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Abstract

We show that the dual partition function of the pure N = 2 SU(2) gauge theory in the self-dual Ω-
background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the
tau function associated to the general solution of the Painlevé III equation of type D8 (radial sine-Gordon
equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combi-
natorial sums over pairs of Young diagrams.

1 Introduction

The study of quantitative aspects of the isomonodromy/CFT correspondence [SMJ, K89, M90, T11] has been
initiated in the work [GIL12], where the general tau function of the sixth Painlevé equation was conjectured to
coincide with the Fourier tranform of the 4-point c = 1 Virasoro conformal block

τVI
(
t |σ,η,~θ

)= ∑
n∈Z

e2πi nη

q
0

q
t

q
1

q

s+n

(t ). (1.1)

This proposal was later proved in [ILTe, BSh1] by CFT methods. The parameters~θ = (θ0,θt ,θ1,θ∞) represent lo-
cal monodromy exponents on the Painlevé side, and are related to external conformal dimensions of primaries
in the conformal block by ∆ν = θ2

ν. The intermediate dimension is ∆= (σ+n)2.
As is well-known, the AGT correspondence [AGT] relates Virasoro 4-point conformal blocks to partition

functions of the N = 2 supersymmetric 4D gauge theories with the gauge group SU(2) and N f = 4 matter
multiplets, regularized by an appropriate deformation (the Ω-background) with two parameters ε1,ε2. The
c = 1 case corresponds to the self-dual Ω-background (ε1 + ε2 = 0). Expanding conformal blocks around t = 0
corresponds to the weak coupling expansion in the gauge theory, explicitly computed in [Nek].

The Painlevé VI is the most general equation in the Painlevé family. All the others can be obtained from
it by appropriate degeneration limits. In [GIL13], some of these limits have been computed at the level of
solutions. This produces explicit formulas for Painlevé V and all three types (D6, D7 and D8) of Painlevé III
functions in the form of power series. From the gauge theory point of view, such degenerations correspond to
decoupling of the massive fields, which means that Painlevé V and III’s are related to N f < 4 gauge theories,
and explicit formulas for the tau functions are known in their weak coupling regions. On the CFT side, these
cases are related to conformal blocks involving Whittaker vectors [G09, BMT, GT]. In contrast to the N f = 4
case, there are interesting situations for N f < 4 where explicit (asymptotic) series representations of solutions
are not known: they correspond to strong coupling regions on the gauge theory side, and to conformal blocks
with irregular vertex operators in the CFT framework. The present work is concerned with the most degenerate
case of Painlevé III equation of type D8 corresponding to the pure gauge theory.
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It is interesting to note that an avatar of the Painlevé III (D8) tau function was already studied by Nekrasov
and Okounkov in [NO], although at the time the relevant object had not yet been related to isomonodromy nor
to CFT. The equation of interest is of 2nd order and contains no parameters; its tau function is given by

τIII
(
t |σ,η

)= ∑
n∈Z

e4πi nηZSU(2) (t |σ+n) , (1.2)

where (σ,η) represent the initial data. The right side of (1.2) was dubbed in [NO] the dual partition function
of the pure gauge theory. The first reason to consider it was purely technical: it is convenient to introduce a
Lagrange multiplier to control (in the non-ε-deformed limit) the value of σ, the vacuum expectation value of
the scalar field. A second reason is the existence of a fermionic representation for the dual partition function,
presented in [NO] in the special case τIII

(
t | 1

4 ,η
)
. Setting in addition η = 0 or η = 1

4 , we obtain elementary
solutions of PIII:

τIII

(
t
∣∣∣ 1

4
,

1±1

8

)
= t

1
16 e±4

p
t . (1.3)

They are related to twisted representations in the intermediate channel [Zam, AZ] generated by the realization
of the Virasoro algebra in terms of one Ramond boson [BSh2].

In order to get a physically interesting result, namely the partition function without ε-deformation, the
dual partition function should be considered in the limit η→ i∞. In this case the sum can be computed in a
saddle-point approximation3. Different quantities scale as follows:

η= ε−1η̃, σ= ε−1σ̃, t = ε−4 t̃ ,

ZSU(2)
(
ε−4 t̃ |ε−1σ̃

)∼ exp
{
ε−2F0(t̃ | σ̃)+F1(t̃ | σ̃)+ . . .

}
,

(1.4)

which means that the saddle point is defined by the equation ∂σ̃F0
(
σ̃ | t̃) = −4πi η̃. One of the main results

of [NO] is the statement that the Seiberg-Witten prepotential [SW] — the function encoding the low-energy
behaviour of the N = 2 pure SU(2) gauge theory — coincides with F0

(
σ̃ | t̃

)
, which confirms the Seiberg-Witten

solution at the microscopic level.
A related procedure was used in [BLMST] to identify the Painlevé I–V tau functions also with the dual

partition functions of strongly coupled gauge theories, including the Argyres-Douglas theories of type H0,
H1 and H2. Specifically, it has been checked that the long-distance (irregular type) tau function expansions
match various magnetic and dyonic strong coupling expansions on the gauge side. A CFT counterpart of this
correspondence has been suggested in [Nag1, Nag2], where some of the long-distance asymptotic series for
Painlevé V and IV were conjecturally related to Fourier transforms of conformal blocks with irregular vertex
operators.

In a recent paper [GL16], we have developed a method of representing the isomonodromic tau functions
of Fuchsian systems as block Fredholm determinants. The construction is based on the Riemann-Hilbert ap-
proach. The main input is given by monodromy of a connection ∂z − A (z) with simple poles together with a
pants decomposition of the appropriate punctured Riemann sphere. The relevant integral operators act on
vector-valued functions defined on a collection of circles (internal boundary components of pants). Their ker-
nels are expressed in terms of solutions of Fuchsian systems associated to different pairs of pants and having
only 3 regular singular points. In rank 2, where the isomonodromy equations are equivalent to the Garnier sys-
tem containing Painlevé VI as the simplest case, Fredholm determinant representations become completely
explicit as the kernels have hypergeometric expressions. Furthermore, the principal minor expansion of the
determinant written in the Fourier basis coincides with the combinatorial evaluation [Nek] of the dual parti-
tion function of the 4D N = 2 linear quiver U(2) gauge theory. This yields in particular a rigorous proof of the
series representation of the Painlevé VI tau function, which bypasses the use of the AGT correspondence and
does not rely on CFT arguments such as crossing symmetry, null vector decoupling equations, etc.

While it is in principle clear that the approach of [GL16] may be extended to at least some classes of irregular
isomonodromic systems, its practical implementation within the Riemann-Hilbert framework is not obvious.
Our main goal in this paper is to work out the details for Painlevé III (D8) equation which exhibits most of
the subtleties of the irregular case and at the same time keeps the notational fuss to a minimum. We hope

3This is the original proposal from [NO, Eq. (5.5)]. The actual answer for the dual partition function also contains non-perturbative
corrections (in ε) of crucial importance which we are going to study in a future work.
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that the Fredholm determinant representation of τIII
(
t |σ,η

)
obtained here, besides producing a combinatorial

series at weak coupling, may also turn out to be useful for the analysis of the strongly coupled regime. Let us
mention that a different (?) Fredholm determinant representation for the special tau function τIII (t |σ,0) has
recently appeared in the proof [BGT1] of a 4D version of the conjecture of [GHM] relating topological strings
and spectral theory (see also [BGT2] for higher-rank generalizations). Our results could also provide some
insight in this context.

A useful guideline for our work is provided by the geometric Painlevé confluence diagram proposed in
[CM, CMR]. In this picture, the monodromy manifolds of different Painlevé equations are interpreted as moduli
spaces of Riemann spheres with cusped boundaries. One is then tempted to replace the usual decomposition
of the Painlevé VI four-holed sphere into two pairs of pants by cutting the Painlevé III (D8) decorated cylinder
into two, each of them having one regular and one 1-cusped puncture, see Fig. 1.

PVI III(D )8P

Figure 1: Pants decomposition for Painlevé VI and Painlevé III (D8).

Furthermore, the number of cusps at a particular hole was heuristically related [CMR, Appendix A] to the num-
ber of Stokes rays at the corresponding irregular singular point, and to the pole order of the quadratic differen-
tial det A (z) d z2. As we will see, the former interpretation turns out to be the most adapted to our purposes, cf
e.g. the Riemann-Hilbert contour in Fig. 3.

The paper is organized as follows. In Section 2, we introduce an irregular linear system leading to Pain-
levé III (D8), describe its generalized monodromy, and explain the “decorated pants decomposition” of the
associated Riemann-Hilbert problem. In Section 3, it is shown that the PIII (D8) tau function admits a Fredholm
determinant representation with a generalized Bessel kernel, the main result being Theorem 3.2. Section 4
is devoted to derivation of the series over pairs of Maya/Young diagrams and its identification with the dual
partition function of the pure gauge theory (Theorems 4.1 and 4.4).

