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ABSTRACT

The interest in topological materials has flourished in recent years due to their topological pro-

tection of remarkable physical properties under weak perturbations, which ensures the realisation

of robust exotic features in realistic materials. However, many of the theoretical achievements of

topology in condensed matter, such as the landmark relationship between Hall conductance and

the first Chern number discovered by Thouless, Kohmoto, Nightingale and den Nijs, inherently as-

sume a single-particle description of the many-body wave function, so that the role of interactions

and correlations in topological materials is not yet fully understood. This work aims to partially

fill this gap, covering a wide range of topological phenomena induced or supported by electronic

interactions.

First, the topological character of spin excitons and their condensation in quantum spin Hall insula-

tors will be investigated, with particular emphasis on their effect on the physics of electronic chiral

edge states. Second, the joint effects of flat optical moiré phonons and Coulomb repulsion on the

phase diagram of twisted bilayer graphene are studied, showing that their interplay can stabilise

topological insulators and superconductors in agreement with experimental evidence. Third, the

exact role of the Green’s function zeros in the topological invariants for strongly correlated systems

is elucidated, showing that the zeros contribute on an equal footing with the Green’s function poles.

In particular, in the case of a topological Mott insulator, it is shown that the topology is carried

entirely by the Green’s function zeros and not by the poles, a genuine strongly correlated effect that

lacks any non-interacting counterpart. In the last part, a new explanation for the peculiar Fermi

liquid properties of topological Kondo insulators is proposed, motivated by recent findings that

zeros of the Green’s function could directly correspond to the presence of neutral quasiparticles. In

particular, a new realistic model for these strongly interacting topological insulators is introduced

and then studied by means of cluster dynamical mean field calculations, confirming the presence

of ingap Green’s function zeros.
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3 Moiré phonons and local Kekulé order in TBLG 29
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CHAPTER 1

INTRODUCTION

One of the fundamental concepts in the journey of an undergraduate student through quantum

mechanics is the notion of symmetry. At the heart of this exploration lies the Schrödinger equation:

i~ ∂t ψ(x, t) = − ~2

2m
∇2 ψ(x, t) + V (r)ψ(x, t).

This equation exhibits invariance under a seemingly innocuous global phase transformation of the

wave function:

ψ(x, t)→ ψ(x, t) e−iϕ.

This symmetry lays the foundation of topology in quantum mechanics as originally envisioned by

Berry. Indeed, the phase ϕ may depend on the Hamiltonian parameters and, as the latter are

adiabatically varied along a closed loop, a non-zero phase accumulation can occur. This global

phase change, quantized in multiples of 2π, forms the essence of topological non-trivial behavior

in both quantum mechanics and condensed matter physics.

A striking manifestation of topology, which has fundamentally reshaped our understanding of

electronic structures, is the discovery of the integer quantum Hall effect (IQHE). In 1980, von

Klitzing discovered this phenomenon [1], and, two years later, Thouless, Kohmoto, Nightingale,

and den Nijs (TKNN) proved its topological origin [2]. Within a thin metal slab subjected to

an orthogonal magnetic field, the Hall conductance becomes quantized, with a constant offset.

Intriguingly, this quantization occurs when the system is insulating, i.e., when the highest occupied

Landau levels is full. Changes in the quantization integer only occur when the system transitions

through a metallic state, as illustrated in Fig. 1.1.

This quantized integer is just the Barry phase accumulated by the many-body wave-function

when a magnetic flux quantum is threatened into the system, and it is associated with a topological

invariant known as the first Chern number that remains constants under smooth deformations of

the Hamiltonian. As an illustrative example, a donut can be smoothly deformed into a mug, both

possessing one hole, but not into a pair of glasses with two holes without piercing the object. In

the context of condensed matter, this smooth deformation corresponds to adiabatic and symmetry-

preserving transformations of the Hamiltonian. In the case of IQHE, altering the Chern number
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Figure 1.1: Schematic representation of the device geometry in panel (a), and the measurement

results in panel (b) for an experimental realization of the integer Quantum Hall effect. Notably,

in panel (b), changes in Hall resistance coincide with peaks in longitudinal resistivity, signifying a

closure of the insulating gap. Figure adapted from Ref. [3].

necessitates ”piercing” the ground state by closing the energy gap, thus breaking adiabaticity.

Remarkably, the Hall bar also features chiral edge states that are ultimately responsible of the

Hall conductance, whose quantized value is directly proportional to the number of those modes.

This remarkable property underpins the success of topological materials. It ensures that the

non-trivial topological response, such as the presence of edge states, remains robust against various

perturbations of the Hamiltonian, such as small interactions, disorder, impurities, and defects that

are inevitable in real materials. Thus the introduction of topology into condensed matter physics

has not only demonstrated that electronic properties can be elegantly described using advanced

mathematical concepts but also that a deeper understanding of these abstract structures can lead

to extraordinary properties in real-world materials.

However, Berry’s formalism faces a significant challenge: it inherently requires working with

the exact many-body wavefunction, which, apart from few cases, is almost impossible to calculate.

For instance, in non-interacting systems or interacting ones that admit an independent-particle

description, the calculation is easy since the many-body wavefunction is, or is well represented

by, a Slater determinant of single-particle Bloch wavefunctions. Similarly, one can keep using the

results of the non-interacting case when the latter is adiabatically connected to the fully interacting

system. However, this simplification may no longer be feasible in strongly correlated systems.

This introduces complexities to the study of these materials, but also unlocks the potential for

phenomena that lack a non-interacting counterpart, most notably the fractional quantum Hall

effect.

In the pursuit of exploring these new frontiers, this PhD thesis aims to investigate various

facets of topological manifestations in strongly correlated systems, with particular emphasis on
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the interplay between topology and electron interaction. Since it will encompass a wide array of

diverse and captivating topics, to help reader comprehension this introductory chapter will provide

a brief summary of each work that has been accomplished.

1.1 Exciton condensation and topology in quantum spin

Hall insulators

The first part of this thesis delves into the study of excitons within a prototypical quantum spin

Hall insulator (QSHI). Coulomb interaction in insulators may lead to the formation of bound states

between electrons in the conduction band and holes in the valence one, so-called excitons. The

excitons, which are bosonic composite particles, may also exhibit topological properties and could

potentially undergo a Bose condensation, leading to excitonic insulators.

Two-dimensional materials, characterized by a finite density of states at the band edges and

by an enhanced Coulomb interaction strength because of the reduced dimensionality, are ideal

candidates for exciton condensation. This phenomenon has indeed been experimentally observed

in bilayer graphene and transition metal dichalcogenides [4–6], with the latter that can also sustain

quantum spin Hall effect [5, 6]. This raises the question whether quantum spin Hall insulators

(QSHI), inherently two-dimensional, could also exhibit non-trivial excitonic properties and if those

can interplay with topology. The question becomes even more intriguing when considering the role

of spin excitons in purported topological insulators such as SmB6, where they interact with chiral

edge states [7, 8], playing a pivotal role in the surface physics of these materials.

In this chapter, I will conduct a comprehensive analysis of excitons, encompassing both spinful

and spinless variants, within a prototypical model of a QSHI introduced by Bernevig, Hughes,

and Zhang to describe topological insulators in quantum wells [9]. Unlike quantum Hall insulators

or anomalous quantum Hall insulators, QSHIs exhibit a distinct feature: while their charge Hall

conductivity is zero, the spin Hall conductivity is quantized. This unique behavior arises from the

presence of counter-propagating edge states with opposite spin projections. Furthermore, unlike

the aforementioned Hall insulators, QSHIs possesses time-reversal invariance that actually protects

the topological character.

To replicate the effects of Coulomb repulsion, I will introduce a local Hubbard interaction that

preserves the symmetry of the problem. Subsequently, I will address the interacting problem

employing a conserving mean-field approach, wherein ground state properties are calculated using

the Hartree-Fock approximation, while response functions are determined by the Bethe-Salpeter

equation using as irreducible vertex the functional derivative of the Hartree-Fock self-energy with

respect to the Green’s function.

I will demonstrate that, starting with a non-interacting QSHI and gradually increasing the

interaction strength, a branch of excitons detach from the gapped particle-hole continuum. Notably,

these excitations can acquire non-trivial topological character, hinting at the existence of chiral

topological surface excitons, in particular spinful in this case. It is noteworthy that these surface

excitons, being spin-triplet, serve as an efficient decay channel for the topological edge modes.

Furthermore, as the interaction strength continues to increase, albeit within moderate values, an

excitonic insulator sets in through the condensation of these spin-triplet excitons. While this phase

is topologically trivial because of the spontaneous time reversal symmetry breaking, it exhibits an
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exotic magneto-electric effect that holds significant promise for practical applications. Additionally,

owing to reduced coordination at the boundary, a one-dimensional exciton condensate at the

edges may appear prior to the bulk condensation, suggesting the emergence of a surface excitonic

insulator. This has profound implications for the coherence of the chiral electronic surface states.

1.2 Moiré phonons and local Kekulé order in twisted bilayer

graphene

The second part of this thesis is devoted to the investigation of the phase diagram of small angle

twisted bilayer graphene (TBLG), with a particular emphasis on the significant influence of its

distinctive phonon modes.

TBLG consists of two layers of graphene slightly twisted one with respect to the other. For

particular twist angles, the system recovers periodicity but with huge supercells spanning several

thousands of carbon atoms. This arrangement gives rise to a characteristic Moiré pattern. Notably,

the intricate folding of the original Brillouin Zone into the much smaller Moiré Zone together with

the interlayer hopping lead to the formation of remarkably flat electronic bands (few tenths of

meV) around the charge neutrality point, as first predicted by Bistritzer and MacDonald [10].

This extraordinary flatness significantly diminishes the kinetic energy of the electrons, thereby

amplifying the importance of electron-electron correlations.

One remarkable feature of TBLG, shared with many few-layered materials, is the ease with

which its doping can be controlled using just few gate electrodes. This stands in sharp contrast to

other correlated materials, such as cuprates, which often necessitate complex chemical substitutions

to achieve doping control.

These compelling attributes have positioned TBLG as an ideal platform for realizing, investigat-

ing, and engineering strongly correlated electronic states, as it has been convincingly demonstrated

experimentally. The flat bands in TBLG have, in fact, the capacity to accommodate up to eight

electrons per Moiré cell, typically denoted by the filling ν = −4 + nel, and possess a non-trivial

topological character. Realistic tight-binding and DFT calculations predict that TBLG is a metal

with tiny Fermi velocity at any filling fraction −4 < ν < 4. However, the real system under-

goes transitions to insulating states at any integer fillings [11–23], with anomalous Hall effect

at ν = 2 [24, 25]. Additionally, superconducting domes emerge in the vicinity of the insulating

states [12, 13, 15, 19, 20, 26], rendering the phase diagram reminiscent of that found in strongly

correlated materials (see Fig. 1.2).

Due to the similarity of the TBLG phase diagram with that of cuprates, where superconduc-

tivity seems completely unrelated to phonons (the isotope effect is absent), considerable efforts

have been invested in a TBLG description involving solely Coulomb repulsion. However, TBLG

also possesses a set of extremely flat phonon modes, derived from a long wavelength modulation

of the optical modes of graphene around the K reciprocal vector [27]. These phonons share the

same emerging symmetry as the flat bands, giving rise to an effective e× E Jahn-Teller coupling,

which is very effective in removing the valley degeneracy of the flat bands.

In this chapter, I will present comprehensive Hartree-Fock calculations that take into account

both Coulomb repulsion and the effective attraction generated by this special set of phonons.

Within this approximation, when the coupling between phonons and electrons reaches a critical
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Figure 1.2: Phase diagram of TBLG depending on magnetic field (panel a) and temperature (panel

b). Notably, the system displays resistance peaks at any integer fillings and drops between some of

them, corresponding to insulating and superconducting states respectively. Figure adapted from

Ref. [12]
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threshold (though still substantially smaller than the Coulomb repulsion), the phase diagram un-

dergoes a radical transformation. Notably, an insulator displaying a Kekulé distortion at the scale

of the single-layer graphene becomes the most stable at charge neutrality. This then serves as a

parent state for all the insulators at different integer fillings, which additionally exhibit topological

features. This scenario, only realized by introducing these peculiar optical phonons in the pic-

ture, has been subsequently confirmed experimentally through state-of-the-art scanning tunneling

microscopy (STM) measurements [28], which indeed detected a local Kekulé distortion at ν = ±2.

Moving beyond the Hartree-Fock approximation, I will present a resonating valence bond sce-

nario, where now the Kekulé distortion oscillates between different geometries. This theoretical

framework predicts a insulating states composed of topological d ± id Cooper pairs which are

naturally predisposed to develop superconductivity upon doping, in alignment with experimental

evidences [29–31].

1.3 Green’s function zeros and topological invariants

The third part of this thesis focuses on the role of Green’s function zeros in the topological character

of interacting many body ground states. The Green’s function, defined as the transition amplitude

between an electron created at (imaginary) time zero in position r′ and an electron annihilated at

time τ and position r on the ground state

G(r− r′, τ) = −i 〈Tτ
(
ψ(r, τ)ψ†(0, r′)

)
〉 ,

carries information about the single particle structure of correlated electronic systems, and is at

the base of the so called many body perturbation theory in condensed matter.

In the non-interacting case the Green’s function takes a rather simple form in momentum and

frequency spaces, where it displays poles around the single particle states

G0(k, iω) =
1

iω − εk
,

εk is the non-interacting dispersion and the chemical potential is set to zero for simplicity. Once

interactions are considered, electronic correlations are fully described by the self energy Σ(k, iω),

which can be defined via the Dyson equation

G(k, iω) =
(
G−10 (k, iω)− Σ(k, iω)

)−1
=

1

iω − εk − Σ(k, iω)
,

which relates the non-interacting Green’s function to the fully interacting one. In particular, when

perturbation theory is valid, the self energy can be expressed in term of a converging power series

in the interaction, where the main building blocks are the non-interacting Green’s function G0 and

the matrix elements of the interaction.

In this perturbative regime, the imaginary part of the self energy, which accounts for decoher-

ence effects, quickly goes to zero at zero frequency. This ensures that single particle excitations,

now called quasiparticles, still survive near the chemical potential. The existence of these quasi-

particles, at the root of Fermi liquid theory, implies that the Green’s function can be divided into

a coherent part that is dominant at low frequencies and behaves like the one of non-interacting
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electrons, and an incoherent one, which describes states far away from the chemical potential that

quickly decay in a plethora of particle-hole excitations,

G(k, iω) = Gcoh(k, iω) +Ginc(k, iω) ,

Gcoh(k, iω) ' Z(k, 0)

iω − ε̃k
,

where

Z(k, ω) =

(
1− Im Σ(k, iω)

iω

)−1
≥ 0 ε̃k = lim

ω→0
Z(k, ω)

(
εk + Re Σ(k, iω)

)
,

are the so called quasiparticle residue and dispersion. Moreover, the density of states near the

chemical potential, now expressed in real frequencies, is given by

A(k, ω) ' − 1

2π
ImGcoh(k, ω + i0+) = Z(k, 0) δ(ω − ε̃k) ,

which is similar to the one of non-interacting electrons, although the spectral weight is renormalized

by Z. In particular, these quasiparticles satisfy the Luttinger theorem, namely their number is the

same as the one of non-interacting single particle states. In another words, the Fermi surface of

the weakly correlated ground state is exactly the one of the quasiparticles, defined as the locus of

points in k space where

εk + Re Σ(k, 0) = 0

or, alternatively, where the Green’s function has a pole at zero frequency.

However, further increasing the strength of the interaction, the perturbation expansion may

fail resulting in a self energy that develops poles near zero frequency. At the k points in the

vicinity of these poles, the system is gapped since the quasiparticle dispersion do not cross the

chemical potential and the quasiparticle residue goes quickly at zero approaching zero frequency.

Considering a half filled system, the presence of poles of the self energy ensures that a gap is

opened in the whole Brillouin Zone: a Mott insulator is realized. In this type of insulators, the

localization of electrons and, most importantly, their mutual correlations are the only responsible

for its insulating behaviour.

But poles of the self energy are in direct correspondence with zeros of the Green’s function, or

better zeros of the determinant of the Green’s function when various quantum numbers are present

such that the Green’s function becomes a matrix. These zeros have been for long disregarded as

a sole accident of the theory without any physical relevance. Though, they posses an equivalent

to the Fermi surface called Luttinger surface, i.e. the locus of points where the Green’s function

displays zeros at zero frequency, which carries the same non-trivial topology of the Fermi one [32].

Intriguingly, a recent work [33] demonstrated that, since the quasiparticle lifetime is actually

corrected with the quasiparticle residue

τ−1k = − lim
ω→0+

Z(k, ω) Im Σ(k, iω)

ω2

Fermi liquid theory can be analytically rederived also in the vicinity of the Luttinger surface [34],

implying the presence of quasiparticles now described by the effective Hamiltonian

H∗(k, iω) =
√
Z(k, ω) (εk + Re Σ(k, iω))

√
Z(k, ω)
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which has zero eigenvalues at the Luttinger surface even in non-symmetry breaking Mott insula-

tors [34]. Those quasiparticles have the same physical properties as conventional ones at a Fermi

surface, but are incompressible [35] and do not contribute to charge transport [34], realizing what

could be regarded as a neutral Fermi surface. Interestingly, the presence of a Luttinger surface

also implies the breakdown of Luttinger’s theorem [35].

This picture becomes even more fascinating when topology is taken into account. Starting from

an uncorrelated topological insulator and increasing the interaction, it has been proposed [36, 37]

that edge poles, i.e. chiral edge states, may transform into edge zeros without the closure of the

insulating gap. This prompted the interest in the interplay between the topological character of

a strongly correlated insulator and the properties of the Green’s function zeros. In particular, a

recent work pointed out that Mott insulators can have non-trivial topological bands of zeros lying

inside the insulating gap, clarifying how a possible bulk-boundary correspondence could emerge

also for the zeros [38].

Further insight can be gained noticing that every topological invariant of an interacting systems

can be written as a product of logarithmic derivative of the Green’s function [39–43]

G(k, iω) ∂ν G
−1(k, iω) = −G−1(k, iω) ∂ν G(k, iω) ,

where ν can be the frequency, the momentum or other parameters of the Hamiltonian. Just by

a quick inspection it is straightforward to understand that G and G−1 are interchangeable, so

that zeros and poles of the Green’s function may play, apart from a minus sign, the same role in

the topological nature of a strongly correlated insulator. However, up to now, a comprehensive

analysis of the zeros contribution to these topological invariants is largely lacking.

Another open problem is the connection between these topological invariants and the actual

response functions of the system. For example, is it still true that the two dimensional Chern

number of a topological insulator with Green’s function zeros corresponds to the quantized value

of the transverse conductivity?

In this chapter, I will try to partially fill this gap. In particular I will demonstrate that the

first Chern number of an interacting insulator without a Luttinger surface reduces exactly to the

TKNN formula calculated on the quasiparticle Hamiltonian at zero frequency H∗(k, 0). In the

perturbative case, this reproduces the results of Zhong and Zhang [42], since
√
Z(k, 0) ∼ 1 and the

quasiparticle Hamiltonian almost reduces to the topological Hamiltonian Htopo(k) = −G−1(k, 0).

However, when perturbation theory breaks down and zeros of the Green’s function appear, the

quasiparticle Hamiltonian describes low energy excitations which are almost entirely determined

by the properties of the zeros of the Green’s function rather than the poles. Elaborating on

that result, I found that deep in the Mott phase the value of the first Chern number is entirely

determined by the topology of the in-gap zeros of the Green’s function.

In addition, I will demonstrate, using the Streda formula, that in scenarios where perturbation

theory breaks down and the Luttinger theorem fails, a direct correspondence between the first

Chern number and transverse conductivity may also falter. This breakdown occurs due to the

emergence of non-trivial many-body corrections, which become non-zero outside the perturbative

regime and can disrupt the one-to-one correspondence between these two physical quantities.

These results, obtained in two dimensions but easily generalizable in any dimensions, shine

light on a largely not understood subject and demonstrate how strongly correlated systems can

host topological phenomena without any non-interacting counterpart.
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1.4 Neutral quasiparticles in topological Kondo insulators

In the concluding segment of this thesis, I will present preliminary results concerning the potential

significance of Green’s function zeros in elucidating the enigmatic dualistic behavior, alternating

between metallic and insulating, exhibited by topological Kondo insulators (TKIs).

To provide readers with the essential context, I a going to first delve into the key characteristics

of Kondo insulators. In these materials, the near-Fermi energy band structure is primarily domi-

nated by an itinerant metallic band which interplays with a more localized and strongly correlated

counterpart. At elevated temperatures, Kondo insulators display metallic behavior, with transport

properties predominantly governed by the itinerant electrons. As the temperature decreases below

a certain value, an energy gap emerges, causing the system to transition into an insulating state.

This phenomenon is typically interpreted through the lens of the Kondo effect: at low temperature

the localized electrons get promoted into the conduction band and that opens a hybridisation gap

making the system insulating.

In light of these considerations, Kondo insulators are often successfully modeled using a tight-

binding Hamiltonian, wherein an itinerant band hybridizes on-site with a flat and highly interacting

one, known as the periodic Anderson model (PAM).

Topological Kondo insulators, exemplified by materials such as SmB6 and YbB12, share the

same characteristic gap opening at low temperatures. However, they also exhibit a distinct feature:

the emergence of metallic edge states with apparent topological origins [44–51]. In these materials,

the low energy properties are primarily influenced by the d- and f -orbitals of the rare earth atoms,

whereas the boron orbitals reside well below the chemical potential, serving as a structural stabi-

lizer. Notably, the high-energy shells of the d- and f -orbitals implies strong spin-orbit coupling,

leading to significant hybridization between the two. The odd parity of this orbital hybridization,

along with the opposed parity of d- and f -orbitals, enables a nearest-neighbor band mixing with

just the right symmetry to sustain a topological insulator.

Consequently, a slightly modified periodic Anderson model has been proposed to describe these

materials [52], in which one or more itinerant d-orbitals hybridize with the correlated f -orbitals

in adjacent cells. By tuning the model parameters to achieve a topological Hamiltonian, one can

explain both the emergence of the gap below a Kondo-like temperature and the appearance of

genuine topological chiral edge states.

Nevertheless, topological Kondo insulators present puzzling and counterintuitive features emerg-

ing in the insulating phase. Notably, their heat capacity, heat transport properties, and quantum

oscillations mimic those of metals [53–64] suggesting the existence of an analogue to a bulk Fermi

surface; a phenomenon at odds with the conventional Kondo insulators.

A promising interpretation of these effects is the presence of a ’neutral’ Fermi surface that

displays Landau levels quantization [65–67], although the possible mechanism at the basis of its

formation is still controversial.

Other theoretical explanations have been proposed, involving the role of excitons and magneto-

excitons [68], the possibility of quantum oscillations in narrow gap insulators [69–71], the enhance-

ment of quantum oscillations in Kondo insulators [72], the interplay between surface states and

the Kondo breakdown [73]. These explanations predict, however, a strong deviation from the

Lifshitz-Kosevich expression for quantum oscillations, at odd with experimental evidences [61,64].

In this chapter, I will explore an alternative picture involving the presence of zeros of the Green’s
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function forming a Luttinger surface. As previously discussed, this surface could potentially host

gapless excitations that resemble metallic quasiparticles while exerting no influence on charge

transport properties [74–76]. Such a framework implies the existence of a finite single-particle gap

in the density of states, coexisting with ’neutral’ fermionic quasiparticles within the gap. These

quasiparticles may provide a suitable description for the observed Fermi liquid properties and

quantum oscillations in topological Kondo insulators.

To identify the presence of a Luttinger surface, I conducted dynamical cluster approximation

(DCA) calculations. This approach allows for the determination of non-local contribution to the

self-energy, which is calculated at some k points within the Brillouin zone. Subsequently, smooth

lattice properties can be derived through a meticulous periodization of the self-energy, ultimately

revealing the locus in k space where it exhibits zero-energy poles hallmark of the Luttinger surface.

I will begin my analysis by focusing on the model discussed earlier [52], in which only the

f -electrons exhibit interactions. For small interaction strengths, the system closely resembles a

weakly correlated topological insulator that can be adiabatically connected to a non-interacting

one. As the strength of the interactions increases, the f -bands progressively localize, eventually

realizing an heavy fermion system either metallic or insulating but with a minuscule gap. However,

both of these scenario are at odd with the experimental picture and thus incongruity necessitates

a reexamination of the TKI model.

A common feature among these materials is the shared origin of the d- and f -orbitals within

the same atom. Consequently, the matrix elements of the local Coulomb repulsion involving the

d-orbitals are of comparable magnitude to those within the f -subspace. This indicates that the

correlation of the d-orbitals could play a relevant role in the actual electronic structure of the

system, and the assumption that only the interaction between the f -orbitals is relevant may not

be accurate enough to describe these kind of materials.

By incorporating these terms into the model Hamiltonian, I will observe that, for small inter-

action strengths, the system once again resembles a weakly correlated topological insulator, with

interactions primarily serving to renormalize the parameters of the non-interacting Hamiltonian.

As the interaction strength is further increased, both orbitals simultaneously undergo localization.

The system can now accommodate a Luttinger surface, which can exhibit characteristics of both

d- and f -orbitals depending on the model parameters, all while maintaining an insulating state.

These results thus support the idea that TKI can instead be Mott insulators with a Luttinger

surface, which would explain the peculiar metal-insulator dichotomy of these materials.

