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We give new short proofs of Allard’s regularity theorem for varifolds with bounded first variation and
Brakke’s regularity theorem for integral Brakke flows with bounded forcing. They are based on a decay
of flatness, following from weighted versions of the respective monotonicity formulas, together with
a characterization of non-homogeneous blow-ups using the viscosity approach introduced by Savin.

1 Introduction
Allard’s and Brakke’s ε-regularity theorems are key tools in the study of, respectively, minimal surfaces
and mean curvature flows, and they can be roughly stated as follows:

If a m-dimensional minimal surface (resp. the space-time track of a mean curvature f low) is sufficiently f lat in
the ball of radius 1 (resp. parabolic cylinder of radius 1) and its area is roughly the one of the unit m-dimensional
disk (resp. the weighted Gaussian density of a unit disk), then in a smaller ball (resp. parabolic cylinder) it can be
written as the graph of a smooth function that enjoys suitable a-priori estimates.

See Theorems 2.1 and 3.8 below for the rigorous statement. Note these results are also relevant in
the smooth category, since the scale and the regularity of the graphical parametrization of the surface
only depend on the a priori assumption of (weak) closeness to the m-dimensional unit disk.

The original proofs by Allard and Brakke are modeled on the pioneering ideas introduced by De Giorgi
in the regularity theory for co-dimension 1 area minimizing surfaces, [6] and on their implementation
done by Almgren in [2]. In particular, the proof is, roughly speaking, divided into the following steps:

(a) Under the desired assumption, it is possible to show that most of the surface can be covered by the
graph of a Lipschitz function, whose W1,2 norm can be estimated by the difference in area between
the surface and the plane.

(b) Since the minimal surface equation (respectively the mean curvature flow) linearizes on the
Laplacian equation (resp. the heat equation), this function is close to a harmonic (resp. caloric)
function that enjoys strong a priori estimates.

(c) These estimates can be pulled back to the minimal surface (resp. space-time track of the mean
curvature flow) to show that the initial assumptions are satisfied also in the ball of radius 1/2. A
suitable iteration provides then the conclusion.

In this approach, the two main difficulties lie in the approximation procedure in step (a) and in
proving that the closeness in step (b) is in a strong enough topology to be able to pull-back the estimates
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from the linearized equation. Among various references, we refer the reader to [7] for a very clear
account of Allard‘s theorem and to [11] for a simplified proof of Brakke theorem. Inspired by the work of
Caffarelli and Cordoba [5], in [12] Savin provided a viscosity type approach to the above proofs, in which
step (a) is completely avoided and step (b) is replaced by a partial Harnack inequality, obtained via
Aleksandrov–Bakelmann–Pucci (ABP) type estimates, see [14] and [19] for the extension to the minimal
surface system and to parabolic equations, respectively. This approach has been recently exploited by
the second named author to prove a boundary version of Brakke’s regularity theorem [8]. We also
mention that Savin’s partial Harnack inequality has been a crucial ingredient in the proof of the De
Giorgi conjecture on solutions of the Allen Cahn equation [13].

In this note, we show how combining both the “variational” and the “viscosity” approach, it is
possible to obtain a very short and self-sufficient proof of both Allard’s and Brakke’s theorems. The
key observation is that while viscosity techniques are very robust in allowing to pass to the limit in
the equation under L∞ convergence (a key step in Savin’s approach), the ABP estimate can be replaced
by a simple variational argument based on the fact that coordinates are harmonic (resp. caloric) when
restricted to the minimal surface (resp. mean curvature flow) and that for harmonic functions the mean
value inequality can be easily obtained by testing the weak formulation of the equation with a suitable
truncation of the fundamental solution, see for instance [4].

This short note is organized as follows: in Section 2 we prove Allard’s theorem and in Section 3 we
prove Brakke’s theorem. In order to make the note self-contained, we conclude with an appendix where
we record the proof of the maximum principle for varifolds and Brakke flows. Although the proofs are
done in the natural context of varifolds and Brakke flows, we invite the reader to take in mind the simple
case of a smooth surface with zero mean curvature and a smooth mean curvature flow.

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC- BY)
license to any Author Accepted Manuscript version arising from this submission.

2 Allard’s Regularity Theorem
In the following, we denote by Mm(U) the space of m-dimensional rectifiable Radon measures on U,
namely those Radon measures M on U for which there is a m-dimensional rectifiable set E ⊂ U with
Hm(E) < ∞ and M � Hm�E. If M ∈ Mm(U), then M = �m(M, ·)Hm, where

�m(M, x) = lim
r↘0

M(Br(x))

ωmrm

wherever the limit exists. For M-almost every x, the approximate tangent plane to M at x is well defined
and we denote it by TxM ∈ Gr(m, d). For S ∈ Gr(m, d) and F ∈ C1(U;Rd), we introduce the notation

divS F(x) =
m∑

i=1

∇F(x)ηi · ηi,

where {ηi}m
i=1 is any orthonormal basis of S. Next, for every p ∈ (1, +∞], we let Mp

m(U) be the set of those
measures M ∈ Mm(U) such that, for every W ⊂⊂ U, there is hW ∈ R such that∫

divTxM F(x) dM(x) ≤ hW

(∫
|F|p′

dM
)1/p′

(2.1)

for every F ∈ C1
c (W;Rd), where p′ is the conjugate exponent of p. To each M ∈ Mp

m(U), we associate a
vector field HM ∈ Lp

loc(M;Rd) such that∫
divTxM F dM = −

∫
HM · F dM (2.2)

for every F ∈ C1
c (U;Rd). We call HM the generalized mean curvature vector of M. Whenever the indication of

M is unnecessary, we write H in place of HM. Before stating the main result of this section, we introduce
the following notation: for S ∈ Gr(m, d), M ∈ M∞

m (BR), and x0, r such that Br(x0) ⊂ BR, we let

oscS(M, Br(x0)) = 1
2

sup
{|S⊥(x − y)| : x, y ∈ supp M ∩ Br(x0)

}
, (2.3)
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which corresponds to the radius of the smallest cylinder of the form {x ∈ R
d : |S⊥(x − y)| ≤ h} for some

y ∈ R
d that contains supp M ∩ Br(x0).

The goal of the present section is proving the following version of Allard’s theorem:

Theorem 2.1 (Allard’s regularity theorem). For every α ∈ (0, 1), there are δ0 > 0 and C > 0 with
the following property. Let M ∈ M∞

m (B1) and assume that 0 ∈ supp M, �m(M, x) ≥ 1 for M-almost
every x,

M(B1) ≤ (1 + δ0)ωm and ‖HM‖L∞(M) ≤ δ0.

Then supp M ∩ B1/2 is the graph of some function u ∈ C1,α(Bm
1 ;Rd−m) with

||u||C1,α ≤ C
(

inf
S∈Gr(m,d)

oscS(M, B1) + ||H||L∞(M)

)
.

If H is more regular, then Schauder estimates entail higher regularity for supp M, as well. We shall
prove Theorem 2.1 in Subsection 2.2. The next subsection is dedicated to proving a decay property of the
oscillations of supp M, which allows us to prove an improvement of flatness (see Theorem 2.8 below).

