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To my loved ones.

Vanity and pride are different things, though the words are often used synonymously.
A person may be proud without being vain. Pride relates more to our opinion of

ourselves, vanity to what we would have others think of us.

— Jane Austen, Pride and Prejudice
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Abstract

This thesis focuses on the effects of strong electron-electron interactions on topological
phase transitions. In very general terms, topological phase transitions are typically asso-
ciated with the formation of gapless states at the boundary between two gapped phases.
The opening of a gap is usually associated with a spontaneous symmetry breaking that
can obliterate the topological nature of the system.

In this work we highlight a completely different destiny for a topological transition in
the presence of interaction and we develop a theoretical framework to address this physics
identifying the physical origin for the unconventional scenario. In particular, we show that
strong electronic correlation can lead to a gap opening at the topological transition without
any symmetry breaking. This turns the topological transition discontinuous, thereby giving
rise to a quantum critical point connecting the continuous region with the discontinuous
one. This unconventional scenario establishes a surprising connection between a topological
transition and quantum criticality.

By solving a Bernevig-Hughes-Zhang model supplemented with a local symmetric in-
teraction, we demonstrate that the crucial role of orbital polarization naturally emerges,
already at the mean-field level. This local parameter effectively captures the essence of the
topological transition, complementing the established evaluation of topological invariants
and enabling a Landau-like description. Within this framework, we analyze the interplay
between band topology and the dynamical effects of electronic correlations, achieved by
developing a non-perturbative method for calculating the effective free energy, the Varia-
tional Gaussian Approximation, which is compared with both a simple static mean-field,
which is not able to capture any critical behavior for the topological transition and with
the accurate Dynamical Mean-Field Theory which provides an important benchmark for
the accuracy of the approach.

We show indeed that dynamical quantum fluctuations can lead to gap opening without
any symmetry breaking. The growth of these quantum effects as the interaction is increased
turns indeed the topological transition from continuous to discontinuous. This change of
behavior is associated with the presence of massive Dirac fermion at the transition point
showing a Gross-Neveu critical behaviour near the quantum critical endpoint.

We identify the gap opening as a condensed matter analog of the Coleman-Weinberg
mechanism of mass generation. The theory presented offers a broad scope for extension in
various directions, ranging from changing the topological model and modifying the inter-
actions, to incorporating non-local effects, or even applying it to entirely trivial strongly
correlated models.
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Introduction

In the last decades, it has become clearer and clearer that, despite their success and pre-
dictive power, the basic paradigms of condensed matter and solid-state physics are contin-
uously challenged by new discoveries and by the development of new concepts. Among the
main challenges to standard theories, a central role is played nowadays by topological ef-
fects in the electronic properties and by spectacular effects of electron-electron interactions
giving rise to strongly correlated states.

The discovery of topological insulators [1, 2] and other topologically nontrivial phases
has shown the existence of quantum phase transitions that can not be described within
Landau paradigm [3] based on the existence of a local order parameter and on the concept of
spontaneous symmetry breaking. On the other hand, strongly correlated electron systems
[4] are characterized by the fragility or even the breakdown of the band theory of solids,
which is instrumental to much of our understanding of the properties of solids, including
the calculation of topological invariants.

The discovery of topological aspects of insulators and superconductors has generated
a formidable effort which has been incredibly successful in the case of non-interacting
systems described in terms of bands, and it culminated perhaps in the definition of a kind
of new periodic table that classifies all topologically distinct band structures in the ten
Altland-Zirnbauer symmetry classes.

On the other hand, the study of strongly correlated electron systems became one of
the most lively and debated fields in solid state after it was realized that high-temperature
superconductivity emerges doping a Mott insulator. This led the community to develop
new methods and concepts that are nowadays used to explore the properties of a much
wider range of materials and quantum simulators.

The simultaneous relevance of non-trivial topological properties and sizeable electron-
electron correlations raises indeed a number of questions, ranging from the very possibility
of computing topological invariants when the bandstructure is no longer well defined to
the effects of correlations on the symmetries protecting topological phases.

In this thesis, we mainly address one of the most relevant questions arising in the
framework of correlated topological systems, namely the destiny of the topological phase
transition. Topological phase transitions are associated with a change in discrete global
topological invariants, as opposed to standard phase transitions, which are pinpointed by
a local order parameter. For non-interacting systems a topological transition is always
continuous, as the gap of the two insulating phases closes as the transition is approached
from both sides, leaving the system gapless right at the transition point.

