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We give new short proofs of Allard’s regularity theorem for varifolds with bounded first variation and
Brakke’s regularity theorem for integral Brakke flows with bounded forcing. They are based on a decay
of flatness, following from weighted versions of the respective monotonicity formulas, together with
a characterization of non-homogeneous blow-ups using the viscosity approach introduced by Savin.

1 Introduction

Allard’s and Brakke's e-regularity theorems are key tools in the study of, respectively, minimal surfaces
and mean curvature flows, and they can be roughly stated as follows:

If a m-dimensional minimal surface (resp. the space-time track of a mean curvature flow) is sufficiently flat in
the ball of radius 1 (resp. parabolic cylinder of radius 1) and its area is roughly the one of the unit m-dimensional
disk (resp. the weighted Gaussian density of a unit disk), then in a smaller ball (resp. parabolic cylinder) it can be
written as the graph of a smooth function that enjoys suitable a-priori estimates.

See Theorems 2.1 and 3.8 below for the rigorous statement. Note these results are also relevant in
the smooth category, since the scale and the regularity of the graphical parametrization of the surface
only depend on the a priori assumption of (weak) closeness to the m-dimensional unit disk.

The original proofs by Allard and Brakke are modeled on the pioneering ideas introduced by De Giorgi
in the regularity theory for co-dimension 1 area minimizing surfaces, [6] and on their implementation
done by Almgren in [2]. In particular, the proof is, roughly speaking, divided into the following steps:

(a) Under the desired assumption, it is possible to show that most of the surface can be covered by the
graph of a Lipschitz function, whose W2 norm can be estimated by the difference in area between
the surface and the plane.

(b) Since the minimal surface equation (respectively the mean curvature flow) linearizes on the
Laplacian equation (resp. the heat equation), this function is close to a harmonic (resp. caloric)
function that enjoys strong a priori estimates.

(c) These estimates can be pulled back to the minimal surface (resp. space-time track of the mean
curvature flow) to show that the initial assumptions are satisfied also in the ball of radius 1/2. A
suitable iteration provides then the conclusion.

In this approach, the two main difficulties lie in the approximation procedure in step (a) and in
proving that the closeness in step (b) is in a strong enough topology to be able to pull-back the estimates
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from the linearized equation. Among various references, we refer the reader to [7] for a very clear
account of Allard'‘s theorem and to [11] for a simplified proof of Brakke theorem. Inspired by the work of
Caffarelli and Cordoba [5],in [12] Savin provided a viscosity type approach to the above proofs, in which
step (a) is completely avoided and step (b) is replaced by a partial Harnack inequality, obtained via
Aleksandrov-Bakelmann-Pucci (ABP) type estimates, see [14] and [19] for the extension to the minimal
surface system and to parabolic equations, respectively. This approach has been recently exploited by
the second named author to prove a boundary version of Brakke's regularity theorem [8]. We also
mention that Savin’s partial Harnack inequality has been a crucial ingredient in the proof of the De
Giorgi conjecture on solutions of the Allen Cahn equation [13].

In this note, we show how combining both the “variational” and the “viscosity” approach, it is
possible to obtain a very short and self-sufficient proof of both Allard’s and Brakke’s theorems. The
key observation is that while viscosity techniques are very robust in allowing to pass to the limit in
the equation under L> convergence (a key step in Savin’s approach), the ABP estimate can be replaced
by a simple variational argument based on the fact that coordinates are harmonic (resp. caloric) when
restricted to the minimal surface (resp. mean curvature flow) and that for harmonic functions the mean
value inequality can be easily obtained by testing the weak formulation of the equation with a suitable
truncation of the fundamental solution, see for instance [4].

This short note is organized as follows: in Section 2 we prove Allard’s theorem and in Section 3 we
prove Brakke's theorem. In order to make the note self-contained, we conclude with an appendix where
we record the proof of the maximum principle for varifolds and Brakke flows. Although the proofs are
donein the natural context of varifolds and Brakke flows, we invite the reader to take in mind the simple
case of a smooth surface with zero mean curvature and a smooth mean curvature flow.

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC- BY)
license to any Author Accepted Manuscript version arising from this submission.

2 Allard’s Regularity Theorem

In the following, we denote by My, (U) the space of m-dimensional rectifiable Radon measures on U,
namely those Radon measures M on U for which there is a m-dimensional rectifiable set E ¢ U with
HM(E) < oo and M « H™LE. If M € My (U), then M = @™ (M, -)H™, where

M(B, (%))

O™(M,x) = lim
N0 wnt™

wherever the limit exists. For M-almost every x, the approximate tangent plane to M at x is well defined
and we denote it by TyM € Gr(m, d). For S € Gr(m, d) and F € C}(U; R%), we introduce the notation

divs F(x) = > VF()n; - n;,
i=1

where {;)" | is any orthonormal basis of S. Next, for every p € (1, +oc], we let M,(U) be the set of those
measures M € M, (U) such that, for every W cc U, there is hy € R such that

1/p'
/ divr y FOO dM(X) < hy ( / PP dM) 2.1)

for every F e CH(W; R%), where p’ is the conjugate exponent of p. To each M € M? (U), we associate a
vector field Hy € L (M; R%) such that

loc
for every F e C}(U; RY). We call Hy the generalized mean curvature vector of M. Whenever the indication of
M is unnecessary, we write H in place of Hy. Before stating the main result of this section, we introduce

the following notation: for S € Gr(m, d), M € M%(Bg), and Xo, r such that B,(xo) C Bg, we let

1
0scs (M, By (X)) = 5 sup {IStx—y)I: x,y € suppMN B (x0)}, (2.3)
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7596 | G.De Philippis et al.

which corresponds to the radius of the smallest cylinder of the form {x € R?: |St(x — y)| < h} for some
ye R? that contains supp M N By (xo).
The goal of the present section is proving the following version of Allard’s theorem:

Theorem 2.1 (Allard’s regularity theorem). For every « € (0, 1), there are §o > 0 and C > 0 with
the following property. Let M € M%(B;) and assume that 0 € supp M, ®™(M, x) > 1 for M-almost
every x,

M(B1) < (14 80)wm and [IHM > < o.