2.1 Decay of oscillations
In the present subsection, we assume the following:

Assumption 2.2. M ∈ M∞
m (BR) is such that:

(1) �m(M, x) ≥ 1 for M-almost every x ∈ BR;
(2) for every r ∈ [0, R], M(Br) ≤ 3

2 ωmrm.
(3) � := ‖HM‖L∞(M) < ∞.

Proposition 2.3 (Weighted monotonicity formula). Let f : BR → R be a non-negative, convex
function such that ‖∇f‖∞ ≤ 1. Provided 0 ∈ supp M, then for every 0 < r ≤ R

1
ωmrm

∫
Br

f dM ≥ f (0) − C0�
(‖f‖L∞(M) + r

)
r

for some C0 universal.

Remark 2.4. Although this fact will not be used in the following, we point out that the above
result holds true provided f is m-convex, meaning that the sum of the m smallest eigenvalues
of D2f is non-negative.

Proof. We begin with some preliminary computations. Assume m > 2 and let

h(x) = 1
ωmm(m − 2)

⎧⎨⎩ m
2 − m−2

2 |x|2 if |x| ≤ 1

|x|2−m if |x| ≥ 1 .

In the case m = 2, a logarithmic term replaces |x|2−m. Note that h ∈ C1,1(Rd) ∩ C2(Rd \ ∂B1) and

∇h(x) = − 1
mωm

⎧⎨⎩x if |x| < 1
x

|x|m if |x| ≥ 1
(2.4)

as well as

D2h(x) = − 1
ωm

⎧⎨⎩
1
m1 if |x| < 1

|x|−m
(

1
m1− x⊗x

|x|2
)

if |x| > 1 .
(2.5)
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For any 0 < r ≤ s < R, we then let

gr,s(x) = r2−mh(x/r) − s2−mh(x/s).

Note that gr,s ≥ 0 and gr,s ≡ 0 outside Bs. Straightforward computations give, using (2.4) and (2.5), for
any S ∈ Gr(m, d):

divS ∇gr,s(x) = − χBr

ωmrm
+ χBs

ωmsm
+ χBs\Br

ωm|x|m
( |Sx|2

|x|2 − 1
)

≤ − χBr

ωmrm
+ χBs

ωmsm
.

Moreover, since f is non-negative and convex

divS(f∇gr,s − gr,s∇f ) = f divS(∇gr,s) − gr,s divS(∇f )

≤ f divS(∇gr,s)

≤ − fχBr

ωmrm
+ fχBs

ωmsm
.

(2.6)

Let now

I(r) = 1
ωmrm

∫
Br

f dM.

By (2.2) and (2.6), for any 0 < r < s ≤ R, it holds

I(s) − I(r) ≥
∫

divTxM(f∇gr,s − gr,s∇f ) dM = −
∫

H · (f∇gr,s − gr,s∇f ) dM.

Therefore,

I(s) − I(r)
s − r

≥ −
∫

fH · ∇gr,s

s − r
dM +

∫
gr,s

s − r
H · ∇f dM =: −A1 + A2. (2.7)

By Hölder’s inequality, we may estimate

|A1| ≤ � sup
∣∣∣∣∇gr,s

s − r

∣∣∣∣ ∫
Bs

f dM ≤ C� sup
∣∣∣∣∇gr,s

s − r

∣∣∣∣ smI(s)

and

|A2| ≤ � sup
∣∣∣∣ gr,s

s − r

∣∣∣∣ ‖∇f‖∞M(Bs) ≤ C� sup
∣∣∣∣ gr,s

s − r

∣∣∣∣ sm

where in the second inequality we have used the fact that ‖∇f‖∞ ≤ 1 and Item 2 in Assumption 2.2
above. Direct computations give, using (2.4) and (2.5) together with the convexity of t �→ t−m,

lim sup
s↘r

sup
x∈BR

∣∣∣∣∇gr,s

s − r

∣∣∣∣ ≤ Cr−m, lim sup
s↘r

sup
x∈BR

∣∣∣∣ gr,s

s − r

∣∣∣∣ ≤ Cr1−m

for some C depending only on m. Thus, letting s ↘ r in (2.7), together with standard approximation
arguments (see for example [15, §17]), gives

I′(r) ≥ −C�(I(r) + r)

in the sense of distributions. We now multiply both sides of the latter inequality by the integrating factor
F(r) = eC�r and integrate from some h > 0 to r to obtain

I(r) ≥ eC�(h−r)I(h) − C�

∫ r

h
eC�(t−r)t dt ≥ I(h) − C�r‖f‖L∞(M) − C�r2,
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7598 | G. De Philippis et al.

where in the second inequality we have used the facts that et ≥ 1 + t and that, by Item 2 in
Assumption 2.2, I(h) ≤ C‖f‖L∞(M). Finally, if �m(M, 0) ≥ 1, letting h ↘ 0 in the above inequality gives
the desired result. Otherwise, if 0 ∈ supp M, then there is a sequence xj → 0 such that �m(M, xj) ≥ 1. The
result follows by continuity of f . �

Remark 2.5. The role of the factor 3/2 in Assumption 2.2 (2), as will be clear from the proof of
Proposition 2.6 below, is to rule out the possibility that M consists of two separated sheets,
which would clearly violate the conclusion of a Harnack inequality. On the other hand, for what
concerns Proposition 2.3, by virtue of the classical monotonicity formula (see, for instance, [15,
§17]), (2) in Assumption 2.2 may be replaced by the weaker assumptions

M(BR) ≤ E0Rm and � ≤ E0

R
,

with the caveat that C0 in the conclusion of Proposition 2.6 depends on E0.

The above result allows us to prove a partial Harnack inequality. We refer the reader to (2.3) for
the definition of oscS(M, Br(x0)). Whenever x0 = 0 and the indication of M and of the m-plane S is
unnecessary, as it is in the next two results, we write osc(Br) in place of oscS(M, Br(x0)).

Proposition 2.6 (Harnack inequality). Let M satisfy Assumption 2.2 and let 0 ∈ supp M. There
exists a universal constant η ∈ (0, 1) such that, if

osc(BR) ≤ ηR and � ≤ osc(BR)

R2
,

then

osc(BηR) ≤ (1 − η) osc(BR).

Proof. Let ε = 1
R osc(BR) and � = supp M. Since 0 ∈ supp M, we can choose y0 ∈ BεR such that � ∩

BR ⊂ {y : |S⊥(y − y0)| ≤ εR}. Assume, by contradiction, that there are points y1, y2 ∈ � ∩ BηR such that
|S⊥(y1 − y2)| > 2(1 − η)εR. Denote ω := S⊥(y1−y2)

|S⊥(y1−y2)| and consider

f1(x) =
(

(x − y0) · ω − εR
2

)+
and f2(x) =

(
−(x − y0) · ω − εR

2

)+

and let

Ii(r) = 1
ωmrm

∫
Br(yi)

fi dM.

