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Abstract
In this manuscript a POD-Galerkin based Reduced OrderModel for unsteady Fluid-Structure
Interaction problems is presented. The model is based on a partitioned algorithm, with semi-
implicit treatment of the coupling conditions. A Chorin–Temam projection scheme is applied
to the incompressible Navier–Stokes problem, and a Robin coupling condition is used for
the coupling between the fluid and the solid. The coupled problem is based on an Arbitrary
Lagrangian Eulerian formulation, and the Proper Orthogonal Decomposition procedure is
used for the generation of the reduced basis. We extend existing works on a segregated
Reduced Order Model for Fluid-Structure Interaction to unsteady problems that couple an
incompressible, Newtonian fluid with a linear elastic solid, in two spatial dimensions. We
consider three test cases to assess the overall capabilities of the method: an unsteady, non-
parametrized problem, a problem that presents a geometrical parametrization of the solid
domain, and finally, a problem where a parametrization of the solid’s shear modulus is taken
into account.
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1 Introduction

Fluid-Structure Interaction (FSI) problems are awide spread topic in the appliedmathematics
community, and despite their instrinsic complicated nature (see for example [1, 2]), they are
frequently used for simulation purposes, for example, in naval engineering [3], as well as in
biomedical applications (as an example of the implementation of FSI in the medical field see
[4–10]) and in aeronautical engineering (see for example [11–16]).

The complex nature of these problems is reflected not only by their theoretical treatment,
but also by theway they are treated numerically. There are two approaches that can be adopted
in order to address a FSI problem: the first approach consists of a monolithic procedure [17–
19], whereas the second approach consist of a partitioned (segregated), procedure [20–22].

In a monolithic algorithm the fluid and the solid problem are solved simultaneously: this
results in algorithms that show good stability properties, with respect to time, independently
of the density of the fluid and the solid, and independently of the geometrical properties
of the physical domain; indeed the monolithic algorithm does not suffer from the so called
added mass effect (see [23] for an analytical study of this phenomenon), which is very
well known in the FSI community, and is responsible for the numerical instabilities in the
design of partitioned algorithms. Stability in time is highly desirable in the framework of
unsteady problems, especially if we wish to use large time-steps in the simulations; the main
drawback of these monolithic algorithms is given by the fact that they deeply rely on the
availability of legacy softwares that can be used to solve both the fluid problem and the
solid problem: in this sense, monolithic algorithms are less flexible and more tailored to the
particular problem at hand. In the literature there are many examples of works that are based
on a monolithic approach: in [24] the author focuses on a monolithic algorithm to address a
coupled problem, written within the Arbitrary Lagrangian Eulerian (ALE) formalism, which
models the interaction between the blood flow and the arterial walls; another example of
FSI problems related to the blood flow-arterial interaction can be found in [25]. In [26] the
authors propose different preconditioners, to be used in a Newton–Krylov method for the
nonlinear problem arising from solving in a monolithic fashion a coupled problem. For the
reader interested in a general introduction to monolithic approaches to FSI problems, we
refer to [27].

As an alternative to monolithic approaches, one can think of adopting a partitioned pro-
cedure; indeed, existing simulation tools for fluid dynamics and for structural dynamics are
well developed and are used on a daily basis in industrial applications. It is therefore natural
to try to combine these computational tools, to address coupled problems: this is exactly the
rationale behind a partitioned algorithm. In a partitioned procedure, we solve separately the
fluid and the solid problem, and then we couple the two physics with some iterative proce-
dure, see for example [28]. Partitioned approaches are very flexible, as they allow to design
the procedure in different ways, according to the problem under consideration. In [29], the
authors propose a segregated algorithm to solve a FSI problem, where the coupling of the
two physics at the fluid-structure interface is taken care of through a constrained optimization
problem. In [30, 31] the authors consider the problem of coupling an incompressible fluid
with a thin structure; in [30] the authors propose a Robin–Neumann type of coupling at the
fluid-structure interface, whereas in [31] the authors propose and explain different couplings
techniques at the fluid-structure interface, within an explicit coupling setting. On the con-
trary, in [32] the authors deal with a problem that has a strong added mass effect, which is
typically the case for the blood in the vessels: here, an implicit coupling is the way to control
the stability issues due to the added mass effect. Nevertheless, it is clear that a fully implicit
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treatment of the coupling conditions leads to prohibitive computational costs; for this reason,
in [32] the authors propose a semi-implicit coupling technique, which is the approach that
will be adopted in this manuscript.

Addressing a coupled problem by means of a partitioned procedure is advantageous in
terms of computational efficiency, also from the Reduced Order Model (ROM) point of
view: indeed, in the online phase of the Reduced Basis Method [33–39], we have to solve,
separately, smaller systems. Moreover, with some minor changes such as change of variables
and appropriate choices for the couplings, it is possible to further reduce the dimension of
the online systems, as we will see in the following. In the model order reduction framework,
there is also a fair amount of work that is being carried out and which focuses on ROM–
ROM and ROM–FOM coupling, see for example [40–42]. All these works represent an
extremely interesting approach from which many FSI applications of interest could benefit;
for this reason, the authors believe that this direction represents a future line of work within
partitioned algorithms.

In this manuscript we design a segregated procedure, combined with a Reduced Order
Model based on a Proper Orthogonal Decomposition. The goal is to extend the work done in
[20], moving to the treatment of a two dimensional structure within an Arbitrary Lagrangian
Eulerian formalism, and thework done in [43, 44], adapting the computation and the treatment
of the Robin coupling condition, also to the case of a thick, two dimensional structure. The
present manuscript represents also an extension of the work done in [45], where the problem
under consideration was only unsteady, but no geometric or physical parametrization has
been considered.

This manuscript is structured as follows: in Sect. 2 we briefly introduce the Arbitrary
Lagrangian Formulation, and we set the notation that will be used throughout the manuscript.
In Sect. 3 we introduce the first test case, namely a time dependent, non parametrized FSI
problem that models the interaction of a fluid with a thick, two dimensional, structure; in
Sect. 3.2 we introduce the partitioned procedure at the high order level. In Sect. 3.3 we derive
the partitioned procedure at the reduced order level, and in Sect. 3.4 we present the numerical
results. In Sect. 4 we consider the same problem of interest, with the addition of a shape
parametrization: in Sect. 4.1 we present the ALE formalism in the presence of a geometrical
parametrization of the domain; in Sect. 4.2 we give the strong formulation of the problem
of interest, and in Sect. 4.3 we describe the algorithm at the high order level. In Sect. 4.4 we
introduce the reducedordermodel, and thenwepresent somenumerical results in Sect. 4.5, for
the geometrical parametrization only. Then, in Sect. 4.6 we show some numerical results also
in the presence of a physical parameter. Conclusions and considerations on future possible
lines of work are presented in Sect. 5.

2 Configurations, Definitions and Notation

In this section we are going to introduce briefly the Arbitrary Lagrangian Eulerian (ALE)
formalism, in order to set the notation that will be used throughout the rest of this manuscript.

In FSI problems the fluid domain is a moving domain (except for those situations in
which the displacement of the solid is very small, and thus the whole physical domain can
be considered as fixed). In solid mechanics, on the other hand, it is common to deal with
deforming domains, and the deformation itself is the unknown of the problem; for fluid
dynamics instead one usually considers fixed domains. This different point of view is the
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Fig. 1 Example: domain reference configuration �̂ (left) and domain original configuration at time t , �(t)
(right). In blue we have the fluid domain, in red the solid domain (Color figure online)

motivation behind a formalism, very known and widely used in the community, which is
called the Arbitray Lagrangian Eulerian formulation [27, 46–48].

Let �(t) ⊂ R
2 be the physical domain over which the FSI problem is formulated, with

time t ∈ [0, T ]: �(t) = � f (t) ∪ �s(t), where � f (t) ⊂ R
2 and �s(t) ⊂ R

2 are the
fluid and the solid domain at time t , respectively; we assume that the two domains do not
overlap, i.e.� f (t)∩�s(t) = ∅, and finally, the fluid-structure interface�FSI (t) is defined as
�FSI (t) := �̄ f (t)∩�̄s(t). To describe the behavior of a solid it is common practice to use the
so calledLagrangian formalism: all the quantities and the conservation laws are formulated on
the reference configuration �̂s = �s(t = 0). On the contrary, when describing the behavior
of a fluid, the Eulerian formalism is used instead: all the quantities and the conservation laws
are formulated on the configuration� f (t) at the current time t . In order to be able to describe
both the fluid and the solid, a mixed formulation (the ALE formulation indeed) is used: the
underlying idea is that of pulling back the fluid equations to an arbitrary time-independent
configuration �̂ f : one possible choice for �̂ f is �̂ f = � f (t = 0), the domain at initial
time.

In Fig. 1 we can see an example of a reference configuration and the configuration of the
domain at the current time t . Let us see in the next paragraph how to introduce the ALE
formalism; for a more detailed discussion about different approaches to describe coupled
systems we refer to [27, 49].

Let [0, T ] be a time interval, and let �̂ f be a reference configuration for the fluid.

Definition 1 The ALE mapping A f (t), for every t ∈ [0, T ] is defined as follows:
A f (t) : �̂ f �→ � f (t)

x̂ �→ x = x̂ + d̂ f (x̂, t),

where d̂ f (t) : �̂ f �→ R
2 is the mesh displacement. There are different possibilities for the

definition of themesh displacement: in thismanuscript, we decide to define d̂ f as an harmonic

extension of the solid displacement d̂s on the whole fluid domain �̂ f :{
−�̂d̂ f = 0 in �̂ f ,

d̂ f = d̂s on �̂FSI ,

and homogeneous Dirichlet boundary conditions on the remaining portion of the boundary.
Here �̂FSI is the fluid-structure interface in the reference configuration. A great deal of
attention has to be paid to the definition of the mesh displacement, as different choices for d̂ f

lead to different degrees of regularity: if we lose regularity due to the mesh displacement, we
consequently lose regularity at the FSI interface, which is exactlywhere the coupling between
the two physics takes place. It is beyond the scope of this work to discuss the regularity of
different definitions of the mesh displacement; nonetheless we refer the interested reader to
Chapter 5.3.5 of [27].
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Fig. 2 Physical reference configuration. Blue domain: the reference fluid configuration �̂ f . Red leaflets: the

reference solid configuration �̂s . The fluid-structure interface �̂FSI is depicted in green. �̂D
s : the part of the

leaflets that does not move. �̂top and �̂bott are the fluid channel top and bottom walls, �̂in is the fluid inlet

boundary, �̂out is the fluid outlet boundary

Remark 1 d̂ f represents the displacement of the grid points, therefore it is not a quantity with
a real physical meaning, but rather a geometrical quantity that describes the deformation
of the mesh, according to the deformation of the physical domain. It is also important to
underline that ∂t d̂ f 	= û f : in fact, while û f represents the velocity of the fluid, ∂t d̂ f is again
a geometrical quantity, that can be interpreted as the velocity with which the mesh moves.

Let us now define the gradient F of the ALE map and its determinant J , respectively:

F := ∇̂A f , J := detF.

