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Gamma-convergence of quadratic functionals perturbed
by bounded linear functionals

Gianni Dal Masoa, Davide Donatib

aSISSA, Via Bonomea 265, 34136 Trieste, Italy
bSISSA, Via Bonomea 265, 34136 Trieste, Italy

Abstract

Given a bounded open set Ω ⊂ Rn , we study sequences of quadratic functionals
on the Sobolev space H1

0 (Ω), perturbed by sequences of bounded linear func-
tionals. We prove that their Γ-limits, in the weak topology of H1

0 (Ω), can
always be written as the sum of a quadratic functional, a linear functional, and
a non-positive constant. The classical theory of G - and H -convergence com-
pletely characterises the quadratic and linear parts of the Γ-limit and shows
that their coefficients do not depend on Ω. The constant, which instead de-
pends on Ω and will be denoted by −ν(Ω), plays an important role in the
study of the limit behaviour of the energies of the solutions. The main result
of this paper is that, passing to a subsequence, we can prove that ν coincides
with a non-negative Radon measure on a sufficiently large collection of bounded
open sets Ω. Moreover, we exhibit an example that shows that the previous
result cannot be obtained for every bounded open set. The specific form of this
example shows that the compactness theorem for the localisation method in
Γ-convergence cannot be easily improved.

Keywords: Γ-convergence, Localisation method, Elliptic equations,
G -convergence
2020 MSC: 35J20, 49J45

1. Introduction

The aim of this paper is to complete the analysis of the asymptotic behaviour,
as k →∞ , of sequences of functionals of the form

Fk(u) =
1

2

∫
Ω

Ak∇u · ∇u dx− 〈fk, u〉 for u ∈ H1
0 (Ω),

where Ω ⊂ Rn is a bounded open set, Ak are n × n symmetric matrices of
L∞(Ω) functions satisfying the usual ellipticity and boundedness conditions,
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uniformly with respect to k , and fk is a bounded sequence in the dual H−1(Ω)
of the Sobolev space H1

0 (Ω).
These functionals, and the asymptotic behaviour of the solutions to their

Euler-Lagrange equations{
−div(Ak∇uk) = fk in Ω,

uk = 0 on ∂Ω,
(1.1)

have been extensively studied between the late 60s and the 80s. This investiga-
tion led to the notion of G-convergence of the matrices Ak in the symmetric case
(see [8, 16, 17]) and of H -convergence in the general case (see [12, 13]). These
tools have been widely used in homogenisation problems, where, in the periodic
case, the limit matrix can be obtained by solving some auxiliary problems in
the periodicity cell (see [1, 2, 5, 10, 11, 14, 15]).

The classical theory of H -convergence completely characterizes the asymp-
totic behaviour of the solutions to (1.1), even when the matrices Ak are not
symmetric. Indeed, since fk is bounded in H−1(Ω), it can be written as
fk = div(hk) + gk , where, up to a subsequence, hk ∈ [L2(Ω)]n weakly con-
verges to h in [L2(Ω)]n and gk weakly converges to g in L2(Ω). Therefore
(1.1) can be equivalently rewritten as{

−div(Ak∇uk + hk) = gk in Ω,

uk = 0 on ∂Ω.
(1.2)

In this form, the problem was studied first in the periodic setting in [9],
and then in a more general setting in [3] (see also [18] for a comprehensive
guide to this kind of problems), where it is shown that, up to a not relabelled
subsequence, the solutions uk to problem (1.1) converge weakly in H1

0 (Ω) to
the u solution of {

−div(A∇u) = g in Ω,

u = 0 on ∂Ω,
(1.3)

where g ∈ H−1(Ω) is explicitly determined by means of a corrector result (see
[18, Lemma 13.3]). This formula implies that, in general, g is not a limit point
of the sequence fk (see also [9, Proposition 1.2]).

As a byproduct, these results also show that the term g is local, in the sense
that, if U ⊂ Ω is an open set, then the solutions uUk to problem (1.1), with
Ω replaced by U , weakly converge in H1

0 (U) to uU , the unique solution to
problem (1.3) with the same g and with Ω replaced by U .

When the matrices Ak are symmetric, the solutions uUk and uU can be seen
as the unique minimisers of the functionals defined for every v ∈ H1

0 (U) as

Fk(v, U) =
1

2

∫
U

Ak∇v · ∇v dx− 〈fk, ṽ〉, (1.4)

F0(v, U) =
1

2

∫
U

A∇v · ∇v dx− 〈g, ṽ〉,
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where ṽ is the extension to Ω of v obtained by setting ṽ = 0 outside U , and
g is the term appearing in (1.3).

In this paper, we study the asymptotic behaviour of these functionals in the
sense of Γ-convergence. By a general result on the convergence of minimum
values (see [6, Theorem 7.8]), this is useful to study of the limit the energies of
the solutions of (1.1), with Ω replaced by U ; indeed, these energies coincide
with the values of Fk(·, U) on their minimisers.

