving the initial ODE in a given order in
t to a system of linear equations on the coefficients in front of the functions from (3.41)
and γm, δm.14 The resulting corrections fL

K (z) to the wave function in the left region are
linear combinations of the following functions:

l1∑
m=−k1

ζL
m zm log (z)p1 ,

l2∑
m=−k2

ξL
m zm Lis1,...,sk

(1− z) , (3.43)

where k1,2, l1,2, p1 are some non-negative integers, 0 ≤ p1 ≤ K, s1 + · · · + sk ≤ K, and
ζL

m, ξ
L
m are z-independent quantities.

14Here we simplified the index structure of γm and δm, the full list of indices should be γm(p1) and
δm(p1, s1, . . . , sk).

– 14 –



J
H
E
P
1
1
(
2
0
2
3
)
0
5
9

3.2.3 Right region

The right region is near the event horizon r = Rh, or z = t. We introduce the local variable
zR = t/z so that the horizon is at zR = 1. In the zR variable, the equation (2.1) reads

d2ψ(zR)
(dzR)2 +

(2−γ
zR

+ δt

zR(zR− t) +
ϵ

zR(zR−1)

) dψ(zR)
dzR

+ αβt−qzR

(zR)2(zR−1)(zR− t)ψ(z
R)= 0.

(3.44)
In the remaining part of this subsection, we will mostly omit the R index on the z variable
(except for the cases where it could be confusing). We take as leading order solutions in
Rh (and so in t) of this equation

fR
0 (z) = z−ℓ−s

2F1(−ℓ− s,−ℓ+ s;−2ℓ; z) =

= z−ℓ−s
ℓ−s∑
k=0

(s− ℓ)k (−ℓ− s)k

(−2ℓ)k

zk

k! ,

gR
0 (z) = z−s

{
ℓ−1∑

m=−s

asℓmz
−m + log(1− z)

ℓ∑
m=s

bsℓmz
−m

}
,

(3.45)

with
bsℓm = (−1)ℓ+m+1

(m+ s)!(m− s)!
(2ℓ+ 1)!

(ℓ+ s)!(ℓ− s)!
(ℓ+m)!
(ℓ−m)! ,

asℓm = −bsℓm(Hℓ+s +Hℓ−s −Hm+s −Hm−s).
(3.46)

The Wronskian between fR
0 and gR

0 is

WR
0 (z) = 2ℓ+ 1

z2s(z − 1) . (3.47)

Here we would like to comment on the choice of the logarithm function log
(
1− zR

)
in the

solution gR
0 . The other possible choice of the logarithm could be, for example, log

(
zR − 1

)
.

This choice dictates what functions will appear in higher orders in t and affects the Rh

expansion of the frequency ω. Throughout the paper, we work with the principal value of
the complex logarithm, and thus the change in the argument affects the position of the
branch cut on the complex z plane. Our wave function ψ (z) can be viewed as an analytic
continuation of the physical solution on half of the real line r ≥ 0. In the de Sitter case,
the coordinate transformation z (r) is (3.8) with real parameters R±. Since we want the
solution to be continuous across the real slice Rh < r < R+, the branch cut should not cross
the interval t < zR < 1, where t is small and positive. This leaves us with log

(
1− zR

)
, and

the branch cut runs from zR = 1 to zR = +∞. The other logarithm function that appears
in higher orders in t is log

(
zR
)
, and the corresponding branch cut runs from zR = 0 to

zR = −∞ also avoiding the interval t < zR < 1 (see figure 1).
The boundary condition near the horizon requires us to keep the solution corresponding

to the incoming wave and discard the one corresponding to the outgoing wave. According
to (2.2), the two solutions behave like

outgoing wave : ψ
(t)
−

(
zR
)
∼ 1, zR ∼ 1,

incoming wave : ψ
(t)
+

(
zR
)
∼
(
1− zR

)1−ϵ
, zR ∼ 1.

(3.48)
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Figure 1. Branch cuts (dashed red lines) on the complex zR plane for de Sitter black holes.

Since 1 − ϵ = O(Rh), both waves in the r.h.s. of (3.48) have Taylor expansions in Rh

that start with 1. One must also consider the higher orders in Rh to distinguish the two
expansions. The incoming wave solution has a particular dependence on the logarithm
function log (1− z) in each order in Rh (or t):

ψ
(t)
+ (z) ∼ 1− 2iω0 log (1− z)Rh +O

(
R2

h

)
, z ∼ 1. (3.49)

In the leading order in Rh both ψ(t)
− and ψ(t)

+ are given by the same function fR
0 (z). Since

the other function gR
0 (z) contains the logarithm, it enters ψ(t)

+ in the higher orders in Rh.
The constants bK from (2.8) are fixed by matching with the logarithmic behavior of the
incoming wave solution (3.49) in each order in Rh.

The integrals in (2.8) are again described in terms of the multiple polylogarithms in a
single variable (see appendix C). We construct the linear basis of functions for each integral
in the way it was done in the previous section for the left region. The only difference is that
we need to add powers of the second logarithm function log (1− z) to formulas (3.39), (3.40)
and (3.41). In particular, the second integrand from (2.8) at order tK of the form

gR
0 (z)

ηR
K(z)

WR
0 (z)

(3.50)

will have a maximum weight K because the logarithm function log (1− z) is present in the
leading order solution gR

0 (z). The resulting integral, however, will be of the same weight K
due to the pole structure in (3.50). Eventually, the corrections fR

K (z) to the wave function
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in the right region are linear combinations of the following functions of maximum weight K:
l1∑

m=−k1

ζR
m zm log (1− z)p1 log (z)p2 ,

l2∑
m=−k2

ξR
m zm log (1− z)p3 Lis1,...,sk

(1− z) ,
(3.51)

where k1,2, l1,2, p1,2,3 are some non-negative integers, and 0 ≤ p1 + p2 ≤ K,
p3 + s1 + · · ·+ sk ≤ K.

3.2.4 Results for QNM frequencies

The final step in the procedure described in section 2.2 is to glue the local solutions by
requiring that the wave function and its first derivative are continuous at the intersection
of the two regions. There is a certain freedom in choosing the intersection point as long as
it lies in the region of convergence of both local solutions. We choose the point z = t1/2,
which is the same as zR = t1/2. Note that the expansions of ψL,R

(
zL,R

)
are given as series

expansions around zL,R = 1 up to orders tmL,R :

ψL (z) = fL
0 (z) +

mL∑
K=1

fL
K(z)tK +O

(
tmL+1

)
,

ψR
(
zR
)
= fR

0

(
zR
)
+

mR∑
K=1

fR
K(zR)tK +O

(
tmR+1

)
.

(3.52)

What happens when we take zL,R ∼ t1/2 and expand for a small t? Some terms fL
K(z)tK in

ψL (z) will contribute to orders lower than tK . This could lead to a reshuffling, where, for
example, fL

1 (z)t becomes the leading order contribution at z ∼ t1/2. This happens when
ℓ ≥ 1, as seen from (3.31):

fL
0

(
t1/2

)
∼ t(s+ℓ)/2, fL

1

(
t1/2

)
t ∼ t(s−ℓ+1)/2. (3.53)

However, since we are within the radius of convergence of ψL (z), this reshuffling involves
only a finite number of terms. For all values of quantum numbers we have considered, the
reshuffling is superficial and goes away after the frequency is set to one of the quasinormal
modes.

The continuity condition

∂z log
(
ψL(z)
ψR(t/z)

)∣∣∣∣∣
z=t1/2

= 0 (3.54)

can be equivalently stated as

ψL
(
t1/2

)
= C (t)ψR

(
t1/2

)
, ∂zψ

L (z)
∣∣∣∣
z=t1/2

= C (t) ∂zψ
R (t/z)

∣∣∣∣
z=t1/2

, (3.55)

where C(t) is a normalization factor. The advantage of (3.55) is that we can use one
of the equations to understand which orders in t we can trust when expanding (3.52) at
zL,R = t1/2, then use the other one to fix the frequencies.
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Using Mathematica, we compute the local solutions up to orders mL = 10 and mR = 7.
This allows us to determine the Rh expansion of the frequency up to order R9

h or less de-
pending on the value of ℓ. In all computed orders, we find the real part of the quasinormal
modes is zero, which agrees with the earlier observations made by numerical computa-
tions [66–68]. The results for the imaginary part of the quasinormal mode frequencies
ωn,ℓ,s, starting from n = 0, are

Im(ω0,0,0)=−1− 5
8R

2
h−3R3

h−
[
1287
128 +2log(2Rh)

]
R4

h+
[
π2− 119

4 −15log(2Rh)
]
R5

h

+
[
25
3 π

2− 102621
1024 − 271

4 log(2Rh)−5log2(2Rh)+6ζ(3)
]
R6

h+O
(
R7

h

)
,

Im(ω0,1,1)=−2− 7
12 R

2
h+

7123
1728 R

4
h+8R5

h+
[
2757809
124416 + 32

3 log(2Rh)
]
R6

h (3.56)

− 4
27
[
13+72π2−468log(2Rh)

]
R7

h+O
(
R8

h

)
,

Im(ω0,2,2)=−3− 27
40R

2
h+

51423
16000R

4
h−

72333747
3200000 R

6
h−

72
5 R

7
h+
[
60278884503
512000000

− 144
5 log(2Rh)

]
R8

h+
9
50
[
625+240π2−1008log(2Rh)

]
R9

h+O
(
R10

h

)
.

Let us also report the results for n = 1:

Im(ω1,0,0)=−2− 17
4 R

2
h−24R3

h−
[
9791
64 +32log(2Rh)

]
R4

h+
[
32π2−654−384log(2Rh)

]
R5

h

+
[
1408
3 π2− 1770481

512 −3276log(2Rh)−256log2 (2Rh)+384ζ (3)
]
R6

h+O
(
R7

h

)
,

Im(ω1,1,1)=−3− 21
8 R

2
h+

4137
128 R

4
h+72R5

h+
[
249879
1024 +144log(2Rh)

]
R6

h (3.57)

+
[
303−216π2+1188log(2Rh)

]
R7

h+O
(
R8

h

)
,

Im(ω1,2,2)=−4− 71
30R

2
h+

1910399
108000 R

4
h−

44927058551
194400000 R6

h−
768
5 R7

h+
[
685871572615439
279936000000

−2048
5 log(2Rh)

]
R8

h+
64
225

[
2880π2−53−10656log(2Rh)

]
R9

h+O
(
R10

h

)
.

Some of the results presented above were shortened for the reader’s convenience. The full
expressions and more expansions of frequencies for other choices of ℓ and s can be found in
the attached Mathematica files. The irrational numbers entering these QNM frequencies
are log(2) and multiple zeta values.

4 Perturbations of anti-de Sitter black holes in four dimensions

The metric describing the AdS4 Schwarzschild black hole is given by (3.1), with Λ < 0. We
denote the roots of rf(r) = 0 by

Rh, R±, (4.1)

where, for Λ < 0 , R± are complex conjugate and given by

R± =
−Rh ± i

√
3R2

h − 12
Λ

2 , (4.2)

– 18 –



J
H
E
P
1
1
(
2
0
2
3
)
0
5
9

in terms of the BH horizon Rh ∈ R>0. We will fix Λ = −3 and study the same perturbations
of the Schwarzschild de Sitter case, described by equation (3.5). According to AdS4/CFT3
holography, the conformally coupled scalar field is dual to scalar operators of conformal
dimension ∆ = 1 or ∆ = 2, from the relation µ2 = ∆(∆ − 3). The main difference with
the SdS4 case lies in the boundary conditions we impose on the solution. Indeed, we will
still require the presence of only ingoing modes near the horizon, but we will impose the
vanishing Dirichlet boundary condition at the AdS boundary.15

With the following change of variables

z(r) = r(R− −R+)
R−(r −R+)

, (4.3)

and redefinition of the wave function

ψ(z) = z−γ/2(z − 1)−δ/2(z − t)−ϵ/2
√
f(r) R+(R− −R+)

R−(r −R+)
Φ(r), (4.4)

with
t = Rh(R+ −R−)

R−(R+ −Rh)
,

γ = 1− 2s,

δ = 1− 2i ω R−
(R− −Rh)(R− −R+)

,

ϵ = 1− 2iωRh

1 + 3R2
h

,

(4.5)

the singularity at infinity is removed, and the equation (3.5) becomes a Heun equation (2.1)
with

α = 1− s+ 2i ω R+
(R+ −Rh)(R+ −R−)

,

β = 1− s,

q = ℓ(ℓ+ 1)
R−(Rh −R+)

+ (1− s)2Rh

Rh −R+
−

s(1− s)R2
+

R−(Rh −R+)
.

