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Low-temperature magnetic ordering and structural distortions in
Vanadium Sesquioxide (V2O3)

Daniel Grieger and Michele Fabrizio
SISSA, Via Bonomea 265, 34136 Trieste, Italy

Vanadium Sesquioxide (V2O3) is an antiferromagnetic insulator below TN ≈ 155 K. The magnetic
order is not of C- or G-type as one would infer from the bipartite character of the hexagonal basal
plane in the high-temperature corundum structure. In fact, the Néel transition is accompanied by
a monoclinic distortion that makes one bond of the honeycomb plane inequivalent from the other
two, thus justifying a magnetic structure with one ferromagnetic bond and two antiferromagnetic
ones. We show here that the magnetic ordering, the accompanying monoclinic structural distortion,
the magnetic anisotropy and also the recently discovered high-pressure monoclinic phase, can all be
accurately described by conventional electronic structure calculations within GGA and GGA+U.
Our results are in line with DMFT calculations for the paramagnetic phase1, which predict that the
insulating character is driven by a correlation-enhanced crystal field splitting between eπg and a1g

orbitals that pushes the latter above the chemical potential. We find that the a1g orbital, although
almost empty in the insulating phase, is actually responsible for the unusual magnetic order as
it leads to magnetic frustration whose effect is similar to a next-nearest-neighbor exchange in a
Heisenberg model on a honeycomb lattice.

PACS numbers: 71.45.Gm, 71.45.Lr, 71.30.+h, 73.20.Mf, 71.15.Mb

I. INTRODUCTION

For more than forty years, the phase diagram
of Chromium/Titanium-doped Vanadium Sesquioxide2,3

(V2O3) has gathered great interest, especially because
of its isostructural high-temperature paramagnetic metal
to paramagnetic insulator transition, which is by now
considered the prototypical realization of a genuine Mott
transition, i.e. not corrupted by any symmetry breaking.
Relatively less attention has instead been paid on the
low temperature antiferromagnetic phase of V2O3. In-
deed, within a certain doping/pressure range, Vanadium
Sesquioxide undergoes a magnetic phase transition4 be-
low a critical Néel temperature TN,

4–6 which is around
155 K for undoped V2O3.

7 Since magnetism in a strongly-
correlated material is just a side effect of Mott’s localiza-
tion, scientific interest in V2O3 has mostly focused so far
on the latter phenomenon rather than on the mechanism
that produces the experimentally observed magnetic or-
der. Indeed, the magnetic structure in V2O3 rises a num-
ber of intriguing questions most of which are still awaiting
an answer.

FIG. 1: (Color online) d levels and their occupancy of a hy-
pothetical isolated Vanadium atom in the trigonal field of the
high-temperature corundum structure.

In V2O3, each Vanadium atom has two electrons
within the t2g orbitals of the cubic-split d-shell, as
schematically shown in Fig. 1. In the high-temperature
corundum structure, the trigonal field further splits the
t2g into a lower e

π
g doublet and a higher a1g singlet. In the

extreme Mott localized scenario, the two electrons would
occupy the eπg orbitals and be coupled into a spin S = 1
configuration in accordance with Hund’s rules, see Fig. 1.
This idealized picture, each eπg singly occupied and the
a1g empty, is not far from what most recent LDA+DMFT
calculations predict.1,8 If we assume legitimate to discard
the a1g contribution to the low-energy processes that con-
trol the coupling between the S = 1 localized moments,
we must conclude that the virtual hopping of eπg electrons
between nearest neighbor sites gives rise to a conventional
antiferromagnetic super-exchange within the honeycomb
basal plane, whose bipartite character would then lead
to a Néel two-sublattice antiferromagnetism. Moreover,
since the eπg orbitals are non-bonding along the c-axis
perpendicular to the hexagonal plane, we would expect
an antiferromagnetic order either of the G- or the C-type,
which we shall hereafter denote as ”simple”9 and ”lay-
ered” antiferromagnetic structures, respectively.

In reality, the experimentally observed magnetic struc-
ture5, which we shall refer to as ”true”, is completely
different. Along the c-axis, the two nearest neighbor
Vanadium atoms are coupled ferromagnetically, not in
disagreement with the above expectation. In contrast,
among the three bonds connecting one Vanadium atom
to its nearest neighbors within the honeycomb basal
plane, only two are antiferromagnetic but the remain-
ing one is ferromagnetic. This phase is accompanied by
a monoclinic distortion which goes along with the mag-
netic structure, making one hexagonal bond inequivalent
from the other two. However, slightly contradicting re-
sults about the exact influence onto the respective bond-

http://arxiv.org/abs/1502.04555v1
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lengths can be found in literature, from shortening the
antiferromagnetic bonds,7,10 as one would reasonably ex-
pect, to the opposite.11

The natural issue that arises is why this complicated
”true” magnetic order should be energetically favorable
with respect to the ”simple” or ”layered” structures in
view of the additional energy cost of the monoclinic dis-
tortion. Up to now, this simple question has still not
found a satisfactory answer.

FIG. 2: (Color online) The ”dimer” building block of Castel-
lani, Natoli and Ranninger, with its electronic configuration.