Acknowledgements. We would like to thank M. Bershtein, N. Iorgov, and A. Marshakov for useful discussions. The present

work was supported by the CNRS/PICS project “Isomonodromic deformations and conformal field theory”. P. G. was par-

tially supported by the RSF grant No. 16-11-10160 (results of section 4). He is also a Young Russian Mathematics award

winner and would like to thank its sponsors and jury. P. G. would also like to thank the KdV Institute of the University of

Amsterdam, where a part of this work was done, and especially G. Helminck, for warm hospitality.

2 Isomonodromy and Riemann-Hilbert setup

2.1 Associated irregular system

Our starting point is a system of linear differential equations

∂z Y = A (z)Y , (2.1a)

where A (z) is a given N ×N matrix with rational dependence on z. The fundamental matrix solution Y (z) in
general has branched singularities at the poles of the 1-form A (z)d z on the Riemann sphere P1. It involves no
loss of generality to assume that Tr A (z) = 0; otherwise it suffices to transform Y 7→ f Y with a suitably adjusted
scalar factor.

We are going to study a special class of such linear systems in rank N = 2 characterized by the number of
singularities and their type. Specifically, assume that there are only two irregular singular points (e.g. 0 and ∞)
of Poincaré rank 1

2 . By this we mean that

A (z) = A−2z−2 + A−1z−1 + A0, Ak ∈ Mat2×2 (C) , Tr Ak = 0,

3



with non-diagonalizable A0 and A−2. Using constant gauge transformations Y 7→ GY , A (z) 7→ G A (z)G−1 and
rescaling z 7→λz if necessary, it may be further assumed that either (i) A0 =σ+, A−2 =σ− or (ii) A0 = A−2 =σ+,
where

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

In the case (ii), the remaining freedom of conjugation by upper triangular matrices with unit diagonals leaves
only two nontrivial parameters in A−1. The corresponding linear system does not admit isomonodromic defor-
mations and reduces to a special case of doubly-cofluent Heun equation. We will therefore focus on the case (i)
and, after suitable rescalings, parameterize A (z) as

A (z) = qσ−z−2 +q−1
( −p t

−q p

)
z−1 −σ+. (2.1b)

The system (2.1a) with A (z) given by (2.1b) is the linear problem associated to Painlevé III (D8) equation.
Among 3 parameters p, q and t , the latter plays the role of time in the associated isomonodromic problem,
and the former two are coordinates on the PIII (D8) phase space.

The system (2.1) can be put to a more convenient form using non-constant gauge transformation. Let us
define a new matrix Ỹ (ξ) by

Ỹ (ξ) =G (ξ)−1Y
(
ξ2) , G (ξ) = 1

i
p

2

(
ξ

1
2 ξ

1
2

ξ−
1
2 −ξ− 1

2

)
.

It solves the linear system

∂ξỸ = Ã (ξ) Ỹ , (2.2a)

with Ã (ξ) = 2ξG (ξ)−1 A
(
ξ2

)
G (ξ)−G (ξ)−1G ′ (ξ). Computing the latter matrix explicitly, one may see that the

system (2.2a) also has irregular singularities at 0 and ∞:

Ã (ξ) = Ã−2ξ
−2 + Ã−1ξ

−1 + Ã0,

Ã−2 =
(

q + t

q

)
σz +

(
q − t

q

)
iσy , Ã−1 =−

(
2p

q
+ 1

2

)
σx , Ã0 =−2σz ,

(2.2b)

whereσx,y,z denote the Pauli matrices. The above is by no means a generic form of 2×2 systems with 2 irregular
singular points of Poincaré rank 1; one of the properties that singles out the class described by (2.2b) is a discrete
Z2-symmetry Ã (−ξ) =−σx Ã (ξ)σx .

2.2 Monodromy

The fact that the transformed coefficients Ã−2 and Ã0 are diagonalisable, in contrast to their counterparts in
(2.1b), allows to write formal fundamental solutions of (2.2a) at 0 and ∞ in the standard form,

Ỹ (0)
form (ξ) =

(
− qp

t

)− σx
2

[
1+

∞∑
k=1

y (0)
k ξk

]
e2σz

p
t ξ−1

, ξ→ 0, (2.3a)

Ỹ (∞)
form (ξ) =

[
1+

∞∑
k=1

y (∞)
k ξ−k

]
e−2σzξ, ξ→∞. (2.3b)

The Z2-symmetry of Ã (ξ) implies that formal solutions satisfy Ỹ (ν)
form (−ξ) =σx Ỹ (ν)

form (ξ)σx . The expansion coef-

ficients y (ν)
k can be computed in a straightforwad way to any finite order using (2.2). In what follows, the only

explicit expression we need concerns the first such coefficient in (2.3a), namely,

y (0)
1 =− 1p

t

[(
p2

q2 + p

2q
−q − t

q
+ 1

16

)
σz +

(
p

2q
+ 1

8

)
iσy

]
. (2.4)
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The actual solutions of the unfolded system (2.2) can only be asymptotic to Ỹ (ν)
form (ξ) inside the Stokes sec-

tors S̃ (ν)
k (k = 1,2,3) defined by

S̃ (0)
k =

{
ξ ∈C ∣∣ arg t −3π

2
+kπ< argξ< arg t +π

2
+kπ, |ξ| < R

}
,

S̃ (∞)
k =

{
ξ ∈C ∣∣−3π

2
+kπ< argξ< π

2
+kπ, |ξ| > R

}
.

Furthermore, the requirement that Ỹ (ν)
k ' Ỹ (ν)

form inside S (ν)
k as ξ→ ν fixes the solutions Ỹ (ν)

k uniquely. As is
well-known, such canonical solutions associated to the same point are related by constant (i.e. independent
of ξ) Stokes matrices

S(ν)
k = Ỹ (ν)

k (ξ)
−1

Ỹ (ν)
k+1 (ξ) , ν= 0,∞, k = 1,2. (2.5)

Constant connection matrix E = Ỹ (0)
1 (ξ)

−1
Ỹ (∞)

1 (ξ) relates the canonical solutions at 0 and ∞. Stokes and con-
nection matrices describe global asymptotic behavior of solutions of (2.1), (2.2) and constitute the relevant set
of generalized monodromy data.

The discrete symmetry mentioned above and interlacing structure of dominant/recessive solutions imply
that Stokes matrices can be written as

S(0)
1 =σx S(0)

2 σx =
(

1 α

0 1

)
, S(∞)

1 =σx S(∞)
2 σx =

(
1 0
β 1

)
. (2.6a)

Similar constraints are also valid for the connection matrix,

σx Eσx = S(0)
1

−1
E S(∞)

1 = S(0)
2 E S(∞)

2
−1

. (2.6b)

The relations (2.6) imply that, in general, the monodromy data
{
S(ν)

k

}
, E can be parameterized by a pair of

complex parameters
(
σ,η

)
in the following way:

E = 1

sin2πσ

(
sin2πη −i sin2π

(
η+σ)

i sin2π
(
η−σ)

sin2πη

)
, σ ∉Z/2,

S(0)
1 = S(0)

2
T = S(∞)

1
T = S(∞)

2 ≡ S =
(

1 −2i cos2πσ
0 1

)
.

(2.7)

It can be furthermore assumed that σ and η belong to the strips − 1
2 ≤ℜσ ≤ 0 and − 1

2 <ℜη ≤ 1
2 . Note that the

counterclockwise monodromy matrix M̃0 of Ỹ (0)
1 (z) around 0 can be expressed as

M̃−1
0 = SST = EST SE−1. (2.8)

Let us finally comment on how to recover monodromy of the initial system (2.1) from the Stokes data of the
unfolded equation (2.2). Introduce the solutions Y (ν) (z) = G

(p
z
)

Ỹ (ν)
1

(p
z
)
, uniquely defined by their asymp-

totic behavior
Y (ν) (z) 'G

(p
z
)

Ỹ (ν)
form

(p
z
)

,

as z → ν inside the sectors arg t −π < arg z < arg t +3π (for ν = 0) and −π < arg z < 3π (for ν =∞). The mon-
odromy matrix in Y (0)

(
ze2πi

) = Y (0) (z) M0 can be computed using the Stokes matrix connecting unfolded so-

lutions Ỹ (0)
1,2 (ξ) together with the symmetry properties G

(
ξe iπ

) = iG (ξ)σx and σx Ỹ (0)
form (−ξ)σx = Ỹ (0)

form (ξ). The
result reads

M0 = iσx S−1 =
(

0 i
i −2cos2πσ

)
=U−1e2πiSU , (2.9a)

S=
(
σ+ 1

2

)
σz , U = 1p

2sin2πσ

(
e−iπ

(
σ+ 1

4

)
e iπ

(
σ+ 1

4

)
e iπ

(
σ+ 1

4

)
−e−iπ

(
σ+ 1

4

)
)

. (2.9b)

As expected, the monodromy matrices of Y (0) and Ỹ (0)
1 are related by M̃0 = −M 2

0 . In the same way, the mon-
odromy of Y (∞) (z) around 0 is given by E−1M0E =σx M0σx .
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2.3 Deformation equations and tau function

The usual construction of isomonodromic family of systems (2.2) involves varying the “time” parameter t ap-
pearing in the exponentials in (2.3), while keeping the data

{
S(ν)

k

}
, E fixed. The latter requirement implies that

the matrix ∂t Ỹ · Ỹ −1 is meromorphic on P1 with poles only possible at 0 and ∞. Analyzing the local behavior
of this quantity with the help of expansions of formal solutions and recasting the result in terms of Y (z), one
finds that

∂t Y = B (z)Y , B (z) =
(

0 −q−1

− q
t z 0

)
.