It has, however, been proposed that, in the presence of sizeable electron-electron corre-
lations, this scenario may change substantially [5, 6]. In particular, it has been shown that
by adding local Hubbard-like interactions to the Bernevig-Hughes-Zhang (BHZ) [7] model,
one of the pioneering models to describe Integer Quantum Spin Hall Insulators, one can
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2 INTRODUCTION

obtain a discontinuous transition when the interaction strength exceeds a critical value.
This means that the gap will not close at the transition and that some kind of quantum
critical point is expected to mark the end of the continuous transition.

Notwithstanding the importance of these results, this observation leaves us with many
questions that deserve a thorough investigation that represents the backbone of the present
thesis.

The present work aims at (i) building an understanding of the physics behind a first-
order topological transition; (ii) drawing a picture of the transition that reconciles the
apparent thermodynamic nature of the transition with its intrinsic topological nature lever-
aging an analysis of the free-energy; (iii) developing a general formalism to treat the effect
of correlations on topological transitions which highlights the microscopic origin of the
various phenomena.

In order to achieve these goals, we will present a complete study using different theo-
retical methods.

We will first use a simple Hartree-Fock mean-field analysis of different versions of the
BHZ model supplemented by local interactions, which helps us to set up the stage for more
accurate approaches, identifying the crucial role of a standard local observable (the orbital
polarization) in a topological transition even in a framework where the topological invariant
can be easily computed from an effective bandstructure. In other words, we will show that
tracking standard thermodynamic observables can complement the information coming
from topological invariants, setting the stage for more spectacular effects of the interaction
that will be addressed using mode-accurate methods. We anticipate that, within the static
mean-field, the topological transition remains always continuous, calling for the inclusion
of dynamical effects beyond mean-field. We will also discuss the issues of an expansion of
the free energy in powers of the distance from the transition.

We will then present results from Dynamical Mean-Field Theory (DMFT) [8, 9] that
complement previous studies building a complete picture of the behavior of the model.
DMFT is a powerful non-perturbative approach that allows us to study any regime of pa-
rameters with comparable accuracy, and it emerged as a reference method for the study
of strongly correlated systems. We will find that, despite the overall shape of the phase
diagram changes as a function of the interaction parameters, the emergence of the critical
behavior is quite universal. In particular, it weakly depends on bandstructure parameters,
and it is found for different forms of the interaction Hamiltonian and for different param-
eters within the same model. We will identify and discuss some general conditions for the
form of the interactions that induce the critical behavior.

Finally, we come to the main novelty of the present thesis, the development of a semi-
analytical scheme to address the most compelling questions that we mentioned above.
The method, which we name Variational Gaussian Approximation, is based on a path-
integral formalism, and it includes fluctuation of every order [10]. In this sense, it improves
significantly over the standard approach, including Gaussian fluctuation on top of the
mean-field.

Within this approach, the orbital polarization is coupled with fluctuations in all the
other channels, which leads to a change of its expectation value with respect to mean-
field and, ultimately, to a possible change of the order of the transition. The result leads
indeed to a remarkable agreement with Dynamical Mean-Field Theory, which validates
our approach, both as a reliable approximation and as a successful strategy to provide a
physical picture of the correlated topological transition.
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Furthermore, we can identify the contributions arising from different channels demon-
strating a central role for the charge channel, which is in turn related to the intrinsic
features of strongly correlated fermions, including the Mott transition. This allows us to
build an exhaustive physical picture that connects, of course with some clear limitations,
the topological transition and its correlated phenomenology, with a more standard Landau
scenario when electronic correlations are important.

Our analysis promises to be much more general than the model we consider. In partic-
ular, we strongly believe that the picture we revealed is not specific to the BHZ model and
to a given form of the interaction. The key point behind our picture is that the topological
transition is coupled with a thermodynamic local observable which in turn is affected by
strong correlation effects. A similar situation can indeed be realized, e.g., in the Kane-Mele
model, where the sublattice unbalance plays a similar role to the polarization of the BHZ
model, and it can obviously be corrected by interaction effects. From a more method-
ological perspective, the VGA approach is not limited to the investigation of topological
problems, but it can be applied to a much wider class of correlated systems, providing an
insightful and reliable framework.

The thesis is organized into four large chapters that follow the plan that we outlined
above. The first chapter presents a concise introduction to the main concepts related to
topological insulators and electron-electron correlations, selecting only the information that
is important to follow in the present work. In the second chapter we present the Hartree-
Fock mean-field analysis, while the Third Chapter is devoted to Dynamical Mean-Field
Theory calculations, including previous literature and new results. The Fourth Chapter
presents the theoretical framework of the Variational Gaussian Approximation as well as
the results we obtain for the BHZ model supplemented by correlations. A section is devoted
to Conclusions and Outlooks.