Then supp M N By, is the graph of some function u e C*(BY; R4-™) with

[Tullcre < C( inf oscs(M,By) + ||HHL°°(M))-
SeGr(m,d)

If H is more regular, then Schauder estimates entail higher regularity for supp M, as well. We shall
prove Theorem 2.1in Subsection 2.2. The next subsection is dedicated to proving a decay property of the
oscillations of supp M, which allows us to prove an improvement of flatness (see Theorem 2.8 below).

2.1 Decay of oscillations
In the present subsection, we assume the following:

Assumption 2.2. M € M (Bg) is such that:

(1) ®™(M, %) > 1 for M-almost every x € Bg;
(2) for every r € [0,R], M(B,) < 3wmr™.
(3) A := |[Hullrequs < 0o.

Proposition 2.3 (Weighted monotonicity formula). Let f : Bg — R be a non-negative, convex
function such that ||Vfl|l« < 1. Provided 0 € supp M, then for every 0 <r <R

1

™

/B FAM > £(0) — CoA (If liman +1) 7

for some Cp universal.

Remark 2.4. Although this fact will not be used in the following, we point out that the above
result holds true provided f is m-convex, meaning that the sum of the m smallest eigenvalues
of D?f is non-negative.

Proof. We begin with some preliminary computations. Assume m > 2 and let

hGo = 1 ";mﬂxz iflxj<1

omM(m = 2) | |x2-m if x| > 1.

In the case m = 2, a logarithmic term replaces |x|>"™. Note that h € C**(R%) N C?*(R?\ 3B;) and

if 1
Vhao = - |*  HII< (2.4)
Mom | 25 if x> 1
as well as
1y if x| <1
D?h(x) :_i me , o) - x| < (2.5)
om | x| m(mll—p%) if |x] > 1.
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Forany O <r <s <R, we then let
Grs(x) = r2Mh(x/1) — 2 ™h(x/s).

Note that g,s > 0 and g,s = 0 outside B;. Straightforward computations give, using (2.4) and (2.5), for
any S € Gr(m, d):

XB, X, XB:\B, (lsxl2 B )<_ XB XE

divs Vg, s(X) = — + .
grs( om™  opS™ | wmlxI™ \|x)2 O™ ST

Moreover, since f is non-negative and convex

diVS(fvgr,s - gv,svf) =fdiVs(V9r,s) —Ors diVS(Vf)
= f divs (Vgrs) (2.6)
_Jxs | fxe

< .
wm ™M wms™

Let now

1
1M = W/deM.

By (2.2) and (2.6), for any 0 <1 < s <R, it holds

I(S) - I(Y) > /diVTxM(fvgv,s - gr,svf) dM = - / H- (fvgr,s - gr,svf) dM

Therefore,

©-10, _ fg

Vrs dM+/£H-vfdM — —AL+ Ay, (2.7)
S—7T S—7T S—7T

By Holder’s inequality, we may estimate

v
|A1| < Asup ' . %’j s™I(s)

/fdMgCAsup‘%
Bs S—7T

and

Irs Irs o™
S—r S—71

|A2|5ASUP’

IVflloM(By) < CA Sup’

where in the second inequality we have used the fact that ||[Vf|lx < 1 and Item 2 in Assumption 2.2
above. Direct computations give, using (2.4) and (2.5) together with the convexity of t — t™™,

Vg

Jrs

» ‘Scrl—m

1S

lim sup sup
SN\ X€BR

<Cr ™ lim sup sup

- SN\ X€Br S—T

for some C depending only on m. Thus, letting s \, r in (2.7), together with standard approximation
arguments (see for example [15, §17]), gives

I'm=-CAdmn +n

in the sense of distributions. We now multiply both sides of the latter inequality by the integrating factor
F(r) = e“A" and integrate from some h > O to r to obtain

.
I(r) > €A1y — CA/ ANt dt > 1(h) — CAT||f [lz=qn — CAT?,
h
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where in the second inequality we have used the facts that e¢ > 1 + t and that, by Item 2 in
Assumption 2.2, I(h) < C|[f lliequ. Finally, if ©"(M,0) > 1, letting h \{ 0 in the above inequality gives
the desired result. Otherwise, if 0 € supp M, then there is a sequence x; — 0 such that ©"(M, x;) > 1. The
result follows by continuity of f. |

Remark 2.5. The role of the factor 3/2 in Assumption 2.2 (2), as will be clear from the proof of
Proposition 2.6 below, is to rule out the possibility that M consists of two separated sheets,
which would clearly violate the conclusion of a Harnack inequality. On the other hand, for what
concerns Proposition 2.3, by virtue of the classical monotonicity formula (see, for instance, [15,
§17]), (2) in Assumption 2.2 may be replaced by the weaker assumptions

M(Bgr) < EoR™and A < %O,

with the caveat that Cy in the conclusion of Proposition 2.6 depends on Eo.

The above result allows us to prove a partial Harnack inequality. We refer the reader to (2.3) for
the definition of oscs(M, B/(Xg)). Whenever xo = 0 and the indication of M and of the m-plane S is
unnecessary, as it is in the next two results, we write osc(B,) in place of oscs(M, B (Xo)).

Proposition 2.6 (Harnack inequality). Let M satisfy Assumption 2.2 and let 0 € supp M. There
exists a universal constant n € (0, 1) such that, if

osc(B
osc(Br) < 3R and A< R(2 R),

then

0sc(Byr) < (1 — n) 0sc(Bp).

