
Journal of Scientific Computing (2023) 94:74
https://doi.org/10.1007/s10915-023-02128-2

Non-linear Manifold Reduced-Order Models with
Convolutional Autoencoders and Reduced Over-Collocation
Method

Francesco Romor1 · Giovanni Stabile2 · Gianluigi Rozza1

Received: 28 February 2022 / Revised: 24 October 2022 / Accepted: 20 January 2023 /
Published online: 14 February 2023
© The Author(s) 2023

Abstract
Non-affine parametric dependencies, nonlinearities and advection-dominated regimes of the
model of interest can result in a slow Kolmogorov n-width decay, which precludes the real-
ization of efficient reduced-order models based on linear subspace approximations. Among
the possible solutions, there are purely data-driven methods that leverage autoencoders and
their variants to learn a latent representation of the dynamical system, and then evolve it in
time with another architecture. Despite their success in many applications where standard
linear techniques fail, more has to be done to increase the interpretability of the results, espe-
cially outside the training range and not in regimes characterized by an abundance of data.
Not to mention that none of the knowledge on the physics of the model is exploited during
the predictive phase. In order to overcome these weaknesses, we implement the non-linear
manifold method introduced by Lee and Carlberg (J Comput Phys 404:108973, 2020) with
hyper-reduction achieved through reduced over-collocation and teacher–student training of
a reduced decoder. We test the methodology on a 2d non-linear conservation law and a 2d
shallow water models, and compare the results obtained with a purely data-driven method
for which the dynamics is evolved in time with a long-short term memory network.

Keywords Non-linear model order reduction · Manifold learning · Data-driven methods ·
Computational fluid dynamics

Mathematics Subject Classification 68T07 · 65M22 · 65D15

B Gianluigi Rozza
gianluigi.rozza@sissa.it

Francesco Romor
francesco.romor@sissa.it

Giovanni Stabile
giovanni.stabile@uniurb.it

1 Mathematics Area, mathLab, SISSA, via Bonomea 265, 34136 Trieste, Italy

2 Department of Pure and Applied Sciences, Informatics and Mathematics Section, University of Urbino
Carlo Bo, Piazza della Repubblica, 13, 61029 Urbino, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02128-2&domain=pdf
http://orcid.org/0000-0002-0810-8812

74 Page 2 of 39 Journal of Scientific Computing (2023) 94 :74

1 Introduction

In real world engineering scenarios, when performing outer loop applications such as
optimization, uncertainty quantification, sensitivity analysis, parametric partial differential
equations (PDEs) often need to be solved numerically numerous times. However, relying on
themathematical properties of some parametric PDEs, the computational cost formany query
problems can be drastically reduced taking into account previous results on a set of training
parameters: the procedure for the design of reduced-order models (MORs) is divided in an
offline (training) stage, during which a set of training solutions is collected, and an online
(testing or predictive) stage, which employs the compressed information from the previous
step to predict the solutions of the PDE of interest for unseen parameters. This reduction is
performed numerically defining a low-dimensional global basis devised in the offline stage,
and can be carried out independently of the class of numerical methods chosen: finite element
(FEM), spectral element (SEM), discontinuous Galerkin (DGM), and finite volumes method
(FVM). One of the most employed model-order reduction method (MOR) is the reduced
basis method [1, 2].

Depending on the parametric dependency andmathematical nature of some PDEs, various
issues may occur: the Kolmogorov n-width (KnW) is used to characterize the approxima-
bility of the solution manifold, that is the set of parameter-dependent solutions of the PDE,
by a linear trial subspace. A slow decaying KnW is a symptom of the difficulties in the
design of efficient ROMs: this results in the necessity of using a high number of reduced
basis or proper orthogonal decomposition (POD) method’s modes, corrupting the efficiency
of the ROMs till the point that the gain into the computational cost becomes irrelevant.
One class of PDEs where this behaviour is evident are time-dependent advection-dominated
PDEs. Moreover, non-linear PDEs require hyper-reduction procedures to make the reduced
equations independent of the number of degrees of freedom of the full-order model (FOM).

Recently, leveraging machine learning’s advances in manifold learning, a class of ROMs
that employ a non-linear trial manifold built with convolutional autoencoders (CAEs) [3]
was developed by Carlberg et al. [4]. One of the benefits of this approach is the possibility to
employ a small latent dimension of the ROMs, thus overcoming the slow decay of the KnW
for some parametric PDEs, at the expense of introducing additional nonlinearities from the
neural networks (NNs) and sometimesmore substantial training costs in the offline stage. The
properties of the non-linear manifold methods include the need of less stabilization mech-
anisms, the less intrusiveness on the FOM solvers—they are in fact equations-based rather
than fully-intrusive—and the possibility to apply them for a much broader class of parametric
PDEs, differently from ROMs devised specifically for advection-dominated problems.

A hyper-reduction scheme for non-linear manifold Least-Squares Petrov–Galerkin (NM-
LSPG) and non-linear manifold Galerkin (NM-G), is introduced in [5]: it relies on
Gauss–Newton tensor approximation (GNAT) [6] hyper-reduction method and shallow
masked autoencoders to select only the degrees of freedom that explain the dynamics and
therefore restrict efficiently the decoder and the discretized residuals. As we will see in our
test cases, the reconstruction error of the autoencoder employed empirically bounds from
below the errors of all the other non-linear manifold ROMs built upon. Therefore, we devise
a method that is independent on the choice of the architecture: a sparse shallow autoen-
coder is not necessary anymore, and any NN architecture, like CAEs, could be in principle
employed. This frees the way to imposing additional inductive biases that help to speed up
the offline stage and to achieve accurate approximations of the discrete solution manifolds,
a crucial requirement. Moreover, in some cases, reconstructing the residuals with GNAT is

123

Journal of Scientific Computing (2023) 94 :74 Page 3 of 39 74

not efficient, still because of a slow decaying KnW, so we choose to employ the reduced
over-collocation hyper-reduction method (ROC) [7]: in this case the equation’s numerical
residual is not reconstructed on a global basis, but collocated on some nodes of the mesh
called collocation points.

Once the CAE reaches a satisfactory approximation of the discrete solution manifold,
purely data-driven NN PDE can be trained to predict the latent dynamics: the gold standard
that is being established for this task are long-short term memory networks (LSTM). Their
online computational cost is low even w.r.t linear ROMs, but some new issues appear: their
accuracy depends on the regularity of the latent dynamics, especially when predicting the
solutions for parameters outside the training range, in the extrapolation regimes; they require
hyperparameters tuning, and all the connections to the PDEs model are completely lost,
resulting in a loss of interpretability of the results. The non-linear manifold hyper-reduced
ROMs we develop solve these issues, at the expense of a higher computational cost in
the online stage, since at each time step a physics-based residual is minimized. Moreover,
a posteriori error estimates are available [4, 5]. In our test cases, we compare these two
approaches to enlight their differences, weak and strong points.
The structure of this paper is as follows. In Sect. 2 we delve into the topic ofmanifold learning
which has many connections with reduced-order modelling, especially since the recent entry
of machine learning in the design of ROMs. We will proceed introducing the Kolmogorov
n-with (KnW), and we will show that some classes of parametric PDEs suffer from the
so called slow decaying Kolmogorov n-width. In Sect. 3, the non-linear manifold (NM)
reduced-order models based on the work of Carlberg et al. [4] are introduced. We will focus
on the non-linear manifold least-squares Petrov–Galerkin method (NM-LSPG). Afterwords,
we describe our new hyper-reduced ROMs: NM-LSPG with reduced over-collocation (NM-
LSPG-ROC) and NM-LSPGwith reduced over-collocation and teacher–student training of a
compressed decoder (NM-LSPG-ROC-TS). These two approaches, to the best of the authors’
knowledge, are introduced here for the first time. In Sect. 4, the new model order reduction
(MOR) methods are tested on a 2d parametric non-linear time-dependent conservation law
model and a 2d parametric non-linear time-dependent shallow water equations model. In
Sect. 5, a discussion on the results obtained follows, and in the conclusive Sect. 6 possible
future directions of research are explored.

2 Manifold Learning

The subject of manifold learning, classified as a topic of machine learning, had its unique
flavour in model order reduction even before nowadays breakout of scientific machine learn-
ing [8]. The workhorse of the model order reduction community is POD or SVD. A lot of real
applications though, required new methods to approximate the solution manifold in a non-
linear fashion. The symptom of this behaviour is a slow decayingKolmogorov n-width. Some
approaches rely on the locality of the validity region of a linear approximationwith POD, both
in the parameter space and in the spatial and temporal domains, others implement non-linear
dimensionality reduction methods from machine learning [9]: kernel principal component
analysis (KPCA), Isomap, clustering algorithms. Non-linear MORs include approximations
by rational functions, splines or other non-linear functions collected in a dictionary [10].

Interpolatory approaches of the solution manifold with respect to the parameters have
been developed, sometimes combined with non-linear dimension reduction techniques like
KPCA and its variants: interpolation with geodesics on the Grassmann manifold [11], inter-

123

74 Page 4 of 39 Journal of Scientific Computing (2023) 94 :74

polation on the latent space obtained with Isomap dimensionality reduction method [12, 13],
interpolation with optimal transport [14], dictionary-based ROM that make use of clustering
in the Grassmannian manifold and classification with neural networks (NN) [15], local ker-
nel principal component analysis [16]. At the same time, domain decomposition approaches
tackled locality in space [17, 18].

One particular class of dimension reduction techniques is represented by autoencoders,
and more generally by other architectures that rely on NNs. In the recent literature many
achievements are brought by CAEs, and by extension by Generative Adversarial Networks
(GANS), VariationalAutoencoders (VAEs), Bayesian convolutional autoencoders [3]: in [19]
convolutional autoencoders are utilized for dimensionality reduction and long-short Term
Memory (LSTM) NNs or causal convolutional neural networks are used for time-stepping;
in [20] the evolution of the dynamics and the parameter dependency is learned at the same
time of the latent space with a forward NN and a CNNs on randomized SVD compressed
snapshots, respectively; and in [21] spatial and temporal features are separately learned with
a multi-level convolutional autoencoder.

In order to extend these architectures to datasets not structured in orthogonal grids, geo-
metric deep learning [22] is called to the task. There are not many works on geometric
deep learning applied to model order reduction for mesh-based simulations that achieve the
same accuracy of CNNs, yet. Promising results are reached by an architecture that employs
graph neural networks (GNNs) and a physics-informed loss [23]. In the future, the poten-
tial of GNNs will probably be leveraged extending the range of applicability of nowadays
frameworks.

The setting we will base our studies on, does not depend directly on the numerical method
used to discretize the parametric PDEs at hand (FVM, FEM, SEM, DGM), so the mathemat-
ical formulation will generically be founded on models represented by a parametric system
of time-dependent (but also time-independent) PDEs, consisting of a non-linear parametric
differential operator G and of the boundary differential operators B,B0 that represent the
boundary and initial conditions respectively,

∀µ ∈ P

⎧
⎪⎨

⎪⎩

G(µ, U (µ, t, x)) = 0 (x, t) ∈ � × [0, T],
B(µ, U (µ, t, y)) = 0 (y, t) ∈ ∂� × [0, T],
B0(µ, U (µ, 0, x)) = 0 x ∈ �,

(1)

whereP is the parameter space,U are the state variables and� is the 2Dor 3D spatial domain.
This formulation includes also coupled systems of PDEs.We assume that the solutions belong
to a certain Banach or Hilbert space Y , varying (µ, t) ∈ P × [0, T]. The solution manifold
M is represented by the set

M = {U (µ, t) ∈ Y | µ ∈ P, t ∈ [0, T]}. (2)

2.1 Approximability by n-Dimensional Subspaces and Kolmogorov n-Width

We want to remark some results available in the literature, in order to state and comment, for
our needs, the problem of solution manifold approximability. In particular, our benchmarks
belong to a class of parametric PDEs for which the Kolmogorov n-width decays slowly.
Thus, classical Petrov–Galerkin projection with POD needs to be overcome with non-linear
methods in place of POD to achieve efficient ROMs.

123

Journal of Scientific Computing (2023) 94 :74 Page 5 of 39 74

Let (X , ‖·‖)X be a complex Banach space, and K ⊂ X a compact subspace, the Kol-
mogorov n-width (KnW) of K in X is defined as

dn(K)X = inf
dim(W)=n

max
v∈K

min
w∈W

‖v − w‖X . (3)

Let (Y , ‖·‖Y) be a complex Banach space and L : K ⊂⊂ X → Y . In our framework K is
the parameter space, possibly infinite dimensional and L is the solution map of the system
of parametric PDEs at hand, from the parameter space to the solution manifold. In order to
define L we have to suppose that for each parameter in K there is a unique solution in Y .

Following [24], it can be proved that for holomorphic L , thus not necessarily linear, the
Kolmogorov n-width decay is one polynomial order below the Kolmogorov n-width of the
parameter space K .