With these quantities we are ready to present the strong formulation of the FSI problem of
interest, within an ALE formalism.

3 First Test Case: Time Dependent FSI Problem

We present the first FSI problem of interest: a time-dependent, non parametrized, nonlinear
multiphysics test case.

The goal is to simulate the behavior of an incompressible, Newtonian fluid interacting
with a linear elastic solid, in the time interval [0, T ]; Fig. 2 shows the physical domain in its
reference configuration.

3.1 Strong Formulation

The coupled FSI problem, formulated over the original configuration, reads as follows: find
u f : � f (t) �→ R

2, p f : � f (t) �→ R and d̂s : �̂s �→ R
2 such that:⎧⎪⎨

⎪⎩
ρ f (∂tu f + (u f · ∇)u f ) − divσ f (u f , p f ) = 0 in � f (t) × (0, T ],
divu f = 0 in � f (t) × (0, T ],
ρs∂t t d̂s − ˆdiv( P̂(d̂s)) = 0 in �̂s × (0, T ],

(1)

In system (1), the ˆdiv denotes the fact that the divergence is computed with respect to x̂, the
space variable in the reference configuration. ρ f and ρs are the fluid and the solid density,
while σ f is the fluid Cauchy stress tensor for an incompressible Newtonian fluid, and P̂ is
the solid first Piola–Kirchoff tensor (compressible, linear elastic solid). System (1) is then
completed by some initial conditions (we assume the system to be at rest at the starting time
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of the simulation), and by the following boundary conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ f (u f , p f )n = −pin(t)n̂ on�in,

σ f (u f , p f )n = 0 on�out ,

d̂s = 0 on �̂D
s ,

u f = 0 on�top ∪ �bott ,

where pin(t) is a time-dependent pressure pulse, n is the outward unit normal to the boundary
being considered, �in and �out represent the inlet and outlet boundaries depicted in Fig. 2,
and �̂D

s is the portion of the leaflets’ boundary that is attached to the top and bottomwalls�top

and�bott . It only remains to state the coupling conditions that take place at the fluid-structure
interface: {

u f = d
dt ds on �FSI (t),

σ f (u f , p f )n f = −J−1
s P̂ FT

s ns on �FSI (t),
(2)

where ds is the solid deformation in the current configuration �s(t), Fs := ∇̂ d̂s + I , I
the 2 × 2 identity matrix, Js := detFs , n f and ns are the unit normals to the FSI interface
�FSI (t) outgoing the fluid and the solid domain, respectively. In system (2) we can interpret
the first condition as a kinematic coupling, which requires the continuity of the velocities
at the interface (the fluid sticks to the moving boundary), whereas the second equation is a
dynamic coupling corresponding to an action-reaction principle, which is simply stating that
the two stresses have to balance out at the interface.

With the formalism introduced in Sect. 2, we are able to perform a pull-back of the fluid
equations onto thefluid reference configuration �̂ f ; the FSI problemon the reference configu-
ration �̂ := �̂ f ∪�̂s nowreads: for every t ∈ [0, T ], find thefluid velocity û f (t) : �̂ f �→ R

2,

the fluid pressure p̂ f (t) : �̂ f �→ R, the fluid displacement d̂ f (t) : �̂ f �→ R
2 and the solid

deformation d̂s(t) : �̂s �→ R
2 such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ f J (∂t û f + ∇̂ û f F−1(û f − ∂t d̂ f )) − ˆdiv(J σ̂ f (û f , p̂ f )F−T ) = 0 in �̂ f × (0, T ],
ˆdiv(J F−1û f ) = 0 in �̂ f × (0, T ],

−�̂d̂ f = 0 in �̂ f × (0, T ],
ρs∂t t d̂s − ˆdiv( P̂(d̂s)) = 0 in �̂s × (0, T ].

(3)

The fluid tensor σ̂ f is the representation in the reference configuration of the Cauchy stress
tensor:

σ̂ f (û f , p̂ f ) = μ f (∇̂ û f F−1 + F−T ∇̂T û f ) − p̂ f I,

and

P̂(d̂s) = λs trεs(d̂s)I + 2μsεs(d̂s),

εs(d̂s) = 1

2
(∇̂ d̂s + ∇̂T d̂s).

where λs and μs are the first and second Lamé constant of the solid, respectively (μs is also
referred to as shear modulus). System (3) is completed by the same initial conditions, by the
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boundary conditions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
J σ̂ f (û f , p̂ f )F−T n̂ = −pin(t)n̂ on �̂in,

J σ̂ f (û f , p̂ f )F−T n̂ = 0 on �̂out ,

d̂s = 0 on �̂D
s ,

û f = 0 on �̂top ∪ �̂bott

(4)

and by the following coupling conditions:⎧⎪⎨
⎪⎩
d̂ f = d̂s on �̂FSI

û f = ∂t d̂s on �̂FSI ,

J σ̂ f (û f , p̂ f )F−T n̂ f = − P̂(d̂s)n̂s on �̂FSI .

(5)

In the previous equations the vector n̂ represents the normal vector to the inlet (or outlet)
boundary in the reference configuration, whereas n̂ f and n̂s are the unit normals to the
FSI interface �̂FSI , outgoing the fluid and the solid domain, respectively. In system (5),
the first equation is a geometric condition, which states that the fluid and the solid domain
do not overlap. The second condition is the kinematic condition, expressed in the reference
configuration, and similarly the third condition is the dynamic condition in the reference
configuration.

Remark 2 The gradient and the divergence in Eq. (3) are computed with respect to the spatial
coordinates in the reference configuration, namely x̂. Nevertheless, from now on, since
everything will be formulated and computed on the reference configuration, in order to
ease the exposition, we will drop theˆnotation.

3.2 Offline Computational Phase

We are now going to describe the offline phase of the partitioned procedure that we use to
solve the FSI problem of this section. The algorithm is based on a Chorin-Temam projection
scheme for the incompressible Navier–Stokes equations [50, 51], and we choose to treat the
coupling conditions (5) in a semi-implicit way (see also [20, 32, 52]). We first apply a time
stepping procedure to design the algorithm, and then we show the space discretization of the
whole procedure.

3.2.1 High Fidelity Semi-implicit Scheme

We present the offline phase of the partitioned procedure: we use an operator splitting
approach, based on a Chorin-Temam projection scheme with pressure Poisson formulation.
Let �T be a time-step: we discretize the time interval [0, T ] with an equispaced sampling
{t0, . . . , tNT }, where ti = i�T , for i = 0, . . . , NT and NT = T

�T . We discretize the partial
derivative of a function f with a first backward difference BDF1:

Dt f
i+1 = f i+1 − f i

�T
, Dtt f

i+1 = Dt (Dt f
i+1),

where f i+1 = f (t i+1). Hereafter, we will make use of the BDF1 time discretization for both
the fluid and the solid problem. We consider the following semi-implicit time discretization
of (3): for i = 0, . . . , NT − 1
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Extrapolation of the Mesh Displacement df

find di+1
f : � f �→ R

2 such that:{
−�di+1

f = 0 in� f ,

di+1
f = dis on�FSI .

(6)

In this step we are imposing the first of our three coupling conditions, namely the continuity
of the displacements at the fluid-structure interface. This condition is imposed in an explicit
way, with respect to time, because we are taking into account the solid displacement dis at
the previous time iteration i , and the mesh displacement unknown di+1

f at the current time
iteration i +1. The choice of imposing the continuity of the displacements in an explicit way
is inspired by many works present in the literature of FSI, see for example [20].

Remark 3 Here we treat the first coupling condition in an explicit way: this approach is less
strong than amonolithic one, where this coupling condition would be imposed weakly for the
fluid and solid displacement at the same timestep t i+1 (see for example [45]). Nevertheless
this choice will allow us to build the fluid displacement d f in a cheap way in the online phase.

Fluid Explicit Step

find ui+1
f : � f �→ R

2 such that:⎧⎪⎪⎨
⎪⎪⎩

Jρ f

(
Dtu

i+1
f + ∇ui+1

f F−1(ui+1
f − Dt d

i+1
f )

)
− μ f div(Jε(ui+1

f )F−T )+
+ J F−T∇ pif = 0 in� f ,

ui+1
f = Dt d

i+1
f on�FSI ,

(7)

with ε(ui+1
f ) := μ f (∇u f F−1+ F−T∇T u f ). Here, we are imposing the dynamic condition

(continuity of the velocities at the FSI interface), again in an explicit fashion with respect to
time, since now the fluid displacement di+1

f is already known.

Implicit Step

• Fluid projection substep (pressure Poisson formulation) find pi+1
f : � f �→ R

2 such that:{
−div(J F−1F−T∇ pi+1

f ) = − ρ f
�t div(J F

−1ui+1
f ) in� f ,

−F−T∇ pi+1
f · J F−T n f = ρ f Dtt di+1

s · J F−T n f on�FSI ,
(8)

subject to the boundary conditions:{
pi+1
f = pin(t i+1) on �in

pi+1
f = 0 on �out ,

(9)

• Structure projection substep find di+1
s : �s �→ R

2 such that:{
Jsρs Dtt di+1

s − div(P(di+1
s )) = 0 in �s,

Jσ f (u
i+1
f , pi+1

f )F−T n f = −P(di+1
s )ns on �FSI .

(10)

subject to the boundary condition di+1
s = 0 on �D

s .
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Remark 4 We remark that the time-stepping schemes for the fluid problem and for the solid
problem are implicit. The denomination “semi-implicit” comes from the fact that the coupling
conditions are treated differently. Indeed in system (7), the geometrical coupling condition
(the second equation) is treated explicitly; on the other hand, the coupling on the fluid and
solid velocity (second equation in system(8)), as well as the coupling of the stresses at the
fluid-structure interface (second equation in system (10)), are treated implicitly.

The implicit step couples pressure stresses to the structure, and it is iterated until conver-
gence is reached. We would like to remark that, throughout this manuscript, the BDF1 time
stepping scheme is used also for the solid problem: there are other alternatives, such as a
Newmark–Beta or HHT-alpha methods, that represent a standard choice in solid mechanics,
as they have some desirable properties regarding stability and dissipation. In our work we
did not encounter any problem with the stability in time of the algorithm, and therefore chose
to use a BDF1 scheme for its easiness of implementation.

Remark 5 In the implicit step (8) we have chosen a pressure Poisson formulation; an alter-
native is to use a Darcy formulation, which is defined as follows: find pi+1

f and ũi+1
f such

that: ⎧⎨
⎩ρ f J

ũi+1
f −ui+1

f
�T + J F−T∇ pi+1

f = 0 in � f ,

div(J F−1ũi+1
f ) = 0 in� f .

Throughout this manuscript we choose to employ a Poisson formulation, for the sake of a
more efficient reduced order model, since the Darcy formulation requires the introduction of
an additional unknown ũ f , which translates in a larger system, comprised of both velocity
and pressure, at the implicit step.