The first attempt to explain the observed magnetic
structure was performed in a series of papers by Castel-
lani, Natoli and Ranninger (CN&R).12–14 Their start-
ing point was not the atomic limit of Fig. 1, but the
molecule of two nearest neighbor Vanadium atoms along
the c-axis, which we shall refer to as a ”dimer”. The
a1g orbitals form a covalent bond along the c-axis that
falls below the eπg levels, see Fig. 2. The lowest elec-
tronic configuration consists then of two electrons in a
spin-singlet configuration occupying the σ-bond, and the
remaining two coupled into a spin-triplet configuration
within the eπg levels. The residual fourfold orbital de-
generacy besides the threefold spin degeneracy was ex-
ploited to build a spin-orbital Kugel’-Komskii15 type of
Heisenberg model, whose mean-field solution in a cer-
tain parameter range reproduces the observed magnetic
structure and simultaneously predicts an orbital order-
ing. The CN&R’s scenario implies that each Vanadium
has spin S = 1/2, while the dimer has S = 1. In order to
explain the observed magnetic moment larger than one
Bohr magneton, CN&R invoked an exchange polarization
of the a1g electrons.
The ”dimer” building block was later questioned on

the basis of x-ray absorption measurements 16 and of ab-
initio LDA+U calculations,9 both supporting a scenario
in which each Vanadium is in a spin S = 1 configuration
rather than spin-1/2. This conclusion was further rein-
forced by x-ray resonant elastic scattering measurements
showing that the observed moment of 1.2 µB has both
a spin contribution 2〈S〉 ≃ 1.7 as well as an orbital one
〈L〉 ≃ −0.5.17 All these novel results stimulated attempts
to reexamine the CN&R model in terms of S = 2 dimers
(each Vanadium in a spin-triplet state) rather than S = 1
as in the original formulation, see e.g. Refs. 18, 19 and
20, although this list is by no means exhaustive.

At the meantime, the same belief that the V2 dimer
is the relevant building block to explain the magnetic
structure started to be questioned,21–23 until most re-
cent LDA+DMFT calculations1,8 have finally come back
to the atomic scenario of Fig. 1 as the most plausible one
for the insulating phases of V2O3. Nevertheless, impor-
tant issues remain open, which might escape from very
accurate but still approximate techniques like LDA+U
or LDA+DMFT.23,24

An important one is the aforementioned sizable orbital
contribution to the magnetic moment.17 We observe that
the t2g orbitals can make available at most an orbital
moment L = 1. Therefore the observed |〈L〉| ∼ 0.5 is a
substantial part of it, which cannot be justified within
the atomic limit of Fig. 1, since the eπg alone are not
spin-orbit active, but can be explained within the dimer
scenario.20,24

Equally intriguing remains the monoclinic distortion
accompanying the magnetic order. As we mentioned, if
we assume the atomic limit of Fig. 1 and neglect contribu-
tions from a1g orbitals, only ”simple” or ”layered” mag-
netic structures can be stabilized. More realistic LDA+U
calculations by Ezhov et al.

9 show that in the corundum
structure the lowest energy magnetic configuration is in-
deed the ”simple” one, lower by 5 K than the ”true”
structure. Since the monoclinic distortion costs elastic
energy, it is not easy to conceive on the basis of these
calculations why V2O3 would distort to stabilize a phase
that in the undistorted crystal is higher in energy. Tight-
binding Hartree-Fock calculations by Perkins et al.23 per-
formed with hopping matrix elements of symmetry ap-
propriate to the corundum phase find that the ”true”
structure can have lower energy than the ”simple” one
even in the undistorted lattice, though in a quite nar-
row region of parameter space. Similar conclusions are
obtained within the dimer model.18,19

In summary, in spite of many attempts performed
in the last forty years, the real cause of the observed
magnetic order and concomitant monoclinic distortion
in V2O3 is still elusive and we believe it is worth trying
to shed further light, which we hope to do in the present
study. The approach we shall adopt is mainly plain den-
sity functional theory (DFT) and its DFT+U extension
to strong electronic correlations, which is especially suit-
able for antiferromagnetic insulators. In this sense, this
work is partially an extension of the pioneering one by
Ezhov et al.

9 Furthermore, model studies are shown to
support the findings from these realistic theories.

The paper is organized as follows: Section II sum-
marizes the density functional theory (DFT) picture of
V2O3 regarding magnetism and structural distortions.
Section III enhances this picture by strong electronic cor-
relations as described by DFT+U approaches. Section IV
focuses on the orientation of the magnetic moments as
described by DFT+U as well as by an analytic picture.
Section V finally aims at finding reasons for the type of
magnetic ordering realized in V2O3 by considering suit-
able model studies.
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II. DFT STUDIES