(4.6)

In these coordinates, the horizon is at z = t while the boundary is at

z∞ = 1− R+
R−

. (4.7)

We will also consider the small black hole limit, Rh ≪ 1.
The Dirichlet boundary conditions in terms of the ψ function are given by

ψ(z) ∼ 1 for z ∼ t,

ψ(z∞) = 0.
(4.8)

Notice that the AdS boundary (z = z∞) is not a singular point of the perturbation equation.
This makes the approach based on the Seiberg-Witten theory less effective. One can write
the quantization condition using the connection formulae between Heun functions, but in
this case, an expansion of the Heun functions in Rh is needed. We will report some results
in this direction in appendix E.

15In the context of AdS/CFT, these are not always the more physically relevant boundary conditions.
Alternatively, one often considers Robin boundary conditions, which we discuss in section 5.
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4.1 QNMs in pure AdS4

The pure AdS4 case can be recovered in the limit t → 0 or, equivalently, Rh → 0. In this
limit, the z variable is given by

z = 2r
r − i

, (4.9)

and the AdS boundary is at z = 2. The leading order solutions in t of the Heun equa-
tion (2.1) are given by

zs−ℓ−1
2F1(−ℓ,−ℓ+ ω0;−2ℓ; z), zℓ+s

2F1(ℓ+ 1, ℓ+ 1 + ω0; 2ℓ+ 2; z), (4.10)

where ω0 is the leading order term in the Rh expansion of the frequency (3.22). As in the de
Sitter case, these hypergeometric functions reduce to (3.26), where we replace −iω0 by ω0.

The first boundary condition from (4.8) tells us that the wave function ψ (z) is regular
at z = 0. This singles out the second solution from (4.10). Then, the second boundary
condition at z = 2 requires the following expression to vanish:

2F1(ℓ+ 1, ℓ+ 1 + ω0; 2ℓ+ 2; 2) = 4−ℓ−1 (2ℓ+ 1)!
ℓ!

Γ
(
−ω0−ℓ

2

)
Γ
(
−ω0+ℓ+2

2

) [1 + (−1)ℓ−ω0+1
]
, (4.11)

which gives the quantization condition for the QNM frequencies of the pure AdS4

ω0 = ℓ+ 2n+ 2, n ∈ Z≥0 or ω0 = −ℓ− 2n− 2, n ∈ Z≥0. (4.12)

Here we have two branches of frequencies, positive and negative, and one is related to
another by the complex conjugation of the radial part of the perturbation Φ (r).

In the following subsections, we will perturb around the pure AdS case to obtain the
corrections for the Schwarzschild anti-de Sitter small black holes. Following the same logic
as in the de Sitter case, we will divide the space into two regions: left (L) and right (R).
The left region describes the physical space near the AdS boundary with r → ∞, and the
right one is the space near the horizon r = Rh. After having determined the expansion
of the solution ψ(z) in each region up to certain orders in the expansion parameter t, we
require that the function ψ (z) and its first derivative are continuous in a point in the
intersection of two regions, which we can fix at z = t1/2 (other values of z are possible as
long as they lie inside the convergence radius of the two solutions).

4.2 Left region

The local coordinate in the left region is z, and the AdS boundary is at z∞, which has the
following expansion in Rh:

z∞ =
3R2

h + 4 + i Rh

√
3R2

h + 4
2R2

h + 2 = 2 + iRh − R2
h

2 +O
(
R3

h

)
. (4.13)

The wave function in the left region ψL (z) satisfies the same Heun equation (2.1). The form
of the leading order solutions depends on which branch of frequencies we choose in (4.12).
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For the negative branch ω0 = −ℓ− 2n− 2, we have

fL
0 (z) = zℓ+s

2n+1∑
m=0

(−1)m
(2n+ 1

m

) (ℓ+ 1)m

(2 ℓ+ 2)m

zm,

gL
0 (z) = zs−ℓ−1

ℓ∑
m=0

(−1)m
(
ℓ

m

) (−2 ℓ− 2n− 2)m

(−2 ℓ)m

zm,

(4.14)

and for the positive branch ω0 = ℓ+ 2n+ 2:

fL
0 (z) = zℓ+s

(1− z)2n+ℓ+2

2n+1∑
m=0

(−1)m
(2n+ 1

m

) (ℓ+ 1)m

(2 ℓ+ 2)m

zm,

gL
0 (z) = zs−ℓ−1

(1− z)2n+ℓ+2

ℓ∑
m=0

(−1)m
(
ℓ

m

) (−2 ℓ− 2n− 2)m

(−2 ℓ)m

zm.

(4.15)

For both branches, the Wronskian can be written in terms of ω0 as

WL
0 (z) = −(2ℓ+ 1)z2s−2(1− z)−ω0−1. (4.16)

We will apply the perturbative method described in section 2.2 to both positive and neg-
ative values of ω0, but the final result is straightforward. The only difference between the
two branches is the sign of the real part of the frequency expansion (3.22), which again
corresponds to complex conjugation of Φ (r).

The boundary condition in the left region is simply ψL (z∞) = 0. Since fL
0 (2) = 0 and

gL
0 (2) ̸= 0, we get the following perturbative expansion for the wave function in the left

region:
ψL (z) = fL

0 (z) +
∑
K≥1

fL
K(z)tK , (4.17)

where fL
K(z) are given by (2.8). The constants bK in (2.8) are fixed by expanding ψL (z∞)

in powers of t and requiring the coefficients in this expansion to vanish.
As we explain in appendix C, the integrals in (2.8) are described in terms of the multiple

polylogarithms in a single variable (3.36). Since the weights of the multiple polylogarithms
appearing at order tK are less or equal to K, we can construct a linear basis of functions
in which the integrals in (2.8) can be expanded. We take the same steps (3.39)–(3.41) as
we did in the SdS4 case to do this. The only difference is that we add the second logarithm
function log (z − 1) to (3.39). To be more precise, the integrands in (2.8) at order tK+1 are
given by the linear combination of the following functions:∑r1

m=0 αm zm

zi1 (z − 1)j1
log (z − 1)p1 log (z)p2 ,∑r2

m=0 βm zm

zi2 (z − 1)j2
log (z − 1)p3 Lis1,...,sk

(1− z) ,
(4.18)

where r1,2, i1,2, j1,2, p1,2,3 are some non-negative integers and p1+p2 ≤ K, p3+s1+· · ·+sk ≤
K. The reasoning behind our choice of the branches of the logarithm functions log (z) and
log (z − 1) is the same as in section 3.2.3. We want the wave function ψ (z) to be continuous
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Figure 2. Branch cuts (red lines) on the complex z plane for anti-de Sitter black holes.

across the real slice Rh < r < +∞. In the SAdS4 case, the coordinate transformation z (r)
is given by (4.3) with complex parameters R±. Taking into account that r and Rh are real,
we have from (4.3):

(Re (z)− 1)2 + Im (z)2 = 1. (4.19)

Thus, the real slice is approximately half the circle with the center in z = 1 on the complex
z plane (see figure 2). It starts at z = t and ends at z = z∞. Simple analysis shows
that Im (t) > 0 and Im (z∞) > 0 when Rh > 0. This justifies our choice of logarithm
functions since both branch cuts do not cross the real slice. On the other hand, if one
picks log (1− z) instead of log (z − 1), the corresponding branch cut would touch the real
slice at the point z = 2 when evaluating ψL (z∞). This, in turn, would lead to incorrect
results for QNM frequencies.

4.3 Right region

In the right region, we introduce local coordinate

zR = t

z
. (4.20)

The horizon is now situated at zR = 1. The wave function in the right region ψR
(
zR
)

satisfies the following equation in terms of zR:

d2ψR

(dzR)2 +
(2− γ

zR
+ δ t

zR (zR − t) +
ϵ

zR (zR − 1)

) dψR

dzR
+ αβ t− q zR

(zR)2 (zR − 1) (zR − t)
ψR = 0.

(4.21)
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Suppressing the R index on zR, the two leading order solutions are given by

fR
0 (z) = z−ℓ−s

ℓ+s∑
m=0

(−1)m

(
ℓ+ s

m

)
(s− ℓ)m

(−2 ℓ)m

zm,

gR
0 (z) = z−s

{
ℓ−1∑

m=−s

asℓm z−m + log (1− z)
ℓ∑

m=s

bsℓm z−m

}
,

(4.22)

where the constants asℓm, bsℓm can be determined for any ℓ ≥ s ≥ 0 as

asℓm = −bsℓm (Hℓ+s +Hℓ−s −Hm+s −Hm−s) ,

bsℓm = (−1)ℓ+m+1

(m+ s)! (m− s)!
(2 ℓ+ 1)!

(ℓ+ s)! (ℓ− s)!
(ℓ+m)!
(ℓ−m)! .

The expressions in (4.22) are independent of which branch of frequencies we choose in (4.12)
because the leading order of (4.21) does not contain ω0. The Wronskian of fR

0 and gR
0 is

given by
WR

0 (z) = 2 ℓ+ 1
z2s(z − 1) . (4.23)

The boundary condition in the right region tells us that ψR is regular at zR = 1. Thus, we
can write the following perturbative expansion:

ψR (z) = fR
0 (z) +

∑
K≥1

fR
K(z)tK , (4.24)

where fR
K(z) are computed using (2.8). Unlike in the left region, the choice of the logarithm

function in gR
0 (z) is unimportant. This is due to the boundary condition that requires

canceling contributions of log (1− z) in each order tK . The resulting corrections fR
K (z) are

linear combinations of the following functions of maximum weight K:

l1∑
m=−k1

ζR
m zm log (z)p1 ,

l2∑
m=−k2

ξR
m zm Lis1,...,sk

(1− z) , (4.25)

where k1,2, l1,2, p1 are some non-negative integers, and 0 ≤ p1 ≤ K, s1 + · · ·+ sk ≤ K.

4.4 Results for QNM frequencies

To determine the QNM frequencies, we use the continuity condition in the form (3.55):

ψL
(
t1/2

)
= C (t)ψR

(
t1/2

)
, ∂zψ

L (z)
∣∣∣∣
z=t1/2

= C (t) ∂zψ
R (t/z)

∣∣∣∣
z=t1/2

, (4.26)

where ψL,R
(
zL,R

)
are computed up to orders mL,R in t around zL,R = 1:

ψL (z) = fL
0 (z) +

mL∑
K=1

fL
K(z)tK +O

(
tmL+1

)
,

ψR
(
zR
)
= fR

0

(
zR
)
+

mR∑
K=1

fR
K(zR)tK +O

(
tmR+1

)
.

(4.27)
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Similarly to the SdS4 case, the reshuffling of terms (3.53) occurs in ψL (z) when we take z ∼
t1/2. For all values of quantum numbers we have considered, this reshuffling is superficial
and goes away after the frequency is set to one of the quasinormal modes.

Using Mathematica, we compute the local solutions up to orders mL = 7 and mR = 8
(sometimes even up to mL = 9 and mR = 10). This allows us to determine the Rh

expansion of the frequency up to order R7
h or less depending on the value of ℓ. In all

computed cases, the imaginary part does not appear before order 2ℓ+ 2 in Rh:

Im (ωn,ℓ,s) ∼ R2ℓ+2
h . (4.28)

As mentioned, the results computed for negative and positive branches of ω0 only differ by
the sign in the real part of the frequency expansion. Below are the results for the real and
imaginary parts of the quasinormal mode frequencies ωn,ℓ,s corresponding to the positive
branch, starting from n = 0:

Re(ω0,0,0)= 2− 4
π
Rh−

(
1
4 +

24
π2

)
R2

h−
(
4π
3 − 94

3π − 16
π

log(4Rh)+
208
π3 − 112

π3 ζ (3)
)
R3

h+O
(
R4

h

)
,

Im(ω0,0,0)=− 8
π
R2

h−
(
8+ 16

π2

)
R3

h−
(
40π
3 − 65

π
− 128

π
log(2Rh)+

192
π3 − 448

π3 ζ (3)
)
R4

h+O
(
R5

h

)
,

Re(ω0,1,1)= 3− 4
π
Rh+

(
27
8 − 140

3π2

)
R2

h−
(
3π− 601

12π − 18
π

log(2)+ 2020
3π3 − 168

π3 ζ (3)
)
R3

h

+O
(
R4

h

)
,

Im(ω0,1,1)=−16
π
R4

h−
(
24+ 96

π2

)
R5

h−
(
60π+ 579

π
− 264

π
log(2Rh)+

11536
9π3 − 1344

π3 ζ (3)
)
R6

h+

+O
(
R7

h

)
,

Re(ω0,2,2)= 4− 64
15π Rh+

(
37
6 − 80896

1125π2

)
R2

h−
(
256π
45 − 1536256

10125π − 512
45π log(2)+ 120946688

84375π3

−57344
225π3 ζ (3)

)
R3

h+O
(
R4

h

)
,

Im(ω0,2,2)=−128
5π R6

h−
(
256
5 + 6144

25π2

)
R7

h+O
(
R8

h

)
.