Notice that, by assumption, ‖fi‖L∞(M∩BR) ≤ ε
2 R and � ≤ εR−1. Moreover, fi(yi) ≥ ( 1

2 − 2η
)
εR. Therefore, by

Proposition 2.3, for every θ ∈ [η, 1/2] (to be determined later), it holds

Ii(θR) ≥ fi(yi) − C0�θR
(‖fi‖L∞(M) + θR

)
≥

( 1
2

− 2η
)
εR − C0εθ

( ε

2
+ θ

)
R.

(2.8)

Since, by assumption, ε ≤ η ≤ θ ≤ 1
2 , we have C0εθ

(
ε
2 + θ

)
≤ 2C0θ

2ε ≤ C0θε. We thus obtain from (2.8)

Ii(θR) ≥
( 1

2
− 2η − C0θ

)
εR ≥

( 1
2

− (C0 + 2)θ
)
εR. (2.9)
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Note that supp f1 ∩ supp f2 = ∅. Using this fact and the assumptions M(Br) ≤ 3
2 ωmrm and |y1|, |y2| ≤ 2εR ≤

2ηR, we have

I1(θR) + I2(θR) ≤ 1
ωm(θR)m

∫
BθR(y1)∪BθR(y2)

f1 + f2 dM

≤ εR
2

M(BθR+2ηR)

ωm(θR)m

≤ 3
4

(
1 + 2η

θ

)m
εR ≤ 3

4

(
1 + C1

η

θ

)
εR

for some C1 depending only on m. We now specify our choices of θ and η. We first choose θ much smaller
than min{C−1

1 , (C0 + 2)−1} such that

2
( 1

2
− (C0 + 2)θ

)
>

3
4

(
1 + C1θ

)
.

Fixing η ≤ θ2, we obtain a contradiction from (2.9) and summing for i ∈ {1, 2}. �

As a corollary, we have the following:

Proposition 2.7. There are positive universal constants β and C with the following property. Let
M satisfy Assumption 2.2 and 0 ∈ supp M. Then, for every r ∈ [osc(BR) + �R2, R], it holds

osc(Br) ≤ C(osc(BR) + �R2)
( r

R

)β

.

Proof. By rescaling, assume R = 1. For some K large to be determined later, let

F(r) = osc(Br) + K�r2.

We claim that, if η is the constant determined in Proposition 2.6, then for any r such that osc(Br) ≤ ηr it
holds

F(ηr) ≤ (1 − η)F(r). (2.10)

Indeed, if � ≤ osc(Br)r−2, then Proposition 2.6 yields osc(Bηr) ≤ (1 − η) osc(Br), hence

F(ηr) ≤ (1 − η) osc(Br) + η2K�r2 ≤ (1 − η)F(r)

since η is much smaller than 1. Otherwise, if osc(Br) ≤ �r2, then

F(ηr) ≤ osc(Br) + K�η2r2

≤ K�r2
(

1
K

+ η2
)

≤ (1 − η)F(r)

as desired, provided K ≥ 1
1−η−η2 .

By induction, if ηk ≥ F(1), then

osc(Bηk ) ≤ F(ηk) ≤ (1 − η)kF(1).
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Now, for F(1) ≤ r < 1, let k ∈ N ∪ {0} be such that ηk+1 ≤ r < ηk. Then we have

osc(Br) ≤ osc(Bηk ) ≤ (1 − η)kF(1) ≤ 1
1 − η

ηβ(k+1)F(1) ≤ CrβF(1)

provided β is chosen small so that ηβ ≥ (1 − η) and C ≥ 1
1−η

. �

2.2 Allard’s theorem
We now prove the following:

Theorem 2.8 (Improvement of flatness). For every α ∈ (0, 1), there are positive constants c, ε0, η,
and C with the following property. Let M ∈ M∞

m (BR(x0)) be such that

• x0 ∈ supp M;
• �m(M, x) ≥ 1 for M-almost every x;
• for every x ∈ BR/2(x0) and 0 < r ≤ R/2 it holds M(Br(x)) ≤ 3

2 ωmrm;

and, for some ε ≤ ε0 and S ∈ Gr(m, d),

oscS(M, BR(x0)) ≤ εR and ‖HM‖L∞(M) ≤ cεR−1.

Then there is T ∈ Gr(m, d) with |S − T| ≤ Cε such that

oscT(M, BηR(x0)) ≤ η1+αεR. (2.11)

Before proceeding with the proof, we introduce the following notation. To every M ∈ Mm(U), we
associate a rectifiable varifold VM such that

∫
φ(x, S) dVM(x, S) = ∫

φ(x, TxM) dM(x) for every φ ∈ C0
c (U ×

Gr(m, d)). If M ∈ Mp
m(U) and HM = 0, we say that VM is stationary.

Proof. By rescaling and translating, we assume R = 1 and x0 = 0. We argue by contradiction and
compactness. Assume there are sequences εj ↘ 0, cj ↘ 0 and {Mj} ⊂ M∞

m (B1) such that the assumptions
of the theorem are satisfied with ε0 replaced by εj and c replaced by cj, for which however (2.11) fails for
any choice of η and T.

Before proceeding, we remark that, by compactness (see, for instance, [15, Theorem 42.7]), there is
M ∈ Mm(B1) such that 0 ∈ supp M, �m(M, x) ≥ 1 for M-a.e. x, M(B1 \ S) = 0, VM is stationary and VMj ⇀

VM. Therefore, M = �m(M, x)Hm�S and S � x �→ �m(M, x) has vanishing distributional gradient, thus
M = �0Hm�S for some �0 ≥ 1.

Let now �j = supp Mj; for every x ∈ R
d, define Fj(x) = (Sx, ε−1

j S⊥x) ∈ R
d and let

�̃j = Fj(�
j) ⊂ BS

1 × BS⊥
2 .

Notice that �̃j are relatively closed subsets of BS
1 ×BS⊥

2 and that they are non-empty, since by assumption

0 ∈ �̃j for every j. Therefore, there is a relatively closed set �̃ in BS
1 × BS⊥

2 such that, up to subsequences,
�̃j converges to �̃ in the Hausdorff distance.

For every x′ ∈ BS
1, we let

u(x′) = {y ∈ S⊥ : (x′, y) ∈ �̃}.

First, we show that u(x′) �= ∅ for every x′ ∈ BS
1. Indeed, otherwise, there would be r > 0 such that for

every j large enough

�̃j ∩ (BS
r (x

′) × BS⊥
2 ) = ∅,

hence, by compactness and lower semicontinuity of the mass,

0 = lim inf
j

Mj(BS
r (x

′) × BS⊥
2 ) ≥ M(BS

r (x
′) × BS⊥

2 ) ≥ ωmrm,

which is false.
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Secondly, we prove that u(x′) is a singleton for every x′ ∈ BS
1/2. Indeed, by Proposition 2.7, for every j,

every x ∈ �j ∩ B1/2 and every r ∈ (
Cεj,

1
2

)
, it holds

oscS(Mj, Br(x)) ≤ Cεjr
β .

Therefore, by Hausdorff convergence, for every x, y ∈ �̃ ∩ (BS
1/2 × BS⊥

2 ), it holds

|S⊥(x − y)| ≤ C|S(x − y)|β .