Although, in general, the sequence Fk(·, U) does not Γ-converge to F0(·, U),
our main result (see Theorem 3.2) shows that there exist a subsequence, not
relabelled, and a bounded non-negative Radon measure ν on Ω such that

Fk(·, U) Γ-converges to F0(·, U)− ν(U) in the weak topology of H1
0 (U), (1.5)

for every U in a rich collection of open subsets of Ω (see Definition 3.1).
This implies that the energies Fk(uUk , U) converge to F0(uU , U) − ν(U),

hence ν(U) can be interpreted as the asymptotic energy gap between uU and
the sequence uUk . This measure theoretical property of the energy gap, which,
to our knowledge, was never observed in the literature, completes the picture of
the asymptotic behaviour of the solutions of (1.1), with Ω replaced by U , and
of their energies.

Simple examples, even in dimension one, show that, if fk does not converge
strongly to f in H−1(Ω), then the measure ν may be non-trivial, even if
Ak = A for every k . A very complex example of a non-zero ν is presented in
Proposition 3.7, which is proved for different purposes.

Can we obtain (1.5) for every open set U ⊂ Ω, passing possibly to a further
subsequence? This raises a general question concerning the compactness result
(see [6, Theorem 16.9]) in the localisation method for Γ-convergence (see [6,
Chapter 16]): is it possible to find a subsequence, not relabelled, such that

Fk(·, U) Γ-converges in the weak topology of H1
0 (U) (1.6)

for every open set U ⊂ Ω? Unfortunately, this is not true, as we show at the
end of the paper (see Corollary 3.11). More precisely, we exhibit a sequence
Fk of functionals of the form (1.4), with Ak equal to the identity matrix, such
that for every subsequence there exists an open set U ⊂ Ω such that (1.6) does
not hold. In particular, this implies that (1.5) cannot hold for every open set
U ⊂ Ω, showing that the technicalities involving rich collections of open sets
cannot be easily simplified.

To our knowledge, in the general framework of the localisation method this
is the first example of the existence, for every subsequence, of exceptional open
sets for which Γ-convergence does not hold. This shows that [6, Theorem 16.9]
cannot be easily improved.

2. Notation and preliminary results

For every bounded open set U ⊂ Rn the Sobolev space H1(U) is the space
of functions in L2(U) whose first-order distributional derivatives are in L2(U).
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The space H−1(U) is the dual space of H1
0 (U), the closure in H1(U) of C∞c (U).

We will endow H1
0 (U) with the norm

‖u‖H1
0 (U) =

(∫
U

|∇u(x)|2dx
)1/2

,

which, by the Poincaré Inequality, is equivalent on H1
0 (U) to the usual norm of

H1(U). We denote the duality pairing between H−1(U) and H1
0 (U) with 〈·, ·〉 .

If U ⊂ V are bounded open subsets of Rn , every u ∈ H1
0 (U) can be extended

to a function of H1
0 (V ), still denoted by u , by setting u = 0 in V \ U .

Throughout the paper, Ω is a fixed open bounded subset of Rn , n ≥ 1,
while α and β are two constants satisfying 0 < α ≤ β < +∞ . We denote by
Mβ

α(Ω) the space of symmetric matrices A ∈ [L∞(Ω)]n×n such that

α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2 for a.e. x ∈ Ω and every ξ ∈ Rn. (2.1)

Although our analysis is done in terms of Γ-convergence, it is useful to
present also the notion of G-convergence, introduced by Spagnolo in 1968 (see
[16, 17]), since we shall use many results in the literature formulated in this
language.

Definition 2.1 (G-convergence). Let Ak, A ∈ Mβ
α(Ω). The sequence Ak is

said to G-converge to A in Ω if and only if for every f ∈ H−1(Ω) the solutions
uk of the problems {

−div(Ak∇uk) = f in Ω,

uk ∈ H1
0 (Ω),

converge weakly in H1
0 (Ω) to the solution u of the problem{

−div(A∇u) = f in Ω,

u ∈ H1
0 (Ω).

On the space Mβ
α(Ω) the notion of G-convergence coincides with the more

general notion of H -convergence introduced by Murat and Tartar for possibly
non-symmetric matrices (see [12], or [5, Proposition 13.6]).

It is important to recall that Mβ
α(Ω) is sequentially compact with respect

to G-convergence.

Theorem 2.2 ([13, Theorem 2]). Let Ak ∈ Mβ
α(Ω) . Then there exist an

A ∈Mβ
α(Ω) and a subsequence Ahk

G-converging to A in Ω .

Given Ak, A ∈Mβ
α(Ω) and U ⊂ Ω open, we denote by Qk(·, U) and Q(·, U)

the quadratic functionals defined for every v ∈ H1
0 (U) as

Qk(v, U) =
1

2

∫
U

Ak∇v · ∇v dx, (2.2)

Q(v, U) =
1

2

∫
U

A∇v · ∇v dx. (2.3)
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As it was first pointed out in [8], the G -convergence of a sequence Ak can be
characterized in terms of Γ-convergence of the associated quadratic functionals
(2.2). For the main properties of Γ-convergence, we refer the reader to [4, 6].

Theorem 2.3 ([6, Theorem 24.5]). Let Ak , A ∈ Mβ
α(Ω) . Then Ak G-

converges to A in Ω if and only if Qk(·,Ω) Γ-converges to Q(·,Ω) in the
weak topology of H1

0 (Ω) .

We conclude this section with a result we will make use of in the following
section.

