
Topological Analysis and Recovery of Entanglements in Polymer
Melts
Mattia Alberto Ubertini* and Angelo Rosa*

Cite This: https://doi.org/10.1021/acs.macromol.3c00278 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The viscous flow of polymer chains in dense melts
is dominated by topological constraints whenever the single-chain
contour length, N, becomes larger than the characteristic scale Ne,
defining comprehensively the macroscopic rheological properties
of the highly entangled polymer systems. Even though they are
naturally connected to the presence of hard constraints like knots
and links within the polymer chains, the difficulty of integrating the
rigorous language of mathematical topology with the physics of
polymer melts has limited somehow a genuine topological
approach to the problem of classifying these constraints and to
how they are related to the rheological entanglements. In this
work, we tackle this problem by studying the occurrence of knots
and links in lattice melts of randomly knotted and randomly
concatenated ring polymers with various bending stiffness values. Specifically, by introducing an algorithm that shrinks the chains to
their minimal shapes that do not violate topological constraints and by analyzing those in terms of suitable topological invariants, we
provide a detailed characterization of the topological properties at the intrachain level (knots) and of links between pairs and triplets
of distinct chains. Then, by employing the Z1 algorithm on the minimal conformations to extract the entanglement length Ne, we
show that the ratio N/Ne, the number of entanglements per chain, can be remarkably well reconstructed in terms of only two-chain
links.

1. INTRODUCTION
The viscoelastic behavior of concentrated solutions or melts of
linear polymer chains can be understood assuming1−3 slow
reptative flow of each chain through the network of topological
obstacles (entanglements) formed by the surrounding chains.
According to this picture, entanglements confine each chain
within an effect ive tube- l ike region of diameter
d b n N n/T K e K , where ⟨b⟩ is the mean bond length, nK is
the Kuhn length of the polymers (in monomer units4)
accounting for the fiber stiffness, while the topological
entanglement length Ne is the characteristic, material-depend-
ent,5−7 length scale marking the crossover from non-entangled to
entangled polymer behavior. Then, the mean size or radius of
gyration ⟨Rg⟩ of polymer chains with contour length N ≳ Ne
follows the power-law behavior
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and all of the essential structural and dynamical information
about the melt can be understood in terms of the single
parameter Ne. Although, in general, estimating Ne is a
challenging problem,5,8 considerable progress has been made
(at least in numerical simulations) in terms of primitive path

analysis9−12 (PPA). By exploiting the simple yet ingenious idea2

that linear chains can be “coarse-grained” down to their minimal
path without violating the topological constraints, PPA provides
an intuitive understanding of the microscopic13 nature of
entanglements.
Alternatively, polymeric entanglements may be also modeled

as physical links between chains.12,14−22 Specifically, the idea is
“to map” the system of entangled chains to an equivalent one of
randomly entangled (namely, self-knotted and linked) ring
polymers and employ suitable topological invariants23 to identify
and then classify, in a mathematically rigorous manner!, the total
amount of entanglements of the melt and connect them to the
macroscopic viscoelastic behavior.
The connection between the two pictures is, however, not that

straightforward. The main reason is that the complete
statistical−mechanical classification of a polymer melt would
require an inf inite set16,18 of topological invariants in terms of
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pairs, triplets, etc., of loops, not to mention that analytical
theories are mathematically hard24 and their applicability to
dense systems is limited.
Motivated by these considerations, we rethink the problem of

characterizing a melt of entangled polymer chains in terms of
topological invariants and outline, in a quantitative manner, the
connection between the latter and the topological entanglement
length of the chains. More specifically, we perform extensive
computer simulations of randomly knotted and randomly
concatenated ring polymers under dense conditions and different
values of the bending stiffness of the polymer fiber as models for
entangled polymer systems.
Then, inspired by PPA and the recent work of Bobbili and