Proof. Let ¢ = 1 osc(Bg) and £ = suppM. Since 0 € suppM, we can choose yo € B.x such that £ n
Br C {y: ISt(y — yo)| < eR}. Assume, by contradiction, that there are points y;,y, € ¥ N B, such that

ISt (y1 — y2)| > 2(1 — n)eR. Denote w := éig%ﬁ;l and consider

eR

+ SR +
fl(X)=((xfyo)~wf 2) and fz(X)=(*(X*YO)‘w*?)
and let

Ii(n =

fidM.

on!™ JB, )

Notice that, by assumption, ||filli~mnrey < 5R and A < eR™1. Moreover, fi(y;) > (3 — 2n) eR. Therefore, by
Proposition 2.3, for every 0 € [n, 1/2] (to be determined later), it holds

L(BR) = fi(y) — CoAOR(Ifilli=quy + 6R)
(2.8)

> (% - Zr))eR - Coeé(% + 0)R4

Since, by assumption, e <n <6 < % we have cose(g + 6) < 2Coh%e < Cofe. We thus obtain from (2.8)

L(6R) > (% —on— coe)eR > (% —(Co+ 2)9)51{. (2.9)
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Note that supp fi Nsupp f> = #. Using this fact and the assumptions M(B,) < 3™ and |y1l, [y2| < 2¢R <
2nR, we have

[1(6R) + [, (9R) =< fi+f2dM

i
OmOR)™ Jgr (y1)UBr 72)
&R M(Bor24r)
2 “om@R)"

%(1 i %)MSR < %(1 + Cig)aR

IA

IA

for some C; depending only on m. We now specify our choices of 6 and . We first choose 6 much smaller
than min{C;, (Co +2)~") such that

1 3
2(5 —(Co+ 2)0) > 1(1 + C19) .
Fixing n < 62, we obtain a contradiction from (2.9) and summing for i e {1, 2}. |

As a corollary, we have the following:

Proposition 2.7. There are positive universal constants g and C with the following property. Let
M satisfy Assumption 2.2 and 0 € supp M. Then, for every r e [osc(Bg) + AR?, R], it holds

IR
osc(B,) < C(0sc(Bg) + AR?) (R)
Proof. By rescaling, assume R = 1. For some K large to be determined later, let
F(r) = osc(B,) + KAT?.

We claim that, if 5 is the constant determined in Proposition 2.6, then for any r such that osc(B,) < nrit
holds

Fom = 1 —=nF®). (2.10)
Indeed, if A < osc(B,)r~?, then Proposition 2.6 yields osc(B,r) < (1 — 1) osc(By), hence
F(m) < (1 — ) 0sc(By) + n’KAT* < (1= mF(M)
since 5 is much smaller than 1. Otherwise, if osc(B,) < Ar?, then
F(yr) < osc(B,) + KAp?r?
<KAT? (% + 772)
=@ -mFMm

as desired, provided K > ﬁ
By induction, if n¥ > F(1), then

osc(B,) < F(n") < (1 - n)*F(1).
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Now, for F(1) <7 < 1, let k e NU {0} be such that n**! < r < n*. Then we have
1
0sc(B)) < 0sc(B,) < (1= mF(1) < 7——n**"VEQ) < CrPE(Q)
-n

provided g is chosen small so that nf > (1 — ) and C > ﬁ u

2.2 Allard’s theorem
We now prove the following:

Theorem 2.8 (Improvement of flatness). For every a € (0, 1), there are positive constants c, &g, ,
and C with the following property. Let M € M (Br(X0)) be such that

® Xp € suppl;
e OM(M,x) > 1 for M-almost every x;
e forevery x € Bp2(Xp) and O < r < R/2 it holds M(B,(x)) < %a)mrm;

and, for some ¢ < g9 and S € Gr(m, d),
oscs(M,Br(xo)) <eR  and  [[Hulli=qn < ceR7%
Then there is T € Gr(m, d) with |S — T| < Ce such that

oscr(M, B,r(X0)) < n'**eR. (2.11)

Before proceeding with the proof, we introduce the following notation. To every M € My, (U), we
associate a rectifiable varifold Vi such that [¢(x,S) dVu(x,S) = [ ¢ (x, TxM) dM(x) for every ¢ € Co(U x
Gr(m,d)). If M € M, (U) and Hy = 0, we say that V) is stationary.

Proof. By rescaling and translating, we assume R = 1 and xo = 0. We argue by contradiction and
compactness. Assume there are sequences ¢ \ 0,¢ \ 0 and (M} C M (By) such that the assumptions
of the theorem are satisfied with ¢ replaced by ¢; and c replaced by ¢, for which however (2.11) fails for
any choice of n and T.

Before proceeding, we remark that, by compactness (see, for instance, [15, Theorem 42.7]), there is
M € My (B1) such that 0 € suppM, @™ (M, x) > 1 for M-a.e. X, M(B1 \ S) = 0, V) is stationary and V,; —
V. Therefore, M = @™ (M, x)H™.S and S > x — ©™(M,x) has vanishing distributional gradient, thus
M = OoH™LS for some Oy > 1.

Let now ¥/ = supp MJ; for every x € R?, define Fj(x) = (Sx, e;lsix) e RY and let

) :F}‘(Zj) CB? Xg.

Notice that ¥ are relatively closed subsets of BS x B3~ and that they are non-empty, since by assumption

0 € 3 for every j. Therefore, there is a relatively closed set £ in B x BS' such that, up to subsequences,
¥J converges to % in the Hausdorff distance.
For every x’ € B, we let

u)={yest: x,y) e}

First, we show that u(x’) # ¢ for every x' e B%. Indeed, otherwise, there would be r > 0 such that for
every j large enough

I NES) xBS) =0,

hence, by compactness and lower semicontinuity of the mass,

0 = Hminf M (BS(x) x BS ) > M(BS(X) x BS') > awt™,
J

which is false.
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Secondly, we prove that u(x') is a singleton for every x' B ,. Indeed, by Proposition 2.7, for every j,
every x € ¥ NByy and every r € (Cgj, %) it holds

oscs(M, B,(x)) < Cer?.