The compatibility of this isomonodromy constraint with the system (2.1) yields the zero-curvature condition
∂t A−∂z B + [A,B ] = 0, which is equivalent to a pair of scalar equations

t qt = 2p +q,

t pt = 2p2

q
+p +q2 − t ,

(2.10)

or, equivalently, to a single 2nd order ODE:

qt t =
q2

t

q
− qt

t
+ 2q2

t 2 − 2

t
. (2.11)

This is the most degenerate Painlevé III equation (of type D8). In applications, it usually appears in the form of
the radial sine-Gordon equation

ur r + ur

r
+ sinu = 0, (2.12)

which is obtained from (2.11) after the change of variables q
(
2−12r 4

) = −2−6r 2e i u(r ). The isomonodromic
provenance of these equations implies that the quantities

(
σ,η

)
introduced above to parameterize the Stokes

data provide a pair of conserved quantities for (2.11) and (2.12).
Let us define the tau function τIII (t ) of PIII (D8) by the logarithmic derivative

ζ (t ) = t∂t lnτIII =
(
t qt −q

)2

4q2 −q − t

q
. (2.13)

Conversely, one can express q =−tζ′. The function ζ (t ) essentially coincides with the time-dependent Hamil-
tonian of PIII (D8) and satisfies the equation(

tζ′′
)2 = 4

(
ζ′

)2 (
ζ− tζ′

)−4ζ′. (2.14)

The tau function plays a crucial role in the rest of this note. We are going to express it in terms of monodromy,
thereby providing explicit formulas for the general solution of Painlevé III (D8).

2.4 Riemann-Hilbert problem

It is convenient to replace the linear system (2.2) by an equivalent Riemann-Hilbert problem (RHP). It will be
defined by a pair (Γ, J ) where Γ is an oriented contour on P1 and J : Γ→ SL(2,C) is a jump matrix. The relevant
contour Γ= `[0]∪`[∞]∪CE is represented by solid lines in Fig. 2 where it is assumed for simplicity that arg t = 0.
The segments `[0] and `[∞] correspond to portions of anti-Stokes rays at 0 and ∞. They are close relatives of the
cusps of the Chekhov-Mazzocco-Rubtsov geometric confluence diagram [CM, CMR] in the Riemann-Hilbert
setting.

The Riemann sphere is decomposed by Γ into 2 connected open domains D [0] and D [∞]. The relevant RHP
is to find a 2×2 matrixΨ (z) holomorphic and invertible inside each of these domains such that

(i) its boundary values on the positive and negative side of Γ satisfyΨ+ =Ψ− J , where the piecewise constant
jump matrix is given by

J
∣∣
`[0]= M−1

0 , J
∣∣
`[∞]=σx M−1

0 σx , J
∣∣
CE

= E .

6



0

M

CE

E

l
[   ]

8

l
[  ]0

C 8

C0

D
[   ]

8

D
[0]

0

-1

s sx xM 0

-1

Figure 2: Contour Γ of the PIII (D8) Riemann-Hilbert problem.

(ii) at 0 and ∞, the functionΨ (z) behaves as

Ψ (z) 'G
(p

z
)Q

[
1+O

(p
z
)]

e2σz
p

t/z , z → 0,[
1+O

(
1p
z

)]
e−2σz

p
z , z →∞,

where arg z ∈]−π,π[ and Q is a constant invertible matrix such that [Q,σx ] = 0, cf (2.3).

The unique solution of this RHP is related to the fundamental solution of the irregular system (2.1) by

Y (0) (z) =
{
Ψ (z) , z ∈ D [0],

Ψ (z)E−1, z ∈ D [∞].

Let A be the open annulus bounded by two circles C0 and C∞ as shown in Fig. 2. Consider a piecewise
analytic function Ψ̂ (z) defined by

Ψ̂ (z) =
{
Ψ (z) , z ∉ Ā ,

Y (0) (z)U−1z−S, z ∈A ,
(2.15)

whereS= (
σ+ 1

2

)
σz and U are defined by (2.9b). This new function solves a Riemann-Hilbert problem defined

by the pair
(
Γ̂, Ĵ

)
, where the contour Γ̂ and the relevant jump matrices are represented in Fig. 3. The transformed

RHP is of course equivalent to the initial one. The function Ψ̂ (z) has been designed so that it has no jumps
inside A and coincides with Ψ (z) inside C0 and outside C∞. Cancellation of the jumps inside A can only be
done at the expense of introducing new jumps on the circles C0 and C∞; as we will see in a moment, their
choice above models regular singularities at ∞ and 0, respectively.

There is a natural decomposition Γ̂= Γ̂[0] ∪ Γ̂[∞], where Γ̂[0] (and Γ̂[∞]) consist of C0 (resp. C∞) and the part
of the positive real axis contained inside C0 (resp. outside C∞). Denoting

Ĵ [0] = Ĵ
∣∣∣
Γ̂[0]

, Ĵ [∞] = Ĵ
∣∣∣
Γ̂[∞]

,

we can assign to the original RHP two simpler RHPs for functions Ψ̂[0] (z) and Ψ̂[∞] (z) defined by the pairs(
Γ̂[0], Ĵ [0]

)
and

(
Γ̂[∞], Ĵ [∞]

)
. The latter correspond to two rank 2 Fuchsian systems having one regular singu-

lar point and one irregular singular point of Poincaré rank 1
2 which can be expicitly solved in terms of Bessel

functions.
Let us also remark that (i) only Ψ̂[0] (z) depends on PIII (D8) independent variable t (via the asymptotic

condition at z = 0); (ii) the initial RHP may also be rewritten as a RHP on a single circle inside A with the jump

Ψ̂[0] (z)Ψ̂[∞] (z)
−1

. The study of an equivalent RHP on a circle is the main tool used in [Nil] for the asymptotic
analysis of PIII (D8).
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Figure 3: Contour Γ̂ and associated jumps.

2.5 Building block solutions

Consider a model differential system

∂z Y [∞] = A[∞] (z)Y [∞], A[∞] (z) =−σ++
(
σ+ 1

2 0
−1 −σ− 1

2

)
z−1. (2.16)

Such an ansatz is inspired by the following: we would like to have an irregular singularity of Poincaré rank 1
2 at

z =∞ and a regular singularity at z = 0 with local monodromy exponents given by ±(
σ+ 1

2

)
, cf (2.9a).

Choose the fundamental matrix solution of (2.16) as

Y [∞]
∞ (z) = 1

i
p

2π

(
2
p

z K2σ
(
2
p

z
)

2π
p

z I2σ
(
2
p

z
)

2K2σ+1
(
2
p

z
) −2πI2σ+1

(
2
p

z
) )(

1 −i e2πiσ

0 1

)
, (2.17)

where Iν (x), Kν (x) denote the modified Bessel functions of the 1st and 2nd kind. This fundamental solution is
defined in the domain arg z ∈]0,2π[ where it has the asymptotics

Y [∞]
∞ (z) 'G

(p
z
)[
1+

∞∑
k=1

y [∞]
k z− k

2

]
e−2σz

p
z , z →∞.

In the vicinity of z = 0, it becomes convenient to rewrite it as

Y [∞]
∞ (z) =Y [∞]

0 (z) e2πiησz zSU E , (2.18a)

Y [∞]
0 (z) = i

√
π

sin2πσ

(
z−σI2σ

(
2
p

z
) −zσ+1I−2σ

(
2
p

z
)

−z−σ− 1
2 I2σ+1

(
2
p

z
)

zσ+
1
2 I−2σ−1

(
2
p

z
) )

e−iπ
(
σ− 1

4

)
σz . (2.18b)

In fact, we used in (2.17) the same σ as in the parameterization of Stokes data precisely to achieve (2.18a). The
matrix function Y [∞]

0 (z) is holomorphic and invertible in the entire complex plane, and normalized as to have
unit determinant. Therefore, the solution Ψ̂[∞] (z) of the exterior auxiliary RHP may be written as

Ψ̂[∞] (z) =
{

Y [∞]∞ (z) , z outside C∞,

Y [∞]
0 (z)e2πiησz , z inside C∞.