Milner21 on molecular dynamics simulations of melts of
randomly linked ring polymers, we construct an algorithm for
contracting the contour length of each ring in the melt to its
“primitive” or “minimal” length that does not violate the
topological constraints with the other rings. The conformational
properties of the primitive ring structures are thus explored at
the single-ring level (knots), between any rings’ pair (see the
Whitehead link in Figure 1a), and between any rings’ triplet (see
the complex Borromean configuration in Figure 1b). By looking
at the relative abundance of these topological structures as a
function of the bending stiffness of the polymers, we combine
them into a proxy for the quantitative prediction of the number
of entanglement lengths, N/Ne, of the polymers.
The paper is structured as follows. In section 2, we present

some technical details of the lattice polymer model, explain the
shrinking algorithm developed for the calculation of the ring
minimal path, introduce the notation and the topological
invariants for the characterization of knots and links, and, finally,
illustrate the idea behind the Z1 algorithm used for the
calculation of the entanglement length. In section 3, we present
the main results of our work, while in section 4, we provide some
discussion and conclusions regarding the connection between
knots, two-chain links, three-chain links, and the entanglement
length of the polymers. Additional figures are included in the
Supporting Information.

2. MODEL AND METHODS
2.1. Polymer Model. Model systems of M randomly knotted and

concatenated ring polymers ofNmonomers each were prepared on the
basis of the kinetic Monte Carlo (kMC) algorithm illustrated in refs 25
and 26 and closely related to other models that have appeared in the
literature.27−30 The polymer model, which is defined on the three-

dimensional face-centered-cubic (fcc) lattice of unit step = a, accounts
for (i) chain connectivity, (ii) bending stiffness, (iii) excluded volume,
and (iv) topological rearrangement of the polymer chains. The kinetic
algorithm consists of a combination of Rouse-like and reptation-like
moves for chain dynamics that take advantage of a certain amount of
stored contour length along the polymer filament that simplifies the
process of chain equilibration. As a consequence, the polymers are
locally elastic, with fluctuating monomer−monomer bonds of mean
length ⟨b⟩ implying that the effective polymer contour length is N⟨b⟩.
Ring conformations were equilibrated through long runs at the

average monomer number per lattice site of 1.255
4

= or unit volume of

a25
4

3 corresponding to melt conditions. By modulating the Kuhn
segment nK through the bending penalty Hamiltonian

cosi
N b a

ibend
/= , where κbend is the bending stiffness and

θi is the angle between two consecutive bonds along the chain, one can
show26 that chains become locally stiffer. Table 1 summarizes (i) mean

bond length ⟨b⟩, (ii) mean cosine value ⟨cosθ⟩ between two
consecutive bonds along the chain, (iii) and Kuhn length nK, as a
function of κbend. The simulation box of linear size Lbox has periodic
boundaries for the enforcement of bulky melt conditions. By fixing the
total number of monomers to the convenient value of 134 400, we have
Lbox/a = 30√2. In this paper, we have studied polymer melts with N ×
M = (40 × 3360, 80 × 1680, 160 × 840, 320 × 420, 640 × 210).
As illustrated in ref 25, we introduce random strand crossing between

nearby polymer strands at the fixed rate of one per 104 kMC elementary
steps. In this way, we induce the violation of the topological constraints
and obtain equilibrated melts of rings with intrachain (i.e., knots) and
interchain (i.e., links) nontrivial and randomly generated topologies. By
construction then, the algorithm generates rings with annealed
topologies; in other words, our ring conformations represent a
thermodynamic ensemble of melts of randomly knotted and

Figure 1. Examples of ring polymer structures with Gauss linking number [GLN (see eq 3)] equal to 0. (a) Two rings intertwined in the Whitehead
link 512. (b) Three rings clustered into the Borromean conformation 623. Both conformations have been extracted from numerical simulations of ring
polymer melts after the minimization procedure described in the text. To name the conformations here and in the rest of the text, we have used the
classical nomenclature introduced in Rolfsen’s book (see section 2.3).

Table 1. Values of Physical Parameters for the Ring Polymer
Melts Investigated in This Papera

κbend/(kBT) ⟨b⟩/a ⟨cosθ⟩ nK
0 0.733 0.186 1.965
1 0.695 0.455 3.157
2 0.663 0.638 5.118

aa is the unit distance of the fcc lattice, and the monomer number per
unit volume is equal to a25

4
3 (see the text and ref 26 for details):