Lastly, I will discuss the interplay between the presence of a Luttinger surface, i.e., zeros of

the Green’s function, and the topology of the ground state, also in light of the analytical results

obtained in the previous chapter of the present thesis.



CHAPTER 2

EXCITON CONDENSATION AND TOPOLOGY IN QSHI

2.1 Introduction

The physics of excitons in topological insulators has attracted considerable interest in the last

decade, see, not as an exhaustive list, Refs. [7, 77–83], recently renewed [84] by the evidence of a

quantum spin Hall effect [85–87] and excitonic condensation [5, 6] in two-dimensional transition

metal dichalcogenides.

More precisely, a consistent part of the research activity has focused into the possibility of an

exciton condensation in thin samples of topological insulators [77–79,82,88–90], much in the spirit

of what was proposed [91,92] and observed [4] in bilayer graphene.

In addition, the puzzling properties of the purported topological Kondo insulator SmB6 [93–95]

prompted interest in the excitons of such material [7, 8, 80, 81, 96, 97] as partly responsible for its

anomalous behaviour.

Even though evidences of excitons exist also in the three-dimensional topological insulator

Bi2Se3 [83], besides those in the still controversial SmB6, a systematic study in model topological

insulators is largely lacking [96, 98–100]. The main goal of this chapter is to partly fill this gap.

Specifically, I consider the prototypical model of a Quantum Spin Hall Insulator (QSHI) introduced

by Bernevig, Hughes and Zhang [9], and add a local interaction compatible with the symmetries,

which, e.g., allow for a dipole-dipole term. I deal with such an interaction in a conserving mean-field

scheme. Namely, I assume the Hartree-Fock expression of the self-energy functional to compute

the single-particle Green’s function. Next, I calculate the excitons by solving the Bethe-Salpeter

equations for the response functions, using as irreducible vertex the functional derivative of the

Hartree-Fock self-energy functional with respect to the Green’s function; what is often called

random phase approximation plus exchange [101].

The main result of this chapter is that, starting from the non-interacting QSHI, branches of excitons

that transform into each other under time reversal detach from the continuum of particle-hole

excitations, and gradually soften upon increasing interaction strength. When the latter exceeds a

critical value, those excitons become massless, and thus condense through a second order critical
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point, which coincides with that obtained directly through the Hartree-Fock calculation not forcing

any symmetry. Such symmetry broken phase is still insulating, and displays magnetoelectric effects.

Upon further increasing interaction, it eventually gives in to the non-topological symmetry invariant

insulator via another second order transition. None of those transitions is accompanied by any

gap closing; therefore uncovering a path between the QSHI and the trivial insulator that does not

cross any gapless point [102–104], thanks to the interaction-driven spontaneous breakdown of time

reversal symmetry.

I also find that, approaching the excitonic insulator from the QSHI, the excitons themselves may

acquire a non trivial topology signalled by a non-zero Chern number, suggestive of the existence

of chiral exciton edge modes. In addition, there are evidences that, in open boundary geometries,

exciton condensation occurs at the surface earlier than in the bulk, which also foresees the existence

of non-chiral surface excitons that go soft before the bulk ones [105–107].

These findings may have observable consequences that I discuss, some of which not in disagreement

with existing experimental evidences.

2.2 The model Hamiltonian

I shall consider the model introduced by Bernevig, Hughes and Zhang, after them named BHZ

model, to describe the QSHI phase in HgTe quantum wells [9]. The BHZ model involves two

spinful Wannier orbitals per unit cell, which transform like s-orbitals, |s σ〉, where σ =↑, ↓ refers

to the projection of the spin along the z-axis, and like the J = 3/2, Jz = ±3/2 spin-orbit coupled

combinations of p-orbitals, i.e.,

|px + ipy ↑〉 = |p+1 ↑〉 ≡ |p ↑〉 ,
|px − ipy ↓〉 = |p−1 ↓〉 ≡ |p ↓〉 .

(2.1)

I introduce two sets of Pauli matrices, σa and τa, a = 0, . . . , 3, with a = 0 denoting the identity,

which act, respectively, in the spin, ↑ and ↓, and orbital, s and p, spaces.

With those definitions, the BHZ tight-binding Hamiltonian on a square lattice includes all onsite

potentials and nearest neighbour hopping terms that are compatible with inversion, time reversal

and C4 symmetry [108], and reads

H0 =
∑
k

Ψ†k Ĥ0(k) Ψk =
∑
ij

Ψ†i Ĥ0(Ri −Rj) Ψj , (2.2)

at density corresponding to two electrons per site, where

Ψk =


sk↑
sk↓
pk↑
pk↓

 , Ψi =


si↑
si↓
pi↑
pi↓

 , (2.3)

are four component spinors in momentum, Ψk, and real, Ψi, space, with i labelling the unit cell

at position Ri. Ĥ0(k) is the 4× 4 matrix

Ĥ0(k) =
(
M − t εk

)
σ0 ⊗ τ3 − t′ εk σ0 ⊗ τ0

+ λ sin kx σ3 ⊗ τ1 − λ sin ky σ0 ⊗ τ2 ,
(2.4)
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with k =
(
kx, ky

)
and εk =

(
cos kx+cos ky

)
while Ĥ0(Ri−Rj) its Fourier transform in real space.

The parameters t′ − t, t′ + t and λ correspond, respectively, to the s− s, p− p and s− p nearest

neighbour hybridisation amplitudes. Finally, M describes an onsite energy difference between the

two orbitals.

Hereafter, I shall analyse the Hamiltonian (2.4) for M > 0, t′ = 0.5 t and λ = 0.3 t. The precise

values of the latter two are not crucial to the physics of the model. What really matters is the

relative magnitude of M and t, and the finiteness of λ. Therefore, for sake of simplicity, I shall set

t = 1 as the unit of energy.

The band structure can be easily calculated and yields two bands, each degenerate with respect to

the spin label σ; a conduction and a valence band, with dispersion εc(k) and εv(k), respectively,

which read

εc(k) = −t′ εk + Ek , εv(k) = −t′ εk − Ek , (2.5)

where

Ek =

√ (
M − εk

)2
+ λ2 sin2 kx + λ2 sin2 ky . (2.6)

With this choice of parameters, these bands describe a direct gap semiconductor for any M 6= 2. At

the high symmetry points in the Brillouin Zone (BZ), the bands have a defined orbital character,

i.e., a defined parity under inversion. Specifically, at Γ = (0, 0),

εc(Γ) = −2t′ +
∣∣M − 2

∣∣ , εv(Γ) = −2t′ −
∣∣M − 2

∣∣ , (2.7)

valence and conduction bands have, respectively, s and p orbital character if M < 2, and vice versa

if M > 2. On the contrary, at the zone boundary points M = (π, π), X = (π, 0), and Y = (0, π),

εc(M) = 2t′ +
(
M + 2

)
, εv(M) = 2t′ −

(
M + 2

)
,

εc(X) = εc(Y ) = M , εv(X) = εv(Y ) = −M ,
(2.8)

the valence band is p and the conduction one s for any value of M . It follows that, if M < 2,

there is an avoided band crossing, due to λ 6= 0, moving from Γ towards the BZ boundary, while,

if M > 2, each band has predominantly a single orbital character, s the conduction band and p

the valence one, see Fig. 2.1. At M = 2 the gap closes at Γ, around which the dispersion becomes

Dirac-like,

εc(k) ' +λ
∣∣k∣∣ , εv(k) ' −λ

∣∣k∣∣ . (2.9)

The transition between the two insulating phases is known to have topological character [9].

I note that the Hamiltonian Ĥ0(k) commutes with σ3, i.e., is invariant under U(1) spin rotations

around the z-axis, as well as under inversion and time reversal, respectively represented by the

operators
I : Ĥ0(k) = σ0 ⊗ τ3 Ĥ0(−k) σ0 ⊗ τ3 ,

T : Ĥ0(k) =
(
− iσ2 ⊗ τ0

)
Ĥ∗0 (−k)

(
iσ2 ⊗ τ0

)
.

(2.10)

In addition, it is invariant under spatial, i.e., not affecting spins, C4 rotations, which correspond

to

C4 : Ĥ0(k) = e−i
π
2 L3 Ĥ0

(
C4(k)

)
ei

π
2 L3 , (2.11)

where C4(k) =
(
ky,−kx

)
, and the z-component of the angular momentum operator is

L3 = σ3 ⊗
τ0 − τ3

2
. (2.12)
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Figure 2.1: Band structure of the BHZ model in the topological, left panel, and trivial, right panel,

regimes. Blue and red colours indicate, respectively, even (s orbital character) and odd (p orbital

character) parity under inversion.

Evidently, since the Hamiltonian is also invariant under spin U(1) rotations, with generator S3 =

σ3 ⊗ τ0/2, it is also invariant under π/2 rotations with generator the total angular momentum

along z, i.e., J3 = L3 + S3, which provides a better definition of C4.

I observe that, if Cσ is the Chern number of the spin-σ valence-band electrons, then invariance

under both inversion and time reversal entails a vanishing
(
C↑ + C↓

)
, which is proportional to

the transverse charge-conductance, but a possibly non zero
(
C↑ − C↓

)
, which would correspond

to a finite transverse spin-conductance, thus the nontrivial topology of a QSHI [109]. Specifically,(
C↑ −C↓

)
6= 0 occurs when M < 2 [9,102], not surprisingly in view of the avoided band crossings.

I emphasise that a robust topological invariant can be defined provided spin U(1) symmetry is

preserved.

So far I have discussed the main properties of the non-interacting Hamiltonian (2.2). However,

physically, electrons unavoidably interact with each other. I shall therefore add to the non-

interacting Hamiltonian (2.2) a local Coulomb interaction Uint, thus neglecting its long range

tail, which includes, besides monopoles terms, also a dipole-dipole interaction Udip, which is here

allowed by symmetry. Specifically,

Uint = U + Udip , (2.13)

where

U =
∑
i

(
Us nis↑nis↓ + Up nip↑nip↓ + V nisnip

)
, (2.14)

includes monopole terms, while the dipole-dipole interaction, projected onto the basis of single-

particle wavefunctions, reads

Udip =
J

2

∑
i

[(
Ψ†i σ0 ⊗ τ1 Ψi

)2
+
(

Ψ†i σ3 ⊗ τ2 Ψi

)2 ]
. (2.15)

All coupling constants, Us, Up, V and J , are positive, nisσ = s†iσ siσ, nipσ = p†iσ piσ, and nis(p) =

nis(p)↑ + nis(p)↓. Hereafter, in order to reduce the number of independent parameters and thus

simplify the analysis, I shall take Us = Up = U . Moreover, the numerical solution will be carried

out with the further simplification U = V .
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I end mentioning that a calculation similar to the one I am going to present has been performed

by Chen and Shindou [99], though in the magnetised BHZ model, which includes just two orbitals:

|s ↑〉 and, differently from the time-reversal invariant case, see Eq. (2.1), the J = 3/2, Jz = +1/2

orbital |p+ ↓〉. Physically, this correspond to consider an anomalous quantum Hall insulator rather

than a QSHI.

2.3 Methods and approximations

2.3.1 Hartree-Fock approximation

The simplest way to include the effects of a not too strong interaction is through the Hartree-

Fock approximation (HF), which amounts to approximate the self-energy functional simply by the

Hartree and Fock diagrams. For sake of simplicity, I shall introduce the HF approximation under

the assumption of unbroken translational symmetry, so that the lattice total momentum is a good

quantum number. Whenever needed, I will mention what changes when translational symmetry is

broken. Within the HF approximation, if

Ĝ0(iε,k)−1 = iε− Ĥ0(k) , (2.16)

is the inverse of the non-interacting 4×4 Green’s function matrix at momentum k and in Matsubara

frequencies, iε, the interacting Green’s function is

Ĝ(iε,k)−1 = Ĝ0(iε,k)−1 − Σ̂HF
[
Ĝ
]
, (2.17)

where, in the specific case under consideration, the self-energy within the HF approximation is

functional of the local Green’s function

Σ̂HF

[
Ĝ(Ri,Ri)

]
=

3∑
α,a=0

σα ⊗ τa Γ0
αa ∆αa(Ri) , (2.18)

with

∆αa(Ri) ≡ T
∑
ε

eiε 0
+

Tr
(
Ĝ(iε,Ri,Ri)σα ⊗ τa

)
= 〈Ψ†i σα ⊗ τa Ψi 〉 ≡ 〈Oαa(Ri) 〉 ∈ R ,

(2.19)

which become independent of the site coordinates Ri if translational symmetry holds, i.e., ∆αa(Ri)→
∆αa. The Dyson equation (2.17), together with (2.18) and (2.19), yield a self-consistency condition

that has to be solved. Γ0
αa are the irreducible scattering amplitudes in the HF approximation, and,
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through Eq. (2.13), their expressions can be readily derived:

Γ0
00 =

U + 2V − 2J

4
, Γ0

03 =
U − 2V + 2J

4
,

Γ0
01 = − V − 4J

4
, Γ0

02 = − V

4
,

Γ0
10 = Γ0

20 = − U

4
, Γ0

30 = − U + 2J

4
,

Γ0
11 = Γ0

21 = − V + 2J

4
, Γ0

31 = − V

4
,

Γ0
12 = Γ0

22 = − V − 2J

4
, Γ0

32 = − V − 4J

4
,

Γ0
13 = Γ0

23 = − U

4
, Γ0

33 = − U − 2J

4
.

(2.20)

I note that the scattering amplitudes posses the same spin U(1) symmetry of the non-interacting

Hamiltonian, namely, Γ0
1a = Γ0

2a 6= Γ0
3a, a = 0, . . . , 3.

The expectation values ∆00(Ri) = 〈nis + nip〉 and ∆03(Ri) = 〈nis − nip〉, which measure the

local density and orbital polarisation, respectively, are finite already in absence of interaction. In

this case, the effects of the scattering amplitudes Γ0
00 and Γ0

03 treated within HF are, respectively,

to shift the chemical potential, which can be discarded since the density is fixed at half filling,

and renormalise upward the value of M , thus enlarging the stability region of the non topological

phase.

On the contrary, all other expectation values ∆αa(Ri), (α, a) 6= (0, 0), (0, 3), break one or more

symmetries of the non-interacting Hamiltonian, and therefore vanish identically in the non inter-

acting case. They could become finite should interaction be strong enough to lead to spontaneous

symmetry breaking. I expect this should primarily occur in those channels whose scattering am-

plitudes are the most negative ones, being ∆αa(Ri) real by definition. If V ' U , as I shall assume

in the following numerical calculations, the dominant symmetry breaking channels are therefore

those with (α, a) = (3, 0), (1, 1), (2, 1). I emphasise that the dipolar coupling constant J plays an

important role in splitting the large degeneracies of the scattering amplitudes in (2.20) that exist

at J = 0.

Specifically,

∆30(Ri) = 〈Ψ†i σ3 ⊗ τ0 Ψi 〉 =
∑
l=s,p

〈nil↑ − nil↓ 〉 , (2.21)

corresponds to a spontaneous spin polarisation along the z-axis, which breaks time reversal sym-

metry. I shall investigate two possible magnetic orders, ∆30(Ri) = ∆30 eiQ·Ri , with Q = (0, 0)

or Q = (π, π), corresponding, respectively, to ferromagnetism or antiferromagnetism. I point out

that the latter implies a breakdown of translational symmetry, in which case the Green’s function

is not anymore diagonal in k, but depends on it as well as on k+Q, so it becomes an 8×8 matrix,

and Eq. (2.17) must be modified accordingly.

On the contrary,

∆11(Ri) = 〈Ψ†i σ1 ⊗ τ1 Ψi 〉 =
∑
σ=↑,↓

〈s†iσ pi−σ + p†iσ si−σ〉 ,

∆21(Ri) = 〈Ψ†i σ2 ⊗ τ1 Ψi 〉 = −i
∑
σ=↑,↓

σ 〈s†iσ pi−σ + p†iσ si−σ〉 ,
(2.22)
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describe a spin-triplet exciton condensate polarised in the plane. Since the insulator has a direct

gap, excitons condense at Q = 0, namely ∆α1(R) = ∆α1, and α = 1, 2. Moreover, because

Γ0
11 = Γ0

21, if I write

∆11 = ∆ cosφ , ∆21 = ∆ sinφ , (2.23)

I expect to find a solution with the same amplitude ∆ for any value of φ, which reflects the spin

U(1) symmetry. At any given φ, such exciton condensation would break spin U(1), inversion and

time reversal symmetry.

The emergence of an exciton condensate is therefore accompanied by a spontaneous spin U(1)

symmetry breaking. As previously mentioned, such breakdown prevents the existence of the strong

topological invariant that characterises the QSHI phase. Specifically, since the z-component of the

spin is not anymore a good quantum number, the counter propagating edge states of opposite

spin are allowed to couple each other, which turns their crossing into an avoided one [102]. The

boundary thus becomes insulating, spoiling the topological transport properties of the QSHI.

I shall study this phenomenon performing an HF calculation in a ribbon geometry with open

boundary conditions (OBC) along x, but periodic ones along y. Consequently, the non-interacting

BHZ Hamiltonian looses translational invariance along the x-direction, while keeping it along y,

so that the Green’s function becomes a 4Nx × 4Nx matrix for each momentum ky, with Nx the

number of sites along x. A further complication is that HF self-energy in Eq. (2.17) unavoidably

depends on the x-coordinate of each site, which enlarges the number of self-consistency equations

to be fulfilled. However, since those equations can be easily solved iteratively, I can still numerically

afford ribbon widths, i.e., values of Nx, which provide physically sensible results with negligible

size effects.

The OBC calculation gives access not only to the states that may form at the boundaries, but

also, in the event of a spontaneous symmetry breaking, to the behaviour of the corresponding

order parameter moving from the edges towards the bulk interior. In practice, I shall investigate

such circumstance only in the region of Hamiltonian parameters when the dominant instability is

towards the spin-triplet exciton condensation.

2.3.2 Bethe-Salpeter equation

If I start from the QSHI, M < 2, and adiabatically switch on the interaction (2.13), I expect that

such phase will for a while survive because of the gap, till, for strong enough interaction, it will

eventually give up to a different phase. I already mentioned that the first effect of interaction is

to renormalise upward M , thus pushing the topological insulator towards the transition into the

non topological one. Beside that, a repulsive interaction can also bind across gap particle-hole

excitations, i.e., create excitons.

A direct way to reveal excitons is through the in-gap poles of linear response functions. Within the

HF approximation for the self-energy functional, the linear response functions must be calculated

solving the corresponding Bethe-Salpeter (BS) equations using the HF Green’s functions together

with the irreducible scattering amplitudes in Eq. (2.20), which are actually the functional deriva-

tives of Σ̂HF [Ĝ] with respect to Ĝ.

If the interaction is indeed able to stabilise in-gap excitons, their binding energy must increase with

increasing interaction strength. It is therefore well possible that the excitons touch zero energy

at a critical interaction strength, which would signal an instability towards a different, possibly
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symmetry-variant phase. Consistency of the approximation requires that such instability should

also appear in the unconstrained HF calculation as a transition from the topological insulator to

another phase, especially if such transition were continuous. I shall check that is indeed the case.

With my notations, see Eqs. (2.19) and (2.20), a generic correlation function will be defined as

χαa;βb(τ,R) ≡ −
〈
Tτ

(
Oαa(τ,R) Oβb(0,0)

) 〉
, (2.24)

where Tτ is the time-ordering operator, and the operators Oαa(Ri) = Ψ†iσα ⊗ τaΨi are evolved

in imaginary time τ . Spin U(1) symmetry implies that the z-component Sz of the total spin is

conserved. It follows that the only non zero correlation functions χαa;βb have α and β either 0 and

3, corresponding to Sz = 0, or 1 and 2, satisfying

χ1a;1b(τ,R) = χ2a;2b(τ,R) ,

χ1a;2b(τ,R) = −χ2a;1b(τ,R) ,
(2.25)

whose combinations χ1a;1b± i χ1a;2b describe the independent propagation of Sz = ±1 particle-hole

excitations. The Fourier transform χαa;βb(iω,q), in momentum and in Matsubara frequencies, are

obtained through the solution of a set of BS equations

χαa;βb(iω,q) = χ
(0)
αa;βb(iω,q) +

∑
γc

χ(0)
αa;γc(iω,q) Γ0

γc χγc;βb(iω,q) , (2.26)

where

χ
(0)
αa;βb(iω,q) =

1

N

∑
k

T
∑
ε

Tr

(
σα ⊗ τa Ĝ(iε+ iω,k + q)σβ ⊗ τb Ĝ(iε,k)

)
.

(2.27)

In Eq. (2.27), N is the number of sites, and Ĝ(iε,k) the HF Green’s function matrices. I shall

perform the above calculation at zero temperature without allowing in the HF calculation any

symmetry breaking. With this assumption, the HF Green’s function reads

Ĝ(iε,k) =
(iε+ t′εk) σ0 ⊗ τ0 + ĤHF (k)(

iε− εc(k)
)(
iε− εv(k)

) (2.28)

where ĤHF (k), εc(k) and εv(k) are those in equations (2.4) and (2.5), with M in (2.4) and (2.6)

replaced by an effective MHF determined through the self-consistency equation

MHF = M − 2 Γ0
03

N

∑
k

MHF − εk
Ek

. (2.29)

For V ' U , Γ0
03 < 0 so that, since the sum over k is positive, MHF > M , as anticipated.

In short notations, and after analytic continuation on the real axis from above, iω → ω + iη, with

η > 0 infinitesimal, the physical response functions are obtained through the set of linear equations

χ̂(ω,q) =
[
1− χ̂(0)(ω,q) Γ̂ 0

]−1
χ̂(0)(ω,q) . (2.30)

The excitons are in-gap solutions ωi(q), i.e.,

ωi(q) < ωmin(q) ≡ min
k

(
εc(k + q)− εv(k)

)
, (2.31)
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of the equation

det

[
1− χ̂(0)

(
ωi(q),q

)
Γ̂ 0

]
= 0 , (2.32)

and have either z-component of the spin Sz = 0, if they appear in the channels with α, β = 0, 3, or

Sz = ±1, in the channels with α, β = 1, 2. For ω ' ωi(q), the response functions can be expanded

in Laurent series [99]

χ̂(q, ω) =
∑
i

Ai(q)

ω − ωi(q) + iη
|ψi(q)〉 〈ψi(q)| + ... , (2.33)

where |ψi(q)〉 is the exciton wavefunction and Ai(q) its spectral weight. This allows computing

the exciton Chern number through the integral of the Berry curvature

Ci =
1

2π

∫
d2q Ωi(q) ,

Ωi(q) = Im 〈 ∂xψi(q) | ∂yψi(q) 〉 .
(2.34)

The curvature is even under inversion and odd under time reversal; if a system is invariant under

both, the Chern number thus vanishes by symmetry.

I observe that all the excitons are invariant under inversion, but, while the Sz = 0 ones are also

invariant under time reversal, the latter maps onto each other the Sz = +1 and Sz = −1 excitons.

Accordingly, only the Sz = ±1 excitons can have non-zero Chern numbers, actually opposite for

opposite Sz, while the Sz = 0 excitons are constrained to have trivial topology. I stress that

such result, being based only upon symmetry considerations, remains valid for every inversion

symmetric QSHI, and not only in the context of the interacting BHZ model.

The exciton Chern number does not seem to be directly related to any quantised observable.

Nonetheless, as pointed out in Refs. [99, 110], a nonzero Ci ensures the presence of chiral exciton

modes localised at the edges of the sample, which may have direct experimental consequences.

2.4 Results

In the preceding sections I have introduced a conserving mean-field scheme to consistently calculate

both the phase diagram and the linear response functions. Now, I move to present the numerical

results obtained by that method at zero temperature and with Hamiltonian parameters t′ = 0.5,

λ = 0.3, V = U = Us = Up and J = U/16, see equations (2.4), (2.13), (2.14) and (2.15). The value

of J is estimated from 1s and 2p hydrogenoic orbitals, which may provide a reasonable estimate

of the relative order of magnitude between the dipole interaction and the monopole one.

2.4.1 Hartree-Fock phase diagram

The HF phase diagram is shown in Fig. 2.2. As I previously mentioned, the interaction effectively

increases M , thus pushing the transition from the topological insulator (QSHI) to the non topo-

logical one (Band Insulator) to lower values of M the larger U . This is precisely what happens

for M & 1.1: U increases the effective MHF , see eq. (2.29), until MHF = 2. At this point the gap

closes and, for still larger U , the QSHI turns into the trivial Band Insulator.
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Figure 2.2: Hartree-Fock phase diagram at λ = 0.3, t′ = 0.5, Us = Up = V = U and J = U/16.

The topological insulator is denoted as QSHI, while the non topological one as Band Insulator.

For small value of M , AFM is stabilised upon increasing U . For larger values of M , U stabilises a

symmetry broken phase with Exciton Condensate. The thick black line that separates the QSHI

from the Band Insulator, as well as that at M = 0 extending from U = 0 to the AFM phase,

indicate a gapless metallic phase. The transition between the Exciton Insulator and the QSHI or

the Band Insulator is continuous, while the transition into the AFM insulator is first order.
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Figure 2.3: Order parameter ∆ of Eq. (2.23) (blue), lowest Sz = ±1 exciton energy at Q = 0

(green), and band gap (orange) along the path A to C in Fig. 2.2 (M = 1, U ∈ [1.25, 3.5]),

i.e., from the topological to the trivial insulator crossing the exciton insulator. I note that the

intermediate phase emerges exactly when the exciton becomes massless, as well as that the band

gap never vanishes.