(2.19)

Similarly, the function

Y [0]
0 (z) = 1

i
p

2π

 2πI−2σ−1

(
2p
z

)
2K−2σ−1

(
2p
z

)
2πp

z
I−2σ

(
2p
z

)
− 2p

z
K−2σ

(
2p
z

)
(

1 0
−i e2πiσ 1

)
(2.20)
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defines a fundamental matrix solution of the linear system

∂z Y [0] = A[0] (z)Y [0], A[0] (z) =−σ−z−2 +
(
σ+ 1

2 −1
0 −σ− 1

2

)
z−1. (2.21)

It is characterized by the asymptotic behavior

Y [0]
0 (z) 'G

(p
z
)[
1+

∞∑
k=1

y [0]
k z

k
2

]
e2σz /

p
z , (2.22)

as z → 0 inside the sector arg z ∈]0,2π[. In the neighborhood of z = ∞, this model solution Y [0]
0 (z) can be

suitably rewritten as

Y [0]
0 (z) = Y [0]

∞ (z) zSU , (2.23a)

Y [0]
∞ (z) = i

√
π

sin2πσ

 z−σ− 1
2 I−2σ−1

(
2p
z

)
zσ+

1
2 I2σ+1

(
2p
z

)
z−σ−1I−2σ

(
2p
z

)
zσI2σ

(
2p
z

)
e−iπ

(
σ+ 1

4

)
σz , (2.23b)

Taking into account that the matrix ratio G
(p

z
)−1G

(√
z
t

)
= t−

σx
4 is independent of z, the solution Ψ̂[0] (z) of

the interior auxiliary RHP may now be expressed as

Ψ̂[0] (z) =
{

Y [0]
0

( z
t

)
, z inside C0,

Y [0]∞
( z

t

)
t−S, z outside C0.

(2.24)

The parameterization of Stokes data introduced in Subsection 2.2 now becomes more transparent. The
variable σ encodes the spectrum of the single nontrivial monodromy matrix M0 whose eigenvalues are given
by −e±2πiσ, cf (2.9a). The 2nd parameter η measures a relative twist of local parametrices Y [∞]

0 (z), Y [0]∞
( z

t

)
in

the full solution Ψ̂ (z).

3 Fredholm determinant representation

3.1 Boundary spaces

Let V (C ) be the space of smooth functions on a circle C which will be sometimes identified with the space of
holomorphic functions in an annulus containing C . Also, define the space H (C ) = C2 ⊗V (C ) whose elements
will be represented as 2-rows of elements of V (C ). The subspaces of V (C ) and H (C ) that consist of functions
with only positive or negative Fourier modes will be denoted by V± (C ) and H± (C ).

In relation with the previously discussed RHP for the function Ψ̂ (ξ), introduce the spaces

H =H+⊕H−, H± = H± (C0)⊕H∓ (C∞) . (3.1)

Observe that each of the subspaces H± can be identified in a natural way with the space of vector-valued
holomorphic functions on the annulus A . We are now going to consider two operators acting on H from the
right and generalizing the usual projections on positive and negative modes.

1. The first operator, to be denoted by PΣ, is defined by

(
f PΣ

)
(z) = 1

2πi

∫
C0∪C∞

f
(
z ′)Ψ̂+

(
z ′)−1

Ψ̂+ (z)d z ′

z − z ′ , z ∈C0 ∪C∞.

The convention used to interpret the singularity at z ′ = z is to slightly deform the integration contour so
that it goes clockwise around this point.
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2. The second operator, P⊕, is constructed in a similar way with the help of elementary building block
solutions Ψ̂[0] (z) and Ψ̂[∞] (z),

(
f P⊕

)
(z) = 1

2πi

∫
Ck

f
(
z ′)Ψ̂[k]

+
(
z ′)−1

Ψ̂[k]
+ (z)d z ′

z − z ′ , z ∈Ck , k = 0,∞.

The absence of jumps of Ψ̂ (z)Ψ̂[0]
+ (z)

−1
(and Ψ̂ (z)Ψ̂[∞]

+ (z)
−1

) inside C0 (resp. outside C∞), and systematic
application of residue theorem/collapsing the contours imply the following properties:

• P 2
Σ =PΣ and P 2⊕ =P⊕, i.e. the operators PΣ, P⊕ are projections.

• kerP⊕ =H−, kerPΣ ⊇HA , where HA is the space of boundary values of functions holomorphic on A .

• PΣP⊕ =PΣ, P⊕PΣ =P⊕; this means that PΣ and P⊕ have the same range, to be denoted by HT .

Loosely speaking, the space HT consists of functions on C0 ∪C∞ whose continuations outside A share the
global monodromy properties of the fundamental matrix solution of (2.2). The operators PΣ, P⊕ project on

HT along HA and H−, respectively, which may be denoted as PΣ =H
HA−−−→HT , P⊕ =H

H−−−→HT .
According to the decomposition (3.1), write f ∈H as

f = (
f [0]
+ f [∞]−

)⊕ (
f [0]− f [∞]

+
)

.

The action of P⊕ is then given by

f P⊕ = (
f [0]
+ f [∞]−

)⊕ (
f [0]
+ d f [∞]− a

)
, (3.2)

where the matrix integral operators a : H− (C∞) → H+ (C∞) and d : H+ (C0) → H− (C0) are expressed in terms of
elementary solutions Ψ̂[0] (z), Ψ̂[∞] (z) and have integrable form:(

f a
)

(z) = 1

2πi

∮
C∞

f
(
z ′)a(

z ′, z
)

d z ′,
(

f d
)

(z) =− 1

2πi

∮
C0

f
(
z ′)d(

z ′, z
)

d z ′,

a
(
z ′, z

)= Ψ̂[∞]
+

(
z ′)−1

Ψ̂[∞]
+ (z)− 1

z − z ′ , d
(
z ′, z

)= 1− Ψ̂[0]
+

(
z ′)−1

Ψ̂[0]
+ (z)

z − z ′ .

(3.3)

The minus sign is introduced into the definition of d
(
z ′, z

)
to absorb the opposite orientation of the circles

C0,∞ in some computations below. Let us note in passing that the action of a and d may be extended from the
boundary circles to vector-valued functions holomorphic on A .

The result (3.2) suggests that f [0]
+ , f [∞]− provide convenient coordinates on HT . We are going to use this

basis to describe the operator PΣ involving the solution Ψ̂ (ξ). Given f ∈H , write f = g +h with g ∈HT and
h ∈H A . These conditions translate into

g = (
g [0]
+ g [∞]−

)⊕ (
g [0]
+ d g [∞]− a

)
, h = (

h[0]
+ h[∞]−

)⊕ (
h[∞]− h[0]

+
)

Expressing h[0]
+ , h[∞]− in terms of g [0]

+ , g [∞]− , one obtains the equation(
g [0]
+ g [∞]−

)
(1−K ) = (

f [0]
+ − f [∞]

+ f [∞]− − f [0]−
)

, K =
(

0 a
d 0

)
.

Below we assume invertibility of 1− K , which ensures the existence of a unique splitting H = HT ⊕HA .
Computing the action of PΣ on H (essentially equivalent to solving the original RHP) thereby amounts to
finding the inverse (1−K )−1.

Consider the restrictions P⊕,+ =P⊕
∣∣
H+ , PΣ,+ =PΣ

∣∣
H+ . We have just seen that in the previously described

basis P⊕,+ is given by the identity matrix, whereas PΣ,+ coincides with (1−K )−1.

Definition 3.1. The tau function of the Riemann-Hilbert problem for Ψ̂ (ξ) is defined as

τ (t ) = det
(
H+

H−−−→HT
HA−−−→H+

)
= det

(
P⊕,+PΣ,+−1)= det(1−K ) . (3.4)

The first two expressions of τ (t ) are “coordinate-free” while the last Fredholm determinant corresponds to
the choice of a specific basis. Our next task is to understand the relation between the last definition and the tau
function of Painlevé III (D8) equation introduced in (2.13).
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3.2 Relation to τIII (t )

Let t0 be a constant parameter close to Painlevé III (D8) independent variable t and consider the ratio

τ (t )

τ (t0)
= det

(
H+

H−−−→HT (t )
HA−−−→H+

HA−−−→HT (t0)
H−−−→H+

)
=

= det
(
HT (t0)

H−−−→HT (t )
HA−−−→HT (t0)

)
=

= det
(
P⊕ (t )

∣∣
HT (t0)PΣ (t0)

∣∣
HT (t )

)
.