Let us now have a look at Eqs. (7)–(10): the fluid problem is solved using Dirichlet
boundary conditions (the displacement computed at the previous timestep), and the solid
problem is solved using Neumann boundary conditions (the fluid normal stress just com-
puted). However, as it is mentioned in [44] and references therein, these kind of partitioned
schemes (Dirichlet–Neumann couplings) usually require a large amount of sub-iterations of
the implicit step, before a convergence between fluid and solid problem is reached, especially
in those situations where the added mass effect is particularly heavy (e.g. blood flow simu-
lations). Motivated by this, in order to have a better control on the number of sub-iterations
needed in our algorithm, we decide to replace the Neumann condition is system (8) with a
Robin coupling condition, as suggested by [20, 43, 44]. In [20] the authors propose a Robin
coupling condition that is based on a coefficient αROB that has been computed for the one
dimensional structure. For our problem however, the solid is two dimensional and elastic:
we therefore rely on the work presented in [53], where the authors compute the constant
αROB in the case of an elastic solid. We therefore just have to incorporate the expression of
αROB found in [53] into the Robin coupling condition presented in [20], and remember to
pull back the condition onto the reference fluid-structure interface, using the ALE map. The
final expression of the Robin coupling condition is:

αROB p
i+1 + F−T∇ pi+1 · J F−T n f = αROB p

i+1,� − ρ f Dtt di+1,�
s · J F−T n f . (11)

In Eq. (11), pi+1,� and di+1,�
s are suitable extrapolations of the fluid pressure and the solid

displacement, respectively; we show in the next paragraph which kind of extrapolation we
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use. The constant αROB is defined as αROB = ρ f
z p�T where z p is called the solid impedance:

z p = ρscp,

cp =
√

λs + 2μs

ρs
.

Condition (11) is imposed only on the fluid side: Robin conditions are indeed nonstandard
in solid mechanics, therefore a lot of already existing codes would not allow to impose such
a condition for the solid problem.

3.2.2 Space Discretization of the Semi-implicit Procedure

We now present the semi-discretized version of the algorithm introduced. We define the
following function spaces for the fluid:

V (� f ) := [H1(� f )]2, E f (� f ) := [H1(� f )]2, Q(� f ) := L2(� f ),

endowed with the H1 norm (V (� f )), the H1 seminorm (E f (� f ))and the L2 norm respec-
tively, and the function space for the solid: Es(�s) = [H1(�s)]2, endowed with the H1

0
norm. We discretize in space the FSI problem, using second order Lagrange Finite Ele-
ments for the fluid velocity, resulting in the discrete space Vh(� f ) ⊂ V (� f ), while for the
fluid pressure, the fluid displacement and the solid displacement we use first order Lagrange
Finite Elements, resulting in the discrete space Qh(� f ) ⊂ Q(� f ), E

f
h (� f ) ⊂ E f (� f ) and

Es
h(�s) ⊂ Es(�s); we further assume here that the fluid and the solid discretizations match

at the FSI interface. The non-homogeneous boundary condition in system (9) can be easily
treated by introducing, at timestep t i+1, a lifting function �i+1 such that �i+1 = pin(t i+1)

on �in and �i+1 = 0 on �out ; we refer, for example, to [45, 54] for more details concerning
the use of a lifting function within model order reduction. By introducing the homoge-
nized pressure p0,i+1

f := p0,i+1
f − �i+1, we can conclude now that p0,i+1

f ∈ Q0
h , where

Q0
h = {qh ∈ Qh : qh = 0 on �in ∪ �out }. The discretized version of the semi-implicit

procedure reads as follows: for i = 0, . . . , NT ,

Extrapolation of the Mesh Displacement

find di+1
f ,h ∈ E f

h such that ∀e f ,h ∈ E f
h :{∫

� f
∇di+1

f ,h · ∇e f ,h dx = 0,

di+1
f ,h = dis,h on�FSI .

(12)

Fluid Explicit Step

find ui+1
f ,h ∈ Vh such that ∀vh ∈ Vh :⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ f

∫
� f

J Dtu
i+1
f ,h · vh dx + ρ f

∫
� f

J (∇ui+1
f ,h F

−1(ui+1
f ,h − Dt d

i+1
f ,h )) · vh dx

+ μ f

∫
� f

Jε(ui+1
f ,h )F−T : ∇vh dx +

∫
� f

J F−T∇ pif ,h · vh dx = 0

ui+1
f ,h = Dt d

i+1
f ,h on�FSI ,

(13)
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This step results in a nonlinear system, which, at the computational level, is being solved
with a Newton method. We remark that in the weak formulation, the boundary terms for
the velocity vanish: this is in part due to the homogeneous Dirichlet boundary condition on
�top∪�bott , and in part due to the fact that, in the Chorin–Temam scheme, the inlet boundary
condition (first equation in system (4)) is split between the velocity and the pressure in the
followingway: Jε(ui+1

f ,h )F−T n = 0 on�in and J pi+1
f ,h F

−T n = −pin on�in . The imposition
of Neumann boundary conditions within a Chorin–Temam scheme is not at all trivial, and
we refer the interested reader to a more detailed discussion presented in [55, 56].

Implicit Step

for any j = 0, . . . until convergence:

1. Fluid projection substep (pressure Poisson formulation) find p0,i+1, j+1
f ,h ∈ Q0

h such that

∀qh ∈ Q0
h :

αROB

∫
�FSI

p0,i+1, j+1
f ,h qh ds +

∫
� f

J F−T∇ p0,i+1, j+1
f ,h · F−T∇qh dx

= − ρ f

�T

∫
� f

div(J F−1ui+1
f ,h )qh dx − ρ f

∫
�FSI

Dtt d
i+1, j
s,h · J F−T n f qh ds

+ αROB

∫
�FSI

pi+1, j
f ,h qh ds − αROB

∫
�FSI

�i+1qh ds −
∫

� f

J F−T∇�i+1 · F−T∇qh dx,

2. Structure projection substep find di+1, j+1
s,h ∈ Es

h such that ∀es,h ∈ Es
h :

ρs

∫
�s

Js Dtt d
i+1, j+1
s,h · es,h dx +

∫
�s

P(di+1, j+1
s,h ) : ∇es,h dx

= −
∫

�FSI

Jσ f (u
i+1
f ,h , pi+1, j+1

f ,h )F−T n f · es,h dx,

subject to the boundary condition di+1, j+1
s,h = 0 on �s

D .

We iterate between the two implicit substeps, until a convergence criteria is satisfied; we
choose as stopping criteria a relative error on the increments of the pressure and the solid
displacement, namely:

max

⎛
⎝ ||pi+1, j+1

f ,h − pi+1, j
f ,h ||Qh

||pi+1, j+1
f ,h ||Qh

; ||di+1, j+1
s,h − di+1, j

s,h ||Es
h

||di+1, j+1
s,h ||Es

h

⎞
⎠ < ε,

where ε is a fixed tolerance.
In the pressure Poisson formulation, to impose the Robin coupling condition, we have

chosen the pressure at the previous implicit iteration, namely pi+1, j
f , as an extrapolation for

the fluid pressure, and the same goes for the extrapolation of the structure displacement.

3.2.3 POD and Reduced Basis Generation

For the generation of the reduced basis for the fluid velocity u f and the fluid displacement d f

we pursue here the idea that was first proposed in [20]. For the homogenized fluid pressure
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p0f and for the solid displacement ds we employ a standard POD, giving rise to the reduced

spaces Q0
N and Es

N respectively, though the authors would like to mention the fact that, as an
alternative to the POD modes for the solid problem, the so-called vibrational modes can be
used: these are obtained solving a generalized eigenvalue problem involving the mass and the
stiffness matrix of the solid problem. Vibrational modes show very good results, especially
for linear problems, and the authors refer the interested reader to [38, 57].

Change of Variable for the Fluid Velocity

The main idea here is to introduce a change of variable in the fluid problem, in order to
transform the non homogeneous Dirichlet condition at the FSI interface in system (13) into
a homogeneous boundary condition. The motivation of this choice is that, to impose the
second condition in system (13), we could use a Lagrange multiplier λ, thus increasing the
dimension of the system to be solved in the online phase. In order to avoid this and in order
to design a more efficient reduced method, we choose to transform the non-homogeneous
coupling condition into a homogeneous one: we refer to [58] for a detailed discussion on the
treatment of non-homogeneousDirichlet boundary conditionswithin amodel order reduction
framework. We begin by defining a new variable zi+1

f ,h :

zi+1
f ,h := ui+1

f ,h − Dt d
i+1
f ,h .

With this changeof variable, the secondequation in (13) is nowequivalent to thehomogeneous
boundary condition for the new variable:

zi+1
f ,h = 0 on�FSI ,

for which no imposition by means of Lagrange multiplier is needed. Therefore, during the
offline phase of the algorithm, at every iteration i + 1, after we have computed the velocity
ui+1
f ,h , we compute the change of variable zi+1

f ,h . We then consider the following snapshots
matrix:

Sz = [z1f ,h, . . . , zNT
f ,h] ∈ R

N h
u ×NT ,

whereN h
u = dimVh . We then apply a POD to the snapshots matrix Sz and we retain the first

Nz POD modes 1
z, . . . , 

Nz
z . We therefore have the reduced space:

V N := span{k
z}Nz

k=1,

and now it is clear that, since every k
z satisfies the condition k

z = 0 on �FSI , then also
every element of VN will satisfy the same condition.

Harmonic Extension of the Fluid Displacement

In order to generate the reduced basis for the fluid displacement d f , we pursue again the
idea presented in [20]. We start by generating the snapshots matrix related to the solid
displacement:

Sds = [d1s,h, . . . , dNT
s,h ] ∈ R

N h
ds

×NT ,
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where N h
ds

= dimEs
h . We then apply a POD to the snapshots matrix and retain the first Nd

POD modes 1
ds

, . . . , 
Nd
ds
, thus defining the reduced space for the solid problem:

Es
N := span{k

ds }
Nd
k=1.

We then employ an harmonic extension of each one of the reduced basis k
ds

to the fluid

domain, thus obtaining the functions k
d f

such that:

{−�k
d f

= 0 in� f ,

k
d f

= k
ds

on�FSI .

We impose homogeneous Dirichlet boundary conditions on the remaining part of the bound-
aries. We can then define the reduced space for the fluid displacement:

E f
N := span{k

d f
}Nd
k=1.