For n = 1 we have:

Re(ω1,0,0)= 4− 40
3π Rh+

(
25
6 − 5200

27π2

)
R2

h−
(
160π
9 − 45064

81π − 800
9π log(2)− 128

π
log(Rh)

+1200800
243π3 − 22400

9π3 ζ (3)
)
R3

h+O
(
R4

h

)
,

Im(ω1,0,0)=−32
π
R2

h−
(
64+ 2240

9π2

)
R3

h−
(
640π
3 − 4252

3π − 1920
π

log(2Rh)+
101120
9π3

−35840
3π3 ζ (3)

)
R4

h+O
(
R5

h

)
,

Re(ω1,1,1)= 5− 172
15π Rh+

(
2071
120 − 791372

3375π2

)
R2

h−
(
215π
9 − 27888631

40500π + 40678
225π log(2)

+5269420724
759375π3 − 103544

45π3 ζ (3)
)
R3

h+O
(
R4

h

)
,
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Im(ω1,1,1)=−400
3π R4

h−
(
1000
3 + 39904

27π2

)
R5

h−
(
12500π

9 + 328711
27π − 49880

9π log(2Rh)

+14315216
243π3 − 481600

9π3 ζ (3)
)
R6

h+O
(
R7

h

)
,

Re(ω1,2,2)= 6− 384
35π Rh+

(
675
28 − 12163072

42875π2

)
R2

h−
(
1152π
35 − 49433312

42875π + 13824
49π log(2)

+1544254324736
157565625π3 − 442368

175π3 ζ (3)
)
R3

h+O
(
R4

h

)
,

Im(ω1,2,2)=−1792
5π R6

h−
(
5376
5 + 385024

75π2

)
R7

h+O
(
R8

h

)
.

Some of the results presented above were shortened for the reader’s convenience. The full
expressions and more expansions of frequencies for other choices of n, ℓ, and s can be found
in the attached Mathematica files. From these, one can see that the irrational numbers
entering these QNM frequencies are log(2), π, and Euler sums.

Analytically computing fL
1 (z) from (4.17), we can also determine the subleading term

in the QNM frequency expansion with n = 0 and ℓ ≥ 1:

ω0,ℓ,s = ℓ+ 2− 22ℓ+2

π

2 ℓ+ s2

ℓ (ℓ+ 1)
((ℓ+ 1)!)2

(2 ℓ+ 2)! Rh +O
(
R2

h

)
. (4.29)

For small enough values of Rh, our results agree with the numerical ones obtained ear-
lier in [69]. Since the frequency expansions in higher orders in Rh include multiple zeta
values (B.11), we use different identities of the form (B.12)–(B.16) to compute the corre-
sponding numerical values. Tables 1–3 present the numerical results from the frequency
expansions truncated at R7

h (in the scalar case with n = l = 0, the expansion was com-
puted up to order R6

h and truncated at the same order). In these tables, bold digits are
the ones that are stable and agree with the numerical results obtained directly from the
Heun function and the continuity condition (3.54). The digit is considered stable if it does
not change when higher orders of Rh are added to the expansion of the frequency. For
example, below are the numerical results from electromagnetic frequency expansion with
n = 0, ℓ = 1 truncated at different powers of Rh = 1/20:

Rh : ω0,1,1 = 2.936338022763,
R2

h : ω0,1,1 = 2.932954718005,
R3

h : ω0,1,1 = 2.932365431000,
R4

h : ω0,1,1 = 2.932257833944− 0.000031830989 i,
R5

h : ω0,1,1 = 2.932232789345− 0.000042370624 i,
R6

h : ω0,1,1 = 2.932227305824− 0.000051050731 i,
R7

h : ω0,1,1 = 2.932226938543 − 0.000053055262 i.

(4.30)

5 Scalar sector of gravitational perturbations — the low-lying modes

Following [99], one can consider a subdivision of gravitational perturbations in different
sectors (scalar, vector, or tensor), whose distinction comes from the expansions in scalar,
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Rh Re (ω0,0,0) −Im (ω0,0,0)
1/16 1.90959612832 0.01366850348
1/18 1.92054810947 0.01043093333
1/20 1.92919836511 0.00820901816
1/50 1.97338628700 0.00111849414
1/100 1.98698625043 0.00026598052

Table 1. Numerical results from conformally coupled scalar QNM frequency expansion with n = 0,
ℓ = 0.

Rh Re (ω0,1,1) −Im (ω0,1,1)
1/16 2.913628697405 0.000151017506
1/18 2.924063021823 0.000086542953
1/20 2.932226938543 0.000053055262
1/50 2.973953080307 0.000000967146
1/100 2.987127374910 0.000000055027

Table 2. Numerical results from electromagnetic QNM frequency expansion with n = 0, ℓ = 1.

Rh Re (ω0,2,2) −Im (ω0,2,2)
1/15 3.903277526809 0.000001160789
1/18 3.920419438200 0.000000363885
1/20 3.928811737917 0.000000186778
1/50 3.972361286120 0.000000000619
1/100 3.986303374608 0.000000000009

Table 3. Numerical results from odd gravitational QNM frequency expansion with n = 0, ℓ = 2.

vector, or tensor spherical harmonics on the S2 component of AdS4. In section 4 we
considered the vector sector of gravitational perturbations (s = 2). We will now focus on
the scalar sector and impose a new boundary condition at the AdS boundary, namely a
Robin boundary condition [73, 100–104], see also [105] for very recent developments. This
choice of boundary condition is motivated by the AdS/CFT correspondence, and it ensures
that the perturbations do not deform the metric on the boundary of AdS.

From the point of view of the dual CFT, these boundary conditions are related to
double-trace deformations, see for instance [106–108] and references therein. In particu-
lar, we will analyze the so-called low-lying quasinormal frequencies, which, according to
AdS/CFT duality, are related to hydrodynamic modes of the 3d thermal CFT on the
boundary [74, 104, 109–116]. We will therefore expand our quasinormal frequencies for
large values of Rh, Rh ≫ 1, differently from the previous sections. Defining

m = ℓ(ℓ+ 1)− 2 with ℓ ≥ 2, (5.1)
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the equation describing the scalar sector of gravitational perturbations in AdS4 can be
written as (see [99, eq. (3.1)] for the definition of the master variable Φ)(

∂2
r + f ′(r)

f(r) ∂r +
ω2 − VS(r)
f(r)2

)
Φ(r) = 0, (5.2)

where

f(r) = 1− 2M
r

+ r2,

VS(r) =
f(r)

(mr + 6M)2

[
m3 +

(
2 + 6M

r

)
m2 + 36M2

r2

(
m+ 2r2 + 2M

r

)]
.

(5.3)

This equation has five regular singularities, located at r = 0, Rh, R±, R5, where

R± =
−Rh ± i

√
4 + 3R2

h

2 , R5 = −3Rh

(
1 +R2

h

)
m

. (5.4)

The new singularity R5, coming from the potential VS(r), is in the unphysical region r < 0.
Similarly to the previous cases, we introduce the change of variables

z (r) = Rh

r
(5.5)

and the new wave function
ψ (z) = r−1eiωr∗Φ (r) . (5.6)

The master equation (5.2) then becomes

ψ′′ (z)+ f′ (z)−2z−1f(z)+2iωR−1
h

f(z) ψ′ (z)−
(
f′ (z)−2z−1f(z)+2iωR−1

h

z f(z) +V(z)
f(z)2

)
ψ (z)= 0,

(5.7)
where

f (z) = (1− z)
(
1 + z + z2 + z2

R2
h

)
,

V (z) = f (z)
(mRh + 6Mz)2

[
m3 +

(
2 + 6Mz

Rh

)
m2 + 36M2z2

R2
h

(
m+ 2Mz

Rh
+ 2R2

h

z2

)]
,

(5.8)

and M is related to Rh via
2M = Rh

(
1 +R2

h

)
. (5.9)

The boundary conditions in terms of the ψ function are given by

ψ(z) ∼ 1 for z ∼ 1,{ d
dz

(
ψ(z)
z

)
+
[
3(1 +R2

h)
m

+ iω

Rh

]
ψ(z)
z

}∣∣∣∣
z=0

= 0.
(5.10)

The five regular singularities of the equation (5.2) have three different scalings with Rh →
∞. The singularity at r = 0 doesn’t scale, the singularities R± and Rh scale linearly, and
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R5 scales as R3
h. Hence, we will divide the space into three different regions and apply the

perturbative method described in section 2.2.
The three local variables are x = R3

h/(mr) + 1/3 for the left region (near the AdS
boundary), y = R2

h/r for the middle region, and z = Rh/r for the right one (near the BH
horizon).16 Here the regions are labeled left and right as they appear on the complex z

plane (see figure 3). From the point of view of the complex z plane, the left and middle
regions represent two zoomings close to the origin, with different scalings. Considering the
normal form of the differential equation (5.7),

ψ′′(z) + Vz(z)ψ(z) = 0, (5.11)

the potential Vz(z) has the following expansion in 1/Rh

Vz(z) =
z6 + 16z3 − 8
4z2 (z3 − 1)2 +O

(
1
R2

h

)
. (5.12)

The two rescalings x ∼ R2
h z

m and y = Rh z are such that, in both variables, the differential
equation in normal form has a potential, Vx(x) and Vy(y), respectively, with non-vanishing
leading order in 1/Rh,

Vx(x) = − 2
x2 +O

(
1
R2

h

)
,

Vy(y) = − 2
y2 +O

(
1
R2

h

)
.

(5.13)

Out of the three, the right region is the one in which it is more challenging to expand the
solution of the differential equation. In particular, the solution involves multiple polyloga-
rithms in several variables, which we analyze in appendix D.

Since we will work with Rh ≫ 1, the small parameter is α = 1/Rh, and the frequency
expansion can be written as

ω =
∑
k≥0

ωkα
k. (5.14)

The intersections of the three regions and the boundary points r = Rh,∞ determine three
intervals in which the wave function should be continuous:

x ∈
[1
3 ,

1
3 + 1

αm

]
, y ∈

[
1, α−3/4

]
, z ∈

[
α1/4, 1

]
. (5.15)

From the point of view of x and y, the first two intervals have infinite lengths, their left
endpoints are at finite values and their right endpoints are chosen to meet the next region
(and so they become infinite because of the different scalings of the local variables in
powers of Rh). Finally, we will derive the low-lying QNM frequencies by requiring that the

16We choose to add an intermediate region with local variable y to increase the efficiency of the compu-
tation. According to our estimations (5.21), without the middle region, one would need to compute at least
48 orders in the expansion of the wave function in the left region (5.20) to get the frequency expansion up
to ω5 (assuming we do not increase the number of corrections computed in the right region). Adding the
middle region allows us to get the same result by computing ψL (x) up to order 15.
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Figure 3. Complex z plane for scalar sector of gravitational perturbations in SAdS4.

wave function and its first derivative are continuous at the intersection points y = 1 and
z = α1/4. As we explain later, the second intersection point z = α1/4 is chosen to avoid
the reshuffling of terms in the wave function expansion (5.32).

5.1 Left region

The left region represents the region close to the AdS boundary, where we impose the
Robin boundary condition. The local variable in this region is

x = R3
h

mr
+ 1

3 = α−3

mr
+ 1

3 , (5.16)

and the AdS boundary is at x = 1/3. The master equation in the left region is obtained by
applying the coordinate transformation z = α2m (x− 1/3) to (5.7) and substituting ψ (z)
with ψL (x). In the leading order in α, we get

∂2
x ψ

L (x) + 6
1− 3x ∂x ψ

L (x)− 2 (1− 6x)
x2 (1− 3x)2 ψ

L (x) +O (α) = 0. (5.17)

The two leading order solutions are

fL
0 (x) = 1− 1

3x, gL
0 (x) = x2

(
x− 1

3

)
. (5.18)
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Since fL
0 satisfies the Robin boundary condition{

d
dx

(
ψL(x)
x− 1

3

)
+
[
3(1 + α2) + i α3mω

] ψL(x)
x− 1

3

}∣∣∣∣
x= 1

3

= 0, (5.19)

the following perturbative expansion for the wave function in the left region can be written:

ψL (x) = fL
0 (x) +

∑
K≥1

fL
K (x)αK . (5.20)

We do not use (2.8) to compute fL
K (x) as they are simple Laurent polynomials in x. The

form of these polynomials depends on whether K is even or odd. The following general
result holds for the first 30 computed orders:

fL
2K (x) =

(
x− 1

3

)K−1− 4
3 sin(K π

3 )
2∑

s=−K−1
a2K,s x

s,

fL
2K−1 (x) =

(
x− 1

3

)K−3+ 4
3 sin(K π

3 )
2∑

s=0
a2K−1,s x

s,

(5.21)

where the coefficients aK,s depend on the parameters m and ωi. For example, we have for
K = 1, 2, 3, 4:

fL
1 (x) = 0, fL

3 (x) = −imω0

(
x− 1

3

)
,

fL
2 (x) =

(
x− 1

3

) 1
3x2 , fL

4 (x) =
(
x− 1

3

)( 1
9x3 − 1

3x2 − imω1

)
.