Theorem 1 [24, Theorem 1] Suppose u is a holomorphic mapping from an open set O ⊂ X
into Y and u is uniformly bounded on O,

∃B > 0, sup
x∈O

‖u(x)‖Y ≤ B. (4)

If K ⊂ O is a compact subset of X, then for any s > 1 and t < s − 1,

sup
n≥1

nsdn(K)X < ∞ ⇒ sup
n≥1

nt dn(u(K))K < ∞. (5)

In particular, if the hypothesis of the previous theorem are satisfied and if K is a finite
dimensional linear subspace, the Kolmogorov n-width decay is exponential. In general, ellip-
tic PDEs, affinely decomposable with respect to the parameters, satisfy the hypothesis of the
previous theorem [25, 26]. Not always nonlinearities cause a slow decaying KnW: using
Theorem 1, in [24] they prove that the parametric PDE on a bounded Lipschitz domain
� ⊂ R

3

u3 − ∇ · (exp a)∇u = f , (6)

K = {a ∈ L∞(�) : ‖a‖Cα ≤ M}, f ∈ H−1(�), (7)

with homogeneousDirichlet boundary conditions, whereCα is the space of Hölder functions,
satisfies the hypothesis of the previous theorem. Actually, for Hölder functions the KnW is
bounded above by n−α/3, which is not a fast convergence, but if instead a belongs to the
Sobolev space W s,∞(�) then the upper bound is ns/3 [27]. We will consider a good KnW
decay if it has a higher infinitesimal order than n−1.

The same is not valid in the case of the simplest linear advection problem.We briefly report
some results from the literature on classical hyperbolic PDEs, for (t, μ) ∈ K = [0, 1]2 with
the standard norm and Y = L2([0, 1]),

L : (t, μ) → u(t, x, μ) s.t. ∂t u − μ∂x u = 0 dn(M)L2 > n− 1
2 , (8)

L : (t, μ) → u(t, x, μ) s.t. ∂2t t u − μ∂2xx u = 0 dn(M)L2 > n− 1
2 , (9)

where, the results are respectively proven in [28] and [29].
This behaviour is not restricted only to advection-dominated problems. Intuitively also

solution manifolds that are characterized by a parametrized locality in space suffer from
slow decaying KnW, like elliptic problems with singular sources parametrically moving in
the domain [30].

Our newly developed ROMs, should solve the issue of slow decaying KnW in the applica-
tions, guaranteeing a low latent or reduced dimension of the approximate solution manifold.

123

74 Page 6 of 39 Journal of Scientific Computing (2023) 94 :74

This, because the linear trial manifold, frequently generated by the leading POD modes, is
substituted with a non-linear trial manifold, parametrized by the decoder of an autoencoder.
The test cases we present in Sect. 4, were chosen in order to be advection-dominated and
particularly not suited for linear ROMs, as shown in [5] for the 2d Burgers’ equation, that
has a close relationship with the NCL problem.

Remark 1 (Extensions of the Kolmogorov n-width to non-linear approximations)The autoen-
coders we implement in our test cases are at least continuous as composition of continuous
activations and linear functions. In the literature there exist possible non-linear extensions of
the KnW such as the manifold width [31],

δn(L(K), X) = inf
ψ∈C(X ,Rn)
φ∈C(Rn ,X)

sup
x∈L(K)

‖x − (φ ◦ ψ)(x)‖X , (10)

library widths [32], and entropy numbers, for more insights see [10].

2.2 Singular Values Decomposition and Discrete Spectral Decay

From the discrete point of view the same problematic in tackling the reduction of parametric
PDEs with slow KnW decay is encountered: in this case the discrete solution manifold is
actually the set of discrete solutions of the full-order model for a selected finite set of param-
eters. Singular Value Decomposition (SVD) or eigenvalue decomposition (for symmetric
positive definite matrices), usually employed on the snapshots matrix for the evaluation of
the reduced modes, are characterized by the fact that modes are linear combinations of the
snapshots. This is not enough to approximate snapshots that are orthogonal with respect to
the collection of the training set.

In practice, looking at the residual energy retained by the discarded modes, is an indicator
of approximability with linear subspaces. Let us assume that d is the total number of degrees
of freedom of the discrete problem, Ntrain is the number of training snapshots, and, r , the
reduced dimension such that, r ≤ Ntrain � d . Then, X ∈ R

d × R
Ntrain is the matrix that has

the training snapshots {Ui }Ntrain
i=1 as columns, V ∈ R

d × R
r are the reduced modes from the

SVD of X , and {σi }d
i=1 are the increasingly ordered singular values. It is valid the following

relationship of the residual energy (to the left) with the KnW (to the right),

√
√
√
√

d∑

i=r+1

σ 2
i = ‖(I − V V T)X‖F ≥ max

i=1,...,Ntrain
‖(I − V V T)Ui‖2 ≥ dn({Ui }Ntrain

i=1)Rd ,

where ‖·‖F is the Frobenious norm.
Even though some problems have a slow decaying KnW, this affects only the asymptotic

convergence of the ROMs w.r.t. the reduced dimension, while for some applications a satis-
fying accuracy of the projection error is reached with less than 100 modes, as shown in our
benchmarks. So what is actually lost in MOR for problems with a slow decaying KnW is
the fast convergence of the projection error w.r.t. the reduced dimension, not the possibility
to perform a MOR with enough modes. Moreover, the discrete solution manifold’s KnW
depends on the time step and spatial discretization size, so that, especially when a coarse
mesh is employed, the Knw decays faster w.r.t. the KnWof the continuous solution manifold.

123

Journal of Scientific Computing (2023) 94 :74 Page 7 of 39 74

2.3 Convolutional Autoencoders

We have chosen to overcome the slowly decaying KnWproblem employing autoencoders [3]
as non-linear dimension reduction method substituting POD. Some ROMs predict the latent
dynamics on a linear trial manifold with artificial neural networks [33], so are still classified
as linear ROMs and, in fact, they are still affected by the slow KnW decay. We remark
that while some non-linear approaches to model order reduction are specifically tailored for
advection-dominated problems [34, 35], autoencoders are a more general approach. On the
other hand, they are also particularly suited to advection-dominated problems with respect
to local and/or partitioned ROMs that implement domain decomposition, even when non-
linear dimension reduction techniques are employed locally [16]: this is because considering
a non-discrete parametric space, like the time interval of a simple linear advection problem,
an infinite number of local linear and/or non-linear ROMs would be needed to counter
the slow decaying KnW. As anticipated, we implement convolutional autoencoders [3] in
libtorch the C++ frontend of PyTorch [36]. We remark that the procedure we developed,
considering also teacher–student training of a reduced decoder in Sect. 3.4, can be generally
extended to any architecture that can approximate with a sufficiently good accuracy the
solution manifold through a low-dimensional latent representation. The choice of a CAE is
particularly beneficial when the solution snapshots are associated to a structured mesh and
when the components of the vectorial solution fields to be approximated have similar features
so that the convolutional filters can be shared among the channels of the CAE.

Let us define Xh ⊂ R
d as the state discretization space with d the number of degrees of

freedom and h the discretization step. The snapshots are divided in a training set Utrain =
{Ui }i=1,...,Ntrain ⊂ Xh and a test set Utest = {Ui }i=1,...,Ntest ⊂ Xh . If the problem has different
states and/or vectorial states the training and test set are split in channels for each state and/or
component. For example in the 2d non-linear conservation law, we consider two channels,
one for each velocity component. In the shallow water test case, we consider three channels,
one for each velocity component and one for the free surface height. So, in general, we
reshape the snapshots such that Utrain,Utest ⊂ (Rd/c)c where c is the number of channels.

As preprocessing step the snapshots are centered and normalized to assume values in the
interval [−1, 1]

2

Umax − Umin

(

Utrain − Umean − Umin + Umax

2

)

, (11)

where Umean,Umax, Umin ∈ (Rd/c)c are evaluated channel wise. The same values obtained
from the training snapshots Utrain, are employed to center and normalize the test set Utest.

We define the encoder ψ : (Rd/c)c → R
r and the decoder φ : Rr → (Rd/c)c, where r �

d is the reduced or latent dimension, as neural networks made by subsequent convolutional
layers and linear layers at the end and at the beginning, respectively. For the particular
architecture used in the applications we defer it to the “Appendix A”. In Fig. 1 is represented
the convolutional autoencoder applied for the 2d non-linear conservation law test case, with
an approximate size of the filters and the actual number of layers.1

Remark 2 (Regularity) Regarding the regularity of the CAE, related to the choice of activa-
tion functions, it is proved in Theorem 4.2 from [4] that NM-LSTM and non-linear manifold
Galerkin methods are asymptotically equivalent provided that the decoder is twice differen-
tiable. Since we are only employing the NM-LSTM method, our only concern in the choice

1 Figures1 and 3 were made with the open-source package from GitHub https://github.com/HarisIqbal88/
PlotNeuralNet.

123

https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet

74 Page 8 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 1 The convolutional autoencoder architecture employed for the 2d non-linear conservation law test case:
the same number of convolutional layers are shown, while the sizes of each layer are rescaled for a better
graphical representation of the architecture (Color figure online)

of activation functions is that the reconstruction error is sufficiently low, so that the accuracy
of the whole procedure is not undermined.

For each batch {Ui }b
i=1 ⊂ Utrain, the loss employed is the sum of the reconstruction error,

and a regularizing term for the weights:

L({Uti
i }b

i=1;) = 1

b

b∑

i=1

‖Uti
i − (φ ◦ ψ)(Uti

i)‖22
‖Uti

i ‖22
+ λ1‖	‖22, (12)

where 	 represents the weights of the convolutional autoencoder. The choice of the relative
mean squared reconstruction error is important when, varying the parameter {µi }Ntrain

i=1 , the

snapshots {Ui }Ntrain
i=1 have different orders of magnitude: for example this is the case of flows

propagating from a local source on the whole domain with a constant zero state as initial
condition.

The training is performed with Adam stochastic optimization method [37]. After the
training the whole evolution of the dynamics is carried out with a non-linear optimization
algorithm minimizing the residual on the latent domain, as described in Sect. 3. For each
new parametric instance and associated initial state U0 ∈ Xh , the latent initial condition is
found with a single forward of the encoder z0 = ψ(U0) after centering and normalizing U0.
Then, for each time instant t , the decoder

φ(z(t)) = U(t) ∈ (φ ◦ ψ)(Xh) ⊂ R
d , (13)

is used as parametrization of an approximate solutionmanifold as will be explained in Sect. 3,
including in φ the renormalization of the output.

Remark 3 (Initial condition) With respect to the initial implementation of Carlberg et al.
[4] our approach for the definition of the latent parametrization of the solution manifold is

123

Journal of Scientific Computing (2023) 94 :74 Page 9 of 39 74

different in the management of the initial condition. Instead of using directly the decoder
φ, they define the map from the latent to the state space f : R

r → R
d , including the

renormalization in the φ map for brevity, as

f (z) = φ(z) + U0(μ) − φ(ψ(0)), s.t. f (ψ(0)) = U0(μ), (14)

so that the reconstruction is exact at the initial parametric time instances. So, supposing that
the initial condition is parametrically dependent, all initial conditions coincide to ψ(0) in
the latent space, and the decoder has to learn variations from the initial latent condition. We
prefer instead to split the initial conditions in the latent space in order to aid the non-linear
optimization algorithm, and leave to the training of the CAE the accurate approximation of
the initial condition. This splitting of the initial conditions can be seen in Figs. 6 and 13.
The additional cost of our implementation is the forward of the initial parametric condition
through the encoder as first step.

Remark 4 (Inductive biases) Imposing inductive biases to increase the convergence speed
of a deep learning model to the desired solution has always been a winning strategy in
machine learning. This is translated in the context of physical models with the possibility to
include, among others, the following inductive biases: first principles (conservation laws [38],
equations governing the physical phenomenon), geometrical simmetries (group invariant
filters [39, 40]), numerical schemes/residuals (discrete residuals, latent time advancement
with Runge-Kutta schemes), latent regularity (minimize the curvature of latent trajectories),
latent dynamics (linear or quadratic latent dynamics [41]). As inductive bias, we will impose
the positivity of the state variables that are known to be positive throughout their trajectory
with a final ReLU activation.

3 Evolution of the Latent Dynamics with NM-LSPG-ROC

The non-linearmanifoldmethod introduced byCarlberg et al. [4] does not perform a complete
dimension reduction since at each time step the decoder reconstructs the state from the latent
coordinates to the whole domain, still depending on the number of degrees of freedom of the
FOM.We revisit the non-linear manifold least-squares Petrov–Galerkinmethod (NM-LSPG)
with small modifications and introduce two novel hyper-reduction procedures: one combines
teacher–student training of a compressed decoder with the reduced over-collocation method
(NM-LSPG-ROC-TS), the other implements only the hyper-reduction of the residual with
reduced over-collocation (NM-LSPG-ROC).