In the thesis, we decided to follow a well-defined path connecting the results of different
methods. For this reason, the chapters are closely intertwined. Hence, each chapter starts
with a brief summary of the previous chapters which sets the stage for the new calculations.
For this reason, we decided not to include individual conclusions for every chapter, which
would have resulted in excessive repetitions.





Chapter 1

Topological Properties and Electronic
Correlations

Solid state physics is a field in continuous evolution in which the combination of experimen-
tal and theoretical advances leads to frequent changes in paradigm and the introduction
of novel concepts that challenge traditional theories. Yet, the cornerstone of our under-
standing of solids remains the band theory, which has been developed in the early decades
of quantum mechanics. Within this scheme, the properties of electrons in solids can be
understood in terms of the population of single-particle levels which in turn form bands
separated by energy gaps. The band theory predicts that systems in which some bands
remain partially filled behave as metals, while those in which a band is completely filled
and the next is empty are insulators.

This theory is incredibly successful, and it acquired an impressive predictive power
thanks to the development of density-functional theory[11, 12]. Yet, modern investigations
have shown both remarkable surprises hidden in this theory and important challenges from
materials in which the approach breaks down to some extent. The first situation has
been realized with the discovery of topological insulators[1, 2, 13] and in general with the
realization of the topological properties of the electronic states, while the second scenario
takes place in the so-called strongly correlated electron materials[4] like Mott insulators in
which the system is insulating despite the electron count would lead to a partially filled
band.

Indeed, in the last decade, the new paradigm of quantum materials[14] broadly includes
both compounds with non-trivial topological properties and compounds with strong corre-
lations, as well as those where both effects are simultaneously relevant. The experimental
advances propose continuous challenges to the theoretical understanding of new classes of
materials in which the topology and correlations are intertwined in different ways.

As a matter of fact, the exploration of topological properties in solid-state physics is
typically focused on systems where the electron interactions are relatively small and a
single-particle picture can be used, while the focus of the community working on strongly
correlated materials has not been primarily on systems with non-trivial topology. There-
fore, these two facets of quantum mechanics, often perceived as distinct if not exclusive,
have carved their distinct niches in the understanding of material properties and behaviors.
However, we believe that the experimental investigations clearly call for an effort to explore
the intersection of these two domains - a conceptual land whose exploration is in its early
stages, but holds the potential for groundbreaking discoveries.
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We are aware that the field of quantum materials in which both electronic correlations
and topology are relevant is immense and that the number of questions is so large that
it makes little sense to explore this idea in completely general terms. In this light, in the
present thesis we focus on one aspect, which we deem as one of the central questions. In
particular, we address the effect of electron-electron interactions on a topological phase
transition, and we show that the interplay between the two physical problems challenges
several assumptions that are made in the two separate fields.

While this thesis is mainly devoted to providing an answer to this point, which implies
the development of a theoretical framework that captures the two concepts of electronic
correlations and topology within a single approach, this initial chapter lays a foundational
understanding of both topological properties in solids and the nature of strong electronic
interactions. This approach is essential to appreciate their individual complexities and to
provide a picture of the established theories governing them.

The reader already familiar with one or both of these topics can skip most of the chapter
and focus on Chapters 2, 4, and 4, where our original investigation of a strongly correlated
model with a non-trivial electronic structure is carried out. However, this introductory
section sets the stage for our study presenting some concepts and arguments which we
believe are useful to appreciate the remainder of this work.

1.1 The Band Theory of Solids

The modern understanding of the electronic properties of solids relies firmly on the theo-
retical framework of the band theory of solids, which was developed soon after the foun-
dations of quantum mechanics were laid, providing one of the most spectacular among
the early successes of quantum theory. Among its success, the band theory provides us
with a straightforward yet conceptually non-trivial criterion for distinguishing and char-
acterizing metals and insulating systems [15] and is fundamental to much of our current
understanding of the electronic properties of solids, such as electrical resistivity or optical
absorption.

As we shall see in the next section, the concepts of topological phase transitions and
topological phases of matters are heavily rooted in the band theory, despite they have
been identified much more recently. On the other hand, strong correlated materials can be
defined as those where the band theory fails, either completely, as for Mott insulators, or
at least qualitatively, as in strongly correlated metals.