Proposition 2.4 ([18, Lemma 13.3]). Let Ak ∈ Mβ
α(Ω) be a sequence G-

converging to A in Ω , and let fk be a bounded sequence in H−1(Ω) . Then
there exist g ∈ H−1(Ω) and not relabelled subsequences of Ak and fk , such
that for any U ⊂ Ω open the solutions uUk of the problem{

−div(Ak∇uUk ) = fk in U,

uUk ∈ H1
0 (U),

(2.4)

converge weakly in H1
0 (U) to the solution uU of{

−div(A∇uU ) = g in U,

uU ∈ H1
0 (U).

(2.5)

Remark 2.5. An expression for the term g in the statement of Proposition 2.4
can be determined by means of the corrector matrices associated to Ak . We
refer the reader to [18, Chapter 13] for more details. This formula implies that
in general g is not a limit point of fk . However, from the same formula, it also
follows that, if Ak → A pointwise a.e. in Ω and fk ⇀ f weakly in H−1(Ω),
then f = g .

3. Γ-convergence of quadratic functionals

Let Ak, A ∈ Mβ
α(Ω), with Ak G -converging to A in Ω, and let U ⊂ Ω be

an open subset. As in the previous section, uUk denotes the sequence of solutions
to the elliptic problems {

−div(Ak∇uUk ) = fk in U,

uUk ∈ H1
0 (U).

(3.1)

We denote by uU the weak limit in H1
0 (Ω) of uUk (whose existence is guaranteed

by Proposition 2.4, up to a not relabelled subsequence, independent of U ), and
by g ∈ H−1(Ω) the right-hand-side of (2.5).

Theorem 2.3 and Proposition 2.4 will allow us to compute the Γ-limit F (·, U)
in the weak topology of H1

0 (U) of the functionals Fk(·, U) defined for v ∈ H1
0 (U)

as

Fk(v, U) =
1

2

∫
U

Ak∇v · ∇v dx− 〈fk, v〉 = Qk(v, U)− 〈fk, v〉. (3.2)
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As we will see, the Γ-limit F (·, U) is closely related to the functional F0(·, U),
defined for v ∈ H1

0 (U) as

F0(v, U) =
1

2

∫
U

A∇v · ∇v dx− 〈g, v〉 = Q(v, U)− 〈g, v〉. (3.3)

Before stating the main result of this work, we briefly recall a definition used
in the study of increasing set functions .

Definition 3.1 ([6, Definition 14.10]). We say that a collection R of open
subsets of Ω is rich if, for every family (Ut)t∈(0,1) of open subsets of Ω such
that

t1 < t2 =⇒ Ut1 ⊂⊂ Ut2 ,

the set {t ∈ (0, 1) : Ut /∈ R} is at most countable.

Examples of rich collections of open sets can be found in [6, Examples 14.11
and 14.12]. On the contrary, the collection of all open balls contained in Ω
as well as the collection of all open subsets of Ω with smooth boundary are
not rich (this can be seen by considering as (Ut)t∈(0,1) an increasing family
of rectangles). Unfortunately, the statement of the next theorem cannot be
simplified by replacing R by the collection of all open subsets of Ω, because
of the example given in Corollary 3.11. By taking U0 equal to an open ball in
Remark 3.10, we see that in general we cannot replace R with the collection of
all open balls contained in Ω.

Theorem 3.2. Let Ak ∈ Mβ
α(Ω) be a sequence of matrices G-converging to

A ∈ Mβ
α(Ω) in Ω . Consider the sequence of functionals Fk(·, U) defined by

(3.2) for U ⊂ Ω open. Then there exist a not relabelled subsequence, a non-
negative bounded Radon measure ν on Ω , and a rich collection R of open
subsets of Ω such that for every U ∈ R the sequence Fk(·, U) Γ-converges in
the weak topology of H1

0 (U) to the functional defined as

F (v, U) = F0(v, U)− ν(U) for every v ∈ H1
0 (U), (3.4)

where F0(·, U) is the functional defined in (3.3), with g as in (2.5).

By a general result on Γ-convergence (see [6, Theorem 7.8]) Theorem 3.2
implies that for every U ∈ R , if uUk denotes the minimiser of (3.2) and
uU denotes the minimiser of (3.3), then the energies Fk(uUk , U) converge to
F0(uU , U)−ν(U), hence ν(U) can be interpreted as the asymptotic energy gap
between the minimizers of Fk(·, U) and F0(·, U). The countable additivity of
this gap is a relevant property that completes the description of the behaviour
of the solutions of (1.1), with Ω replaced by U , and of their energies.

To prove Theorem 3.2 we proceed in several steps. The first one is to compute
the Γ-lim inf and the Γ-lim sup of Fk(·, U). To deal with this problem, we
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introduce two set functions ν′ and ν′′ defined for every open set U ⊂ Ω by

−ν′(U) = inf
vk∈H1

0 (U)
vk⇀0

lim inf
k→∞

Fk(vk, U), (3.5)

−ν′′(U) = inf
vk∈H1

0 (U)
vk⇀0

lim sup
k→∞

Fk(vk, U), (3.6)

where vk ⇀ 0 means that vk converges to 0 in the weak topology of H1
0 (U). It

is easy to see that the infimum is attained. It is immediate to check that the set
functions ν′ and ν′′ are both increasing and bounded, and that 0 ≤ ν′′ ≤ ν′ .