3.1 Non-linear Manifold Least-Squares Petrov–Galerkin

We assume that the numerical method of preference discretizes the system (1) in space and
in time with an implicit scheme, Gh,δt : P × Xh × X |It |

h → Xh

Gh,δt (µ,Ut
h, {Us

h}s∈It) = 0, (15)

where h, δt are the spatial and temporal discretization steps chosen, Xh ⊂ R
d is the state

discretization space (d is the number of degrees of freedom), and It is the set of past state
indexes employed in the temporal numerical scheme to solve for Ut

h . We remark that the
numerical discretization employed can differ from the one used to solve for the full-order
training snapshots. The method is thus equations-based rather than fully intrusive. This will
be the case for the 2d shallow water equations model in Sect. 4.2.

123

74 Page 10 of 39 Journal of Scientific Computing (2023) 94 :74

For each discrete time instant t the following non-linear least-squares problem is solved
for the latent state zt ∈ Z , with the Levenberg–Marquardt algorithm [42]

zt = argmin
z∈Rr

‖Gh,δt (µ, φ(z), {φ(zs)}s∈It)‖2Xh
. (16)

That is for each time instant the following intermediate solutions {zt,k}k∈{0,...,N (t)}, zt,0 =
zt−1,N (t−1) of the linear system in Rr are computed,

(
(dGt,k−1dφt,k−1)T dGt,k−1dφt,k−1 + λ Id

)
δzt,k = −(dGt,k−1dφt,k−1)T Gt,k, (17)

zt,k = zt,k−1 + αk δzt,k, (18)

where

dφt,k−1 := dφ(zt,k−1)

dzt,k−1 ∈ R
d×r , (19)

dGt,k−1 := dGh,δt (µ,Ut
h, {Us

h}s∈It)

dUt
h

∣
∣
∣
∣
(Ut

h ,{Us
h}s∈It)=(φ(zt,k−1),{φ(zs)}s∈It)

∈ R
d×d , (20)

λ is a factor that evolves during the non-linear optimization and balances between a Gauss–
Newton and a steepest descent method, and finally αk is a parameter foundwith a trust-region
method. In the implementation in Eigen [43], λ Id is scaled with respect to the diagonal
elements of (dGt,k−1dφt,k−1)T dGt,k−1dφt,k−1. All the tolerances for convergence are set
to machine precision, and the maximum number of residual evaluations is set to 7 unless
explicitly stated differently in the numerical results Sect. 4.

Remark 5 (Least-squares Petrov–Galerkin) The method is called manifold LSPG because it
refers to the LSPG method usually applied when the manifold is linear. It consists in multi-
plying the residual to the left with a different matrix � with respect to the linear embedding
� of the reduced coordinates into the state space,

�T Gh,δt (µ,�z) = 0, (21)

where, � ∈ R
d×r is the basis of the linear reduced manifold contained in Xh ⊂ R

d , z ∈ R
r ,

and � is to be defined: the left subspace � ∈ R
d×r is used to enforce the orthogonality of

the non-linear residual to a left subspace L ⊂ R
d . Applying Newton’s method because of

the nonlinearities, the problem is translated into the iterations for k = 1, . . . , K :

�T dG� δzk = −�T Gk, (22)

zk = zk−1 + αk δzk . (23)

The step length αk is computed after a line search along the direction pk . Usually � is
chosen from a POD basis of the state variable z ∈ Xh . For the left subspace, that imposes
orthogonality constraints, different choices can be applied. In general, given the system

dG� δzk = −Gk, (24)

the least squares solution is the one orthogonal to the range ofdG�. In the case ofdG symmet-
ric positive definitewe have that� ⊂< dG� >=< � > i.e.� = � and themethod is called
Galerkin projection, but in general if this is not true then the optimal left subspace remains
� = dG�. For examples where the Galerkin projection is not optimal see [44, Sect. 3.4],
Numerical comparison of left subspaces. This is often the case for advection-dominated
discretized systems of PDEs: in these cases LSPG is preferred to Galerkin projection.

123

Journal of Scientific Computing (2023) 94 :74 Page 11 of 39 74

Remark 6 (Manifold Galerkin) The manifold Galerkin method proposed in [4] assumes that
the columnsof the Jacobianof the decoder are good approximations of the state velocity space:
if a spatial discretization is applied and the residual has the form Gh(µ,U) = U̇ − f(µ,U),
where f is a generic, possibly non-linear, vector field, then

ż = argmin
v∈Rr

‖dφ(z)v − f(µ, φ(z))‖2, (25)

is solved for the latent state velocity, under the hypothesis that dφ(z) has full-rank and dφ

is a good approximation of the full-order state velocity even if the autoencoder is trained
only on the values of the state for different times and parameters, without considering its
velocity. If φ is linear, we obtain the Galerkin method presented in the Remark 5, after
having applied a temporal discretization scheme and multiplied the resulting equation to the
left with dφ(z) = � as is the case for linear Galerkin projection: the discretize-then-project
and project-then-discretize approaches are equivalent in this case [4].

The LSPG performs better as shown in [4], even if they are asymptotically equivalent also
in the case of a non-linear manifold, provided φ is twice differentiable. So we have chosen
to employ only the NM-LSPG method and do not compare it with the non-linear manifold
Galerkin (NM-G) method.

For the numerical tests we have performed, the numerical approximation of the Jacobian
of the residual Gh,δt (µ, φ(z), {φ(zs)}s∈It) is accurate enough. So in the implementation, at
each iteration step the Jacobian of the residual with respect to the latent variable, that is
dGt,k−1dφt,k−1 of Eq. (17), is approximated with finite differences. The step size is taken
sufficiently lower than the distance between consecutive latent states.

3.2 Reduced Over-CollocationMethod

At the point of Eq. (17), the model still depends on the number of degrees of freedom of
the full-order model d , since at each time step and optimization step the latent reduced
variable z ∈ R

r is forwarded to the reconstructed state Uh = φ(z) ∈ R
d . A possible

solution is represented by the reduced over-collocationmethod [7], forwhich the least squares
problem (16) is solved only on a limited number of points r < rh << d ,

zt = argmin
z∈Rr

‖Prh Gh,δt (µ, φ(z), {φ(zs)}s∈It)‖2Rrh , (26)

where Prh is the projection onto rh standard basis elements in R
d associated to the over-

collocation nodes or magic points and selected as described later. Afterwards the Levenberg–
Marquardt algorithm is applied as described in the previous section, to solve the least squares
problem (26).

At this point we make the assumption that the method used to discretize the model
has a local formulation so that each discrete differential operator can be restricted to the
nodes/magic points of the hyper-reduction and consequently, the least-squares problem (26)
reduces to

zt = argmin
z∈Rr

‖Prh Gh,δt (µ, Prh (φ(z)), {Prh (φ(zs))}s∈It)‖2Rrh , (27)

= argmin
z∈Rr

‖G̃h,δt (µ, φ̃(z), {φ̃(zs)}s∈It)‖2Rrh , (28)

where the projected residual G̃ = Prh ◦ G is introduced and the compressed decoder φ̃ is
defined to substitute Prh ◦ φ with another embedding from the latent space to the hyper-

123

74 Page 12 of 39 Journal of Scientific Computing (2023) 94 :74

reduced space in Rrh , such that the whole structure of the decoder is reduced as described in
Sect. 3.4 to further decrease the computational cost.

The Levenberg–Marquardt method is applied also to the hyper-reduced system
(
(dG̃t,k−1dφ̃t,k−1)T dG̃t,k−1dφ̃t,k−1 + λ Id

)
δzt,k = −(dG̃t,k−1dφ̃t,k−1)T G̃t,k, (29)

zt,k = zt,k−1 + αk δzt,k, (30)

and as for the manifold LSPG method, the Jacobian matrix dG̃t,k−1dφ̃t,k−1 is numerically
approximated at each optimization step in the implementations.

Remark 7 (Submesh needed to define the hyper-reduced differential operators) To compute
G̃h,δt in the nodes/magic points of the reduced over-collocation method, some adjacent
degrees of freedom are needed by the discrete differential operators involved. So, actually, at
each time step not only the values of the state variables at themagic points are needed, but also
at the adjacent degrees of freedom in the mesh with possible overlappings. We represent the
restriction to this submesh ofmagic points and adjacent degrees of freedomwith the projector
Ps

rh
∈ R

sh×d , where sh is the number of degrees of freedom of the submesh. Equation (28)
becomes

zt = argmin
z∈Rr

‖Prh Gh,δt (µ, Ps
rh

(φ(z)), {Ps
rh

(φ(zs))}s∈It)‖2Rrh . (31)

The stencil around each magic point to consider depends on the type of numerical scheme.
Since we are using the finite volume method we have to consider the degrees of freedom of
the adjacent cells. For example, for Cartesian grids, the schemes chosen for the 2d non-linear
conservation law have a stencil of 1 layer of adjacent cells, 4 additional nodes in total for
a cell of the interior of the mesh. The 2d shallow water equations case requires a stencil of
2 layers instead, 12 additional nodes in total for a cell of the interior of the mesh. The two
cases are shown in Fig. 2.

3.3 Over-Collocation Nodes Selection

The nodes/magic points of the over-collocation hyper-reduction method should be defined
such that

Prh = argmin
PT P∈S

max
(zt ,{zs }s∈It)∈T

‖Gh,δt (µ, (φ(z)), {(φ(zs))}s∈It) − PT PGh,δt (µ, P(φ(zt)), {P(φ(zs))}s∈It)‖2Rrh (32)

where S = {P ∈ R
rh×d | P = (ei1 | . . . |eirh

)T } is the space of projectors onto rh coordinates

associated to the standard basis {ei }i∈{1,...,d} of Rd and T is the space of discrete solution
trajectories varying with respect to µ and the intermediate optimization steps

T = {(µ, t, k, zt,k, {zs,k}s∈It) ∈ P × Vh,µ × Vh,µ,t × R
d × R

d×|It | |,
(
(dGt,k−1dφt,k−1)T dGt,k−1dφt,k−1 + λ Id

)
δzt,k = −(dGt,k−1dφt,k−1)T Gt,k},

where Vh,µ is the discrete space of time instants, possibly depending on h and the parameter
µ, and Vh,µ,t is the discrete space of optimization steps at time t . Essentially we want that
the nodes/magic points approximate the residuals among all time steps, optimization steps
and parameter instances.

123

Journal of Scientific Computing (2023) 94 :74 Page 13 of 39 74

Fig. 2 Left: 100magic points of the 2d non-linear conservation law test case. Right: 100magic points of the 2d
shallowwater test case. The magic points are represented in red, the stencils of the cells and associated degrees
of freedom needed for the evaluation of the discrete differential operators are in light-blue. The discarded nodes
in the evolution of the dynamics with NM-LSPG-ROC are in blue. The stencil is made by 1 layer of cells in
the NCL case and 2 layers in the SW case (Color figure online)

There are many possible algorithms to solve Eq. (32) for Prh . Usually they are not opti-
mal and compromise between computational cost and accuracy, depending on the problem at
hand. Among others, these algorithms are part of the hyper-reduction methods such as empir-
ical interpolation method [45], discrete empirical interpolation method [46], Gauss–Newton
tensor approximation (GNAT) [47], space-time GNAT [48] and solution-based non-linear
subspace GNAT [49] (SNS-GNAT).

In particular, if Gh(µ,U) = U̇− f(µ,U), then, following some considerations that justify
SNS-GNAT [49], the training modes employed to find the nodes/magic points of the over-
collocation method are represented by the state snapshots instead of the residual fields. We
could in principle use the reduced fields φ(z) but in practice, for the test case we considered,
the full-order state snapshots were enough, without even saving the intermediate optimization
states.

The procedure is applied at the same time for all the components of the state fieldU ∈ Xh

and follows a greedy approach. We remark that the spatial discretization must not vary, so
that the degrees of freedom correspond to the same spatial and physical quantity over time
and for every parameter instance. Some approaches tackle also geometry deformations, but
keeping the same number of degrees of freedom in a reference system [50].

The Algorithm 1 is an adaptation of GNAT from Algorithm 3 in [6] to the simpler case in
which the Jacobian matrix is not considered in the hyper-reduction (since in the LM method
the Jacobian matrix is approximated with finite differences from the residual, see Eq. (30)).
Also, with respect to Algorithm 3 in [6], the new node/magic point at line 21 in Algorithm 1 is
found without computing also the reconstruction error of the degrees of freedom associated
to its stencil.

Remark 8 (Comparison between GNAT and reduced over-collocation) We must say that
the GNAT method, employed for the implementation of NM-LSPG with shallow masked
autoencoders in [5], is a generalization of the reduced over-collocation method. In some

123

74 Page 14 of 39 Journal of Scientific Computing (2023) 94 :74

Algorithm 1 Greedy nodes/magic points evaluation for ROC method.
Input:

Utrain := {Uµ,t }μ∈Ptrain, t∈Vµ,h
, training state fields,

nrinit nodes/magic points at the boundaries,
nrh , number of nodes/magic points,
Nmodes number of training modes.

Output:
rh nodes/magic points used to define Prh .