The conceptual backbone of the band theory of solids is the independent-particle ap-
proximation, which assumes that, despite the Coulomb interaction, the properties of the
electrons in a solid can be described in terms of non-interacting dressed particles moving
in an effective periodic potential, which reflects both the interaction with the ions forming
the lattice and, effectively, the mutual interaction between the electrons.

Within the band theory, the many-body state is thus simply constructed by occupying
all the single-particle energy levels following the Pauli principle, so that every eigenstate is a
Slater determinant composed of suitable single-particle eigenfunctions. As a consequence of
the periodic potential, the single-particle eigenvalues are labeled by the crystal momentum
k, and they are grouped into multiple energy bands ϵα(k), where α is an integer band
index. The bands are in turn separated by forbidden energy regions referred to as gaps.
The corresponding wave functions are Bloch states ψα,k(r) = eikruα(r), where uα(r) is a
function with the periodicity of the lattice. The form of the Bloch states makes it clear
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that they are itinerant delocalized wavefunctions which, however, carry the information
about the lattice periodicity.

One of the reasons of the success of the single-particle approximation, which may appear
a priori rather strong, is that the electronic properties are largely governed by valence
electrons, whose Coulomb interactions are reduced by the screening effect of core electrons.
This concept is central also to the Landau theory of normal Fermi liquids [3, 16, 17], which
proposes that the properties of a system at low temperatures are determined by the so
called quasi-particles, namely low-energy excitations near the Fermi surface which can
be put in a one-to-one correspondence with the excitations of a non-interacting systems.
These quasi-particles are well defined only at low-energy and low-temperature and they
are parameterized by effective parameters describing their effective mass and the small
residual interactions.

The development of density-functional theory (DFT)[11, 12] has provided the commu-
nity with a ladder of tools to accurately compute the bandstructure of actual solids using
different time-honored approximations, such as the local-density approximation, which ac-
count even quantitatively for the properties of a large number of materials.

However, the accuracy of the band theory is not universal, and it depends on the nature
of the solids we consider. It is reasonable to expect that the materials in which standard
implementations of DFT are expected to work best are those where the conduction energy
bands are broad, which corresponds to valence electrons spread out throughout the entire
solid, making the wave-like picture in k-space accurate.

On the other hand, for materials whose valence bands arise from localized orbitals, the
premise of the independent particle approximation falls short as the screened Coulomb
repulsion can not be neglected [18, 19]. This implies that a single-particle picture is no
longer sufficient, which implies, by definition, that the electrons become correlated with
each other. As we shall discuss below, this can lead to either a quantitative inaccuracy or
to a breakdown of the band picture associated with interaction-induced localization of the
electrons, which clearly contrasts with the momentum-space picture.

1.2 Phase Transitions: Landau Theory of Critical Phe-

nomena vs Topological Transitions

In the realm of condensed matter physics, a primary goal is to discern and describe the
various phases of matter and the mechanisms controlling the passage from one phase to
another, what we call a phase transition. A landmark advancement in this direction was
achieved by Landau [20], who introduced the concept of the order parameter, a quantity
that is finite in one phase, which is defined as the ordered phase and it vanishes in another,
disordered, phase, providing us with a simple tool to pinpoint phase transitions. The on-
set of the ordered phase results in a reduced symmetry which introduces the concept of
spontaneous symmetry breaking. The order parameter, manifesting as a real or complex
number, a vector, or even a spinor is obtained as the spatial average of local quantities,
which in the quantum world becomes the spatial average of the expectation value of a suit-
able local operator. A transition is of the first-order when the thermodynamic potentials
are continuous, but their derivatives (connected to thermodynamic observables) are dis-
continuous, while it is of the second-order when also the derivatives are continuous and the
only discontinuity is observed in the second derivatives of the thermodynamic potential,
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or susceptibilities. A typical situation features lines of first-order transitions ending in a
second-order point, which is usually called a critical point.

Within the Landau theory of phase transition, the free energy (or the relevant thermo-
dynamic potential) is a functional of the order parameter which is assumed to be regular so
that a perturbative expansion can be carried out, which allows for a simple and transparent
picture controlling the order of the transition in terms of the coefficients of the expansion.

Landau’s approach has proven successful in describing a vast array of phenomena in
completely different domains, ranging from the boiling of water and magnetization of solids
to superconductivity. Different phase transitions correspond to different broken symmetries
and order parameters, but the concept of universality unifies different phenomena in terms
of their critical behavior, i.e., the scaling of relevant observables as a function function of
the distance from the critical point.

Despite its impressive generality, Landau’s theory requires to deal with a local order
parameter, while there are phase transitions that seem to escape from this paradigm.