It is obvious that electronic correlations do play a cru-
cial role in the physics of V2O3, as demonstrated in detail
by several earlier studies,1,8,9,25 to which the antiferro-
magnetic ground state makes no exception. However, al-
ready density functional theory (DFT) in its generalized-
gradient approximation (GGA) to the energy functional
(here in its PBE parametrization26), in spite of being
known to fail for several strongly correlated systems, can
give some important insights into this state. It is under-
stood that one cannot expect an accurate description of
all the observed properties by plain GGA, but it will be
shown to be a useful starting point for all further consid-
erations.
The following DFT calculations have been performed

with the Quantum ESPRESSO code27 using ultra-
soft pseudopotentials (V.pbe-n-van.UPF and O.pbe-
van ak.UPF from http://www.quantum-espresso.org).
To account for the monoclinic distortion and magnetic or-
dering, a supercell containing 8 Vanadium atoms is used.
Its symmetry properties are described by the monoclinic
space group I2/a,7,28 whose lattice vectors (am,bm, cm)
can be built from the original high-temperature corun-
dum structure lattice vectors (aH,bH, cH) in hexagonal
notation as follows:





am

bm

cm



 =





2
3

4
3

1
3

1 0 0
1
3

2
3

− 1
3









aH

bH

cH



 . (1)

If not stated otherwise, the length of the unit vectors will
not be altered throughout the following calculations, but
retained at its experimentally reported value at ambient
conditions28.

A. The paramagnetic solution

The most basic GGA setup that can be built for V2O3

is a calculation with enforced paramagnetism. If done in
the enlarged 8-site unit cell and allowing for relaxation of
the atomic positions, its solution has the noteworthy pe-
culiarity that it incorporates a monoclinic distortion. In
spite of the elastic energy cost that is associated to any
kind of lattice distortion, the energy gain compared to
the relaxed paramagnetic corundum structure is as large
as 25 meV per Vanadium atom. The distortion is charac-
terised by two nearest-neighbor bonds being lengthened
and one shortened in the hexagonal aHbH plane. An-
ticipating results of the next section, we mention that
the same kind of distortion occurs in the antiferromag-
netic metal phase. However, if GGA is supplemented by
a Hubbard U , above a threshold value an antiferromag-
netic insulating phase is established, which still has mon-
oclinic distortion but with two bonds shortened and one
lengthened, hence opposite to that in the metal phases,
either paramagnetic or antiferromagnetic.

The large energy gain corresponds to a substantial lat-
tice distortion, with the length of the shortened bond in
the aHbH plane of 2.56 Å and thus even slightly smaller
than that of the Vanadium dimer along the cH direction
of 2.63 Å. Comparing with the length of the enlarged
bonds in the aHbH plane of about 3.0 Å, one notices that
the structure becomes similar to an array of 1d-chains,
each of them running along the dimer and the short bond
in the hexagonal plane.

Although such a monoclinic paramagnetic metal phase
is unstable against magnetism, as we shall show in the
next section, it is nevertheless of interest in view of
the recent discovery of a high-pressure monoclinic metal
phase29 that is actually not dissimilar to what we just
found. It is therefore worth investigating the mechanisms
that may drive such a distortion.

(a)

(b)

FIG. 3: (Color online) (a) Fermi surface of paramagnetic
metallic corundum structure V2O3 with experimental atomic
positions28, seen along the crystallographic cH direction,
equivalently the cartesian z axis. (b) Projections of the Fermi
surface onto planes that are obtained by rotating around the
cartesian y-axis of panel (a). While the vertical axis corre-
sponds to the cartesian y direction, the horizontal axis is:
the cartesian x direction (left panel); rotated about 40◦ with
respect to the former, so that it represents the direction to-
wards a next-nearest neighbour atom in the adjacent hexag-
onal plane (middle panel); perpendicular to the latter (right
panel). The black lines indicate the Brillouin zone boundary
of the corundum structure, the grey lines its shape for the
doubled monoclinic cell.

We believe that the monoclinic distortion is actu-
ally driven by a Fermi surface nesting of the corundum
band structure. Indeed the central sheet of the whole
Fermi surface, shown in Fig. 3(a) and calculated with
the structural data of Ref. 28 corresponding to the high-
temperature paramagnetic metal, has nesting properties
compatible with an instability towards a monoclinic dis-
tortion with a unit cell doubling. This is quite evident

http://www.quantum-espresso.org
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by looking at cut planes as shown in Fig. 3(b). While the
aforementioned sheet looks almost circular in the honey-
comb plane of Vanadium atoms, relatively large regions
of parallel surfaces can be identified by slightly tilting the
cut-plane. In order to better uncover the driving physical
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FIG. 4: (Color online) Band structure (left) and projected
density of states (right) from GGA of paramagnetic corun-
dum structure V2O3 with atomic positions determined exper-
imentally for the paramagnetic metallic phase28 (up), GGA-
relaxed atomic positions in the corundum structure (middle)
and GGA-relaxed atomic positions allowing for a monoclinic
distortion (down).

mechanism, the band structures in the enlarged 8-atom
unit cell shown in Fig. 4 are particularly enlightening.
The chosen path through the Brillouin zone pertaining
to the enlarged 8-atom monoclinic cell starts from the
point V = (0, 1

4
,− 1

4
) in relative reciprocal coordinates

(compatible with the magnetic order), moves further to
Γ and along the Vanadium dimer (Γ-A direction), further
goes in the plane perpendicular thereto at the “upper”
(kz = 1

2
) edge of the Brillouin zone (A-M), back to the

original hexagonal aHbH plane at kz = 0 (M-Y) and con-
tinues in this plane (Y-Γ-L).