1: Extract Nmodes modes {φi
U}i∈{1,...,Nmodes} from the SVD of Utrain.

2: Compute the additional number of nodes to sample na = nrh − nrinit .
3: Initialize the counter for the number of working basis vectors used: nb = 0.
4: Set the number of greedy iterations to perform: nit = min (nc, na).
5: Compute the minimum number of working basis vectors per iteration: nci,min = floor(nc/nit).
6: Compute the minimum number of sample nodes to add per iteration: nai,min = floor(na/nc).
7: for i = 1, . . . , nit (greedy iteration loop)
8: Compute the number of basis vectors for this iteration: nci = nci,min;
9: if i ≤ nc mod nit

10: then nci = nci + 1.
11: Compute the number of samples nodes to add: nai = nci,min;
12: if i ≤ na mod nc
13: then nai = nai + 1
14: if i = 1 then
15:

[
U1 · · ·Unci

]
=

[
φ1
U · · · φnci

U

]
,

16: Build the intermediate P from the nrinit initial magic points.
else

17: for q = 1, . . . , nci (basis vector loop)
18: Compute α = argminγ∈Rnb ‖

[
Pφ1

U · · · Pφ
nb
U

]
γ − Pφ

nb+q
U ‖2,

19: Uq = φ
nq +q
U −

[
φ1
U · · · φnb

U

]
α

20: for j = 1, . . . , nai (sample node loop)
21: Find the node/magic point n that maximizes the state reconstruction

error among the nodes not selected yet: n = argmax
∑nci

q=1(U
q)2.

22: Update P with the newly found node/magic point.
23: nb = nb + nci .

cases though, they may perform similarly. For P ∈ S, let us define

r = rt,µ,k = Gh,δt (µ, P(φ(zt,k)), {P(φ(zs,k−1))}s∈I), ∀(t, k,µ) ∈ Vh,µ × Vh,µ,t × P,

and the GNAT projection operator P = �(P�)†P , where� is the matrix where the columns
correspond to a chosen basis (it could be the FOM residual snapshots, ROM residual snap-
shots, ROM Jacobian and residual snapshots, see [47]). In particular, if � = PT

rh
= PT we

have that

P = �(Prh �)†Prh = �(Prh �)−1Prh = PT
rh

(Prh PT
rh

)−1Prh = PT
rh

Prh , (33)

that is the reduced over-collocation projection in the chosen nodes/magic points and extended
to 0 in the remaining degrees of freedom. In this sense, theGNATmethod includes the reduced
over-collocation one.

However, for the class of problems we are considering, the GNAT method suffers from
the slow decaying KnW. We have the inequalities

123

Journal of Scientific Computing (2023) 94 :74 Page 15 of 39 74

d2
n ({rt,µ,k}t,µ,k) = inf

dimVn=n
max
t,µ,k

‖r − Vn V T
n r‖22

≤ inf
dimVn=n

max
t,µ,k

‖r − Vn V T
n r‖22 + ‖Vn V T

n r − Pr‖22
= inf

dimVn=n
max
t,µ,k

‖r − Pr‖22 = inf
dimVn=n

max
t,µ,k

‖(I − P)(I − Vn V T
n)r‖22

≤ inf
dimVn=n

max
t,µ,k

‖(I − P)‖22‖(I − Vn V T
n)r‖22

= inf
dimVn=n

max
t,µ,k

‖P‖22‖(I − Vn V T
n)r‖22,

where (t, k,µ) ∈ Vh,µ × Vh,µ,t ×P whenever the maximum is taken. The term r−Pr is the
GNAT approximation error. The rightmost term is the usual bound on the hyper-reduction
error [46], where it was used the fact that P = I − P. The second equality is valid because
r− Vn V T

n r and Vn V T
n r−Pr are orthogonal. The third equality is obtained from the relations

r = (r − r∗) + r∗ = w + r∗, with r∗ := Vn V T
n r,

⇒ r − Pr = w + r∗ − Pw − Pr∗ = w − Pw,

where the last equality follows fromPr∗ = r∗. Herewehave supposed the nodes/magic points
to be independent of Vn . So in the case of slow decaying Kolmogorov n-width, minimizing
the hyper-reduced residual Pr ∈< Vn >⊂ R

d is less efficient due to the slow convergence in
n of the best approximation error ‖r−Vn V T

n r‖22. This is one of the reasons whywe employed
ROC for the SWE test case; for the NCL test case GNAT and ROC performed similarly.

3.4 Compressed Decoder Teacher–Student Training

In order to make the whole methodology independent of the number of degrees of freedom,
the decoder has to be substituted with a map φ̃ : RR → Prh (Xh) ⊂ R

rh from the latent
space to the space of discrete full-order solutions evaluated only at the submesh containing
the magic points and the needed adjacent degrees of freedom. As architecture, we choose a
feedforward neural network (FNN)with one hidden layer, but actually the only requirement is
that the computational cost is low enough such that not only a theoretical dimension reduction
is achieved, but also a speed-up is reached.

In the literature, the procedure for the training of the compressed decoder φ̃ from the
decoder φ is called teacher–student training [51]. In principle, the compressed decoder can be
composed of layers inherited by the original decoder, such that the learning process involves
only the final new additional layers. In our case, we preferred to train the compressed decoder
anew: the latent projections of the training snapshots with the encoder ψ(Utrain) = {zi }Ntrain

i=1

are the inputs and the restriction of the snapshots to the submesh Ps
rh

(Utrain) = {Ũi }Ntrain
i=1

are the targets, see Eq. (31). A schematic representation of the teacher–student training is
represented in Fig. 3. Moreover, to speed up the offline stage, we use the training FOM
snapshots restricted to the magic points as training outputs for the teacher–student training,
while usually the reconstructed snapshots from the CAE -that would additionally need to be
computed- are employed.

Again, for the training, we use a relative mean square loss with an additional regularizing
term

123

74 Page 16 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 3 Teacher–student training of the compressed decoder for the 2d non-linear conservation law test case.
The magic points, which the snapshots are restricted to, are shown in red over the domain (Color figure online)

L({zi }b
i=1; 	̃) = 1

b

b∑

i=1

‖Ũi − φ̃(zi)‖22
‖Ũi‖22

+ λ1‖	̃‖22, (34)

where 	̃ are the weights of the compressed decoder.

Remark 9 (Jacobian evaluation in Levenberg–Marquardt algorithm) The main reason why
finite differences approximations of Jacobians are implemented in the NM-LSPG case, as
explained at the end of Sect. 3.1, is that the computational cost of evaluating the Jacobian of
the full decoder is too high. In principle Jacobian evaluations of the compressed decoder are
cheaper and could be employed, instead of relying again on finite differences approximations.

Remark 10 (Shallow masked autoencoders) We are motivated to write this article to extend
the results in [5] to a generic architecture composed by neural networks. They performed the
hyper-reduction of the non-linear manifold method [4] with a shallow masked autoencoder,
so that correctly masking the weights matrices of the decoder, its outputs correspond only to
the submesh needed by the GNAT method, thus eliminating the dependence on the FOM’s
degrees of freedom. We want to reproduce, in some sense, this approach for an arbitrary
autoencoder architecture, in this case a CAE, in order to tackle with the latest architectures
developed in the literature the problem of solution manifold approximability: we think this
is a major concern when trying to apply non-linear MOR to real applications. In fact, as will
be clear in the numerical results Sect. 4, the reconstruction error of the autoencoder bounds
from below the prediction error of our newly developed ROMs.

It can be seen that the new model order reduction is composed of two distinct procedures
to achieve the independence on the number of degrees of freedom: first the residual fromNM-
LSPG in Eq. (16) is hyper-reduced with ROC in Eq. (26) and secondly the CAE’s decoder
is compressed with teacher–student training. In principle, we could substitute the use of the
compressed decoder with the restriction of the final layer of the CAE’s decoder into the

123

Journal of Scientific Computing (2023) 94 :74 Page 17 of 39 74

magic points, while keeping the hyper-reduction with ROC of the residual. In this case, the
whole methodology would still be dependent on the total number of degrees of freedom,
but in practice a CAE’s decoder forward is relatively cheap compared to the evaluation
of the full residual. So, the hyper-reduction performed with ROC or GNAT only at the
equations/residuals level, is already beneficial to reduce the computational cost. We will
compare this variant of theNM-LSPG-ROCmethodwith the one that employs the compressed
decoder, also to verify the consistency of the teacher–student training that is omitted in the
first case.

In the numerical results Sect. 4 we will adopt the acronym NM-LSPG-ROC-TS or NM-
LSPG-GNAT-TS for the method that employs the compressed decoder and NM-LSPG-ROC
or NM-LSPG-GNAT for the method that performs the hyper-reduction only at the equa-
tions/residuals level.

4 Numerical Results

We test the new methodology on two benchmarks with a relatively slow KnW: the first
model is governed by a non-linear conservation law (Sect. 4.1) the second by the shallow
water equations (Sect. 4.2). Both are parametric, non-linear and time-dependent, and the only
other (non-temporal) parameter is a multiplicative constant of the initial condition. The mesh
employed is the same: a 60 × 60 structured orthogonal grid.

All the CFD simulations are obtained by the use of an in-house open source library
ITHACA-FV (In real Time Highly Advanced Computational Applications for Finite Vol-
umes) [52], developed in a finite volume environment based on the open-source library
OpenFOAM [53]. Regarding the implementation of the convolutional autoencoders and com-
pressed decoders (CAE)we used libtorch, PyTorchC++ frontend, while for the training of the
long-short term memory network (LSTM) we used PyTorch [36]. All the CFD simulations
were performed on a Intel(R) Core(TM) i7-8750H CPU with 2.20GHz and all the neural
networks trainings on a GeForce GTX 1060 GPU. Further reductions in the computational
costs could be achieved exploiting the parallel implementation of the training procedures in
PyTorch. The details of the architectures of the neural networks that will be employed are
reported in the Appendix A.

The following notations are introduced: Nμ
train, Nμ

test are the numbers of train and test
parameters, respectively; N t

train, N t
test are the number of time instances associated to the train

and test parameters, respectively. The total number of training and test snapshots is thus
Ntrain = Nμ

train · N t
train, and Ntest = Nμ

test · N t
test, respectively.

The accuracy of the reduced-order models devised is measured with the mean realtive
L2-error and the maximum relative L2-error, where the mean and max are taken with respect
to the time scale: since the test cases depend on a non-temporal parameter, for each instance
of these parameters a time-series corresponding to the discrete dynamics is associated; the
mean and maximum are evaluated w.r.t the elements of these time-series. Let {uti

μ}i=1,...N t

and {U ti
μ }i=1,...N t be the predicted and true time-series N t elements long, associated to the

train or test parameter μ, the mean relative L2-errors and maximum relative L2-errors are
then defined as

εmean(uμ, Uμ) = 1

N t

N t
∑

i=1

‖uti
μ − U ti

μ‖L2

‖U ti
μ‖L2

, εmax (uμ, Uμ) = max
i=1,...,N t

‖uti
μ − U ti

μ‖L2

‖U ti
μ‖L2

.

(35)

123

74 Page 18 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 4 From left to right: FOM solution of Eq. (36) at (t, μ) ∈ {(0, 0.8), (2, 0.8), (0, 2), (2, 2)} (Color figure
online)

Remark 11 (Levenberg–Marquardt parameters) Regarding the Levenberg–Marqurdt non-
linear optimization algorithm, we remark that we approximate the Jacobians with forward
finite differences, and the optimization process, for each time step, is stopped when the
maximum number of residual evaluations is reached. This number is set to 7, including the
evaluations related to the Jacobian computations.When 7 residual evaluations are not enough
for the method to converge, it is explicitly reported.

4.1 Non-linear Conservation Law (NCL)

We test our procedure for non-linear model order reduction on a 2d non-linear conservation
law model (NCL). Two main reasons are behind this choice: the slow Kolmogorov n-width
decay of the continuous solution manifold, and the possibility to compare our results with a
similar test case realized with an implementation of non-linear manifold based on shallow
masked autoencoders and GNAT [5].

The parametrization affects the initial velocity as a scalar multiplicative constant μ ∈
[0.8, 2]:

⎧
⎪⎨

⎪⎩

∂tu + 1
2∇ · (u ⊗ u) = ν�u (x, t) ∈ [0, 1]2 × [0, 2],

u(x, 0) = 0.8 · μ · sin(2πx) sin(2π y)χ[0,0.5]2 x ∈ [0, 1]2,
u(x, t) = 0 (x, t) ∈ ∂[0, 1]2 × [0, 2],

(36)

where the viscosity ν = 0.0001. We will collect Nμ
train = 12 equispaced training parameters

from the range μ ∈ [0.8, 2] and Nμ
test = 16 equispaced test parameters from the range

μ ∈ [0.6, 2.2]. The first two and the last two parameters will account for the extrapolation
error. The time step is equal to �t = 1e−3 s, but the training snapshots are collected every
4 time steps and the test snapshots every 20, thus N t

train = 501, and N t
test = 101. In the

predictive online phase, the dynamics will be evolved with the same time step �t = 1e−3.
For easiness of representation, the train parameters are labelled from 1 to 12, and the test
parameters are labelled from 1 to 16.