Note that, being the functionals Fk(·, U) equi-coercive in the weak topology
of H1

0 (U), the Γ-convergence of the sequence Fk(·, U) can be characterized
sequentially (see [6, Theorem 8.17]), so that −ν′(U) and −ν′′(U) are precisely
the value of the Γ-lim inf and of the Γ-lim sup of Fk(·, U) at v = 0. In what
follows the Γ-lim inf and the Γ-lim sup of Fk(·, U) in the weak topology of
H1

0 (U) will always be denoted by F ′(·, U) and by F ′′(·, U) and, when they
coincide, the Γ-limit will be denoted by F (·, U).

Proposition 3.3. Let U ⊂ Ω be open and let Fk(·, U) be the functionals defined
in (3.2). Then:

(a) For every v ∈ H1
0 (U)

F ′(v, U) = F0(v, U)− ν′(U); (3.7)

(b) For every v ∈ H1
0 (U)

F ′′(v, U) = F0(v, U)− ν′′(U). (3.8)

Proof. We prove only (3.7), the proof of (3.8) being analogous. Let Qk(·, U) and
Q(·, U) be the quadratic functionals defined in (2.2) and (2.3). We introduce
the non-negative constants αk, α

′, α′′, and α defined as

αk = Qk(uUk , U), α′ = lim inf
k→∞

αk, α′′ = lim sup
k→∞

αk, α = Q(uU , U).

Since uUk and uU are the solutions to (2.4) and (2.5), it follows that

Fk(v, U) + αk = Qk(v − uUk , U) for every v ∈ H1
0 (U), (3.9)

F0(v, U) + α = Q(v − uU , U) for every v ∈ H1
0 (U). (3.10)

Fix v ∈ H1
0 (U). Theorem 2.3 then implies that Qk(·, U) Γ-converges to Q(·, U)

in the weak topology of H1
0 (U), so that if vk ⇀ v weakly in H1

0 (U) the liminf
inequality,(3.9), and (3.10) yield

lim inf
k→∞

Fk(vk, U) + α′′ ≥ lim inf
k→∞

(Fk(vk, U) + αk) = lim inf
k→∞

Qk(vk − uUk , U)

≥ Q(v − uU , U) = F0(v, U) + α, (3.11)
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whence, taking the infimum with respect to all the sequences vk converging to
v weakly in H1

0 (U),

F ′(v, U) ≥ F0(v, U) + α− α′′. (3.12)

To prove the converse inequality, we argue as follows. Fix v ∈ H1
0 (U) and

consider a sequence zk ∈ H1
0 (U) converging to z := v − uU weakly in H1

0 (U),
so that vk := zk + uUk converges weakly to v . Then (3.9) yields

F ′(v, U) + α′′ ≤ lim sup
k→∞

(Fk(vk, U) + αk) = lim sup
k→∞

Qk(zk, U).

Since this last inequality holds for any zk ⇀ z weakly in H1
0 (U) and Qk(·, U)

Γ-converges to Q(·, U), we obtain that F ′(v, U) ≤ Q(z, U) − α′′ = F0(v, U) +
α− α′′ , where we used (3.10). Together with (3.12) this implies that

F ′(v, U) = F0(v, U) + α− α′′.

Evaluating this last expression at v = 0 one gets ν′(U) = α′′ − α , concluding
the proof of (3.7).

The following result is an immediate consequence of Proposition 3.3.

Corollary 3.4. The sequence Fk(·, U) Γ-converges in the weak topology of
H1

0 (U) if and only if ν′(U) = ν′′(U) , and in that case the Γ-limit is given by

F (v, U) = F0(v, U)− ν′(U) = F0(v, U)− ν′′(U) for every v ∈ H1
0 (U).

The second step of our analysis is to make sure that the collection U :=
{U ⊂ Ω : U open, ν′(U) = ν′′(U)} is rich and to construct the measure ν
appearing in (3.4). To this aim, we fix a countable dense collection D of open
subsets of Ω (i.e., we assume that for all pairs of open sets U, W such that
U ⊂⊂ W ⊂ Ω there exists V ∈ D such that U ⊂⊂ V ⊂⊂ W ). By a diagonal
argument and by the compactness of Γ-convergence (see [6, Corollary 8.12]), we
can pass to a not relabelled subsequence such that Fk(·, U) Γ-converges in the
weak topology of H1

0 (U) for every U ∈ D . Therefore from now on, we suppose
that U itself is dense.

Finally, we denote by ν the common inner regular envelope of ν′ and ν′′ ,
i.e., the increasing set function defined for U ⊂ Ω open by

ν(U) = sup{ν′(V ) :V open,V ⊂⊂U} = sup{ν′′(V ) :V open,V ⊂⊂U}. (3.13)

Remark 3.5. Since ν′ and ν′′ are increasing and the collection U is dense, by
[6, Proposition 14.14] the collection R := {U ∈ U : ν(U) = ν′(U) = ν′′(U)} is
rich.

We now prove that ν can be extended to a Borel measure on Ω.

Proposition 3.6. The set function ν is the restriction of a Borel measure µ
defined on Ω .
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Proof. The proof is based on the De Giorgi-Letta Theorem (see [7, Theorem
5.6] for the original result and [6, Theorem 14.23] for the particular statement
used in this proof). Since ν is clearly increasing and inner regular, we only
need to prove that it is subadditive and superadditive to conclude that it can
be extended to a Borel measure on Ω.