In particular, u(x′) is a singleton; for the rest of the proof, we denote by u(x′) the only element of u(x′).
Note further that this implies that u ∈ C0,β(BS

1/2). By Lemma 2.9 below, u is harmonic in BS
1/4. In particular,

since supBS
1/4

|u| ≤ 2, classical elliptic estimates yield

sup
BS

1/8

(|∇u| + |D2u|) ≤ C

for some C universal. Since u(0) = 0, we may choose η small depending only on C and α so that

|u(x′) − u(0) − ∇u(0)x′| ≤ C|x′|2 ≤ η1+α

2

for every x′ ∈ BS
2η. However, this implies that, for every j large enough and every x ∈ �j ∩ Bη, it holds

|S⊥x − εj∇u(0) (Sx)| ≤ εjη
1+α ,

which contradicts the assumptions made at the beginning of the proof. �

Lemma 2.9. u defined in the proof of Theorem 2.8 is harmonic.

Proof. We argue as in [14, Lemma 2.4]. Let h : BS
1/4 → S⊥ be the harmonic function such that (h−u)|∂BS

1/4
=

0. If u �= h, then there is 0 < δ < 1/2 small such that, for all j large enough, the function

Gj(x) = 1
2

∣∣∣∣S⊥x
εj

− h(Sx)

∣∣∣∣2

+ δ

2
|Sx|2

is such that Gj|�j achieves its maximum at some point xj with |Sxj| ≤ 1
4 −δ. We claim that j can be chosen

so large that, for every T ∈ Gr(m, d), it holds

divT ∇Gj(xj) > ‖HMj ‖L∞ |∇Gj(xj)|, (2.12)

which would contradict Proposition A.1. In the rest of the proof, C denotes constants (whose value may
change from one expression to the other), which depend only on d, m, and δ, but they are independent
of j. We start by noticing that, by standard elliptic estimates,

max{|∇h(Sxj)|, |D2h(Sxj)|} ≤ C.

Therefore, |∇Gj(xj)| ≤ C
εj

for j large enough and ‖HMj ‖∞|∇Gj(xj)| ≤ Ccj → 0 as j → ∞. Thus, in order to

prove (2.12), it is sufficient to prove that for j sufficiently large

inf
T∈Gr(m,d)

divT ∇Gj(xj) ≥ δ. (2.13)
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Let fj(x) = 1
εj

S⊥x − h(Sx) and let πS denote the orthogonal projection onto S. Then

D2Gj(xj) = D2fj(xj) · fj(xj) + ∇fj(xj)(∇fj(xj))
T + δπS

≥ D2fj(xj) · fj(xj) + δπS

=: Aj.

In particular, since �h = 0,

divS ∇Gj(xj) ≥ traceSAj = �h(Sxj) ·
(

S⊥xj

εj
− h(Sxj)

)
+ mδ = mδ,

where traceSAj = ∑m
i=1 Ajξi · ξi for any orthonormal basis {ξi}m

i=1 of S. Since |Aj| ≤ C, by continuity, it holds
divT ∇Gj(xj) ≥ δ for every T ∈ Gr(m, d) such that |T − S| ≤ γ for γ > 0 sufficiently small. This proves (2.13)
in the case |T − S| ≤ γ .

On the other hand, if |T−S| ≥ γ , then there is a unit vector η ∈ T such that |S⊥η| ≥ c0γ for some c0 > 0
depending only on the dimension. Then

divT ∇Gj(xj) ≥ traceTAj + |(∇fj(xj))
Tη|2.

We have |traceTAj| ≤ |Aj| ≤ C and

∣∣(∇fj(xj))
Tη

∣∣ =
∣∣∣∣−∇h(Sxj)Sη + 1

εj
S⊥η

∣∣∣∣ ≥ 1
εj

|S⊥η| − |∇h(Sxj)| ≥ c0γ

εj
− C,

thus divT ∇Gj(xj) ≥ (
c0γ

εj
− C)2 − C ≥ δ for j large enough. This proves (2.13) in the case |T − S| ≥ γ . �

Notice that the conclusion of Theorem 2.8 may be iterated at all scales. In particular, if we let

E(M, Br(x)) = inf
S∈Gr(m,d)

oscS(M, Br(x))

r
+ C‖H‖L∞(M�Br)r

for some C large, then Theorem 2.8 yields the existence of some universal constants η and ε0 such that

E(M, BηR) ≤ ηαE(M, BR)

provided E(M, BR) ≤ ε0. A straight-forward induction argument yields, for every r > 0,

inf
S∈Gr(m,d)

oscS(M, Br)

r
≤ E(M, Br) ≤ C

( r
R

)α

E(M, BR) (2.14)

for some C universal, provided E(M, BR) ≤ ε0.
We finally prove Theorem 2.1.

Proof of Theorem 2.1. Step 1. We claim that, if δ0 is small enough, then there exists S ∈ Gr(m, d) such
that the assumptions of Theorem 2.8 are in place for R = 1

4 and any x0 ∈ supp M ∩ B3/4. We argue
by compactness and contradiction: consider sequences δj ↘ 0 and {Mj} ⊂ M∞

m (B1) that satisfy the
assumptions of Theorem 2.1 with δ0 replaced by δj.

We first remark that, up to subsequences, there exists M ∈ Mm(B1) such that �m(M, x) ≥ 1 M-almost
everywhere, VM is stationary, M(B1) ≤ ωm and VMj ⇀ VM. By [1, Theorem 5.3], we have that M = Hm�S for
some S ∈ Gr(m, d).

Given α ∈ (0, 1), let now ε0 be the constant given in Theorem 2.8. Then, for j large enough,

supp Mj ⊂ {y : |S⊥y| ≤ ε0/2}.
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The only thing left to prove is that

Mj(B1/4(x)) ≤
(

1 + 1
4

)
ωm

4m
(2.15)

for every j large and every x ∈ supp Mj ∩ B3/4. Given the above inequality, by monotonicity ([15, §17]),
provided δ0 is smaller than some universal constant, we obtain Mj(Br(x)) ≤ 3

2 ωmrm for every 0 ≤ r ≤ 1
4 ,

as required in Theorem 2.8.
We now prove (2.15). If the result is false, then there exist a subsequence jk and points xk ∈ supp Mjk ∩

B3/4 such that

Mjk (B1/4(xk)) ≥
(

1 + 1
4

)
ωm

4m
. (2.16)

Up to extracting a further subsequence, xk → x ∈ B3/4 and, by monotonicity, x ∈ supp M. Therefore, for
any ε > 0,

ωm

(
1
4

+ ε

)m

= M
(

B 1
4 +ε(x)

)
≥ lim sup

k
Mjk

(
B 1

4 +ε(x)

)
≥ lim sup

k
Mjk (B1/4(xk))

contradicting (2.16) and thus proving the claim.

Step 2. We now prove that supp M∩B3/4 is the graph of some function u : S(supp M) → R
d−m. For the rest

of the proof, we let

ε := oscS(M, B1) + ||HM||L∞(M),

where S ∈ Gr(m, d) was determined in the previous step, and we set � := supp M. By iterating
Theorem 2.8, for every x ∈ � ∩ B3/4, we find Tx ∈ Gr(m, d) such that

|Tx − S| ≤ Cε (2.17)

and, for every r ≤ 1
4 ,

oscTx (M, Br(x)) ≤ Cεr1+α .