Since for ν=⊕,Σwe can express the inverses as
(
Pν (t )

∣∣
HT (t0)

)−1 =Pν (t0)
∣∣
HT (t ), the logarithmic derivative of

τ (t ) may be written as

∂t lnτ (t ) = −TrHT (t0)

{
P⊕ (t )

∣∣
HT (t0)PΣ (t0)

∣∣
HT (t )∂t

(
PΣ (t )

∣∣
HT (t0)P⊕ (t0)

∣∣
HT (t )

)}
=

= −TrH

{
P⊕ (t )PΣ (t0)∂t PΣ (t )P⊕ (t0)

}
=

= −TrH

{
P⊕ (t )∂t PΣ (t )

}
. (3.5)

Here the middle line is obtained by using that ran Pν (t ) =HT (t ). The last line follows from the transversality
of HT (t ) and HA (as well as HT (t ) and H−) in H , which implies that(

H
HT (t0)−−−−−→HA

HA−−−→HT (t )
)

=
(
H

HT (t0)−−−−−→H−
H−−−→ HT (t )

)
= 0,

i.e. the corresponding compositions of projections are equal to zero.
The next task is to compute the trace in the right side of (3.5). Collapsing the contours and computing

residues as in Step 2 of the proof of Theorem 2.9 in [GL16], we arrive at

TrH

{
P⊕ (t )∂t PΣ (t )

}
= ∑
ν=0,∞

1

2πi

∮
Cν

Tr
{
∂z

(
Ψ̂+ (z)Ψ̂[ν]

+ (z)
−1

)
Ψ̂[ν]

+ (z)∂t

(
Ψ̂+ (z)

−1
)}

d z.

Recall that Ψ̂ has the same jumps as Ψ̂[0] inside C0 and as Ψ̂[∞] outside C∞. Therefore the “+”-indices in the
above expression are redundant, the contours C0,∞ can be replaced by small circles around 0 and ∞, and the
resulting integrals may be computed by residues. On these circles, the integrand may be represented by series
involving only integer (but not half-integer) powers of z, which can be shown using once again the symmetry
properties such as G

(
ξe iπ

) = iG (ξ)σx and σx Ỹ (0)
form (−ξ)σx = Ỹ (0)

form (ξ). Furthermore, the series at ∞ has the

form
∑

k≥0 fk z−k−2, hence the corresponding residue vanishes.
On the other hand, the residue at 0 reads (note the negative orientation of C0)(

y (0)
1

)
11
−

(
y (0)

1

)
12p

t
−

(
y [0]

1

)
11
−

(
y [0]

1

)
12

t
,

where y (0)
1 is the first nontrivial coefficient of the formal solution (2.3a) and y [0]

1 is its counterpart in the ex-

pansion (2.22) of the model solution Y [0]
0 (z). The former quantity is explicitly given by (2.4), while the latter is

readily deduced from (2.20):

y [0]
1 =

(
σ+ 1

4

)
iσy

2
−

(
σ+ 1

4

)2

σz .

Combining the two results with (3.5) yields

∂t lnτ (t ) =−TrH

{
P⊕ (t )∂t PΣ (t )

}
= 1

t

[
p2

q2 −q − t

q
−

(
σ+ 1

2

)2]
.

The Fredholm determinant τ (t ) from the Definition 3.1 may therefore be identified with the usual Pain-
levé III (D8) tau function τIII (t ) defined by (2.13):

τIII (t ) = const · t
(
σ+ 1

2

)2

τ (t ) . (3.6)
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In combination with explicit solutions (2.19), (2.24) of auxiliary RHPs which appear in the definition (3.3) of
operators a and d, this yields the following result.

Theorem 3.2. Let
(
σ,η

) ∈ C2 with σ ∉ Z/2 be the coordinates on the generic stratum of the space of the Stokes
data of the linear system (2.1), introduced in Subsection 2.2. The corresponding Painlevé III (D8) tau function
τIII (t ) = τIII

(
t |σ,η

)
can be expressed as Fredholm determinant

τIII (t ) = const · t
(
σ+ 1

2

)2

det(1−K ) , K =
(

0 a
d 0

)
. (3.7)

Here the operators a, d act on vector-valued functions f ∈ H (C ) on a circle C centered at the origin and oriented
counterclockwise, (

f a
)

(z) = 1

2πi

∮
C

f
(
z ′)a(

z ′, z
)

d z ′,
(

f d
)

(z) = 1

2πi

∮
C

f
(
z ′)d(

z ′, z
)

d z ′, (3.8)

and the integral kernels a
(
z ′, z

)
, d

(
z ′, z

)
are explicitly given by

a
(
z ′, z

)= e iπ(σ−2η)σz
Jσ

(
z ′, z

)− 1
z − z ′ e iπ(2η−σ)σz , (3.9a)

d
(
z ′, z

)= tSe iπσσzσy
1−Jσ

( t
z ′ , t

z

)
z − z ′ σy e−iπσσz t−S, (3.9b)

Jσ
(
z ′, z

)= π

sin2πσ

(
z ′ jσ+ 1

2
(z) j−σ(z ′)− jσ(z) j−σ− 1

2
(z ′) i z ′ j−σ− 1

2
(z) j−σ(z ′)− i z j−σ(z) j−σ− 1

2
(z ′)

i jσ+ 1
2

(z) jσ(z ′)− i jσ(z) jσ+ 1
2

(z ′) z j−σ(z) jσ+ 1
2

(z ′)− j−σ− 1
2

(z) jσ(z ′)

)
, (3.9c)

with jσ(z) = z−σI2σ
(
2
p

z
)= 0F1 (2σ+1; z)

Γ (2σ+1)
and S= (

σ+ 1
2

)
σz .

Remark 3.3. The kernels a
(
z ′, z

)
, d

(
z ′, z

)
are not singular at z = z ′. That jσ(z) are holomorphic in the entire

complex plane is a signature of the fact that rana ⊆ H+ (C ) ⊆ kera and rand ⊆ H− (C ) ⊆ kerd. The Fredholm
determinant may therefore be rewritten as

det(1−K ) = det(1+a+d) .

The latter form may seem more compact while the integral kernel of a+d is still integrable. However it turns
out to be beneficial for our purposes to work with the block structure of K in (3.7).

Remark 3.4. Let us note that the tau function (2.13) differs from [GIL13, Eq. (2.14)] or [ILT14, Eq. (2.15)] by a
Z2-Bäcklund transformation. This discrete symmetry becomes most explicit at the level of the sine-Gordon
equation (2.12) where it corresponds to the mapping u 7→ −u. The relevant monodromy parameters transform
asσ 7→ 1

2 −σ, η 7→ −ηwhich should be taken into account before comparing (3.7)–(3.9) with (1.2). An interesting
representation-theoretic interpretation of this symmetry has been recently suggested in [BSh2].

Remark 3.5. The monodromy data
{
S(ν)

k

}
, E in (2.7) are invariant with respect to integer shifts σ 7→ σ+1. The

Painlevé III (D8) tau function should thus be quasi-periodic in σ, namely,

τIII
(
t |σ+1,η

)= const ·τIII
(
t |σ,η

)
,

where the constant expression depends on the choice of normalization of τIII
(
t |σ,η

)
. This quasi-periodicity is

not obvious at all at the level of Fredholm determinant representation (3.7)–(3.9) but will be made manifest in
the next section.

Upon truncation of the Taylor expansion of the right side of (3.9b) in t , the operator d becomes finite rank
so that the corresponding t → 0 asymptotics of τIII (t ) is given by a finite determinant, cf [GL16, Theorem 2.11].
From the point of view of this asymptotic analysis, the most efficient choice of σ is to set −1 < ℜσ ≤ 0. The
leading asymptotic terms obtained by such procedure coincide with the known results [Jim, IN, Nov, FIKN,
Nil]. It is an instructive exercise to check that the subleading asymptotic terms derived from the Fredholm
determinant reproduce [ILT14, Eqs. (3.3)–(3.5)].
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Remark 3.6. The Painlevé III (D8) isomonodromic RHP is usually formulated in the literature for the unfolded
system (2.2), see e.g. [FIKN, IP, Nil]. While such formulation has a number of technical advantages, the cor-
respondence with CMR confluence diagram is not manifest therein. Furthermore, the analog of the Fredholm
determinant (3.4) does not coincide with the tau function (2.13). Instead, it gives the tau function of a special
case of PIII (D6) equation (N f = 2 in the gauge theory language), related to PIII (D8) by a quadratic transforma-
tion.