For very small M . 0.2, upon increasing U the QSHI gives in to an antiferromagnetic insula-

tor (AFM), characterised by finite order parameters ∆30(Ri) = ∆30 eiQ·Ri , see Eq. (2.21), with

Q = (π, π), thus magnetised along z. HF predicts such transition to be of first order, in accordance

to more accurate dynamical mean field theory calculations [111], which also explains why I do not

find any precursory softening of Sz = 0 exciton at Q.

More interesting is what happens for 0.2 .M . 1.1. Here, increasing the interaction U drives

a transition into a phase characterised by the finite order parameter in Eq. (2.23), thus by a

spontaneous symmetry breaking of spin U(1), time reversal and inversion symmetry. The breaking

of time reversal allows the system moving from the QSHI to the Band Insulator without any gap

closing [102–104], see Fig. 2.3. I note that the transition into the symmetry variant phase happens

to be continuous, at least within HF. As I mentioned, consistency of this approach implies that this

transition must be accompanied by the softening of the excitons whose condensation signals the

birth of the symmetry breaking. These excitons are those with Sz = ±1, and indeed get massless

on both sides of the transition, see Fig. 2.3.

The HF numerical results in the ribbon geometry with OBC along x show that electron correla-

tions get effectively enhanced near the boundaries, [105–107] unsurprisingly because of the reduced

coordination [112]. Indeed, the order parameter is rather large at the edges, and, moving away

from them, decays exponentially towards its bulk value, as expected in an insulator. Remarkably,

even when the bulk is in the QSHI stability region, a finite symmetry breaking order parameter

exponentially localised at the surface layer may still develop, see Fig. 2.4 that refers to the point B

in the phase diagram of Fig. (2.2). In the specific two dimensional BHZ model that I study, such

phenomenon is an artefact of the Hartree-Fock approximation, since the spin U(1) symmetry can-
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Figure 2.4: Left panel: exciton condensation order parameter ∆(x) in Eq. (2.23) as function of the

x-coordinate in a ribbon geometry with Nx = 50 sites, calculated at point B in Fig. 2.2 (M = 1,

U = 1.5). Right panel: The ribbon band structure as function of the momentum ky. I note that,

even though the condensate is exponentially localised at the edges of the system, still it has a

strong effect on the single-particle edge states: a gap opens between the two branches, preventing

topological spin transport.

not be broken along the one dimensional edges. Nonetheless, the enhanced quantum fluctuations,

while preventing a genuine symmetry breaking, should all the same substantially affect the physics

at the edges.

I end the discussion of the Hartree-Fock phase diagram by comparing my results with those

obtained by Xue and MacDonald [104]. These authors, too, apply the HF approximation to study

the BHZ model but in the continuum limit and in presence of a long range Coulomb interaction.

They also find a path between the topological insulator and the trivial one that crosses another

insulating phase characterised by spontaneous time reversal symmetry breaking, which, they argue,

further breaks C4 symmetry, thus being nematic. The HF band structure that I find in the exciton

condensate phase is instead perfectly C4 invariant, which might apparently indicate that my phase

and that of Ref. [104] are different. In reality, I believe the two phases are just the same phase.

Indeed, while it is true that the order parameter (2.23) is not invariant under the C4 symmetry of

Eq. (2.11) that changes φ→ φ− π/2, such shift can be reabsorbed by a −90◦ spin U(1) rotation.

In other words, the order parameter (2.23) is invariant under a magnetic C′4 symmetry of the

Hamiltonian, whose generator of π/2 rotations is L3 − S3 times the rotation of k. Due to such

residual symmetry, the band structure as well as the magnetoelectric tensor discussed later in

section 2.4.3 do not show nematicity.
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Figure 2.5: Chern number of the most bound exciton with Sz = −1 at λ = 0.3, t′ = 0.5, Us =

Up = V = 1.5, as function of M and J close to the transition from the QSHI to the symmetry

broken phase.

2.4.2 Excitons and their topological properties

The mechanism that triggers exciton topology is similar to the band inversion in the single-particle

case: a topological exciton is composed by particle-hole excitations that have different parity

under inversion in different regions of the BZ. In this case study four possible orbital channels

τa, a = 0, . . . , 3, are allowed, each possessing a well defined parity: τ1 and τ2 odd, while τ0 and

τ3 even. In the non-topological insulator, the Sz = ±1 excitons have the same parity character

at all inversion invariant k-points, Γ, M , X and Y , and thus are topologically trivial. On the

contrary, in the QSHI, the highly mixed bands entail that all channels have finite weight in the

exciton, which may acquire non trivial topology when its symmetry under parity changes among

the inversion invariant k-points, thus entailing one or more avoided crossings.

In Fig. 2.5 I show the Chern number of the lowest energy exciton branch with Sz = −1

calculated through Eq. (2.34) with Us = Up = V = 1.5 as function of M and J along the way from

the QSHI to the symmetry broken phase where excitons condense. I observe that the dipole-dipole

interaction J favours not only the instability of the Sz = ±1 excitons, but also their non trivial

topology, signalled by a non zero Chern number. In Fig. 2.6 I show for the two points E and F in

Fig. 2.5 the Sz = −1 exciton bands, ωi(q), i = 1, 2 along high-symmetry paths in the BZ, together

with the continuum of Sz = −1 particle-hole excitations, bounded from below by ωmin(q), see

Eq. (2.31). The upper branch is very lightly bound, and almost touches the continuum, unlike the

lower branch, whose binding energy is maximum at the Γ point where, eventually, the condensation
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Figure 2.6: Sz = −1 exciton dispersion along high-symmetry paths in the Brillouin zone, calculated

for the two points E, top panel, and F, bottom panel, in Fig. 2.5. The green shaded regions are

the particle-hole continuum. The blue and red colours of the curves indicate even (+) and odd (-)

parity under inversion, while C is the corresponding Chern number.

will take place. The blue and red colours indicate, respectively, even (+) and odd (-) parity

character under inversion. I note that at point F in Fig. 2.5 both exciton bands have vanishing

Chern number, signalled by the same parity character at all inversion-invariant k-points. On the

contrary, at point E, close to the transition, the two exciton branches change parity character

among the high-symmetry points, and thus acquire finite and opposite Chern numbers, C = ±2.

For completeness, in Fig. 2.7 I show at the same points E and F of Fig. 2.5 the dispersion of

the Sz = 0 excitons. Since they are invariant under time reversal, I also indicate their symmetry,

even (black dots) or odd (yellow dots), which correspond, respectively, to the spin singlet and spin

triplet with Sz = 0 components of the exciton.

Comparing Fig. 2.7 with 2.6, I note that the Sz = 0 excitons are far less bound than the Sz = −1

ones. However, it is conceivable that the inclusion of the long range part of the Coulomb interaction

could increase the binding energy of the Sz = 0 excitons, even though it is likely that the Sz = ±1

excitons would still be lower in energy.

Moving to the sample surface at point E I expect two phenomena to occur. First, chiral

exciton edge modes should appear, and connect the two branches with opposite Chern numbers,

in analogy with the single particle case, and as thoroughly discussed by the authors of Ref. [99]

in the magnetised BHZ model. In addition, my previous results in the ribbon geometry, showing

that the exciton condensate appears on the surface earlier than the bulk, suggest the existence

of genuine surface excitons, more bound than their bulk counterparts, definitely in the Sz = ±1

channel, but possibly also in the Sz = 0 one.

Both the chiral exciton edge modes as well as the surface excitons may potentially have important

effects on the physical behaviour at the boundaries. First of all, since the most bound ones

correspond to coherent Sz = ±1 particle-hole excitations, they may provide efficient decay channels

for the single-particle edge modes, which are counter propagating waves with opposite Sz = ±1/2.

Experimental evidences of such phenomenon in the purported topological Kondo insulator SmB6

have been indeed observed [7,8], and previously attributed to scattering off bulk excitons [96]. This

is well possible, but should be much less efficient than the scattering off surface exciton modes,

which I propose as an alternative explanation. Furthermore, the presence of odd-parity excitons

localised at the surface might have direct consequences on the surface optical activity, which could
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Figure 2.7: Same as Fig. 2.6 but for the Sz = 0 excitons. Black and yellow dots indicate that the

excitons are, respectively, even and odd under time reversal.

be worth investigating.

2.4.3 Exciton condensate and magnetoelectricity

Since the order parameter in the phase with exciton condensation breaks spin U(1) symmetry,

inversion I and time reversal T , but not T × I, it is eligible to display magnetoelectric effects,

which can be experimentally detected.

The free energy density expanded up to second order in the external electric and magnetic fields,

both assumed constant in space and time, can be written as

F (E,B) = F0 −
1

2
E · χ̂eE −

1

2
B · χ̂B −E · α̂B , (2.35)

where χ̂e, χ̂ and α̂ are the electric polarisability, magnetic susceptibility, and magnetoelectric

tensors, respectively. The magnetization, M , and polarization, P , are conjugate variables of the

fields, namely

M = − ∂F
∂B

= χ̂B + α̂E ,

P = − ∂F
∂E

= χ̂eE + α̂B .

(2.36)

I observe that, since E and B have opposite properties under inversion and time reversal, a non-

zero α̂ is allowed only when both symmetries are broken, but not their product.

Since the exciton condensate Eq. (2.23) is spin-polarised in the x−y plane, with azimuthal angle

φ, and involves dipole excitations s↔ p±1, see Eq. (2.1), I restrict my analysis to fields E and B

that have only x and y components, which allows us discarding the electromagnetic coupling to

the electron charge current. Consequently, the magnetoelectric tensor α̂ of interest will be a 2× 2

matrix with components αij , i, j = x, y.

In the exciton condensed phase, which is insulating, the coupling to the planar electric field is

via the polarisation density, namely, in proper units,

δHE = −
∑
i

Ψ†i

(
Ex d̂x + Ey d̂y

)
Ψi , (2.37)

with dipole operators

d̂x = σ0 ⊗ τ1 , d̂y = σ3 ⊗ τ2 . (2.38)
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Figure 2.8: Components of the magnetoelectric tensor α̂ calculated at the point D in Fig. 2.2

(M = 0.5, U = 2). The data fit perfectly with the expression in Eq. (2.41).

Moreover, as the orbitals |s σ〉 have physical total momentum Jz = Lz + Sz = ±1/2, while |p σ〉
have Jz = ±3/2, the in-plane magnetic field only couples to the magnetic moment of the s-orbitals.

Specifically,

δHB = −
∑
i

Ψ†i

(
Bx m̂x +By m̂y

)
Ψi , (2.39)

where

m̂x = σ1 ⊗
τ0 + τ3

2
, m̂y = σ2 ⊗

τ0 + τ3
2

. (2.40)

Since I am interested in the effects of the external fields once the the symmetry has been broken,

I performed a non self-consistent calculation with the HF self-energy calculated at E = B = 0.

The finite magnetoelectric effect in the presence of the exciton condensate is indeed confirmed, see

Fig. 2.8 where I show the components of α̂ as function of the azimuthal angle φ in Eq. (2.23), and

which I find to behave as

α̂ = α0

(
− cosφ − sinφ

− sinφ cosφ

)
, (2.41)

where α0 is proportional to the amplitude ∆ of the order parameter, see Eq. (2.23), and thus

vanishes when the symmetry is restored.

I remark that the magnetoelectric tensor (2.41) has the form predicted for the magnetic point

group 4′ [113], thus not showing signals of the nematic order proposed in Ref. [104], as earlier

discussed in section 2.4.1.
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2.5 Discussion

In this chapter I have studied within a conserving mean-field scheme the role of a local electron

repulsion in the prototype BHZ model of a quantum spin Hall insulator [9], whose symmetries

allows, besides the conventional monopole components of Coulomb interaction, also a dipolar one,

which I find to play a rather important role.

In absence of interaction, the BHZ model displays, as function of a mass parameter M > 0, two

insulating phases, one topological at M < Mc, and another non-topological above Mc, separated by

a metal point with Dirac-like dispersion at M = Mc. The primary effect of Coulomb interaction,

namely the level repulsion between occupied and unoccupied states, pushes the critical Mc to

lower values, thus enlarging the stability region of the non-topological insulator. Besides that,

and for intermediate values of M , the mean field results predict that interaction makes a new

insulating phase to intrude between the topological and non-topological insulators, uncovering

a path connecting the latter two that does not cross any metal point. In this phase, inversion

symmetry and time reversal are spontaneously broken, though their product is not, implying the

existence of magnetoelectric effects. The approach to this phase from both topological and non-

topological sides is signalled by the softening of two exciton branches, related to each other by

time-reversal and possessing, for M . 1 with the parameters of Fig. 2.2, finite and opposite Chern

numbers. This phase can therefore be legitimately regarded as a excitonic condensate.

Since, starting from the quantum spin Hall insulator, the softening of those excitons and their

eventual condensation occurs upon increasing the interaction, it is rather natural to expect those

phenomena to be enhanced at the surface layers. Indeed, the mean field approach in a ribbon

geometry predicts the surface instability to precede the bulk one. Even though a genuine exciton

condensation at the surface layer might be prevented by quantum and thermal fluctuations, still

it would sensibly affect the physics at the surface. The simplest consequence I may envisage is

that the soft surface excitons would provide an efficient decay channel for the chiral single-particle

edge modes, as indeed observed in the supposedly three-dimensional topological Kondo insulator

SmB6 [7, 8]. In addition, other important consequences on the transport properties and optical

activity at the surface cannot be excluded.

I believe that going beyond the approximations assumed throughout this paper should not

significantly alter the main results. RPA plus exchange allows accessing in a simple way collective

excitations, though it ignores their mutual interaction. I expect that the latter would surely affect

the precise location of the transition points, but not wash out the exciton condensation.

Moreover, the inclusion of the neglected long range tail of Coulomb interaction would introduce two

terms: the standard monopole-monopole charge repulsion, proportional to 1/r, and a dipole-dipole

interaction decaying as 1/r3. The former is expected to increase the exciton binding energy, though

without distinguishing between spin singlet and triplet channels. Therefore, the conclusion that

the Sz = ±1 excitons soften earlier than the Sz = 0 ones should remain even in presence of the 1/r

tail of Coulomb interaction. The dipole-dipole interaction might instead favour an inhomogeneous

exciton condensation. However, I suspect that the 1/r3 decay in two dimensions is not sufficient

to stablize domains.

To conclude, I believe that my results, though obtained by a mean field calculation and for a

specific model topological insulator, catch sight of still not fully explored effects of electron electron

interaction in topological insulators, which might be worth investigating experimentally, as well as



Chapter 2. Exciton condensation and topology in QSHI 28

theoretically in other models and, eventually, by means of more reliable tools [114,115].



CHAPTER 3

MOIRÉ PHONONS AND LOCAL KEKULÉ ORDER IN TBLG

3.1 Introduction

Atomic relaxation in magic angle twisted bilayer graphene (TBLG) is responsible [116–121] of the

gap opening between the four flat bands and all other upper and lower ones. Moreover, scattering

by acoustic phonons has been invoked [122, 123] to explain the anomalous linear in temperature

resistivity of the normal metal phases [124], and both acoustic [122,125–128] and optical [129] modes

have been explored as possible mechanisms of the observed superconductivity [12,13,15,19,20,26].

In spite of all that, the role of lattice degrees of freedom in the insulating phases of TBLG at integer

fillings ν = ±n, n = 0, . . . , 3, of the flat bands [11–23] has been mostly overlooked in favour of

Coulomb interaction [130–139], which struggles to explain superconductivity [128, 140–142], and,

especially, the anomalous quantum Hall effect [24, 25] as well as the emergent Kekulé pattern

recently observed at ν = ±2 [28].

The major importance of the electron-phonon coupling also emerged from Ref. [27] that theo-

retically uncovered special, almost non dispersive, optical modes, later observed by nano-Raman

spectroscopy [144], which are so strongly coupled to the electrons that atomic displacements as

small as 5mÅ are sufficient to open sizeable gaps in the flat bands at all integer ν. Those phonons

derive from the 1360 cm−1 A1 and B1 TO modes of a single-layer graphene at the K point, see

Fig. 3.1b, superimposed with a long wavelength modulation driven by the van der Waals inter-layer

interaction that makes these modes exist throughout the whole reduced Brillouin zone (RBZ) of

the moirè superlattice and be localized into the AA stacked regions and the domain walls sep-

arating AB from BA stacked ones. Remarkably, these special phonons have the same twofold

accidental degeneracy of the flat bands along the Γ → K →M high-symmetry path in the RBZ

that reflects the emerging Uv(1) valley symmetry [10, 27]. Because of that, the Uv(1) symmetric

electron-phonon coupling effectively realises a Jahn-Teller model, which explains the efficacy of a

static distortion on lifting the accidental degeneracy.

However, systematic theoretical studies of the lattice contribution to the phase diagram of

TBLG are lacking. Indeed, Ref. [27] describes a realistic frozen-phonon tight-binding calculation
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Figure 3.1: Kekulé-like distortion that stabilises a non- magnetic insulator at charge

neutrality. Panel a: Kekulé-like distortion that stabilises a non-magnetic insulator at charge

neutrality. Such distortion is driven by moiré optical modes at the Γ point with A1 and B1 sym-

metry, which correspond to long-wavelength modulations of the single-layer graphene A1 and B1

modes shown in panel b. The moiré optical phonons, and thus the Kekulé distortion, mainly affect

the AA stacked regions and the domain walls (DW), both shown in yellow in panel a, separating

Bernal stacked AB and BA regions, shown in red, the latter remaining almost unaffected [27]. I

emphasise that the lattice displacement occurs at the zone center of the reduced Brillouin zone

and on the atomic scale of graphene, which distinguishes it from the Kekulé state discussed in

Ref. [143].

that neglects Coulomb repulsion and can only access states with broken Uv(1) and, eventually,

broken spatial symmetries when the frozen-phonon is not at the Γ point, but not the observed

Chern insulators with spontaneously broken time-reversal symmetry. Filling this gap is actually

the scope of this work. Specifically, upon integrating out phonons one obtains an effective electron-

electron attraction that can be assumed instantaneous since the flat-band width is a lot smaller

than the phonon frequency. I treat this interaction on an equal footing with Coulomb repulsion,

investigating their mutual interplay and its effect on the phase diagram by means of Hartree-Fock
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and projected BCS-wavefunctions calculations.

Before discussing my findings, I believe worth placing them within the general context of

correlation effects in graphene. I recall that interaction strength in graphene is sizeable but yet not

enough to stabilise a correlated insulator at charge neutrality [145]. An isotropic strain above 8-10%

that expands all C-C bonds has been shown to stabilise [146] both an antiferromagnetic insulator

and a Kekulé valence-bond (KVB) one, with the latter lower in energy than the former. The

Kekulé distortion involves just the above mentioned A1 and B1 modes of graphene, whose positive

interplay with Coulomb repulsion thus favours the KVB insulator instead of the antiferromagnetic

one expected from Coulomb repulsion alone. In light of the vanishingly small Fermi velocity at the

Dirac cones in magic-angle TBLG, whose Bloch waves are primarily localised into the AA stacked

regions just like the A1 and B1 moiré phonons, it is not unlikely that also in this case those phonons

cooperate with Coulomb repulsion to stabilise a KVB insulator, with the distortion discussed in

Ref. [27] and shown schematically in Fig. 3.1a.

That is precisely what I find within Hartree-Fock approximation. I, hereafter, denote such

space-selective Kekulé distortion at the zone-center of the moiré Brillouin zone a static Kekulé

valence bond (S-KVB) distortion. The corresponding S-KVB insulator at charge neutrality seeds

the cascade of symmetry-breaking mean-field insulating states at all other integer fillings.

Since the AA regions are quite far apart from each other, as testified by the tiny dispersion of the

A1 and B1 modes in TBLG [27], it is well possible that a resonating rather than static Kekulé

valence bond (R-KVB) insulator is stabilised, in which each AA region is instantaneously distorted

along A1 or B1 but dynamically the symmetry is restored.

Since the electron-phonon coupling realises a Jahn-Teller model, S-KVB and R-KVB correspond

to static and dynamic Jahn-Teller effect, respectively. Such R-KVB state thus effectively realises

a Jahn-Teller-Mott insulator [147]. The close analogy with Anderson’s resonating valence bond

scenario [148] for cuprates also suggests that the Jahn-Teller-Mott insulator is prone to become

a superconductor upon doping; a phonon mediated superconductivity not hindered by Coulomb

repulsion [148–150]. I will show that such superconductor is likely to have chiral or nematic d-wave

symmetry, in accordance with the analysis of Ref. [129] where the same TO phonons of graphene

have been considered as driving mechanism of superconductivity in TBLG.

3.2 Model Hamiltonian and interaction

I consider two AA stacked graphene layers, and rotate around the perpendicular axis layer 1 by

+θ/2 and layer 2 by −θ/2, at magic angle θ = 1.08◦. The band structure is described through

the Bistritzer-MacDonald continuum model [10], using the conventions of Ref. [151]. Specifically,

I define four component spinors in momentum space Ψk,Qa,σ
and Ψk,Qb,σ

, two components corre-

sponding to sublattices A and B of a graphene layer, and the other two to the valley index η = ±1,

where σ is the spin, k runs within the first RBZ, while Qa and Qb identify the two sublattices

in reciprocal space, see Fig. 3.2. The operator Ψk,Qa,σ
is defined close to the Dirac point K on

layer 1 and −K on layer 2 for η = +1 and η = −1, respectively, while in Ψk,Qb,σ
the two layers

are interchanged. Moreover, the sublattice components of the spinors with η = +1 and η = −1

are inverted [151]. It is implicitly assumed that the longest reciprocal lattice vector kept in the

calculation is still much smaller that the distance 2|K| between the two valleys, so that the chosen
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Figure 3.2: Reciprocal lattice space. The two sublattices Qa, blue dots, and Qb, red dots, of

the reduced Brillouin zones, in light cyan the first one, can be generated, e.g., through Qa = q1+G

and Qb = −q1 +G, where G = nG1 +mG2 is any reciprocal lattice vector with G1 and G2 the

primitive ones. Also shown are the high symmetry points Γ, K1, K2 and M .

basis is not overcomplete.

With those definitions, the non-interacting Hamiltonian can be written as

H0 =
∑
kσ

∑
Q,Q′

Ψ†k,Q,σ Ĥ
(0)
QQ′(k) Ψk,Q′,σ , (3.1)

where Q = Qa ⊕Qb, and, in the zero-angle approximation [10],

Ĥ
(0)
QQ′(k) = δQ,Q′ vF τ3

(
k−Q

)
· σ+

+ τ0

3∑
i=1

(
δQ−Q′,qi + δQ′−Q,qi

)
T̂i(u0, u1) .

(3.2)

Hereafter, the Pauli matrices τa and σa, a = 0, 1, 2, 3, act on the valley and sublattice indices,

respectively, qi, i = 1, 2, 3, are defined in Fig. 3.2, while

T̂1(u0, u1) = u0 σ0 + u1 σ1 ,

T̂j+1(u0, u1) = ei
2π
3 σ3 T̂j(u0, u1) e−i

2π
3 σ3 , j = 1, 2 .

(3.3)

Setting as unit length the moiré primitive lattice vector for a twist angle of 1.08◦, I fix vF = 40 meV,

u0 = 76.1 meV and u1 = 103.1 meV.

The charge density operators ρ`(q +G) of each layer ` = 1, 2 are diagonal in sublattice and valley

indices, and read, for q ∈ RBZ,

ρ`(q + G) =
∑
kQσ

Ψ†k,Q,σ ρ̂`(Q)σ0 Ψk+q,Q−G,σ ,

ρ̂`(Q) = δQ,Qa

τ0 − (−1)` τ3
2

+ δQ,Qb

τ0 + (−1)` τ3
2

,

(3.4)

and thus the Coulomb repulsion can be written as

HC =
1

2NΩc

∑
q,G

∑
``′

U``′(q + G) ρ†`(q + G) ρ`′(q + G) , (3.5)
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with N the number of supercells, Ωc the area of each supercell, U11(q) = U22(q) and U12(q) =

U21(q) the intra- and inter-layer Fourier transforms of the interaction e2/r screened by the high-

frequency dielectric constant ε∞ = 9 of graphene, and by the presence of a dual metal gate [133]

assumed at distance dg = 30 nm. I assume the two graphene layers placed at a distance d` =

0.335 nm, resulting in

U``′(q + G) =
2πe2

ε∞

tanh(dg(q +G))

q +G

(
e−d`(q+G) + δ``′(1− e−d`(q+G))

)
. (3.6)

The non-retarded attraction mediated by A1 and B1 moiré phonons can be straightforwardly

derived from Ref. [152] and is

HP = − 1

2ω0N

∑
q

∑
a=1,2

L†a(q)La(q) , (3.7)

where ω0 ' 1360 cm−1 is the phonon frequency, neglecting its very weak dispersion [27], and

La(q) =
∑
σk

∑
QQ′

Ψ†k,Q,σ τa L̂QQ′ Ψk+q,Q′,σ , (3.8)

with

L̂QQ′ = γ δQ,Q′ σ0 +

3∑
i=1

(
δQ−Q′,qi + δQ′−Q,qi

)
T̂i(g0, g1) . (3.9)

T̂i(g0, g1) are the same as in Eq. (3.3) with u0 and u1 replaced by g0 and g1. I mention that,

since sublattices in valleys +1 and -1 are interchanged, g0 and g1 are the modulations induced

by the phonons on the intralayer hopping between opposite and equal sublattices, respectively,

while γ refers to the interlayer opposite sublattice one. The results of realistic tight-binding

calculations with frozen phonon displacement [27] are reproduced by the continuum model [152]

fixing g1 ' g0/10 and γ ' g0/2.5, allowing to parametrise the strength of the phonon-mediated

attraction through the single coupling constant g ≡ g20/ω0, with realistic value . 1 meV.