In the last decades, condensed matter physics has widened to encompass topologically
ordered phases, which notably can not be characterized in terms of a local order parameter.
This marks a significant deviation from Landau’s conventional framework, leading to a new
classification of quantum systems based on global markers.

Topological insulators (TIs) represent a subset within the broader spectrum of topolog-
ical states, characterized by their symmetry-protected topological order and the presence
of gapless edge states. A key aspect to distinguish these states are the global topological
invariants that can be derived for non-interacting systems described by the band theory
of solids from the band structure of the bulk system. These quantities are closely tied to
experimentally measurable properties, such as the Hall conductance. Despite the similarity
with trivial band insulators (BIs), from the point of view of the electronic structure, TIs
and standard BIs are truly distinct phases, since they cannot change unless the system
passes through a phase transition, or, in other words, their respective states cannot be
adiabatically connected without closing an energy gap. This process defines a topological
phase transition.

As we mentioned above, one of the goals of the present work is to bridge the gap
between the characterization of topological phase transitions and analyses of systems in
terms of their free energy and their expansion in terms of relevant local observables.

Obviously, we do not pretend to use a Landau theory to characterize topological phase
transitions. Yet, we can connect the transition with changes of suitable ”thermodynamic”
observables. This perspective has the advantage to offer insights into the mechanisms driv-
ing the transition, akin to the Landau approach. For the sake of definiteness, our research
focuses on a model describing the topological transition to a time-reversal invariant topo-
logical insulator in the presence of strong electron-electron interactions. By delving deeper
into the understanding of this theory, we hope to shed light on the nuanced interplay
between topological phases and their transitions, drawing parallels with established con-
cepts in Landau’s theory, thereby enriching our comprehension of these complex quantum
phenomena.

Before entering in the investigation of our model featuring topological properties and
the interactions, we introduce briefly the main concepts necessary to understand the non-
interacting model (Sec. 1.3) and those characterizing the physics induced by electron-
electron interactions in lattice models (Sec. 1.4)
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1.3 Time-Reversal Protected Topological Insulators

Historically, the first model describing a topological insulator was introduced by Haldane
[21] in 1988. He demonstrated that a topologically nontrivial insulator with nonzero Hall
conductance can exist in systems where time-reversal symmetry (TRS) is broken. The
model describes a single sheet of graphite, which was later discovered and named graphene
in terms of a hexagonal lattice with nearest-neighbor and next-nearest-neighbor hopping.

The electronic dispersion of the honeycomb lattice with nearest-neighbour hopping

shows two distinct gapless points K± = 2π
3

(
1,± 1√

3

)
, where the Bloch Hamiltonian has

linear dispersion. Interestingly, gaps in these Dirac fermions can be opened, making the
bulk of the system gapped, a necessary condition to obtain a topological state.

A trivial way open the gap would be breaking inversion symmetry by assigning an
opposite on site energy M and −M to the Dirac points. However, this state preserves
time-reversal symmetry and describes an ordinary band insulator. Haldane imagined to
lift the degeneracy by adding a periodic local magnetic flux density B(r) in the ẑ direction,
with the full symmetry of the lattice, and with zero total flux through the unit cell. In this
way, if one includes in the model a second real hopping term between next neighbor sites,
its amplitude acquires an Aharanov-Bohm phase ϕ. In this case, surface states will connect
the detached vertices of the cones, by crossing the gap. The presence of the gap-closing
(chiral) edge mode related to a nontrivial Hall conductance is a hallmark of the topological
character for such a TRS-breaking Quantum Hall Insulator. This reflects in the possibility
to characterize the Quantum Hall state in terms of c = ±1 Chern number, and this is why
the solution of the Haldane model has been baptized as a Chern insulator.

For a two level Hamiltonian of the form

H(k) = d(k) · σσσ + b(k) (1.1)

which is the simplest 2 × 2 Hermitian matrix and where σ are the Pauli matrices, the
Chern number can be evaluated as

C =
1

4π

∫
BZ

d2k

(
∂d̂

∂kx
× ∂d̂

∂ky

)
· d̂. (1.2)