4 Series over Young diagrams

4.1 Cauchy matrix representations

Let us now express the operators a and d from (3.8) in the basis of Fourier modes, where they are given by
semi-infinite matrices. Denoting Z′ =Z− 1

2 , Z′+ =N− 1
2 , write

a
(
z ′, z

)= ∑
p,q∈Z′+

a
p

−q z ′− 1
2 +p z− 1

2 +q , (4.1a)

d
(
z ′, z

)= ∑
p,q∈Z′+

d
−p

q z ′− 1
2 −p z− 1

2 −q , (4.1b)

where z ′, z ∈ C∗. The mode operators a p
−q ,d−p

q are 2×2 matrices whose elements will be represented as a p;s′
−q ;s ,

d
−p;s′

q ;s , with “color” indices s′, s ∈ {+,−}. Our convention is that “+” and “−” correspond to the first and second
row/column.

In order to compute these matrix elements explicitly, let us return to the original definition (3.3) of a and d.
Recall that inside the annulus A we have Ψ̂[∞] (z) = Y [∞]∞ (z)E−1U−1z−S and Ψ̂[0] (z) = Y [0]

0

( z
t

)
U−1z−S, where

Y [∞]∞ (z), Y [0]
0 (z) solve the linear systems (2.16), (2.21). These relations may be used to differentiate the kernels

a
(
z ′, z

)
, d

(
z ′, z

)
with respect to their arguments. In particular, for z ′, z ∈A one has(

z∂z + z ′∂z ′ +1
)
a
(
z ′, z

)− [
S,a

(
z ′, z

)]=
= Ψ̂[∞] (z ′)−1 z A[∞] (z)− z ′A[∞]

(
z ′)

z − z ′ Ψ̂[∞] (z) =−Ψ̂[∞] (z ′)−1
σ+Ψ̂[∞] (z) =

=−e−2πiησz Y [∞]
0

(
z ′)−1

(
1
0

)
⊗ (

0 1
)

Y [∞]
0 (z)e2πiησz =

=− π

sin2πσ

(
f−σ− 1

2

(
z ′)

i e2πi(2η−σ) fσ+ 1
2

(
z ′)

)
⊗

(
fσ+ 1

2
(z) i e2πi(σ−2η) f−σ− 1

2
(z)

)
.

Substituting into the last equation the Fourier representation (4.1a) and using the factorization of the right
hand side, we obtain (

p +q
)
a

p
−q −

[
S,a p

−q

]
= e iπ(σ−2η)σzψp (ν)⊗ ψ̄q (ν)e iπ(2η−σ)σz , (4.2)

with

ψp;s (ν) =
√
Γ (1+2sν)

Γ (1−2sν)

e−iπs/4(
p − 1

2

)
! (1−2sν)p− 1

2

, (4.3a)

ψ̄p;s (ν) =
√
Γ (1−2sν)

Γ (1+2sν)

e iπs/4(
p − 1

2

)
! (2sν)p+ 1

2

, (4.3b)

where s = ±, (α)k = α (α+1) . . . (α+k −1) denotes the Pochhammer symbol, and we have introduced instead
of σ a shifted monodromy parameter ν = σ+ 1

2 to make the resulting expressions more symmetric. Further
introducing shifted momenta

xp;s = p − sν, p ∈Z′, s =±,
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the solution of (4.2) can be written as

a
p;s′

−q ;s = ψp;s′ (ν)ψ̄q,s (ν)

xp;s′ −x−q ;s
e iπ(2η−σ)(s−s′), (4.4a)

where p, q ∈ Z′+, s′, s = ±1. We thus conclude that in the Fourier basis the operator a is given, up to left and
right diagonal factors, by a Cauchy matrix M j k = 1

x j −yk
. This allows, inter alia, to compute any minor of a in a

factorized form.
The matrix elements of d may be computed in a similar fashion, or alternatively deduced by comparison of

(3.9a) and (3.9b). The result is again a Cauchy matrix,

d
−q ;s

p;s′ =
ψq ;s (−ν)ψ̄p,s′ (−ν)

xp;s′ −x−q ;s
e iπσ(s−s′)t (s−s′)ν+p+q , (4.4b)

and its nontrivial part coincides with that of (4.4b) after replacement ν→−ν. The dependence on PIII variable
t is isolated in the diagonal factors; cf Remark 3.5.

4.2 Maya and Young diagrams

Given a matrix A ∈ Matm×m (C), the von Koch’s formula

det(1+ A) =
∞∑

n=0

∑
i1<...<in

det
(

Ai j ik

) n

j ,k=1

expresses the determinant det(1+ A) as the sum of principal minors of A. While this series of course terminates
at n = m, the formula has a straightforward generalization to infinite matrices. If A is indexed by elements of a
discrete set X instead of {1, . . . ,m}, then

det(1+ A) =
∑

Y∈2X
det AY, (4.5)

where the sum is taken over all subsets Y of X and AY is the principal minor of A obtained by choosing the
rows and columns labeled by Y.

0 a

d 0
2

5

2

5

2

9

2

3

2

7

2

11

2

11

2

7

2

3

2

52

5
p

h

2

9

{

{

{{

p h

Figure 4: Labeling of principal minors of K by positions
(
p,h

)
of particles and holes

of color + (red) and − (blue). Here p+ = { 5
2

}
, h+ = {− 3

2 ,− 11
2

}
, p− = { 9

2 , 5
2

}
, h− = {− 7

2

}
,

so that m+ = { 5
2 ,− 3

2 ,− 11
2

}
, m− = { 9

2 , 5
2 ,− 7

2

}
and Q

(
m+)=−Q (m−) =−1.

We are going apply the last formula to the Fredholm determinant (3.7) with K written in the Fourier basis.
Represent appropriate subsets as Y = (

p,h
)
, where p and h correspond, respectively, to the first and second

block of K , see Fig. 4. The sum in (4.5) may be restricted to (p,h) with ]
(
p
)= ] (h), as otherwise the corresponding

minors obviously vanish. It follows that

det(1−K ) =
∑

(p,h) :](p)=](h)
(−1)](p) detap

h
detdh

p, (4.6)
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where e.g. ap
h

is a square ]
(
p
)× ](p)

matrix obtained by restricting a to rows p and columns h. Let us now take a
closer look at the structure of subsets (p,h) labeling different contributions to (4.6):

• The set phas the form p+tp−, where p+ = {
p+

1 , . . . , p+
L

}
, p− = {

p−
1 , . . . , p−

M

}
, and p±

j ∈Z′+ are Fourier indices

of elements of p of color ±. Similarly, h= h+t h−, where h+ = {−q+
1 , . . . ,−q+

L′
}
, h− = {−q−

1 , . . . ,−q−
M ′

}
with

q±
j ∈Z′+ consist of Fourier indices of elements of h of colors + and −. The elements of p± and h± are thus

distinct positive (resp. negative) half-integers.

• Let us consider the combinations m± = p±∪h±. Both m± are finite subsets of Z′ and can be represented
in the usual way by Maya diagrams; p± and h± are positions of particles and holes of color ± in the Dirac
sea, see Fig. 4 and bottom part of Fig. 5. Given a Maya diagram m, the difference Q (m) = ](particles

)−
] (holes) is called the charge of m. The constraint ]

(
p
)= ] (h) is then nothing but the neutrality condition

Q
(
m+)+Q (m−) = 0.

• On the other hand, the set M of Maya diagrams can be bijectively mapped to the set Y×Z of charged
Young diagrams/partitions. This correspondence is represented graphically in Fig. 5. The profile of the
Young diagramY ∈Y associated to a Maya diagramm ∈M is obtained by starting far away on the NW-axis
and going south-east above each filled circle and north-east above each empty circle of m. The charge
corresponds to relative position of the bottom boundary of Y and the NE-axis, and coincides with Q (m).

Different contributions to (4.6) may therefore be labeled (i) by positions of particles p± ∈ 2Z
′+ and holes h± ∈

2−Z
′+ of two colors ± satisfying the balance condition ]

(
p+

)+ ](p−) = ](h+)+ ] (h−); (ii) by pairs
(
m+,m−) ∈M2

of Maya diagrams of zero total charge; and also (iii) by pairs
(
Y+,Y−) ∈Y2 of Young diagrams corresponding to

m+ and m−, and an integer Q ≡Q
(
m+)

.
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Figure 5: Young diagrams Y+ and Y− (shaded regions) associated to
m+ = { 5

2 ,− 3
2 ,− 11

2

}
and m− = { 9

2 , 5
2 ,− 7

2

}
.

The individual contributions can be readily computed using the Cauchy matrix representations (4.4).