Therefore, by Hausdorff convergence, for every x,y € =N (Bﬁ/2 x Bg*), it holds
ISt (x =yl = CISx —IP.
In particular, u(x’) is a singleton; for the rest of the proof, we denote by u(x’) the only element of u(x’).

Note further that this implies that u € C®#(Bf ,). By Lemma 2.9 below, u is harmonic in B} ,. In particular,
since Supg; , lu| < 2, classical elliptic estimates yield

sup (|Vul + [D?ul) = C

S
Bijg

for some C universal. Since u(0) = 0, we may choose n small depending only on C and « so that

1+a
u(x') — u(0) — Vu(0)x'| < CIx'* < "T

forevery x' e Bgn. However, this implies that, for every j large enough and every x € ¥/ N B,, it holds
|Stx — &/ Vu(0) (Sx)| < gn'*,

which contradicts the assumptions made at the beginning of the proof. |
Lemma 2.9. u defined in the proof of Theorem 2.8 is harmonic.

Proof. We argue asin [14, Lemma 2.4]. Leth : BEM — S+ be the harmonic function such that (h—u)|33§/4 =
0.If u # h, then there is 0 < § < 1/2 small such that, for all j large enough, the function

2

18tx 8 e
G = 5 ‘T —hSx)| + §|SX|

is such that G;j|y achieves its maximum at some point x; with |Sx;| <  —8. We claim that j can be chosen

so large that, for every T € Gr(m, d), it holds

divr VGj(%)) > IIHy ll= VG (%)), (2.12)
which would contradict Proposition A.1. In the rest of the proof, C denotes constants (whose value may
change from one expression to the other), which depend only on d, m, and §, but they are independent
of j. We start by noticing that, by standard elliptic estimates,

max{|Vh(Sx;)|, ID*h(Sx;)|} < C.

Therefore, |VG;(x)| < g for j large enough and ||Hy; ll|VG;j(x;)| < C¢; — 0 as j — oo. Thus, in order to
prove (2.12), it is sufficient to prove that for j sufficiently large

ng}g]m divr VGj(x)) = 8. (2.13)
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Let fi(x) = %Slx — h(Sx) and let =5 denote the orthogonal projection onto S. Then

D?Gj(x) = D*fj(x)) - f; (%)) + V) (Vi x)T + 875
> Df;(x) - f;(x)) + 8ms

= Aj.

In particular, since Ah =0,

. SLX)’
divs VGj(x)) > tracesAj = Ah(Sx)) - .

where tracesA; = > 1) Aj§ - & for any orthonormal basis {£}" | of S. Since |Aj| < C, by continuity, it holds
divr VG;j(xj) > & for every T e Gr(m, d) such that [T -S| < y for y > 0 sufficiently small. This proves (2.13)
in the case [T -S| < y.

On the other hand, if [T -S| > y, then there is a unit vector € T such that |S*5| > coy for somecg > 0
depending only on the dimension. Then

divr VGj(x) > tracerA;j + |(Vf;x)) nl>.

We have |tracerAj| < |Aj| < C and

1 1
(VG0 | = |~Vh(Sx)Sn + —S*n| = ZIS*nl ~ [VRSx)l = 2L ~C,
] ] ]

thus divr VG;(x)) > (CE—JV —C)? — C > ¢ for j large enough. This proves (2.13) in the case |T -S| > y. |

Notice that the conclusion of Theorem 2.8 may be iterated at all scales. In particular, if we let

. oscs(M, By (x
EM,B,G) = inf SSMBOO) oy ey
SeGr(m,d) T

for some C large, then Theorem 2.8 yields the existence of some universal constants y and &g such that
E(M, Byr) < n“E(M, Br)

provided E(M, Br) < &. A straight-forward induction argument yields, for every r > 0,

. oscs(M, By) r\¢
nf SR <EMB) < C (ﬁ) E(M, Bg) (2.14)
for some C universal, provided E(M, Bg) < &o.

We finally prove Theorem 2.1.

Proof of Theorem 2.1. Step 1. We claim that, if §y is small enough, then there exists S € Gr(m, d) such
that the assumptions of Theorem 2.8 are in place for R = 1 and any xo € suppM N Bss. We argue
by compactness and contradiction: consider sequences § \ 0 and {M} c M7 (By) that satisfy the
assumptions of Theorem 2.1 with & replaced by §;.

We first remark that, up to subsequences, there exists M € M, (B;) such that ® (M, x) > 1 M-almost
everywhere, Vy, is stationary, M(B1) < wn and V,; — V. By [1, Theorem 5.3], we have that M = H™.S for
some S € Gr(m, d).

Given « € (0, 1), let now &g be the constant given in Theorem 2.8. Then, for j large enough,

supp M C {y: IS Yl < €0/2).
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The only thing left to prove is that

) 1\ wm
M (B14(0) < (1 + Z) - (2.15)

for every j large and every x € supp M N Bs,4. Given the above inequality, by monotonicity ([15, §17]),
provided &y is smaller than some universal constant, we obtain M (B/(x)) < %wmr’” forevery 0 <r < %,
as required in Theorem 2.8.

We now prove (2.15). If the result is false, then there exist a subsequence j, and points x, € supp M n
B34 such that

; 1\ on
M (B1ys(xe)) > (1 + Z) I (2.16)

Up to extracting a further subsequence, x, — x € B34 and, by monotonicity, x € supp M. Therefore, for
any e > 0,

1 m . . :
wm (Z + a) = M(B%ﬂ(x)) > hmksup Mk (B%H(x)) > hmksup M®(B1/4(Xk))

contradicting (2.16) and thus proving the claim.