To prove that ν is superadditive it is enough to show that ν′′ is superadditive
(see [6, Proposition 14.18]). Let V, W ⊂ Ω be open sets with V ∩W = Ø.
Consider two sequences vk ∈ H1

0 (V ) and wk ∈ H1
0 (W ) such that vk ⇀ 0

weakly in H1
0 (V ), wk ⇀ 0 weakly in H1

0 (W ), and

−ν′′(V ) = lim sup
k→∞

Fk(vk, V ), −ν′′(W ) = lim sup
k→∞

Fk(wk,W ).

Let zk ∈ H1
0 (V ∪W ) be equal to vk on V and to wk on W . Then

−ν′′(V ∪W ) ≤ lim sup
k→∞

Fk(zk, V ∪W ) ≤ −ν′′(V )− ν′′(W ),

which concludes the proof of superadditivity.
Arguing as in the proof of [6, Proposition 18.4] we see that the subadditivity

of ν follows from the following property: if V ′, V, W ⊂ Ω are open sets with
V ′ ⊂⊂ V ⊂ Ω, then

ν′(V ′ ∪W ) ≤ ν′(V ) + ν′(W ). (3.14)

To prove this inequality we argue as follows. Fix a cut off function ϕ between
V ′ and V (i.e., ϕ ∈ C∞c (Ω), supp(ϕ) ⊂ V , ϕ = 1 in a neighbourhood of V ′ ,
and 0 ≤ ϕ ≤ 1 in Ω) and consider a sequence zk ∈ H1

0 (V ′ ∪W ) such that
zk ⇀ 0 weakly in H1

0 (V ′ ∪W ) and

−ν′(V ′ ∪W ) = lim inf
k→∞

Fk(zk, V
′ ∪W ).

We define vk = ϕzk and wk = (1 − ϕ)zk , and we observe that vk ∈ H1
0 (V ),

wk ∈ H1
0 (W ), that vk ⇀ 0 weakly in H1

0 (V ) and wk ⇀ 0 weakly in H1
0 (W ).

Therefore

− ν′(V )− ν′(W ) ≤ lim inf
k→∞

Fk(vk, V ) + lim inf
k→∞

Fk(wk,W ) ≤ lim inf
k→∞

(Fk(vk, V )

+ Fk(wk,W )) = lim inf
k→∞

(Qk(vk, V ) +Qk(wk,W )− 〈fk, zk〉). (3.15)

We note that, since ϕ2 ≤ ϕ , we have

Qk(vk, V ) ≤ 1

2

∫
V

ϕAk∇zk ·∇zk dx+
1

2

∫
V

z2
kAk∇ϕ·∇ϕdx+

∫
V

ϕzkAk∇zk ·∇ϕdx,

and a similar inequality holds for Qk(wk,W ), with V and ϕ replaced by W
and 1−ϕ . Since the sequence zk converges to zero strongly in L2(V ′ ∪W ) by
the Rellich Compactness Theorem, we have

Qk(vk, V ) +Qk(wk,W ) ≤ 1

2

∫
V ′∪W

Ak∇zk · ∇zk dx+ εk,

9



with εk → 0 as k →∞ . Therefore (3.15) implies

−ν′(V )− ν′(W ) ≤ lim inf
k→∞

Fk(zk, V
′ ∪W ) = −ν′(V ′ ∪W ).

This proves (3.14) and concludes the proof of the theorem.

Proof of Theorem 3.2. The result follows from Corollary 3.4, Remark 3.5, and
Proposition 3.6.

The following proposition shows that there may exist an open set U0 ⊂ Ω
such that ν′ and ν′′ are not inner regular at U0 , i.e., ν(U0) < ν′′(U0) ≤ ν′(U0).
As a consequence of this, Corollary 3.4 implies that (3.4) cannot hold for U =
U0 . As usual, we denote by δx0

the Borel measure corresponding to the unit
mass concentrated at x0 .

Proposition 3.7. Assume n ≥ 2 and Ak = A = I , where I is the identity
matrix. Let U0 ⊂⊂ Ω be open and x0 ∈ ∂U0 . Then there exists a sequence
fk ∈ L∞(Ω) converging to zero weakly in H−1(Ω) such that, if ν′ and ν′′ are
the set functions defined by (3.5) and (3.6), then

(a) ν′(U) = ν′′(U) = 0 for every open set U ⊂ Ω such that x0 /∈ U ;

(b) ν′(U) = ν′′(U) = 1 for every open set U ⊂ Ω such that x0 ∈ U ;

(c) ν′(U0) = ν′′(U0) = 1 .

Conditions (a) and (b) imply that the collection U := {U ⊂ Ω : U open, ν′(U) =
ν′′(U)} is rich, hence ν is well defined by (3.13). Moreover,

(d) ν = δx0
.

Finally, (a) and (c) give ν(U0) = 0 < 1 = ν′′(U0) = ν′(U0) .

To prove Proposition 3.7 we use the following well known result.

Lemma 3.8. Let U be a bounded open subset of Rn , let f ∈ H−1(U) , and let
uf be the unique solution of the problem{

−∆uf = f in U,

uf ∈ H1
0 (U).