κbend, bending stiffness in statistical−mechanical thermal units kBT,
where kB is the Boltzmann constant and T is the temperature; ⟨b⟩,
mean bond length;31 ⟨cosθ⟩, mean cosine value between two
consecutive bonds along the chain;31 nK, Kuhn length.32.
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concatenated rings at the given density for different polymer lengths N
and bending rigidities κbend. To ensure proper system equilibration as
well as accurate polymer statistics,33 the total computational cost of the
simulations goes from 2× 106 τMC forN = 40 and κbend/(kBT) = 0 to 7×
107 τMC for N = 640 and κbend/(kBT) = 2. Here, τMC, the MC “time”
unit,25,26 is equal to N × M kMC elementary steps.
Violation of topological constraints by random strand crossing

induces a massive reorganization of the statistics of polymer chains. As
studied in ref 25, while unknotted and nonconcatenated rings remain
compact with asymptotic mean gyration radis following the power law

R Ng
1/3

randomly knotted and randomly linked melt of rings swell as

R Ng
1/2

i.e., locally they become equivalent to melts of linear chains (see eq 1
and Figure S1). Furthermore, the distinctive anticorrelation of the
bond-vector correlation function

c n
t n t n n

t n
( )

( ) ( )
( )2= · +

(2)

as a function of the effective monomer length separation, n, along the
chain reported26,34 in melts of unknotted and nonconcatenated rings
disappears in randomly linked systems (see Figure S2), whose behavior
is close to that for linear chains (see the dashed lines). Overall, we may
conclude that randomly linked rings reproduce the essential features of
entangled linear polymer chains in a melt. Next, we will use these
systems to investigate the microscopic nature of entanglements by
means of the rigorous language of topological invariants.
2.2. Algorithmic Pipeline to Rings Minimal Paths. To detect

and classify topological interactions in equilibrated melts of entangled
rings, we introduce a simple “shrinking” algorithm that takes explicit
advantage of the presence of stored lengths along the contour length of
each chain. Specifically, the algorithm consists of iterating the following
steps: (1) We remove all of the stored lengths from the polymers. Of
course, this excision process leads to a reduction in the total contour
length of each chain. Notice that, by construction, this does not lead to
violations of the topological constraints, neither intrachain ones (such
as knots, for instance) nor between different chains (i.e., links). (2)
After the excision, we perform a short MC run (on the order of 10−100
τMC) under global preservation of topological constraints (i.e., without
strand crossing). In general, this step leads to the formation of new units
of stored length that, in turns, will be removed by the next
implementation of step 1, and so on. We then apply these operations,
individually, to single chains (section 3.1), pairs of chains (section 3.2),
and triplets of chains (section 3.3). In all of these cases, the procedure
stops when the number of monomers of each shrinking chain has not
changed for 300 consecutive iterations; in this case, we assume that each
chain has reached its minimal shape.
To validate the algorithm, we have tested it first on the “trivial” case

of unknotted and nonconcatenated ring polymers in a melt. We have
thus verified that shape minimization of rings taken one by one or
simultaneous application of the procedure on the whole melt led to
what is expected on the basis of intuition, that individual rings shrink to
single points. Then, by our algorithm, we may isolate unknotted and
nonconcatenated configurations from those with nontrivial topologies.
2.3. Classification of Knots and Links. Following the contour

length simplification outlined in section 2.2, we have investigated the
statistical abundance of the following topological objects: (i) knots in
single-ring polymers (section 3.1), (ii) links between pairs of ring
polymers (two-chain topological structures) (section 3.2), and (iii)
links between triplets of ring polymers (three-chain topological
structures) (section 3.3). We do not proceed beyond step (iii) because,
although in principle the procedure can be applied to even larger groups
of rings, the factorial growth of possible combinations makes the
analysis tediously lengthy from a computational point of view. On the
contrary, we will show (section 3.4) that this is perfectly adequate to
capture the entanglement length Ne.

2.3.1. Notation. In referring to a given knot or link, we follow the
standard convention as explained in the book by Rolfsen.35 Namely, a
knot or a link is defined by the symbol Ki

p, where K represents the
number of irreducible crossings of the knot (or the link), p is the
number of rings that take part in the topological structure (e.g., p = 2 for
links between two rings) and i is an enumerative index assigned to
distinguish topologically inequivalent structures with the same K and p.
For knots in single rings, p = 1 is tacitly assumed and, as an example, the
simple trefoil knot is identified by Rolfsen’s symbol 31.