It then follows that, for any two x, y ∈ � ∩ B3/4, it holds

|T⊥
x (x − y)| ≤ Cε|S(x − y)|1+α .

together with (2.17), the above inequality shows at once that there is u : S(� ∩ B3/4) → R
d−m such that

� ∩ B3/4 = {x ∈ R
d : S⊥x = u(Sx)}

and that, for every x′ ∈ S(�), there is a linear function Lx′ : S → S⊥ such that, for every y′ ∈ S(�), it holds

|u(y′) − u(x′) − Lx(y′ − x′)| ≤ Cε|x′ − y′|1+α . (2.18)

Step 3. We conclude the proof by showing that S(�) ⊃ Bm
1/2. Once that is proved, (2.18) gives ||u||C1,α ≤ Cε,

as desired. We argue by contradiction: if Bm
1/2 \ S(�) �= ∅, since S(�) is relatively closed in Bm

1/2 and 0 ∈
supp M by assumption, there must be a ball Bm

r (x′) ⊂ Bm
1/2 \ S(�) and a point y′ ∈ ∂Bm

r (x′) ∩ S(�). If ε is
smaller than some universal constant, then y = (y′, u(y′)) ∈ � ∩ B3/4. Consider a blow-up sequence

Mi = M − y
ri
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with ri ↘ 0. Up to subsequences, Mi converges weakly to some M∞ ∈ M∞
m (B1) with VM∞ stationary.

Since � ∩ (Bm
r (x′) × S⊥) = ∅, (2.18) yields that supp M∞ is included in a m-dimensional half-plane. This

contradicts the Constancy Theorem (see, for instance, [15, Theorem 41.1]), concluding the proof. �

3 Brakke’s Regularity Theorem
In this section, we show how the arguments in the previous section may be adapted to the case of mean
curvature flows. Inspired by [11], we give the following definition.

Definition 3.1 (Brakke flow with transport term). We say that a family M = {Mt}t∈[0,�] of Radon
measures on U ⊂ R

d is a Brakke f low with transport term v in U × [0, �] if the following hold true:

(1) for almost every t ∈ [0, �], Mt ∈ M2
m(U) and, for Mt-almost every x, �m(Mt, x) is a positive integer.

(2) For every W ⊂⊂ U,

∫ �

0

∫
W

(
1 + |v|2 + |HMt |2

)
dMt dt < ∞.

(3) For every non-negative test function φ ∈ C1
c (U × [0, �]) and for every [t1, t2] ⊂ [0, �], it holds

Mt2 (φ(·, t2)) − Mt1 (φ(·, t1)) ≤
∫ t2

t1

∫ (
∂tφ + (−φH + ∇φ) · (H + v⊥)

)
dMt dt, (3.1)

where H is the generalized mean curvature vector of Mt, as defined in (2.2), and v⊥(x) = (TxMt)
⊥v(x)

for Mt-almost every x.

For a Brakke flow with transport as above, we define the measure M on U× [0, �] by
∫

φ(x, t) dM(x, t) =∫ ∫
φ(x, t) dMt(x) dt and the space-time track of M:

�M = Clos
( ⋃

t∈[0,�]

supp Mt × {t}
)

.

Remark 3.2. By virtue of [3, Chapter 5], it holds

HMt (x) ⊥ TxMt (3.2)

at M-almost every (x, t). This fact is used in Proposition 3.5 below.

3.1 Decay of oscillations
In the following, we denote by QR(x0, t0) the backwards parabolic cylinder BR(x0) × [t0 − R2, t0]. The
following assumptions will be used in the present subsection.

Assumption 3.3.

(1) M is a Brakke flow with transport term v in QR and (0, 0) ∈ �M;
(2) there is E1 < ∞ such that, for every (x, t) ∈ QR and Br(x) ⊂ BR, it holds Mt(Br(x)) ≤ E1rm;
(3) � := ‖v‖L∞(M) < ∞.

Before proceeding, we give the following definition:

Definition 3.4 (m-dimensional backward heat kernel). Let φ ∈ C∞
c ([0, 1)) be a cut-off function that

we fix hereafter such that φ ≡ 1 in [0, 1/2], |φ′| ≤ 3 and 0 ≤ φ ≤ 1 everywhere. For R > 0, we let
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�R : Rd × (−∞, 0) → R be defined as

�R(x, t) = 1
(4π(−t))m/2

exp
(

− |x|2
4(−t)

)
φ

( |x|
R

)
.

A direct calculation yields that there is C universal such that, for every S ∈ Gr(m, d) and for every
(x, t) ∈ R

d × (−∞, 0), it holds ∣∣∣∣∂t�R + divS ∇�R + |S⊥∇�R|2
�R

∣∣∣∣ ≤ C
χBR

Rm+2
. (3.3)

Proposition 3.5 (Weighted Huisken’s monotonicity formula). For every E1, there is C > 0 with the
following property. Let M and v satisfy Assumption 3.3, and let f : BR → R be a non-negative,
convex function with ‖∇f‖∞ ≤ 1. Then, for every (x0, t0) ∈ �M, every r > 0 such that Qr(x0, t0) ⊂
QR and every −r2 ≤ t < 0, it holds∫

f�r(· − x0, t) dMt0+t ≥ f (x0) − C
(
� + ε

r2
+ ε�2

)
(−t), (3.4)

where ε := ‖f‖L∞(M).

Proof. Up to rescaling and translating, we may assume r = 1 and (x0, t0) = (0, 0); for brevity, we let
�̂ := �1. By mollification, we may also assume that f ∈ C2(B1). Notice that, in this case, divS ∇f ≥ 0 for
any S ∈ Gr(m, d). By (3.3) and the above inequality, we have

∂t(f �̂) ≤ −f divS ∇�̂ − f
|S⊥∇�̂|2

�̂
+ CfχB1

≤ divS(�̂∇f − f∇�̂) − f
|S⊥∇�̂|2

�̂
+ CfχB1 .

In particular, for almost every t, it holds

∫
∂t(f �̂) dMt ≤

∫ (
−H · (�̂∇f − f∇�̂) − f

|(∇�̂)⊥|2
�̂

)
dMt + CE1ε, (3.5)

where we have used the facts that Mt ∈ M2
m for a.e. t and that Mt(B1) ≤ E1.