This quantity counts the number of times the unit vector d̂(k) = d(k)
|d(k)| wraps around the

unit sphere when k spreads over the Brillouin torus.
More than fifteen years after Haldane’s model was published, a novel concept started to

develop based on the idea that preserving symmetries could yield systems as intriguing as
those where symmetries are broken, opening novel perspectives. Kane and Mele [22] indeed
extended the Haldane model by incorporating the electron spin, leading to an insulator
that retains TRS and possesses robust, gapless helical edge states. The authors considered
the effects of Spin-Orbit Coupling (SOC) as a mean to open a gap at the Dirac nodes.
The resulting model, dubbed Kane-Mele model, describes two different and topologically
distinct phases of matter. A trivial band insulator and a novel state of matter which takes
the name of Quantum Spin Hall Insulator (QSHI) [23]. The distinct topological states are
classified by the two possible values of the Z2 invariant, that can be only ν = 0 or 1, unlike
the Chern number that can take any integer value. The need for this new index is because
the Hall conductance of the QSHI vanishes: the (transverse) Hall current Jx = σxyEy

generated in response to an applied electric field in the y direction is odd under T , while
Ey is not, so if TRS holds it must necessarily be σxy = 0.
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The QSHI exhibits a new type of conducting edge states that propagates in both di-
rections, at both edges, without reflecting. That is guaranteed by the same time-reversal
symmetry thanks to which any backscattering between each pair of counterpropagating
edge states is not allowed, since electrons cannot flip their spin. These states are often
referred to as helical edge states, because the direction of propagation is linked to the
valued of the spin. In the next section we will show that the dichotomical nature of the Z2

invariant is connected to the parity of the number of time-reversal pairs of edge states at a
single edge: the system is trivial (ν = 0) if there is an even number of pairs and topological
(ν = 1) if odd. In order to understand this result in the next subsection we illustrate the
role of the time reversal symmetry for spin-1/2 particles.

1.3.1 The Z2-invariant

The results obtained by Kane and Mele about the QSHI pointed out directly the importance
of protecting symmetry, in the specific case time reversal. The time reversal transformation
t → −t [24] is represented by the anti-unitary operator T = eiπSy/ℏK, where Sy is the y
component of the spin operator and K is the complex conjugation. For a half-integer spin
system, T has the property T 2 = −1, whose direct consequences is Kramers’ theorem: all
the eigenstates of a T -invariant Hamiltonian ([H, T ] = 0) are at least two-fold degenerate.
Each pair of eigenstates has to be formed by orthogonal partners, because if the transformed
state was proportional to the original one T |ϕ⟩ = c|ϕ⟩, it would imply, in a contradictory
manner, |c|2 = 1.

If we consider a Bloch HamiltonianH(−k) describing electrons in a solid, the invariance
under time-reversal implies:

T H(k)T −1 = H(−k) (1.3)

Hence the operator T relates the Block states at k and −k. It follows that the points of the
Brillouin torus which verify Λ = −Λ+G, whereG is a reciprocal lattice vector, are invariant
under time-reversal. These points Λ = G

2
are therefore termed time-reversal invariant

momenta (TRIM) and are crucially important for the calculation of the Z2 invariant. In
d dimensions there are 2d such points, one of which is at the center of the BZ (i.e. the Γ
point) and the others are at the edges (see Fig. 1.1). At a TRIM the energy spectrum is
necessarily always degenerate.

Figure 1.1: The four time-reversal invariant momenta in the BZ of a square lattice:
(0, 0), (π, 0), (0, π), (π, π); points equivalent up to a reciprocal lattice vector have been
drawn with the same symbol.
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Fu and Kane [25] introduced a formulation of the Z2 invariant which involves only quan-
tities evaluated in theΛ points. They define a unitary matrix wmn(k) = ⟨um(k)|T |un(−k)⟩,
built from the occupied Bloch states |uj(k)⟩, with the property wT (k) = −w(−k). This
matrix is antisymmetric in the four special point in the BZ where k and −k coincide and
so it may be characterized by its Pfaffian, whose square is equal to the determinant. That
allows us to define δ = Pf[w(Λ)]√

det[w(Λ)]
= ±1, so that the Z2 invariant is:

(−1)ν =
4∏

i=1

δi (1.4)

This definition is related to the center of the occupied Wannier orbitals as a function
of t and to the consequent change in the time-reversal polarization, but these aspects are
not relevant to the present work.

The calculation of the index ν is simplified in the case of extra symmetry in the crystal.
For an inversion symmetric system the factors in Eq. (1.4) becomes [26]:

δi =
N∏

m=1

ξm(Λi) (1.5)

namely the product over the Kramers pairs of the N occupied bands of the parity eigen-
values ξm = ±1 associated with the Bloch states at the TRIM.