To have a qualitative view on the range of the solution manifold, we report the initial and
final time snapshots for the extremal training parameters of the range μ ∈ [0.8, 2], in Fig. 4.

In this test case the GNAT method performed slightly better than the ROC method for
hyper-reduction, so we employed the former to obtain the results shown.

123

Journal of Scientific Computing (2023) 94 :74 Page 19 of 39 74

4.1.1 Full-Order Model

We solve the 2d non-linear conservation law for different values of the parameter μ with
OpenFoam [53] open-source software for CFD.We employ the finite volumesmethod (FVM)
in a structured orthogonal grid of 60 × 60 cells. If we represent with M the mass matrix,
with D the diffusive matrix term, and with C(U t−1) the advection matrix, then, at every time
instant t , the discrete equation

M

�t
U t + C(U t−1)U t − νDU t = M

�t
U t−1, (37)

is solved for the stateU t with a semi-implicit Euler method. The time step is 1e−3, the initial
and final time instants are 0 and 2 s. The linear system is solved with the iterative method
BiCGStab preconditioned with DILU, until a tolerance of 1e−17 on the FVM residual is
reached.

The stencil of the numerical scheme at each cell involves the adjacent cells that share an
interface (4 for an interior cell, 3 for a boundary cell and 2 for a corner cell): the value of the
state at the interfaces is obtained with the bounded upwind method for the advection term
and the surface normal gradient is obtained with central finite differences of two adjacent cell
centers. So, in order to implement the reduced over-collocation method, for each node/magic
point we have to consider an additional number of maximum 4 cells, that is 8 degrees of
freedom to keep track of during the evolution of the latent dynamics; of course in practice
they may overlap reducing the computational cost further.

The residual of the NM-LPSG methods is evaluated with the same numerical scheme
of the FOM. In the SWE test case the FOM and the ROMs employ different numerical
schemes (Sect. 4.2).

4.1.2 Manifold Learning

As first step of the procedure the discrete solution manifold is learned through the training
of a convolutional autoencoder (CAE) whose specific architecture is reported in Table 7.
The CAE is trained with the ADAM [37] stochastic optimization algoritm for 2000 epochs,
halving the learning rate by a factor of 2 if after 200 epochs the loss does not decrease. The
initial learning rate is 1e−3, its lower bound is 1e−6. The number of training snapshots is
Ntrain = 12× 501 = 6012, the batch size 20. It could be further refined in order the increase
the efficiency of the whole procedure.

We choose as latent dimension 4, 2 dimensions greater than the number of parameters (the
scalar multiplying the initial condition and time). We don’t perform a convergence study of
the accuracy with respect to the latent dimension since our focus is on the implementation
of the NM-LSPG-ROC and NM-LSPG-ROC-TS model-order reduction methods: we are
satisfied as long as the accuracy is relatively high, while the reduced dimension corresponds
to an inaccurate linear approximating manifold spanned by the same number of PODmodes.

In Fig. 5 is shown the reconstruction error of the CAE and its decay with respect to the
number of POD modes chosen [4, 10, 25, 50, 100]. To reach the same accuracy of the CAE
with latent dimension 4, around 50 PODmodes are needed. In order to state that the slowKnW
decay problem is overcome by the CAE, the asymptotic convergence of the reconstruction
error w.r.t. the latent dimension should be studied as was done for similar problems in [4,
5]. Instead, we will empirically prove that we can devise an hyper-reduced ROM with latent
dimension 4 and accuracy lower than the 2% for the mean relative L2-error, a task that

123

74 Page 20 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 5 Comparison between the CAE’s and POD’s projection errors of the discrete solution manifold repre-
sented by the Ntrain = Nμ

train · N t
train = 12 · 501 training snapshots. The error is evaluated on the 16 test

parameters, each associated with a time series of N t
test = 101, for a total of Ntest = Nμ

test · N t
test = 16 · 101 =

1616 test snapshots. The mean is performed over the time scale (Color figure online)

would be impossible for a POD based ROM with the same reduced dimension, since the
reconstruction error is near 20% for all the test parameters.

Without imposing any additional inductive bias a part from the regularization term in
the loss from Eq. (12) and the positiveness of the velocity components, the latent trajectories
reported in Fig. 6 for the odd parameters of the test set, are qualitatively smooth. An important
detail to observe is that the initial conditions are well separated one from another in the latent
space, see Remark 3, and that the dynamics is non-linear. It also can be noticed that the 2
extremal parameters, corresponding to the extrapolation regime and represented in the plot
by the two most outer trajectories that enclose the other 6, have smooth latent dynamics
analogously to the others even though the reconstruction error starts degrading, as can be
seen from Fig. 5.

4.1.3 Hyper-Reduction and Teacher–Student Training

The selection of the magic points is carried out with the greedy Algorithm 1. The FOM
snapshots employed correspond to the training parameters 1 and 12, but are sampled every
10 time step instead of every 4, as for the training snapshots of the CAE.

We perform a convergence study increasing the number ofmagic points from50 to 100 and
150. The corresponding submesh sizes, i.e. the number of cells involved in the discretization
of the residuals, are reported in the Table 1. The submesh size is bounded above with the
total number of the cells in the mesh, that is 3600.

After the computation of the magic points, the FOM snapshots are restricted to those
cells and employed as training outputs of the compressed decoder, as described in Sect. 3.4.
The actual dimension of the outputs is twice the submesh size, since for each cell there
are 2 degrees of freedom corresponding to the velocity components. The inputs are the 4-
dimensional latent coordinates of the encoded FOM training snapshots, for a total of 6012
training input–output pairs. The architecture of the compressed decoder is a feedforward
neural network (FNN) with one hidden layer, whose number of nodes is reported in Table 1,

123

Journal of Scientific Computing (2023) 94 :74 Page 21 of 39 74

Fig. 6 Correlations among the 4 latent coordinates of the odd parameters of the test set, 8 in total. They
are obtained projecting the test snapshots into the latent space of the CAE with the encoder. The coloring
corresponds to the time instants from 0 to 2 (Color figure online)

Table 1 In this table are reported for the NCL test case: the submesh size and the hidden layer (HL) number
of nodes of the compressed decoder; the Teacher–Student training (TS) duration in seconds (TS total epochs),
the Teacher–Student training average epoch duration in seconds (TS avg epoch); the average time step for
NM-LSPG-GNAT with compressed decoder (avg GNAT-TS) in milliseconds, and the average time step for
NM-LSPG-GNAT with the hyper-reduced residuals but full CAE decoder (avg GNAT-no-TS) in milliseconds

MP Submesh size HL size TS total epochs (s)

50 139 300 1682

100 246 350 2482

150 335 400 4245

MP TS avg epoch (s) Avg GNAT-TS (ms) Avg GNAT-no-TS (ms)

50 0.560 1.88 4.496

100 0.827 4.599 4.499

150 1.415 2.318 4.208

In bold, the results are obtainedwith 13maximum residual evaluations of the Levenberg–Marquardt algorithm,
instead of the fixed 7, see Remark 11

under ‘HL size’. The compressed decoders architecture’s specifics are also summarized in
Table 7.

Each compressed decoder is trained for 3000 epochs, with an initial learning rate of 1e−4,
that halves if the loss from Eq. (34) does not decrease after 200 epochs. The batch size is
20. The duration of the training is reported in Table 1 under ‘TS total epochs’, that stands
for Teacher–Student training total epochs, along with the average cost for an epoch, under
‘TS avg epoch’. The accuracy of the predictions on the test snapshots restricted to the magic
points is assessed in Fig. 7.

123

74 Page 22 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 7 Prediction accuracy on the test snapshots restricted to the magic points. The accuracy is measured with
the relative L∞-error averaged over the time trajectories associated to each one of the Nμ

test = 16 test samples
(Color figure online)

Fig. 8 First row: NM-LSPG-GNAT mean and max relative L2-error. Second row: NM-LSPG-GNAT-TS
mean and max relative L2-error. In red also the NM-LSPG accuracy is reported. The mean and max values
are evaluated with respect to the time series of intermediate solutions associated to each one of the Nμ

test = 16
test parameters (Color figure online)

123

Journal of Scientific Computing (2023) 94 :74 Page 23 of 39 74

The convergence with respect to the number of magic points is shown in Fig. 8. Since,
especially for the NM-LSPG-GNAT-TS reduced-order model, the relative L2-error is not
uniform along the time scale, we report both the mean and max relative L2-errors over the
time series associated to each one of the 16 test parameters.

From Fig. 8 and Table 1 it can be seen that NM-LPSG-GNAT is more accurate than NM-
LSPG-GNAT-TS even tough computationally more costly in the online stage. We underline
that in the offline stageNM-LSPG-GNAT-TS requires the training of the compressed decoder.
However, this could be performed at the same time of the CAE training, see the discussion
Sect. 5. TheNM-LSPG-GNAT reduced-ordermodel achieves better results also in the extrap-
olation error, sometimes even lower than the NM-LSPGmethod: this remains true even when
increasing the maximum residual evaluations of the LM algorithm, and it may be related to
the nonlinearity of the decoder that introduces difficult to interpret correlations of the latent
dynamics with the output solutions restricted to the magic points.

All the simulations of NM-LSPG, NM-LSPG-GNAT-TS and NM-LSPG-GNAT methods
converge with a maximum of 7 residual evaluations of the LM algorithm, for all magic
points reported, that is 50, 100, and 150 and for all the 16 test parameters. However, 3 test
parameters could not converge for the method NM-LSPG-GNAT-TS with 100 magic points,
so we increased the maximum function evaluations to 13 for all the test points. The higher
computational cost per time step is shown in Table 1. Apart from those 3 test points not
converging, the accuracy remains the same for the other 13 test parameters, so we have
chosen to report the results in the case of 13 residual evaluations for all the 16 test parameters
in Fig. 8.

4.1.4 Comparison with Data-Driven Predictions Based on a LSTM

To assess the quality of the reduced-order models devised, we compare the accuracy in the
training and extrapolation regimes, and the computational cost of the offline and online stages
with a purely data-driven ROM in which the solutions manifold is approximated by the same
CAE, but the dynamics is evolved in time with a LSTM neural network. The architecture
of the LSTM employed is reported in Table 9. The results are summarized in Fig. 9, the
computational costs in Table 2.

The LSTM is trained for 10,000 epochswith theADAMstochastic optimization algorithm
and an initial learning rate of 0.001, halved if after 500 epochs the loss does not decrease.
The time series used for the training are the same Ntrain = 6012 training snapshots employed
for the CAE. We remark that the LSTM cannot approximate the dynamics for an arbitrary
time step, but it is fixed, depending on the training time step used, in this case 0.004 s.

The offline stage’s computational cost is determined by the heavy CAE training for both
the procedures, see the Discussion Sect. 5 for possible remedies. The LSTM-NN achives
a speed-up close to 3 with respect to the FOM, differently from the NM-LSPG-GNAT and
NM-LSPG-GNAT-TS methods. However, since the models are hyper-reduced, increasing
the degrees of freedom refining the mesh should increase the computational cost of the FOM
and NM-LSPG methods only, with due precautions. The average cost of the evaluation of
the dynamics for the LSTM model with a time step of 0.004 s is associated to the label
‘avg LSTM-NN full-dynamics’; thanks to vectorization, the dynamics for all the Nμ

test = 16
parameters is evaluated with a single forward of the LSTM, thus the low computational cost
reported.

The CAE reconstruction error in blue in Fig. 9, lower bounds all the other models’ errors.
This is the reasonwhy having a good accuracy of the CAE’s solutionmanifold approximation
is mandatory to build up non-linear manifold methods. In this sense NM-LSPG-ROC-TS and

123

74 Page 24 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 9 Comparison of the accuracies between all the ROMs presented on the test set of Nμ
test = 16 parameters,

each associated to a time series of N t
test = 101 intermediate solutions. The number of magic points employed

for NM-LSPG-GNAT and NM-LSPG-GNAT-TS is 150. The mean and maximum relative L2-errors are taken
with respect to the time scale (Color figure online)

Table 2 Offline stage: full-order
model (FOM) computation of the
Ntrain = 6012 snapshots (FOM
snapshots evaluation), average
cost of a single epoch for the
training of the CAE with a batch
size of 20 (CAE training single
epoch avg), and total cost for
3000 epochs (CAE training);
average epoch’s cost for the
LSTM training with a batch size
of 100, and total cost for 10,000
epochs

Offline stage Time

FOM snapshots evaluation 29.04 [s]

CAE training single epoch avg 10.1 [s]

CAE training 20213.3 [s]

LSTM-NN training single epoch avg 0.139 [s]

LSTM-NN training 1365 [s]

Online stage Time

Avg FOM time step 1.210 [ms]

Avg FOM full dynamics 2.42 [s]

Avg NM-LSPG time step 22.126 [ms]

Avg NM-LSPG full-dynamics 133.2 [s]

Avg LSTM-NN time step 0.432 [ms]

LSTM-NN full-dynamics 6.982 [ms]

Online stage: for the FOM, NM-LSPG and LSTM-NN models it is
reported the average of a single time step cost over all the Ntest = 1616
test parameters and time series, and the average cost of the full dynamics
over the Nμ

test = 16 test parameters. The LSTM-NN full-dynamics is
evaluated with a single forward

NM-LSPG-GNAT-TS with respect to NM-LSPG-GNATwith shallow autoencoders [5] offer
the possibility to choose an arbitrary architecture for the autoencoder, thus allowing a more
accurate solution manifold approximation.