I remark that H0 + HC is invariant under global charge U(1), valley Uv(1) and separate spin

SU(2) rotations in each valley, thus a large U(2)×U(2) symmetry [133]. On the contrary, the full

Hamiltonian H0 +HC +HP is only invariant under U(1)×Uv(1) times the global spin SU(2). The

following analysis takes into account just the latter reduced symmetry.

3.3 Mean field phase diagram

3.3.1 Hartree-Fock formalism in TBLG

The simplest way to treat a not-too strong electron-electron interaction is through the Hatree-

Fock (HF) approximation, which amounts to truncate the skeleton expansion of the self-energy

functional at the first order terms. In the context of TBLG, is more convenient to work with

the density matrix rather than the interacting Green’s function, differently from Chapter 2. The

HF ground state is the solution of the following minimum problem over all density matrices Ĉ

corresponding to Slater determinants

min
Ĉ

Tr

[
Ĉ

(
H0 −

1

2
ΣHF [Ĉ]

)]
, (3.10)
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where H0 is the non-interacting Hamiltonian and ΣHF [Ĉ] the HF self-energy functional of Ĉ. I

performed an all-band HF calculation, thus considering the full k-dependence of the Fock self-

energy and embracing the full complexity of the band structure and the effects of remote bands

on symmetry breaking states.

To further introduce my method, it is convenient to change notation and write the layer-density

operator of Eq. 3.4 as

ρ`(q + G) =
∑
kσ,i,j

Ψ†k,iσ ρ̂`,ij(G) Ψk+q,j,σ ,

ρ̂`,ij(G) =

((
δQ,Qa

τ0 − (−1)` τ3
2

+ δQ,Qb

τ0 + (−1)` τ3
2

)
σ0 δQ−G,Q′

)
ij

,

(3.11)

where the indexes i, j = (Q, η, µ), (Q′, η′, µ′) include all the internal degrees of freedom, with

µ = A,B the sublattice, and ρ̂†l (G) = ρ̂l(−G). Introducing the density matrix

Ĉij(k, σ) ≡ 〈Ψ†k,jσΨk,iσ〉 ,

Ĉij =
1

N

∑
k,σ

Ĉij(k, σ) ,
(3.12)

the HF self-energy can be expressed by means of simple matrix multiplications:

Σ̂HF (k, σ) =
1

N

∑
k,σ

∑
ij

Ψ†k,iσ
(

ΣHij + ΣFij(k, σ)
)

Ψk,jσ

ΣHij =
1

Ωc

∑
G

∑
``′

U``′(G) Tr
[
ρ̂`(−G) Ĉ

]
ρ̂`′,ij(G) ,

ΣFij(k, σ) = − 1

NΩc

∑
p,G

∑
``′

U``′(k− q + G)
(
ρ̂`(−G) Ĉ(q, σ) ρ̂`′(G)

)
ij
.

(3.13)

A similar, but easier, calculation can be done for the potential generated by the phonon-mediated

attraction HP , obtaining the full HF self-energy.

Treating the full k-dependent Fock potential, thought it ensures robust computational results,

can be computationally expensive, especially if the reciprocal lattice is taken big enough not to

encounter spurious breaking of the translational symmetry in momentum space, i.e.,

HQ,Q′(k + G) = HQ−G,Q′−G(k) . (3.14)

The only approximation made to reduce this complexity is truncating the G vectors up to the

next nearest neighbours, corresponding to 13 vectors (including G = 0) up to a distance 4π in

reciprocal space.

Moreover, the continuum model for TBLG hides a subtle complication when applying HF: the

inter-layer hopping u0 and u1 of the non-interacting Hamiltonian are fitted in order to reproduce

density functional theory bands. In this sense, the electrostatic effects of occupied bands for the

symmetry-invariant ground state are already included in the non-interacting Hamiltonian. To fix

this double counting problem, I subtract to the non-interacting Hamiltonian H0 the Coulomb HF

potential generated by the non-interacting ground state

H0 → H0 − ΣHF [Ĉ0] . (3.15)
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where Ĉ0 is the density matrix induced by H0. The variational problem of Eq. 3.10 thus becomes

min
Ĉ

Tr

[
Ĉ

(
H0 − ΣHF [Ĉ0] +

1

2
ΣHF [Ĉ]

)]
. (3.16)

The energies of the broken symmetry states are then compared with the non-interacting one. This

choice of the reference potential has two main advantages: Ĉ0 is a local minima of the problem

by construction, implying that the HF symmetric state is exactly the original non-interacting one

and, moreover, this methodology works for any filling.

3.3.2 Numerical results

Due to the peculiar triple-degree of freedom structure of the flat bands, TBLG can in principle

host a constellation of symmetry breaking insulating states. Every electron possesses three distinct

flavours: the spin one, endowed with SU(2) symmetry; the valley one with Uν(1) and generator

τ3; and the Chern number σ3 that reflect a Z2 symmetry.

From the HF prospective, the insulators at integer fillings are constructed by selectively occupying

those flavours (or a linear combination) according to their HF energies.

Due to particle-hole symmetry, which is only slightly broken by (3.7), only negative fillings are dis-

cussed since the corresponding positive ones are easily obtained by a particle-hole transformation.

Charge neutrality: ν = 0

I start analysing the interplay between Coulomb interaction (3.5) and phonon-mediated attraction

(3.7) at charge neutrality, ν = 0, where there is consensus [133, 134, 137, 138] that the Coulomb

interaction alone stabilises an insulator that has been denoted as Kramer inter-valley coherent

(K-IVC) state [133]. This is characterised by the order parameter

∆K-IVC(ϕ) ∼ σ3
(

cosϕ τ1 + sinϕ τ2
)
, (3.17)

which breaks time-reversal symmetry, T ∼ τ1σ1K with K the complex conjugation, and valley

Uv(1) symmetry, but is invariant under T τ3. Moreover, it breaks the C2x ∼ σ1 twofold rotation,

while is invariant under the generalised

C′2z(ϕ) ≡ e−iϕτ3 C2z ∼ e−iϕτ3/2 τ1 eiϕτ3/2 . (3.18)

I note that the order parameter (3.17) commutes with the Chern number σ3 [133]. Two electrons

with given σ3 may form a spin-triplet valley-singlet, or a spin-singlet valley-triplet. Eq. (3.17)

implies that Coulomb interaction favours the latter, with valley polarisation τ in the xy-plane,

opposite for the two different Chern numbers [133].

The phonon-mediated attraction HP in Eq. (3.7), which can be roughly written as −g
(
τ · τ −

τ23
)
, still favours a spin-singlet valley-triplet state. However, among the three τ3 = −1, 0,+1

components, it lowers the energy of the valley-triplet with τ3 = 0 for both σ3 = ±1, thus not

breaking any of the symmetries. This corresponds to a pseudo-rotation in the τ1 − τ2 plane:

the Uv(1) symmetry is instantaneously broken along a direction in that plane but, on average,

dynamically restored. Since these pseudo-rotations describe alternating distortions either along A1

or B1 modes, the state can be regarded as a resonating Kekulé valence bond. As such, it cannot be
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Figure 3.3: Hartee-Fock results for ν = 0: Panel a: Hartree-Fock energies of the K-IVC

and S-KVB variational wavefunctions at charge neutrality, ν = 0, characterised, respectively, by

the order parameters Eq. (3.17) and Eq. (3.19), as function of the coupling constant g of the

phonon-mediated attraction. In addition, other valley polarized symmetry breaking insulators,

characterized by the order parameters σ3, τ3 and τ3 σ3 are shown. Panel b: Hartree-Fock band

structure of the S-KVB state at g = 0.32 meV and ν = 0. Solid lines represent valence bands

whereas dashed lines conduction ones. Also shown are the symmetry properties of the Bloch waves

at the high-symmetry points. In the inset, the Wilson loop of the lowest two flat bands.

represented by a single Slater determinant, hence it is not accessible in HF. It is however possible

to study by HF the static counterpart once Uv(1) is explicitly broken through a static distortion

along any arbitrary combination of the A1 or B1 modes. That amounts to searching for variational

wavefunctions with a static Kekulé distortion characterised by the two-component order parameter

∆S-KVB(ϕ) ∼ σ0
(

cosϕ τ1 + sinϕ τ2
)
, (3.19)

which breaks Uv(1), while it is invariant under C2x, T , and the twofold rotation (3.18). The Fock

term of the Coulomb interaction (3.5) may stabilise either order parameters, although ∆K-IVC is

favoured at charge neutrality [133]. On the contrary, the phonon mediated attraction (3.7) only

couples via the Hartree term to ∆S-KVB.

It is thus reasonable to expect that the cooperation between Coulomb and phonon-mediated in-

teractions may eventually make ∆S-KVB prevail over ∆K-IVC, which is confirmed by the following

numerical results. In Fig. 3.3a, HF energies of the K-IVC and S-KVB variational states upon

increasing the coupling constant g of the attraction are shown, along with other valley-polarized

insulating states that however remain always metastable since they are only weakly coupled to the

Fock term of HP . At g = 0, K-IVC is the global minimum and S-KVB a local one. Increasing

g, the energy of S-KVB lowers and eventually crosses that of K-IVC. For realistic values of g,

S-KVB is the stable state, while K-IVC is only metastable. In Fig. 3.3b the HF band structure

of the S-KVB state at g = 0.3 meV is plotted along with the symmetry properties of the Bloch

waves, noting that the space group remains P622. The band structure describes an insulator with

a sizeable gap ∼ 30 meV separating the two lower flat bands from the upper two. The Bloch waves

of the lower two bands transform like the irreducible representations Γ1(1) + Γ2(1), M1(1) +M2(1)

and K3(2), see Fig. 3.3b, which hints [151] at a ‘fragile‘ topology, indeed testified by the Wilson
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Figure 3.4: Hartee-Fock results for ν = −2: Panel a: Hartree-Fock energies of the K-IVC

and S-KVB variational wavefunctions at half-filling, ν = −2 as function of the coupling constant

g of the phonon-mediated attraction. Panel b: Hartree-Fock band structure of the S-KVB state

at g = 0.32 meV and ν = −2. Solid lines represent valence bands whereas dashed lines conduction

ones. In the inset, the Wilson loop of the lowest doubly spin-occupied flat band, which indicates

a non-zero net Chern number.

loops of the two lower flat bands, see inset of Fig. 3.3b. In reality, since the S-KVB state is adia-

batically connected to the frozen-phonon insulator of Ref. [27], which was shown to support edge

states, that topology is actually robust and implies that the two lower flat bands do have finite

and opposite Chern numbers C = ±2.

Half-filling: ν = ±2

For integer fillings away from charge neutrality, the sole Uv(1) symmetry-breaking static Kekulé

distortion cannot stabilise mean-field insulators, due to the T C2z protection of the Dirac cones.

Therefore additional symmetries must be broken. It can already be anticipated how that occurs by

noticing that Jahn-Teller coupling is akin inverted Hund’s rules [149, 150, 153] forcing lowest-spin

configurations, and that the two occupied flat bands at charge neutrality carry opposite Chern

numbers, C = σ3 = ±1 per spin [133]. Therefore, if phonon contribution prevails over Coulomb

exchange, the Chern number degeneracy is split in the first place by a symmetry-breaking term

∝ σ3, and only as a last resort spin degeneracy is lifted. At half-filling ν = ±2 this corresponds to

spin rotationally invariant topological insulators with spin-singlet order parameter

∆ν=±2(ϕ) ∼ ∆S-KVB(ϕ) + σ3 , (3.20)

breaking time-reversal, C2x and C2y symmetries, thus leaving just a P6 space group.

In the case Coulomb interaction should prevail, K-IVC spin triplet S = 1 non-topological insulators

[133,134,137] should be stabilized.

The former scenario is indeed realized in mean-field, see Fig. 3.4a for moderate value of the electron-

phonon coupling g ∼ 0.3 meV, and the resulting Hartree-Fock band structure is shown in Fig. 3.4b.

As expected, the occupied flat-band has a nonzero winding number of the Wilson loop, suggestive

of a topological Chern insulator with Chern number C = ±2.
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In reality, this solution, though consistent with experiments [24,25], is degenerate with other ones

at the mean-field level [154]. I observe that the solution whose band structure is shown in panel

b of Fig. 3.4 can be easily interpreted as deriving from panel b of Fig. 3.3 at ν = 0 after the two

bands with opposite Chern numbers detach from each other because of the symmetry breaking,

and the two electrons occupy the lower one. Since the Chern number per spin of the lowest band

can be either +1 or −1 depending on the sign of the component ∝ σ3 of the order parameter

(3.20), both signs leading to the same HF energy, and because spin up and down electrons are

independent of each other at the mean-field level, I can imagine a situation in which the lowest

band has Chern number +1 for spin up and −1 for spin down. That corresponds to replacing

σ3 in (3.20) with s3 σ3, where s3 is the third Pauli matrix in the spin sector, or, more generally,

with any combination of s1, s2 and s3. This solution has the same HF energy as the one with

order parameter (3.20), and describes a quantum spin-Hall insulator that also breaks spin SU(2).

Even though both solutions are degenerate at the HF level, as first observed in [154], I expect

that quantum fluctuations beyond mean-field would tend to restore SU(2) symmetry, eventually

stabilising a non-topological insulator. The question about which of the two insulators, topological

or not, have lower energy beyond mean-field is an open issue, even though experimental evidence

supports the topological one. I will come back to this issue in the context of the resonating valence

bond scenario.

Odd fillings: ν = −1 and ν = −3

Insulating solutions at odd fillings ν = −1,−3 and forcing translational symmetry can be stabilised

in HF by only assuming that spin SU(2) is broken.

At ν = −3, only one of the eight (including spin) flat bands is occupied, lifting both the Chern

number and the spin degeneracy. The S-KVB and the K-IVC insulators collapse into the same

state, characterized by an electron with inter-valley coherence occupying one of the four flavours

in the spin-Chern subspace. Another possible insulator is spin-valley-Chern polarized (SVCP),

thus preserving Uν(1) valley symmetry. In this case, the two solutions have a comparable energy

already at g = 0, see Fig. 3.5a. For finite g, the S-KVB becomes unequivocally the ground state,

making the result robust under the fine details of the calculation. The spin-polarized bands of the

S-KVB insulator are plotted in Fig. 3.4b.

At filling ν = −1, three of the eights flat bands are occupied. Since the spin symmetry is

broken, one spin projection will have two electrons and the other just one. At the HF level, the

two low energy candidates are found by removing an electron to one of the two spin species from

the charge neutrality solutions of K-IVC and S-KVB. The minority spin thus resembles the state

stabilized at ν = −3, while the majority spin is exactly the one at charge neutrality, but now

not doubly occupied. Also in this case, the S-KVB insulator becomes stable for g ∼ 0.3 meV,

see Fig. 3.5c, resulting again in a spin-polarized topological insulator whose bands are plotted in

Fig. 3.5d.

Alignment with hBN

In all the experimental realizations of TBLG, the system is encapsulated or sitting on a hexagonal

boron nitrate (hBN) substrate. In the case of perfect alignment between one of the graphene layers

and the substrate, the system displays a radically different phase diagram; without superconducting
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Figure 3.5: Hartee-Fock results for ν = −3 and ν = −1: Panel a-b: Hartee-Fock energies of

the most stable insulators at ν = −3, −1, respectively, as function of the coupling constant g of the

phonon-mediated attraction. Panel c-d:Hartree-Fock bands of the S-KVB state for g = 0.32 meV

at ν = −3, −1 respectively. The blue and red bands correspond to majority and minority spins,

respectively. In the inset, the Wilson loops of the occupied bands are shown.
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Figure 3.6: Hartee-Fock results for hBN: Panel a shows the evolution of the order parameters

of the S-KVB density matrix increasing the hBN coupling constant. Panel b shows the band

structure and the Wilson loop of the S-KVB state at ∆hBN = 10 meV: the bands and their

topology are left almost untouched by the presence of the substrate.

domes and with clear-cut experimental evidences of insulating states only at ν = 0 and ν =

3 [20, 21, 155]. I am thus interested in the case of slight misalignment, to verify if the phase

diagram is robust under a small breaking of the C2z symmetry.

Considering a TBLG on top of an hBN substrate, the potential generated by a perfectly aligned

hBN can be treated, in first approximation, by including a staggered on-site potential σ3 τ3 [156]

acting on the bottom graphene layer. Reminding that the bottom layer correspond to the (Qb, η =

+1) and (Qa, η = −1) points, the external potential can be written as

VhBN =
∆hBN

2
δQQ′ (σ3 τ3 + (δQ,Qb

− δQ,Qa
)σ3 ) , (3.21)

where ∆hBN = 30 meV in case of perfect alignment [156]. I approximate the case of misaligned

hBN by taking a ∆hBN in Eq. (3.21) smaller than the value of 30 meV corresponding to perfect

alignment.

The results at charge neutrality ν = 0 that are, in reality, representative of the behaviour at

all integer fillings are presented in Fig. 3.6. Increasing ∆hBN , the density matrix of the system

develops a small C2z symmetry breaking term, characterized by the order parameter σ3 τ3. The

S-KVB order parameter is slightly diminished by the presence of the substrate, but the band

structure and the topological properties of the ground states are unaffected. In the case of a

perfectly aligned substrate, i.e. ∆hBN = 30 meV, the S-KVB order parameter is vanishingly small,

and the system is driven into a valley polarized insulator characterized by σ3 τ3 ' ±1.

Summary of HF results and comparison with experimental evidences

The Hartree-Fock calculations suggest that the introduction of the coupling to moiré phonons

radically changes the phase diagram of the system, in accordance with a successive preprint that

also considers strain effects [154]. At all integer fillings, when the electron-phonon coupling reaches

approximately 0.3 meV, the lowest energy solutions are insulating, exhibit a local Kekulé pattern,

and are topological but at charge neutrality. It is important to remark that these results, consistent
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with experimental evidence [12, 16, 22, 157–163], depend on the Kekulé coupling overruling the

Coulomb exchange [153]. In the opposite case, the K-IVC state would be stable at charge neutrality,

and Coulomb exchange would presumably realize conventional Hund’s rules, thereby lifting spin

degeneracy to create high-spin states. This would lead, for example, to spin S = 1 non-topological

insulators at ν = ±2 [133,134,137], in contrast to the S = 0 topological ones that I find.

I stress that only the former scenario is consistent with experimental evidence of anomalous

quantum Hall effect at ν = ±2 [24, 25], and in particular, with recent high-resolution STM mea-

surements on ultra-low-strain samples [28]. According to these measurements, the ground state

wavefunction breaks the Uv(1) valley symmetry displaying a Kekulé pattern at the graphene scale,

but does not show the circulating currents peculiar to K-IVC, ruling out this state and pointing

toward the S-KVB one as the most promising candidate for the actual insulating states realized in

TBLG.

I conclude the discussion of the HF results by mentioning, for completeness, that there is

actually a third possibility I have not taken into account: that the insulators break moiré trans-

lational symmetry [27]. This scenario appears to be realized only under large enough strain, both

theoretically [154,164] and experimentally [28].

3.4 Resonating valence bonds beyond mean field

Hartree-Fock is only able to describe static Kekulé distortions, and predicts tiny atomic displace-

ment because of the large phonon frequency compared to the narrow insulating gaps that are

opened. Since the A1 and B1 moiré optical phonon dispersions in momentum space are negligible,

around four orders of magnitude less than the center-of-mass frequency [27], one can legitimately

regard those modes as collective vibrations of almost independent moiré supercells [144] as if they

were thousand-atom large molecules. Therefore, also in light of the extremely narrow width of

the flat bands, it cannot be excluded that, in reality, Kekulé valence bonds resonate, namely they

occurs without spontaneously breaking Uv(1). As earlier mentioned, that would corresponds to

the S-KVB distortion, see Fig. 3.1, being replaced by a R-KVB one. If that were the case, the

above mean-field insulating phases should be replaced by their dynamical counterparts, i.e., by

Jahn-Teller Mott insulators [147] in which the effectively inverted Hund’s rules and the Coulomb

repulsion conspire to halt electron motion and to freeze each moiré supercell in the state that

maximises the local energy gain with a number of electrons equal to the average one. In the

present case of magic-angle TBLG, a simple description of a Jahn-Teller Mott insulator runs into

several obstacles. First, each supercell contains an unmanageable large number of π-orbitals that

prevents dealing with Jahn-Teller effect as one would do in a simple molecule. For that reason,

I assume that focusing just on the flat-bands already yields a reasonable physical description,

in that akin to dealing just with LUMO and HOMO in a molecule. That raises another issue:

the topological obstruction [130, 151, 165] prevents building localised Wannier orbitals for the flat

bands. To overcome such obstacle, I note that the Jahn-Teller Mott insulator has built-in pairing

correlations [148–150]. With this in mind, I argue that a reasonable description of that state can

be gained through a Gutzwiller projected BCS wavefunction [148]

|ν〉 = PG(ν) |BCS〉 , (3.22)
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where |BCS〉 is the BCS wavefunction for the flat bands, and PG(ν) the Gutzwiller projector onto

the configurations where each supercell is strictly occupied by 4 + ν flat-band electrons. Since

the goal is just to infer physical features of the resonating counterparts of the S-KVB mean-

field insulating states, I shall not attempt to optimise the ansatz wavefunction (3.22), which is

anyhow practically impossible, but assume that its properties are simply inherited by the BCS

wavefunction [166], hence by the geminal pair-wavefunctions that are favoured by the phonon-

mediated attraction and Coulomb repulsion. For that, I am first going to project HP (3.7) onto

the eigenoperators of the flat bands, as previously done for the Coulomb interaction [131,133,137],

then I am going to include the effect of the Coulomb repulsion via its pseudopotential.

Phonon mediated electron-electron attraction projected onto the flat bands

Fist, I define the non-interacting flat bands wavefunctions

Ĥ(0) |uηn(k)〉 = εηn(k) |uηn(k)〉 , (3.23)

where n = 1 for the lower and n = 2 for the upper flat bands at given valley ν, and the gauge for

the wave-function introduced in [136] is adopted

C2zT |uηn(k)〉 = |uηn(k)〉 ,
C2zP |uηn(k)〉 = η (−)n+1 |u−ηn(k)〉 ,

(3.24)

where 1 = 2, 2 = 1. Moreover, a smooth gauge across the BZ is selected

lim
q→0

(
〈uη1(k + q)|uη1(k)〉 − 〈u−η2(k + q)|u−η2(k)〉

)
= 0 . (3.25)

The creation operators of the flat bands can be now defined as

Ψ†k,σ,η,n ≡
∑
Qα

uηn;Qα(k) Ψ†k,Qα,σ,η (3.26)

where α = A,B refers to the graphene sublattice. Finally, I remark that the phonon mediated

attraction

HP = − g

2N

∑
q

(
L†x(q)Lx(q) + L†y(q)Ly(q)

)
, (3.27)

is controlled by the pseudo-density operators which couples only two electrons with opposite valleys

Lx(y)(q) =
∑
kσ

∑
QQ′

Ψ†k,Q,σ τx(y) L̂QQ′ Ψk+q,Q′,σ ,

L̂QQ′ =

(
1

10
δQ,Q′σ0 +

3∑
i=1

(
δQ,Q′+qi + δQ,Q′−qi

)
Ti

(
1,

1

2.5

) )
.

(3.28)

Considering only the flat bands and restricting to electron pairs with zero total momentum, I

obtain
HP = − g

N

∑
kk′

∑
σσ′η

∑
mnm′n′

Lηmn(k,k′)L−ηm′n′(−k,−k′)×

×Ψ†k,σ,η,mΨ†−k,σ′,−η,m′Ψ−k′,σ′,η,n′Ψk′,σ,−η,n ,

(3.29)
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where the form factors are defined as the valley off diagonal matrix elements of the pseudo-density

Lηmn(k,k′) ≡ 〈uηm(k)| L̂ |u−ηn(k′)〉 . (3.30)

I shall analyse the spin-singlet channel first, and then discuss the spin-triplet one. I can already

anticipate that, because Jahn-Teller effectively realizes inverted Hund’s rules [149, 150, 153], the

latter will be higher in energy.

Spin-singlet pair creation operators can be straightforwardly defined as

S†nm(k, η) ≡ 1√
2

(
Ψ†k,↑,η,nΨ†−k,↓,−η,m + Ψ†−k,↑,−η,mΨ†k,↓,η,n

)
, (3.31)

which, by definition,

S†nm(k, η) = S†mn(−k,−η) , (3.32)

and transforms under C2z and particle-hole P as [136]

C2z S
†
nm(k, η)C−12z = S†nm(−k,−η) ,

P S†nm(k, η)P−1 = (−)nm S†nm(−k, η) .
(3.33)

In particular, C2z symmetry entails four invariant channels

C2z (+) (+) (+) (-)

S†11(k, η) S†22(k, η) S†12(k, η) + S†21(k, η) S†12(k, η)− S†21(k, η)

Using Eq.(3.32), I can write the Hamiltonian in a block diagonal form

HP = − g

N

∑
kk′

∑
η

∑
mnm′n′

Lηmn′(k,−k′)L−ηm′n(−k,k′)×

×S†mm′(k, η)Snn′(k
′, η) .