2.3.2. Topological Invariants. Nontrivial knots and links can be
detected and hence classified by means of suitable topological
invariants.23,36 In this work, we resort to the method of the so-called
Jones polynomials37 that assign to each knot a distinctive algebraic
polynomial. Specifically (section 3.1), we use the implementation of the
Jones polynomials featured in the Python package Topoly38 to
recognize and categorize knots within single-ring polymers and, in
this way, benchmark the simplification algorithm of section 2.2.
Moreover, and as for links alone,39 we also consider the simpler

Gauss linking number (GLN):

r r dr dr
r r

GLN
1

4
( ) ( )2 1 2 1

2 1
3

1 2

·
| | (3)

which gives the number of times two closed loops 1 and 2,
parametrized by coordinates r1⃗ and r2⃗, respectively, wind around each
other. While intuitive and easier to compute with respect to the Jones
polynomials, GLN has nonetheless severe limitations.36 It is in fact
widely known that, while GLN ≠ 0 means that the two rings are linked,
the opposite (GLN = 0) is not necessarily true. Take for instance the
example shown in Figure 1a, i.e., the so-called Whitehead link 512,
constituted by two irreducibly linked rings and yet GLN = 0. In
addition, one may imagine even more complex situations such as the
one displayed in Figure 1b (the so-called Borromean conformation 623)
in which three rings, which are two-by-two nonconcatenated, are
irreducibly linked. Such structures are, obviously, also not detected by
eq 3. In the course of the paper (section 3), we will show how these
structures (which elude eq 3) can be properly detected and, then, how
to quantify their impact on the entanglement properties of the melt.
2.4. Calculation of the Entanglement Length. By following the

approach by Bobbili and Milner21 for molecular dynamics simulations
of a melt of seemingly shrunk and randomly linked ring polymers, we
estimate Ne by applying a recent version (Z1+40) of the Z1
algorithm.11,41−43 The Z1 algorithm consists of the implementation
of a series of geometrical operations that transform the entangled
polymer chains in a collection of straight segments that are sharply bent
at the entanglement points, and then one may estimate Ne as the
average length of these straight segments. In particular, the Z1+ version
takes explicitly into account the role of chain self-entanglements
(knots) during the determination of Ne. The effects of it will be
discussed in section 3.4.

3. RESULTS
In this section, we will describe results concerning the
appearances of knots (section 3.1) and links (sections 3.2 and
3.3) in melts of entangled randomly linked rings of different
chain length and bending stiffness values. Then (section 3.4), we
will show how to establish a direct connection between the
topology of links and the entanglement length of the chains.
While we have considered different chain lengths (section 2.1),
covering the full crossover from loosely to strongly inter-
penetrating polymers, for the sake of brevity we will present
many results for only the most representative and longest chains
with N = 640.
3.1. One-Chain Topological Structures, Knots. First, we

have applied our algorithm (section 2.2) to detect knots in single
rings, and to prove its reliability, we have applied the Topoly tool
(section 2.3.2) to the simplified ring shape to classify the relative
knot type. As a result, we have always found a nontrivial Jones
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polynomial corresponding to those rings that do not shrink to a
point; in other words, the shrinking algorithm recovers knots
successfully and the results map one to one to those obtained by
Topoly [see Figure 2 (left panel) for the probability Punknot that a
ring is unknotted as a function of monomer number N and at
different bending stiffness κbend]. Overall, Punknot is always a
decreasing function of polymer lengthN, a result in line44,45 with
other generic polymer models. At the same time, for a fixed N,
Punknot decreases as a function of κbend or stiffer rings are more
likely to form knots with respect to more bendable ones, and this
difference appears to increase withN. This feature also seems to
be quite general having been reported recently46 in the context
of computer simulations of isolated semiflexible ring polymers.
Notice, however, that the probability of observing a knot
remains small [for κbend/(kBT) = 2 and N = 640, this is only 1 −
Punknot ≈ 14%]. Again, this is in qualitative accord with ref 46,
although knots here seem slightly more likely (1 − Punknot ≲ 5%
in ref 46): arguably, this is a consequence of considering
polymers under melt conditions and not isolated chains.
While Jones polynomials (as well as any other topological

invariant) inform us about the knot type “trapped” within the
ring, by our shrinking algorithm we may also quantify the
“amount” of topological entanglement “stored” within a