Starting from the well-known30,31 GGA low-energy
density of states and band structure of the corundum
paramagnetic metal, as displayed in the top row of Fig. 4,
one immediately notices a large density of states directly
at the Fermi energy, due to almost flat bands near Γ.
As expected, relaxation of the atomic positions within
the corundum structure (middle row of Fig. 4) partially
reduces this instability, and furthermore leads to a re-
duction of the splitting between eπg and high-energy eg.

32

However, allowing for a monoclinic distortion (bottom
row of Fig. 4) further stabilizes the system by splitting
the flat bands around Γ and opening a pseudo-gap at the
Fermi energy. We mention that the undistorted structure
is not even metastable, but corresponds to a saddle point
in the total energy.
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FIG. 5: (Color online) Total energy difference of the P21/c
and I2/a phases of monoclinic V2O3, as a function of the
applied pressure. The relative units of the pressure axis cor-
respond to the reported values in the corundum structure at
ambient conditions28 (0.0) and the experimentally reported
values of the high-pressure phase transition from I2/a to
P21/c

29 (1.0).

We finally mention that the above monoclinic param-
agnetic metal phase is not exactly equivalent to that ob-
served at high-pressure in Ref. 29, which is characterised
by a further symmetry lowering from I2/a to P21/c. Fig-
ure 5 shows that this symmetry reduction can also be
seen in GGA upon simulating pressure by a decrease of
the unit cell volume. Both phases I2/a and P21/c are
minima of the total energy. At ambient pressure, I2/a
has a slightly lower energy than P21/c, but the situation
is reverted already applying small pressure. Therefore
the transition from I2/a to P21/c would occur according
to GGA at significantly lower pressures than reported
experimentally29. We believe that this is an artifact due
to GGA underestimation of electronic correlations. In-
deed, the P21/c structure in GGA is characterised by
a charge disproportionation between inequivalent Vana-
dium atoms, which is hindered by electronic correlations.

B. Magnetic solutions

Allowing for magnetism in the framework of spin-
polarized GGA, Tab. I shows that the paramagnetic
GGA solution described in the previous subsection is un-
stable compared to all of the magnetic solutions. Like-
wise, the energy gain due to its monoclinic distortion is
significantly smaller than the energy gain due to mag-
netic exchange.
Comparing the different possible magnetic orderings,

an important result that we find is the stability of the
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TABLE I: Comparison of some basic quantities, calculated for the different antiferromagnetic configurations of V2O3 within
plain GGA. Energies are given relative to the respective “simple” phase.

“simple” “true” “layered” para

experimental corundum structure

total GGA energy (meV/V atom) 0 -4.1 -5.2 179.6

absolute magnetization (µB/V atom) 1.53 1.57 1.54 0

relaxed structures

total GGA energy (meV/V atom) 0 -12.2 -7.9 112.1

absolute magnetization (µB/V atom) 1.47 1.55 1.49 0

“true” antiferromagnetic ordering already in GGA. Note
that this requires relaxation of the atomic positions
within the crystal cell. Also this relaxation of the “true”
antiferromagnetic structure reveals a monoclinic distor-
tion similar to the experimentally observed one and simi-
lar (but smaller) to the one described above for the para-
magnetic regime. Note that both the other two inves-
tigated antiferromagnetic configurations (“layered” and
“simple”) remain in an undistorted corundum structure
even allowing for structural relaxation. This can also
be expected by symmetry considerations of the magnetic
structure, recalling that the magnetic exchange energy
gain is significantly larger than an energy gain of the
structural distortion. This underlines the fact that the
lattice distortion in antiferromagnetic V2O3 directly sta-
bilizes the antiferromagnetic order, and is thus closely
related to it.
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FIG. 6: (Color online) Band structure (left) and projected
density of states (right) of true antiferromagnetic V2O3 from
GGA.

As can be seen from the low-energy density of states
and band structure shown in Fig. 6, the main drawback is
that pure GGA cannot describe the insulating behavior
of the magnetic structure. This is the expected result in
view of the importance of strong electronic correlations
in V2O3. Furthermore, one notices that the splitting
between a1g and eπg turns out to be small enough that all
orbitals from the t2g block have a similar filling (with the
a1g occupation slightly smaller than each eπg ). This gives
rise to a spin magnetic moment slightly smaller than the
observed experimental value, which we recall is ∼ 1.7µB

once corrected by the orbital contribution.

III. DFT+U STUDIES

Since the antiferromagnetic insulating state is the
ground state of V2O3, one can expect to gain insight
into the effects of strong electronic correlations already
from a simple method like GGA+U. Here, the simplified
version of Cococcioni and de Gironcoli33 in the Quan-

tum ESPRESSO package is put into practice, which
implies the use of only one effective parameter U−J and
a fully-localized limit (FLL) double-counting correction.
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FIG. 7: (Color online) Phase stability comparison in the ex-
perimentally determined corundum structure of V2O3 within
GGA+U. Closed circles indicate metallic, open circles indi-
cate insulating solutions.