Step 2. We now prove that supp MNBs,4 is the graph of some function u: S(supp M) — R%™. For the rest
of the proof, we let

& :=0scs(M, B1) + |[Hullr= ),

where S € Gr(m,d) was determined in the previous step, and we set £ := suppM. By iterating
Theorem 2.8, for every x € £ N By 4, we find Ty € Gr(m, d) such that

[Ty — S| < Ce (2.17)

and, for every r < 1,
oscr, (M, B;(x)) < Cer'te,
It then follows that, for any two x,y € £ N By/4, it holds
Ty (x = y)| < CelS(x —y)|**e.
together with (2.17), the above inequality shows at once that thereis u : S(X N Bzs) — R4 such that
¥ NBsa = {x € RY: Stx = u(Sx)}

and that, for every x’ € S(¥), there is a linear function Ly : S — S* such that, for every y’ € S(¥), it holds

[u@y’) — u) — Ly’ = x| < Celx’ —y'["*+*. (2.18)

Step 3. We conclude the proof by showing that S(£) D Bf},. Once that is proved, (2.18) gives |[ullc:« < Ce,
as desired. We argue by contradiction: if Bg”/z \ S(X) # @, since S(X) is relatively closed in Bg"/z and 0 €
supp M by assumption, there must be a ball B"(x') C BT, \ S(®) and a point y' € aB/"(x) N S(X). If e is
smaller than some universal constant, then y = (¥, u(y’)) € £ N Bs/4. Consider a blow-up sequence

M-y
Ti

M=
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with r; \, 0. Up to subsequences, M' converges weakly to some M® e M (B;) with Vy~ stationary.
Since © N BN(X) x St) = #, (2.18) yields that supp M* is included in a m-dimensional half-plane. This
contradicts the Constancy Theorem (see, for instance, [15, Theorem 41.1]), concluding the proof. ]

3 Brakke’s Regularity Theorem

In this section, we show how the arguments in the previous section may be adapted to the case of mean
curvature flows. Inspired by [11], we give the following definition.

Definition 3.1 (Brakke flow with transport term). We say that a family M = {M}c[0,q) of Radon
measures on U ¢ R? is a Brakke flow with transport term v in U x [0, ] if the following hold true:

(1) for almost every t € [0, @], M; € M2 (U) and, for M;-almost every x, @™ (M, x) is a positive integer.
(2) For every W cc U,

Q
/ /(1+|v|2+|HML|2)thdt<ooA
0 W

(3) For every non-negative test function ¢ € C}(U x [0, 2]) and for every [t1,t,] € [0, 2], it holds
ta
M, (9(, t2)) = My (9 (-, t1)) < / / (06 + (—pH + V) - (H+ ")) dM, dt, (3.9
ty

where H is the generalized mean curvature vector of M;, as defined in (2.2), and vt (x) = (TxMp)tu(x)
for Mi-almost every x.

For a Brakke flow with transport as above, we define the measure M on Ux [0, 2] by [ ¢(x,t) dM(x,t) =
J [ ¢(x,t) dM;(x) dt and the space-time track of M:

M= Clos( U supp M; x {t})A

te[0,92]

Remark 3.2. By virtue of [3, Chapter 5], it holds
Hy, (%) L TeM; (3.2)

at M-almost every (x,t). This fact is used in Proposition 3.5 below.

3.1 Decay of oscillations
In the following, we denote by Qgr(xo,to) the backwards parabolic cylinder Br(xo) x [to — R?,to]. The

following assumptions will be used in the present subsection.
Assumption 3.3.

(1) M is a Brakke flow with transport term v in Qg and (0,0) € Zu;
(2) there is E; < oo such that, for every (x,t) € Qg and B,(X) C Bg, it holds M(B,(x)) < E;r™;
(3) A = |[Vll=qu) < co.

Before proceeding, we give the following definition:

Definition 3.4 (m-dimensional backward heatkernel). Let ¢ € C([0, 1)) be a cut-off function that
we fix hereafter such that¢ = 1in [0,1/2], |¢/| <3 and 0 < ¢ < 1 everywhere. For R > 0, we let
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Up : RY x (—00,0) — R be defined as

VD) — T Ix)? x|
RED = oy Xp(f 4(,t))¢ (f)'

A direct calculation yields that there is C universal such that, for every S € Gr(m,d) and for every
(x,1) € R? x (=00, 0), it holds

IStV W |?
Wr

XBr
RmM+2"

;W + divs Vg + (33)

Proposition 3.5 (Weighted Huisken's monotonicity formula). For every E;, thereis C > 0 with the
following property. Let M and v satisfy Assumption 3.3, and let f : By — R be a non-negative,
convex function with ||Vf|lx < 1. Then, for every (xo, to) € Zm, every r > 0 such that Q,(xo, to) C

Qr and every —r? < t < 0, it holds
€ 2
FUr = 0,0 My ye = fx0) = C (A + 5 +847) (=), (3:4)
where ¢ := |If L~
Proof. Up to rescaling and translating, we may assume r = 1 and (Xo,to) = (0,0); for brevity, we let
U= 0. By mollification, we may also assume that f € C?(B;). Notice that, in this case, divs Vf > 0 for

any S € Gr(m, d). By (3.3) and the above inequality, we have

ISt vq/|2

*(fO) < —f divs VU — f + Cfxa
< divs(UVf — VD) —f@ + Cf x5,
In particular, for almost every t, it holds
/at(f@) dM; < / (7H (VS - fVU) 4%) dM: + CEqe, (3.5)

where we have used the facts that M; € M2, for a.e. t and that M;(B;) < E;.
Letnow I(s) = j‘f@(~, s) dMs. We use ¢ =f@ as a test function in Definition 3.1. By (3.5), we obtain, for
—-1<t=<s<O:

192
I(s)—l(t)</ /( (W’) C o v —f®|H|2) dM, dr
+/S/(ui-(—f®H+V(f®))) dM, dr 4 CEje(s — t)
t
s T\l TL
=//f®(— (V;) _H +ul-((vé’) —H))erdr
t