nontrivial knot in terms of the corresponding “minimal” contour
length. In particular, rings hosting “simpler” knots (i.e., low-
crossing knots) shrink more and occupy less primitive length in
comparison to more complicated knots. To show this, we have
computed the mean value, ⟨Lmin⟩, of the ring minimal contour
length as a function of crossing number K characterizing the
hosted knot. In principle, the ring minimal contour length is a
random quantity because the shrinking procedures are
performed stochastically; on the contrary, we see that these
fluctuations are, for each knot type, comparably small (Figure
S3); i.e., the minimization procedure converges to a well-defined
minimal shape. Notably, ⟨Lmin⟩ is a genuine topological
signature; it is almost insensitive to bending stiffness κbend [see
Figure 2 (right panel)] and increases with characteristic power-
law Kα with α ≃ 0.81 (dashed line). Interestingly, the same
power-law behavior in relation to the scaling of the minimal rope
length required to tie a nontrivial knot into a flexible rope has
been reported recently.47 We conclude that, for a given knotted
ring, our minimization algorithm converges to the correspond-
ing minimal knot structure. Moreover, and again in agreement
with ref 47, we find that the so-called alternating knots, knots
where crossings alternate under and over whenmoving along the
filament, display larger ⟨Lmin⟩ values and are less frequently seen

Figure 2. Punknot (left), probability that a ring is unknotted as a function of the number of monomers,N, and for different bending stiffness values, κbend.
The shrinking algorithm (solid lines) and Topoly (dashed lines) are in perfect agreement. ⟨Lmin⟩ (right), average minimal contour length of rings with
N = 640monomers as a function of knot crossing number,K, and for different bending stiffness values, κbend. Each error bar corresponds to the standard
deviation calculated for the ring population at the respective crossing number K. The data are described well by the simple power-law behavior ∼K0.81

(dashed line). The generic label “>12” follows from the fact that Topoly is unable38 to recognize properly knots with >12 crossings.

Figure 3. ⟨n2link(|GLN|)⟩ (left), mean number of two-chain links per ring as a function of absolute Gauss linking number |GLN|. P(Ki
2|GLN = 0)

(right), fractional population of two-chain links Ki
2 (termed according to Rolfsen’s convention35) having a GLN of zero. Here, as well as in the right

panel of Figure 4 and Figure S4, error bars are estimated by assuming the formula for simple binomial statistics for the probability of observing a given
link (knot, in Figure S4) type in the total population. Empty and filled circles represent data for alternating and non-alternating links, respectively, while
vertical dotted lines separate link classes with the same number of crossings. The displayed link labels correspond to those links appearing with the
highest frequency in their class of number of crossingsK. The generic label “>9” follows from the fact thatTopoly cannot38 recognize properly links with
>9 crossings. In both panels, data refer to rings with N = 640 and different bending stiffness values, κbend.
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(Figures S3 and S4, respectively, for K ≥ 8 only48) than the non-
alternating ones for the same number of crossings.
3.2. Two-Chain Topological Structures, Links. After

having investigated the amount of knots, we turn our attention
to the topological interactions between pairs of rings. For this
purpose, we have devised the following way to distinguish
between those links that have GLNs (eq 3) not equal to zero and
links with GLNs equal to zero [such as the Whitehead link (see
Figure 1a)]. A link between two closed chains with a GLN of
zero can be unlinked by performing a certain number of
crossings between strands of the same chain, while those with
GLNs not equal to zero cannot be simplified and would remain
linked. According to that, we have applied the shrinking
procedure to the two rings in two distinct manners: (i)
straightforwardly as described in section 2.2 and (ii) with
intrachain crossing allowed. In this way, the excess of links
between pairs of rings with GLNs of zero can be measured as the
“difference” between manners i and ii. To test the robustness of
this procedure, we have computed the corresponding Jones
polynomial for the linked rings that display GLNs of zero. In the
end, it turns out that only the pairs of rings that emerge as non-
trivially linked feature nontrivial Jones polynomials as well.
The mean number of links per chain with the absolute Gauss

linking number, n2link(|GLN|), for rings with N = 640 and
different bending stiffness values is shown in the left panel of
Figure 3 and Figure S5 for the other polymer lengths. We find
that links are mainly simple Hopf links (i.e., |GLN| = 1), while
links with a GLN of zero are rare and have a frequency between
those for |GLN| = 2 and |GLN| = 3. More complex links follow
an exponentially decaying distribution, in agreement with ref 25.
Finally, many possible types of non-equivalent links exist for
GLNs of zero, and we have further investigated, by the Jones
polynomials, which structures emerge and their relative
abundance (Figure 3, right panel). As one may see, polymer
conformations are dominated by the Whitehead link (Rolfsen’s
symbol 512) that, of course, is the simplest one in terms of
crossings. Nonetheless, we report a remarkably complex
spectrum of link types that is affected very little by the bending
stiffness of the chains. In particular, with at least seven crossings,
we find that the most abundant links turn out to be the non-
alternating ones with probabilities significantly higher than those
of the alternating ones. The only notable exception is for nine
crossings, where the non-alternating 9472 occurs with the same