Theorem 4.1. The Painlevé III (D8) tau function τIII (t ) = τIII
(
t |σ,η

)
from Theorem 3.2 admits the following

series representation:

τIII (t ) =
∑

(p,h) :](p)=](h)
e−4πiηQ Ξp,h (ν)∆2

p,h (ν) t (ν−Q)2+|Y+|+|Y−|, (4.7)

where |Y| denotes the total number of boxes in Y ∈Y and

Ξp,h (ν) = (−1)Q Γ
2Q (1+2ν)

Γ2Q (1−2ν)

[ ∏
(p,s′)∈p

(
p − 1

2

)
!
(
1−2s′ν

)
p− 1

2

∏
(−q,s)∈h

(
q − 1

2

)
! (2sν)q+ 1

2

]−2

, (4.8a)

∆p,h (ν) =

∏
(p,s′)<(p̄,s̄′)∈p

(
xp;s′ −xp̄;s̄′

) ∏
(−q,s)<(−q̄ ,s̄)∈h

(
x−q̄ ;s̄ −x−q ;s

)
∏

(p;s′)∈p
∏

(−q ;s)∈h

(
xp;s′ −x−q ;s

) . (4.8b)
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Proof. From (4.4) it follows that

(−1)](p) detap
h

detdh
p = (−1)](p) ∏

(p,s′)∈p
ψp;s′ (ν)ψ̄p;s′ (−ν)

∏
(−q,s)∈h

ψq ;s (−ν)ψ̄q ;s (ν)×

×
(
tνe2πiη

)∑
(−q,s)∈h s−∑

(p,s′)∈p s′
t
∑

(−q,s)∈h q+∑
(p,s′)∈p p

∆2
p,h (ν) .

(4.9)

The power of tνe2πiη can be further transformed as∑
(−q,s)∈h

s − ∑
(p,s′)∈p

s′ = ](h+)− ] (h−)− ](p+)+ ](p−)=Q (m−)−Q
(
m+)=−2Q.

It may be also easily shown (see Fig. 13 in [GL16]) that∑
(−q,s)∈h±

q + ∑
(p,s′)∈p±

p = Q2

2
+ ∣∣Y±∣∣ ,

so that the power of t in the second line of (4.9) becomes Q2 + ∣∣Y+∣∣+ |Y−|. The prefactor Ξp,h (ν) is obtained
from the diagonal products in the first line by simple algebra. �

4.3 Nekrasov functions

In this subsection we rewrite the factorized expressions Ξp,h (ν)∆2
p,h (ν) for the coefficients of the tau function

expansion in a notation close to gauge theory. The main tool we need is a technical statement that can be
found, for example, in [GL16, GM]. In order to formulate it, let (Ys ,Q s ) ∈ Y×Z (with s = ±) be two charged
Young diagrams, not necessarily the same as above. Denote by ms ∈M the associated Maya diagrams. At this
point we do not need to assume that Q++Q− = 0.

Introduce the following three quantities:

1. An explicit factorized function

Z̃bif
(
ν

∣∣Y+,Q+;Y−,Q−)= ∏
−q∈h+

(−ν)q+ 1
2

∏
−q∈h−

(ν+1)q− 1
2

∏
p∈p−

(−ν)p+ 1
2

∏
p∈p+

(ν+1)p− 1
2
×

×

∏
−q∈h+

∏
p∈p−

(
ν−q −p

) ∏
−q∈h−

∏
p∈p+

(
ν+p +q

)
∏

−q ′∈h−
∏

−q∈h+
(
ν−q +q ′) ∏

p ′∈p−
∏

p∈p+
(
ν+p −p ′) .

(4.10)

which, as we will see in a moment, constitutes the main building block of Ξp,h (ν)∆2
p,h (ν).

2. Another factorized expression, representing the Nekrasov bifundamental contribution:

Zbif
(
ν |Y+,Y−)

:= ∏
�∈Y+

(
ν+1+aY+ (�)+ lY− (�)

) ∏
�∈Y−

(
ν−1−aY− (�)− lY+ (�)

)
, (4.11)

where Y± ∈ Y and the notation for Young diagrams follows Fig. 6. The expressions aY (�), lY (�) and
hY (�) represent the arm-, leg-, and hook length of the box � in Y ∈ Y. In the case where � = (

i , j
)

does not belong to Y, the definition of the former two quantities is extended by aY (�) = Yi − j and
lY (�) =Y′

j − i . In particular, we have

Zbif
(−ν |Y−,Y+)= (−1)|Y

+|+|Y−|Zbif
(
ν |Y+,Y−)

,

Zbif (0 |Y,Y) = (−1)|Y| ∏
�∈Y

h2
Y (�) .

(4.12)

3. For Q ∈Z, define the “structure constant”Υ (ν |Q) by

Υ (ν |Q) = ΓQ (1+ν)G (1+ν)

G (1+ν+Q)
. (4.13)

Here G (z) denotes the Barnes G-function satisfying the relation G (z +1) = Γ (z)G (z). Note that Υ (ν |Q)
is actually a rational function of ν.
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Figure 6: Characteristics of Young diagrams.

Lemma 4.2. We have

Z̃bif
(
ν
∣∣Y+,Q+;Y−,Q−)=±Υ−1 (

ν
∣∣Q+−Q−)

Zbif
(
ν+Q+−Q− ∣∣Y+,Y−)

, (4.14)

where ± means that the equality holds up to an overall sign.

Proof. See [GL16, Appendix A]. �

Lemma 4.2 thus relates certain products over boxes of Young diagrams to some explicit functions of particle
and hole coordinates in the relevant Maya diagrams. Let us now use it to identify the corresponding Nekrasov
functions in (4.1). We first prove

Lemma 4.3. We have

Ξp,h (ν)∆2
p,h (ν) = Γ2Q (1+2ν)

Γ2Q (1−2ν)

Υ (2ν | −2Q)Υ (−2ν |2Q)∏
s,s′=±1

Zbif
(
(Q −ν)(s′− s) |Ys′ ,Ys

) . (4.15)

Proof. First of all, one may further decompose ∆p,h:

∆p,h(ν) =∆++
p,h∆

+−
p,h(ν)∆−−

p,h,

where

∆±±
p,h =

∏
p,p̄∈p±:p<p̄

(
p − p̄

) ∏
−q,−q̄∈h±:q>q̄

(
q − q̄

)
∏

p∈p±
∏

−q∈h±
(
p +q

) ,

∆+−
p,h (ν) =

∏
p+∈p+

∏
p−∈p−

(−2ν+p+−p−
) ∏
−q+∈h+

∏
−q−∈h−

(−2ν−q++q−
)

∏
p+∈p+

∏
−q−∈h−

(−2ν+p++q−
) ∏

p−∈p−
∏

−q+∈h+
(
2ν+p−+q+

) .

Comparing (4.10) with (4.8b), we can write∏
s,s′=±1

Z̃bif

(
ν

(
s − s′

) |Ys′ ,Qs′;Ys ,Qs
)
=±

[
∆++
p,h∆

+−
p,h(ν)∆−−

p,h

]−2×

× ∏
−q∈h−

(−2ν)q+ 1
2

∏
−q∈h+

(2ν+1)q− 1
2

∏
p∈p+

(−2ν)p+ 1
2

∏
p∈p−

(2ν+1)p− 1
2
×

× ∏
−q∈h+

(2ν)q+ 1
2

∏
−q∈h−

(−2ν+1)q− 1
2

∏
p∈p+

(2ν)p+ 1
2

∏
p∈p+

(−2ν+1)p− 1
2
×

×
[ ∏
−q∈h−

(
q − 1

2

)
!

∏
−q∈h+

(
q − 1

2

)
!

∏
p∈p−

(
p − 1

2

)
!

∏
p∈p+

(
p − 1

2

)
!

]2

.

(4.16)

Using the identity (z)q+ 1
2
= z · (z +1)q− 1

2
for the Pochhammer’s symbol, the balance condition ]

(
h+

)+ ] (h−) =
]
(
p+

)+ ](p−)
, and comparing the last three lines with (4.8a), we can rewrite (4.16) as

∏
s,s′=±1

Z̃bif

(
ν

(
s − s′

) |Ys′ ,Qs′;Ys ,Qs
)
=±Γ

2Q (1+2ν)

Γ2Q (1−2ν)
Ξ−1
p,h (ν)∆−2

p,h (ν) . (4.17)
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Combining this result with (4.14), we immediately obtain (4.15) up to an overall sign. It suffices to check it for
real ν ∉ Z. For the left side this sign is obviously equal to (−1)Q . From the identities (4.12) it follows that the
right side of (4.15) may be rewritten as

G (1+2ν)G (1−2ν)

G (1+2ν−2Q)G (1−2ν+2Q)

[
Zbif

(
2ν−2Q |Y−,Y+) ∏

�∈Y+
hY+ (�)

∏
�∈Y−

hY− (�)

]−2

.

Its sign is therefore determined by the Barnes function prefactor in the last expression, and can be easily shown
to be (−1)Q . �

We can now formulate our final result.