(5.22)

In each order in α, the contribution of gL
0 is fixed by the Robin boundary condition.

The contribution of fL
0 is arbitrary and can be absorbed into a normalization of the wave

function ψL (x). We choose the normalization so that fL
0 is only present in the leading order.

5.2 Middle region

To match the wave function expansions in the left and right regions, we introduce an
intermediate region with the local variable

y = R2
h

r
= α−2

r
. (5.23)

The master equation in the middle region is obtained by applying the coordinate transfor-
mation z = α y to (5.7) and substituting ψ (z) with ψM (y). In the leading order in α, we get

∂2
y ψ

M (y)− 2
y
∂y ψ

M (y) +O (α) = 0. (5.24)

The two leading order solutions are

fM
0 (y) = 1, gM

0 (y) = y3. (5.25)
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Strictly speaking, there is no boundary condition in the middle region. However, there is
a way to use the expansion of the wave function in this region and apply the boundary
condition near the horizon y ∼ α−1. This requires a resummation of infinitely many terms,
and the results agree with the ones obtained using three regions instead of just two. Here
we focus on the procedure with three regions as it allows us to get more orders in the
QNM frequency expansion. To justify our choice of functions fM

0 and gM
0 , we can either

use the gluing procedure or look at the behavior near the horizon. In the first couple of
orders in α, there is no resummation of terms in the wave function ψM (y) when we take
y ∼ α−1. Since near the horizon gM

0 (y) ∼ α−3, it can only appear in orders α3 and higher.
This leads to the following perturbative expansion of the wave function:

ψM (y) = fM
0 (y) +

∑
K≥1

fM
K (y)αK . (5.26)

Similarly to the left region, the corrections fM
K (y) are Laurent polynomials of the form

fM
K (y) =

K− 4
3 sin(K π

3 )
2∑

s=−K

bK,s y
s, (5.27)

where coefficients bK,s also depend on the parameters m and ωi. Starting from order
α3, the gluing procedure fixes the contribution of gM

0 , so we keep the corresponding
integration constants cM

K in the expressions for fM
K , K ≥ 3. Out of the 27 computed

orders, we present the first 4:

fM
1 (y) = −m

3y ,

fM
2 (y) = m2

9 y2 − i ω0 y,

fM
3 (y) = − m3

27 y3 + m

3 y − i ω1 y + cM
3 y3,

fM
4 (y) = m4

81 y4 − 2m2

9 y2 − i ω2 y +
2m
3 cM

3 y2 + cM
4 y3.

(5.28)

5.3 Right region

The local variable in the right region is z, and the event horizon is at z = 1. The leading
order in α of (5.7) is

∂2
z ψ (z) +

(
z3 + 2

)
z (z3 − 1) ∂z ψ (z) +O (α) = 0. (5.29)

The two leading order solutions are

fR
0 (z) = 1, gR

0 (z) = log
(
1− z3

)
. (5.30)

The Wronskian between these solutions is

W0 (z) =
3 z2

z3 − 1 . (5.31)
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According to the boundary conditions (5.10), the wave function in the right region is
regular at z = 1. The corresponding perturbative expansion of the wave function is then

ψR(z) = fR
0 (z) +

∑
K≥1

fR
K (z)αK . (5.32)

The corrections fR
K (z) are computed with the help of (2.8), where the constants bK are

fixed by the regularity condition at z = 1. The integrals in (2.8) can be described in terms
of the multiple polylogarithms in several variables:

Lis1,...,sk
(z1, . . . , zk) =

∞∑
n1>n2>···>nk≥1

zn1
1 . . . znk

k

ns1
1 . . . nsk

k

. (5.33)

For s1 ≥ 2, these functions satisfy

z1 ∂z1Lis1,...,sk
(z1, . . . , zk) = Lis1−1,...,sk

(z1, . . . , zk) , (5.34)

and for s1 = 1, k ≥ 2,

(1− z1) ∂z1Li1,s2,...,sk
(z1, . . . , zk) = Lis2,...,sk

(z1z2, z3, . . . , zk) . (5.35)

The weight and level of Lis1,...,sk
(z1, . . . , zk) are s1 + · · · + sk and k. When taking the

integrals in (2.8) with the input from this section, we will only encounter multiple poly-
logarithms with s1 = s2 = · · · = sk = 1 (see appendix D for more details). In this case,
the weight and level are the same. Moreover, all arguments zi with i ≥ 2 are constants
and can take one of the three possible values: 1, u1, and u2. These constants are the third
roots of unity

u1 = −1
2 − i

√
3

2 , u2 = −1
2 + i

√
3

2 (5.36)

that arise in the following decomposition of gR
0 (z):

gR
0 (z) = log (1− z) + log (1− u1z) + log (1− u2z) . (5.37)

Similarly to the previous cases with multiple polylogarithms, the corrections fR
K (z) at order

αK are described in terms of functions Lis1,...,sk
(z1, . . . , zk) of weight K and lower. This

allows us to construct a linear basis of functions, in which fR
K (z) can be expanded:∑l1

m=−k1
ζR

m zm

(1− u1z)i1 (1− u2z)j1
log (1− z)p1 log (1− u1z)p2 log (1− u2z)p3 , (5.38)∑l2

m=−k2
ξR

m zm

(1− u1z)i2 (1− u2z)j2
log (1− z)p4 log (1− u1z)p5 log (1− u2z)p6 Li{1}k

(z1, z2, . . . , zk) ,

where i1,2, j1,2, k1,2, l1,2, pj are non-negative integers, and 0 ≤ p1 + p2 + p3 ≤ K, 0 ≤
p4 + p5 + p6 + k ≤ K. Since the first argument in Li{1}k

(z1, z2, . . . , zk) can take one of the
three possible forms

z1 = z, z1 = u1z, or z1 = u2z, (5.39)

– 32 –



J
H
E
P
1
1
(
2
0
2
3
)
0
5
9

we have 3k functions that can enter the basis at level k ≥ 2. However, this number is
reduced due to the identities that involve multiplication by ordinary logarithm functions
log (1− z), log (1− u1z), and log (1− u2z) (see appendix D). These identities allow us to
use only two forms of the first argument z1 = u1z and z1 = u2z. The reduced number of
multiple polylogarithms that enter the basis is 8× 3k−3 for k ≥ 3, and just 3 for k = 2:

Li1,1 (u1z, u1) , Li1,1 (u1z, u2) , Li1,1 (u2z, u1) . (5.40)

Using Mathematica, we compute 7 corrections fR
K (z); the first two are

fR
1 (z) = ω0√

3
(u1 log (1− u1z)− u2 log (1− u2z)) ,

fR
2 (z) = −m

3 z − i ω2
0

3
√
3
[Li1,1 (u1z, u1) + u1 Li1,1 (u2z, u1)− u2 Li1,1 (u1z, u2) ]

+ i ω2
0

3
√
3

[
log (1− u1z)2 − log (1− u2z)2 − u1 log (1− u1z) log (1− u2z)

]
− i ω2

0
3
√
3
log (1− z) [ u2 log (1− u1z)− u1 log (1− u2z) ] +

ω1 − i ω2
0√

3
log (1− u2z)

− u1 ω1 − i u2 ω
2
0√

3
log (1− z) + bR

2 g
R
0 (z) ,

where

bR
2 = u1 ω1√

3
+ i ω2

0
3
√
3
[ u2 log (1− u1)− u1 log (1− u2)− 3u2 ] . (5.41)

We estimate the following behavior of fR
K (z) as z → 0 based on the obtained results:

K ≥ 1 : fR
2K−1 (z) ∼ z2−K , fR

2K (z) ∼ z−K . (5.42)

Thus, to avoid the reshuffling of terms, we choose the gluing point between the middle and
the right region to be z = α1/4.

5.4 Results for QNM frequencies

We need two continuity conditions to determine the QNM frequencies, at z = α1/4 and
z = α:

ψM
(
α−3/4

)
=CM

R (α)ψR
(
α1/4

)
, ∂zψ

M (z/α)
∣∣∣∣
z=α1/4

=CM
R (α)∂zψ

R(z)
∣∣∣∣
z=α1/4

,

ψL
(
1/3+(αm)−1

)
=CL

M (α)ψM (1), ∂zψ
L
(
1/3+z

(
α2m

)−1
)∣∣∣∣

z=α

=CL
M (α)∂zψ

M (z/α)
∣∣∣∣
z=α

.

(5.43)
The first condition in (5.43) is used to fix the integration constants cM

K , and the second one
gives the coefficients ωk in the QNM frequency expansion (5.14). The first seven computed
orders of the wave function expansion in the right region allow us to determine ωk up to
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k = 6:

ω0 =
√
m+ 2

2 , ω1 = − im6 ,

ω2 =
√
2m

36
√
m+ 2

+ m
√
m+ 2

108
√
2

[
15 +

√
3π − 9 log (3)

]
,

ω3 = −m (m+ 2)
18

√
3

[Li1,1 (u1, u1) + u1Li1,1 (u2, u1)− u2Li1,1 (u1, u2)]

+ m (m+ 2)
1296

√
3

[
π2 − 6i π log (3) + 9 (u2 − 3u1) log (3)2

]
+ im (m+ 3)

162
[
9 +

√
3π − 9 log (3)

]
, (5.44)

ω4 = − im (m+ 2)3/2

54
√
6

[
Li{1}3

(u1, u1, u1)− u1 Li{1}3
(u1, u1, 1)− u1 Li{1}3

(u1, 1, u2)

−2u2 Li{1}3
(u1, u2, 1)− (u1 ↔ u2)

]
+ . . . ,

ω5 = m (m+ 2)2

162
√
3

[
Li{1}4

(u1, u1, u1, 1) + u2 Li{1}4
(u1, 1, u1, u1)− 2Li{1}4

(u1, 1, 1, u2)

− u1 Li{1}4
(u1, 1, u2, 1)− 2u2 Li{1}4

(u1, u2, 1, 1)− u1 Li{1}4
(u1, u2, u2, 1)

− (u1 ↔ u2)
]
+ m (m+ 2)2

486
√
3

[
3Li{1}4

(u1, 1, u1, 1) + 6u1 Li{1}4
(u1, 1, 1, u1)

−2u2 Li{1}4
(u2, u2, u1, 1)

]
+ . . . ,

where we shortened the results for ω4 and ω5 for readers convenience. The full results,
including the result for ω6, can be found in the attached Mathematica files. Notice that, as
compared to the QNM frequencies computed in section 3 and section 4, here the frequencies
involve different irrational numbers, for instance, log 3,

√
3, as well as colored multiple zeta

values of level 3.
Upon taking the scaling limit

Rh → ∞, ℓ→ ∞,
2 ℓ
3Rh

→ q, (5.45)

where q stays constant, we reproduce the results for the QNM frequencies of the M2-brane in
the AdS4 background (see table IV in [74]) which are directly linked to hydrodynamics [109–
112]. Also, the following rescaling of the frequency is needed:

w = 2ω
3Rh

. (5.46)

Applying this limit to (5.44), we obtain an expansion of w in q:

w =
∑
k≥1

wk q
k, (5.47)
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where w1, w2, and w3 agree with the results from [74], and the new results are

w4 = −
√
3

16 [Li1,1 (u1, u1) + u1Li1,1 (u2, u1)− u2Li1,1 (u1, u2)] +
72 i

√
3 + 24 i π + π2

384
√
3

− 12 i
√
3 + i π

64
√
3

log (3) +
√
3

128 (u2 − 3u1) log (3)2 ,

w5 = − i
√
3

32
√
2

[
Li{1}3

(u1, u1, u1)− u1 Li{1}3
(u1, u1, 1)− u1 Li{1}3

(u1, 1, u2)

−2u2 Li{1}3
(u1, u2, 1)− (u1 ↔ u2)

]
+ . . . , (5.48)

w6 =
√
3

64

[
Li{1}4

(u1, u1, u1, 1) + u2 Li{1}4
(u1, 1, u1, u1)− 2Li{1}4

(u1, 1, 1, u2)

− u1 Li{1}4
(u1, 1, u2, 1)− 2u2 Li{1}4

(u1, u2, 1, 1)− u1 Li{1}4
(u1, u2, u2, 1)

− (u1 ↔ u2)
]
+ 1

64
√
3

[
3Li{1}4

(u1, 1, u1, 1) + 6u1 Li{1}4
(u1, 1, 1, u1)

−2u2 Li{1}4
(u2, u2, u1, 1)

]
+ . . . ,

where we shortened the results for w5 and w6 for readers convenience. The full results,
including the result for w7, can be found in the attached Mathematica files. The numerical
values of these coefficients are

w1 = 1√
2
,

w2 = − i

4 ,

w3 = 0.155473446153645 . . . ,
w4 = 0.067690388847266 . . . · i,
w5 = −0.010733416957692 . . . ,
w6 = 0.013959543659902 . . . · i,
w7 = −0.016615814626711 . . . .