frequency as 952 and 9102 , which are indeed alternating; overall,
though, all of these links are very rare.
3.3. Three-Chain Topological Structures, Links. We

consider now topological structures between ring triplets. To fix
the ideas, we notice that three-chain links can be grouped as
follows. One group consists of those links that can be “reduced”
in terms of the “composition” of simpler two-chain structures
like those seen in section 3.2, while the second group consists of
the others that can be then called irreducible. Those belonging to
the first group are (a) poly(3)catenanes, chains made of three
rings in which two nonconcatenated rings are connected to a
common ring, and (b) triangles, triplets of rings that are
concatenated in a two-by-two manner. Because of the detection
of pairwise links (section 3.2), their presence can be efficiently
assessed. The presence of these structures has been amply
documented in melts of concatenated rings;49 in particular, they
can be identified, subject to the limitations discussed in section
3.2, via the summation of pairwise concatenations and the
relative GLN. On the contrary, irreducible three-chain links,
which cannot be detected by decomposition into pairwise links,
can be divided further into two classes: (c) poly(2)catenane+1-
ring, structures made of a poly(2)catenane (i.e., a pair of
concatenated rings) and another ring that is not directly
concatenated (in a pairwise manner) with any of the twos, and
(d) Brunnian links, nontrivial links that become a set of trivial
links whenever one component ring is unlinked from the others
(the Borromean conformation in Figure 1b constitutes the
simplest example).
To characterize the relative abundance of each of these

structures, we have studied the mean number of different three-
chain links per ring, ⟨n3link⟩. We find (Figure 4, left panel) that
links are present maximally in poly(3)catenane and triangle
structures, yet, although rarer, the other two classes appear in
detectable amounts. Notably, as for single knots and two-chain
links (left panels of Figures 2 and 3), the abundance of three-
chain structures increases with chain stiffness. As for the links,
within classes (c) and (d), we have analyzed the different
topological inequivalent concatenated structures with Topoly.
Due to the complexity of the analyzed structures, Topoly cannot
classify them properly in ∼50% of the cases after nine crossings.
As for the successfully determined links (Figure 4, right panel),
we find that the most abundant links are 623 (i.e., Borromean
rings) and 893 (which belongs to class (c)). Again, at a fixed

Figure 4. ⟨n3link⟩ (left), mean number of different three-chain structures per ring. P(Ki
3|irreducible) (right), fractional population of three-chain links

Ki
3 (termed according to Rolfsen’s convention35) belonging to the poly(2)catenane+1-ring and Brunnian classes (see the text for details). These are

“irreducible” with respect to the simpler compositions of two-chain links. As in Figure 3, empty and filled circles represent data for alternating and non-
alternating links, respectively, while vertical dotted lines delimit link classes with the same number of crossings. Similarly, the generic label “>9” follows
from the fact that Topoly cannot38 recognize properly links with >9 crossings. In both panels, data refer to rings with N = 640 and different bending
stiffness values, κbend.
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number of crossings, the most abundant structures are the non-
alternating ones (853, 9103 , and 9123 are all alternating), thus
highlighting the preference for non-alternating linked structures.
3.4. Quantitative Connection to Entanglement Length

Ne. By applying the shrinking algorithm to the whole melt, we
take topological interactions of any order into account, and
finally, we can assess their contribution to topological
entanglement length Ne (eq 1). In general, the process of
shrinking reduces the contour length of each ring inasmuch as
the topological constraints allow. Thus, if a ring is unknotted and
nonconcatenated, it will shrink to a point and will be not taken
into account because it is assumed not to be contributing to the
entanglement length of the chains.50 Conversely, the more the
rings are entangled, the less they will shrink. Then we apply (see
section 2.4 for details) the Z1 algorithm11,40−43 to the shrunken
structures and estimate Ne thereby. Figure 5 (main panel, solid