1.3.2 The Bernevig-Hughes-Zhang model

The central concept introduced with the Kane-Mele model is that the inclusion of SOC
can lead to non-trivial topological states in graphene opening a gap without breaking TRS.
However, due to carbon’s relatively low atomic mass, its SOC is inherently weak which
casts serious doubts on the possibility to develop a non-negligible gap. Consequently,
the introduction of the idea of symmetry-protected topological insulators pioneered by
the of the QSHI, prompted the search for materials with stronger SOC where this state
could be more readily observed. A breakthrough iin this direction has been provided
by Bernevig, Hughes, and Zhang in 2006 [7] who introduced a theoretical description
of quantum well (QW) structures composed by HgTe and CdTe. Within a year of the
theoretical proposal, the existence of a QSHI in HgTe/CdTe QWs was experimentally
confirmed by the Würzburg group led by L. Molenkamp [27]. They performed two-terminal
and multi-probe transport experiments that showed the existence of edge states associated
with the Z2 order.

The presence of heavier mercury atoms in these materials introduces two important
effects making them an ideal platform to experimentally realize a QSHI. The key features
are the slightly enhanced value of SOC and, more critically, an anomalous ordering of
energy levels.

Hg1−xCdx Te is a semiconductor made up of a layer of HgTe sandwiched between two
thick CdTe layers. The band structures of these II-VI semiconductors can be described
near the gap in the Γ point (k = 0) using a 6-band bulk Kane model, coming from k · p
perturbation theory [28]. Indeed we take into account only the spin-1

2
Γ6 band from s-

orbitals of both Cd and Hg (odd parity) and the angular momentum-3
2
Γ8 band originating

from p-orbitals of Te (even parity), neglecting the Γ7 band which is distant in energy.
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The barrier material CdTe has a “normal” (GaAs-like) band progression, with the s-type
band lying above the p-type ones (Fig. 1.2a). Conversely, in HgTe the conduction band
states have a p-like symmetry, while the valence band states have a s-like symmetry (Fig.
1.2b), as a result of the higher mass of the Hg atoms. Such band inversion is the main
feature of the type-III quantum wells, since the quantum spin Hall effect occurs when the
well thickness d exceeds the critical value dc = 6.3 nm and the band structure of the
heterostructure changes regime. In fact, for wide QW layers, the quantum-confinement
effects are weak and the the electronic proprties are similar to HgTe, with an inverted
bandstructure. Instead, for thin QW layers, the role of the barriers is predominant, with
the conduction bands having Γ6 character and the valence bands mainly Γ8 (Fig. 1.3).

Figure 1.2: Bulk bandstructure for HgTe (a) and CdTe (b) near the Γ point (figure from
[7]).

Figure 1.3: Schematic picture of the type III CdTe/HgTe/CdTe quantum well in the normal
regime (E1 > H1) to the left and in the inverted regime (E1 < H1) to the right (figure
from [7]).

When the semiconductor compounds are arranged in a QW, the energy levels of the
electrons confined in two dimensions form subbands, depending on k⊥ = (kx, ky) and
labelled with the integer n associated with the quantization of the component of the wave
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vector in the direction of growth of the crystals ẑ. In particular we have three doubly
degenerate (in spin) subbands E1, H1 and L1 arising from the combination of the 6
above-mentioned bands. Since the L1 subband is well separated from the other two, we
can discard it and reduce the problem to an effective 4-band model for the E1 and H1
states.

We can infer the generic form of the model Hamiltonian at the Γ point from the re-
quirement of time reversal symmetry and the assumption of inversion symmetry. The
combined effect of the two implies that we can chose {|E1, ↑⟩, |H1, ↑⟩, |E1, ↓⟩, |H1, ↓⟩} as
a basis, where {↑↓} denotes the Kramers’ partners. Furthermore, |E1, ↑↓⟩ are odd under
inversion, whereas |H1, ↑↓⟩ are even, since they are eigenstates of the parity operator with
eigenvalues ±1. This means that the Hamiltonian matrix element connecting them must
be odd under parity, so, to lowest order in k, they are coupled via a linear term. From
the same argument, the term that connects a state with itself shall be an even function of
k. Matrix elements between up and down states are forbidden by symmetry1. All of this
implies that the Hamiltonian takes the block diagonal form:

Heff(k) =

(
h(k) 0
0 h∗(−k)

)
(1.6)

where h(k) has the form of Eq. (1.1) and the lower block h∗(−k) = T h(k)T −1 is deter-
mined from TRS. As will soon become clear, exactly like the Kane-Mele model, it consists
basically of two copies of the massive Dirac Hamiltonian of Chern insulator, with relativistic
masses of opposite sign for opposite spins.