Since the actual value of the parameter U−J is a priori
unknown, Fig. 7 compares the stability of each of the pos-
sible magnetic structures in terms of their total energy for
a wide parameter range. This calculation is performed
in the experimental atomic positions in the unrelaxed
corundum structure,28 nevertheless already shows that a
small U − J is able to stabilize the “true” antiferromag-
netic phase, whereas for large interactions the “simple”
and “layered” structures become more stable.
The relaxation of the structural parameters within

GGA+U further stabilizes the “true” antiferromagnet-
ically ordered phase and extends its stability region, as
shown in Fig. 8. As anticipated, above U − J ≃ 2.0 eV,
the ”true” antiferromagnetic state turns from metallic
into insulating, which sets between 2.0 and 4.0 eV the
range of U − J values that reproduce within GGA+U
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FIG. 9: (Color online) Band structure (left) and projected
density of states (right) of true antiferromagnetic V2O3 from
GGA+U at U − J = 3.0 eV.

the magnetic and conducting properties of the actual
material. Fig. 9 shows the GGA+U Kohn-Sham band
structure and density of states projected onto Vanadium
d-orbitals for U − J = 3.0 eV, which we assume to be a
realistic estimate.
It turns out that the GGA+U realization of the insu-

lating phase corresponds to the straightforward solution
of occupied eπg orbitals and empty a1g one, thus implying
an S = 1 spin configuration. As mentioned, this is in
line with e. g. the U -induced paramagnetic Mott metal-
insulator transition in DMFT1, though still a matter of
debate.23,24

This scenario is further confirmed in Fig. 10, where
we plot the occupation numbers in the crystal field basis
that diagonalizes the GGA+U occupation matrix. We
mention that, since these orbitals are not strongly local-
ized on a single Vanadium atom, the total occupation is
not precisely 2. The depletion of the a1g-like crystal-field
basis orbital with increasing values of U − J in favor of
eπg -like orbitals is evident. A noteworthy jump occurs at
the metal-insulator transition, with the above-mentioned
scenario of a majority-spin a1g orbital that is almost half-
filled below and almost empty above.
One remarkable effect of the monoclinic distortion and

the magnetic ordering is the lifting of the degeneracy
bewteen the two eπg orbitals, which is particularly strong
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FIG. 10: (Color online) Crystal field basis occupation num-
bers (eigenvalues of the GGA+U local density matrix) per
Vanadium d-orbital as a function of U −J in the relaxed true
antiferromagnetic phase of V2O3. Triangles pointing up indi-
cate the majority spin channel, triangles pointing down the
minority spin channel. As before, AFM and AFI stand for
antiferromagnetic metal and insulator, respectively.

in the (unphysical) magnetic metallic regime, but still
present in the magnetic insulating one. It is a direct
consequence of the breaking of the three-fold rotational
symmetry of the Vanadium planes with magnetic order
or structural distortion, and therefore does not occur for
the other investigated magnetic structures that do not
break such symmetry.
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FIG. 11: (Color online) Nearest-neighbour Vanadium dis-
tances from relaxation in the “true” antiferromagnetic struc-
ture, indicating the monoclinic distortion. AFM and AFI
stand for antiferromagnetic metal and insulator, respectively.

The inequality between the two eπg orbitals, more ac-
centuated the smaller U − J , also shows up into differ-
ent lengths of the two antiferromagnetic in-plane nearest-
neighbor bonds, as shown in Fig. 11, to such an extent
that, in the metal phase U − J < 2 eV, one of the an-
tiferromagnetic bonds is the longest. On the contrary,
above U − J = 2 eV, i.e. in the realistic insulating
phase, all nearest-neighbor Vanadium distances shown
in the same Fig. 11 are compatible with the observed
monoclinic distortion and with the intuitive expectation
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of elongated ferromagnetic bonds and shortened antifer-
romagnetic ones. However a small difference between the
lengths of the two in-plane antiferromagnetic bonds per-
sists also in the insulating side.

IV. MAGNETIC ANISOTROPY

Already the original 1970’s work by Moon5 pointed
out that the magnetic moments are oriented with a cer-
tain angle towards the crystallographic c-direction. Such
a magnetic anisotropy is, at first glance, not expected
for a light element like Vanadium. However, for sim-
ilar compounds like Vanadium spinels, values of spin-
orbit coupling in the range of 13-20 meV have been
reported34–37, which makes a DFT calculation includ-
ing relativistic effects (spin-orbit coupling) and non-
collinear magnetism worth trying. To this end, the
implementation thereof38 in Quantum ESPRESSO

has been used with a fully relativistic pseudopoten-
tial (V.rel-pbe-spnl-rrkjus psl.1.0.0.UPF from the PSLi-
brary of http://www.quantum-espresso.org) and the ro-
tationally invariant GGA+U formulation of Liechten-
stein et al.39. Due to the high computational demands
of such a calculation, no further relaxation of the struc-
tural parameters has been done, but values of the mono-
clinically distorted collinear-antiferromagnetic structure
relaxed without U have been used.
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FIG. 12: (Color online) LDA+U energy difference of “true”
antiferromagnetic solutions with spin orientation in the hon-
eycomb plane and in c-direction (perpendicular thereto), as a
function of the Hubbard parameter U . Closed circles indicate
metallic, open circles indicate insulating solutions.