Let now I(s) = ∫
f �̂(·, s) dMs. We use φ = f �̂ as a test function in Definition 3.1. By (3.5), we obtain, for

−1 ≤ t ≤ s < 0:

I(s) − I(t) ≤
∫ s

t

∫ (
−f

|(∇�̂)⊥|2
�̂

+ 2fH · ∇�̂ − f �̂|H|2
)

dMτ dτ

+
∫ s

t

∫ (
v⊥ · (−f �̂H + ∇(f �̂))

)
dMτ dτ + CE1ε(s − t)

=
∫ s

t

∫
f �̂

(
−

∣∣∣∣ (∇�̂)⊥

�̂
− H

∣∣∣∣2 + v⊥ ·
(

(∇�̂)⊥

�̂
− H

))
dMτ dτ

+
∫ s

t

∫
�̂∇f · v⊥ dMτ dτ + CE1ε(s − t),

where (3.2) was used in the above equality. We then use Young’s inequality to bound v⊥ ·
(

(∇�̂)⊥
�̂

− H
)

≤
|v|2 +

∣∣∣ (∇�̂)⊥
�̂

− H
∣∣∣2 and obtain

I(s) − I(t) ≤
∫ s

t

∫ (
f �̂|v|2 + �̂|∇f ||v|) dMτ dτ + CE1ε(s − t). (3.6)
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Next, we estimate

∫
f �̂|v|2 dMτ ≤ �2

∫
f �̂ dMτ and

∫
�̂|∇f ||v| dMτ ≤ �

∫
�̂ dMτ ≤ C�E1,

where the latter inequality follows from Item 2 in Assumption3.3. Therefore, going back to (3.6), dividing
both sides by s − t and letting s ↘ t, we obtain

I′(t) ≤ �2I(t) + C(� + ε)

in the sense of distributions, for some C depending also on E1. Hence for every −1 ≤ t ≤ s < 0 it follows
that

I(t) ≥ I(s)e−�2(s−t) − C(� + ε)

∫ s

t
e�2(t−τ) dτ ≥ I(s) − C�2ε(−t) − C(� + ε)(−t)

where in the second inequality we used the inequality et ≥ 1 + t and the fact that I(s) ≤ CE1ε. With the
above inequality at hand, it is fairly standard to prove that, for any two sequences (xj, tj) → 0 and τj ↗ 0,
it holds

lim
s↗0

I(s) ≥ lim sup
j→∞

∫
f (·)�̂(· − xj, τj) dMtj+τj .

By choosing (xj, tj) such that Mtj has an approximate tangent plane at xj and τj converging to 0 fast
enough, we find

lim sup
j→∞

∫
f (·)�̂(· − xj, τj) dMtj+τj ≥ f (0),

as desired. �

Similarly to what we did in Section 2, for S ∈ Gr(m, d) and X ∈ �M we define the quantity

oscS(M, Qr(X)) = 1
2

sup
{|S⊥(x − y)| : (x, t), (y, s) ∈ �M ∩ Qr(X)

}
.

Proposition 3.6 (Harnack inequality). For every E1, there exists η ∈ (0, 1) with the following
property. Let M and v satisfy Assumption 3.3 with (0, 0) ∈ �M. Moreover, assume that, for every
t ∈ [−R2, 0),

∫
�R(·, t) dMt ≤ 3

2
,

that osc(QR) ≤ ηR and that �R2 ≤ osc(QR). Then

osc(QηR) ≤ (1 − η) osc(QR).

Proof. Let ε = 1
R osc(QR). We can thus choose y0 ∈ BεR such that �M ∩ BR ⊂ {y : |S⊥(y − y0)| ≤ εR}. Assume

by contradiction that there are two points Yi = (yi, si) ∈ �∩QηR, i = 1, 2, such that |S⊥(y1−y2)| ≥ 2(1−η)εR.
Denote ω := S⊥(y1−y2)

|S⊥(y1−y2)| and consider

f1(x) =
(

(x − y0) · ω − εR
2

)+
and f2(x) =

(
−(x − y0) · ω − εR

2

)+
.
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Consider η ≤ θ ≤ 1 and let T = −θR2. Since the fi are convex and ‖∇fi‖∞ ≤ 1, by Proposition 3.5

∫
fi�R/2(· − yi, T − si) dMT ≥ fi(yi) − C

(
� + ‖fi‖∞

R2
+ ‖fi‖∞�2

)
(si − T)

≥ fi(yi) − 3C0εθR,

where we have used that ‖fi‖∞ ≤ εR and � ≤ εR−1. By choosing θ small so that 3C0θ ≤ 1
10 and remarking

that fi(yi) ≥ ( 1
2 − 2η

)
εR, we obtain

∫
fi�R/2(· − yi, T − si) dMT ≥

(
2
5

− 2η

)
εR. (3.7)

Next, we bound from above the left-hand side of (3.7): provided η2 is much smaller than θ chosen
above, it holds T − si ≤ − θ

2 R2, hence there is some constant L such that

∣∣�R/2(x − yi, T − si) − �R/2(x, T)
∣∣ ≤ L

(
R−m−1|yi| + R−m−2|si|

) ≤ LηR−m

for every x ∈ R
d. Therefore,

∫
fi�R/2(· − yi, T − si) dMT ≤ εR

2

∫
supp fi

�R/2(· − yi, T − si) dMT

≤ εR
2

( ∫
supp fi

�R/2(·, T) dMT + LE1η

) (3.8)

where we have used the fact that MT(BR)

Rm ≤ E1.
If η is smaller than some universal constant, then supp f1 ∩ supp f2 = ∅, thus summing (3.7) and (3.8)

for i = 1, 2, we obtain

∫
�R/2(·, T) dMT ≥

(∫
supp f1

�R/2(·, T) dMT +
∫

supp f2

�R/2(·, T) dMT

)

≥ 2
2
εR

(
2
5

− 2η

)
εR − 2LE1η

= 8
5

− Cη

for some C depending on E1. Choosing η smaller, if needed, contradicts the assumption that∫
�R/2(·, T) dMT ≤ 3

2 , thus concluding the proof. �

As Proposition 2.6 implies Proposition 2.7, we obtain the following result as a corollary of Proposi-
tion 3.6.

Proposition 3.7 (Decay of oscillations). For every E1, there exist C and β with the following
property. Let M be a Brakke flow with transport term v in QR that satisfies Assumption 3.3
with (0, 0) ∈ �M and such that, for every t ∈ [−R2, 0),

∫
�R(·, t) dMt ≤ 3

2
.

Then, for every r ≥ C(osc(QR) + �R2), it holds

osc(Qr) ≤ C(osc(QR) + �R2)
( r

R

)β

.
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3.2 Brakke’s theorem
The present subsection is dedicated to the proof of the following version of Brakke’s regularity theorem:

Theorem 3.8 (Interior regularity). For every α ∈ (0, 1) and every E1, there are positive and small
constants θ and δ0 with the following property. Let M be a Brakke flow with transport term v
in Q1. Assume that:

• (0, 0) ∈ �M;
• for every t ∈ [−1, 0] and every Br(x) ⊂ B1, Mt(Br) ≤ E1rm;
•

∫
B1

�(·, −θ2) dM−θ2 ≤ 1 + δ0;
• ‖v‖L∞(M) ≤ δ0.

Then �M ∩ Qθ/8 is the graph of some function u ∈ C1,α(Qm
θ/8;Rd−m) with

||u||C1,α ≤ C
(

inf
S∈Gr(m,d)

oscS(M, Q1) + ‖v‖L∞(M)

)
.

In the above statement, by u ∈ C1,α(Qm
θ/8;Rd−m), we mean that (x, t) �→ u(x, t) is differentiable with

respect to x and that there is C > 0 such that, for every (x′, t), (y′, s) ∈ Qm
θ/8 it holds

|u(x, t) − u(y, s) − ∇u(x, t) · (y − x)| ≤ C
(|x − y|2 + |t − s|) 1+α

2 .