lines) shows the values of Ne as a function of N and for different
bending stiffness values, κbend. In all cases, Ne(N) tends to an

asymptotic value {Ne = [40.(2), 24.(5), 16.(5)] forN = 640 and
for κbend/(kBT) = 0, 1, and 2, respectively}. Interestingly, by
rescaling both x and y coordinates by the corresponding
asymptotic value, we find the distinct curves collapse onto each
other (Figure 5, inset).51 Notice also that the characteristic large
values ofNe measured at small values ofN are due to the fact that
rings are loosely linked; in contrast, at larger values of N rings
turn out to be concatenated into a single percolating network of
concatenated rings (see Figure S6).
While, not surprisingly,26 Ne decreases as polymers become

stiffer, it is worth comparing these values to those {Ne =
[80.37(9), 29.76(4), 13.08(8)]} obtained by us26 by applying
theoretical results based on PPA. When κbend/(kBT) = 0, the Z1
value is twice the PPA one. This discrepancy was noticed
previously13,43,52 and explained as a consequence of orienta-
tional correlations between subsequent primitive path segments.
Interestingly the discrepancy almost disappears in semiflexible
melts for which κbend/(kBT) = 1 and 2, suggesting that the
corresponding correlations are limited to polymer chains that
are quite flexible on the entanglement scale (loosely
entangled53). With respect to the possible role of self-
entanglements (i.e., knots), they influence Ne only marginally
(compare solid and dashed lines in Figure 5), in agreement with
the result (section 3.1) that only a small fraction of the rings
(≈10%) display knots. Nonetheless, when compared to the
similar analysis published in ref 10 on the role of knots in
entangled melts of linear polymers, the differences reported by
us here appear [especially for the more flexible case κbend/(kBT)
= 0] to be slightly stronger. A likely explanation for this result is,
as already51 pointed out, the possible role of the ring closure. In
fact, we will see (discussion in section 4) that linear chains of
comparable length are significantly less knotted than their ring
counterparts.
Finally, we show how to connect, in a quantitative manner,Ne

to the linking properties of the rings (see sections 3.2 and 3.3).
For this purpose, we define the ringmean linking degree ⟨LD⟩ as

M
CLD

1

i

M

j

M

ij ij
1 1

=
= = (4)

where each sum runs over the total number of chains [M (see
section 2.1)] in the melt. Cij is theM × M matrix expressing the
concatenation status between rings i and j and is defined as

Figure 5. Entanglement length, Ne, as a function of the number of
monomers per chain, N, for different bending stiffness values, κbend.
Solid and dashed lines depict data after including and removing,
respectively, self-entanglements (knots) through the Z1 algorithm
(technical details in section 2.4). The inset shows the x and y
coordinates of data with self-entanglements normalized by the
corresponding asymptotic value, Ne(N = 640), of the entanglement
length.

Figure 6. Number of entanglements per ring, N/Ne, as a function of the mean linking degree, ⟨LD⟩, computed (see eq 4) by taking into account the
contribution from two-chain links solely (left) and after including (right) also the contribution of three-chain links.
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(5)

The “weight” factor χij takes into account the “complexity” of the
two-chain (section 3.2) and three-chain (section 3.3) links: (i)
for two-chain links, χij = |GLN| or K

2
depending on whether GLN

≠ 0 or GLN = 0, respectively; (ii) for three-chain links, K
ij 6

= .
Here, K is the number of crossings characterizing the link; in
other words, each crossing of the link contributes 1/2 to an
entanglement point. Figure 6 (left panel) shows that, by taking
into account only the contribution of two-chain links and in the
large-chain limit, eq 4 accounts remarkably well for the number
of entanglements, N/Ne, of each chain. Further inclusion (right
panel) of three-chain links adds only a small contribution;
otherwise, it does not improve the agreement significantly. This
is probably the most important result of this work. It says that
two-chain links alone capture almost completely the nature of
entanglement length Ne and that, through eq 4, a true
quantitative connection between them can be established.