While in the training range from test parameter 3 to 14, the accuracy of the LSTM-
NN is significantly better than NM-LSPG-GNAT and NM-LSPG-GNAT-TS models’, in
the extrapolation regime we observe that the predictions of the fully data-driven model
degrades. The extrapolation error of theLSTM-NNmodel depends on the architecture chosen,
regularization applied, training procedure, and hyperparameters tuning.What can be assessed
from the results is that, outside the training range, the LSTM-NN’s accuracy is dependent on
all these factors, with sometimes a difficult interpretation of the results, while NM-LSPG-

123

Journal of Scientific Computing (2023) 94 :74 Page 25 of 39 74

Fig. 10 From left to right: FOM solution of Eq. (38) at (t, μ) ∈ {(0.01, 0.1), (0.2, 0.1), (0.01, 0.3), (0.2, 0.3)}
(Color figure online)

GNAT relies only on the number of magic points employed and the dynamics is evolved in
time minimizing a physical residual directly related to the NCL model’s equations.

4.2 ShallowWater Equations (SWE)

The second test case we present is a 2d non-linear, time-dependent, parametric model based
on the shallow water equations (SWE). Also in this case, the non-temporal parameter affects
the initial conditions, μ ∈ [0.1, 0.3], t ∈ [0, 0.2] = I :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (hu) + ∇ · (hu ⊗ u) + 1
2 | g | h∇h = 0 (x, t) ∈ [0, 1]2 × I ,

∂t h + ∇ · (uh) = 0 (x, t) ∈ [0, 1]2 × I ,

u(x, 0) = 0 x ∈ [0, 1]2,
h(x, 0) = μ

(

1
e1

· e
− 1

0.04−‖x−O‖22 χ‖x‖22<0.2 + χ‖x‖22≥0.2

)

x ∈ [0, 1]2,
u(x, t) · n = 0 (x, t) ∈ ∂[0, 1]2 × I ,

∇h(x, t) · n = 0 (x, t) ∈ ∂[0, 1]2 × I ,

(38)

where h is the water depth, u is the velocity vector, g is the gravitational acceleration, and
O is the point (0.5, 0.5) ∈ �. We consider a constant bathymetry h0 = 0, so that the free
surface height htotal = h + h0 is equal to the water depth h.

The time step that will be employed for the evolution of the dynamics of the FOM is 1e−4
s. The training and test snapshots are sampled every 4 time steps. The training non-temporal
parameters are Nμ

train = 10 in number, and they are sampled equispacedly in the training
interval μ ∈ [0.1, 0.3], for a total of Ntrain = Nμ

train · N t
train = 10 · 501 = 5010 training

snapshots.
Due to an inaccurate reconstruction error of the CAE for the first time instants, the pre-

dictions of the dynamics of the reduced model are evaluated from the time instant t0 = 0.01
s. The test non-temporal parameters are Nμ

test = 8 in number and sampled equispacedly in
the test interval μ ∈ [0.05, 0.35], for a total of Ntest = Nμ

test · N t
test = 8 · 475 = 3800 test

snapshots, since the first 26 are cut from the time series, N t
train = 501 snapshots long. Again

the first 2 and the last 2 parameters correspond to the extrapolation regime. The initial latent
variables are obtained projecting with the encoder into the latent space the test snapshots
corresponding to the time instants t0 = 0.01 instead of t = 0. The training and test time
series are labelled from 1 to 10 and from 1 to 8 with an increasing order (Figs. 10 and 11).

123

74 Page 26 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 11 From left to right: FOM solution of Eq. (38) at (t, μ) ∈ {(.010, 0.1), (0.2, 0.1), (0.01, 0.3), (0.2, 0.3)}
(Color figure online)

In this test case the ROC hyper-reduction is more accurate with respect to the GNAT one,
so the results are reported w.r.t. this hyper-reduction method.

4.2.1 Full-Order Model

One detail that we didn’t stress in the previous test case is that the FOM and the NM-
LSPG ROM can discretize the residuals of the SWE differently: only the consistency of
the discretization is required, characterizing the NM-LPSG family as equations-based rather
than fully intrusive.

The FOM solutions are computed with the OpenFoam solver shallowWaterFoam [53],
while the ROMs discretize the residual with a much simpler numerical scheme.

The FOM numerical scheme is the PIMPLE algorithm, a combination of PISO [54]
(Pressure Implicit with Splitting of Operator) and SIMPLE [55] (Semi-Implicit Method for
Pressure-Linked Equations). For the shallow water equations the free surface height h plays
the role of the pressure in the Navier–Stokes equations, regarding the PIMPLE algorithm
implementation. The number of outer PISO corrections is 3.

The time discretization is performed with the semi-implicit Euler method. The non-linear
advection terms are discretized with the Linear-Upwind Stabilised Transport (LUST) scheme
that requires a stencil with 2 layers of adjacent cells for the hyper-reduction. The gradients are
linearly interpolated through Gauss formula. The solutions for hU are obtained with Gauss–
Seidel iterative method, and for h with the conjugate gradient method preconditioned by the
Diagonal-based Incomplete Cholesky (DIC) preconditioner. For both of them the absolute
tolerance on the residual is 1e−6 and the relative tolerance of the residual w.r.t. the initial
condition is 0.1.

The residual of ROMs is instead discretized as follows. If we represent with MhU , Mh the
massmatrices,withG(h) the discrete gradient vector ofh, andwithChU ((hU)t−1), Ch(U t−1)

the advection matrices, then, at every time instant t , the discrete equations

MhU

�t
(hU)t + ChU ((hU)t−1)U t + ghG(h) = MhU

�t
(hU)t−1, (39)

Mh

�t
ht + Ch(U t−1)ht = Mh

�t
ht−1, (40)

are solved for the state ((hU)t , ht) with a semi-implicit Euler method. The same numerical
schemes and linear systems iterative solvers of the FOM are employed. In principle, they
could be changed.

123

Journal of Scientific Computing (2023) 94 :74 Page 27 of 39 74

Since now the stencil of a single cell needs two layers of adjacent cells for the dis-
cretizations, for each internal magic point, 12 additional cells need to be considered for the
hyper-reduction.

4.2.2 Manifold Learning

The CAE architecture for the SWE model is reported in Table 6. This time one encoder
and two decoders, one for the velocity U and one for the height h are trained. Moreover,
to increase the generalization capabilities we converted 2 layers of the decoder for U in
recurrent convolutional layers as shown in the Appendix. Even with this modification the
initial time steps, from 0 to 0.01 are associated to a high reconstruction error: the relative
L2-error is around 0.1 for every test parameter at the initial time instants, slowly decreasing
towards the accuracy shown in Fig. 12 after t = 0.01, chosen as initial instant from here
onward.

The CAE is trained for 500 epochs with a batch size of 20 and an initial learning rate of
1e−4, that halves if the loss from Eq. (12) does not decrease after 50 epochs. In this case
the state is (U , h) so the encoder has three channels, two for the velocity components, U1,
U2, and one for the height, h. The high computational cost is shown in Table 4. We have to
observe that nor the architecture is parsimonious for a good approximation of the discrete
solution manifold in the time interval [0.01, 0.2], neither the number of training snapshots
5010 is optimized to reach the highest efficiency with the lowest computational cost. Our
focus is obtaining a satisfactory reconstruction error in order to build up our ROMs.

The solution manifold parametrized by the decoder achieves the reconstruction error of a
linear manifold spanned by around 20 POD modes. In fact, the decay of the reconstruction
error associated to the POD approximations is faster than the previous test case in the time
interval [0.01, 0.2].

It can be seen from the representation of the latent dynamics associated to the train
parameters in Fig. 13, that the initial solutions overlap. This and the low accuracy could be
explained by the fact that the FOM dynamics has different scales, especially for the velocity
U that from the initial constant zero solution reaches a magnitude of 10−1 m per seconds.
Further observations and possible solutions are presented in the Discussion Sect. 5.

4.2.3 Hyper-Reduction and Teacher–Student Training

Mimicking the structure of the CAE, the compressed decoder is split in two, one for the
velocity U and one for the free surface height h. The architecture for both the decoders is a
feed-forward NNwith a single hidden layer; they are reported in the Table 8. The compressed
decoders are trained for 1500 epochs, with a batch size of 20, and an initial learning rate
of 1e−4 that halves after 100 epochs if the loss does not decrease, with a minimum value
of 1e−6. As for the previous test case, the number of magic points, hidden layer sizes,
training times, average training epoch computational cost are reported in Table 3. This time
for each magic point correspond 3 degrees of freedom, so the actual output dimension of the
compressed decoders is three times the submesh sizes.

The relative L∞-error of the compressed decoder is shown in Fig. 14. This time the
extrapolation error is sensibly higher as already seen in the reconstruction error of the CAE.

As in the previous case, both the NM-LSPG-ROC and NM-LSPG-ROC-TS ROMs are
considered. This time it’s the NM-LSPG-ROC’s dynamics to be less stable with 7 maximum
residual evaluations of the LM algorithm. In this respect, for parameter test 4 and mp = 100

123

74 Page 28 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 12 Comparison between the CAE’s and POD’s projection errors of the discrete solution manifold repre-
sented by the N train = Nμ

train · N t
train = 10 · 501 = 5010 training snapshots. The error is evaluated on the 8

test parameters, each associated with a time series of N t
test = 475, for a total of Ntest = 3800 test snapshots.

The mean is performed over the time scale (Color figure online)

Fig. 13 Correlations among the 4 latent coordinates of the train set, 10 in total. They are obtained projecting
the train snapshots into the latent space of the CAE with the encoder. The coloring corresponds to the time
instants from 0. to 0.2, with a time step of 4e−4 s. The initial time steps employed in the ROMs is 0.01 (Color
figure online) s

123

Journal of Scientific Computing (2023) 94 :74 Page 29 of 39 74

Table 3 In this table are reported
for the SWE test case: the
submesh size and the hidden
layer (HL) number of nodes of
the compressed decoder; the
Teacher–Student training (TS)
duration in seconds, the
Teacher–Student training average
epoch duration in seconds; the
average time step for
NM-LSPG-GNAT with
compressed decoder (GNAT-TS)
in milliseconds, and the average
time step for NM-LSPG-GNAT
with the hyper-reduced residuals
but full CAE decoder
(GNAT-no-TS) in milliseconds

MP Submesh size HL size TS total epochs

25 238 600 582 [s]

50 345 600 1234 [s]

100 590 900 6428 [s]

150 654 900 6746 [s]

MP TS avg epoch Avg GNAT-TS Avg GNAT-no-TS

25 0.388432 [s] 3.227 [ms] 14.782 [ms]

50 0.823084 [s] 4.062 [ms] 13.742 [ms]

100 4.285968 [s] 4.387 [ms] 15.238/22.688 [ms]

150 4.497579 [s] 4.307 [ms] 14.307 [ms]

In bold the average computational cost with 13 maximum residual eval-
uations due to the instability in the evolution of the dynamics of the test
parameter 4

Fig. 14 Prediction accuracy on the test snapshots restricted to the magic points. The accuracy is measured
with the relative L∞-error averaged over the time trajectories associated to each one of the Nμ

test = 8 test
samples (Color figure online)

the maximum number of residual evaluations is increased to 13; in the error plots in Figs. 15
and 16, only the value for parameter 4, mp = 100 is substituted. It is relevant to notice that the
extrapolation error is lower for higher numbers of magic points and for the NM-LSPG-ROC
method.

4.2.4 Comparison with Data-Driven Predictions Based on LSTM

The same LSTM architecture of the NCL test case is trained with the same training pro-
cedure, only that now there are 5010 training parameters-latent coordinates pairs. For the

123

74 Page 30 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 15 First row: NM-LSPG-ROC mean and max relative L2-error. Second row: NM-LSPG-ROC-TS mean
and max relative L2-error. In violet also the NM-LSPG accuracy is reported. The mean and max values are
evaluatedwith respect to the time series of intermediate solutions associated to each one of the 8 test parameters
(Color figure online)

architecture’s specifics see Table 9. The computational costs introduced in the previous test
case are reported also for the SWE model in Table 4.