Theorem 4.4. Let ZSU(2) (t |ν) be the Nekrasov instanton partition function of the pure gauge theory, defined as
a double sum over partitions:

ZSU(2) (t |ν) =C (ν)
∑

Y+,Y−∈Y

tν
2+|Y+|+|Y−|∏

s,s′=±1 Zbif
(
ν(s − s′) |Ys′ ,Ys

) , (4.18)

with C (ν) = [∏
s=±1 G (1+2sν)

]−1 and Zbif
(
ν |Y′,Y

)
defined by (4.11). The dual partition function

Z dual
SU(2)

(
t |ν,η

)= ∑
n∈Z

e4πi nηZSU(2) (t |ν+n) (4.19)

admits Fredholm determinant representation

Z dual
SU(2)

(
t |ν,η

)=C (ν) tν
2

det(1−K ) , (4.20)

where K is the generalized Bessel kernel from Theorem 3.2 (withσ= ν− 1
2 ), and thereby coincides with the general

tau function of the Painlevé III (D8) equation.

References

[AGT] L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theo-
ries, Lett. Math. Phys. 91, (2010), 167–197; arXiv:0906.3219 [hep-th].

[AZ] S. Apikyan, Al. Zamolodchikov, Conformal blocks related to conformally invariant Ramond states of a
free scalar field, JETP 92, (1987), 34–45.

[BSh1] M. Bershtein, A. Shchechkin, Bilinear equations on Painlevé tau functions from CFT, Comm. Math.
Phys. 339, (2015), 1021–1061; arXiv:1406.3008v5 [math-ph].

[BSh2] M. Bershtein, A. Shchechkin, Bäcklund transformation of Painlevé III(D8) tau function, J. Phys. A50,
(2017), 115205; arXiv:1608.02568 [math-ph].

[BGT1] G. Bonelli, A. Grassi, A. Tanzini, Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys. 107, (2017),
1–30; arXiv:1603.01174 [hep-th].

[BGT2] G. Bonelli, A. Grassi, A. Tanzini, New results in N = 2 theories from non-perturbative string,
arXiv:1704.01517 [hep-th].

[BLMST] G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa, A. Tanzini, On Painlevé/gauge theory correspon-
dence, arXiv:1612.06235 [hep-th].

[BMT] G. Bonelli, K. Maruyoshi, A. Tanzini, Wild quiver gauge theories, J. High Energ. Phys. 2012:31, (2012);
arXiv:1112.1691 [hep-th].

[CM] L. Chekhov, M. Mazzocco, Colliding holes in Riemann surfaces and quantum cluster algebras,
arXiv:1509.07044 [math-ph].

18

http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/1406.3008
http://arxiv.org/abs/1608.02568
http://arxiv.org/abs/1603.01174
http://arxiv.org/abs/1704.01517
http://arxiv.org/abs/1612.06235
http://arxiv.org/abs/1112.1691
http://arxiv.org/abs/1509.07044


[CMR] L. Chekhov, M. Mazzocco, V. Rubtsov, Painlevé monodromy manifolds, decorated character varieties and
cluster algebras, Int. Math. Res. Not., (2016), rnw219; arXiv:1511.03851 [math-ph].

[FIKN] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents: the Riemann-Hilbert
approach, Mathematical Surveys and Monographs 128, AMS, Providence, RI, (2006).

[G09] D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [hep-th].

[GT] D. Gaiotto, J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theo-
ries, I, arXiv:1203.1052 [hep-th].

[GIL12] O. Gamayun, N. Iorgov, O. Lisovyy, Conformal field theory of Painlevé VI, J. High Energ. Phys. (2012)
2012: 38; arXiv:1207.0787 [hep-th].

[GIL13] O. Gamayun, N. Iorgov, O. Lisovyy, How instanton combinatorics solves Painlevé VI, V and III’s,
J. Phys. A46, (2013), 335203; arXiv:1302.1832 [hep-th].

[GL16] P. Gavrylenko, O. Lisovyy, Fredholm determinant and Nekrasov sum representations of isomonodromic
tau functions, (2016); arXiv:1608.00958 [math-ph].

[GM] P. Gavrylenko, A. Marshakov, Free fermions, W-algebras and isomonodromic deformations, Theor. Math.
Phys. 187, (2016), 649; arXiv:1605.04554 [hep-th].

[GHM] A. Grassi, Y. Hatsuda, M. Marino, Topological strings from quantum mechanics, Ann. Henri Poincaré,
(2016); arXiv:1410.3382 [hep-th].

[ILTe] N. Iorgov, O. Lisovyy, J. Teschner, Isomonodromic tau-functions from Liouville conformal blocks, Comm.
Math. Phys. 336, (2015), 671–694; arXiv:1401.6104 [hep-th].

[ILT14] A. R. Its, O. Lisovyy, Yu. Tykhyy, Connection problem for the sine-Gordon/Painlevé III tau function and
irregular conformal blocks, Int. Math. Res. Not. 2015, (2015), 8903–8924; arXiv:1403.1235 [math-ph].

[IN] A.R. Its, V.Yu. Novokshenov, The Isomonodromy Deformation Method in the Theory of Painlevé Equa-
tions, Lect. Notes in Math. 1191, Springer-Verlag, (1986).

[IP] A. Its, A. Prokhorov, Connection problem for the tau-function of the sine-Gordon reduction of
Painlevé-III equation via the Riemann-Hilbert approach, Int. Math. Res. Not. 2016, (2016), 6856–6883;
arXiv:1506.07485v2 [math-ph].

[Jim] M. Jimbo, Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst.
Math. Sci. 18 (1982), no. 3, 1137–1161.

[JMU] M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformation of linear ordinary differential equations
with rational coefficients. I, Physica D2, (1981), 306–352.

[K89] V. Knizhnik, Multiloop amplitudes in the theory of quantum strings and complex geometry, Sov. Phys.
Usp. 32, (1989), 945–971.

[M90] G. Moore, Geometry of the string equations, Comm. Math. Phys. 133, (1990), 261–304.

[Nag1] H. Nagoya, Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations,
J. Math. Phys. 56, (2015), 123505; arXiv:1505.02398v3 [math-ph].

[Nag2] H. Nagoya, Conformal blocks and Painlevé functions, arXiv:1611.08971 [math-ph].

[Nek] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7, (2003),
831–864; arXiv:hep-th/0206161.

[NO] N. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions, in “The unity of mathematics”,
pp. 525–596, Progr. Math. 244, Birkhäuser Boston, Boston, MA, (2006); arXiv:hep-th/0306238.

19

http://arxiv.org/abs/1511.03851
http://arxiv.org/abs/0908.0307
http://arxiv.org/abs/1203.1052
http://arxiv.org/abs/1207.0787
http://arxiv.org/abs/1608.00958
http://arxiv.org/abs/1605.04554
http://arxiv.org/abs/1410.3382
http://arxiv.org/abs/1401.6104
http://arxiv.org/abs/1403.1235
http://arxiv.org/abs/1506.07485
http://arxiv.org/abs/1505.02398
http://arxiv.org/abs/1611.08971
http://arxiv.org/abs/hep-th/0206161
http://arxiv.org/abs/hep-th/0306238


[Nil] D. G. Niles, The Riemann-Hilbert-Birkhoff inverse monodromy problem and connection formulae for the
third Painlevé transcendents, PhD thesis, Purdue Univ., (2009).

[Nov] V. Yu. Novokshenov, On the asymptotics of the general real solution of the Painlevé equation of the third
kind, Sov. Phys. Dokl. 30, (1985), 666–668.

[SMJ] M. Sato, T. Miwa, M. Jimbo,Holonomic quantum fields I–II, Publ. RIMS Kyoto Univ. 14, (1978), 223–267;
15, (1979), 201–278.

[SW] N. Seiberg, E. Witten, Electric-magnetic Duality, monopole condensation, and onfinement in N = 2 su-
persymmetric Yang-Mills theory, Nucl. Phys. B426, (1994), 19–52; arXiv:hep-th/9407087.

[T11] J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands
correspondence I, Adv. Theor. Math. Phys. 15, (2011), 471–564.

[Zam] Al. Zamolodchikov, Conformal scalar field on the hyperelliptic curve and critical Ashkin–Teller multi-
point correlation functions, Nucl. Phys. B285, [FS19], (1987), 481–503; JETP 90, (1986), 1808–1818.

20

http://arxiv.org/abs/hep-th/9407087

	1 Introduction
	2 Isomonodromy and Riemann-Hilbert setup
	2.1 Associated irregular system
	2.2 Monodromy
	2.3 Deformation equations and tau function
	2.4 Riemann-Hilbert problem
	2.5 Building block solutions

	3 Fredholm determinant representation
	3.1 Boundary spaces
	3.2 Relation to III(t)

	4 Series over Young diagrams
	4.1 Cauchy matrix representations
	4.2 Maya and Young diagrams
	4.3 Nekrasov functions