(3.34)

From the combined C2z symmetry of both the singlet creation operators and the wave-functions,

it follows that the two diagonal blocks with opposite η are actually the same object, such that η

it is a redundant index. I thus get rid of this redundancy by defining

∆†k,nm ≡ S
†
nm(k,+1) ,

Vnm,n′m′(k,k
′) ≡ 2L+1

nm′(k,−k′)L−1mn′(−k,k′) .
(3.35)

The phonon-mediated attraction projected upon the singlet Cooper pairs with zero total momen-

tum finally becomes

HP = − g

N

∑
kk′

∑
mnm′n′

Vnm,n′m′(k,k
′) ∆†k,nm ∆k′,n′m′ , (3.36)

and is diagonalized by the creation operators

HP → −g
∑
i

λi ∆†i ∆i ∆†i =
∑
k,nm

ψinm(k) ∆†k,nm . (3.37)

The wavefunction ψinm(k) inherits the same symmetry properties of the singlet creation opera-

tors in Eq. (3.33). Accordingly, if ψnni (k) 6= 0, then ψ12
i (k) = ψ21

i (k) and the eigenstate is even
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Figure 3.7: s-wave pair wavefunction in momentum space. Panels a-c: intra-band, ψ11
s (k)

(a) and ψ22
s (k) (c), and inter-band, ψ12

s (k) = ψ21
s (k) (b), components of the spin-singlet s-wave

pair wavefunctions in momentum space. Panels d-f : same as in panels a-c but showing the

probability distribution in momentum space.

under C2z, while it is odd if ψnni (k) = 0 and ψ12
i (k) = −ψ21

i (k). Moreover, since particle-hole

symmetry P is nearly satisfied, the eigenstate is (almost) even under P if ψ11
i (k) ' ψ22(−k)

and ψ12
i (k) ' −ψ12

i (−k), and odd otherwise. Similarly, the eigenstate is even under C2x if

ψnni
(
C2x(k)

)
= ψnni (k) and ψ12

i

(
C2x(k)

)
= −ψ12

i (k), and odd in the opposite case. Finally,

the component of ψnmi (k) even under k → −k corresponds to the spin-singlet, valley-triplet with

τ3 = 0, while that odd to the spin- and valley-singlet. Both components have τ3 = 0 and therefore

their mutual coupling is allowed by Uv(1).

By construction, the lowest-energy pair-eigenstate is the one with the largest λi. Not surprisingly,

I find that the largest eigenvalue λs = 2.33 is non-degenerate and its eigenvector, i.e., the pair

wavefunction, transforms like the totally symmetric irreducible representation of D6, which is alike

an s-wave Cooper pair, see Fig. 3.7.

The next largest eigenvalue λd = 1.79 is doubly degenerate, and the corresponding pair wavefunc-

tions transform like the two-dimensional irreducible representation of D6 even under C2z, alike a

d-wave Cooper pair. In the real representation, one eigenstate ψnmd1 (k) ∼ x2− y2, even under C2x,

and the other ψnmd2 (k) ∼ xy, odd under C2x, see Fig. 3.8. In reality, since ψnndi (k) 6= ψnndi (−k),

each eigenstate has also a weak p-wave valley-singlet component, px and −py the eigenstates d1
and d2, respectively. Both d1 and d2 are (almost) odd under p-h symmetry, as can be noticed in

Fig. 3.8, which hints at a non-trivial topological character [136, 167]. Indeed, the combinations

d± =
(
d1 ± i d2

)
/
√

2 ∼ Y2±2 do have finite Chern number C = ±2, the same value of the angular

momentum, as discussed later in the chapter.

For completeness, I further checked that a spin-triplet Cooper pair is unfavoured. Being

T †k,n1n2,sz
the triplet creation operator with z-spin projection sz = 0,±1, the Hamiltonian pro-
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Figure 3.8: d-wave pair wavefunctions in momentum space. Panels a-f : pair wavefunction

components in momentum space of the two d-wave real eigenstates d1 and d2, namely, ψ11
d1

(k) (a),

ψ12
d1

(k) = ψ21
d1

(k) (b), ψ22
d1

(k) (c), ψ11
d2

(k) (d), ψ12
d2

(k) = ψ21
d2

(k) (e), and ψ22
d2

(k) (f). Panels g-

h: probability distribution of the complex d1 + id2 combination, eigenstate of C3z with eigenvalue

e−i2π/3. The orthogonal combination d1−id2, eigenstate of C3z with complex conjugate eigenvalue,

has right the same probability distribution.

jected onto the triplet Cooper pairs takes the form

HP = +
g

N

∑
kk′,sz

∑
n1n2n3n4

Vn1n2, n3n4(k,k′)T †k,n1n2,sz
Tk′,n3n4,sz , (3.38)

with an overall positive sign. Now, I must take the most negative λ ' −1.18 which is smaller in

magnitude both of λs and λd1±id2 , implying my assumption to focus only on the singlet channel

was legit.

Coulomb pseudopotential

I have so far just considered the phonon-mediated attraction that, unsurprisingly, favours the s-

wave pairing channel. That result may change taking into account also the Coulomb repulsion HC

in Eq. (3.5). The projected interaction yields [136]

HC = − 1

2NΩc

∑
kk′

∑
qG

∑
σσ′

∑
nmn′m′

∑
ηη′

U(q + G)Mη
nn′(k,q + G)Mη′

mm′(k
′,−q−G)×

×Ψ†k+q,σ,η,nΨ†k′−q,σ′,η′,mΨk′,σ′,η′,m′Ψk,σ,η,n′ ,

(3.39)
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Figure 3.9: Diagrammatic representation of the Coulomb pseudo-potential. The black Green

functions correspond to flat bands, the red ones to other bands, while the wavy line is the RPA

screened interaction. The values in Eq. (3.46) refers only to the first diagram.

where the form factor for transferred momentum q + G is defined as

Mη
nn′(k,q + G) = 〈uηn(k + q + G) |uηn′(k)〉 , (3.40)

and, for simplicity, a layer independent interaction is considered

U(q) =
2πe2

ε∞

tanh(dsq)

q
. (3.41)

A proper treatment of HC would require including all thousands π-bands, because the Coulomb

repulsion projected just onto the flat bands, i.e., without the screening by all other bands, is

unphysical. Since this calculation is infeasible, I project the interaction onto the four flat bands

and account for the screening of the other bands through random phase approximation (RPA),

neglecting retardation effects due to the small energy window of the flat bands

U(q + G) → Usc(q + G) = U(q + G)
(

1 + U(q + G)χ0(q + G, ω = 0)
)−1

, (3.42)

where the non-interacting density-density particle-hole bubble is summed upon all the bands but

the flat ones

χ0(q + G, ω) =
2

V

∑
k,η

∑
nn′ 6=1,2

|Mη
nn′(k,q + G)|2 f(εηn(k + q))− f(εηn′(k))

ω − εηn(k + q)− εηn′(k)
. (3.43)

I estimate the electrostatic energy paid by a single the Cooper pair in perturbation theory, i.e. the

Coulomb pseudo-potential µ∗

µij∗ = 〈0|∆iHC ∆†j |0〉

= − 1

V

∑
kk′

∑
mm′nn′

(
ψinm(k)

)∗
Unm,n′m′(k,k

′)ψjn′m′(k
′) ,

(3.44)

where the Coulomb kernel is now defined as

Unm,n′m′(k,k
′) =

∑
G

Usc(k− k′ + G)M+1
nn′(k

′,k− k′ + G)×

×M−1mm′(−k′,−k + k′ −G) .

(3.45)

Due to invariance under the D6 symmetry of the Coulomb repulsion, the pseudo-potential is

diagonal in the d1(2) space and does not couple s and d ones. Specifically,

µs∗ = 27.48 meV ,

µd∗ = 26.97 meV ,

∆µ∗ =µs∗ − µd∗ ' 0.49 meV .

(3.46)
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Figure 3.10: Evolutions of the kernel eigenvalues of the tHamiltonian in Eq. (3.53). As in Eq. (3.37),

the larger the kernel eigenvalue the smaller the energy eigenvalue. For µ = 0, there are present

two degenerate s, s′ states with C = 0 that splits for µ > 0. The d1 ± id2 states, with C = ±2,

remains doubly degenerate for all the evolution of the Hamiltonian.

Reminding that λs − λd = 0.56, I conclude that the interplay of electron-phonon coupling and

Coulomb interaction favours the d−wave Cooper pairing [129] for values of the coupling

g . 0.88 meV , (3.47)

due to the nodes of the wave-function that pay less electrostatic energy.

I note that the pseudo-potential µi∗ is bigger than the pair energy −g λi, resulting in a net positive

energy for each pair. That is because a faithful estimate of µi∗ requires summing the ladder

diagram in Fig. 3.9 over all bands but the flat ones. Unfortunately, this calculation is infeasible:

the non-trivial momentum dependence of the interaction prevents to analytically sum the series.

However, I expect that the net result would still favour the d-wave pair with respect to the s-

one, as suggested by the non-trivial topology of the HF solutions. Moreover, even if µi∗ were

still larger than −g λi, the proximity to the Mott insulator could nonetheless stabilize a R-VBD

state, since vertex corrections and wavefunction renormalization strongly supress the Coulomb

pseudo-potential whereas have weak effect on the phonon coupling constant [149].

Topology of the d-wave Cooper pair

As previously anticipated, here I analyse the topological character of the d±-waves introducing the

Chern band creation operators, which creates electrons belonging to the flat bands with definite

Chern number C = eY = ±1 [136]

Ψ†k,σ,η,eY ≡
Ψ†k,σ,η,2 + i eY Ψ†k,σ,η,1√

2
, (3.48)
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and the Chern number operator as

EY =
∑
k

∑
σ η eY

eY Ψ†k,σ,η,eY Ψk,σ,η,eY
. (3.49)

A single Cooper pair is described by the wave-function

|BCS(±)〉 = ∆†d± |0〉 (3.50)

and the expectation value of the Chern number operator over such state is

〈EY 〉± = ±1.75 , (3.51)

signature of a nontrivial topology of the pair wavefunction, but below the quantized value C = ±2.

The discrepancy is due to a small mixing of non-interacting flat bands with opposite Chern numbers

by the phonon-mediated attraction, such that the one-to-one correspondence between EY and the

Chern number of the pair is no longer valid once interactions are introduced. To demonstrate

that the Cooper pair is anyway still topological, I divide the Hamiltonian in two parts, one that

preserve and one that breaks the chiral symmetry

HP = H1
P +H2

P ,[
H1
P , EY

]
= 0

[
H2
P , EY

]
6= 0 ,

(3.52)

and define a new Hamiltonian through

HP (µ) = H1
P + µH2

P . (3.53)

For µ = 0, EY commutes with the Hamiltonian by construction and allows only Cooper pairs with

definite Chern number EY = 0,±2. The d±-states posses a non-zero Chern number EY = C = ±2

at µ = 0, explicitly signalling a nontrivial topology. Adiabatically increasing µ, they always remain

doubly degenerate but for an accidental degeneracy with the s-one at µ ' 0.7. The mixing between

these states is forbidden by symmetry, such that the nontrivial topological character of the d±-ones

is left untouched by the crossing. Moreover, the d-states can not even mix between themselves since

they are characterized by opposed quantized angular momentum `z = ±2. This indicates that the

d±-wave are characterized by C = ±2 Chern numbers also in the case of µ = 1, corresponding to

the actual phonon Hamiltonian.

Resulting physical scenario

Therefore, under all the above assumptions, and neglecting the flat band dispersion since the large

U(4) × U(4) symmetry of the Coulomb repulsion is already lifted by the effective attraction, R-

KVB insulators can be stabilised at all integer fillings ν. These are described by the projected

BCS wavefunctions, see Eq. (3.22),

|ν〉 ∝ PG(ν)
(

∆†d+

)N
2 n+

(
∆†d−

)N
2 n− |0〉 , (3.54)

where, by definition, the ‘vacuum’ |0〉 is the ground state state at ν = −4 with all bands below

the flat ones occupied, and n± ≥ 0 are the numbers of d± pairs per unit cell. The filling factor is
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～ Y2+2 (C = +2) ～ Y2-2 (C = -2)

𝛎 = -3, n+ = 1, n- = 0  

C = 1

𝛎 = -2, n+ = 2, n- = 0  

C = 2

𝛎 = 0, n+ = 2, n- = 2  

C = 0

𝛎 = -1, n+ = 2, n- = 1  

C = 1

Figure 3.11: R-KVB insulators at integer ν ≤ 0. The two spin-singlet, τ3 = 0 geminal opera-

tors: ∆†+ ∼ Y2+2 with Chern number C = +2 is represented by the blue circle, while ∆†− ∼ Y2−2
with C = −2 by the red one. A pictorial representation of the resonating Kekulé valence bond in-

sulators, dynamical counterparts of the static mean-field ones in Figs. 3.3, 3.4 and 3.5, is displayed

for all negative integer fillings. For each case, I draw two nearest neighbour moirè unit cells, each

of which, for odd ν, hosts one electron from the shared pair; a very oversimplified picture of spin-

and valley-liquid insulators.
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simply ν = −4 + n+ + n−. Whenever n+ 6= n−, the projected wavefunction (3.54) breaks time-

reversal symmetry, carries Chern number C(n+, n−) = 2(n+−n−), and has finite orbital magnetic

moment M = µB g∗ C(n+, n−) per supercell, with g∗ the gyromagnetic ratio. Since the explicit

calculation [168] of the gyromagnetic ratio is infeasible in this scheme, I rely on the experimental

estimate of g∗ ∼ 3 [24], yielding an orbital magnetic moment per pair of ∼ 6 Bohr magnetons.

The dynamical counterparts of the S-KVB mean-field insulators Figs. 3.3, 3.4 and 3.5 correspond

to specific values of n+ and n−, see Fig. 3.11. However, due to the large value of g∗ it is well

possible that pairs (n+, n−) with Chern number higher in absolute value than the mean-field so-

lutions could become stable in presence of a magnetic field, possibly realising the peculiar Landau

fan diagrams that have been observed [22,157–159,161–163].

I note that, since at odd integer ν the R-KVB cannot quench spin and valley degrees of freedom, the

wavefunction (3.54) describes in that case spin- and valley-liquid topological insulators, whereas

Hartree-Fock predicts fully-polarised symmetry breaking ones. Nonetheless, that wavefunction still

has finite orbital magnetisation, which, e.g., could be as large as 3µB per moirè supercell at ν = 3,

not in disagreement with recent observations [160]. Moreover, the sizeable orbital magnetic mo-

ment implies the emergence of magnetic domains at any integer filling ν 6= 0 rather than a uniform

magnetic polarisation. Since the orbital magnetic moment of each pair is directly proportional

to its Chern number, that envisages the existence of domains with different Chern numbers, as

indeed observed experimentally [169]. I further remark that R-KVB insulators are prone to turn

upon doping into superconductors [149, 150], in the present case nodeless chiral d-wave ones that

are still topological [29], whose driving mechanism, I emphasise, is the electron-phonon Kekulé

coupling [30].

The former scenario assumes that time reversal breaking operators ∆†± are favoured over the real

ones ∆†1 and ∆†2. I cannot exclude that the latter correspond to the SU(2) invariant dynamical

counterpart of the earlier discussed quantum spin-Hall insulating HF solution [154]. However,

within this RVB scenario, these two states have exactly the same energy.

Therefore, for completeness, I will briefly discuss what would change if ∆†1 and ∆†2 were instead

favoured. In that case,
(
∆†±, n±

)
are simply replaced by

(
∆†1(2), n1(2)

)
in the wavefunction (3.54),

which would thus describe non-topological R-KVB insulators with a weak nematic character due

to the small p-wave component. Moreover, the symmetry of the superconducting order parameter

stabilised upon doping would be now a real combination of dx2−y2 , plus a small px component,

and dxy, plus a small −py component, implying nodes in the Brillouin zone [31] and weak nematic-

ity [140].

However, I emphasise that this scenario would imply a topologically trivial insulator at ν = ±2,

at odd with experimental evidence of an anomalous quantum Hall effect [24,25].
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3.5 Summary

The surprisingly rich phase diagram of magic-angle twisted bilayer graphene, which includes topo-

logical and non-topological correlated insulators [11,12,16,22,157,158,160–163], sometimes compet-

ing with each other [159], and superconducting domes [12,24–26], is explained by the constructive

interplay of the Coulomb repulsion and the effective attraction mediated by a rather peculiar set

of moiré optical phonons. The Kekulé-like valence-bond state, only metastable in presence of just

the Coulomb repulsion, is stabilized by this interplay and characterized by a distortion localised

mostly into the AA regions and along the domain walls separating AB and BA Bernal Stacked

regions of twisted bilayer graphene. The resulting physical scenario is in agreement with the ex-

perimentally observed insulating states at all integer fillings and, in particular, with the Kekulé

distortion measured at half-filling in a recent STM experiment [28, 170]. Moreover, it naturally

offers an explanation of the observed superconductivity [30] and its proximity to the insulating

phases [149,150].



CHAPTER 4

GREEN’S FUNCTION ZEROS AND TOPOLOGICAL

INVARIANTS

4.1 Introduction

The determinant of the retarded Green’s function G0(ε,k), with ε the frequency and k the mo-

mentum, for periodic models of non-interacting electrons have poles whenever ε hits the dispersion

energy εn(k) of a band n, i.e., a single-particle excitation. Similarly, the poles of the determinant of

the fully-interacting G(ε,k) can be associated to coherent, i.e., with infinite lifetime, single-particle

excitations, which thus have a clear physical meaning. The manifold in the Brillouin zone where

these poles are at ε = 0 defines the Fermi surface, in which case the system is metallic.

However, the determinant of G(ε,k) in presence of interaction may also develop zeros 1, whose

manifold at ε = 0 defines the so-called Luttinger surface [175]. For long time, these zeros have not

been given any physical significance, despite Volovik [32] early on recognised that a Luttinger sur-

face bears the same non-trivial topological content of a Fermi surface. Only recently, the Green’s

function zeros started to attract growing physical interest. For instance, it has been shown that

a Luttinger surface defined by the simple roots of det
(
G(0,k)

)
does sustain Landau’s quasiparti-

cles [33], even in non-symmetry breaking Mott insulators [34]. Those quasiparticles have the same

physical properties as conventional ones at a Fermi surface, with the major difference that they are

incompressible [35] and do not contribute to charge transport [34]. Elaborating on Volovik’s obser-

vation [32], Gurarie [36] and Essin and Gurarie [37] have proposed that, upon increasing electron

correlations, topological edge modes, i.e., edge poles of the Green’s function, may transform into

edges zeros without making the topological insulator a trivial one or closing the single-particle gap.

More recently, this intriguing scenario has been further explored in Ref. [38], whose authors show

1Equivalently, in the basis that diagonalises G(ε,k) for strictly real ε, there may be elements along the diagonal

that vanish at certain ε and k. That is evidently different from the case in which the Green’s function, represented

in a basis in which it is not diagonal, has diagonal terms that may cross zero. This circumstance has been discussed

in [171]. In particular, the diagonal elements of the non-interacting Green’s function have only poles in the diagonal

basis, while they may have also zeros in a generic non-diagonal basis, whose role has been analysed, e.g., in [172–174]
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that model topological insulators turn, upon rising interaction strength, into Mott insulators with

topologically trivial lower and upper Hubbard bands, but with ingap valence and conduction bands

of Green’s function zeros that are topological and yield Green’s function edge zeros. This result

suggests that an edge-bulk correspondence exists also for Green’s function zeros, thus clarifying

the mechanism underlying the transformation of edge poles into edge zeros [36,37].

All these small pieces of evidence suggest that Green’s function zeros, that may arise only in

strongly correlated systems, do have a physical meaning as important as that of Green’s function

poles. This connection has been uncovered when the zeros cross the chemical potential, thus in

the presence of a Luttinger surface [32–34]. However, despite the supporting evidences [36–38], the

direct role of Green’s function zeros in assessing the topological character of an insulator has not

been explicitly demonstrated. That is precisely this chapter.

4.2 Topological invariant in two dimensions

The Hall conductance in non-interacting insulators is quantized in units e2/2π~, where the integer

quantum is a topological invariant known as the first Chern number. This is calculated upon the

occupied bands and is robust under any smooth deformation of the Hamiltonian. On the other

hand, in the case of interacting electrons, band theory of independent electrons does not hold

and yet a quantized topological invariant, which reduces to the Chern number if the interaction is

switched off, can be still defined.

However, while the expression of this invariant, the winding number (4.8), could be well antici-

pated by algebraic topology arguments, the most accepted derivation, see, e.g., Refs. [39, 40], is

not formally correct. In particular, it neglects a term which is in principle non-zero when pertur-

bation theory breakdowns and can lead to a mismatch between the winding number and the Hall

conductance.

Therefore, I here rederive the Hall conductance by standard quantum many-body theory [176].

consider a periodic model of interacting electrons and use units in which ~ = 1. The off-diagonal

component σij , i 6= j, of the conductivity tensor is related to the current-current response function

χij(ω) through

σij = − lim
ω→0

e2

iω
χij(ω) ,

where, in the basis of the Hamiltonian eigenstates |n〉, with eigenvalues En,

χij(ω) = χji(−ω) =
1

Z

∑
nm

e−βEn − e−βEm

ω − Em + En

∫
dx dy 〈n| Ji(x) |m〉 〈m| Jj(y) |n〉 ,

with Ji(x) the i-the component of the current density operator at position x. Therefore, the

antisymmetric component of the current-current tensor is, for small ω,

χij(ω)− χji(ω)

2
' − ω

Z

∑
nm

e−βEn − e−βEm(
Em + En

)2 ∫
dx dy 〈n| Ji(x) |m〉 〈m| Jj(y) |n〉

= ω
∂χij(ω)

∂ω
∣∣ω=0

,
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Γ0= +

Γ0 Γ0+ + …

Λi Λ0
jχij(iω) =

iϵ + iω, k

iϵ, k

Figure 4.1: Top panel: current-current correlation function χij(iω) in skeleton diagrams. Black

arrow lines are interacting single-particle Green’s functions G, whose Matsubara frequency and

momentum are explicitly shown; green triangle represents the non-interacting current vertex Λ0
j ,

while dark green triangle the fully interacting one Λi. Bottom panel: Bethe-Salpeter equation

satisfied by the interacting Λi in terms of the interaction vertex Γ0 irreducible in the particle-hole

channel.

which is imaginary, and thus, switching to Matsubara frequencies and for i 6= j,

σij − σji
2

= i e2
∂χij(iω)

∂iω
∣∣ω=0

,

where now

χij(iω) = −
∫ β

0

dτ eiωτ
∫
dx dy 〈Tτ

(
Ji(x, τ) Jj(y, 0)

)
〉 ,

is the correlation function in the Matsubara formalism, with τ the imaginary time. Fig. 4.1 shows

the representation of χij(iω) in skeleton diagrams. It is worth noticing that only one of the

two current vertices is fully interacting, otherwise interaction effects would be double counted as

mistakenly done in Ref. [40].

I am interested in the derivative of χij(iω) with respect to iω calculated at ω = 0, which, by

inspection of Fig. 4.1, can be represented as in Fig. 4.2, where, only because of the derivative, the

current vertices are now both fully interacting. Through the Ward-Takahashi identity the fully

interacting current vertex at ω = 0 is simply Λi = −∂G−1/∂ki, and, since ∂G = −G∂G−1G, I

can write in 2D and for T = 0
σ12 − σ21

2
=

e2

2π
νH

=
e2

2π
(I1 +KL)

(4.1)
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+

= +

∂χij(iω)
∂iω ω=0

=

+ + …+

i j

i j i j

Figure 4.2: Diagrammatic representation of ∂χij(iω)/∂iω up to first order in the skeleton expan-

sion. The cyan circle represents ∂/∂iω. Note that all diagrams must be evaluated at ω = 0 after

taking the derivative. Ultimately, the first diagram leads to the winding number W (G) while the

second one to KL.

where νH is the quantised Hall conductance, and I1 and KL are the contribution coming respec-

tively from the first and second diagrams in Fig.4.2. The first integral can be recasted as

I1 =
1

8π2

∫
dε dk Tr

(
G(iε,k) ∂k1G(iε,k)−1 G(iε,k) ∂εG(iε,k)−1 G(iε,k) ∂k2G(iε,k)−1

)
=

1

24π2

∫
dε dk εµνρ Tr

(
G(iε,k) ∂µG(iε,k)−1×

×G(iε,k) ∂νG(iε,k)−1 G(iε,k) ∂ρG(iε,k)−1
)

= W (G) ,

(4.2)

where εµνρ, with indices running from 0 to 2, the antisymmetric tensor, ∂0 = ∂ε and ∂1(2) = ∂k1(2) ,

and W (G), see (4.8), is the winding number of the map (ε,k) → G(iε,k) ∈ GL(n,C), assuming

that the Green’s function G(iε,k) is an n×n invertible matrix, with n the dimension of the single-

particle wavefunction basis, which is true provided the system is insulating and has no Luttinger

surface.