With the architecture and training procedure employed, the LSTM could not achieve a
good accuracy at the initial time instants after t0 = 0.01 s: for this reason in the plot of the
errors in Fig. 17 is reported both the mean over the whole test time series of 475 elements and
over the time series after the 40-th element of the 475, that corresponds to the time instant
0.017 s. This issue should be ascribed at what we discussed in Sect. 4.2.2, about the latent
dynamics overlappings. Further remarks are provided in the Discussion Sect. 5.

A part from this, the LSTM predictions are for almost every test parameter above only
the NM-LSPG and CAE’s reconstruction errors. Even in the extrapolation regimes, the pre-
dictions are more accurate than the NM-LSPG-ROC and NM-LSPG-ROC-TS reduced-order
models. Regarding the computational costs, this time not only the LSTM model but also the
NM-LSPG-ROC-TS ROMs achieve a little speed-up w.r.t. the FOM. The choice of doubling
the decoders has repercussions in the online costs, but it was made only in an effort to reach
a good reconstruction error of the CAE; maybe more light architectures could be employed
for the restricted time interval [0.01, 0.2].

123

Journal of Scientific Computing (2023) 94 :74 Page 31 of 39 74

Fig. 16 First row: NM-LSPG-ROC mean and max relative L2-error. Second row: NM-LSPG-ROC-TS mean
and max relative L2-error. In violet also the NM-LSPG accuracy is reported. The mean and max values are
evaluatedwith respect to the time series of intermediate solutions associated to each one of the 8 test parameters
(Color figure online)

5 Discussion

We comment the numerical results obtained:

• Computational cost of the CAEs training. It is evident from Tables 2 and 7 that the offline
stage’s computational cost is dominated by the CAEs trainings. We have to remark that
the architectures were not optimized to be the most parsimonious ones in order to achieve
the desired reconstruction error. Moreover, libtorch training took almost twice more time
than the same architecture’s training in PyTorch, due to implementation inconsistencies.
The cost of the forward evaluations of the decoder are comparable instead, not changing
much the online costs. The training of the CAEs could be further reduced with transfer
learning [3] or preprocessing steps that enlight some features of the dynamics that are
more easily learnable, as was done in [20]. Also, the number of training snapshots could
be optimized further for the test cases presented. The same observations apply also for
the compressed decoders. Moreover, a parallel implementation of the training procedures
on more than one GPU is mandatory to achieve competitive computational costs.

• Simultaneous CAE and compressed decoder/LSTM training. The additional costs of the
LSTM and compressed decoder training could be cut with a unified training of the CAE
and compressed decoder: after some epochs, the training of the LSTM or compressed
decoder could be switched on and performed at the same time of the CAE’s since the only

123

74 Page 32 of 39 Journal of Scientific Computing (2023) 94 :74

Fig. 17 Comparison of the accuracies between all the ROMs presented on the test set of 8 parameters, each
associated to a time series of 475 intermediate solutions. The number ofmagic points employed forNM-LSPG-
ROC and NM-LSPG-ROC-TS is 100. The mean and maximum relative L2-errors are taken with respect to
the time scale. Since the LSTM is inaccurate between the time instants 0.01 and 0.017 s we report also the
mean over the time interval [0.017, 0.2] witch label ‘LSTM-NN cut’, to establish a fair comparison (Color
figure online)

additional information, apart from the restriction of the snapshots into the magic points,
is the latent dynamics coordinates learned anyway during the CAE’s optimization.

• Increasing the speed-up of the non-linear manifold ROMs. The bottleneck for the effi-
ciency of the NM-LSPG-ROC-TS and NM-LSPG-ROC ROMs in the online stage is the
cost of the compressed decoder or CAE’s decoder forward. Regarding the NLC model,
our results for the average time step of the NM-LPSG-GNAT-TS and NM-LSPG-GNAT
ROMs from Table 1 are comparable if not lower than the approximate time step of 7–8
ms for the NM-LSPG-GNAT with shallow autoencoders ROM presented in [5]. The dif-
ference is that now the FOM implemented with the FVM in OpenFoam [53] takes 2.42 s
for 2000 time steps instead of 140.67 s for 1500 time steps in [5] with finite differences
for a similar test case, i.e. 2d burgers equation instead of our non-linear conservation law.
To show a more consistent speed-up w.r.t. the FOM, as for the SWE test case, the number
of degrees of freedom could be increased without influencing the NM-LSPG-ROC-TS
ROM since it is not dependent on the FOM’s dimension. In a weaker sense also the
NM-LSPG-ROC ROM is also independent on the number of degrees of freedom of the
FOM, apart from the weights of the CAE’s decoder that concur in increasing the cost of
a single forward in the online stage.

123

Journal of Scientific Computing (2023) 94 :74 Page 33 of 39 74

Table 4 Offline stage: full-order
model (FOM) computation of the
5010 snapshots, average cost of a
single epoch for the training of
the CAE with a batch size of 20,
and total cost for 500 epochs;
average epoch’s cost for the
LSTM training with a batch size
of 100, and total cost for 10,000
epochs

Offline stage Time

FOM snapshots evaluation 137.079881 [s]

CAE training single epoch avg 94.700484 [s]

CAE training 51431 [s]

LSTM-NN training single epoch avg 0.107722 [s]

LSTM-NN training 1076.150 [s]

Online stage Time

Avg FOM time step 7.251 [ms]

Avg FOM full dynamics 116.024578 [s]

Avg NM-LSPG time step 22.126 [ms]

Avg NM-LSPG full-dynamics 336.171916 [s]

Avg LSTM-NN time step 1.802 [ms]

Avg LSTM-NN full-dynamics 6.834247 [s]

Online stage: for the FOM, NM-LSPG and LSTM-NN models it is
reported the average of a single time step cost over all the 8 test parame-
ters and time series, and the average cost of the full dynamics over the 8
test parameters. The LSTM-NN full-dynamics is evaluated with a single
forward

• Generalization error of LSTM and CAE and additional inductive biases. The generaliza-
tion error of the NN employed depends on a lot of factors, from the number of training
samples to the regularization term in the loss, the architectures, etc. It is thus difficult to
predict how much the accuracy of the predictions will decay outside the training range.
Adding a physics-informed term in the loss of the CAE does not provide an improve-
ment of the reconstruction error if enough training data are employed as in our test cases.
Some regularization properties could be imposed in the latent dynamics to facilitate the
evolution of the NM-LPSG-ROC ROMs, for example imposing a linear latent dynamics
could be beneficial

• Purely data-driven LSTM ROM vs NM-LSPG-ROC and NM-LSPG-ROC-TS ROMs.
One crucial difference is interpretability: in the first case, the latent dynamics is obtained
training the LSTM to approximate the latent coordinates, in the second case, the latent
dynamics is evolved in timeminimizing the hyper-reduced residual based on the physical
model’s equations. Regarding the LSTM predictions, we have seen in the test cases that
despite the higher accuracy in the training range and the low computational online cost,
there might be other issues in the extrapolation regime: in the NLC test case, the accuracy
was sensitively lower in the extrapolation regime, even if it could be improved in theory
increasing the layers and nodes of the LSTM in exchange for a higher training cost; in the
SWE test case the initial time step from 0.01 to 0.017 s could not be well-approximated
due to different scales and overlappings in the latent dynamics. The NM-LSPG-ROC
and NM-LSPG-ROC-TS mitigated in some sense these issues, delegating less effort in
the tuning of the hyperparameters of the LSTM and increasing the interpretability of
the results. Moreover, the LSTM-NN, approximate the dynamics only every time step
imposed by the training input–output pairs, while the non-linear manifold ROMs, can
in principle approximate the latent dynamics with an arbitrary small time step, since the
decoder provides a continuous approximation of the solution manifold and the dynamics
is evolved based on a numerical schemewith changeable time step.With respect to purely

123

74 Page 34 of 39 Journal of Scientific Computing (2023) 94 :74

data-drivenmethods though, non-linear manifold methods require a lower reconstruction
error of the CAE since every successive ROMs’ dynamics evolution depends on howwell
the intermediate solutions are reconstructed through the decoder.

• Learn the solution manifolds with autoencoders in unstructured meshes. The natural
question of how to extend the CAE architecture to 3D or unstructured meshes, is being
currently studied. In the literature there are already interesting results that employ graph
neural networks and their variants to find latent representations of 3d simulations [23].

6 Conclusions and Perspectives

Wehave developed two newhyper-reduced non-linearmanifoldROMs:NM-LSPG-ROCand
NM-LSPG-ROC-TS, that can be converted in NM-LSPG-GNAT and NM-LSPG-GNAT-
TS. In NM-LPSG-ROC-TS the residuals of the NM-LSPG ROM are hyper-reduced with
over-collocation, while the decoder of the CAE is approximated with teacher–student train-
ing into a compressed decoder. In NM-LSPG-ROC only the residuals’ hyper-reduction is
carried out. The methods perform similarly in accuracy and computational cost w.r.t. the
NM-LSPG-GNAT with shallow autoencoders ROM introduced in [5], for a similar test case.
The flexibility of our method permits to change the CAE architecture depending on the prob-
lem at hand, without imposing too many constraints on its structure, in order to reach the
convergence faster and achieve a lower reconstruction error.

With respect to purely data-driven ROMs built on the CAE’s solution manifold, NM-
LSPG-ROC and NM-LSPG-ROC-TS provide more interpretable and, in the extrapolation
regimes, sometimes more accurate predictions, and they need less hyperparameters tuning,
once the CAE is trained. Moreover, the methods developed are equations-based rather than
fully-intrusive, and exploit the physics of the model to evolve the latent dynamics. It is cru-
cial, though, that the CAE’s reconstruction error is sufficiently low, since the latent dynamics
needs to be computed with numerical schemes that rely on the accuracy of the reconstructed
solutions through the decoder of the CAE or the compressed decoder. We base these obser-
vations on the results obtained for two parametric non-linear time-dependent benchmarks
presented in the numerical results Sect. 4, that is a 2d non-linear conservation law model
(NLC) and a 2d shallow water equations model. Despite the speed-up is not achieved or not
significant with respect to the FOMs, we reached satisfactory results in terms of the accuracy
and the latent or reduced dimension of the ROMs.

Future directions of research involve the implementation of the developed ROMs in more
complex applications with higher computational costs and degrees of freedom, such that a
more evident speed-up is reached. This may involve the development of more parsimonious
architectures and training procedures to reduce the offline cost. The research in geometric
deep learning will be crucial for the possible extensions of the present methodology to mesh-
based 2d and3d simulations.More has to be done also to further improve the interpretability of
the results possibly taking into account a probabilistic approach, for example using Bayesian
neural networks, and adhering more tightly to the physics of the model with additional
inductive biases.

Acknowledgements We acknowledge the PRIN 2017 “Numerical Analysis for Full and Reduced Order
Methods for the efficient and accurate solution of complex systems governed by Partial Differential Equations”
(NA-FROM-PDEs).

Funding Open access funding provided by Scuola Internazionale Superiore di Studi Avanzati - SISSA within
the CRUI-CARE Agreement. This work was partially funded by European Union Funding for Research and

123

Journal of Scientific Computing (2023) 94 :74 Page 35 of 39 74

Innovation-Horizon 2020 Program-in the framework of the European Research Council Executive Agency:
H2020 ERC CoG 2015 AROMA-CFD project 681447 “Advanced Reduced Order Methods with Applications
in Computational Fluid Dynamics” P.I. Professor Gianluigi Rozza.

Data availability The datasets generated during and analysed during the current study are available from the
corresponding author on reasonable request.

Declarations

Competing interests The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Neural Networks’ Architectures

The architectures of the CAEs are shown in Tables 5, 6, of the compressed decoders in
Tables 7 and 8, and of the LSTMs in Table 9. We mainly employ the Exponential Linear Unit
(ELU) and Rectified Linear Unit (ReLU) activation functions. The padding is symmetric.
The labels Conv2d, ConvTr2d and ConvTr2dRec, stand for 2d convolutions, transposed 2d
convolutions [36], and 2d transposed convolution associated to a recurrent layer, i.e. they are
summed to the previous layer and then passed to an ELU activation function.