(3.16)

Then ‖f‖H−1(U) = ‖uf‖H1
0 (U) and

min
u∈H1

0 (U)

(
1
2‖u‖

2
H1

0 (U) − 〈f, u〉
)

= 1
2‖uf‖

2
H1

0 (U) − 〈f, uf 〉 = − 1
2‖f‖

2
H−1(U). (3.17)

Proof. Since (3.16) is the Euler-Lagrange equation of the minimum problem in
(3.17), the first equality is obvious. The second equality in (3.17) follows from
the fact that ‖f‖H−1(U) = ‖uf‖H1

0 (U) , which is an immedate consequence of the
weak formulation of (3.16).
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Proof of Proposition 3.7. For every x ∈ Rn and r > 0 the open ball with center
x and radius r is denoted by B(x, r).

Step 1. We consider a sequence fk ∈ L∞(Ω), bounded in H−1(Ω), such
that for every ε > 0 there exists kε > 0 satisfying

suppfk ⊂ B(x0, ε) for every k ≥ kε. (3.18)

Passing to a subsequence, not relabelled, we may assume fk converges weakly
in H−1(Ω) to some f0 . If ϕ ∈ C∞c (Ω) vanishes in a neighbourhood of x0 , by
(3.18) we have that 〈fk, ϕ〉 = 0 for k large enough, hence 〈f0, ϕ〉 = 0. On the
other hand, since n ≥ 2, every function in H1

0 (Ω) can be approximated strongly
in H1

0 (Ω) by a sequence of functions in C∞c (Ω) vanishing near x0 . From the
previous remark we conclude that 〈f0, v〉 = 0 for every v ∈ H1

0 (Ω), hence
f0 = 0. Since this result does not depend on the subsequence, we conclude that

the whole sequence fk converges to 0 weakly in H−1(Ω). (3.19)

Property (a) follows immediately from (3.18) and from the definition of ν′

and ν′′ .
We claim that if U and V are open subsets of Ω, with x0 ∈ U ⊂ V , then

ν′(U) = ν′(V ) and ν′′(U) = ν′′(V ), (3.20)

We prove only the first equality, the proof of the other one being analogous.
Since ν′(U) ≤ ν′(V ), it remains to prove that −ν′(U) ≤ −ν′(V ). Let vk be a
sequence converging to 0 weakly in H1

0 (V ) such that

−ν′(V ) = lim inf
k→∞

Fk(vk, V ). (3.21)

Consider a function ϕ ∈ C∞c (V ), with supp(ϕ) ⊂ U , ϕ = 1 in a neighbourhood
of x0 , and 0 ≤ ϕ ≤ 1 in U . Then the sequence uk := ϕvk belongs to H1

0 (U),
uk converges to 0 weakly in H1

0 (U), and uk = vk in a neighbourhood of x0 ,
independent of k . Hence

−ν′(U) ≤ lim inf
k→∞

Fk(uk, U). (3.22)

Since, by (3.18), Fk(uk, U) is equal to

1

2

∫
V

ϕ2|∇vk|2 dx+

∫
V

ϕvk∇ϕ · ∇vk dx+
1

2

∫
V

v2
k|∇ϕ|2 dx−

∫
V

fkvk dx

for k large enough and vk tends to 0 strongly in L2(V ) by the Rellich Com-
pactness Theorem, while ∇vk is bounded in L2(V ), from (3.21) and (3.22) we
obtain −ν′(U) ≤ −ν′(V ), concluding the proof of (3.20).

If U and V are open subsets of Ω, with x0 ∈ U and x0 ∈ V , then

ν′(U) = ν′(V ) and ν′′(U) = ν′′(V ), (3.23)
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Indeed, by (3.20) we have ν′(U ∩V ) = ν′(U), ν′(U ∩V ) = ν′(V ), ν′′(U ∩V ) =
ν′′(U), and ν′(U ∩ V ) = ν′(V ), which give (3.23)

Step 2. Let us fix R > 0 such that B(x0, 2R) ⊂⊂ Ω. In addition to the
assumptions of Step 1, suppose that

lim
k→∞

‖fk‖2H−1(B(x0,R)) = 2. (3.24)

We claim that for every open set U ⊂ Ω, with x0 ∈ U , we have

ν′(U) = ν′′(U) = 1. (3.25)

By (3.23) it is enough to prove the equalities when U = B(x0, R). In this case,
recalling that Ak = I , by (3.5) we have

−ν′(U) = inf
vk∈H1

0 (U)
vk⇀0

lim inf
k→∞

(1

2

∫
U

|∇vk|2dx−
∫
U

fkvkdx
)
. (3.26)

By (3.17) and (3.24) this implies that

−ν′(U) ≥ lim inf
k→∞

(
− 1

2
‖fk‖2H−1(U)

)
= −1. (3.27)

On the other hand, by (3.19) the sequence ufk of the solutions to (3.16) for
fk converge to 0 weakly in H1

0 (U). Taking vk = ufk in (3.26), and using (3.17)
and (3.24) again, we obtain

−ν′(U) ≤ lim inf
k→∞

(1

2

∫
U

|∇ufk |2dx−
∫
U

fkufkdx
)
.

= lim inf
k→∞

(
− 1

2
‖fk‖2H−1(U)

)
= −1.

Together with (3.27) this gives ν′(U) = 1. The same arguments yield ν′′(U) =
1, concluding the proof of (3.25), which gives (b) in the statement.