The reason for for this choice, instead of employing a standard POD on the set of snapshots
of d f , is given by the fact that we can avoid the introduction of another Lagrangemultiplier to
impose the non-homogeneous boundary condition present in system (22). We avoid to solve
the reduced system related to (22): instead of solving an harmonic extension problem at every
time-step in the online phase, we solve once and for all Nd harmonic extension problems in
the expensive offline phase. Then, during the online phase, the reduced fluid displacement
will be computed just as a linear combination of the basis i

d f
, with coefficients that are the

coefficients of the reduced solid displacement at the previous time-step. We will see in the
next section the final formulation of the online phase of the algorithm. Before moving on,
we summarize the offline computational phase, with the aim of helping the reader to better
understand the whole procedure so far. Let i + 1 be the index of the current time iteration:

1. Compute the snapshot di+1
f ,h , using the previously computed snapshot dis,h ;

2. Solve the fluid explicit part, and find ui+1
f ,h such that u

i+1
f ,h = Dt d

i+1
f ,h ) on the FSI interface;

3. Compute the fluid viscous stress ε(ui+1
f ,h );

4. Compute zi+1
f ,h = ui+1

f ,h − Dt d
i+1
f ,h );

5. Store the snapshot zi+1
f ,h in the snapshot matrix Sz ;

6. Iterate until tolerance ε is reached:

• Solve the pressure Poisson problem, using the solid displacement at the previous
subiteration, and find pi+1, j+1

f ,h ;

• Solve the solid problem, using the fluid stress tensor ε(ui+1
f ,h ) − pi+1, j+1

f ,h I , and find

di+1, j+1
s,h ;

7. Store the homogenized snapshot pi+1
f ,h,0 := pi+1

f ,h − �i+1 in the snapshot matrix S p;

8. Store the snapshot di+1
s,h in the snapshot matrix Sds ;

9. POD compression on Sz → {k
z}Nz

k=1;

10. POD compression on S p → {k
p}Np

k=1;

11. POD compression on Sds → {k
ds

}Nd
k=1;

12. Solve Nd harmonic extension problems and find {k
d f

}Nd
k=1.

123



4 Page 14 of 41 Journal of Scientific Computing (2023) 94 :4

3.3 Online Computational Phase

We are now ready to present the online formulation of the partitioned procedure, which is
obtained by means of a Galerkin projection over the reduced spaces VN , E

f
N , Q

f
N and Es

N .

For every i = 0, . . . , NT , we introduce the reduced functions z
i+1
f ,N , p

0,i+1
f ,N , di+1

s,N of the form:

zi+1
f ,N =

Nz∑
k=1

zi+1
k k

z f , (14)

p0,i+1
f ,N =

Np∑
k=1

p0,i+1
k

k
p, (15)

di+1
s,N =

Nd∑
k=1

di+1
k k

ds . (16)

Then the online phase of the partitioned procedure reads as follows:

Mesh Displacement

let di+1
f ,N be defined by the reduced solid displacement at the previous time-step:

di+1
f ,N =

Nd∑
k=1

dik
k
d f

; (17)

Fluid Explicit Step (with Change of Variable)

find zi+1
f ,N ∈ VN such that ∀vN ∈ VN :

ρ f

∫
� f

J
( zi+1

f ,N − uif ,N
�T

)
· vN dx + ρ f

∫
� f

J (∇(zi+1
f ,N + Dt d

i+1
f ,N )F−1zi+1

f ,N ) · vN dx

+ μ f

∫
� f

Jε(zi+1
f ,N )F−T : ∇vN dx +

∫
� f

J F−T∇ pif ,N · vh dx

= −ρ f

∫
� f

J
(Dt d

i+1
f ,N

�T

)
· vN dx − μ f

∫
� f

Jε(Dt d
i+1
f ,N )F−T : ∇vN dx,

we then define the reduced fluid velocity: ui+1
f ,N = zi+1

f ,N + Dt d
i+1
f ,N .

Implicit Step

for any j = 0, . . . until convergence:
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Table 1 Values for the
implementation of the offline
phase

Physical constants Value

ρ f 1 g/cm3

μ f 0.035 Poise

ρs 1.1 g/cm3

μs 105

λs 8 × 105

Geometrical constants Value

Channel length 10 cm

Channel height 2.5 cm

Leaflets’ length 1 cm

Leaflets’ thickness 0.2 cm

Discretization details Value

FE displacement order 1

FE velocity order 2

FE pressure order 1

1. Fluid projection substep find p0,i+1, j+1
f ,N ∈ Q0

N such that ∀qN ∈ Q0
N :

αROB

∫
�FSI

p0,i+1, j+1
f ,N qN ds +

∫
� f

J F−T∇ p0,i+1, j+1
f ,N · F−T∇qN dx

= − ρ f

�T

∫
� f

div(J F−1ui+1
f ,N )qN dx − ρ f

∫
�FSI

(Dtt d
i+1, j
s,N ) · J F−T n f qN ds

+ αROB

∫
�FSI

pi+1, j
f ,N qN ds − αROB

∫
�FSI

�i+1qN ds

−
∫

� f

J F−T∇�i+1 · F−T∇qN dx

we then recover the reduced fluid pressure pi+1, j+1
f ,N = p0,i+1, j+1

f ,N + �i+1.

2. Structure projection substep find di+1, j+1
s,N ∈ Es

N such that ∀es ∈ Es
N :

ρs

∫
�s

Dtt d
i+1, j+1
s,N · eN dx +

∫
�s

P(di+1, j+1
s,N ) : ∇eN dx

= −
∫

�s

Jσ f (u
i+1
f ,N , pi+1, j+1

f ,N )F−T n f · eN dx .

3.4 Numerical Results

We now present some numerical results obtained with the semi-implicit scheme. The refer-
ence physical configuration of the problem of interest is the one represented in Fig.2: the
geometrical properties of the domain are reported in Table 1; the leaflets are situated 1 cm
downstream the inlet boundary. For our simulation we used a time-step �T = 10−4, and a
final time T = 0.05 s, for a total of NT = 500 iterations. Figure 3 shows the mesh used for
the spatial discretization of the original problem.
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Fig. 3 Example of the mesh used for the numerical simulations. The FSI interface has been contoured in red
to ease the visualization. We use a triangular mesh, where the number of cells is 22060, for a total of 11269
vertices (Color figure online)

Fig. 4 a POD eigenvalues, b POD retained energy. Results of the POD for the non parametric problem

Fig. 5 Reduced velocity u f ,N at
time-step t = 0.04s (top) and at
time-step t = 0.05s (bottom).
The velocity has been obtained
with Nz = 15 reduced basis

The values of the physical constants used in the simulation are reported in Table 1. A
pressure impulse pin(t) is applied at the inlet boundary, and after some time this impulse
becomes constant:

pin(t) =
{
5 − 5cos

(
2π t
Tin

)
for t ≤ 0.025s,

5 for t > 0.025s,

where Tin = 0.1 s. We fix a tolerance of ε = 10−6 as a stopping criterion for the subiterations
between the pressure Poisson problem and the solid problem.

Sincewe do not consider the top and the bottomwalls of the fluid domain to be deformable,
we impose a homogeneous boundary condition for the fluid velocity on these walls.

Figure 4a shows the rate of decay of the first 100 eigenvalues associated with three
unknowns of the problem, namely the change of variable for the fluid velocity change of
variable z f , the pressure p f and the solid displacement ds . It can be noticed that the rate
of decay of the eigenvalues for the pressure and for the fluid change of variable is slower
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Fig. 6 Reduced solid displacement ds,N at time-step t = 0.035s (left), t = 0.04s (center) and at time-step
t = 0.05s (right). The displacement has been obtained with Nd = 10 reduced basis. The displacement has
been magnified for visualization purposes

Fig. 7 Error analysis: relative error behavior, as a function of time. The reduced solutions have been obtained
with: Nz = 15, Np = 10 and Nds = 10

Table 2 Average relative error
for u f , p f , ds with basis
refinement for the pressure

Np u f p f ds

5 0.010285 0.000199 0.005255

10 0.004370 7.16739 × 10−5 0.002138

15 0.003013 8.5678 × 10−5 0.002063

25 0.003020 0.000107 0.002107

35 0.0031058 0.000149 0.002130

40 0.003144 0.000151 0.002078

than the rate of decay of the eigenvalues of the solid displacement. Moreover, in Fig. 4b we
can notice that the first mode of the solid displacement retains 2% more energy compared
to the first mode of the pressure, and 8% more energy with respect to the first mode of z f ,
which is the one that retains less energy. Fig. 4a is also important to have a first insight on the
dimension of the reduced spaces that we are going to take during the online phase: indeed
the rate of decay of the eigenvalues returned by the POD gives us an idea of the behavior of
the approximation error that we commit by approximating the FE solution with the RB one.
The following relationship holds true (we state it for the fluid pressure, but the same holds
also for the other components):
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Table 3 Average number of
subiterations: comparison
between full order model, and
reduced order model with basis
refinement for the pressure

Np Full order model Reduced order model

5 13 15.33

10 13 16

15 13 26

25 13 26.37

35 13 26.98

40 13 26.9

NT∑
i=1

||pif ,h − �Np p
i
f ,h ||2L2(� f )

=
∑
k>Np

λkp,

where �Np is the orthogonal projector onto the POD space of dimension Np , and λip are
the eigenvalues returned by the POD. Figures5 and 6 show two reproductive reduced order
solutions: the fluid velocity and the solid displacement, respectively; as we can see from
Fig. 6, the reduced order model shows a good capability also in reproducing very small
deformations: these results were obtained using Nz = 15, Np = 10 and Nd = 10 modes,
respectively. Figure7 shows that, with Nz = 15, Np = 10 and Nd = 10 basis functions
for each component of the solution, we have a good relative approximation error behavior
over time: as we can see from the figure, at the final timesteps of the simulation the error
increases, and we think this is due to some error accumulation phenomenon. The error has
been computed as the L2 error for the fluid pressure, and as the H1 error for the fluid velocity
and the solid displacement:

Fig. 8 Internal iterations: comparison between full order model (blue) and reduced order model (red). The
reduced solutions have been obtained with: Nz = 15, Np = 10 and Nds = 10 (Color figure online)
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errp(t
i+1) =

||pi+1
f ,h − pi+1

f ,Np
||L2(� f )

||pi+1
f ,h ||L2(� f )

,

errd(t
i+1) = ||di+1

s,h − di+1
s,Nd

||H1(�s )

||di+1
s,h ||H1(�s )

.

erru(t
i+1) = ||ui+1

f ,h − ui+1
f ,Nz

||H1(� f )

||ui+1
f ,h ||H1(� f )

.

We were interested in seeing how the average approximation error and the average number
of internal iterations changes, by changing the number of reduced basis Np used for the fluid
pressure in the reduced order model: results are reported in Tables 2 and 3 respectively. As we
can see from Table 2, the average approximation error decreases up to when we use Np = 25
modes for the pressure, then we observe an increment in the approximation error: we read
this result as the fact that with 40 modes for the fluid pressure, we are just adding noise to the
online system. It is also interesting to see from Table 3 that the average number of internal
iterations required from the algorithm, in order to reach a coupling tolerance of ε = 10−6 is
relatively higher for the reduced order model, when compared to the full order one: this is due
to the reduction of the two problems, but in any case we can see that this number stabilizes
around 26 − 27 subiterations. Finally, Fig. 8 depicts the behavior with respect to time of the
number of internal iterations: a comparison is drawn between the full order model and the
reduced order one, where we used Np = 10 reduced basis functions. We can see that the
number of internal iterations, both for the offline and for the online part stabilizes towards
the end of the simulation. We would like to make the following remark: all these results are
computed by varying the number of modes used for the approximation of the fluid pressure,
while keeping fixed both Nz and Nd . The motivation behind our choice is the fact that we
want to see how the number of modes directly impacts the performance of the method, and,
more precisely, of the implicit step, where the coupling between the two physics is imposed,
by coupling the pressure Poisson problem with the solid problem. The authors are aware that
these results are by no means exhaustive, and this is a further testimony to the capability that
such a partitioned procedure offers: many more tests are possible, where for example Nds is
varied, and Nz is kept fixed, or both can vary.