Fig. 12 shows the energy difference between GGA+U
solutions with magnetic moments oriented in the hon-
eycomb plane (Ein−plane) and oriented perpendicular
thereto (Ec), i. e. in the crystallographic c-direction. A
first result is that, without electronic correlations, i. e. at
the GGA level, the c-axis alignment is favored, although
with a tiny energy difference. However, upon increasing
U , and specifically above the metal-insulator transition,
the in-plane orientation becomes more stable.

Indeed there is a close connection between the change
from easy-axis to easy-plane and the a1g depletion that
occurs at the metal-insulator transition, which can be
illustrated by a simple model calculation.
Let us assume an isolated Vanadium in the trigonal

crystal field. A suitable basis set for the t2g manifold
(with corundum symmetry) can be written (the sign is
related to the multiple Vanadium atoms per unit cell):

|a1g〉 = |d3z2−r2〉,

|eg1〉 =

√

2

3
|dxy〉 ±

√

1

3
|dxz〉, (2)

|eg2〉 = −
√

2

3
|dx2−y2〉 ∓

√

1

3
|dyz〉.

Using the representation |na1g
, neg1 , neg2 ;Sz〉 to de-

note two electrons coupled into a spin triplet with z-
component Sz = −1, 0, 1 and occupying the single-
particle states Eq. (2) with occupation ni = 0, 1 such
that

∑

ni = 2, we define new states:

|1, Sz〉 = ∓
√

1

2

(

|1, 0, 1;Sz〉 − i|1, 1, 0;Sz〉
)

,

|0, Sz〉 = |0, 1, 1;Sz〉, (3)

| − 1, Sz〉 = ∓
√

1

2

(

− |1, 0, 1;Sz〉 − i|1, 1, 0;Sz〉
)

,

which are actually eigenstates of the z-component of the
angular momentum operator Lz projected onto the t2g
manifold that effectively realizes an l = 1 representation,
i.e. Lz |M,Sz〉 = M |M,Sz〉, with M = −1, 0, 1. The
spin-orbit coupling projected onto the basis Eq. (3) reads

HSOC =
λSOC

2

(

2Sz Lz + S+ L+ + S− L−

)

, (4)

where L± have the same expression as for l = 1 angular
momentum operators, while the trigonal crystal field can
be written as

Htr = 3Vtr

(

L2
z −

2

3

)

. (5)

One can easily realize that, for Vtr = 0, the lowest energy
state at λSOC 6= 0 is five-fold degenerate, corresponding
to two d-electrons coupled according to the Hund’s rules
to S = 1, L = 3 and J = 2. Conversely, for λSOC = 0
but Vtr 6= 0, the lowest energy state |0, Sz〉 is an orbitally
non-degenerate spin-triplet.
However, when both parameters are finite with

λSOC ≪ Vtr, the lowest energy state is

|0〉 ≡ cos θ |0, 0〉 − sin θ√
2

(

|1, 1〉+ | − 1,−1〉
)

, (6)

with

tan 2θ =
2
√
2 λSOC

3Vtr + λSOC

,

http://www.quantum-espresso.org
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TABLE II: Tight-binding parameters (in eV) obtained for
corundum phase V2O3 by Saha-Dasgupta et al.21 Nomencla-
ture according to Ref. 12.

µ ρ −α β σ −τ

0.06 −0.51 0.08 −0.21 −0.03 −0.26

followed by the doublet

| ± 1〉 ≡ cosφ |0,±1〉 − sinφ | ∓ 1, 0〉, (7)

with tan 2φ = 2λSOC/3Vtr.
If we regard the three states |0〉 and |± 1〉 as the effec-

tive S = 1 states of each isolated Vanadium, the above
results show that the spin-orbit coupling generates an
easy-plane anisotropy

H∗ = Γtr S
2
z ≃ λ2

SOC

3Vtr

S2
z . (8)

We could proceed and consider the effects of a mon-
oclinic distortion Vm ≪ Vtr that makes the eπg orbitals

inequivalent.20 Looking at the basis set Eq. (3), one real-
izes that the leading effect of this distortion corresponds
to the additional operator

Hm = Vm

(

LzLy + LyLz
)

, (9)

whose action on the S = 1 basis |0〉 and | ± 1〉 above is
equivalent to an additional anisotropy term

δH∗ = Γm

(

SzSy + SySz
)

, (10)

which, together with Eq. (8), might indeed justify the
magnetic moment lying in the monoclinic a-c plane, as-
sumed here to be the y-z plane, 29◦ above the hexagonal
basal plane.
Evidently, the above calculation is a very rough one.