Table 5 Nonlinear conservation
law model’s convolutional
autoencoder

Encoder Activation Weights Padding

Conv2d ELU [2, 8, 5, 5] 0

Conv2d ELU [8, 16, 3, 3] 1

Conv2d ELU [16, 32, 3, 3] 1

Conv2d ELU [32, 64, 3, 3] 1

Conv2d ELU [64, 128, 2, 2] 1

Linear ELU [1152, 4] –

Decoder Activation Weights Padding

Linear ELU [4, 1152] –

ConvTr2d ELU [128, 64, 2, 2] 1

ConvTr2d ELU [64, 32, 3, 3] 1

ConvTr2d ELU [32, 16, 4, 4] 1

ConvTr2d ELU [16, 8, 4, 4] 0

ConvTr2d ReLU [8, 2, 4, 4] 1

123

http://creativecommons.org/licenses/by/4.0/

74 Page 36 of 39 Journal of Scientific Computing (2023) 94 :74

Table 6 Shallow water equations
model’s convolutional
autoencoder

Encoder Activation Weights Padding

Conv2d ELU [2, 8, 5, 5] 0

Conv2d ELU [8, 16, 3, 3] 1

Conv2d ELU [16, 32, 3, 3] 1

Conv2d ELU [32, 64, 3, 3] 1

Conv2d ELU [64, 128, 2, 2] 1

Linear ELU [1152, 4] –

Decoder h Activation Weights Padding

Linear ELU [4, 1152] –

ConvTr2d ELU [240, 120, 2, 2] 1

ConvTr2d ELU [120, 60, 3, 3] 1

ConvTr2d ELU [60, 30, 4, 4] 1

The decoder for U has two recurrent layers

Table 6 continued Decoder h Activation Weights Padding

ConvTr2d ELU [30, 15, 4, 4] 0

ConvTr2d ReLU [15, 1, 4, 4] 1

Decoder U Activation Weights Padding

Linear ELU [4, 2700] –

ConvTr2d ELU [300, 75, 2, 2] 1

ConvTr2d ELU [150, 75, 3, 3] 1

ConvTr2dRec – [150, 75, 3, 3] 1

ConvTr2d ELU [75, 35, 4, 4] 1

ConvTr2d ELU [35, 20, 4, 4] 0

ConvTr2dRec – [35, 20, 4, 4] 0

ConvTr2d – [20, 2, 4, 4] 1

The decoder for U has two recurrent layers

Table 7 Nonlinear conservation law model’s compressed decoders

Magic points 1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

50 [4, 300] ELU [300, 278] ReLU

100 [4, 350] ELU [350, 492] ReLU

150 [4, 400] ELU [400, 670] ReLU

123

Journal of Scientific Computing (2023) 94 :74 Page 37 of 39 74

Table 8 Shallow water equations model’s compressed decoders: height h and velocity U in order

Magic points 1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

25 [4, 200] ELU [200, 238] ReLU

50 [4, 200] ELU [200, 345] ReLU

100 [4, 300] ELU [300, 590] ReLU

150 [4, 300] ELU [300, 654] ReLU

Magic points 1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

25 [4, 400] ELU [400, 478] –

50 [4, 400] ELU [400, 960] –

100 [4, 600] ELU [600, 1180] –

150 [4, 600] ELU [600, 1308] –

Table 9 Nonlinear conservation law model’s and shallow water equations model’s long-shot term memory
neural network

Input dim Output dim Number of LSTM layers

LSTM layer 2 100 2

1st layer weight 1st layer activation 2nd layer weight 2nd layer activation

Linear encoding layer [100, 50] ELU [50, 4] –

References

1. Hesthaven, J.S., Rozza, G., Stamm, B., et al.: Certified Reduced Basis Methods for Parametrized Partial
Differential Equations, vol. 590. Springer, Berlin (2016)

2. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An
Introduction, vol. 92. Springer, Berlin (2015)

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
4. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep con-

volutional autoencoders. J. Comput. Phys. 404, 108973 (2020)
5. Kim, Y., Choi, Y.,Widemann, D., Zohdi, T.: A fast and accurate physics-informed neural network reduced

order model with shallow masked autoencoder. arXiv preprint arXiv:2009.11990 (2020)
6. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction:

effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput.
Phys. 242, 623–647 (2013). https://doi.org/10.1016/j.jcp.2013.02.028

7. Chen, Y., Gottlieb, S., Ji, L., Maday, Y.: An EIM-degradation free reduced basis method via over collo-
cation and residual hyper reduction-based error estimation. arXiv preprint arXiv:2101.05902 (2021)

8. Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H., Parashar, M., Patra, A.,
Sethian, J., Wild, S., et al.: Workshop report on basic research needs for scientific machine learning: Core
technologies for artificial intelligence. Technical report, USDOE Office of Science (SC), Washington,
DC, USA (2019)

9. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
10. Benner, P., Ohlberger, M., Cohen, A., Willcox, K.: Model Reduction and Approximation: Theory and

Algorithms. SIAM, Philadelphia (2017)
11. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to

aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)
12. Franz, T., Zimmermann, R., Görtz, S., Karcher, N.: Interpolation-based reduced-order modelling for

steady transonic flows via manifold learning. Int. J. Comput. Fluid Dyn. 28(3–4), 106–121 (2014)
13. Bhattacharjee, S., Matouš, K.: A nonlinear manifold-based reduced order model for multiscale analysis

of heterogeneous hyperelastic materials. J. Comput. Phys. 313, 635–653 (2016)

123

http://arxiv.org/abs/2009.11990
https://doi.org/10.1016/j.jcp.2013.02.028
http://arxiv.org/abs/2101.05902

74 Page 38 of 39 Journal of Scientific Computing (2023) 94 :74

14. Bernard, F., Iollo, A., Riffaud, S.: Reduced-order model for the BGK equation based on POD and optimal
transport. J. Comput. Phys. 373, 545–570 (2018)

15. Díez, P., Muixí, A., Zlotnik, S., García-González, A.: Nonlinear dimensionality reduction for parametric
problems: a kernel Proper Orthogonal Decomposition (kPOD). arXiv preprint arXiv:2104.13765 (2021)

16. Li, W., Zhen, M., Yaolin, J.: Model order reduction based on Galerkin KPOD for partial differential
equations with variable coefficients. J. Numer. Methods Comput. Appl. 42(3), 226 (2021)

17. Lucia, D.J., King, P.I., Beran, P.S.: Reduced order modeling of a two-dimensional flow with moving
shocks. Comput. Fluids 32(7), 917–938 (2003)

18. Buffoni,M., Telib,H., Iollo,A.: Iterativemethods formodel reduction by domain decomposition. Comput.
Fluids 38(6), 1160–1167 (2009)

19. Mücke, N.T., Bohté, S.M., Oosterlee, C.W.: Reduced order modeling for parameterized time-dependent
PDEs using spatially and memory aware deep learning. J. Comput. Sci. 53, 101408 (2021)

20. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for non-
linear parametrized PDEs by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 388,
114181 (2022)

21. Xu, J., Duraisamy,K.:Multi-level convolutional autoencoder networks for parametric prediction of spatio-
temporal dynamics. Comput. Methods Appl. Mech. Eng. 372, 113379 (2020)

22. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going
beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

23. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., Battaglia, P.W.: Learning mesh-based simulation with
graph networks. arXiv preprint arXiv:2010.03409 (2020)

24. Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36(1),
1–12 (2016)

25. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential
equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

26. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Generalized reduced basis methods and n-width
estimates for the approximationof the solutionmanifold of parametric PDEs. In:Brezzi, F.,Colli Franzone,
P., Gianazza, U., Gilardi, G. (eds.) Analysis and Numerics of Partial Differential Equations, pp. 307–329.
Springer, Berlin (2013)

27. Geller, D., Pesenson, I.Z.: Kolmogorov and linearwidths of balls in Sobolev spaces on compactmanifolds.
Math. Scand. 115, 96–122 (2014)

28. Ohlberger,M., Rave, S.: Reduced basismethods: success, limitations and future challenges. arXiv preprint
arXiv:1511.02021 (2015)

29. Greif, C., Urban,K.: Decay of theKolmogorovN-width forwave problems.Appl.Math. Lett. 96, 216–222
(2019)

30. Franco, N.R., Manzoni, A., Zunino, P.: A deep learning approach to reduced order modelling of parameter
dependent partial differential equations. arXiv preprint arXiv:2103.06183 (2021)

31. DeVore, R.A., Howard, R., Micchelli, C.: Optimal nonlinear approximation. Manuscr. Math. 63(4), 469–
478 (1989)

32. Temlyakov, V.N.: Nonlinear Kolmogorov widths. Math. Notes 63(6), 785–795 (1998)
33. Pichi, F., Ballarin, F., Rozza, G., Hesthaven, J.S.: An artificial neural network approach to bifurcating

phenomena in computational fluid dynamics (2021)
34. Torlo, D.: Model reduction for advection dominated hyperbolic problems in an ALE framework: offline

and online phases. arXiv preprint arXiv:2003.13735 (2020)
35. Papapicco, D., Demo, N., Girfoglio, M., Stabile, G., Rozza, G.: The Neural Network Shifted-Proper

Orthogonal Decomposition: A Machine Learning Approach for Non-linear Reduction of Hyperbolic
Equations. Elsevier BV, Amsterdam (2022). https://doi.org/10.1016/j.cma.2022.114687

36. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates Inc, Red
Hook (2019)

37. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
38. Lee, K., Carlberg, K.: Deep conservation: a latent dynamics model for exact satisfaction of physical

conservation laws. arXiv preprint arXiv:1909.09754 (2019)
39. Smets, B., Portegies, J., Bekkers, E., Duits, R.: PDE-based group equivariant convolutional neural net-

works. arXiv preprint arXiv:2001.09046 (2020)

123

http://arxiv.org/abs/2104.13765
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/1511.02021
http://arxiv.org/abs/2103.06183
http://arxiv.org/abs/2003.13735
https://doi.org/10.1016/j.cma.2022.114687
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1909.09754
http://arxiv.org/abs/2001.09046

Journal of Scientific Computing (2023) 94 :74 Page 39 of 39 74

40. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neural networks for equiv-
ariance to lie groups on arbitrary continuous data. In: International Conference on Machine Learning, pp.
3165–3176. PMLR (2020)

41. Goyal, P., Benner, P.: LQResNet: a deep neural network architecture for learning dynamic processes.
arXiv preprint arXiv:2103.02249 (2021)

42. Quarteroni, A., Sacco, R., Saleri, F.: Matematica Numerica. Springer, Berlin (2010)
43. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
44. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–

Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181
(2011)

45. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to
efficient reduced-basis discretization of partial differential equations. C. R.Math. 339(9), 667–672 (2004)

46. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM
J. Sci. Comput. 32(5), 2737–2764 (2010)

47. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction:
effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput.
Phys. 242, 623–647 (2013)

48. Choi, Y., Carlberg, K.: Space-time least-squares Petrov–Galerkin projection for nonlinear model reduc-
tion. SIAM J. Sci. Comput. 41(1), 26–58 (2019)

49. Choi,Y., Coombs,D.,Anderson,R.: SNS: a solution-based nonlinear subspacemethod for time-dependent
model order reduction. SIAM J. Sci. Comput. 42(2), 1116–1146 (2020)

50. Stabile, G., Zancanaro, M., Rozza, G.: Efficient geometrical parametrization for finite-volume-based
reduced order methods. Int. J. Numer. Methods Eng. 121(12), 2655–2682 (2020)

51. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vis. 129(6),
1789–1819 (2021)

52. Stabile, G., Gianluigi, R.: ITHACA-FV in real time highly advanced computational applications for finite
volumes. http://www.mathlab.sissa.it/ithaca-fv. Accessed 28 Feb 2022

53. OpenFOAM Documentation Website. https://www.openfoam.com
54. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in

three-dimensional parabolic flows. In: Numerical Prediction of Flow, Heat Transfer, Turbulence and
Combustion, pp. 54–73. Elsevier, Amsterdam (1983)

55. Issa, R., Ahmadi-Befrui, B., Beshay, K., Gosman, A.: Solution of the implicitly discretised reacting flow
equations by operator-splitting. J. Comput. Phys. 93(2), 388–410 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2103.02249
http://eigen.tuxfamily.org
http://www.mathlab.sissa.it/ithaca-fv
https://www.openfoam.com

© The Author(s) 2023. This work is published under
http://creativecommons.org/licenses/by/4.0/

(the “License”). Notwithstanding the ProQuest Terms
and Conditions, you may use this content in
accordance with the terms of the License.

	Non-linear Manifold Reduced-Order Models with Convolutional Autoencoders and Reduced Over-Collocation Method
	Abstract
	1 Introduction
	2 Manifold Learning
	2.1 Approximability by n-Dimensional Subspaces and Kolmogorov n-Width
	2.2 Singular Values Decomposition and Discrete Spectral Decay
	2.3 Convolutional Autoencoders

	3 Evolution of the Latent Dynamics with NM-LSPG-ROC
	3.1 Non-linear Manifold Least-Squares Petrov–Galerkin
	3.2 Reduced Over-Collocation Method
	3.3 Over-Collocation Nodes Selection
	3.4 Compressed Decoder Teacher–Student Training

	4 Numerical Results
	4.1 Non-linear Conservation Law (NCL)
	4.1.1 Full-Order Model
	4.1.2 Manifold Learning
	4.1.3 Hyper-Reduction and Teacher–Student Training
	4.1.4 Comparison with Data-Driven Predictions Based on a LSTM

	4.2 Shallow Water Equations (SWE)
	4.2.1 Full-Order Model
	4.2.2 Manifold Learning
	4.2.3 Hyper-Reduction and Teacher–Student Training
	4.2.4 Comparison with Data-Driven Predictions Based on LSTM

	5 Discussion
	6 Conclusions and Perspectives
	Acknowledgements
	A Neural Networks' Architectures
	References