Equalities (a) and (b), together with Definition 3.1, imply that the collection
U := {U ⊂ Ω : U open, ν′(U) = ν′′(U)} is rich, hence ν is well defined by
(3.13). Moreover (a), (b), and (3.13) yield ν = δx0 , concluding the proof of (d).

Step 3. In order to obtain also property (c) of the statement, we now con-
struct a particular sequence fk in L∞(Ω), bounded in H−1(Ω), and satisfying
(3.18) and (3.24). We begin by introducing an auxiliary sequence of functions
gk defined on Rn and supported on balls centered at 0. The sequence fk will
be then obtained as a suitable translation of these functions.

We fix R > 0 as in Step 2 and a sequence 0 < rk < R converging to 0.
The sequence gk is defined by gk = ckχB(0,rk) , where χB(0,rk) is the char-

acteristic function of B(0, rk) and ck =
√

2/||χB(0,rk)||H−1(B(0,2R)) , so that
‖gk‖2H−1(B(0,2R)) = 2. The argument used at the beginning of Step 1 shows

that gk converges to 0 weakly in H−1(B(0, 2R)).
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We claim that there exists a sequence Rk converging to 0 such that 0 <
rk < Rk < R and

‖gk‖2H−1(B(0,Rk)) → 2. (3.28)

Since gk converges to 0 weakly in H−1(B(0, 2R)), the sequence ugk of
the solutions to (3.16) with U = B(0, 2R) and f = gk converge to 0 weakly
in H1

0 (B(0, 2R)) and strongly in L2(B(0, 2R)) by the Rellich Compactness
Theorem.

Let us define

Rk := rk +
1

k
+
(∫

B(0,2R)

u2
gk
dx
)1/4

. (3.29)

Since rk → 0 and ugk → 0 strongly in L2(B(0, 2R)), we have that Rk → 0
and rk < Rk < R for k large enough. Moreover, it follows from (3.29) that

lim
k→∞

1

Rk − rk

(∫
B(0,2R)

u2
gk
dx
)1/2

= 0. (3.30)

Consider a sequence ϕk ∈ C∞c (B(0, 2R)) with supp(ϕk) ⊂ B(0, Rk), ϕk = 1
on B(0, rk), 0 ≤ ϕk ≤ 1 on B(0, 2R), and such that |∇ϕk| ≤ 2/(Rk − rk). Let
wk := ϕkugk . Since wk ∈ H1

0 (B(0, Rk)), by (3.17) we have

− 1
2‖gk‖

2
H−1(B(0,Rk)) ≤ 1

2‖wk‖
2
H1

0 (B(0,Rk)) − 〈gk, wk〉. (3.31)

By a direct computation, setting U = B(0, 2R) and sk = Rk − rk , we obtain∫
B(0,Rk)

|∇wk|2 dx =

∫
U

(|∇ugk |2ϕ2
k + |∇ϕk|2u2

gk
+ 2ugkϕk∇ϕk · ∇ugk) dx

≤
∫
U

|∇ugk |2 dx+
4

s2
k

∫
U

u2
gk
dx+

4

sk

(∫
U

u2
gk
dx
)1/2(∫

U

|∇ugk |2dx
)1/2

≤
∫
U

|∇ugk |2 dx+
4

sk

(∫
U

u2
gk
dx
)1/2( 1

sk

(∫
U

u2
gk
dx
)1/2

+M
)
,

where M > 0 is such that ‖∇ugk‖L2(U) ≤M . This shows that wk is bounded
in H1

0 (U). Since ugk → 0 strongly in L2(U), the sequence wk converges to
0 strongly in L2(U), which together with the boundedness in H1

0 (U), implies
that

wk converges to 0 weakly in H1
0 (U). (3.32)

Recalling that wk = ugk on supp(gk), the previous estimate for |∇wk|2 ,
together with (3.30) and (3.31), implies that

lim sup
k→∞

(
− 1

2‖gk‖
2
H−1(B(0,Rk))

)
≤ lim
k→∞

(
1
2‖ugk‖

2
H1

0 (U) − 〈gk, ugk〉
)

= lim
k→∞

1
2‖gk‖

2
H−1(U) = −1, (3.33)
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where in the first equality we used (3.17) and in the second one we used the
equality ‖gk‖2H−1(U) = 2, which holds by construction. Since ‖gk‖2H−1(B(0,Rk)) ≤
‖gk‖2H−1(U) = 2, we obtain that Rk satisfies (3.28).

We now fix a sequence xk ∈ U0 converging to x0 such that B(xk, Rk) ⊂⊂ U0

for k ∈ N large enough, and we set fk(x) := gk(x − xk). We observe that fk
satisfies the concentration property (3.18) and is bounded in H−1(Ω). By the
equality ‖gk‖2H−1(B(0,2R)) = 2 and by (3.28) we also have

lim
k→∞

‖fk‖2H−1(B(xk,Rk)) = lim
k→∞

‖fk‖2H−1(B(xk,2R)) = 2. (3.34)

Since B(xk, Rk) ⊂ B(x0, R) ⊂ B(xk, 2R) ⊂ Ω for k large enough, we have
‖fk‖2H−1(B(xk,Rk)) ≤ ‖fk‖

2
H−1(B(x0,R)) ≤ ‖fk‖

2
H−1(B(xk,2R)) . Consequently, (3.34)

implies (3.24). Therefore we can apply to this sequence fk all results obtained
in Steps 1 and 2.