(5.49)

These alternate between real and imaginary parts, precisely as predicted in [104, 113].17

6 Conclusions

This paper focuses on analytical aspects of spectral problems associated with perturbation
theory for four-dimensional (A)dS black holes. We explore these problems using two an-
alytic strategies: one based on the NS functions and one based on a recursive structure
involving multiple polylogarithms. Thanks to these tools, we can compute the quasinormal
mode frequencies and their eigenfunctions analytically in various regimes. For instance, we
can obtain the series expansion at large Rh, small Rh, or large spin ℓ (Rh being the BH
horizon).

17We would like to thank S. Grozdanov for useful discussions on this point and for providing us with
approximate numerical values against which we could check our results.
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We use the approach based on the NS functions in the context of four-dimensional dS
Schwarzschild black holes. In this setup, the NS functions allow us to compute the large
ℓ expansion of QNMs systematically. We find that, up to non-perturbative effects in ℓ,
the QNMs are (negative) imaginary numbers that are even functions of Rh. To include
non-perturbative effects in the spin, switching to the polylog approach is convenient. Once
non-perturbative effects are included, QNMs are no longer even in Rh. But we still find a
branch of purely imaginary modes, thereby providing analytical confirmation of the results
obtained through numerical studies in [66–68, 117]. Exploring the interplay between the
NS and polylog approaches would be interesting. In particular, the appearance of multiple
polylogarithms and multiple zeta values may be related to the behavior of the NS functions
close to their singular points, see e.g. [118–120].

We extend the polylog method to study conformally coupled scalar, electromagnetic,
and vector-type gravitational perturbations in asymptotically AdS4 Schwarzschild black
holes. The NS functions are less effective for these perturbations because the point at
spatial infinity is not a singular point of the equation.18 Hence, we switch to the polylog
method for Dirichlet and Robin boundary conditions. As an application, we use this
technique to study the low-lying modes of the scalar sector of gravitational perturbations
and compute several orders in the 1/Rh expansion. Even in the hydrodynamic expansion,
this allowed us to go beyond the results presently available in the literature. From the point
of view of holography, the polylog method presents finite spin predictions for the dual 3d
CFT. It would be interesting to explore this further in higher spacetime dimensions and
make contact with past and recent developments in the study of holographic CFTs [23, 90–
98, 106–108, 112, 122].

The technical result we obtained about the perturbation theory of second-order linear
differential equations with Fuchsian (or irregular19) singularities points to the existence
of a recursive structure for their solution involving multiple polylogarithms. It raises the
question of whether there exists a deeper algebraic structure beyond this that could im-
prove the algorithm. This should allow us to have a higher level of analytic control over
the problem at hand. For instance, it would be interesting to quantify the precise ana-
lytic properties of QNM frequencies as functions of the BH radius and/or other relevant
parameters to understand their physical meaning better. For example, this would allow
to detect phase transitions and/or (in)stabilities. These considerations become especially
interesting when considering rotating and/or charged black holes. Indeed, these exhibit
a richer structure with intriguing (in)stability features. It would be interesting to revisit
these problems within the approaches presented in this paper.

Let us remark that the polylog method we developed shares similarities with the tech-
niques used to compute Feynman integrals in Quantum Chromo-Dynamics, see e.g. [80–

18If we consider massive scalar perturbation instead, the underlying equation has five regular singular
points and spatial infinity is mapped to one of them. In this case, one can use the NS functions for an
SU(2) × SU(2) linear quiver [121]. In addition, for generic mass, the leading order solution does not reduce
to a rational function; hence the polylog approach presented can not be applied straightforwardly.

19A detailed analysis of the case with irregular singularities, which is relevant for asymptotically flat black
holes, will appear in [86].
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85] and references therein.20 Similar techniques also recently appeared in studying higher
curvature corrections to the effective low-energy gravitational theory arising from string
scattering diagrams [124–130]. Although these results are directly related to hyperbolic tra-
jectories, one can use the data extracted from the amplitudes to determine the parameters
of the effective one-body potential of [131] to be used to describe the gravitational bound
states. From the computational viewpoint, the resulting polylog expansion in such approxi-
mation is naturally obtained by computing the relevant Feynman multiloop integrals in the
proper kinematic regime. On the contrary, in the QNMs regime, the appearance of multiple
polylogarithms does not seem to have a direct interpretation in terms of Feynman multi-
loop integrals. Moreover, different types of special functions arise for other gravitational
backgrounds and/or other perturbations. For example, when considering asymptotically
flat black holes, there is the appearance of multiple polyexponential functions as well [86].
It would be interesting to understand this better.

Finally, one of the most challenging and exciting questions would be to go beyond linear
perturbation theory. The NS and polylog methods allow for the computation of the eigen-
functions and the Green functions, which are essential inputs to go beyond the linear theory.
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A NS functions

This appendix reports the notations and conventions used in section 3.1, where the gauge
theory approach is applied to the Heun connection problem. The relevant theory is N = 2
SU(2) gauge theory with Nf = 4 fundamental hypermultiplets.

If Y is a Young diagram, we denote with (Y1 ≥ Y2 ≥ . . . ) the heights of its columns and
with (Y ′

1 ≥ Y ′
2 , . . . ) the lengths of its rows. For every Young diagram Y and for every box

20During the writing of this paper, we were informed that Saso Grozdanov is also exploring similar ideas
in the context of AdS5 black holes (particularly the hydrodynamic limit) [123].
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s = (i, j), we denote the arm length and the leg length of s with respect to the diagram Y as

AY (i, j) = Yj − i, LY (i, j) = Y ′
i − j. (A.1)

Note that we do not require s to be in Y : if this is the case, the arm length and the leg
length are non-negative quantities, but this is not true in general.

We now introduce the main contributions coming into play for the definition of the
instanton partition function of N = 2 SU(2) gauge theory with fundamental matter. Let
us denote with Y⃗ = (Y1, Y2) a pair of Young diagrams and with |Y⃗ | = |Y1| + |Y2| the
total number of boxes. We denote with a⃗ = (a1, a2) the v.e.v. of the scalar in the vector
multiplet and with ϵ1, ϵ2 the parameters characterizing the Ω-background. We define the
hypermultiplet and vector contribution as [132, 133]

zhyp

(
a⃗,Y⃗ ,m

)
=
∏

k=1,2

∏
(i,j)∈Yk

[
ak+m+ϵ1

(
i− 1

2

)
+ϵ2

(
j− 1

2

)]
, (A.2)

zvec

(
a⃗,Y⃗

)
=

2∏
i,j=1

∏
s∈Yi

1
ai−aj−ϵ1LYj (s)+ϵ2(AYi(s)+1)

∏
t∈Yj

1
−aj+ai+ϵ1(LYi(t)+1)−ϵ2AYj (s)

.

We will always take ϵ1 = 1 and a⃗ = (a,−a). Let us denote with m1,m2,m3,m4 the
masses of the four hypermultiplets and let us introduce the gauge parameters a0, at, a1, a∞
satisfying

m1 = −at − a0,

m2 = −at + a0,

m3 = a∞ + a1,

m4 = −a∞ + a1.

(A.3)

Moreover, we denote with t the instanton counting parameter t = e2πiτ , where τ is related
to the gauge coupling by

τ = θ

2π + i
4π
g2

YM
. (A.4)

In the Mathematica programs available at https://github.com/GlebAminov/BH_PolyLog,
we also use the redefined masses Mi, which are related to mi via

mi =Mi +
t

2 (1− t)

4∑
j=0

Mj . (A.5)

The instanton part of the NS free energy is then given as a power series in t by

F (t) = lim
ϵ2→0

ϵ2 log
[
(1− t)−2ϵ−1

2 ( 1
2 +a1)( 1

2 +at)∑
Y⃗

t|Y⃗ |zvec
(
a⃗, Y⃗

) 4∏
i=1

zhyp
(
a⃗, Y⃗ ,mi

)]
. (A.6)

In the text, we will also refer to the full NS free energy, which contains not only the
instanton part but also the classical and one-loop contributions. This is explicitly given by

Ffull(t) = F (t)− a2 log(t)−
4∑

i=1
ψ(−2)

(1
2 − a−mi

)
−

4∑
i=1

ψ(−2)
(1
2 + a−mi

)
+ ψ(−2) (1 + 2a) + ψ(−2) (1− 2a) ,

(A.7)
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where
ψ(−2)(z) =

∫ z

0
dt log [Γ(t)] . (A.8)

The gauge parameter a is expressed in a series expansion in the instanton counting
parameter t, obtained by inverting the Matone relation [134, 135]

u(0) = −1
4 − a2 + a2

t + a2
0 + t∂tF (t), (A.9)

where the parameter u(0) is the complex moduli parametrizing the corresponding SW curve.
Explicitly, the expansion reads as follows

a = ±
{√

−1
4 − u(0) + a2

t + a2
0+

(1
2 + u(0) − a2

t − a2
0 − a2

1 + a2
∞

)(
1
2 + u(0) − 2a2

t

)
2(1 + 2u(0) − 2a2

t − 2a2
0)
√
−1

4 − u(0) + a2
t + a2

0

t+O(t2)
}
.

(A.10)

B Useful facts about multiple polylogarithms in a single variable

There are many identities between polylogarithms and multiple polylogarithms. Below is
the list of identities that are relevant in our case. First, for multiple polylogarithms of the
form Li1,s2,...,sk

(z), we have:

Li{1}n
(z) = (−1)n

n! log (1− z)n . (B.1)

Taking derivatives and using (3.37) and (3.38), it is easy to show by induction that

n≥ 1 :
n−1∑
k=1

Lik,n−k+1 (z)+2Lin,1 (z)+log(1−z)Lin (z)= 0, (B.2)

{
m≥ 1,
n≥ 1 :

m−1∑
k=1

Lik,m−k+1,n (z)+
n−1∑
k=1

Lim,k,n−k+1 (z)+Lim,1,n (z)+2Lim,n,1 (z) (B.3)

+log(1−z)Lim,n (z)= 0.

Generalizing the last two identities to an arbitrary level, one gets the following identity,
which we use to express Li1,s1,...,sn (z) in terms of multiple polylogarithms Lir1,...,rn+1 (z)
with r1 ≥ 2:

n∑
i=1

si−1∑
k=1

Lis1,...,si−1,k,s′i,si+1,...,sn
(z) +

n−1∑
i=1

Lis1,...,si,1,si+1,...,sn (z) + 2Lis1,...,sn,1 (z) (B.4)

+ log (1− z)Lis1,...,sn (z) = 0,

where in the first double sum, we insert index k in the position of si and then move si to
the next position while modifying it as

s′i = si − k + 1. (B.5)
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Up to weight 4, all multiple polylogarithms in a single variable can be expressed as ordinary
polylogarithms by combining the above identities and the following ones [136, 137]:

Li2,1 (z)+Li3 (1−z)− log(1−z)Li2 (1−z)−
1
2 log(z) log(1−z)

2−ζ (3)= 0, (B.6)

Li3,1 (z)−Li4 (z)+Li4 (1−z)−Li4
(

z

z−1

)
+log(1−z)Li3 (z)=

1
24 log(1−z)

4

−1
6 log(z) log(1−z)

3+ π2

12 log(1−z)
2+ζ (3) log(1−z)+ π4

90 , (B.7)

Li2,1,1 (z)+Li4 (1−z)− log(1−z)Li3 (1−z)+
1
2 log(1−z)

2 Li2 (1−z)

= π4

90 −
1
6 log(z) log(1−z)

3 , (B.8)

4Li3,1 (z)+2Li2,2 (z)−Li2 (z)2 =0. (B.9)

There are identities for weight higher than 4, but not enough to express all multiple poly-
logarithms as ordinary polylogarithms. For example, we have for weight 5:

Li2,1,1,1 (z) + Li5 (1− z)− log (1− z)Li4 (1− z) + 1
2 log (1− z)2 Li3 (1− z)

= 1
6 log (1− z)3 Li2 (1− z) + 1

24 log (z) log (1− z)4 + ζ (5) .
(B.10)

The latter can be checked by taking a derivative and using identity B.1. Throughout the
paper, we choose not to use the powers of polylogarithms in any basis, which reduces the
number of relevant identities.