The additional term besides the winding number involves the derivative of the irreducible vertex

Γ0 and reads explicitly

KL =
iπ

(2π)6

∑ ∫
dε dk dε′ dk′ εij ∂iGba(iε,k) Fab;a′b′

(
iε,k; iε′,k′

)
∂jGb′a′(iε

′,k′) , (4.3)

where

Fab;a′b′
(
iε,k; iε′,k′

)
= lim
ω→0

1

2iω

{
Γ0

(
iε+ iω k a, iε′ k′ a′; iε′ + iω k′ b′, iεk b

)
− Γ0

(
iεk a, iε′ + iω k′ a′; iε′ k′ b′, iε+ iω k b

)}
= −Fa′b′;ab

(
iε′,k′; iε,k

)
,

(4.4)
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with
Γ0

(
iε+ iω k a, iε′ k′ a′; iε′ + iω k′ b′, iεk b

)
= Γ0

(
iε′ k′ a′, iε+ iω k a; iεk b, iε′ + iω k′ b′

)
,

the irreducible vertex in the particle-hole channel with transferred frequency ω. Since

Γ0

(
iε+ iω k a, iε′ k′ a′; iε′ + iω k′ b′, iεk b

)∗
= Γ0

(
− iεk b,−iε′ − iω k′ b′;−iε′ k′ a′,−iε− iω k a

)
,

and Gba(iε,k)∗ = Gab(−iε,k), one can readily show that KL in (4.3) is indeed real. I observe that

F in (4.4) is odd under (iε,k, ab)↔ (iε,k′, a′b′), unlike what claimed in [39,40], which compensates

the change of sign of the antisymmetric tensor εij under i↔ j. Therefore, KL may well be finite

in principle. Nonetheless, one may still argue that F could vanish. Indeed, the irreducibility in the

particle-hole channel suggests that Γ0 depends on iω only through the frequency carried by the

particle-particle channel, as can be verified by inspection of few orders in the skeleton expansion.

That frequency remains invariant if in the top panel of Fig. 4.1 I change the frequency of the upper

Green’s function from iε + iω to iε, and that of the lower one from iε to iε + iω, thus ω → −ω
in the particle-hole channel. If that is true, Γ0 is even in ω, and since it must also be smooth,

then its derivative at ω = 0 has to vanish, as also argued by Ref. [43] on the basis of the skeleton

expansion. I note that, from a physical point of view, it is reasonable that KL vanishes for weak

interaction, i.e. when perturbation theory holds. Adiabatically switching on the interaction would

otherwise lead to a possible failure of the TKNN formula in any realistic material, where Coulomb

repulsion is small but always present.

However, once perturbation theory breaks down, i.e. the Green’s function develops zeros, one

cannot exclude that the full series develops odd contributions, and thus that KL becomes non zero.

Further insight in that direction can be gained through the Streda formula [177,178]

∂ρ

∂B
∣∣B=0

=
e

2πc
νH , (4.5)

where ρ is the electron density. The case of spin-Hall conductance is defined similarly provided ρ

is replaced by the spin density [179]. The electron density at T = 0 can be calculated through [35]

ρ =
n

2
+

∫
dε dk

(2π)3
Tr
(
G(iε,k)

)
=

n

2
−
∫

dε dk

(2π)3
∂ ln detG(iε,k)

∂iε
+ IL

=
n

2
−
∫

dε dk

(2π)3
∂ ln detG∗(iε,k)

∂iε
+ IL

=

∫
dk

(2π)2
θ
(
− εα(0,k)

)
+ IL ,

(4.6)

where n is the number of bands, including spin, I used the fact that

ln detG(iε,k) = ln detG∗(iε,k) + ln detZ(ε,k) ,
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and ln detZ(ε,k) gives no contribution to the integral since its derivative is odd, and, finally,

IL =

∫
dε dk

(2π)3
Tr

(
G(iε,k)

∂Σ(iε,k)

∂iε

)
=

1

π

∫
dk

(2π)2
=m I(i0+,k) .

The function I(iε,k) = I(−iε,k)∗ is defined as [35]

I(iε,k) = Φ(iε,k)− Tr
(

Σ(iε,k)G(iε,k)
)
,

having written the Luttinger-Ward functional, which can be constructed fully unperturbatively [180],

as

Φ[G] = T
∑
`

∫
dk

(2π)2
eiε`0

+

Φ(iε`,k) .

In the perturbative regime, =m I(iε,k) ∼ ε for small ε and thus IL = 0, in which case (4.6)

reduces to the well known statement of Luttinger’s theorem [181]. However, when perturbation

theory breaks down, IL is generally nonzero [35].

In presence of a magnetic field B, the derivative of the first term in (4.6) with respect to B

and calculated at B = 0 yields the Streda formula for non-interacting electrons described by the

quasiparticle Hamiltonian H∗(0,k), which is just the TKNN expression (4.21). It follows that

∂IL
∂B

∣∣B=0
≡ e

2πc
KL , (4.7)

namely that the winding number (4.8) may not correspond to the quantised Hall conductance when

perturbation theory breaks down and IL 6= 0, in accordance, e.g., with the results of [182,183].

Most recently, another work linked the breakdown of the Luttinger theorem to a mismatch between

the winding number and the transverse conductivity via the Stresa formula [184]. It starts, however,

from the expression of the Green’s function in the magnetic Brillouin zone and thus corroborates

this result by a different analytical technique.

4.3 TKNN formula for interacting insulators

The expression of the topological invariant of two dimensional periodic insulators in presence of

interaction, which coincides with the zero temperature Hall conductance in units of e2/2π~ [39,40]

at least when perturbation theory is valid, reads

W (G) =
1

24π2

∫
dε dk εµνρ Tr

(
G(iε,k) ∂µG(iε,k)−1 ×

×G(iε,k) ∂νG(iε,k)−1 G(iε,k) ∂ρG(iε,k)−1
)
,

(4.8)

I hereafter assume that G(iε,k) is invertible, which implies that the system is an insulator without

any Luttinger surface. The winding number satisfies

W (G1G2) = W (G1) +W (G2) , W (G) = 0 if G† = G . (4.9)
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Zhong and Zhang have shown [42] that the topological invariant (4.8) reduces to the TKNN expres-

sion of the quantised Hall conductance [2] in which the role of the Bloch waves of the occupied bands

is played by the eigenstates of the hermitian matrix −G(0,k)−1 with negative eigenvalues. The

proof is based on the observation that the two maps (ε,k)→ G(iε,k)−1 and (ε,k)→ iε+G(0,k)−1

are homotopic, and thus the winding number (4.8) of the former map coincides with that of the

latter, which, in turns, reduces to the TKNN formula.

Here, I will prove explicitly the equivalence relation but using a different map (ε,k)→ G∗(iε,k)−1,

which has the more transparent physical meaning of the inverse of the quasiparticle Green’s func-

tion, which I discuss more extensively at the end of the section. Specifically, following [34, 35] I

write the interacting Green’s function matrix as

G(iε,k) =
1

iε−H0(k)− Σ(iε,k)

=
√
Z(ε,k)

1

iε−H∗(ε,k)

√
Z(ε,k)

≡
√
Z(ε,k) G∗(iε,k)

√
Z(ε,k) ,

(4.10)

where H0(k) is the non-interacting Hamiltonian represented in the chosen basis of single-particle

wavefunctions,
Σ(iε,k) = Σ(−iε,k)† ≡ Σ1(iε,k) + iΣ2(iε,k)

Σ1(iε,k) = Σ1(iε,k)† = Σ1(−iε,k)

=
Σ(iε,k) + Σ(−iε,k)

2

Σ2(iε,k) = Σ2(iε,k)† = −Σ2(−iε,k)

=
Σ(iε,k)− Σ(−iε,k)

2i

the self-energy matrix in that same basis, which accounts for all interaction effects,

Z(ε,k) = Z(−ε,k) =

(
1− Σ2(iε,k)

ε

)−1
, (4.11)

an even in ε and positive definite matrix, the latter if the system is insulating without a Luttinger

surface, which can be regarded as the quasiparticle residue, and

H∗(ε,k) = H∗(−ε,k) =
√
Z(ε,k)

(
H0(k) + Σ1(iε,k)

)√
Z(ε,k) , (4.12)

is the quasiparticle Hamiltonian, which is hermitian and even in ε. Therefore, if |α(ε,k)〉 is eigen-

state of H∗(ε,k) with eigenvalue εα(ε,k), I can always define |α(−ε,k)〉 = |α(ε,k)〉 the eigenstate

of H∗(−ε,k) with the same eigenvalue εα(ε,k). I emphasising that the representation (4.10) of the

Green’s function in terms of the quasiparticle one,

G∗(iε,k) =
1

iε−H∗(ε,k)
,

with hermitian H∗(ε,k) is a rigorous result that remains valid also when H∗(0,k) has zero eigen-

values, i.e., when Fermi and/or Luttinger surfaces are present.
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It follows that the winding number (4.8) can be written as

W
(
G
)

= W
(√

Z G∗
√
Z
)

= W
(
G∗
)

+W
(
Z
)

= W
(
G∗
)
,

since the winding number of the positive definite matrix Z vanishes.

A further reason for choosing the map (ε,k)→ G∗(iε,k)−1 is that, under the analytic continuation

on the real axis from above, iε→ ε+ i0+, i.e., for the retarded components of Green’s function and

self-energy, the poles of G∗(ε,k) correspond to both poles and zeros of G(ε,k), i.e., the vanishing

eigenvalues of the quasiparticle residue matrix (4.11) on the real axis, thus making more explicit

their deep connection.

In the basis that diagonalises H∗(ε,k), i.e.,

H∗(ε,k) |α(ε,k)〉 = εα(ε,k) |α(ε,k)〉 ,

and choosing |α(ε,k)〉 = |α(−ε,k)〉,

W
(
G
)

=
1

24π2

∫
dε dk εµνρ

∑
αβγ

1

iε− εα(ε,k)

1

iε− εβ(ε,k)
×

× 1

iε− εγ(ε,k)
∂µG∗(iε,k)−1αβ ∂µG∗(iε,k)−1βγ ∂µG∗(iε,k)−1γα ,

(4.13)

having defined
∂µG∗(iε,k)−1αβ ≡ 〈α(ε,k)| ∂µG∗(iε,k)−1 |β(ε,k)〉

= i δµ0 δαβ − 〈α(ε,k)| ∂µH∗(ε,k) |β(ε,k)〉
≡ i δµ0 δαβ − Fµαβ(ε,k) .

The term in (4.13) with α = β = γ vanishes because of the antisymmetric tensor, so that only

the cases of either two states equal and different from the third, or of all states different are finite,

which I denote as W (1)(G) and W (2)(G), respectively. Specifically,

W (1)(G) =− 1

8π2

∫
dε dk εµνρ

∑
αβ

′ 1

iε− εβ(ε,k)
×

× ∂µ

(
1

iε− εα(ε,k)

){
F ναβ(ε,k)F ρβα(ε,k)

}
,

W (2)(G) = − 1

24π2

∫
dε dk εµνρ

∑
αβγ

′ 1

iε− εα(ε,k)

1

iε− εβ(ε,k)
×

× 1

iε− εγ(ε,k)

{
Fµαβ(ε,k) F νβγ(ε,k) F ργα(ε,k)

}
,

(4.14)

where Σ′ means the summation over different indices.

I begin by analysing W (1)(G) in Eq. (4.14). I note that, for α 6= β,

F ναβ(ε,k) = 〈α(ε,k)| ∂νH∗(ε,k) |β(ε,k)〉

=
(
εα(ε,k)− εβ(ε,k)

)
〈∂να(ε,k)|β(ε,k)〉

=
(
εβ(ε,k)− εα(ε,k)

)
〈α(ε,k)| ∂νβ(ε,k)〉 ,

(4.15)
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so that

W (1)(G) = − 1

8π2

∫
dε dk εµνρ

∑
αβ

(
εα(ε,k)− εβ(ε,k)

)2
iε− εβ(ε,k)

×

× ∂µ
(

1

iε− εα(ε,k)

)
〈∂να(ε,k)|β(ε,k)〉 〈β(ε,k)| ∂ρα(ε,k)〉

= − 1

16π2

∫
dε dk εµνρ

∑
αβ

∂µ Sαβ(ε,k) 〈∂να(ε,k)|β(ε,k)〉 〈β(ε,k)| ∂ρα(ε,k)〉 ,

(4.16)

where the constraint α 6= β is automatically fulfilled and one can readily demonstrate that

Sαβ(ε,k) = 2 ln
iε− εα(ε,k)

iε− εβ(ε,k)
− iε− εα(ε,k)

iε− εβ(ε,k)
+

iε− εβ(ε,k)

iε− εα(ε,k)
,

which has a discontinuous imaginary part crossing ε = 0 if εα(0,k) εβ(0,k) < 0. I can write

Sαβ(ε,k) = Kαβ(ε,k) + 2πi sign(ε)
[
θ
(
εα(ε,k)

)
− θ
(
εβ(ε,k)

)]
,

where Kαβ(ε,k) is now continuous at ε = 0, so that, since Sαβ(ε,k) is antisymmetric, and εα(ε,k) 6=
0, ∀α, ε,k, then

W (1)(G) =
i

2π

∫
dk εij

∑
α

θ
(
− εα(0,k)

)
〈∂iα(0,k)| ∂jα(0,k)〉+

− 1

16π2

∫
dε dk εµνρ

∑
αβ

∂µKαβ(ε,k) 〈∂να(ε,k)|β(ε,k)〉 〈β(ε,k)| ∂ρα(ε,k)〉 ,
(4.17)

where i, j = 1, 2. The second term, which I denote as I, is only contributed by =mKαβ(ε,k),

which is odd in ε, vanishes at ε → ±∞ and, by definition, is continuous at ε = 0. That allows

partial integration, which, through Eq. (4.15), leads to

I = − 1

8π2

∫
dε dk εµνρ

∑
αβ

Kαβ(ε,k) 〈∂µα(ε,k)| ∂νβ(ε,k)〉 〈β(ε,k)| ∂ρα(ε,k)〉

= − 1

8π2

∫
dε dk εµνρ

∑
αβγ

Kαβ(ε,k)

εα(ε,k)− εγ(ε,k)

1

εβ(ε,k)− εγ(ε,k)
×

× 1

εα(ε,k)− εβ(ε,k)

{
Fµαγ(ε,k)F νγβ(ε,k)F ρβα(ε,k)

}
.

(4.18)

Since I is real, I can take the complex conjugate, send ε→ −ε and then either exchange β and γ

as well as µ and ρ, thus getting

I = − 1

8π2

∫
dε dk εµνρ

∑
αβγ

−Kαγ(ε,k)

εα(ε,k)− εγ(ε,k)

1

εβ(ε,k)− εγ(ε,k)
×

× 1

εα(ε,k)− εβ(ε,k)

{
Fµαγ(ε,k)F νγβ(ε,k)F ρβα(ε,k)

}
,

(4.19)

or, instead, exchange α and γ as well as ν and ρ, in that way obtaining

I = − 1

8π2

∫
dε dk εµνρ

∑
αβγ

−Kγβ(ε,k)

εα(ε,k)− εγ(ε,k)

1

εβ(ε,k)− εγ(ε,k)
×

× 1

εα(ε,k)− εβ(ε,k)

{
Fµαγ(ε,k)F νγβ(ε,k)F ρβα(ε,k)

}
.

(4.20)
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Therefore, recalling that Kαβ(ε,k) = −Kβα(ε,k) is antisymmetric, I can rewrite I as one third of

the sum of (4.18), (4.19) and (4.20), thus

I =
1

24π2

∫
dε dk εµνρ

∑
αβγ

Kαβ(ε,k) +Kβγ(ε,k) +Kγα(ε,k)(
εα(ε,k)− εβ(ε,k)

)(
εβ(ε,k)− εγ(ε,k)

)(
εγ(ε,k)− εα(ε,k)

)
×
{
Fµαγ(ε,k)F νγβ(ε,k)F ρβα(ε,k)

}
=

1

24π2

∫
dε dk εµνρ

∑
αβγ

′ 1

iε− εα(ε,k)

1

iε− εβ(ε,k)

1

iε− εγ(ε,k)
×{Fµαβ(ε,k) F νβγ(ε,k) F ργα(ε,k)

}
= −W (2)(G) ,

where the equivalence between the first and the second equations can be readily worked out.

In conclusion, I have proved that the winding number (4.8) can be written, not unexpectedly, as

W (G) = − 1

16π2

∫
dε dk εµνρ ∂µ

{∑
αβ

Sαβ(ε,k) 〈∂να(ε,k)|β(ε,k)〉 〈β(ε,k)| ∂ρα(ε,k)〉

}
,

namely, as the integral of a full derivative of a function that has a discontinuity at ε = 0, for which

reason the integral does not vanish and yields

W (G) =
i

2π

∫
dk εij

∑
α

θ
(
− εα(0,k)

)
〈∂iα(0,k)| ∂jα(0,k)〉 , (4.21)

i.e., the TKNN expression [2] for quasiparticles described by the non-interacting Hamiltonian

H∗(0,k). Since H∗(ε,k) includes by definition both poles and zeros of the retarded Green’s func-

tion, I argue that both of them contribute on equal footing to the topological invariant W (G).

I emphasise that only through the representation (4.10) of the Green’s function G(iε,k) it has

been possible to straightforwardly derive the simple expression of W (G) in Eq. (4.21). Since that

same representation is also the key to the proof that Landau’s quasiparticles exist at Luttinger as

well as Fermi surfaces [33, 34], I suspect this formalism is not just a mathematical trick but hints

at a deeper physical meaning. Indeed, it is well possible that the bands of H∗(0,k) lying inside

the single-particle gap of a Mott insulator describe fractionalised quasiparticles not carrying all

electron’s quantum numbers, for instance neutral but spinful, even when they do not cross the

chemical potential. Moreover, since those fractionalised quasiparticles cannot have any weight in

the physical single-particle excitations, it is reasonable to expect that they are associated to the

existence of ingap bands of zeros of the physical retarded Green’s function.

Finally, I remark that all above results has been obtained in two dimensions (2D). However, the

expression of topological invariants in 3D insulators [41–43,185–187] also involve winding numbers

that generalise (4.8) in higher dimensions [42], or describe other invariants like polarisation [43].

In particular, I note that my demonstration relies onto two main building blocks common to

any winding number, and thus can be easily generalized to any invariant. First, any winding

number that is written in terms of logarithmic derivatives G∂G−1 posses the property of Eq. (4.9),

which implies that the quasiparticle residue (4.11) always disappears from the expression, which is

therefore only determined by the quasiparticle Green’s function G∗(iε,k), see Eq. (4.10). Moreover,
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any winding number can be written as an integral over the Matsubara frequency of a total derivative

of a function

W ∼
∫
dε

d

dε
F (ε)

which goes to zero for ε → ±∞ and is smooth everywhere but at ε = 0, where it has a step

discontinuity which makes the integral nonzero. Being the quasiparticle Green’s function G∗(iε,k)

only dependent upon the quasiparticle Hamiltonian H∗(ε,k), which is however smooth and even

around ε = 0. This implies that, eventually, only the quasiparticle Hamiltonian at zero frequency

contributes to the actual value of any winding number, both in the perturbative and in the non-

perturbative regime.

4.4 A toy example

I now analyse a toy model inspired by Ref. [38]. Specifically, I consider an interacting BHZ

model [9], whose inverse Green’s function for a fixed spin reads

Ĝ(iε,k)−1 = iε− ε(k) τ̂3 − λ sin k1 τ̂1 + λ sin k2 τ̂2 − Σ̂(iε,k)

= iε− Ĥ(k)− Σ̂(iε,k) ,
(4.22)

where ε(k) = M − cos k1 − cos k2, a hat is introduced to distinguish matrices from scalars, and

τ̂a, a = 1, 2, 3, are the Pauli matrices in the two-orbital subspace. Without interaction, the model

describes a topological insulator if ε(Γ) ε(M) < 0, with M = (π, π), which occurs if 0 < |M | < 2.

I assume that [38]

Σ̂(iε,k) =
∆2

iε+ Ĥ ′(k)
, (4.23)

with 0 < ∆ ∼ U and where Ĥ ′(k) has the same form as Ĥ(k) in (4.22) but with renormalised

parameters, thus ε(k) → ε′(k) = M ′ − t′
(

cos k1 + cos k2
)

and λ → λ′. It follows that Ĥ ′(k) is

topological if 0 < |M ′| < 2, which is taken for granted.

I also assume that the model is deep inside the Mott insulating regime, which implies that ∆ is

in magnitude much larger than all the other parameters in (4.22). In this case, the poles of the

retarded Green’s function, Ĝ(ε+ i0+,k), describes two lower and two upper Hubbard bands, with

dispersion, respectively, εLHB(k) ' −∆ + δε1(2)(k)� 0 and εUHB(k) ' +∆ + δε1(2)(k)� 0, where

δε1(2)(k) are the eigenvalues of Ĥ(k)− Ĥ ′(k). The occupied lower Hubbard bands have opposite

Chern numbers so that, from the point of view of the Green’s function poles, the system is a trivial

Mott insulator, as noted in [38].

However, besides those poles, the retarded Green’s function also has valence and conduction bands

of zeros with dispersion the eigenvalues of −Ĥ ′(k) in Eq. (4.23), which are therefore topological [38].

The obvious question is whether the non-trivial topology of the Green’s function zeros has

any physical significance. For that, I follow the analysis of the previous section. Upon defining

E′(k)2 = ε′(k)2 +λ′2
(

sin2 k1 +sin2 k2
)

one readily finds that the quasiparticle residue (4.11) reads

in this case

Ẑ(ε,k) =
ε2 + E′(k)2

ε2 + E′(k)2 + ∆2 = Z(ε,k) Î , (4.24)
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and is proportional to the identity matrix Î, and thus

Ĥ∗(ε,k) = Z(ε,k)

(
Ĥ(k) +

∆2

ε2 + E′(k)2
Ĥ ′(k)

)
,

which has exactly the same form as Ĥ with frequency dependent parameters ε∗(ε,k) and λ∗(ε,k)

that can be easily determined. At ε = 0 and for large ∆,

Ĥ∗(0,k) = Z(0,k)

(
Ĥ(k) +

∆2

E′(k)2
Ĥ ′(k)

)
' Ĥ ′(k) ,

explicitly showing that only the Green’s function zeros contribute to the topological invariant

(4.21) in this toy example, and with opposite sign respect to the topology of the valence band of

zeros that are described by −Ĥ ′. I emphasise that the exact correspondence between the ingap

quasiparticle bands, eigenvalues of the Hamiltonian Ĥ∗(0,k), and the inverted bands of zeros of

the retarded physical Green’s function holds only in the limit of infinite Mott-Hubbard gap.

4.5 Concluding remarks

The winding number W (G) of the physical electron Green’s function G(iε,k) ∈ GL(n,C) can be

written as the winding number W (G∗) of a quasiparticle Green’s function G∗(iε,k) = 1/
(
iε −

H∗(ε,k)
)
, see Eq. (4.10), whose poles on the real frequency axis are associated to both poles and

zero of G(ε,k). I have shown explicitly that W (G∗) reduces to the famous TKNN formula for free

electrons, here the quasiparticles, described by the Hamiltonian H∗(0,k).

This result implies that, against all expectations, the zeros of the real frequency Green’s function

do have a topological relevance, which is consistent with earlier studies [32–38], and nonetheless

striking. Indeed, one would näıvely argue that the position of the ingap zeros could be easily

changed from the positive to the negative side of the real frequency axis, or vice versa, by slightly

modifying the Hamiltonian parameters, e.g., moving the chemical potential inside the insulating

gap. However, if one accepts the viewpoint that ingap bands of zeros, or, more correctly, ingap

bands of the quasiparticle Hamiltonian H∗(0,k), may describe genuine excitations that do not carry

all electron’s quantum numbers, then their response to a shift in chemical potential is expected to

differ substantially from that of non-interacting bands.

An enlightening example is, in my opinion, offered by a Hubbard atom with Hamiltonian U(n −
1)2/2, the simplest realisation of a Mott insulator. Its Green’s function on the real frequency axis,

G(ε) =
1

2

(
1

ε+ U/2
+

1

ε− U/2

)
,

has poles at ε = ±U/2 and a zero at ε = 0. Through equations (4.10) and (4.11) one finds that,

for imaginary frequencies,

Z(ε) =
ε2

ε2 + U2/4
, G∗(iε) =

1

iε
.

It is tempting to associate the zero-frequency pole of the quasiparticle G∗(iε) and the vanishing
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quasiparticle residue Z(0) = 0 to the free spin-1/2 of the isolated atom. In contrast, a non-

interacting atom, U = 0, has

G(iε) = G∗(iε) =
1

iε
, Z(ε) = 1 ,

consistently with the fact that the zero frequency excitations are physical single-particle ones,

Z(0) = 1. I now imagine to couple the atom to a metallic reservoir with which it exchanges

electrons, as one would do in statistical mechanics to fix the chemical potential, and assume that

the atomic level is at energy εd with respect to the chemical potential of the reservoir. The

atom plus the reservoir thus describe a conventional Anderson impurity model. In the case of the

Hubbard atom with εd � U , one expects that the zero-frequency pole of the quasiparticle Green’s

function is immediately promoted to a Kondo resonance pinned at the bath chemical potential,

thus

G∗(iε) =
1

iε
→ 1

iε+ i TK sign(ε)
, Z(ε)→ TK

Γ
,

where Γ is the bare hybridisation width and TK the Kondo temperature. In other words, the

coupling to the bath allows revealing the hidden physical meaning of the zero, i.e., its being a free

spin prompt to Kondo screening. On the contrary, in the case of the non-interacting atom

G∗(iε) =
1

iε
→ 1

iε− εd + iΓ sign(ε)
,

which describes a resonant level centred at εd. It is remarkable that, while the non-interacting

atom simply inherits the chemical potential of the bath, the Hubbard atom does not; the Kondo

resonance is always pinned at the chemical potential even though the atomic level is offset by εd.

This very simple example not only supports the interpretation that ingap quasiparticle bands in

Mott insulators may describe fractionalised excitations, but also suggests that these bands respond

very differently from conventional ones to a change in chemical potential induced by the contact

with a charge reservoir, in contrast to a recent claim [188].