For this reason, we now present some additional results, that have been instead obtained
by using the same number of modes for all the components of the FSI solution, namely
Nz = Np = Nd = N . Figure9 shows the relative approximation error in time, for the three
components of the FSI solution: as we can see, by increasing the number of modes, we get
a better approximation error. In particular, from Fig. 9, we observe an oscillating behavior
of the pressure relative error towards the last timesteps of the simulation: this behavior can
be seen also in Fig. 7, and can be interpreted as the result of an accumulation phenomenon,
where the error accumulates and starts to oscillate. Another important observation is that the
online pressure, with this partitioned approach, has been obtained without the supremizer
enrichment technique [54]; as already remarked in [20], this may lead to non optimal error
convergence. Motivated by this, we think it can be a very interesting point for a future
work to see if this has some implications in the error oscillation that we observe in Fig. 9.
Figure10 shows the number of internal iterations for each timestep of the simulation: the
online computations are performed using N = 25 modes for all the components, and are
compared to the high fidelity computations. Also in this case the average number is higher
for the online simulation, due to model order reduction, and also in this case the number
stabilizes around 17 iterations towards the end of the simulation. Finally, in Table 4 we report
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Fig. 9 Relative error behavior in time, by varying the number N of modes used in the online phase. Top left:
fluid velocity error. Top right: fluid pressure error. Bottom center: solid displacement error

Fig. 10 Internal iterations: comparison between full order model (blue) and reduced order model (red). The
reduced solutions have been obtained with: N = 25 modes (Color figure online)
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Table 4 Average number of
subiterations: comparison
between full order model, and
reduced order model with basis
refinement for all the components
u f , p f and ds

N Full order model Reduced order model

5 13 17

10 13 25

15 13 25

20 13 24

25 13 16

Fig. 11 Domains: reference configuration �̂ (top left), parametrized reference configuration �̃(μg) (top right),
and original configuration �(t; μg) (bottom)

the average number of internal iterations, for an increasing number N of modes used in the
online phase. As we can see, by increasing N from 10 to 25 there is almost no improvement
in the number of internal iterations: it stabilizes around 25. This number then drops to 16
(which is very close to the FOM results) for N = 25: we did not increase N further, because
Nd = 25 is the total number of modes retained by the POD on the solid displacement, before
hitting a very small magnitude (less than 10−9) for the corresponding eigenvalues.

4 Shape Parametrization of the Leaflets

In this section we are going to address a slightly different situation, the difference being now
the presence of a geometrical parameter μg , that represents the length of the leaflets; we also
admit the possibility of a further physical parameter μp , so that, to summarize, we consider
a parameter μ ∈ P ⊂ R

d , where d = 1 if just a geometrical parametrization is considered
(and thus μ = μg), or d = 2 (and thus μ = (μg, μp)).

4.1 FSI in the Presence of Shape Parametrization

Let us denote by �(t;μg) := � f (t;μg) ∪ �s(t;μg) the current physical domain: we now
have a time dependence and a parameter dependence. We introduce the time-independent
intermediate configuration �̃(μg) := �̃ f (μg) ∪ �̃s(μg), where we are considering the
reference configuration of both physics, still taking into account the parameter dependence.
Finally, we have the time-independent, parameter-independent reference configuration �̂ :=
�̂ f ∪ �̂s .
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We call T the shape parametrization map; for every μg we have a map Tμg defined as
follows:

Tμg : �̂ �→ �̃(μg)

x̂ �→ x̃ = Tμg (x̂).

We then have the ALE map A f (t;μ), already introduced in Sect. 2, which is now a map
from the current parametrized fluid configuration �̂ f (t;μg) and the intermediate fluid con-
figuration �̃ f (μg):

A f (t;μ) : �̃ f (μg) �→ �̂ f (t;μg)

x̃ �→ x̂ = x̃ + d̃ f (x̃; t, μ),

where d̃ f is the mesh displacement already defined in Sect. 2.
Let us define the gradients and the determinants of the deformation maps:

G(x̂;μg) = ∇̂Tμg (x̂), K (x̂;μg) = detG(x̂;μg),

F̃(x̃;μ) = Ĩd + ∇̃ d̃ f (μ), J̃ (x̃;μ) = detF̃. (18)

We can pull-back the gradient F̃(x̃;μ) to the reference domain �̂ f , and we obtain

F(x̂;μ) = Id + ∇̂ d̂ f (μ)G−1(x̂, μg). With this notation, we can conclude that the gra-
dient of the deformation map from the reference configuration to the current configuration is
given by F(x̂, μ)G(x̂, μg); let us denote by F̃μ, Fμ and Gμg the gradients F̃(x̃, μ), F(x̂, μ)

and G(x̂, μg) respectively, and by Jμ and Kμg the determinants of Fμ and Gμg . We are now
ready to state the strong form of the problem of interest.

4.2 Strong Formulation

The strong form of the parametrized FSI problem reads as follows: for every t ∈ [0, T ]
and for every μ ∈ P , find the fluid velocity u f (t;μ) : � f (t;μg) �→ R

2, the fluid pressure
p f (t;μ) : � f (t;μg) �→ R, the mesh displacement d̃ f (t;μ) : �̃ f (μg) �→ R

2 and the solid
displacement d̃s(t;μ) : �̃s(μg) �→ R

2 such that:{
−�̃d̃ f = 0 in �̃ f (μg) × [0, T ],
d̃ f = d̃s on �̃FSI (μg) × [0, T ],

and⎧⎪⎨
⎪⎩

ρ f ∂tu f |x̃+ρ f (u f − ∂t d f |x̃ ) · ∇u f − divσ f (u f , p f ) = 0 in � f (t;μg) × [0, T ],
div u f = 0 in � f (t;μg) × [0, T ],
ρs∂t t d̃s − ˜div( P̃(d̃s)) = 0 in �̃s(μg) × [0, T ].

Here we notice that, again, the fluid problem is formulated in the current parametrized
configuration � f (t;μg), whereas the solid problem is formulated in the parametrized inter-
mediate configuration �̃s(μg). The quantity ∂tu f |x̃ represents the ALE time derivative:
∂tu f (x, t;μg)|x̃= ∂t ũ f (x̃, t;μg). Again, σ f is the fluid Cauchy stress tensor, and P̃ is the
first Piola–Kirchoff stress tensor: their definition has been given in Sect. 3. The previous
system is completed by some suitable initial conditions, by the same boundary conditions
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prescribed in (4) and by the following coupling conditions:⎧⎪⎨
⎪⎩
u f = d

dt ds on �FSI (t;μg),

d̃ f = d̃s on �̃FSI (μg),

J̃μg σ̃ f (ũ f , p̃ f )F̃−T
μg

ñ f = − P̃(d̃s)ñs on �̃FSI (μg),

being σ̃ f the Cauchy stress tensor in the parametrized intermediate fluid domain �̃ f (μg):

σ̃ f (ũ f , p̃ f ) = μ f (∇̃ ũ f F̃−1
μ + F̃−T

μ ∇̃T ũ f ).

Thanks to the introduction of the pull-back maps, we can reformulate our problem in the
reference configuration �̂: for every t ∈ [0, T ] and for every μ ∈ P , find the fluid velocity
û f (t, μ) : �̂ f �→ R

2, the fluid pressure p̂ f (t, μ) : �̂ f �→ R, the fluid displacement

d̂ f (t, μ) : �̂ f �→ R
2 and the solid deformation d̂s(t, μ) : �̂s �→ R

2 such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ f JμKμg (∂t û f + ∇̂ û f G
−1
μg

F−1
μ (û f − ∂t d̂ f )) − ˆdiv (JμKμg σ̂ f (û f , p̂ f )F

−T
μ G−T

μg
) =

= 0 in �̂ f × (0, T ],
ˆdiv (JμKμgG

−1
μg

F−1
μ û f ) = 0 in �̂ f × (0, T ],

− ˆdiv (Kμg ∇̂ d̂ f G−1
μg

G−T
μg

) = 0 in �̂ f × (0, T ],
ρs Kμg∂t t d̂s − ˆdiv (Kμg P̂(d̂s)G−T

μg
) = 0 in �̂s × (0, T ],

(19)

where:

σ̂ f (û f , p̂ f ) = μ f (∇̂ û f G−1
μg

F−1
μ + F−T

μ G−T
μg

∇̂T û f ),

P̂(d̂s) = λs tr εs(d̂s)I + 2μsεs(d̂s),

εs(d̂s) = 1

2
(∇̂ d̂sG−1

μg
+ G−T

μg
∇̂T d̂s). (20)

We have the coupling conditions⎧⎪⎨
⎪⎩
d̂ f = d̂s on �̂FSI

û f = ∂t d̂s on �̂FSI ,

Jμg Kμg σ̂ f (û f , p̂ f )F−T
μg

G−T
μg

n̂ f = −Kμg P̂(d̂s)G−T
μg

n̂s on �̂FSI ,

(21)

and the following boundary conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̂ f (û f , p̂ f )n̂ = −pin(t)n̂ on �̂in,

σ̂ f (û f , p̂ f )n̂ = −pout (t)n̂ on �̂out ,

d̂s = 0 on �̂D
s ,

û f = 0 on �̂top ∪ �̂bott .

Again, n̂ represents the normal vector to the relative part of the boundary of the domain.

Remark 6 In this section we stressed the difference between entities on the current configu-
ration, the parametrized intermediate configuration and the reference configuration, by using
the superscripts ˆand .̃ However, since from now on everything will be cast in the reference
configuration, and in order to make the notation as light as possible, we will drop all the
superscripts.
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4.3 Offline Computational Phase

Hereafter we present the offline phase of the partitioned procedure in the presence of a
parameter. We employ again a Chorin-Temam projection scheme for the Navier–Stokes
equation; we define a time-stepping procedure by sampling the time interval [0, T ] with an
equispaced sampling {t0, . . . , tNT }, where ti = i�T , for i = 0, . . . , NT and NT = T

�T . We
discretize the time derivative of a function f with a first backward difference: Dt f i+1 =
f i+1− f i

�T , and Dtt f i+1 = Dt (Dt f i+1), where f i+1 = f (t i+1). We then discretize the
parameter space P ⊂ R

d , d = 1, 2 with an equispaced sampling, and we obtain Ptrain =
[μ1

g, . . . , μ
Ng
g ] × [μ1

s , . . . , μ
Ns
s ] (in the case of physical and geometrical parametrization) or

Ptrain = [μ1
g, . . . , μ

Ng
g ] (in the case of just geometrical parametrization). We define here

Ntrain to be the cardinality of the training set Ptrain .
In the following, we use the same function spaces that we have introduced in Sect. 3.2.2:

V (� f ) := [H1(� f )]2,
E f (� f ) := [H1(� f )]2,

Q(� f ) := L2(� f ),

Es(�s) = [H1(�s)]2,
endowed with the H1 norm (V (� f )), the H1 seminorm (E f (� f ) and Es(�s)) and the L2

norm respectively. We remark that in the previous definitions, the domains � f and �s are
the reference configurations (both parameter—and time—independent). Again we discretize
in space the FSI problem, using second order Lagrange Finite Elements for fluid velocity
resulting in the discrete space Vh ⊂ V , while the fluid pressure, the fluid displacement and
the solid displacement are discretized with first order Lagrange Finite Elements, resulting
in the discrete spaces Qh ⊂ Q, E f

h ⊂ E f and Es
h ⊂ Es ; we make again use of a lifting

function for the fluid pressure, thus we introduce also the discrete space Q0
h , which is defined

exactly as in Sect. 3.2.2.