Multiple zeta values (MZVs) and Euler sums arise when evaluating the quasinormal
mode frequencies:

Lis1,...,sk
(1) ≡ ζ (s1, . . . , sk) , Lis1,...,sk

(−1) ≡ ζ (−s1, s2, . . . , sk) . (B.11)

Some of these values can be computed using the known relations [138–141] of the form:

a, b > 1 : ζ (a, b) + ζ (b, a) = ζ (a) ζ (b)− ζ (a+ b) , (B.12)

ζ (−2n, 1) = 1
2ζ (2n+ 1)− 2n− 1

2 η (2n+ 1) +
n−1∑
k=1

η (2 k) ζ (2n+ 1− 2 k) , (B.13)

where
η (x) =

(
1− 21−x

)
ζ (x) . (B.14)

In particular, the following MZVs and Euler sums of weight 5 can be written in terms of
Riemann ζ-functions [141]:

ζ (2,3)= 9
2 ζ (5)−

π2

3 ζ (3), ζ (3,2)= π2

2 ζ (3)− 11
2 ζ (5), ζ (4,1)=2ζ (5)− π2

6 ζ (3), (B.15)

ζ (−2,3)= 51
32 ζ (5)−

π2

8 ζ (3), ζ (−3,2)= 41
32 ζ (5)−

5π2

48 ζ (3), ζ (−4,1)= π2

12 ζ (3)−
29
32 ζ (5). (B.16)
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Lastly, we need expansions of multiple polylogarithms around z = 1. Such an expan-
sion for the polylogarithm Lin (z) with n ≥ 1 is given by [142, 143]

Lin (eµ) = µn−1

(n− 1)! [Hn−1 − log (−µ)] +
∞∑

k=0
k ̸=n−1

ζ (n− k) µ
k

k! , (B.17)

where Hn is the n-th harmonic number and |µ| < 2π. To derive the same for Li1,n (z), we
integrate both sides of the following equation:

d
dµ Li1,n (eµ) = eµ

1− eµ
Lin (eµ) , (B.18)

where
eµ

1− eµ
= −1

2 − 1
µ
−

∞∑
j=1

B2j
µ2j−1

(2j)! . (B.19)

Up to a constant of integration c1,n we get:

n ≥ 2 : Li1,n (eµ) = c1,n − ζ (n) log (−µ)− 1
2Lin+1 (eµ)−

∞∑
k=1

k ̸=n−1

ζ (n− k) µ
k

k! k (B.20)

− 1
(n− 1)!

∞∑
j=0

B2j

(2j)!
µ2j+n−1

2j + n− 1

[
Hn−1 +

1
2j + n− 1 − log (−µ)

]

−
∞∑

j=1

∞∑
k=2j

k ̸=2j+n−1

B2j

(2j)!
ζ (2j + n− k)

(k − 2j)!
µk

k
.

Using (B.11) and the above polylogarithm identities, one obtains the first few coefficients
c1,n. For example, from (B.2) and (B.6)–(B.9), we get

c1,2 = −3
2 ζ (3) , c1,3 = − π4

120 . (B.21)

Now, we can get the expansion for Lim,n (eµ) by consecutively integrating (B.20):

m ≥ 1, n ≥ 2 : Lim,n (eµ) =
m−1∑
k=0

cm−k,n
µk

k! + ζ (n) µm−1

(m− 1)! [Hm−1 − log (−µ)]− 1
2 Lim+n (eµ)

−
∞∑

k=1
k ̸=n−1

ζ (n− k) µk+m−1

k (k +m− 1)! −
∞∑

j=1

∞∑
k=2j

k ̸=2j+n−1

B2j

(2j)!
ζ (2j + n− k)

(k − 2j)!
(k − 1)!

(k +m− 1)! µ
k+m−1

− µn+m

(n− 1)!

∞∑
j=0

B2j

(2j)!
(2j + n− 2)!µ2j−2

(2j + n+m− 2)! [H2j+n+m−2 +Hn−1 −H2j+n−2 − log (−µ)] .

Again, the integration constants cm,n can be computed with the help of the known identi-
ties:

c2,2 = π4

72 , c1,4 = π2

6 ζ (3)− 5
2 ζ (5) , c2,3 = −π

2

3 ζ (3)+5 ζ (5) , c3,2 = π2

2 ζ (3)−5 ζ (5) .
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In the same way, one can derive the expansion for Lim,1 by consecutively integrating Li1,1:

m≥ 1 : Lim,1 (eµ)=
m−2∑
k=0

ζ (m−k,1) µ
k

k! −
∞∑

k=1
ζ (1−k) µk+m−1

(k+m−1)! [log(−µ)+Hk −Hk+m−1]

+ µm−1

(m−1)!

[
1
2 log(−µ)2−Hm−1 log(−µ)+Hm−1,2+

m−1∑
k=1

Hk−1

k

]

+ 1
2

∞∑
j=1

∞∑
k=j+1

ζ (1−j)ζ (j−k+1) k!
(k+m−1)!

µk+m−1

j! (k−j)! , (B.22)

where Hm,2 is the generalized harmonic number of the form

Hm,2 =
m∑

k=1

1
k2 . (B.23)

C Solving integral recurrence relations

In sections 3.2.2 and 4.2, we claimed that the wave functions ψL (z) at order tK (or,
equivalently, RK

h ) are described in terms of multiple polylogarithms of weight K and lower.
In this section, we will prove this claim, but first, let us clarify the terminology. The notion
of weight is related to the power of a logarithm function, as seen in the following identity:

Li{1}n
(z) = (−1)n

n! log (1− z)n . (C.1)

Thus, we will ascribe weight to the ordinary logarithm functions as follows. For any product
of two logarithms

m,n ≥ 0 : log (z)m log (z − 1)n , (C.2)

the weight equals n+m ≥ 0. For the product of a logarithm and a multiple polylogarithm

k ≥ 1, n ≥ 0 : log (z − 1)n Lis1,...,sk
(1− z) , (C.3)

the weight is n + s1 + · · · + sk > 0. Here we do not consider the other possible product
log (z)m Lis1,...,sk

(1− z) because, due to the identities of the form (B.4), this product can
always be rewritten as a linear combination of multiple polylogarithms. Some simple
examples are:

log (z) Li2 (1− z) = −Li1,2 (1− z)− 2Li2,1 (1− z) , (C.4)
1
2 log (z)2 Li2 (1− z) = Li1,1,2 (1− z) + 2Li1,2,1 (1− z) + 3Li2,1,1 (1− z) . (C.5)

In general, multiple polylogarithm functions can not be rewritten as powers of ordinary
logarithm functions. We will use both logarithms and multiple polylogarithms of a certain
weight to build a linear basis in which the wave function can be expanded at a certain
order in t. In what follows, all powers of logarithms are non-negative integers.

We are going to prove our claim by induction. In the first order in t, the integrands in
the recurrence relations are just rational functions of the form∑r0

m=0 αm zm

zi0 (z − 1)j0
(C.6)

– 42 –



J
H
E
P
1
1
(
2
0
2
3
)
0
5
9

with non-negative integers r0, i0, j0 that depend on the quantum numbers of the scalar,
electromagnetic, or gravitational perturbations. These rational functions can be broken up
into a sum of monomials in z and poles at z = 0, 1 with the help of the identities

n,m ≥ 0 : zn

(z − 1)m =
n∑

k=0

(
n

k

)
(z − 1)k−m , (C.7)

1
zn (1− z)m =

n∑
k=1

(
n+m− k − 1

m− 1

) 1
zk

+
m∑

j=1

(
n+m− j − 1

n− 1

) 1
(1− z)j , (C.8)

where in the last identity n,m ≥ 1. Thus, the wave function ψL (z) ar order t is described
in terms of rational functions and logarithms of weight 1: log (z) and log (z − 1). Next, we
assume that the integrands in the recurrence relations at order tK+1 are linear combinations
of functions with maximum weight K:∑r1

m=0 αm zm

zi1 (z − 1)j1
log (z − 1)p1 log (z)p2 ,∑r2

m=0 βm zm

zi2 (z − 1)j2
log (z − 1)p3 Lis1,...,sk

(1− z) . (C.9)

After breaking up rational functions with the help of (C.8), we will consider all possible
integrals case by case and show that the maximum weight after the integration is K + 1.
Splitting this last part of the proof into three steps is helpful. In each step, we will deal
with the following integrals:

1. Integrals that increase the maximum weight by one.

2. Integrals that do not increase the maximum weight and involve only one logarithm
or multiple polylogarithm: log (z)m, log (z − 1)n, or Lis1,...,sk

(1− z).

3. Integrals that do not increase the maximum weight and involve the following products
of logarithms: log (z)m log (z − 1)n and log (z − 1)n Lis1,...,sk

(1− z).

Step 1. Four types of integrals increase the maximum weight. In each case the integrand
has a factor of z−1 or (z − 1)−1. For the product of two logarithms of weight n + m,
n,m ≥ 0 we have:∫ log(z)m log(z−1)n

z
dz=(−1)m+n+1

m!n!
n∑

j=0

(−1)j

j! log(z−1)j Lin−j+1,{1}m
(1−z) , (C.10)

∫ log(z)m log(z−1)n

z−1 dz=(−1)m+n
m!n!

n∑
j=0

(−1)j

j! log(z−1)j Lin−j+2,{1}m−1
(1−z) , (C.11)

where in the last integral m ≥ 1 and Lin,{1}0
≡ Lin. The resulting weight after the integra-

tion is 1 + n+m. In the more general case of integrals involving multiple polylogarithms,
we have (n ≥ 0):∫ log(z−1)n

z
Lis1,...,sk

(1−z)dz=(−1)n+1
n!

n∑
j=0

(−1)j

j! log(z−1)j Lin−j+1,s1,...,sk
(1−z), (C.12)

∫ log(z−1)n

z−1 Lis1,...,sk
(1−z)dz=(−1)n

n!
n∑

j=0

(−1)j

j! log(z−1)j Lis1+n−j+1,s2,...,sk
(1−z). (C.13)
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Again, after the integration, the weight was increased by 1 from n + s1 + · · · + sk to
1+n+ s1 + · · ·+ sk. The above identities were obtained by repeated integrations by parts.

Step 2. The integrands in this step are products of one logarithm or multiple polylog-
arithm with zn or (z − 1)n, with n ̸= −1. Moreover, it is enough to consider only the
negative powers of (z − 1) since all positive powers can be reduced to monomials in z. We
start with integrals involving the log (z) function:

n ̸=−1 :
∫
zn log(z)m dz=(−1)m m! zn+1

(n+1)m+1

m∑
j=0

(−1)j

j! (n+1)j log(z)j , (C.14)

n≥ 2 :
∫ log(z)

(z−1)n dz= 1
1−n

(
(−1)n+ 1

(z−1)n−1

)
log(z) (C.15)

− (−1)n

1−n log(z−1)+ (−1)n

1−n

n−2∑
j=1

1
j (z−1)j ,

m≥ 2 :
∫ log(z)m

(z−1)2 dz= z

1−z log(z)m−(−1)m m!Li2,{1}m−2
(1−z) ,

n,m≥ 2 :
∫ log(z)m

(z−1)n dz= 1
1−n

(
(−1)n+ 1

(z−1)n−1

)
log(z)m (C.16)

+(−1)m+n m!
1−n Li2,{1}m−2

(1−z)+ m

1−n

n−1∑
k=2

(−1)k+n
∫ log(z)m−1

(z−1)k
dz,

where the last equation allows us to take the corresponding integral recursively. In principle,
the integrals with the other logarithm log (z − 1) can be obtained from (C.15)–(C.16) by
shifting the variable z → 1 − z. This, however, would change the argument of multiple
polylogarithms from (1− z) to z. Since we want our multiple polylogarithms to converge
in the disk |1− z| < 1 (or |1− z| ≤ 1 when s1 ≥ 2), we rewrite (C.15)–(C.16) using the
function log (z − 1):

n ≥ 2 :
∫ log (z − 1)

zn
dz = z1−n − 1

1− n
log (z − 1) + log (z)

1− n
+ 1
n− 1

n−2∑
j=1

1
j zj

,

m ≥ 0 :
∫ log (z − 1)m

z2 dz = z − 1
z

log (z − 1)m

− (−1)mm!
m−1∑
j=0

(−1)j

j! log (z − 1)j Lim−j (1− z) ,

n ≥ 2,
m ≥ 0 :

∫ log (z − 1)m

zn
dz = z1−n − 1

1− n
log (z − 1)m

+ (−1)m m!
1− n

m−1∑
j=0

(−1)j

j! log (z − 1)j Lim−j (1− z)

+ m

1− n

n−1∑
k=2

∫ log (z − 1)m−1

zk
dz. (C.17)
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In all the integrals taken so far in step 2, we can explicitly see that the maximum weights
before and after integration are the same.