4. DISCUSSION AND CONCLUSIONS
Understanding themicroscopic nature of topological constraints
in melts of polymer chains is a long-standing, classical5,8,15,16

problem in soft matter physics. In this work, we have
characterized accurately the topological state of melts of
randomly knotted and concatenated ring polymers used as
models for (long) linear polymer systems and, then, shown its
relationship with entanglement length Ne of the chains, which is
the central quantity of any rheological theory.1−3

To accomplish the task, we have first shrunk the chains to
their “minimal shape” by introducing a simple numerical
algorithm that chops off progressively the contour length of
the chains without producing any violation of the topological
constraints present in the systems. Then, we have systematically
carried out an analysis of the rings’ topology from the single-
chain (knots) to two- and three-chain (links) levels.
By using the Jones polynomials as suitable topological

invariants, we have characterized the topological spectrum as a
function of the bending stiffness of the chains by finding, in
particular, that stiffer rings are more knotted and more
concatenated than more flexible ones (Figures 2−4). We have
also found that, quite systematically, for both knots and links
non-alternating structures are more likely to be present with
respect to the alternating ones (at the same topological
complexity). By applying the Z1 algorithm to the shrunken
structures, we have computed the entanglement lengthNe of the
melts for the different stiffnesses values and found that chain self-
entanglements (knots) do not play a significant role in Ne
(Figure 5), in fair agreement with the fact that rings are rarely
knotted (Figure 2). Most importantly, we have demonstrated
(Figure 6) that the ring mean linking degree ⟨LD⟩, which
accounts for the mean number of entanglement points of each
chain in the melt, is a prior for the number of entanglements
N/Ne that points to a nontrivial connection between the
topology of the chains and the rheological entanglement of the
system. Interestingly, the quantitative matching between ⟨LD⟩
and N/Ne is already remarkably accurate upon inclusion of only

the contributions up to the simplest two-chain linked structures,
suggesting that, at least for the chain lengths examined here,
links of higher order contribute negligibly. Overall, these
findings highlight the connection between the rheological
entanglements and the topological links between distinct chains
acting at the microscopic level.
We conclude by discussing more carefully our assumption

(see section 1) that ring melts can be used to understand
entanglement in linear melts. For this purpose, we have analyzed
the occurrence of knots and links in melts of linear chains withN
= 32054 and for the same physical parameters (i.e., density and
bending stiffness) employed for ring melts. The results for the
unknot probability [Punknot (see also the left panel of Figure 2)]
and the mean number of two-chain links with absolute Gauss
linking number |GLN| [⟨n2link(|GLN|)⟩ (see also the left panel of
Figure 3)], in comparison with the analogous ones for rings, are
reported in Figure S7 (top and bottom rows, respectively). For
the same N = 320, knots are clearly less abundant in linear than
in ring melts, and we ascribe this to the closure constraint that
may enhance the formation of knots in rings compared to linear
chains. On the contrary, two-chain links for which |GLN| = 1
[i.e., those responsible for the topological entanglement length
Ne (see Figure 6)] are completely equivalent for the two
architectures. Together with the finding (Figure 5) that knots
play a marginal role in determining Ne, this result reinforces the
important result of this work: that the physics of the polymer
entanglement lengthNe can be captured by only two-chain links.
Finally, while this work is mostly focused on understanding

the relation between the rheological entanglement of the melt
and the microscopic topological state of its constituent chains,
model conformations of randomly knotted and concatenated
rings can be adopted25 to understand the mechanisms of
synthesis of so-called Olympic gels, namely polymer gels made
of randomly linked rings like those now realized by using DNA
and cutting restriction enzymes.55 In particular, the possibility of
performing fine-tuning of the fiber parameters allows one to
foresee in great detail how one can benefit from the topological
properties of the gel and design materials with certain
specificities. For instance, a byproduct of this work concerns
how the polymer length, combined with the bending stiffness of
the chain, influences the topology of the resulting structure.
Depending on κbend, there is a different critical N for which a
percolating network of concatenated rings appears (Figure S6);
in particular, longer and stiffer rings typically produce more
robust networks. Moreover, depending on N and κbend, the
networks are constituted by a complex zoo of catenation motifs:
Hopf links, which are the most abundant for all considered
values ofN and κbend [Figure 3 (left panel) and Figure S5], some
more complex links for which GLN = 0 (e.g., Whitehead link)
and |GLN| > 1, or links involving three-chain structures whose
abundances increase withN and κbend [see Figure 3 (right panel)
and Figure 4]. These considerations highlight the topological
complexity that may arise in Olympic gels consisting of strand-
crossing rings as in ref 55 and how topology can be finely
regulated by controllable external parameters such as N and
κbend.
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