Remark 7 In this case the lifting function �(t) does not depend on the parameter μg , as we
can deduce from the fact that the quantity pin(t) is parameter-independend. Therefore we
can compute the lifting function, during the offline phase, once and for all for every timestep
t i . We would also like to refer the interested reader to the work presented in [58] in the case
pin is parameter dependent: indeed, in [58] the authors present a detailed description of the
work that has to be done in order to implement reduced order models in the presence of
multiple parameters in the boundary data.

The space discretized version of the partitioned procedure now reads as follows: for
i = 0, . . . , NT , for μ = (μg, μp) ∈ Ptrain :

Extrapolation of the Mesh Displacement

find di+1
f ,h ∈ E f

h such that ∀e f ,h ∈ E f
h :{∫

� f
Kμg∇di+1

f ,h G
−1
μg

· ∇e f ,hG−1
μg

dx = 0

di+1
f ,h = dis,h on�FSI .

(22)
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Fluid Explicit Step

find ui+1
f ,h ∈ Vh such that ∀vh ∈ Vh :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

∫
� f

JμKμg

(ui+1
f ,h − uif ,h

�T

)
· vh dx

+ ρ f

∫
� f

JμKμg [∇ui+1
f ,hG

−1
μg

F−1
μ ](ui+1

f ,h − Dt d
i+1
f ,h ) · vh dx

+ μ f

∫
� f

JμKμgε(u
i+1
f ,h )F−T

μ G−T
μg

: ∇vh dx+
∫

� f

JμKμg F
−T
μ G−T

μg
∇ pif ,h · vh dx=0

ui+1
f ,h = Dt d

i+1
f ,h on�FSI .

(23)

Implicit Step

for any j = 0, . . . until convergence:

1. Fluid projection substep (pressure Poisson formulation) find p0,i+1, j+1
f ,h ∈ Qh such that

∀qh ∈ Q0
h :5

αROB

∫
�FSI

p0,i+1, j+1
f ,h qh ds +

∫
� f

JμKμg F
−T
μ G−T

μg
∇ p0,i+1, j+1

f ,h · F−T
μ G−T

μg
∇qh dx

= − ρ f

�T

∫
� f

div(JμKμg F
−1
μ G−1

μg
ui+1
f ,h )qh dx + αROB

∫
�FSI

pi+1, j
f ,h qh ds

−αROB

∫
� f

�i+1 · qh dx − ρ f

∫
�FSI

(Dtt d
i+1, j
s,h ) · JμKμg F

−T
μ G−T

μg
n f qh ds

−
∫

� f

JμKμg F
−T
μ G−T

μg
∇�i+1 · F−T

μ G−T
μg

∇qh dx

subject to the boundary conditions (9). We then retrieve the original fluid pressure
pi+1, j+1
f ,h = p0,i+1, j+1

f ,h + �i+1.

2. Structure projection substep find di+1, j+1
s,h ∈ Es

h such that ∀es,h ∈ Es
h :

ρs

∫
�s

Kμg Dtt d
i+1, j+1
s,h · es,h dx +

∫
�s

Kμg P(di+1, j+1
s,h )G−T

μg
: ∇es,h dx

= −
∫

�FSI

Jμg Kμgσ f (u
i+1, j+1
f ,h , pi+1, j+1

f ,h )F−T
μg

G−T
μg

n f · es,h dx

subject to the boundary condition di+1, j+1
s,h = 0 on �s

D .

In the fluid projection step, in order to enhance the stability of the method we have employed
again a Robin boundary condition, which in the case of shape parametrization reads as
follows:

αROB p
i+1 + F−T

μ G−T
μg

∇ pi+1 · JμKμg F
−T
μg

G−T
μg

n f

= αROB p
i+1,� − ρ f Dtt di+1,�

s · JμKμg F
−T
μ G−T

μg
n f .
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4.3.1 POD-Greedy

For this test case we decided to adopt a POD strategy which is slightly different with respect
to the standard POD that we presented for the other two test cases. Indeed, the idea here is
to first perform a standard POD in time on each set of snapshots computed for each value of
the parameter μ in the training set Ptrain . Then, we take all the modes computed with the
standard POD, weighted with the corresponding eigenvalue, and perform a final outer run of
POD. The idea that we implement here is inspired by the POD-Greedy strategy presented in
[59], and the motivation behind our choice is given by the fact that now the parameter space
has a higher dimension (two parameters are being considered): for this reason, performing
a standard POD would be computationally unfeasible. Indeed we work with a huge number
of collected snapshots, which result in a correlation matrix of enormous dimension: solving
the eigenvalue problem for this matrix quickly saturates the RAM of a computer; therefore
performing a “naive” POD is not a good idea in this case. Let us now present briefly the
procedure: we consider all the parametersμi ∈ Ptrain in the training set: here the index i has
to be considered as a single index, in the case of geometrical parametrization only (μ = μg),
or as a multiindex i = (ig, i p) in the case of geometrical and physical parametrization
(μ = (μg, μp)). We start by constructing, for each parameter μi ∈ Ptrain , the snapshots
matrices Sz(μi ) for the fluid change of variable z f , S p(μi ) for the fluid pressure p0f and
Sds (μi ) for the solid displacement ds :

Sz(μi ) = {z f ,h(t0, μi ), . . . , z f ,h(tNT , μi )} ∈ R
N h

u ×NT ,

S p(μi ) = {p0f ,h(t0, μi ), . . . , p
0
f ,h(tNT , μi )} ∈ R

N h
p×NT ,

Sds (μi ) = {ds,h(t0, μi ), . . . , ds,h(tNT , μi )} ∈ R
N h

ds
×NT .

We then perform a standard POD on each snapshots matrix and we extract the basis functions

{�k
z f (μi )}N

z
i

k=1, {k
p(μi )}N

p
i

k=1 and {�k
ds

(μi )}N
d
i

k=1. Let us also call {λz
n}N

z
i

n=1, {λp
n }N

p
i

n=1, {λdn}
Nd
i

n=1
the eigenvalues, ordered by decreasing order of magnitude, returned by the POD on each
snapshot matrix Sz(μi ), S p(μi ), Sds (μi ). Afterwards, we perform a second run of POD in
the following way: we start by building the snapshots matrices always for the components z f ,
p f and ds , weighting each snapshot with the corresponding eigenvalue given by the standard
POD:

Sz = {
√

λz
1�

1
z f (μ1), . . . ,

√
λz
N z
1
�

Nz
1

z f (μ1), . . . ,

√
λz
N z
Ntrain

�
Nz
Ntrain

z f (μNtrain )},

S p = {
√

λ
p
11

p(μ1), . . . ,

√
λ
p
N p
1


N p
1

p (μ1), . . . ,

√
λ
p
N p
Ntrain


N p
Ntrain

p (μNtrain )},

Sds = {
√

λd1�
1
ds (μ1), . . . ,

√
λd
Nd
1
�

Nd
1

ds
(μ1), . . . ,

√
λd
Nd
Ntrain

�
Nd
Ntrain

ds
(μNtrain )}.

The weighting of the POD modes obtained from the first POD run is motivated by the fact
that, in this way, the second POD will be correctly weighted to accommodate modes from
different parameter values: for a detailed discussion, we refer the interested reader to [59].
We the perform a second POD on the previous snapshots matrices, and we finally obtain a set
of basis functions {�k

z f }N
z

k=1, {k
p}N p

k=1 and {�k
ds

}Nd

k=1. Then, to obtain a set of basis functions
for the mesh displacement d f , we choose to employ again an harmonic extension of the solid
displacement basis functions �k

ds
on the entire fluid domain � f , as we have done for the
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previous two test cases; in this way we obtain a set {�k
d f

}Nd

k=1 of reduced basis also for the
mesh displacement.

4.4 Online Phase

We start by introducing the online solutions zi+1
f ,N (μ), pi+1

f ,N (μ) and di+1
s,N (μ) at timestep t i+1

and for μ ∈ P:

zi+1
f ,N (μ) =

Nz∑
k=1

zi+1
k (μ)�k

z f , (24)

p0,i+1
f ,N (μ) =

Np∑
k=1

p0,i+1
k

(μ)k
p, (25)

di+1
s,N (μ) =

Nd∑
k=1

di+1
k (μ)�k

ds . (26)

The reduced problem then reads: for every i = 0, . . . , NT and for μ ∈ P:

Mesh Displacement

let di+1
f ,N (μ) be defined by the reduced solid displacement at the previous time-step:

di+1
f ,N (μ) =

Nd∑
k=1

dik(μ)�k
d f

; (27)

Fluid Explicit Step (with Change of Variable)

find zi+1
f ,N (μ) ∈ VN such that ∀vN ∈ VN :

ρ f

∫
� f

JμKμg

( zi+1
f ,N (μ) − uif ,N (μ)

�T

)

· vN dx + μ f

∫
� f

JμKμgε(z
i+1
f ,N (μ))F−T

μ G−T
μg

: ∇vN dx

+ ρ f

∫
� f

JμKμg∇ zi+1
f ,N (μ)G−1

μg
F−1

μ zi+1
f ,N (μg) · vN dx

+ ρ f

∫
� f

JμKμg∇Dt d
i+1
f ,N (μ)G−1

μg
F−1

μ zi+1
f ,N (μ) · vN dx

+
∫

� f

JμKμg F
−T
μ G−T

μg
∇ pif ,N (μ) · vh dx = −ρ f

∫
� f

JμKμg

(Dt d
i+1
f ,N (μ)

�T

)
· vN dx

− μ f

∫
� f

JμKμgε(Dt d
i+1
f ,N (μ))F−T

μ G−T
μg

: ∇vN dx in� f .

We then restore the reduced fluid velocity: ui+1
f ,N (μ) = zi+1

f ,N (μ) + Dt d
i+1
f ,N (μ).
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Implicit Step

for any j = 0, . . . until convergence:

1. Fluid projection substep find p0,i+1, j+1
f ,N (μ) ∈ Q0

N such that ∀qN ∈ Q0
N :

αROB

∫
�FSI

p0,i+1, j+1
f ,N (μ)qN ds

+
∫

� f

JμKμg F
−T
μ G−T

μg
∇ p0,i+1, j+1

f ,N (μ) · F−T
μ G−T

μg
∇qN dx

= − ρ f

�T

∫
� f

div(JμKμgG
−1
μg

F−1
μ ui+1

f ,N (μ))qN dx + αROB

∫
�FSI

p0,i+1, j
f ,N (μ)qN ds

− αROB

∫
�FSI

�i+1
N qN ds − ρ f

∫
�FSI

Dtt d
i+1, j
s,N (μ) · JμKμg F

−T
μ G−T

μg
n f qN ds

−
∫

� f

JμKμg F
−T
μ G−T

μg
∇�i+1

N · F−T
μ G−T

μg
∇qN dx

we then recover the reduced fluid pressure pi+1, j+1
f ,N = p0,i+1, j+1

f ,N + �i+1
N .