For the integrals that involve multiple polylogarithms Lis1,...,sk
(1− z), we consider the

two cases s1 = 1 and s1 ≥ 2 separately. First, we look at the integrals with non-negative
powers of z:

{
k≥ 2,
n≥ 0 :

∫
zn Li1,s2,...,sk

(1−z)dz= zn+1

n+1 Li1,s2,...,sk
(1−z)

+ 1
n+1

∫
zn Lis2,...,sk

(1−z)dz, (C.18){
s1 ≥ 2,
n≥ 0 :

∫
zn Lis1,...,sk

(1−z)dz= zn+1−1
n+1 Lis1,...,sk

(1−z)

− 1
n+1

n∑
m=0

∫
zm Lis1−1,s2,...,sk

(1−z)dz. (C.19)

The above integrals can be taken recursively until one gets integrals of the form (C.14) and
the maximum weight of the final result is equal to K. Similarly, we have for the integrals
with negative powers of z (except for 1/z):

{
k≥ 2,
n≥ 2 :

∫ 1
zn

Li1,s2,...,sk
(1−z)dz= z1−n

1−n Li1,s2,...,sk
(1−z)

+ 1
1−n

∫ 1
zn

Lis2,...,sk
(1−z)dz, (C.20){

s1 ≥ 2,
n≥ 2 :

∫ 1
zn

Lis1,...,sk
(1−z)dz= z1−n−1

1−n Lis1,...,sk
(1−z)+ Li1,s1−1,s2,...,sk

(1−z)
n−1

+ 1
1−n

n−1∑
m=2

∫ 1
zm

Lis1−1,s2,...,sk
(1−z)dz. (C.21)

Finally, we consider the integrals with multiple polylogarithms divided by (z − 1)n, n ≥ 2:

{
k≥ 2,
n≥ 2 :

∫ 1
(z−1)n Li1,s2,...,sk

(1−z)dz= (−1)n+(z−1)1−n

1−n Li1,s2,...,sk
(1−z)

+ (−1)n

1−n Lis2+1,...,sk
(1−z)+ (−1)n

n−1

n−1∑
m=2

∫ (−1)m

(z−1)m Lis2,...,sk
(1−z)dz, (C.22)

{
s1 ≥ 2,
n≥ 2 :

∫ 1
(z−1)n Lis1,...,sk

(1−z)dz= (z−1)1−n

1−n Lis1,...,sk
(1−z)

+ 1
n−1

∫ 1
(z−1)n Lis1−1,s2,...,sk

(1−z)dz. (C.23)
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Step 3. Here we have to deal with four types of integrals:{
k ̸= −1
n,m ≥ 1 :

∫
zk log (z)m log (z − 1)n dz, (C.24){

k ≥ 2
n,m ≥ 1 :

∫ log (z)m log (z − 1)n

(z − 1)k
dz, (C.25){

m ̸= −1
n ≥ 1 :

∫
zm log (z − 1)n Lis1,...,sk

(1− z) dz, (C.26){
m ≥ 2
n ≥ 1 :

∫ log (z − 1)n

(z − 1)m Lis1,...,sk
(1− z) dz. (C.27)

In each case, we can use integration by parts to reduce the weight of one of the logarithms
by 1. Applying integration by parts recursively allows us to reduce all integrals of the
form (C.24)–(C.27) to one of the integrals from step 2 or 1. For example, in the case
of (C.24), we have∫

zk log(z)m log(z−1)n dz=(−1)m m! zk+1

(k+1)m+1

m∑
j=0

(−1)j

j! (k+1)j log(z)j log(z−1)n

−(−1)m m!n
(k+1)m+1

m∑
j=0

(−1)j

j! (k+1)j
∫
zk+1

z−1 log(z)j log(z−1)n−1 dz. (C.28)

We simplify the integral in the r.h.s. of (C.28) by breaking up the rational function
zk+1/ (z − 1) into a sum of monomials in z and poles at z = 0, 1:

k ≥ 0 : zk+1

z − 1 = 1
z − 1 +

k∑
j=0

zj , (C.29)

k ≤ −2 : zk+1

z − 1 = 1
z − 1 −

−k−1∑
j=1

z−j . (C.30)

Almost all the resulting integrals are of the first type (C.24) with the power of log (z − 1)
reduced by 1. The remaining two integrals∫ log (z)j log (z − 1)n−1

z
dz and

∫ log (z)j log (z − 1)n−1

z − 1 dz (C.31)

were already taken in step 1, and the maximum weight is n+m = K. Recursively applying
this procedure, one can either express (C.24) in terms of integrals like (C.31) or reduce it
to (C.14). In the same way, (C.25) can be essentially reduced to (C.14) with z replaced
by (z − 1). Finally, the last two types of integrals, (C.26) and (C.27), are reducible to a
combination of integrals from (C.18)–(C.23).

To summarize, we have shown by induction that the wave function ψL (z) at any order
tK is a linear combination of certain functions of weight K or lower. The only special
functions needed are multiple polylogarithms with argument (1− z) (another possible ar-
gument would be z, but it would not be consistent with the boundary condition at the
AdS boundary in the SAdS case). The same can be done for the wave function in the right
region, ψR (z).
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D Multiple polylogarithms for hydrodynamic QNMs

For the computations of gravitational QNMs in the scalar sector (section 5), we introduced
an expansion of the solution using the multiple polylogarithms in several variables (5.33).
An alternative definition could be given in terms of one-forms21 [144]

Lis1,...,sk
(z1, . . . , zk) =

∫ 1

0
ωs1−1

0 ωz1ω
s2−1
0 ωz1z2 . . . ω

sk−1
0 ωz1...zk

, (D.1)

where

ωz =


zdt

1− zt
, z ̸= 0,

dt
t
, z = 0.

(D.2)

All the integrals in section 5 do not include ω0 after the simplification, which means that
s1 = s2 = · · · = sk = 1. We define the relevant multiple polylogarithms as

Li{1}k
(z1z, z2, . . . , zk) =

∫ z

0
ωz1ωz1z2 . . . ωz1...zk

, (D.3)

where zi ∈ {1, u1, u2} for every i = 1, . . . , k and u1, u2 are the third roots of unity (5.36).
We consider the following products of ordinary logarithm functions and multiple polylog-
arithms to describe the wave function:

log (1− z)p1 log (1− u1 z)p2 log (1− u2 z)p3

log (1− z)p4 log (1− u1 z)p5 log (1− u2 z)p6 Li{1}k
(z1z, z2, . . . , zk) .

(D.4)

At order αK , only functions with maximum weight K appear, so that 0 ≤ p1+p2+p3 ≤ K

and 0 ≤ p4 + p5 + p6 + k ≤ K. However, at a fixed weight, some identities make the
functions listed in (D.4) linearly dependent. For example, at level k = 2, we have the
following identities:

Li1,1(z, u1) = log(1− u1 z) log(1− z)− Li1,1(u1 z, u2),
Li1,1(z, u2) = log(1− u2 z) log(1− z)− Li1,1(u2 z, u1),

Li1,1(u2 z, u2) = log(1− u1 z) log(1− u2 z)− Li1,1(u1 z, u1),
(D.5)

including the ones that reduce to the single variable case:

Li1,1(z, 1) =
1
2 log (1− z)2 . (D.6)

Thus, out of 9 possible functions Li1,1(z1z, z2) at level k = 2, we only need 3:

Li1,1 (u1z, u2) , Li1,1 (u1z, u1) , Li1,1 (u2z, u1) . (D.7)

In the rest of the appendix, we will try to classify the identities arising at a given level k
and find what multiple polylogarithms are needed to form a linear basis in (D.4).

21For ωz1 , . . . , ωzp differential one-forms, with ωzi = fzi (t)dt for some function fzi , we define inductively∫ x

0 ωz1 . . . ωzp =
∫ x

0 fz1 (t)dt
∫ t

0 ωz2 . . . ωzp .
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According to (D.3), there is a one-to-one correspondence between multiple polyloga-
rithms and ordered multisets of one-forms {ωz1 , ωz1z2 , . . . , ωz1...zk

}. If two multiple poly-
logarithms are related by the permutation of the one-forms in the corresponding ordered
multisets, then an identity exists between these two. However, this identity could be re-
ducible in the sense that it can be split into smaller ones. To show this, we integrate by
parts the right-hand side of (D.3):∫ z

0
ωz1ωz1z2 ...ωz1...zk

=
∫ z

0

d
dtLi1(z1t)dtωz1z2 ...ωz1...zk

(D.8)

=Li1(z1z)
∫ z

0
ωz1z2 ...ωz1...zk

−
∫ z

0
dtLi1(z1t)

z1z2
1−z1z2t

ωz1z2z3 ...ωz1...zk
,

where Li1 (z1t) is the ordinary logarithm function:

Li1 (z1t) = − log (1− z1t) (D.9)

and

Li1(z1z)
∫ z

0
ωz1z2 . . . ωz1...zk

= − log (1− z1z)Li{1}k−1(z1z2z, z3, . . . , zk). (D.10)

Continuing the integration by parts, we obtain∫ z

0
ωz1ωz1z2 . . . ωz1...zk

⊃
∫ z

0
dtLi1(z1t)Li1(z1z2t) . . .Li1(z1 . . . zk−1t)

z1 . . . zk

1− z1 . . . zkt

=
∫ z

0
dtLi1(y1t)Li1(y2t) . . .Li1(yk−1t)

yk

1− ykt
, (D.11)

where yj = z1 · · · zj for j = 1, . . . , k. From this last integral, one can reconstruct by the
reverse process any other multiple polylogarithm for which the representation in (D.3)
involves the integrals of the same one-forms in a different order. In the intermediate steps
of this procedure, there appear products of the form

Li{1}m1
(z(1)

1 z, . . . , z(1)
m1) · . . . · Li{1}mr

(z(r)
1 z, . . . , z(r)

mr
), with m1 + · · ·+mr = k. (D.12)

It is possible to rewrite these in terms of products in (D.4) using shuffle relations (see for
example eq. (5.4) in [145]). The result is an identity involving two multiple polylogarithms
that are related by the permutation of the corresponding one-forms.

Let us describe with a concrete identity at level 4 how this works. We prove that

Li1,1,1,1(z,u1,1,u2)=−2Li1,1,1,1(u1z,1,u2,1)−Li1,1,1,1(u1z,u2,u1,u2)−Li1,1,1(u1z,1,u2)log(1−z).
(D.13)

By definition, the l.h.s. is

Li1,1,1,1(z,u1,1,u2)=
∫ z

0
ω1ωu1ωu1ω1=−Li1,1,1(u1z,1,u2)log(1−z)−

∫ z

0
Li1(t)

u1dt
1−u1z

ωu1ω1,

(D.14)
where in the last equality we integrated by parts. Therefore, we reduce to proving that∫ z

0
Li1(t)

u1 dt
1− u1 z

ωu1ω1 = 2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2). (D.15)
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We have∫ z

0
Li1(t)

u1 dt
1− u1 z

ωu1ω1 =
∫ z

0

d
dtLi1,1(u1 t, u2)ωu1ω1 (D.16)

= Li1,1(u1 z, u2)Li1,1(u1 z, u2)−
∫ z

0
Li1,1(u1 t, u2)

u1 dt
1− u1 t

ω1.

Moreover,∫ z

0
Li1,1(u1t,u2)

u1dt
1−u1t

ω1=
∫ z

0

d
dtLi1,1,1(u1t,1,u2)ω1 (D.17)

=Li1,1,1(u1z,1,u2)Li1(z)−
∫ z

0
Li1,1,1(u1t,1,u2)

dt
1−t=Li1,1,1(u1z,1,u2)Li1(z)−Li1,1,1,1(z,u1,1,u2).

Putting together (D.15)–(D.16)–(D.17), it remains to prove that

Li1,1(u1 z, u2)Li1,1(u1 z, u2)− Li1,1,1(u1 z, 1, u2)Li1(z) + Li1,1,1,1(z, u1, 1, u2)
= 2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2).