Step 4. We now prove (c) for the sequence fk introduced in the previous
step. Since ν′(Ω) = ν′′(Ω) = 1 thanks to (b), recalling the monotonicity of ν′

and ν′′ , and the inequality ν′′ ≤ ν′ , it is enough to show that

ν′′(U0) ≥ 1. (3.35)

Let wk be the sequence introduced in Step 3 and let zk(x) = wk(x −
xk). Since wk converge to 0 weakly in H1

0 (B(0, 2R)) by (3.32) and zk ∈
H1

0 (B(xk, Rk)) ⊂ H1
0 (U0), we have that zk converges to 0 weakly in H1

0 (U0).
By (3.6), we have

−ν′′(U0) ≤ lim sup
k→∞

(1

2

∫
U0

|∇zk|2 dx−
∫
U0

fkzk dx
)

= lim sup
k→∞

(1

2

∫
B(0,2R)

|∇wk|2 dx−
∫
B(0,2R)

gkwk dx
)
≤ −1,

where the last inequality can be obtained arguing as in the proof of (3.33). This
proves (3.35), thus concluding the proof of the proposition.

Corollary 3.9. Under the hypotheses of Proposition 3.7, the functional F0

introduced in (3.3) is given by

F0(u, U) :=
1

2

∫
U

|∇u|2 dx,

for every open set U ⊂ Ω and every u ∈ H1
0 (U) (and we don’t need to pass to

a subsequence).
Moreover, for every open set U ⊂ Ω with x0 /∈ ∂U the sequence Fk(·, U) Γ-

converges in the weak topology of H1
0 (U) to the functional F (·, U) := F0(·, U)−

δx0(U) . Finally, Fk(·, U0) Γ-converges in the weak topology of H1
0 (U0) to the

functional F (·, U0) = F0(·, U)− 1 .
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Proof. The first statement follows from Remark 2.5, which shows that in our
case we have g = 0. The other statements are immediate consequences of
Corollary 3.4 and Proposition 3.7.

Remark 3.10. Since ν(U0) = δx0
(U0) = 0, the last statement of Corollary 3.9

implies that (3.4) does not hold for U = U0 .

The following result shows that the sequence Fk constructed in the proof of
Proposition 3.7 has no subsequence such that (3.4) holds (for the subsequence)
for every open subset of Ω. In other words, even if we pass to a subsequence,
there always exists an exceptional open set U ⊂ Ω such that Fk(·, U) does
not Γ-converge in the weak topology of H1

0 (U); in particular, this shows that
(3.4) cannot hold for U . More in general, this shows that, in the localisation
method for Γ-convergence, the usual compactness theorem (see [6, Theorem
16.9]) cannot be modified so as to obtain the Γ-convergence on every open set.

In what follows, given a strictly increasing function σ : N → N , we denote
by ν′σ(U) and ν′′σ(u) the quantities (3.5) and (3.6), with Fk(·, U) substituted
by Fσ(k)(·, U).

Corollary 3.11. Let n , Ak , A , U0 , and x0 be as in the statement Propo-
sition 3.7 and let fk , rk , Rk , and xk be as in Step 3 of the proof of Propo-
sition 3.7. Then for every strictly increasing function σ : N → N , there exists
an open set U ⊂ Ω such that ν′σ(U) 6= ν′′σ(U) . In particular, the sequence
Fσ(k)(·, U) does not Γ-converge in the weak topology of H1

0 (U) .

Proof. Without loss of generality, we may suppose that σ(k) = k for every
k ∈ N . Since Rk → 0, xk → x0 , x0 ∈ ∂U0 , and B(xk, Rk) ⊂⊂ U0 , we
can construct recursively a strictly increasing function τ : N → N such that
the closed balls of center xτ(k) and radius Rτ(k) are pairwise disjoint. We set
τ1(k) := τ(2k + 1) and τ2(k) := τ(2k). Let C be the compact set defined by

C :=

∞⋃
i=0

B(xτ1(k), Rτ1(k)) ∪ {x0},

and let U = Ω \ C .
Since for any k ∈ N the support of fτ1(k) is contained in C , it follows that

ν′′τ1(U) = 0. Recalling that ν′′ ≤ ν′′τ1 by (3.6), we obtain 0 ≤ ν′′(U) ≤ ν′′τ1(U) =
0, hence ν′′(U) = 0.

Conversely, since the closed balls of center xτ(k) and radius Rτ(k) are pair-
wise disjoint, for every k ∈ N we have B(xτ2(k), Rτ2(k)) ⊂⊂ U . Repeating the
arguments that lead to (3.35), with σ replaced by τ2 and U0 replaced by U ,
we obtain ν′τ2(U) ≥ ν′′τ2(U) ≥ 1, where we have used the obvious inequality
ν′τ2 ≥ ν′′τ2 . Recalling that ν′ ≥ ν′τ2 by (3.5) and that ν′(Ω) = 1 by Proposition
3.7(b) , we obtain 1 ≤ ν′τ2(U) ≤ ν′(U) ≤ ν′(Ω) = 1, where we used also the
monotonicity of ν′ . This shows that ν′(U) = 1. Since ν′′(U) = 0, we have that
ν′′(U) 6= ν′(U). Therefore, Fk(·, U) does not converge in the weak topology of
H1

0 (U) by Corollary 3.4.
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