2. Structure projection substep find di+1, j+1
s,N (μ) ∈ Es

N such that ∀es ∈ Es
N :

ρs

∫
�s

Kμg Dtt d
i+1, j+1
s,N (μ) · eN dx +

∫
�s

Kμg P(di+1, j+1
s,N (μ), μs)G−T

μg
: ∇eN dx

= −
∫

�s

JμKμgσ f (u
i+1
f ,N (μ), pi+1, j+1

f ,N (μ))F−T
μ G−T

μg
n f · eN dx .

4.5 Numerical Results: Geometrical Parametrization Only

We now present some numerical results concerning the parametrized version of the two
dimensional FSI test case presented in Sect. 3. The original domain is shown in Fig. 11,
together with the reference configuration, and the parametrized reference configuration. The
fluid domain is represented in blue, while the solid (the leaflets) is depicted in red. The
geometrical constants defining the physical domain are reported in Table 5. Only one geo-
metrical parameter is considered here: the length μg of the leaflets, where we have chosen
μg ∈ P = [0.8, 1.0]. An affine mapping Tμg is chosen to deform the reference domain �̂,

obtained forμg = 1.0 cm, to the parametrized configuration �̃(μg): such a map is computed
analytically. Top and bottom walls of the blue domain are rigid, thus both the displacement
d f and the fluid velocity u f are set to zero. Homogeneous Neumann condition is imposed
on u f on the outlet; a pressure profile pin(t) is described at the inlet, where:

pin(t) =
{
5 − 5cos

(
2π t
Tin

)
for t ≤ 0.025s

5 for t > 0.025s,

and Tin = 0.1 s. Also in this case we set a tolerance of ε = 10−6 as a stopping criterion for
the subiterations between the pressure problem and the solid problem.

For the simulation,weuse the samemeshused for the previous test case,we set�t = 10−4,
for a maximum number of time-steps NT = 500, thus T = 0.05s. Table 5 summarizes the
details of the offline stage and of the FE discretization. The number of parameter samples
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Table 5 Physical and geometrical
constants and parameters, for the
geometrically parametrized
leaflets test case

Physical constants Value

ρs 1.1 g/cm3

μs 105

λs 8 × 105

ρ f 1 g/cm3

μ f 0.035 Poise

Geometrical constants Value

Channel length 10 cm

Channel height 2.5 cm

Leaflets’ thickness 0.2 cm

Geometrical parameter Value

μg [0.8, 1.0]
FE displacement order 1

FE velocity order 2

FE pressure order 1

Fig. 12 a POD eigenvalues, b POD retained energy. POD results for the test case with a domain with geomet-
rical parametrization

used during the offline phase to train the algorithm varies between Ng = 8 (for a total of
4000 snapshots generated) to Ng = 16 (for a total of 8000 snapshots generated).

Figure 12a shows the rate of decay of the eigenvalues returned by the final run of the
POD on z f , p f and ds , respectively. As we can see, now the eigenvalues display and overall
slower decay, showing that the complexity of the problem is higher with respect to the non
parametrized case: this slower decaywill then reflect into a higher number of modes that need
to be used in the online phase. Figure12b shows the energy retained by the modes returned
by the final run of the POD: the first mode of the pressure is indeed the most energetic one,
while the first mode of the velocity is the least energetic one. All these results were obtained
by using Ng = 16 sampling parameters. In Fig. 13 we depict the behavior in time of the
number of iterations required in the implicit step, at the ROM level, to reach a tolerance of
ε = 10−6, according to the number of modes used: for this test, the modes were generated
using Ng = 16 sampling parameters, for a total of 8000 snapshots generated, and the leaflet
length is μg = 0.84. It is very interesting to see that, except for N = 15, refining the number
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Fig. 13 Behavior in time of the number of iterations of the implicit step at the ROM level, compared to the
FOM, with basis refinement. Number of parameter samples: Ng = 16

Fig. 14 Representative solutions for the fluid velocity u f at the final time t = 0.05 s. Left column: Finite
Element solutions for μg = 0.84 (top) and μg = 1.0 (bottom). Central column: reduced order solutions for
μg = 0.84 (top) and μg = 1.0 (bottom). The reduced solutions were obtained with the reduced order model
proposed, with N = 30 basis for all the components. Right column: spatial distribution of the approximation
error |u f ,h − u f ,N | for μg = 0.84 (top) and μg = 1.0 (bottom)

Fig. 15 Representative solutions for the displacement ds at t = 0.05 s, obtained with the reduced order model
proposed (N = 30 basis for all the components), for different values of the leaflet lengthμg :μg = 0.84 (left),
and μg = 1.0 (right)
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Table 6 Average relative error of
approximation for u f , p f , ds ,
with sampling refinement

Ng u f p f ds

9 0.3225 0.0208 0.1662

13 0.3205 0.0210 0.1636

16 0.3245 0.0204 0.1679

Leaflets’ length μg = 0.84 cm

Table 7 Average relative error of
approximation for u f , p f , ds ,
with basis refinement

N u f p f ds

15 0.385 0.0142 0.1569

30 0.3245 0.020 0.1679

40 0.3138 0.019 0.1680

50 0.2835 0.0247 0.1311

Leaflets’ length μg = 0.84 cm. Number of samples used: Ng = 16

of basis functions used does not have a huge influence on the maximum number (maximum
over the time interval under consideration) of internal sub-iterations, which is also quite
close to the maximum number of subiterations required by the FOM. In Fig. 14 we present
a graphical comparison between two sets of reproductive solution for the fluid velocity, for
two different values of the geometrical parameter μg = 0.84 and μg = 1.0, at the final
timestep of the simulation t = 0.05. The influence of the geometrical parameter is evident:
the online solution represents very well the full order model solution, when μg = 1.0; on the
other hand, when μg = 0.84, we can see that, with the number of modes used, we are not
perfectly reproducing the correct magnitude of the jet between the two leaflets (the red area).
This result highlights very well the deep influence that the geometrical parametrization has;
indeed, the lengthμg = 1.0 corresponds to the reference leaflets length that we chose: in this
case the geometrical deformation map Tμg defined in Sect. 4.1 is the identity. We would like
to stress also the following: the test case with μg = 0.84 represents a prediction test case;
indeed this value not only corresponds to a significant geometrical deformation, but it also
corresponds to a value that has not been selected to train our algorithm at the offline level.
For this reason, this test case is a stress test for our algorithm. In the framework of predictive
problems, we believe that the result presented in Fig. 14 can be improved, by refining the
geometrical parameter sampling set used to train our method, thus by generating, during the
offline phase, more snapshots: these simulations are very expensive, and for this reason we
did not proceed any further with the sampling set refinement.

Figure 15 shows the reduced displacement, for the same values of the geometrical param-
eter: μg = 0.84 and μg = 1.0; again, the influence of μg is clear: the longer the leaflets,
the bigger their deformation is going to be, under the same physical parameters. Table 6
represent the average approximation error for the fluid velocity, the fluid pressure and solid
displacement, with refinement of the training sample Ptrain : all the reduced solutions have
been obtained using N = 30 reduced basis functions for all the components u f , p f and
ds ; it is interesting to see that, for the highest number of training samples, namely Ng = 16
(which corresponds to a total of 8000 snapshots generated) we observe a slight increase in the
average approximation error of the velocity and the solid displacement. We think this could
be due to the fact that the online model could benefit from more reduced basis for u f and
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Fig. 16 Relative error of approximation as a function of time. Top left: fluid velocity. Top right: fluid pressure.
Bottom: solid displacement. The leaflets’ length is μg = 0.84 cm. Number of sample parameters used:
Ng = 16

ds , and our hypothesis seems to be confirmed by the results of Table 7, where we show the
average approximation error for Ng = 16, with basis refinement: as we can see, the model
benefits from the increment in the number of modes used in the online simulations. Also here
the average error is intended as average over time, and it is computed as the H1 relative error
for the velocity, the L2 error for the pressure and the L2 error for the displacement. Finally,
in Fig. 16 we present the behavior of the relative approximation error in time: we consider
the reduced solution to be obtained with N = 15, 30, 40, 50 modes for each component
(see color legend in the figure). As we observe, the behavior in time of the approximation
error seems to confirm the results reported in Table 7: our model benefits from an increase
in the number of modes used. It is interesting to observe the behavior of the pressure relative
error: the error accumulates over time, thus steadily increases. This represents a starting point
for future studies and future work development; indeed, this steady growth in time of the
approximation error is related only to the pressure component of the FSI solution. We ask
ourselves if this is somehow related to the fact that we are not using a supremizer enrichment
of the velocity space at the online level; it would be therefore interesting to study if this has
some effect in the online approximation of the pressure, especially for long time simulations.
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(a) (b)

Fig. 17 a Same shear modulus μs = 105, but increased length μg = 0.82 (left) and μg = 1 (right), b Same
leaflet length μg = 0.82cm, but increased shear modulus μs = 105 (left) and μs = 8× 105 (right). Reduced
order solid displacement dNs (μ). Comparison of different behaviors of the material, for different values of the
geometrical and physical parameters. From left to right: same leaflets length (length of 0.8cm) and increased
shear modulus (μs = 1,00,000, 8,00,000); same leaflet length (length of 1cm) and increased shear modulus
(μs = 1,00,000, 8,00,000); increased leaflet length (μg = 0.8, 1.0 cm), and same shear modulus μs =
1,00,000

Fig. 18 Number of subiterations for the implicit online step, as a function of time, according to the number
of reduced basis used online

4.6 Numerical Results: Physical and Geometrical Parametrization

We present some numerical results for the test case with a geometrical and physical
parametrization: now μ = (μg, μp), where the physical parameter μp represents the shear
modulus of the leaflets, and thus μp = μs , the second Lamé constant. The original configu-
ration, the intermediate configuration and the reference configuration are the ones depicted in
Fig. 11. The geometrical constants of the problem are the same ones of the previous test case,
and are reported in Table 5. The physical parameterμs varies within the range [105, 8×105].
We use the same boundary conditions, the same inlet pressure profile, time step and tolerance
used in the previous test case.