S
+/ /@vf.uLdM, dr + CEre(s — t),
t

2

where (3.2) was used in the above equality. We then use Young’s inequality to bound v+ - (ig’i - H) <

- 2
vl + ’szi - H’ and obtain

I(s) —I(t) < / / (f¥v|? + | Vfljul) dM, dt + CE1e(s — D). (3.6)
t
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Next, we estimate
/f®|u|2dM, < A2 /f@ dM,  and /®|vf||u|dM, < A/@dM, < CAEy,

where the latter inequality follows from Item 2 in Assumption3.3. Therefore, going back to (3.6), dividing
both sides by s — t and letting s \ t, we obtain

I'(t) < A%I(t) + C(A + &)

in the sense of distributions, for some C depending also on E;. Hence for every —1 <t < s < 0 it follows
that

S
I(t) = I(s)e™ 69 _ C(A + a)/ M7 dr > I(s) — CAZe(—t) — C(A + &)(—1)
t

where in the second inequality we used the inequality e* > 1 + t and the fact that I(s) < CE;e. With the
above inequality at hand, it is fairly standard to prove that, for any two sequences (x;, ;) — O and ; 0,
it holds

imlI(s) = lirjgi:lp/f(')@(- — %), 7)) AMg .

By choosing (x;,tj) such that My has an approximate tangent plane at x; and ¢ converging to 0 fast
enough, we find

limsuP/f(-)\Tf(- =X, ) My 14 > f(0),
J—oo

as desired. |
Similarly to what we did in Section 2, for S € Gr(m, d) and X € Xy we define the quantity
oscs(M, Q, (X)) = % sup {ISt(x —y)I: (x,1), (¢, s) € TMNQ O}
Proposition 3.6 (Harnack inequality). For every Eq, there exists n € (0,1) with the following

property. Let M and v satisfy Assumption 3.3 with (0, 0) € u. Moreover, assume that, for every
t € [-R?,0),

N w

/‘I’R(nt) dM: < 7,

that osc(Qr) < #R and that AR? < osc(Qgr). Then

0sc(Qur) < (1 —n)0sc(Qgr).

Proof. Lete = % 0sc(Qr). We can thus choose yo € B.g such that Ty NBgr C {y: [SH(y — yo)| < eR}. Assume
by contradiction that there are two points Y; = (y;,s;)) € ENQ,r, 1= 1,2,such that |St (y1—y2)| > 2(1—n)eR.

. Sty :
Denote w := BTGy and consider

R\ R\*
fl(X):((X—yo)~w—%) and fz(x):(—(x—yo).w_%) .
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Consider n < 6 <1 and let T = —4R?. Since the f; are convex and ||Vf;|l» < 1, by Proposition 3.5

IIfilloo
R2

/ff‘I’R/z(' -y, T—spdMr = fi(yp) — C (A + + ||fi\|oc1\2) si—=T)

> fi(yi) — 3CoebR,

that fi(y;)) > (3 — 2n) R, we obtain

where we have used that ||fi|l« < eéR and A < eR~1. By choosing 6 small so that 3Co8 < 1—10 and remarking

/ﬁ‘l’k/z(' —yi, T—s)dMr > (% - 277) eR. (3.7)

Next, we bound from above the left-hand side of (3.7): provided »? is much smaller than 6 chosen
above,itholds T —s; < —%Rz, hence there is some constant L such that

|Wr/2(x — i, T —s) — Wro(x, T)| <L (R y;| + R7™2|sy|) < LyR™™

for every x € RY. Therefore,

R
/fi\I/R/Z('*YivT*Si)dMT < % Wgo(- —yi, T —sp) dMr
suppfi

eR

(3.8)
< ( / W (-, T) My + LEm)
2 supp fi

where we have used the fact that Y1) < ;.
If n is smaller than some universal constant, then supp f1 Nsupp f> = @, thus summing (3.7) and (3.8)
fori=1,2, we obtain

/\I/R/z(-, T)dMr > (/ Wg)o(-, T) dMr +/ Wro(, T) dMT)
supp/i suppf

2 (2
225 (§72U)SR72LE171

8
=--cC
5 n

for some C depending on E;. Choosing n smaller, if needed, contradicts the assumption that

J Wrp2(-,T) dMr < 3, thus concluding the proof. [ ]

As Proposition 2.6 implies Proposition 2.7, we obtain the following result as a corollary of Proposi-
tion 3.6.

Proposition 3.7 (Decay of oscillations). For every Ei, there exist C and g with the following
property. Let M be a Brakke flow with transport term v in Qg that satisfies Assumption 3.3
with (0,0) € v and such that, for every t € [-R?,0),

/\IIR(-,t) dM; < %
Then, for every r > C(0osc(Qgr) + AR?), it holds

8
0sc(Q,) < C(osc(Qr) + AR?) (%)
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3.2 Brakke’s theorem
The present subsection is dedicated to the proof of the following version of Brakke’s regularity theorem:

Theorem 3.8 (Interior regularity). For every a € (0,1) and every Ey, there are positive and small
constants ¢ and §, with the following property. Let M be a Brakke flow with transport term v
in Q;. Assume that:

L4 (0,0) € XM,

e foreveryte [-1,0] and every B,(x) C B1, Mi(B,) < E;1™;
o fp, W, —07)dM_p < 1+ ;

® Vllequy < do-

Then ¥ym N Qyys 1s the graph of some function u € Cl-“(Qg'}g; RE™) with

llullcee = C{ inf oscs(M, Q1) + [[Vlli=qa )-
SeGr(m,d)

In the above statement, by u € Clv“(an/g;Rd*m), we mean that (x,t) — u(x,t) is differentiable with
respect to x and that there is C > 0 such that, for every (¥, t), (y',s) € Qs it holds
14a
U@, —u@,s) — vux, b - (y =0l < C(x -y’ +1t—s|) 2
lullcre corresponds (up to a multiplicative constant) to the smallest C for which the above inequality
holds.