(D.18)

Applying the shuffle relation to the first two terms in lhs, we have

Li1,1(u1 z,u2)Li1,1(u1 z,u2)= 4Li1,1,1,1(u1 z,1,u2,1)+2Li1,1,1,1(u1 z,u2,u1,u2), (D.19)
Li1,1,1(u1 z,1,u2)Li1(z)= 2Li1,1,1,1(u1 z,1,u2,1)+Li1,1,1,1(u1 z,u2,u1,u2)+Li1,1,1,1(z,u1,1,u2).

Therefore, as we wanted, the l.h.s. of (D.18) becomes

4Li1,1,1,1(u1z,1,u2,1)+2Li1,1,1,1(u1z,u2,u1,u2)−[2Li1,1,1,1(u1z,1,u2,1)+Li1,1,1,1(u1z,u2,u1,u2)
+Li1,1,1,1(z,u1,1,u2)]+Li1,1,1,1(z,u1,1,u2)=2Li1,1,1,1(u1z,1,u2,1)+Li1,1,1,1(u1z,u2,u1,u2). (D.20)

Let us remark that with the previous procedure, one can find several identities at a
fixed level involving the same multiple polylogarithm. To choose which elements to add
to the basis, we followed the criterium that we omit the multiple polylogarithms with the
first argument z. This criterium comes from the regularity condition on the wave function
at z = 1. Moreover, when possible, we tried to include the same number of multiple
polylogarithms with the first argument u1 z and with the first argument u2 z (for example,
it is not possible at level k = 2).

For completeness, let us write the elements of level 3 that we add to our basis:

Li1,1,1 (u1 z, 1, u2) , Li1,1,1 (u1 z, 1, u1) , Li1,1,1 (u1 z, u2, 1) , Li1,1,1 (u1 z, u1, u1) ,
Li1,1,1 (u1 z, u1, 1) , Li1,1,1 (u2 z, 1, u1) , Li1,1,1 (u2 z, u1, 1) , Li1,1,1 (u2 z, u2, u2) ,

(D.21)

and the nontrivial identities with the other functions of the same level (other identities are
obtained by exchanging u1 with u2):

Li1,1,1(u2 z,u2,1)=Li1,1,1(u1 z,1,u1)+Li1,1(u1 z,u1) log(1−u1 z)−
log(1−u1 z)2 log(1−u2 z)

2 ,

Li1,1,1(z,u2,1)=Li1,1,1(u2 z,1,u1)+Li1,1(u2 z,u1) log(1−u2 z)−
log(1−u2 z)2 log(1−z)

2 ,

Li1,1,1(z,u1,1)=Li1,1,1(u1 z,1,u2)+Li1,1(u1 z,u2) log(1−u1 z)−
log(1−u1 z)2 log(1−z)

2 ,
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Li1,1,1(u2 z,u2,u1)=−2Li1,1,1(u1 z,u1,1)−Li1,1(u1 z,u1) log(1−u2 z), (D.22)
Li1,1,1(z,u1,u1)=Li1,1,1(u2 z,u2,u2)−Li1,1(u1 z,u1) log(1−z)+Li1,1(u1 z,u2) log(1−u2 z),
Li1,1,1(z,u2,u1)=−2Li1,1,1(u2 z,u1,1)−Li1,1(u2 z,u1) log(1−z),
Li1,1,1(z,u1,u2)=−2Li1,1,1(u1 z,u2,1)−Li1,1(u1 z,u2) log(1−z).

Computing all the identities up to level k = 7, we arrive at the following conclusion. The
number of multiple polylogarithms needed to form a basis in (D.4) at level k ≥ 3 is 8×3k−3.
Even though this significantly reduces the number of functions used at a certain level k,
we still need to compute the identities for all 3k functions to go to the next level k + 1.

E Connection formula for SAdS4

In this appendix, we write the connection formula relevant for the Schwarzschild anti-de
Sitter black hole, and we compute from it the first order correction in Rh of the quasinormal
mode frequency ω0,1,1.

Using the notations introduced in section 2.1 for the Heun solutions and the dictionary
in (4.5)–(4.6) along with

t= Rh(R+−R−)
R−(R+−Rh)

, z∞ =1− R+

R−
, a0 = s,

a1 =
iωR−

(R−−Rh)(R−−R+)
, at =

iωRh

(Rh−R+)(Rh−R−)
, a∞ = iωR+

(R+−Rh)(R+−R−)
, (E.1)

u= (R−−Rh)2 (Rh−R+) [2ℓ(ℓ+1)+2R+(R++Rh)s(s−1)+R−(R+−2sR++Rh)]+4R−R
2
hω

2

2R+(R−−R3
h)(R+−Rh)

,

the connection formula for the SAdS4 case reads

t−
1
2 +a0+at(1− t)− 1

2 +a1e
1
2 ∂at F (t)ψ

(t)
− (z) (E.2)

=
(∑

σ=±
M−σ(at,a;a0)M(−σ)−(a,a1;a∞)tσae−

σ
2 ∂aF (t)

)
(1− t)− 1

2 +ateiπ(a1+at)e
1
2 ∂a1 F (t)ψ

(1)
− (z)

+
(∑

σ=±
M−σ(at,a;a0)M(−σ)+(a,a1;a∞)tσae−

σ
2 ∂aF (t)

)
(1− t)− 1

2 +ateiπ(−a1+at)e−
1
2 ∂a1 F (t)ψ

(1)
+ (z).

Therefore, the quantization condition for the quasinormal mode frequencies can be written
as {[∑

σ=±

Γ(−2σa)Γ(2a1)Γ(1−2σa)tσae−
σ
2 ∂aF (t)+ 1

2 ∂a1 F (t)e2iπa1

Γ
( 1

2 −at−σa+a0
)
Γ
( 1

2 −at−σa−a0
)
Γ
( 1

2 −σa+a1+a∞
)
Γ
( 1

2 −σa+a1−a∞
)]

×
(
z− t
1− t

)−α

Heun
(
t,q+α(δ−β),α,δ+γ−β,δ,γ, t1−z

t−z

)
(E.3)

+
[∑

σ=±

Γ(−2σa)Γ(−2a1)Γ(1−2σa)tσae−
σ
2 ∂aF (t)− 1

2 ∂a1 F (t)

Γ
( 1

2 −at−σa+a0
)
Γ
( 1

2 −at−σa−a0
)
Γ
( 1

2 −σa−a1+a∞
)
Γ
( 1

2 −σa−a1−a∞
)]

×(z−1)1−δ

(
z− t
1− t

)−α−1+δ

×Heun
(
t,q−(δ−1)γt−(β−1)(α−δ+1),−β+γ+1,α−δ+1,2−δ,γ, t1−z

t−z

)}∣∣∣∣
z=z∞

=0.
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Our goal is to obtain, starting from the connection formula (E.3), the analytic ex-
pression of the first order correction in Rh of the QNM frequency in a concrete case:
n = 0, ℓ = s = 1. Consider the expansion of ω := ω0,1,1 in powers of Rh

ω0,1,1 =
∞∑

j=0
ωjR

j
h, (E.4)

where, from the pure AdS case, we take ω0 = ℓ+ 2n+ 2; in our concrete example, ω0 = 3.
We start by expanding at first order in Rh the local solutions for z ∼ 1, using the three-term
recurrence relation for the Heun functions. The first Heun function is

Heun
(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t

1− z

t− z

)
. (E.5)

The corresponding series expansion is given by

∑
j≥0

cj

(
t
1− z

t− z

)j

, (E.6)

where the coefficients satisfy the three-terms relation

cj+1 = [Qj + q + α(δ − β)]cj + Pjcj−1
Rj

, (E.7)

with
c0 = 1,

c1 = q + α(δ − β)
tδ

,

Pj = (j − 1 + α)(j − 1− β + γ + δ),
Qj = j[(j − 1 + δ)(1 + t) + tγ + α− β + 1],
Rj = t(j + 1)(j + δ).

(E.8)

We solve the recurrence relation to find the leading order and first order in Rh of the
coefficients, and then we sum over j to obtain the expansion of the Heun function. The
expansion of the first local solution (including both the Heun function and the prefactor)
is given by

1 + z

2z + (z − 1)
(
ω1z(z − 1)3 + 2iz((z − 8)z − 2) + 6i

)
+ 12iz(2z − 1) log(z)

8(z − 1)3z2 Rh +O(R2
h).

(E.9)
Then, we repeat the same for the second solution, starting from the Heun function

Heun
(
t, q − (δ − 1)γt− (β − 1)(α− δ + 1),−β + γ + 1, α− δ + 1, 2− δ, γ, t

1− z

t− z

)
.

(E.10)
The series defining this Heun function is given by

∑
j≥0

dj

(
t
1− z

t− z

)j

, (E.11)

– 51 –



J
H
E
P
1
1
(
2
0
2
3
)
0
5
9

where the coefficients satisfy the three-terms relation

dj+1 = [Qj + q − (δ − 1)γt− (β − 1)(α− δ + 1)]dj − Pjdj−1
Rj

, (E.12)

with
d0 = 1,

d1 = q − (δ − 1)γt− (β − 1)(α− δ + 1)
t(2− δ) ,

Pj = (j + α− δ)(j + γ − β),
Qj = j[(j + 1− δ)(1 + t) + tγ + α− β + 1],
Rj = t(j + 1)(j + 2− δ).

(E.13)

This time the procedure is trickier because one can notice that, for j = 2, the factor j+2−δ
in Rj starts with the first order in Rh. We solve the recurrence relation for the leading
orders and first orders of dj for j ≥ 3, and then we add the contributions from the previous
terms by hand. In this way, the expansion of the second local solution is given by

6iz3 − 3iz4 + 2zω1 − ω1
z(z − 1)3(3i+ ω1)

− 1
8z2(z − 1)3(3i+ ω1)2

{
(z − 1)[12iω1(3i+ ω1)

+ iz3(−63 + 174iω1 + 44ω2
1 − 24ω2)− iz2(63 + 14ω1(3i+ 2ω1) + 24ω2) (E.14)

+ z4(6ω1 − 8iω2
1 + 3i(−39 + 8ω2)) + z(−2ω1(−75 + 2ω1(12i+ ω1)) + 3i(21 + 8ω2))]

+ 24z(3i+ ω1)[3z3(z − 2) + i(z − 1)3(z + 1)ω1] log(1/z)

+ 8z(3i+ ω1)(3i(z − 2)z3 + ω1 − 2zω1)[(3i+ ω1) log(z − 1)− 6i log(z)]
}
Rh +O(R2

h).

We now expand the connection coefficients to the first order in Rh. Since t is propor-
tional to Rh and the leading order of a is given by ℓ+ 1

2 = 3
2 , in both coefficients, the parts

proportional to ta start with the terms of higher order with respect to the parts propor-
tional to t−a. So they do not contribute to the first-order expansion of the quantization
condition. Then, we remain with the coefficients

Γ(2a)Γ(2a1)Γ(1+2a)t−ae
1
2 ∂aF (t)+ 1

2 ∂a1 F (t)e2iπa1

Γ
(

1
2 −at+a+a0

)
Γ
(

1
2 −at+a−a0

)
Γ
(

1
2 +a+a1+a∞

)
Γ
(

1
2 +a+a1−a∞

) ,
Γ(2a)Γ(−2a1)Γ(1+2a)t−ae

1
2 ∂aF (t)− 1

2 ∂a1 F (t)

Γ
(

1
2 −at+a+a0

)
Γ
(

1
2 −at+a−a0

)
Γ
(

1
2 +a−a1+a∞

)
Γ
(

1
2 +a−a1−a∞

) . (E.15)

Simplifying the common terms, we have

Γ(2a1)e
1
2 ∂a1 F (t)e2iπa1

Γ
(

1
2 + a+ a1 + a∞

)
Γ
(

1
2 + a+ a1 − a∞

) = − ω1
6(ω1 + 3i)

+ 24iπω3
1 + 20ω3

1 + 126iω2
1 − 144πω2

1 − 216iπω1 − 324ω1 − 72iω2 − 189i
144(ω1 + 3i)2 Rh +O(R2

h),

Γ(−2a1)e−
1
2 ∂a1 F (t)

Γ
(

1
2 + a− a1 + a∞

)
Γ
(

1
2 + a− a1 − a∞

) = 1
12 + 1

144(−7ω1 + 9i)Rh +O(R2
h). (E.16)
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Putting together (E.9), (E.14), and (E.16), one has the series expansion in Rh of the
quantization condition (E.3)

i(4 + πω1)
8 Rh +O(R2

h). (E.17)

We can therefore conclude that
ω1 = − 4

π
(E.18)

matches the result obtained in (4.29) for our choice of quantum numbers.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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