‖u‖C1,α corresponds (up to a multiplicative constant) to the smallest C for which the above inequality
holds.

Remark 3.9. This result is analogous to the “end-time regularity” proved in [16], although our
proof requires the forcing term v to be a L∞ function. We also remark that, differently from
the case of minimal varifolds, higher regularity on v does not straightforwardly yield higher
regularity for �M. In this regard, see [17].

Similarly to Theorem 2.1, Theorem 3.8 follows from an improvement of f latness, which we state and
prove next. We first make some preliminary assumptions:

Assumption 3.10. For some X0 = (x0, t0) and R > 0:

(1) M is a Brakke flow with transport term v in QR(X0).
(2) X0 ∈ �M.
(3) For every (x, t) ∈ QR/2(X0) and every − R2

4 ≤ τ < 0, it holds∫
BR/2(x)

�(· − x, τ) dMt ≤ 3
2

.

Theorem 3.11 (Improvement of flatness). For every α ∈ (0, 1), there are universal constants ε0, η
(small) and C (large) with the following property. Let M satisfy Assumption 3.10. Assume, in
addition, that for some ε ≤ ε0 and S ∈ Gr(m, d):

oscS(M, QR(X0)) ≤ εR and C‖v‖L∞(M) ≤ ε

R
. (3.9)

Then there exists T ∈ Gr(m, d) with |T − S| ≤ Cε such that

oscT(M, QηR(X0)) ≤ η1+αεR. (3.10)

Proof. By rescaling and translating, we may assume R = 1 and X0 = (0, 0). We argue by contradiction
and compactness: assume there exist a sequence εj ↘ 0 and two sequences {Mj} and {vj} such that Mj is
a Brakke flow with transport vj for which the assumptions of the theorem are satisfied with ε replaced
by εj. For brevity, we let �j := �Mj .
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Step 1: compactness and convergence to a plane. By Proposition 3.12 below, up to extracting a
subsequence (which we do not relabel), {Mj} converges to a Brakke flow without transport term M∞.
Moreover, M∞

t (Sc) = 0 for every t, hence M∞
t = �m(M∞

t , ·)Hm�S. Now, for almost every t, M∞
t ∈ M2

m and,
by Item 3 in Assumption 3.10 and by Huisken’s monotonicity, �m(M∞

t , x) ≤ E1 for every x. In particular,
by (2.1), for every φ ∈ C∞

c (S; S) it holds

∫
S
�m div φ =

∫
divS φ̃ dM∞

t ≤ C
(∫

|φ|2 dM∞
t

)1/2

≤ C
(

E1

∫
S
|φ|2

)1/2

,

where φ̃ ∈ C∞
c (Rd;Rd) is any extension of φ such that ||φ̃||∞ ≤ ||φ||∞. Hence, S � x �→ �m(M∞

t , x) is a locally
W1,2 function and, by Definition 3.1, it is integer-valued. Hence, for almost every t, either �m(M∞

t , ·) ≡ 0
or �m(M∞

t , ·) ≥ 1 for Hm-almost every x. However, (0, 0) ∈ �M∞ hence, by (3.1), it cannot be that M∞
t = 0

for some t < 0. Therefore, M∞
t ≥ Hm�S for almost every t ∈ [−1, 0].

Step 2: Hausdorff convergence. Let now

�̃j =
{(

Sx,
1
εj

S⊥x, t
)

: (x, t) ∈ �j
}

⊂ BS
1 × BS⊥

1 × [−1, 0].

By Item 2 in Assumption 3.10, �̃j �= ∅. Therefore, up to subsequences, {�̃j} converges in the Hausdorff
distance to some relatively closed set �̃ ⊂ BS

1 × BS⊥
1 × [−1, 0].

Step 3: �̃ is a graph. Let

u(x′, t) = {y ∈ BS⊥
1 : (x′, y, t) ∈ �̃}.

Arguing as in the proof of Theorem 2.8, by Step 1, we first show that u(x′, t) �= ∅ for every (x′, t) ∈ QS
1 .

Next, by Proposition 3.7, we conclude that u(x′, t) = {u(x′, t)} is a singleton for every (x′, t) ∈ QS
1/2 and that

u is Hölder continuous.
Step 4: conclusion. Arguing as in Lemma 2.9, Proposition A.2 below yields that u|QS

1/4
is a solution to the

heat equation. The desired result follows by the Hausdorff convergence established in Step 2 and by
classical Schauder estimates for the heat equation. �

The following result was used in the proof of Theorem 3.11.

Proposition 3.12 (Compactness). Let {Mj}, {vj} be two sequences such that, for each j, Mj is a
Brakke flow with transport term vj in QR. Assume that, for every W ⊂⊂ BR,

sup
t∈[−R2,0]

sup
j∈N

Mt(W) < ∞

and that

‖vj‖L∞(Mj) → 0.

Then there exist a subsequence {j�} ⊂ N and a Brakke flow M without transport term in QR

such that, for every t ∈ [−R2, 0], Mj�
t ⇀ Mt as Radon measures in BR.

Proof. The proof, in the case of Brakke flows without transport term, can be found in [10, §7]: the more
general case can be proved by straightforward modifications. See also [9, Section 4.2.2]. �

We conclude the present section by sketching the proof of Theorem 3.8.

Proof of Theorem 3.8. The proof is analogous to that of Theorem 2.1, thus we will only highlight the
relevant differences.
Step 1. We show that the assumptions of Theorem 3.11 are in place for every X0 ∈ �M∩Q3θ/4 and R = θ/4,
provided θ and δ0 in the statement of Theorem 3.8 are chosen small enough. In order to do so, we argue
by contradiction. For E1 and α fixed, assume there is a sequence {Mj} of Brakke flows with transport
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term vj that satisfy the assumptions of Theorem 3.8 with δ0 and θ replaced by some δj ↘ 0 and θj ↘ 0,
respectively. By Proposition 3.12 above, the rescalings

M̃
j =

{
M̃j

t = θ−m
j (μθj )�M

j
θ2

j t

}
t∈[−θ−2

j ,0]

(where μr(y) = y
r ) converge to a Brakke flow M̃ without transport term in R

d × (−∞, 0]. By Huisken’s
monotonicity formula, M̃ must be a stationary unit-density plane. Therefore, the assumptions of
Theorem 3.11 are satisfied for j large enough.
Step 2. With minor modifications from Step 2 of the proof of Theorem 2.1, one shows that �M ∩ Q3θ/4 is
the graph of some function u : S(�M ∩ Q3θ/4) → R

d−m and that, for every (x′, t) ∈ S(�M ∩ Q3θ/4), there is
L(x′ ,t) so that, for every (y′, s) ∈ S(�M ∩ Q3θ/4), it holds

|u(y′, s) − u(x′, t) − L(x′ ,t)(y′ − x′)| ≤ Cε(|x′ − y′|2 + |t − s|) 1+α
2 , (3.11)

where ε = oscS(�M, Q1) + ||v||L∞ .
Step 3. In order to prove that S(�M ∩ Q3θ/4) covers all of QS

θ/2, we argue by contradiction. Assume there
is (x′

0, t0) ∈ QS
θ/2 \ S(�M) with t0 < 0. Then there exists a smooth curve p : [t0, 0] → Bθ/2 and ρ > 0 with the

following properties:

⎧⎪⎪⎨⎪⎪⎩
p(t0) = x′

0 and p(0) = 0;

QS
ρ(p(t), t) ⊂ QS

θ/2;

QS
ρ(x′

0, t0) ⊂ S(�M)c.