Remark 3.9. This result is analogous to the “end-time regularity” proved in [16], although our
proof requires the forcing term v to be a L* function. We also remark that, differently from
the case of minimal varifolds, higher regularity on v does not straightforwardly yield higher
regularity for Zy. In this regard, see [17].

Similarly to Theorem 2.1, Theorem 3.8 follows from an improvement of flatness, which we state and
prove next. We first make some preliminary assumptions:

Assumption 3.10. For some Xy = (X0, to) and R > 0:

(1) M is a Brakke flow with transport term v in Qr(Xo).
(2) Xo € EM4
(3) For every (x,t) € Qgr/2(Xo) and every —R{ <1 <0,it holds

N W

/ (- —x,1)dM; <
Br2 (%)

Theorem 3.11 (Improvement of flatness). For every « € (0, 1), there are universal constants «o,
(small) and C (large) with the following property. Let M satisfy Assumption 3.10. Assume, in
addition, that for some ¢ < g and S € Gr(m, d):

&
0scs(M, Qr(Xo) <eR  and  Clulan = g (3.9)
Then there exists T € Gr(m, d) with |T — S| < Ce such that

oscr(M, Qur(Xo)) < n'**eR. (3.10)

Proof. By rescaling and translating, we may assume R = 1 and X, = (0,0). We argue by contradiction
and compactness: assume there exist a sequence ¢ \ 0 and two sequences (M} and {v/} such that M is
a Brakke flow with transport v for which the assumptions of the theorem are satisfied with ¢ replaced
by &. For brevity, we let ¥ := %;.
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Step 1: compactness and convergence to a plane. By Proposition 3.12 below, up to extracting a
subsequence (which we do not relabel), (M} converges to a Brakke flow without transport term M®.
Moreover, M®(S¢) = O for every t, hence M® = @™ (M, )H".S. Now, for almost every t, M® € M2, and,
by Item 3 in Assumption 3.10 and by Huisken’s monotonicity, ®™ (M, x) < E; for every x. In particular,
by (2.1), for every ¢ € C°(S;S) it holds

- 1/2 1/2
/@”’ dive :/div5¢dM§° <C (/ 1o de°) <C (E1/|¢|2) ,
S S

where ¢ € C®(R%; RY) is any extension of ¢ such that [16]lso < l|¢]lco. Hence, S s x > OM(M®, x) is a locally
W?? function and, by Definition 3.1, it is integer-valued. Hence, for almost every t, either @™ (M, ) =0
or @M, ) > 1 for H™-almost every x. However, (0,0) € Zy~ hence, by (3.1), it cannot be that M® = 0
for some t < 0. Therefore, M{® > H™.S for almost every t € [-1,0].

Step 2: Hausdorff convergence. Let now

~: 1 ; L

¥ = {(SX, fSlx,t) S(x,t) e 2}] C B xBS x[-1,0].

-
J

By Item 2 in Assumption 3.10, &/ # . Therefore, up to subsequences, {$/} converges in the Hausdorff
distance to some relatively closed set £ c BS x BS" x [-1,0].
Step 3: ¥ is a graph. Let

ux,h={yeB X,y te)

Arguing as in the proof of Theorem 2.8, by Step 1, we first show that u(x’,t) # ¢ for every (x',t) € Q3.
Next, by Proposition 3.7, we conclude that u(x’,t) = {u(x’, t)} is a singleton for every (x',t) € Qf/z and that
u is Holder continuous.

Step 4: conclusion. Arguing as in Lemma 2.9, Proposition A.2 below yields that ulgs,, is a solution to the
heat equation. The desired result follows by the Hausdorff convergence established in Step 2 and by
classical Schauder estimates for the heat equation. |

The following result was used in the proof of Theorem 3.11.

Proposition 3.12 (Compactness). Let {M}, {vj} be two sequences such that, for each j, M is a
Brakke flow with transport term v; in Qgz. Assume that, for every W cC B,

sup sup M;(W) < oo
te[-R?,0] jeN

and that

Vil @y = O.

Then there exist a subsequence {j;} ¢ N and a Brakke flow M without transport term in Qg
such that, for every t € [-R?,0], M — M, as Radon measures in Bg.

Proof. The proof, in the case of Brakke flows without transport term, can be found in [10, §7]: the more
general case can be proved by straightforward modifications. See also [9, Section 4.2.2]. |

We conclude the present section by sketching the proof of Theorem 3.8.

Proof of Theorem 3.8. The proof is analogous to that of Theorem 2.1, thus we will only highlight the
relevant differences.

Step 1. We show that the assumptions of Theorem 3.11 are in place for every Xy € SmNQsp/4 and R = 6/4,
provided 6 and & in the statement of Theorem 3.8 are chosen small enough. In order to do so, we argue
by contradiction. For E; and « fixed, assume there is a sequence {M'} of Brakke flows with transport
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term v; that satisfy the assumptions of Theorem 3.8 with & and 6 replaced by some § \ 0 and 6; \ 0,
respectively. By Proposition 3.12 above, the rescalings

MJ = [M)t = ejim('u"g])jM)(ﬂt] B
7T te[-677,0]

(where u,(y) = ¥) converge to a Brakke flow M without transport term in R? x (=0, 0]. By Huisken’s
monotonicity formula, M must be a stationary unit-density plane. Therefore, the assumptions of
Theorem 3.11 are satisfied for j large enough.