Figure 17 shows two different examples of the behavior of the leaflets, according to the
change of the physical and/or of the geometrical parameters: all the pictures represent the
online displacement of the solid at the final timestep of the simulation, namely for t = 0.05s.
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Fig. 19 Behavior in time of the relative approximation error, for different number of modes N used in the
online model. Top left: velocity error. Top right: pressure error. Bottom center: displacement. Leaflets’ length
μg = 0.9 cm, leaflets’ shear modulus μs = 105. Number of sampling parameters used: Ng = 8, Ns = 10

Table 8 Average relative error of
approximation for u f , p f , ds ,
with basis refinement

N u f p f ds

15 0.28241 0.01206 0.09978

20 0.18863 0.01562 0.07082

30 0.18152 0.01489 0.09008

50 0.17635 0.01225 0.08762

Number of parameters samplings: Ng = 8 and Ns = 10. Leaflets’ length
μg = 0.9 cm and shear modulus μs = 105

Table 9 Average relative error of
approximation for u f , p f and
ds , with refinement of the
geometrical parameter sampling

Ng u f p f ds

5 0.18206 0.01419 0.09073

6 0.18108 0.01460 0.09054

8 0.18152 0.01489 0.09008

Number of physical parameter samplings: Ns = 10. Leaflets’ length
μg = 0.9 cm and shear modulus μs = 105
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Table 10 Average relative error
of approximation for u f , p f and
ds , with refinement of the
physical parameter sampling

Ns u f p f ds

6 0.19247 0.01151 0.1200

7 0.19121 0.01174 0.1185

9 0.18415 0.01147 0.1108

10 0.18152 0.01489 0.0900

Number of geometrical parameter samplings: Ng = 8. Leaflets’ length
μg = 0.9 cm and shear modulus μs = 105

Table 11 CPU time comparison and average approximation error, for three different tolerances ε of the implicit
step at the ROM level

ε ROM CPU Avg.error u f Avg.error p f Avg.error ds

10−3 9979.5 0.16309 0.03300 0.11955

10−6 13696 0.16302 0.03296 0.11933

10−8 16088.5 0.16302 0.03296 0.11933

The FOM CPU time is 24763.47 seconds for ε = 10−6

The results have been obtained using N = 30 reduced basis for all the components; as we
can see from Fig. 17a, b, an increase in the shear modulus leads to a material that is much
more hard to deform. On the contrary, for a fixed value of the properties of the material
under consideration, and increase of the length of the leaflets leads to an increase in the
displacement. Figure18 shows the behavior in time of the number of iterations of the implicit
step, for different number of modes N used in the online phase, compared against the FOM.
Figure19 represent the relative error approximation for u f (top left), p f (top right) and ds
(bottom center) as a function of time. From Fig. 19 we can see that the relative error for the
fluid velocity stabilizes after some iterations, reaching a magnitude of 2× 10−1 when using
N = 20, 30 and 40 modes. Also the relative error for ds shows a plateau around 9 × 10−2,
except for when N = 20, in which case the error decreases in time: we read this result as the
consequence of using too many modes in the online model, when N = 30, 50. For the fluid
pressure we observe the same accumulation phenomenon that we observe in the previous
parametrized test case. To conclude, even though these relative errors seem high, we are
again testing our algorithm with a prediction problem, since the value (μg, μs) = (0.9, 105)
has not been used to generate modes during the training phase of the algorithm. In addition
to this, we would like to remark that, by increasing the number of sampling parameters used
at the FOM level, we should be able to drive the error down, and this seems to be confirmed
by the results in Table 10: we did not proceed with a sampling refinement because of time
constraints, since the generation of 40, 000 snapshots is very demanding. In Tables 8, 9 and
10 we report the average approximation error for the fluid velocity u f , the fluid pressure
p f and the solid displacement ds , when μg = 0.9 cm and μs = 105: the average has been
taken over time, and we used the L2 norm for the fluid pressure and the solid displacement,
and the H1 norm for the fluid velocity. In Table 8 we computed the relative approximation
error, by using Ng = 8 and Ns = 10 training samples, and refining the number of basis
functions used online, from N = 15 to N = 50. In this case, we used the same number
of basis functions for all the components of the FSI solution: again, we remark that other
tests are possible, for the interested reader, for example keeping the number of modes fixed
for the fluid velocity and the solid displacement, and varying the number of modes used
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for the fluid pressure. Also here, like for the previous test case, the online model seems to
benefit from a higher number of modes used. In Table 9, we used N = 30 modes for the
online solution, Ns = 10 training samples for the physical parameter, and we refined the
geometrical training set, from Ng = 5 to Ng = 8. On the contrary, in Table 10, we kept
Ng = 8 training samples for the geometrical parameter, and refined the physical training
set from Ns = 6 to Ns = 10. We remark that analyzing the training samples with Ng = 8
and Ns = 10 corresponds to generating 40.000 snapshots. Indeed, in the framework of the
POD, we have to compute all the snapshots for each value of the training parameter, in an
unsteady framework: this procedure is extremely expensive, and it required a total of 5 days,
by running the simulations on two different computers: a computer Intel(R) Core(TM) i5-
4670S CPU with 3.10 GHz and 7.7G of RAM, and a supercomputer Intel(R) Xeon(R) CPU
E5-2687W v4 with 3.00 GHz and 540G of RAM. For this reason, we did not proceed further
with the refinement of the parameter sampling. As the results show, however, by refining the
parameter space, thus by using more training samples, we are able to improve the average
approximation error. We remark also that, in case of Tables 9 and 10, the online computations
have been made using N = 30 modes for each component of the solution. We think that in
this case the average approximation errors are higher (compared to the ones obtained for the
non parametrized test case) expecially due to the presence of the geometrical parametrization.
Finally, in Table 11 we show some CPU times: we choose μg = 0.9 and μs = 8 × 105,
and fix N = 30 for all the components (these modes were obtained fixing Ng = 8 and
Ns = 10). The simulation is run on a computer Intel(R) Core(TM) i5-4670S CPU with 3.10
GHz and 7.7G of RAM; the CPU execution time is reported in Table 11 (times measured
in seconds): the FOM requires 24763.47 seconds for the same geometrical and physical
parameters (the computation comprises also the computation of the change of variable z f
and the homogenization of the fluid pressure through the lifting function). As we can see, and
as expected, by strengthening the tolerance, the computational time grows, as more iterations
are needed at the implicit step to reach the convergence.What is interesting to notice, however,
is that, by strengthening the tolerance we do not see an important decrease in the average
approximation error: this result seems to therefore suggest that online computations could
be carried out also using a coarser tolerance (for example 10−4 instead of 10−6).

5 Conclusions

In this manuscript we presented a Reduced Order Model algorithm designed to address FSI
problems, in the unsteady case, and possibly in the presence of a parameter dependence.
The ROM is based on a partitioned procedure: the main advantage of this is given by the
fact that, by solving separately the fluid and the solid problem, we are not only able to
lower the dimension of the systems to be solved in the online phase, but we also have a
better control on the number of variables that are needed. The reduced basis functions are
generated through a Proper Orthogonal Decomposition on the set of snapshots, with the
introduction of a change of variable in the fluid problem formulation. The procedure that we
have proposed aims at extending the work presented in [20, 45] to the case of the coupling
between an incompressible fluid and a thick, two dimensional structure, also in the presence
of geometrical parametrization. The results that we have obtained confirm the following
aspects:
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• Introducing a change of variable in fluid explicit step allows us to avoid the introduction
of a further unknown in the system, namely a Lagrange multiplier, in order to impose
non homogeneous boundary conditions at the fluid-structure interface;

• The choice of not performing a POD on the snapshots d f , but rather performing an
harmonic extension of some modes, allows us to build the online dN , f in a cheap way.
Moreover, the coupling condition that imposes the continuity of the displacements at the
fluid-structure interface is automatically satisfied, thanks to the way we have defined the
reduced basis for d f .

In addition to the list of remarks presented, another very important detail of the procedure
presented in this manuscript is the following: we did not rely a supremizer enrichment of
the fluid velocity space, as it is the usual case for reduction methods, in order to obtain a
stable approximation of the fluid pressure in the online phase. Our choice is motivated by
the fact that, even at the Finite Element level, the Chorin–Temam projection scheme with the
pressure Poisson formulation can be applied succesfully also to velocity-pressure FE spaces
that do not satisfy the inf-sup condition, see [60]. This allows us to limit the dimension of
the system to be solved online, and it is a big motivation for the choice of a Chorin–Temam
projection scheme within our partitioned approach.

While testing this algorithm, we have seen that a partitioned procedure is demanding
from the computational time point of view: this drawback is represented by the fact that, in
the imposition of the coupling conditions through a Robin boundary condition, the constant
αROB that makes the procedure more stable depends on the time-step used. If we choose a
time-step that is too big, then our Robin coefficientαROB becomes very small, andwe recover
the original Dirichlet–Neumann coupling, which is known to have stability problems, i.e. the
implicit step may not converge. Always in the direction of the computational effort of the
offline phase, we remark that in this manuscript we considered a physical parameter for
the solid, but no parametrization of the fluid has been taken into account: considering a
fluid parameter, instead of a solid one, does not change the design of the algorithm. However
having a test case which comprises both a parameter for the solid and a parameter for the fluid
does highlight the boundaries of the POD in this framework; indeed, generating the snapshots
for the chosen sampling set would be extremely time demanding, even though it would be
carried out at an offline level: for this reason, future perspectives also include the design of
an error estimator and the integration of a Greedy algorithm based on such estimator. It is
also important to mention the fact an efficient online–offline decoupling is very important
in terms of model order reduction efficiency: for the fluid part, this can be recovered thanks
to the Empirical Interpolation Method (EIM), see for example [17, 61, 62], whereas for the
solid mechanics part, one may think about using hyper-reduction procedures that preserve
the Hamiltonian structure, such as, for example, the ECSW [63]. These techniques have not
been used in this work, as we wanted to focus on the development and test of a reduced order
segregated procedure for FSI problems which involve the coupling of an incompressible fluid
with an elastic structure; this can be seen as a natural future perspective for this work.

As it was mentioned in the Introduction, there is currently a fair amount of interest in
approaches that are able to couple high fidelity models with reduced order models: one may
think about using a FOM for the structure, and a ROM for the fluid. The authors believe that
there is a possible extension (with some required modifications) of the algorithm proposed,
to this kind of situations: again, this represents another interesting future line of research.
Another remark that we would like to make concerns the timestep used in our numerical
simulations: in the results that we have showed, a timestep of �T = 10−4 has been used
both for the fluid and for the solid problem. However, one may be interested in using different
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timesteps for the two physics, as the solid model is an hyperbolic equation, and the fluid is
a parabolic one: we do believe that this is possible, with the procedure presented. Indeed,
given the time interval In := (tn−1, tn], given a solid timestep �Ts and a fluid timestep
�T f , assume that the resulting time discretization I sn of the interval In is finer than the time

discretization I f
n of In . Then, one just needs to be able to evaluate fluid quantities on the

times t si ∈ I sn and solid quantities on the times t fi ∈ I f
n : with the definition of suitable

interpolation operators (interpolation in time), we should be able to implement a partitioned
scheme with different timesteps for the two physics. This idea is presented for example in
[64] for a monolithic scheme, but it represents an interesting starting point for a future work
within partitioned schemes. In this case, maybe manually tuning the Robin parameter αROB

to achieve optimal convergence can be a better idea, in order to drop the dependence on �T :
further research in this direction needs to be carried out.
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