However it shows that one can rationalize the observed
magnetic anisotropy already at the level of a single
Vanadium, without invoking the ”dimer” as a building
block.20

V. MODEL STUDIES AND DISCUSSION

In the previous sections we have shown that the
GGA+U accurately accounts for the magnetic, structural
and conducting properties of V2O3 in its low temperature
phase. This suggests the possibility of recovering simi-
lar results by model calculations within an independent-
particle approximation.
An obvious starting point is a three-orbital tight-

binding model for the corundum phase supplied by a lo-
cal Hubbard U and a Coulomb exchange J . To allow
comparison with previous works, tight-binding parame-
ters calculated by Saha-Dasgupta et al.

21 in an NMTO

basis set are used, which also reproduce well our GGA
band structure. They are summarized in Tab. II, follow-
ing the nomenclature of Ref. 12. In comparison with the
parameters obtained by Refs. 12 and 30, they are char-
acterized by relatively small out-of-plane hopping ampli-
tudes, µ and ρ, and by slightly different in-plane values,
α and β. According to Ref. 21, the monoclinic distortion
would lead to a change up to 4 % of the hopping am-
plitudes, with the possible exception of the out-of-plane
ones. We shall therefore not account for those changes
and keep using the corundum structure parameters. The
two-particle interaction, which includes a Hubbard U and
a Coulomb exchange that we assume equal to J = U/4,
is treated within the Hartree-Fock approximation. This
amounts to consider a trial wavefunction ground state
of a non-interacting Hamiltonian with the same hopping
amplitudes and, in addition, with spin and orbital depen-
dent on-site energies. We shall use an 8-site supercell,
which allows to describes the ”true” antiferromagnetic
state, so that there are in principle 8 sets of Hartree-
Fock on-site energies to be determined by minimizing the
average total energy.
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FIG. 13: (Color online) Phase stability of the insulating
phases from a Hartree-Fock calculation using tight binding
parameters obtained by Saha-Dasgupta et al.21 for corundum
V2O3.

Fig. 13 shows the Hartree-Fock total energies for each
of the magnetic configurations that are obtained by a
suitable choice of the initial configuration for values of U
above which all solutions are insulating. The compari-
son with GGA+U in the corundum phase is in fact not
bad, although we cannot compare directly the value of U
used here with that in GGA+U, which already at U = 0
includes correlation effects. Therefore it is not surprising
that the ”true” structure remains the lowest energy one
at least up to U = 5.
Bearing in mind the comparatively large differences of

the reported values of the out-of-plane hopping, a first
check of the model accuracy is to estimate the influence
thereof onto the overall phase stability, which is high-
lighted in Fig. 14 in the extreme limit of vanishing out-of-
plane hopping parameters, µ = ρ = 0. This check is also
related to one of the main effects of the monoclinic distor-
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FIG. 14: (Color online) Phase stability from a Hartree-Fock
calculation using tight binding parameters obtained by Saha-
Dasgupta et al.21 for corundum V2O3, but fixing all hopping
perpendicular to the Vanadium planes to 0. Closed circles
indicate metallic, open circles indicate insulating solutions.

tion, which tilts and stretches the out-of-plane Vanadium
dimer bonds, see Fig. 11. When µ = ρ = 0, the “layered”
and “simple” orderings are obviously degenerate, but the
“true” one is still stable up to large values of U , although
with a smaller energy difference. This suggests that the
reason for the stability of the “true” structure is primarily
in the in-plane physics. The out-of-plane hopping further
stabilizes this phase, at the same time destabilizing the
“layered” structure compared to the ”simple” one.
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FIG. 15: (Color online) Orbital occupations in the “true”
antiferromagnetic phase from Hartree-Fock as a function of
U . Triangles pointing up indicate the majority spin chan-
nel, triangles pointing down the minority spin channel. PM,
AFM and AFI stand for paramagnetic metal, antiferromag-
netic metal and antiferromagnetic insulator, respectively.

The occupation numbers of the three orbitals on each
Vanadium site, displayed in Fig. 15, show a very simi-
lar behavior to the GGA+U results of Fig. 10, with the
exception of the small-U paramagnetic metal phase. In
the intermediate (unphysical) antiferromagnetic metallic
regime, one can even see a slight increase of the majority-
spin a1g occupations, but a sharp decrease at the metal-
insulator transition reveals again the scenario in which

the two electrons per site occupy the eπg orbitals, making
the a1g orbitals practically empty. Note that this orbital
polarization turns out to be stronger than in GGA+U,
which can be attributed to the fact that the total occupa-
tion of the Hartree-Fock model is kept fixed at 2, so that
no contributions of e. g. neighboring oxygen atoms can
occur. How to adapt the occupation numbers to compare
with experimental findings is shortly discussed in Ref. 1.

Furthermore, the aforementioned splitting of the eπg or-
bitals shows up also in the “true” antiferromagnetically
ordered phase with hopping parameters of the corun-
dum structure, as opposed to the “layered” and “sim-
ple” ordering. This is a further evidence that the struc-
tural distortion is intimately tight to the magnetic order-
ing. We highlight that such a splitting is uniform within
all the eight sites of the supercell, as we also found by
GGA+U. In other words, both Hartree-Fock approxima-
tion and GGA+U predict a ferro-orbital ordering within
the eπg manifold, unlike the antiferro-orbital one found in
Ref. 12.
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FIG. 16: (Color online) Differences of the on-site energy terms
in the “true” antiferromagnetic phase from Hartree-Fock as
a function of U . Triangles pointing up indicate the major-
ity spin channel, triangles pointing down the minority spin
channel.