For brevity, we let Q(t) := QS
ρ(p(t), t). Let now

t̄ = inf{t : Q(t) ∩ S(�M) �= ∅}.

Then IntQ(t̄)∩S(�M) = ∅ and there is (y0, s0) ∈ �M such that (y′
0, s0) ∈ ∂Q(t̄). By continuity of p, we exclude

the case y′
0 ∈ BS

ρ(p(t̄)) and s0 = t̄ − ρ2. Moreover, if it were y′
0 ∈ BS

ρ(p(t̄)) and s0 = t̄, then by monotonicity
(see, for instance, [18, Proposition 3.6]), it would be Q(t) ∩ S(�M) �= ∅ for t < t̄ close enough to t̄, which
would contradict the choice of t̄. Therefore, t̄ − ρ2 ≤ s0 ≤ t̄ and y′

0 ∈ ∂BS
ρ(p(t̄)). In particular,

S(�M) ∩ {s < s0} ⊂
⋃
s<s0

(
BS

ρ(p(s + t̄ − s0))
)c × {s}. (3.12)

Let us now consider a sequence rj ↘ 0 and define the dilations

Mj =
{
Mj

t = r−m
j (μrj ,y0 )�Ms0+r2

j t

}
t∈[−r−2

j ,0]

(where μr,x0 (y) = y−x0

r ). Proposition 3.12 yields that, up to subsequences, Mj converges to a limit Brakke
flow M∞ (without transport term). Then (3.11) and (3.12) imply that there exists a m-dimensional half
plane T+ such that

�M∞ ⊂ T+ × (−∞, 0].

Moreover, since (y0, s0) ∈ �M, we have (0, 0) ∈ �M∞ . We conclude by showing that this violates
Proposition A.2. Up to a change of coordinates, say T+ = {xm+1 = · · · = xd = 0 and xm > 0} and let

f (x, t) = |T⊥x|2
2

− |x′′|2
2m

+ |xm|2
2

− xm + 1
2m

t,
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where x′′ = (x1, . . . , xm−1). Then f |�M∞ ∩{t≤0} has a local maximum at (0, 0). However, it holds ∂tf (0, 0) = 1
2m

and

tracemD2f (0, 0) = 1 − (m − 1)
1
m

= 1
m

,

which contradicts Proposition A.2, thus proving the desired result. �

A Maximum Principles
For the sake of completeness, we prove two maximum principles that were used in the proofs of
Theorems 2.8 and 3.11. The proofs of Proposition A.1 and Proposition A.2 are inspired by [21] and [20,
Theorem 14.1], respectively. In what follows, for a symmetric matrix A, we let tracemA denote the sum
of the m smallest eigenvalues of A.

Proposition A.1. Let M ∈ M∞
m (U) be such that � := ‖H‖L∞(M) < ∞. If f ∈ C2(U) is such that f |supp M

achieves a local maximum at x0 ∈ supp M ∩ Int U, then

tracemD2f (x0) ≤ �|∇f (x0)|.

Proof. Without loss of generality, we assume that x0 = 0 and that f has a global strict maximum at 0.
By contradiction, assume that there is r > 0 such that

tracemD2f (x) − �|∇f (x)| ≥ δ

for every x ∈ Br. Up to choosing r smaller and up to adding a constant to f , we also assume that f (0) > 0
and that {f > 0} ∩ supp M ⊂ Br. By mollification, (2.2) and the assumption ‖HM‖∞ ≤ � give

�

∫
{f>0}

f |∇f | dM ≥
∫

{f>0}
divTxM(f∇f ) dM

=
∫

{f>0}

(∣∣∇TxMf (x)
∣∣2 + f (x) divTxM ∇f (x)

)
dM(x)

≥
∫

{f>0}
f divTxM ∇f dM,

where ∇TxMf (x) is the projection of ∇f (x) onto TxM. This yields

δ

∫
{f>0}

f dM ≤
∫

{f>0}
f
(

divTxM ∇f − �|∇f |) dM ≤ 0,

which contradicts the fact that 0 ∈ supp M. �

Proposition A.2. Let M be a Brakke flow with transport term v in U × [−�, 0] and assume that � :=
‖v‖L∞(M) < ∞. If f ∈ C2(U× [−�, 0]) is such that f |�M has a local maximum at X0 = (x0, t0) ∈ Int U×(−�, 0],
then

tracemD2f (X0) − ∂tf (X0) ≤ �|∇f (X0)|.

Proof. Up to a translation, we assume that (x0, t0) = (0, 0). Moreover, we assume that f |�∩{t≤0} has a strict
local maximum at (0, 0). Assume the result does not hold. In particular, since f ∈ C2, we can choose ρ > 0
and ε > 0 small so that:

(1) ∂tf − tracemD2f + �|∇f | < −ε < 0 in Qρ ;
(2) 0 < f (0, 0) ≤ 2ε

�2 and f < 0 in � ∩ {t ≤ 0} \ Qρ ;
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where the second point holds up to adding a constant to f . We now let φ(x, t) = (f+(x, t))4, where
f+ = max{f , 0}, and we use φ as a test function for (3.1). Since φ(·, −ρ2) = 0 by assumption, we have

0 ≤
∫

φ(·, 0) dM0 −
∫

φ(·, −ρ2) dM−ρ2

≤
∫ 0

−ρ2

∫ (
∂tφ + (−φH + ∇φ) · (H + v⊥)

)
dMt dt.

(A.1)

We now have ∫
H · ∇φ dMt = −

∫
divTxMt ∇φ dMt

for a.e. t, and we may bound −φH · v⊥ ≤ φ|H|2 + φ|v|2. Therefore, (A.1) gives

0 ≤
∫ 0

−ρ2

∫ (
∂tφ − divTxMt ∇φ + φ�2 + |∇φ|�)

dMt dt. (A.2)

Straightforward computations give

|∇φ| = 4(f+)3|∇f |, divTxMt ∇φ = 4(f+)3 divTxMt ∇f ≥ 4(f+)3tracemD2f

and ∂tφ = 4(f+)3∂tf . Therefore, (A.2) reads

0 ≤
∫ 0

−ρ2

∫
4(f+)3

(
∂tf − tracemD2f + |∇f |� + �2 f+

4

)
dMt dt. (A.3)

Since f has a maximum at 0, it holds �2 f+
4 ≤ �2 f (0,0)

4 ≤ ε
2 , hence

∂tf − tracemD2f + |∇f |� + �2 f+

4
≤ −ε + ε

2
= − ε

2

in Qρ ∩ {f ≥ 0}. The latter inequality and (A.3) yield M(Qρ) = 0, which contradicts the assumption
(0, 0) ∈ �M. �
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