This analysis also extends the notion of topological transitions and adiabatic transformations

for strongly interacting electrons. Indeed, it was already known that some topological invariants are

contributed by zero-frequency roots of the Green function [32]. That, however, seems at odds with

the expected behaviour of topological invariants under adiabatic transformations, since neither a

closure of the charge gap nor any symmetry breaking occurs when Green’s function zeros cross the

chemical potential. In light of my results, this phenomenon acquires a straightforward physical

explanation: Green’s function zeros crossing the chemical potential form a Luttinger surface that

hosts gapless excitations [33,34] despite the finite charge gap, thus providing the non-adiabaticity

required to change topology.

Finally, my results raise several questions worth being addressed in the future. The corre-

spondence between topological bands and edge modes of Green’s function zeros [36–38] suggests

that, similarly to the conventional case of edge poles, the edge zeros are may be responsible of

the quantised Hall conductance (4.21) if KL = 0, although the surface is charge insulating. In

the model quantum spin-Hall insulator of Sec. 4.4, that puzzling prediction can be explained by

noticing that, according to Ref. [34], the edge quasiparticles at the Luttinger surface, actually a

point, can carry a spin current, thus a quantised spin-Hall conductance. However, that simple

explanation would not work for a hypothetical Chern Mott insulator with edge zeros crossing the
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chemical potential. Therefore, even though the results of Sec. 4.3 prove that bulk bands of Green’s

function zeros contributes to the topological invariant (4.8), the actual role of edge zeros remains

unclear.

A further question regards fractional Chern insulators. Indeed, if the winding number (4.8) does

correspond to the Hall conductance, which may not always be the case if KL 6= 0, one may wonder

how it may ever be fractional since the TKNN formula should yield an integer value. In view of the

similar issue that arises in the fractional quantum Hall effect [189], I believe that the ground state

degeneracy, also expected in a fractional Chern insulator [190], is the key ingredient. Specifically,

I suspect that H∗(0,k) calculated over each ground state has valence bands with ill-defined Chern

number, because, e.g., they touch the zone boundaries with finite slope. However, assuming, for

simplicity, that the ground state is threefold degenerate, the Hall conductance is better defined

as [189]

σH =
1

3

(
W (G1) +W (G2) +W (G3)

)
=

1

3
W
(
G1G2G3

)
,

where Gn is the Green’s function calculated over the ground state |n〉, n = 1, 2, 3. The sum of the

three winding numbers corresponds to the TKNN formula applied to the quasiparticles valence

bands of all three ground states. I speculate, see, e.g., Ref. [191], that all these bands as a whole

correspond to a well-behaved single band once unfolded into a threefold larger Brillouin zone,

whose Chern number is therefore an integer `, thus σH = `/3, a fractional value. Incidentally, it

is suggestive that the sum of the winding numbers is just the winding number of G = G1G2G3,

which is still a complex invertible matrix. The above is just a speculation that worth investigating.

I conclude by emphasising that the winding number (4.8) in two dimensions, although being a

topological invariant, not necessarily coincides with the quantised Hall conductance when pertur-

bation theory breaks, where is well possible that KL 6= 0. Similarly, it cannot be excluded that

the extensions of the Green’s function winding number in three dimensions [41–43, 192] might be

unrelated to the physical observables they are supposed to reproduce when there is no adiabatic

connection between the interacting system and the non-interacting one. That leaves open the

question about the actual physical meaning of those winding numbers [182,183].



CHAPTER 5

NEUTRAL QUASIPARTICLES IN TOPOLOGICAL KONDO

INSULATORS

5.1 Introduction

The Kondo effect serves as a compelling testament to the profound influence of strong correlations

in materials, revealing behaviors markedly distinct from their weakly correlated counterparts.

When a highly diluted (few parts per millions) concentration of magnetic impurities, typically

transition metal or rare earth atoms, is placed into a good metal (copper, silver or gold), the

näıve expectation based on band theory is that the partially filled d/f shells of the impurities,

which are responsible in isolation of their magnetic behaviour, get either filled up or emptied

depending on the position of the d/f levels with respect to the chemical potential of the metal.

In either cases, the impurities should lose their magnetic moments that, in turn, implies the same

Pauli paramagnetic behavior below the Fermi temperature TF of the host metal as in absence

of impurities. In reality, in most of the cases the physics deviates substantially from the above

scenario: the impurities retain well below TF their magnetic moments, signalled by a Curie-Weiss

behavior of the magnetic susceptibility, which get screened only at much lower temperatures. The

crossover from the local moment regime to the paramagnetic one occurs around the so-called Kondo

temperature TK � TF , and is characterised by a logarithmic in temperature dependence of several

physical observables, like, e.g., the resistivity. In the low-temperature screened regime analytic

dependence upon T is recovered. Moreover, the d/f electrons get promoted into the conduction

band giving rise to resonances in the single-particle spectrum, known as Kondo or Abrikosov-Suhl

resonances, of narrow width ∼ TK and which are pinned at the chemical potential irrespective of

the specific magnetic impurities and host metals, thus contrasting the band theory expectation.

This complex behavior is commonly denoted as Kondo effect and ultimately arises because the

impurities oppose against any increase or decrease in the number of electrons that occupy the

d/f shell. Such stiffness to valence fluctuations can be incorporated in a model Hamiltonian by

adding a Coulomb charging energy within the d/f shell of each impurity plus, eventually, exchange

terms that implement the Hund rules. This leads to the celebrated Anderson impurity model [193],
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which, for a single-band metal and a single impurity that in isolation has just a half-filled orbital,

reads

HAIM =
∑
kσ

{
εk c
†
kσ ckσ +

(
Vk c

†
kσ fσ +H.c.

)}
+ εf nf +

U

2

(
nf − 1

)2
, (5.1)

where Vk describes the hybridization between the conduction band and the impurity f -orbital,

εf is the position of the latter with respect to the host-metal chemical potential, and, finally, U

parametrizes the charging energy, i.e., the cost of an empty or fully occupied f -orbital.

The physics of the Kondo effect has a bulk counterpart in compounds where one constituent

has partially filled f -shells and in which localised f -orbitals coexist with highly dispersive bands,

commonly known as heavy-fermion materials. Also in heavy-fermions the local moments residing

in the f -shell is eventually screened at low temperature by the conduction bands, and, analogously

to the Kondo resonance, the f -electrons acquire coherence throughout the lattice and give rise to a

very narrow band crossing the chemical potential. Not unexpectedly, the physics of heavy-fermions

is well reproduced by the periodic extension of the Anderson impurity model (PAM) [194]:

HPAM = −t
∑
<ij>σ

c†iσcj,σ +
∑
i

[
εf nfi +

U

2
(nfi − 1)2

]
+ V

∑
iσ

(
c†iσ fiσ + h.c.

)
, (5.2)

which, in the above simple example, describes a tight-binding model of conduction electrons hy-

bridised on each site i to an f -orbital at energy εf and charging energy U . The heavy-fermion

physics arises in model (5.2) when U is large and the number of electrons per site n = nc+nf 6= 2.

When n = 2, the Hamiltonian (5.2) may instead describe a bona fide insulator known as Kondo

insulator at large U . In this case, while at high temperature the f -electrons are effectively decou-

pled from the conduction ones, the former behaving as local moments and the latter responsible

of a metallic behavior, the onset of coherence at low-temperature brings about the opening of a

hybridisation gap between valence and conduction bands turning the model insulating.

A particularly intriguing subset of Kondo insulators, exemplified by SmB6 and YbB12 as leading

candidates, are the topological Kondo insulators (TKI). These materials exhibit f - and d-orbitals

with opposite parity and an odd-parity spin-orbit hybridization between them, thus possessing the

characteristics to realize Z2 topological insulators [52,194].

Remarkably, these materials display a low-temperature resistivity plateau independent of the sam-

ple size due to the presence of conducting surface states, see [44–48] for SmB6 and [49–51] for

YbB12. These surface states have been interpreted as genuine chiral edge modes arising by the

non-trivial bulk topology, although a conclusive experimental confirmation of their topological

origin is still lacking.

Strikingly, these compounds also exhibit Fermi liquid properties compatible with a ‘neutral’

Fermi surface. SmB6 shows a linear in temperature specific heat [53–55] and thermal conductiv-

ity [58], though the latter is still debated [56,197], whereas YbB12 displays unambiguous linearity

in both thermal properties [196].

Moreover, SmB6 exhibits quantum oscillations in magnetization (the de Haas-van Alphen (dHvA)

effect) [57–59, 195] and in the specific heat [60], but not in the resistivity (i.e., the Shubnikov-de

Haas (SdH) effect). On the other hand, YbB12 shows both dHvA [63, 64] and SdH [61, 62, 64]

effects. These experimental findings, summarized in Fig. 5.1, represent a well-defined riddle: how
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a)                                                   b)

c)                                                   d)

Figure 5.1: Summary of key experimental evidences for TKI. Panel a: Low temperature

resistivity plateau for SmB6. In particular, the two dataset corresponds to different thickness but

converge the same value of the plateau, indicating a surface origin. Panel b: Hall conductance of

SmB6 at finite magnetic field for different sample thickness. Again, at low temperature it stabilizes

to a value independent by the sample thickness. Panel c: quantum oscillation in the magnetization

for SmB6. Panel d: Low temperature specific heat divided by temperature for YbB12. In the inset,

the finite quasiparticle contribution is isolated. Figures adapted from Refs. [46, 195,196].
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is it possible to have an insulator with all the textbook Fermi liquid properties of a weakly inter-

acting metal, conduction states aside?

This behaviour contradicts the picture of conventional Kondo insulators. Several theoretical expla-

nations have been proposed, including magneto-excitons [68], the possibility of quantum oscillations

in narrow gap insulators [69–71], the enhancement of quantum oscillations in Kondo insulators [72],

the interplay between surface states and the Kondo breakdown [73]. However, these theories predict

strong deviations from the Lifshitz-Kosevich expression for quantum oscillations, which contradicts

experimental observations.

A critical element, in my view, absent from the current understanding is the nature of the

itinerant d-electrons. Indeed, in both SmB6 and YbB12, the d- and the f -orbitals originate from

the same rare earth atom, implying that even though the 4f -orbital is undoubtedly more correlated

than the 5d one, the interaction between them may be non-negligible.

Expanding upon this insight, I put forward an alternative hypothesis, one that revolves around

the presence of a Luttinger surface within the insulating gap. Recent findings [74,75] indicate that,

despite the vanishing quasiparticle residue, a Luttinger surface, i.e., the location in the Brillouin

zone of the zeros of the single-particle Green’s function at zero frequency, can host ‘quasiparticles’

that exhibit thermal and magnetic behaviour akin to a Fermi liquid but remain hidden in the

physical single-particle density of states, typically measured in ARPES experiments. Despite

the charge fractionalization due to correlations, these quasiparticles still exhibit a coupling to

a magnetic field, potentially leading to observable quantum oscillations [76].

To substantiate this hypothesis, I will present cluster dynamical mean field theory calculations

employing the TRIQS package [198] and obtained through the continuous-time quantum Monte

Carlo hybridization expansion impurity solver (CTHYB) [199]. To critically address the role of d-

correlations, I will explore both the scenario where only the f -orbitals are interacting, and another

that incorporates a more realistic interaction that encompasses the d-orbitals as well.

Notably, my results will show that only the latter scenario aligns with the presence of a Luttinger

surface within the insulating gap, which could offer a plausible explanation for the ambivalent

behaviour of these materials.

5.2 Non-interacting tight binding model for TKI

The low-energy properties of TKI are predominantly governed by the d- and f -bands of the rare

earth atoms. Moreover, due to crystal field splitting (CFS) effects, only a fraction of the degenerate

d- and f - orbitals resides near the Fermi energy [200]. Therefore in this study, I will consider a

minimal model with just one d- and one f -band [52, 201]. Specifically, I assign J = 5/2 and

Jz = ±5/2 for the f -orbitals, while J = 3/2 and Jz = ±3/2 for the d-orbitals. Finally, I restrict

my analysis to two dimensions.

Introducing the Pauli matrices τa and σa, a = 0, 1, 2, 3, which act on the orbital and pseudo-spin

spaces respectively, and defining a four-component spinor as

Ψ†k =
(
f†k↑ , f

†
k↓ , d

†
k↑ , d

†
k↓

)
, (5.3)

where σ =↑, ↓ refers to Jz = ±5/2 and Jz = ±3/2 for f - and d-electrons, respectively, the tight-
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binding single-particle Hamiltonian is given by

H0 =
∑
k

Ψ†k Ĥ0(k) Ψk ,

Ĥ0(k) = εf (k)
τ0 + τ3

2
+ εd(k)

τ0 − τ3
2

+ V τ1 k∗ · σ ,
(5.4)

with k∗ = 2
(

sin(kx), sin(ky)
)
. The dispersions of d- and f - orbitals are described by

εd(k) = −2 td
(

cos(kx) + cos(ky)
)
,

εf (k) = Df + 2 tf
(

cos(kx) + cos(ky)
)
,

(5.5)

where Df is the crystal field splitting and td, tf are the hopping amplitudes. Symmetry consid-

erations, particularly the opposite parity under inversion, prevent on-site hybridization between

d- and f -orbitals but allow hybridization between nearest neighbours [52], represented by the off-

diagonal odd-in-momentum term of strength V . In particular, this hybridization is responsible for

the gap opening in the topological regime.

In addition to the P422 space group symmetry, the model possesses inversion and time-reversal

symmetry, represented by

P = τ3 , T = i σ2K . (5.6)

Notably, parity plays a pivotal role in defining the Z2 topological invariant, exactly as in the case

of the BHZ model extensively discussed in Chapter 2. At the four high symmetry points, in fact,

the hybridization vanishes and the bands have well-defined parity, so that the topology is dictated

by the numbers of band inversions in the Brillouin zone, see Fig. 5.2.

Throughout the discussion of this model, I will fix the parameters of the non-interacting Hamilto-

nian as in Refs. [202,203]

Df = −6 , tf = −0.2 , td = 1 , V = 0.4 . (5.7)

5.3 Discussion of the topological periodic Anderson model

5.3.1 The interaction Hamiltonian and the DCA equations

To include correlation effects, I first consider the case where only the f -orbitals are interacting

through the simple Hubbard term

Hint = U
∑
R

nfR↑ nfR↓ , (5.8)

where the density operator for spin σ and site R is simply defined as nfRσ = f†Rσ fRσ. In this

case the model reduces to a topological periodic Anderson model (TPAM), where now the lattice

of weakly dispersing f -impurities is coupled via a odd parity hybridization to a bath of conducting

and non-interacting d-electrons.

This model has already been analysed by means of single site dynamical mean field theory

(DMFT) by Werner and Assad [202,203], who found that the leading effect of local correlations is

an upward renormalization of the crystal field splitting and an increase of the effective f -electron
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Figure 5.2: Non-interacting bands of the model for representative values of the crystal

field splitting. For Df < 4.8 (Panel a), the f -band is completely occupied and the d-one com-

pletely empty, thus the system is a trivial insulator. For −4.8 < Df < 0 (Panel b), an avoided

crossing emerges, when now the valence band has f -character at X, Y and Γ points while a

d-character at the M point. This band inversion implies that the ground state is a topological

insulator with an odd Z2 invariant. Upon increasing the CFS even more 0 < Df < 4.8 (Panel

c), the system transition to another topological insulator closing the gap at the X and Y points,

where now the orbital character at the high symmetry points is reversed. Finally, for Df > 4.8

(Panel d), the system is again a trivial insulator with the d-band completely occupied and the

f -one completely empty. In general, the transition between a trivial and a topological insulator at

Df = ±4.8 is characterized by a gap closing at Γ while the transition between the two topological

insulators at Df = 0 closes the gap at the X and Y points. I note that all the parameters but the

CFS are fixed as in Eq.(5.7).
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mass. Approaching U = 8.9, the f -band becomes heavier and heavier, with the effective mass

rapidly growing. The authors, however, do not explore stronger interactions, mentioning only that

the model may develop an orbital selective Mott transition (OSMT). Being interested just in this

strongly correlated regime, I will investigate the nature of the paramagnetic ground state by means

of DMFT and dynamical cluster approximation (DCA) calculations.

The DCA is performed on a 2x2 site cluster that gives access only to the self-energy at the four

momenta Γ, X, Y and M.

Since only the f -electrons are interacting, the DCA equations reduce to those of a simple periodic

Anderson model, where a non-self consistent hybridization due to the presence of the d-electrons

is added to the auxiliary cluster impurities problem.

Assuming a paramagnetic solution, the cluster quantities are entirely determined by the f -self-

energy Σf (iε,K), where K are the four cluster momenta. Each momentum has its own patch

within the BZ, which I shall denote as P (K), see Fig. 5.3a, in which the lattice self-energy is

constant. Thus, for k ∈ P (K), the f -Green’s function can be written as

Gf (iε,k) =

(
iε+ µ− εf (k)− Σf (iε,K)− 4V 2 sin2(kx) + sin2(ky)

iε+ µ− εd(k)

)−1
, (5.9)

which yields the local Green’s function

Gloc(iε,K) =
1

NK

∑
k∈P (K)

Gf (iε,k) , (5.10)

where NK is the number of k point in each patch P (K). Finally, the Weiss fields are obtained

trough the Dyson equation

G0(iε,K) =
(
G−1loc(iε,K) + Σf (iε,K)

)−1
. (5.11)

In the context of DCA the Luttinger-Ward functional and thus the self-energy are calculated

summing the Feynman diagrams on all the possible momenta K allowed by the cluster, see Fig. 5.3b.

In particular, being the Hubbard interaction on-site, the cluster interaction Hamiltonian is simply

Figure 5.3: Cluster dynamical approximation. Panel a: Brillouin zone patches for 2 and 4 site

cluster calculations. Panel b: a prototypical diagram contributing to the Luttinger-Ward functional

in the DCA approximation. In particular, all the sum over internal momenta are performed only

over the one allowed by the cluster. Figures adapted from Refs. [204,205] respectively.
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the Fourier transform over the K momenta of Eq.(5.8)

HDCA = U
∑

K1,K2,K3,K4

δK1+K3,K2+K4
f†K1↑ fK2↑ f

†
K3↓ fK4↓ . (5.12)

5.3.2 Numerical results and emerging physical scenario

In this section, I present numerical results obtained using both single-site DMFT and DCA over

a broad range of interaction strengths, specifically, for 2 ≤ U ≤ 16 and all other parameters fixed

at the values (5.7). The chemical potential is set at the midpoint of the gap in the case of an

insulating state or adjusted to achieve half filling in a metallic state.

I begin by discussing the regime where U < 9. Here, the primary consequence of interaction is

an upward renormalization of the crystal field splitting (CFS) due to the Hubbard repulsion. To

quantify it, I define the effective CFS as:

D̃f = Df + Re Σf (iω1) ,

where Σf refers both to DMFT and DCA quantities and ω1 = πT . I stress that in DCA the crystal

field splitting calculated at X and Y is the parameter that controls the topological transition.

Notably, approaching the critical value of U = 9 the effective CFS tends to zero, see Fig. 5.4a,

implying that the gap starts to close due to the vanishing hybridization at the X and Y points,

as in Figs. 5.5a-c. I note that, due to non-local correlations, this happens earlier in DCA, around

U = 8. Simultaneously, the quasiparticle residue of the f -electrons, which is the inverse of the

mass renormalization in single-site DMFT, defined as

Zf ≡
(

1− Im Σf (iω1)

ω1

)−1
,

rapidly decreases with U , its derivative reaching a maximum (in a semi-logarithmic scale) around

U = 8, as shown in Fig. 5.4b. Furthermore, the f -band center-of-mass tends to pin at the chemical

potential so to achieve half-filling. These observations strongly indicate that the f -electrons are

entering a heavy fermion regime, and that some kind of phase transition may be on the verge.

For larger values of U , Werner and Assad [202, 203] proposed that the system would undergo

an OSMT. However, a recent study [206] suggests that the OSMT is generally unstable in presence

of inter-orbital hybridization at finite temperatures.

My calculations appear to support the latter scenario: the f -orbitals do rapidly lose spectral

weight near the chemical potential, except for a small peak that survives at the X an Y points, see

Fig. 5.5. Notably, the height of this peak decreases monotonously with increasing interaction, as

seen in Figs. 5.4d, 5.5b-d, at least for interactions up to U = 16. It is important to note that the

peak appearance in both the DMFT and DCA calculations lends support to its genuine existence.

When considering DMFT alone, one might suspect an artefact, since the auxiliary f -impurity

naturally seeks to form a singlet state with the d-bath to remove the spin degeneracy. However,

the fact that this feature also appears in the DCA calculations, where the spin degeneracy can, in

principle, be removed within the cluster itself, further corroborates its existence.

I would like to emphasize that, in this strongly correlated regime, the effective CFS initially

increases up to a maximum value, and then starts to diminish, as illustrated in Fig.5.4a. In
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Figure 5.4: Numerical results in Matsubara frequency for DMFT at β=100 and 2x2 sites

DCA calculations at β=50. In particular, the results are averaged over five iterations, and the

(tiny) standard deviation is plotted. Since the X and Y points are equivalent, only results for the

former are presented. Panel a: Real part of the self-energy for the first Matsubara frequency. Panel

b: Quasiparticle mass of the f -band m∗f in logarithmic scale. Panel c: Quasiparticle crystal field

splitting D∗f . Panel d: Minus imaginary part of the local Green’s function at the first Matsubara

frequency in the quasiparticle-peak regime, which corresponds to the density of states at the

chemical potential. In particular, it is possible to see how the height of the quasiparticle peak is

renormalized downward increasing the interaction. I note that, due to symmetry reasons, the X

momenta is representative of the Y momenta as well.
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particular, it is exactly zero for DMFT and the DCA X and Y momenta at U = 12, where the

model recovers particle-hole symmetry since the bare crystal field splitting exactly counterbalance

the Hartree term of the f -orbital, Df = −U/2. In this case the two bands are forced to cross

at the X and Y momenta where the hybridization vanishes, and the system is a genuine metal

without a gap. For different values of the interaction, however, the effective CFS is nonzero.

Although the quasiparticle crystal field splitting, D∗f = D̃f Zf , is more appropriate to describe

the position of the heavy fermion f -band, see Fig. 5.4c, also this quantity is nonzero for U 6= 12,

though extremely small. This implies that in principle the almost flat f -band crosses the dispersive

d-one at momenta slightly different from the X and Y ones, where the quasiparticle hybridization

V ∗ = V Zf is tiny but nevertheless finite, implying an equally tiny gap that the calculations are

unable to resolve due to finite temperature effects. This eventuality seems confirmed by the single-

site DMFT calculations of the quasiparticle bands, see Fig. 5.8 of the Appendix, which predict

gaps much smaller than the temperature T = 0.01 of the calculations, apart from U = 12 where a

genuine gap closing appears.

I conclude the discussion of the numerical results by emphasizing that, for this model, the single-

site DMFT self-energy is nearly identical to the one calculated in DCA for the X and Y points.

This similarity is reasonable because at these points the gap closes, suggesting they are pivotal

in driving the low energy physics. On the other hand, the M and Γ points also exhibit a similar

behaviour, implying that local correlations primarily govern the physics, with non-local effects

playing a smaller quantitative role renormalizing the band dispersion rather than fundamentally

altering the qualitative picture.

The numerical results I have presented for the TPAM establish a clear physical scenario. For

interaction values U . 9, the system behaves as a correlated topological insulator, exhibiting a

non-trivial Z2 invariant and chiral edge states [203]. However, being this insulator adiabatically

connected to a non-interacting one, it is unable to explain the strange Fermi liquid behaviours

of TKI. As the interaction strength increases beyond this value, the system remains in the heavy

fermion regime without showing an OSMT: the f -band becomes flatter and flatter and remains

pinned at the chemical potential, losing progressively spectral weight near zero frequency in favour

of the Hubbard bands. In this regime, two different scenarios are plausible: either the system is

metallic due to the fact that the band crossing happens exactly at the X and Y points where the

hybridization vanishes, or it is insulating with a tiny gap due to the fact that the crossing occurs

slightly away from those points.

However, to definitely discern between these two scenarios, high accuracy calculations with a

temperature much smaller than the gap should be performed, which goes beyond the scope of this

work since both scenarios are nonetheless unable to explain the experimental evidence of a sizeable

gap insulator that displays Fermi liquid properties.

The general inconsistencies of these results with the experimental evidences has prompted me to

reexamine the Coulomb repulsion Hamiltonian for TKI, taking into consideration that both orbitals

actually belong to the same atom: a key feature of these materials that has been overlooked in the

existing literature.
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Figure 5.5: Real frequency f-density of states obtained through Pade approximation.

Panel a,b): DMFT results. For U < 9, the system is insulating with a sizable gap. For U > 9,

only a small Kondo peak survives at the chemical potential. Panel c): DCA results at the X point,

determinant for the low energy physics. In particular the gap closes at U = 8, earlier than in

DMFT, an for U = 9 the system again displays a small quasiparticle peak.
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5.4 A more realistic interaction Hamiltonian

Given the f -orbitals more localized nature, it appears clear way the role of correlations in the

d-orbitals has been overlooked in the existing literature. However, as just demonstrated, this

oversight may lead to inaccurate theoretical predictions that are inconsistent with experimental

evidence.

To address this issue, in the following section I will introduce a new realistic Hamiltonian

derived by projecting the local Coulomb repulsion onto the relevant 4f and 5d atomic orbitals,

now considering also d-correlation effects. Subsequently, I will discuss how the DCA equations

are modified and the different interpolation that can be used to obtain lattice quantities from the

cluster ones. Finally, I will discuss the numerical results of 2-sites DCA calculations and examine

the resulting physical scenario.