Step 2. With minor modifications from Step 2 of the proof of Theorem 2.1, one shows that Zy N Q34 is
the graph of some function u : S(Xm N Qagya) — R%*™ and that, for every (X, t) € S(Zm N Qsg74), there is

Ly so that, for every (y/,s) € S(Em N Qsp/4), it holds
[u(y’,s) —u(', t) = Lo (y' = x)| < Ce(IX' = y'|> + |t — sl)l%, (3.12)

where ¢ = 0scs(Zym, Q1) + |||~

Step 3. In order to prove that S(Em N Qzg/4) covers all of Qg/z, we argue by contradiction. Assume there
is (xp, t0) € Qg/z \ S(Em) with ty < 0. Then there exists a smooth curve p : [to, 0] - By2 and p > 0 with the
following properties:

p(to) = xp and p(0) = 0;
QS(p(t),H € Q5)y;
Q5 (x), t0) C S(Tm)".

For brevity, we let Q(t) := Q;f’ (p(t), t). Let now

t=inf{t: Q(t) N S(Em) # B).
Then IntQ(H)NS(Zm) = ¥ and there s (yo, So) € m such that (yp, so) € QD). By continuity of p, we exclude
the case y, € B (p(D) and sp = t — p?. Moreover, if it were y;, € BS (p(f)) and so = t, then by monotonicity

(see, for instance, [18, Proposition 3.6]), it would be Q(t) N S(Em) # @ for t < t close enough to t, which
would contradict the choice of t. Therefore, t — p? < 5o < t and y; € 3B (p(®)). In particular,

S N {s < so} € | (BS((s +T—50))" x {s}. (3.12)

s$<So
Let us now consider a sequence r; \ 0 and define the dilations

M =M = r)fm(Mn_yo)ﬁMswﬁ}tg[_ﬂ )
-

(where yurx,(y) = £=22). Proposition 3.12 yields that, up to subsequences, M converges to a limit Brakke
flow M* (without transport term). Then (3.11) and (3.12) imply that there exists a m-dimensional half
plane T* such that

Ime C TT x (=00, 0].

Moreover, since (yo,S0) € Xm, we have (0,0) € Zyx. We conclude by showing that this violates
Proposition A.2. Up to a change of coordinates, say T" = {Xm41 = -+ = X3 = 0and x,, > 0} and let

TLXZ X//Z X 2 1
L G SO Y

t) =
Jxb="—5 om T2 m
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where X" = (X1, ..., Xm-1). Then f|5, . nit<0y has a local maximum at (0, 0). However, it holds 8 (0,0) = ﬁ
and

1 1
trace, D’ f(0,0) =1- (M -1 — = —,
m_ m

which contradicts Proposition A.2, thus proving the desired result. |

A Maximum Principles

For the sake of completeness, we prove two maximum principles that were used in the proofs of
Theorems 2.8 and 3.11. The proofs of Proposition A.1 and Proposition A.2 are inspired by [21] and [20,
Theorem 14.1], respectively. In what follows, for a symmetric matrix A, we let trace, A denote the sum
of the m smallest eigenvalues of A.

Proposition A.1. Let M € M (U) be such that A := |H|~a < 0. If f € C*(U) is such that flsuppm
achieves a local maximum at xp € suppMNIntU, then

trace, D?f (o) < A|Vf(Xo0)|.

Proof. Without loss of generality, we assume that xo = 0 and that f has a global strict maximum at 0.
By contradiction, assume that there is r > 0 such that

trace,D’f(x) — A|Vf(X)| > §

for every x € B,. Up to choosing r smaller and up to adding a constant to f, we also assume that f(0) > 0
and that {f > 0} N supp M C B,. By mollification, (2.2) and the assumption |Hull» < A give

A / FIVldM = / divr v (FVf) dM
J{f>0} J{f>0}
= /{f |, (Fnaf ol feo divrn Vi) dieo
> / Fdivry Vf dM,
>0
where Vr uf (x) is the projection of Vf(x) onto TyM. This yields

5 fdMg/ F(divr,y Vf — AIVF])dM <0,
01 -0

which contradicts the fact that 0 € supp M. |

Proposition A.2. Let M be a Brakke flow with transport term v in U x [-, 0] and assume that A :=
Vllxn < oo. If f € C?(U x [-L, 0]) is such that fls,, has a local maximum at X = (xo, tp) € IntU x (-, 0],
then

tracemD?f (Xo) — 8 (Xo) < A|Vf(Xo)l-

Proof. Up to a translation, we assume that (o, to) = (0, 0). Moreover, we assume that f|sn<o; has a strict
local maximum at (0, 0). Assume the result does not hold. In particular, since f € C?, we can choose p > 0
and ¢ > 0 small so that:

(1) 8f — trace,D*f + A|Vf] < —e < 0in Q,;
(2)0<f(0,0)< 2 andf <0in TN {t <0}\ Q,;
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where the second point holds up to adding a constant to f. We now let ¢(x,t) = (f*(x,1)*, where
f* = max({f, 0}, and we use ¢ as a test function for (3.1). Since ¢(-, —p?) = 0 by assumption, we have

0= [o¢.0dMs ~ [ o0, a0
0
< / i / (3¢ + (—pH + Vo) - (H+vh)) dM; dt.
P
We now have
/ H.V¢dM, = — / divr, Vo dM,
for a.e. t, and we may bound —¢H - v+ < ¢|H|? + ¢|u|?. Therefore, (A.1) gives
0 .
0< / / (3:¢p — divr,g Vo + A% + |Vo|A) dM: dt.
7/77
Straightforward computations give
Vol = 4(F)%| VS, divry, Vo = 4(fH)3 divry, Vf > 4(FH)3trace, D*f
and &¢ = 4(f+)%d,f. Therefore, (A.2) reads
0 £+
0< / /4(f+)3 (atf — tracenD’f + |VfIA + AZZ) dM, dt.
,pZ
Since f has a maximum at 0, it holds A2% < AQWT’O) < £, hence

"
af — tracemD’f + |VfIA + AQ% <—e+ % =3

(A1)

(A.2)

(A3)

in Q, N {f > 0}. The latter inequality and (A.3) yield M(Q,) = 0, which contradicts the assumption

(0,0) € Zm.
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