The Hartree-Fock on-site energy terms, shown in
Fig. 16, display the well-known large increase of the eg-
a1g crystal field splitting with increasing value of U , es-
pecially for the majority spin, whereas all three orbitals
are basically unoccupied for the minority spin. Also the
splitting of the eg orbitals is visible, which amounts to
the relatively large value of 30 meV for the majority
spin in the region of realistic parameter values. We note
that the lowering of eπg1 with respect to eπg2 follows from
our choice of a specific ”true” magnetic order among the
three equivalent ones allowed by the original C3 symme-
try.

In conclusion, even the Hartree-Fock approximation to
a three-band Hubbard model with realistic hopping pa-
rameters reproduces the correct magnetic structure and
indicates the tendency towards a spontaneous monoclinic
distortion.
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FIG. 17: (Color online) Illustration of the magnetic ordering
(different spin directions as light red and dark red) and of the
different relevant hopping processes from the central atom
shown as a large circle. Besides the nearest neighbour eπg −eπg
direct hopping, dark blue, we draw the a1g-mediated next
nearest neighbour ones: light blue in the hexagonal plane,
and green between planes. Bold green lines denote that two
independent paths produce the same hopping process.

A. Role of the a1g orbital

Within both GGA+U and Hartee-Fock the effect of U
is to increase repulsion between occupied and unoccupied
states, hence between majority and minority spins and
between eπg and a1g orbitals. Therefore, at large enough
U , the a1g orbital can be discarded and one expects a
two-sublattice antiferromagnetic order to prevail. This is
indeed the case, see Fig. 8. It thus follows that the a1g
orbital must play a role to stabilise the ”true” magnetic
ordering for intermediate values of U . We argue that
such a role is to provide magnetic frustration.
Let us imagine that the effective crystal field splitting,

enhanced by U , is large enough that we can treat the
hopping τ , see Table II, between eπg and a1g in perturba-
tion theory. Let us focus on the Vanadium atom drawn
as a large circle in Fig. 17. At second order, τ induces
next nearest neighbour eπg − eπg hopping terms, shown as
light blue lines in Fig. 17, that compete against the near-
est neighbour ones, drawn in dark blue. If we also take
into account the large direct a1g − a1g hopping along the
c-axis, ρ in Table II, next nearest neighbour eπg − eπg hop-
ping processes between adjacent planes are generated, see
green lines in Fig. 17, where the bold ones indicate that
there are two different paths contributing to that process.
If we could use these hopping elements to derive an

effective S = 1 Heisenberg model, we would find on each
plane both nearest, J1, and next nearest, J2, neighbour

exchange constants. The phase diagram of the S = 1/2
J1-J2 Heisenberg model on the honeycomb lattice is rela-
tively well known.40–42 The two-sublattice antiferromag-
net is stable for J2 . 0.2J1. For 0.2 . J2/J1 . 0.4, there
seems to be no magnetic order. Finally, for J2 & 0.4J1
the magnetic order is exactly the ”true” antiferromag-
net, shown in Fig. 17. We cannot exclude that the larger
spin S = 1 and the coupling between the planes could
stabilise in our case the ”true” antiferromagnet even in
the formerly disordered region 0.2 . J2/J1 . 0.4.
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FIG. 18: (Color online) Fitted next-nearest neighbour in-
plane hopping parameters ξ and η. See text for details.

In order to estimate the amount of frustration brought
by the a1g-mediated next-nearest neighbour hopping, we
have calculated the band structure in the corundum
phase as function of an artificial crystal field spitting.
When the crystal field is large enough, & 1.2 eV, the up-
per a1g-derived bands are well separated from the lower
eπg -derived ones, hence we can fit the latter by a sim-
ple tight-binding model with only eπg − eπg nearest and
next-nearest neighbour hopping parameters. The nearest
neighbour ones are assumed to be those in Table II. By
the three-fold rotational symmetry, we just need two fit-
ting next-nearest neighbour hopping parameters within
the hexagonal planes, which we call ξ and η and plot in
Figure 18. As expected, ξ and η decrease in absolute
value as the crystal field increases. However, for not too
large crystal field splitting, ξ and η have the same order of
magnitude as the nearest neighbour hopping parameters
α and β, see Table II.

The above calculation is very rough; the effective crys-
tal field is not so large that eπg and a1g bands are sepa-
rated, and U not big enough to justify a mapping onto an
Heisenberg model. However we believe that the overall
scenario is correct: the a1g orbital, although pushed by
relatively strong correlations above Fermi in the insulat-
ing phase, as first noted by DMFT in Ref. 1, still heavily
contributes to stabilise the ”true” magnetic structure.
All these features, including the monoclinic distortion
and the magnetic anisotropy, are well captured by an
independent particle scheme as GGA+U.
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