5.4.1 Local projected Coulomb interaction

As discussed above, in TKI crystal field splitting effects remove the large degeneracy within the d-

and f -multiplets. Thus, I will project the local Coulomb repulsion only on the 4f -atomic orbitals

J = 5/2, Jz = ±5/2 and J = 3/2, Jz = ±3/2 5d-ones of an isolated Samarium, the same I

considered in the tight-binding Hamiltonian but neglecting shape distortions due to crystal field

effects. The corresponding atomic wave-functions in spherical coordinates are

φf,5/2(Ω, r, σ) =

(
1√
7
Y 2
3 (Ω) δσ,↑ −

√
6

7
Y 3
3 (Ω) δσ,↓

)
R4f (r) ,

φf,−5/2(Ω, r, σ) =

(√
6

7
Y −33 (Ω) δσ,↑ −

1√
7
Y −23 (Ω) δσ,↓

)
R4f (r) ,

φd,3/2(Ω, r, σ) =

(
1√
5
Y 1
2 (Ω) δσ,↑ −

2√
5
Y 2
2 (Ω) δσ,↓

)
R5d(r) ,

φd,−3/2(Ω, r, σ) =

(
2√
5
Y −22 (Ω) δσ,↑ −

1√
5
Y −12 (Ω) δσ,↓

)
R5d(r) ,

(5.13)

where σ refers to the actual spin of the electrons. Since the two orbitals belong to different shells,

to calculate the radial part of the wave-function two different effective charges [207] have to be

considered

Z4f
eff ' 23 , Z5d

eff ' 16 . (5.14)

Given the Coulomb interaction expressed generically in terms of the Fermi field

Û =
1

2

∑
σ,σ′

∫
dx1 dx2 Ψ†σ(x1)Ψ†σ′(x2)

1

x1 − x2
Ψσ′(x2)Ψσ(x1) , (5.15)

I note that the Coulomb kernel has the following expansion in spherical harmonics

1

x1 − x2
=

∞∑
l=0

4π

2l + 1

min(r1, r2)l

max(r1, r2)l+1

l∑
m=−l

Y ml (Ω1)Y ml (Ω2)∗ . (5.16)

so that, projecting the Fermi field upon the local orbitals, i.e.

Ψ†σ(x1) = Ψ†σ(Ω1, r1) =
∑
i=f,d

∑
Jz=±

φ∗i,Jz (Ω1, r1, σ) i†Jz (5.17)
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the only non-vanishing Slater integrals originate from the monopole and dipole contributions. The

local Hubbard Hamiltonian can thus be written as the sum of a density-density and a dipole-dipole

repulsion
Hint = HU +HJ ,

HU =
∑
R

[
Uf nfR↑ nfR↓ + Ud ndR↑ ndR↓ + V nfR ndR

]
,

HJ =
J

4

∑
R

[(
Ψ†RDxΨR

)2
+
(

Ψ†RDyΨR

)2 ]
,

(5.18)

where now ↑, ↓ denotes the pseudo-spin along the z-direction, with the dipole operators defined as

Dx = Sz τx , Dy = S0 τy, . (5.19)

I note that, being projected only over a subspace of the J = 5/2 and J = 3/2 manifold, the Hamil-

tonian beaks the spin SU(2) symmetry but not the U(1) rotations along the z-axis. In particular,

the dipole term enforces Hund’s rules, but now favouring high Sz configurations. Moreover, I stress

that having used the same orbitals in both the non-interacting Hamiltonian and the projected local

Coulomb interaction, they share the same symmetries.

The actual estimate of the coupling constants in units of Uf is

Ud = 0.33Uf , V = 0.46Uf , J = 0.10Uf , (5.20)

which confirms that, even if Uf is greater in magnitude, as expected, the strength of the other

coupling constants is not far smaller, making their role non-negligible.

5.4.2 DCA equations and cumulant periodization

Being also the d-orbital interacting, the DCA equations introduced to describe the TPAM need

to be slightly modified. In this case, in fact, one has in principle to take into account the full

4×4 matrix structure of the problem, considering orbital off diagonal elements both in the Green’s

function and in the self-energy.

However, I note that for DCA calculations up to four sites, the cluster momenta corresponds to the

high symmetry points of the Brillouin zone, see Fig. 5.3a, where the inter-orbital hybridization has

to vanish by inversion symmetry. For the same reason, both the self-energy and the local Green’s

functions calculated at these points are diagonal in orbital and spin indexes.

Since I had to consider a two sites cluster to perform feasible calculations, and being interested in

the paramagnetic phase, I shall assume a diagonal and spin independent self-energy, resulting in

the diagonal terms of the lattice Green’s functions, for k ∈ P (K)

Gf (iε,k) =

(
iε+ µ− εf (k)− Σf (iε,K)− 4V 2 sin2(kx) + sin2(ky)

iε+ µ− εd(k)− Σd(iε,K)

)−1
,

Gd(iε,k) =

(
iε+ µ− εd(k)− Σd(iε,K)− 4V 2 sin2(kx) + sin2(ky)

iε+ µ− εf (k)− Σf (iε,K)

)−1
.

(5.21)

From these, the local Green’s function and the Weiss field (diagonal itself) can be easily derived.

As before, the chemical potential is set at the midpoint of the gap, although otherwise indicated.
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DCA is a cluster extension of DMFT introduced directly in reciprocal space and thus is inherently

periodical, with the lattice self-energy that is assumed to be a step function in the Brilluoin zone,

constant in each patch . However, in order to estimate the shape and position of the Luttinger

surface, if any, one has to reconstruct the lattice self-energy: some post-processing interpolation

needs to be performed. Therefore I shall briefly discuss the periodic and cumulant interpolations

in the case of a two site cluster, where the allowed cluster momenta are Γ and M.

In the weakly correlated regime, the self-energy is almost constant in the Brillouin zone, so that

the straightforward periodic interpolation is an accurate approximation of the lattice self-energy.

Dropping the orbital indexes for simplicity, this corresponds to find a smooth periodic interpolation

between the various cluster momenta

Σper(iε,k) = αk Σ(iε,Γ) + βk Σ(iε,M) ,

αk =
1

2

(
1 +

1

2

(
cos(kx) + cos(ky)

))
, βk =

1

2

(
1− 1

2

(
cos(kx) + cos(ky)

))
.

(5.22)

I note that, containing the cluster only two sites, the self-energy effectively renormalises the on-site

energy and the nearest neighbour hopping.

In the case of a Mott insulator, where strong correlations may yield singular behavior, the expansion

near the atomic limit leads to a self-energy displaying poles [38]

Σ(iε,k) =
∆2

iε+ µ+ ε′(k)
+ UH , (5.23)

where ∆2 ∝ U2, UH is the Hartree potential and ε′(k) is a renormalized dispersion that depends

on non-local correlations. It appears clear that is not possible to obtain this behaviour from just

a periodic interpolation.

The cumulant interpolation, physically justified by the observation that in this case the inverse of

the self-energy is more local than the self-energy itself [208], accounts instead for the interpolation of

ε′(k) between the different cluster momenta. First, a smooth interpolation of the cluster cumulant

is performed

Mk =
αk

Σ(iε,Γ)− UH
+

βk
Σ(iε,M)− UH

, (5.24)

and then the self-energy is obtained through

Σcumu(iε,k) = 1/Mk + UH . (5.25)

I note that, in the weakly correlated regime, where the self-energy is dominated by local contribu-

tions with the non-local one being just a small correction,

Σ(iε,k) ' Σ0(iε) + δΣ(iε,k) with δΣ(iε,k)� 1 ,

the cumulant interpolation reduces to the periodic one. In this sense, one has a little more control

on the faithfulness of this interpolation, since it usually predicts poles in the self-energy only in

the case when their presence is genuine.

Having introduced the interpolation scheme, I now discuss how the Mott gap opening emerges

in the cluster quantities. Assuming a self-energy of the form in Eq.(5.23), it appears clear that

the possibility of having a pole exactly at one of the cluster momenta, and thus finding a pole
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directly in the cluster self-energy, is accidental and entirely depends on the exact details of the

DCA calculation. Consequently, it is well possible that the cluster self-energy is perfectly regular

in Matsubara frequencies and yet the system is gapped by the Mott phenomenon. To elucidate

how the gap opening may work in DCA, I define the renormalized dispersion

rk = ε(k) + Re Σ(iω1,k)− µ ,

whose roots entails the existence of a Fermi surface, and thus metallicity.

In the case of a Mott insulator, one can envisage two different scenarios:

� rk is positive or negative throughout the whole Brillouin zone, but the orbital is anyway

half-filled due to breakdown of Luttinger’s theorem.

� rk changes sign in the Brillouin zone, but the difference between the self-energy at the

different patches is high, which suggests that rk changes sign through a singularity rather

than crossing zero.

Both scenarios seem to be realised, see Fig. 5.6a-d. In particular, when rk is discontinuous, see

Fig. 5.6c-d, the interpolation predicts a genuine singularity, Fig. 5.6e-f, which corresponds to the

emergence of a Luttinger surface.

I end this discussion mentioning that for two orbitals I just need to introduce two rk corresponding

to the eigenvalues of Ĥ0(k) + Re Σ̂(iω1,k)−µ, noticing that in the Mott case the orbital character

is maintained because of the diagonal nature of the self-energy.

5.4.3 Numerical results

In this section, I discuss the DCA results obtained on a 2-sites cluster. For U ≤ 11 the calculations

are performed at β = 50, while for higher interaction strengths at β = 100.

The numerical results suggest that, starting from weak interactions and gradually increasing U ,

two different phases emerge. For U ≤ 10, the system is a weakly correlated topological insulator

adiabatically connected to the non-interacting one. The presence of this topological phase, similar

to the one realized in the TPAM, is due to an upward renormalization of the CFS

D̃f = Df + Re Σf (iω1)− Re Σd(iω1) ,

that falls in the topological interval −4.8 < D̃f < 0. Moreover, Σd(iω1) > 0 slows down the upward

shift of CFS, so that the topological phase resists until U ∼ 10, rather than U ∼ 8 as in the TPAM.

Approaching this value, the gap starts closing at the X and Y points and the two orbitals approach

half-filling: their centres of mass get closer to the chemical potential and empty/double occupancies

get suppressed. I also note that, in the vicinity the gap closure, pronounced non-local correlations

start to build up, as can be noted by the strong patch-dependence of the self-energy in Fig.5.6b.

For U & 10, however, the behavior is rather different from the TPAM one. Since interaction

involves both orbitals, it triggers their simultaneous Mott localization, and thus the opening of a

sizeable Mott gap.

This Mott phenomenon can be noted in Fig.5.6c-d, where the renormalized dispersion rk is plotted.

In particular, for U = 11 and U = 12, rk of the d-electrons changes sign between different patches

without crossing the chemical potential, indicating that a d-band of zeros is present inside the
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Figure 5.6: Bands of the renormalized Hamiltonian H0+Re Σ(ω = 0). In panels a) to d), the

self-energy is a step function between patches employed in the DCA self-consistency, while in panels

e)-f) the cumulant interpolation has been performed. In Panel a)-b), the system is a topological

insulator, where the gap opening is due an avoided crossing between the two bands, as can be noted

by the plot of the f and d renormalized bands without hybridization. I note that, for U = 10, the

sizeable discontinuity between different patches implies rising non-local correlations. Panel c)-d):

Mott insulating regime, where non-local correlations prohibits the renormalized dispersion of the

f - and d-bands from crossing the chemical potential in any point of the Brillouin zone. In this

case the dispersion of the f -electrons is always above the chemical potential although they are half

filled, a hallmark of the breakdown of Luttinger theorem, while the d-one changes sign without

crossing the chemical potential. I clarify that in these calculations the role of the hybridization is

negligible, hence I plotted only the orbitals dispersions to improve clarity. Panel e)-f): bands of

the renormalized Hamiltonian, now for a cumulant interpolated self-energy. In particular the d-

dispersion changes sign not crossing zero energy but rather from ±∞, sign of a Luttinger surface at

the divergences. I note that a direct periodization of the self-energy would lead to a Fermi surface

of the d-electrons, and an empty f -one at odd with the half filled insulating Green’s function

obtained from the cluster quantities.
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gap. This leads to divergences of rk when the cumulant interpolation is applied, see Fig.5.6e-f,

thus a d-Luttinger surface. On the other hand, the f -renormalized dispersion is placed above the

chemical potential in the whole Brillouin zone. Overall, Luttinger’s theorem breaks down.

To comprehensively analyse the nature of the possible Luttinger surfaces in this Mott regime,

I performed several DCA calculations changing the chemical potential inside the insulating gap

for β = 50, U = 12 and β = 100, U = 16. Then, through the cumulant interpolation of the

self-energy, I was able to predict the shape and orbital nature of the Luttinger surfaces.

In the first case, see Fig.5.7b, varying the chemical potential I encompassed only d-Luttinger

surfaces, due to the larger Mott gap of the f -electrons. In fact, since the model has no particle-

hole symmetry, the f -band of zeros is placed well above the chemical potential. Before reaching

this band of zeros, the d-Hubbard bands are first encountered, thus turning the model metallic,

see Figs.5.9 and 5.10 in the Appendix for further details. More insights can be gained by studying

the quasiparticle Hamiltonian defined in the previous chapter, i.e.,

H∗(0,k) =

√
ˆZ(k)

(
Ĥ0(k)− µ+ ReΣ̂(0,k)

) √
ˆZ(k) . (5.26)

This Hamiltonian has bands within the Mott gap, see Fig.5.7a, the d-one crossing the chemical

potential and thus forming a quasiparticle Fermi surface that is just the Luttinger surface. I

note that the crossings between d- and f -bands away from high-symmetry points is due to the

fact that the patch self-energy has no off-diagonal elements, since the patches are centred at the

parity-invariant points Γ and M . I expect that, should I be able to perform DCA with a number of

patches greater than four, the self-energy would acquire off-diagonal elements turning the crossings

into avoided ones. I emphasise that for U = 12, the values of the chemical potential that keep the

model insulating only allow for a d-like Luttinger surface.

On the contrary, for U = 16 the larger Mott gap permits also an f -Luttinger surface besides the

d-one upon varying the chemical potential inside the Mott gap. Both Luttinger surfaces coexist for

8.5 ≤ µ ≤ 9, and genuine divergences of the cluster self energy are found, see Figs.5.11 and 5.12 in

the Appendix. I already mentioned that, being the self-energy calculated at the high symmetry Γ

and M points of the Brillouin zone, off-diagonal terms are forced to vanish by inversion symmetry.

This entails that the bands of zeros, being in direct correspondence with the self-energy poles,

have defined orbital character and they cannot hybridize. As earlier discussed, more realistic self

energies should develop off-diagonal elements. That would result in avoided crossings between the

bands, opening a gap in the quasiparticle Hamiltonian bands in Fig.5.7a-c. In this case, and should

the chemical potential between the two bands, they would become topological.

From the above discussion, it emerges very clearly that the precise position of the chemical potential

µ inside the Mott gap plays a fundamental role if the in-gap quasiparticle bands correspond to

genuine neutral excitations. Unfortunately, it is difficult to locate µ when the model is a Mott

insulator. On one side, if one applies conventional thermodynamic arguments, one should fix µ at

high temperatures such that the density is half-filled, and try to extrapolate µ to lower, eventually,

zero temperature. However, this calculation goes beyond our accuracy being the Mott gap quite

large. Moreover, it is not at all guaranteed that thermodynamic arguments are applicable since

it is not obvious that the DCA Mott insulator is ergodic. One should better contact the Mott

insulator with a metallic bath and exploit the latter to fix the chemical potential, which is a very

involved calculation beyond current capabilities.
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Therefore, while I can definitely state that in-gap bands of Green’s function zeros exist, I cannot

conclude whether one of them or both cross the chemical potential, or, rather, that the latter is

between them giving rise to topological bands of zeros. All those different possibilities would have

specific physical consequences should the quasiparticle bands have physical content, as I discuss

next.

5.4.4 Discussion

The numerical results I just presented suggest that for relatively small values of the interaction

the system is a weakly correlated topological insulator that, as already discussed in the case of

the TPAM, cannot sustain thermal Fermi liquid properties or standard quantum oscillations. For

U ' 10.5, a simultaneous localization of both orbitals drives the system into a Mott insulating

state.

Here, I find d- and f -quasiparticle bands, obtained by means of Eq. (5.26) upon filtering out in-

coherent components, which lie inside the Mott gap, see Fig. 5.7. These two bands cross each

other away from the high symmetry points, at least up to U = 16, which suggests that a larger,

though numerically unaffordable, number of patches giving access to off-diagonal self-energy com-

ponents might turn the crosses into avoided ones, thus yielding topological quasiparticle valence

and conduction bands. If these bands do correspond to genuine neutral excitations, their position

with respect to the chemical potential must be fixed, just like a Kondo resonance is always pinned

at µ. However, the only way to physically add an in-gap chemical potential in an incompressible

Mott insulator and circumvent any issue of ergodicity is by contacting it to a metallic reservoir

with which the insulator can exchange particles and thus inherit the bath µ. Unfortunately, this

situation is very hard to simulate by DCA. For this reason, here I only examine the possibility

that might explain most, but not the whole, experimental evidence.

For that, the first and most important question to address is about the properties of the in-gap

quasiparticle bands should they indeed represent neutral excitations. Since they are chargeless,

they can only carry magnetic moment and parity, and thus contribute to the magnetic suscepti-

bility and electric polarisability. Since the model lacks spin SU(2), the magnetic susceptibility χz
to a field along z is contributed by intra-orbital excitations, while the susceptibility χ⊥ to a field

in the x-y plane, associated with ∆Jz = ±1, and the electric polarisability Π involve inter-orbital

excitations. As earlier mentioned, I expect that off-diagonal components of the self-energy, which

must exist though are unaccessible by our DCA calculation with two patches, open a hybridization

gap in the quasiparticle bands shown in Fig. 5.7. I argue that either the valence or the conduction

quasiparticle band is pinned at the chemical potential, thus forming a Luttinger surface. The latter

can explain [76] the observed quantum oscillations, Fermi liquid-like thermal properties and low en-

ergy magnetic excitations [209,210]. However, it cannot rationalise the surface electric conduction

and the spectroscopic evidence of metallic surface states, supposedly of topological origin, which

would require a calculation with a semi infinite slab geometry similar to that discussed above to

simulate the contact with a metallic reservoir, but now with an interface to the topologically trivial

vacuum.
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5.5 Summary

In this chapter, I developed a novel explanation for the puzzling thermal properties and quantum

oscillations of topological Kondo insulators, based on the presence of neutral ingap quasiparticles.

In particular, I linked the presence of these quasiparticles to the emergence of bands of Green’s

function zeros.

To arrive at this result, I first introduced a realistic tight-binding model for these materials,

involving itinerant d-orbitals and more localised f -ones. Following the relevant literature on the

subject, I discussed an interacting Hamiltonian which, due to its more localised nature, only con-

siders the f -charge density. Starting from the non-interacting case and increasing the interaction,

I showed by 4-site DCA calculations that the system initially exhibits a weakly correlated topo-

logical insulating phase and, as the correlations are increased, either an extremely narrow gap

heavy fermion insulator or a genuine metallic phase is stabilised. In either case, I have shown that

this model is unable to account for a sizable gap insulating state with metallic-like Fermi liquid

properties throughout the phase diagram.

Therefore, I critically re-analysed the interaction Hamiltonian considering that in topological

Kondo insulators both d- and f -orbitals belong to the same rare earth atom. Extending this idea,

I derived a more realistic multi-orbital Hubbard Hamiltonian by projecting the Coulomb repulsion

onto the relevant atomic wavefunctions. By performing 2-site DCA calculations, I showed that for

moderate interaction values the system again becomes a correlated topological insulator, equivalent

to that found in the earlier case, but now with d-correlations. However, as the gap closes, the system

undergoes a Mott localisation of both orbitals, realising an insulator with a substantial gap. In

this Mott phase, a Luttinger surface of either f - or d-character can be realised depending on the

Hamiltonian parameters, which could provide a plausible explanation for the Fermi liquid in-gap

behaviour of Kondo topological insulators.
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Figure 5.7: Quasiparticle Hamiltonian and Luttinger surfaces inside the Mott gap. Panel

a) shows the quasiparticle Hamiltonian for U = 12 computed with the cumulant interpolation at

µ = 7.1. In panel b), the possible d-Luttinger surfaces realized inside the gap are showed. I note

that, increasing the chemical potential, the d-Luttinger surface moves toward Γ, since the position

of the zeros at finite frequencies is described by −H∗(0,k). Panel c)-d), the same for U = 16. In

this case, due to a large Mott gap, f -Luttinger surfaces are encountered and are presented in panel

e). I note that in the case of a realistic calculation, I expect the bands to be gapped implying a

nontrivial topology of the quasiparticle Hamiltonian.
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Figure 5.8: Quasiparticle bands for the TPAM for different interaction strength, calcu-

lated within DMFT. In particular, both the f -, d-bands before hybridization and the valence

and conduction ones are plotted. I observe that, already at U = 9, the gap is half the temperature

T = 0.01 and rapidly decreases increasing the interaction. In particular, at U = 12 the gap is

exactly closed due to an accidental particle-hole symmetry of the model.
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Figure 5.9: Local Green’s functions in Matsubara frequencies for U = 12 and different

values of the chemical potential. In particular, the gap for the d-orbitals is closed at µ = 6.7

and µ = 7.7, while the f -orbitals remain insulating due to the larger Mott gap.
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Figure 5.10: Cluster self energies in Matsubara frequencies for U = 12 and different

values of the chemical potential. Inside the gap, the f - and d- self energy remain smooth,

although divergences are encountered at the gap edges, sign that at these points a doped d-pseudo-

gapped phase and an f -Mott insulating one could be present.
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Figure 5.11: Local Green’s functions in Matsubara frequencies for U = 16 and different

values of the chemical potential. In particular, the gap for the d-orbitals is closed at µ = 8.25

and µ = 11.0, while the f -orbitals remain insulating due to the larger Mott gap. I note that a sign

change of the real part of the Green’s function implies that a zero has been encountered changing

the chemical potential.
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Figure 5.12: Cluster self energies in Matsubara frequencies for U = 16 and different

values of the chemical potential. I note that in this case genuine poles of the self energy,

represented by a sign change in the real part and a divergence in the imaginary one, are encountered

of both d- and f -orbitals.



CHAPTER 6

CONCLUSIONS

Throughout this thesis I discussed a variety of theoretical and numerical results, all aiming to

expand the current understanding of the interplay between topology and correlations.

In the first part I analysed the excitonic properties of a paradigmatic model for quantum spin

Hall insulators. I found that moderate a Coulomb repulsion can stabilise both charge and spin

excitons, the latter of which can have a non-trivial Chern number implying the presence of chiral

surface spin excitons. By further increasing the interaction strength the bulk spin-exciton can

undergo a bosonic condensation, leading to the spontaneous breaking of time reversal, inversion

and spin-SU(2) symmetry. The condensate becomes topologically trivial but now exhibits an

exotic magneto-electric effect. Interestingly, due to the reduced coordination at the boundary, the

condensate may emerge also only at the surface, leading to a topologically non-trivial bulk that

however shows a breakdown of the chiral edge states topological protection.

In the second part I considered the effect of a rather special moiré phonon on the phase diagram

of twisted bilayer graphene. Integrating the vibrational degrees of freedom to obtain an effective

electron-electron attraction, I performed extensive Hartree-Fock calculations including the true

Coulomb repulsion. For any integer filling of the flat bands, the inclusion of these phonons stabilises

insulators characterised by a static Kekulé distortion of the lattice by breaking the Uν(1) valley

symmetry, in agreement with recent STM experimental results. In particular, for any integer filling

other than charge neutrality, the insulators also exhibit non-trivial Chern numbers. To include

dynamical effects, I then introduced a resonating valence bond wavefunction, which assumes that

the system fluctuates between Kekulé distortions of different symmetry. In this case, the model

predicts topological spin- and valley-liquid ground states for integer fillings, which naturally lead

to d+ id superconductivity upon doping, in accordance with experimental evidences.

In the third part I extensively discussed the role of the Green’s function zeros in topological Mott

insulators. In particular, I showed that the different winding numbers for the interacting Green’s

function can be reduced to the corresponding non-interacting topological invariants calculated

upon an effective single particle Hamiltonian, which deep in the Mott phase mimic exactly, apart

from a minus sign, the dispersion of the ingap bands of zeros. This result suggests that in the case

of a topological Mott insulator, the non-trivial topology of the ground state is entirely carried by
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the Green’s function zeros rather than by the Hubbard bands, suggesting that a bulk-boundary

correspondence may emerge also for the zeros. Finally, I discussed the possible failure of these

winding numbers to predict the actual topological response of the system, particularly in relation

to the breakdown of the Luttinger theorem.

Finally, in the last part, I gave a new perspective on the strange Fermi liquid behaviour of

topological Kondo insulators, motivated by the possible correspondence between Green’s function

zeros and the presence of ingap fractionalised quasiparticles. In particular I demonstrated, by

means of cluster DMFT calculations, that considering only the f -correlations as in the prior litera-

ture is unable to resolve the ambivalent insulating-metallic nature of topological Kondo insulators.

Introducing a realistic multi-orbital Hubbard Hamiltonian, which now takes into account also d-

correlations, I discovered that for strong enough interaction the model may develop a Luttinger

surface, which could serve as a plausible explanation of the Fermi liquid properties of topological

Kondo insulators.
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