From the arguments about the parity of the states under 2D-spatial reflection, one can
deduce that, to the lowest order in k, ϵ and d3 must be even functions of k, while d1
and d2 are odd. At the Γ point, |E1, ↑↓⟩ are formed from the linear combination of the
|Γ6, jz = ±1

2
⟩ and the |Γ8, jz = ±1

2
⟩ states, while |H1, ↑↓⟩ derive from |Γ8, jz = ±3

2
⟩.

The matrix elements between these states must be proportional to k± = kx ± iky, since
they differ in total angular momentum J by ℏ. Therefore we recover Hamiltonian in Eq.
(1.1) with material-dependent parameters A, B, C, D and M :

d(k) =

 Akx
Aky

M −B(k2x + k2y)

 b(k) = C −D(k2x + k2y) (1.7)

The most important control parameter is the “mass” parameter M , which is the energy
difference between the E1 and H1 levels at the Γ point. Indeed when M changes sign the
system evolves from one phase to the other, and the transition occurs when the E1 and
H1 bands cross in correspondence of the critical value dc.

Within the upper 2× 2 sub-block, the Hall conductance assumes the same form of the
Chern insulators: σxy = − e2

2h
. By virtue of time-reversal symmetry, the Hall conductance

of the lower sub-block, is linked to that of the upper one by the relation σxy(h
∗) = −σxy(h).

Hence, as already stated, the total charge Hall conductance is zero, whereas the spin Hall
conductance, given by the difference between the two blocks, is finite and is given by
σs
xy = 2 e2

h
. Furthermore, across the transition we have a well-defined change ∆σxy = 1 and

then we conclude that the two phases must differ by 1 in the number of pairs of helical edge

1Actually inversion symmetry is softly broken in HgTe and off-diagonal terms are present. However it
is irrelevant because they are small e do not close the band-gap.
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states. In a quantum spin Hall insulator with time-reversal symmetry the Chern indices
with each spin block have opposite sign and the Z2 takes the simple form ν = c↑−c↓

2
mod2.

The value M/B discriminates the QSH insulator from the gapped conventional one.
In this thesis we study a tight-binding Hamiltonian which respects the symmetries of

the BHZ model, Eq. (1.6), where the up-spin block assumes the form of Eq. (1.7) when
linearized around Γ.

This is easily realized starting from Eq. (1.7) and performing the substitutions ki →
sin ki and k

2
i → 2(1− cos ki) enforcing the lattice periodicity thereby obtaining

d(k) =

 A sin kx
A sin ky

M − 2B(2− cos kx − cos ky)


b(k) = C − 2D(2− cos kx − cos ky)

(1.8)

where s-orbital states (denoted by the index 1) correspond to the E1 subband and p−orbital
states (index 2) to the H1 subband. b(k) describes simply an energy shift. Hence, focusing
only on the other term, we can write the second quantization Hamiltonian of the upper-
right block as

h(k) = d(k) · σ

=

(
M − cos kx − cos ky λ(sin kx − i sin ky)
λ(sin kx + i sin ky) −M + cos kx + cos ky

)
(1.9)

where we made the Pauli matrices explicit and we have have redefined the constants A = λ,
B = −1

2
and M → M − 2. Notice that this choice corresponds to define the energy unit

so that the nearest-neighbor hopping equals 1
2
.

The system has two pairs of degenerate bands

ε±(k) = ±|d(k)| = ±
√

(M − cos kx − cos ky)2 + λ2(sin2 kx + sin2 ky) (1.10)

and the topology depends on their orbital character, i.e. their specific parity under inver-
sion. The bands possess a defined orbital character at the high symmetry points in the
Brillouin Zone (BZ). Specifically, at the Γ point the bands assume the value

ε±(0) = ±|M − 2| (1.11)

indicating that, for M < 2 (M > 2), the valence and conduction bands have orbital
characters of 1 and 2 (2 and 1), respectively. On the other hand, at the other critical
points of the BZ we find

ε±(0, π) = ε±(π, 0) = ±M ε±(π, π) = ±(M + 2) (1.12)

and the valence and conduction bands have orbital characters of 2 and 1, regardless of
the value of M . As consequence, when M < 2, being λ ̸= 0, an avoided band crossing
occurs as one moves from the Γ point towards the boundary of the Brillouin Zone (BZ). On
the other hand, for M > 2, each band predominantly exhibits a single orbital character.
M = 2 marks the gap closure condition, and the bands adopt a linear dispersion.

As we already anticipated, the parameter M plays the role of the control parameter
whose variation drives the system across the topological phase transition between the BI
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and the QSHI. In this sense, it plays a similar role to the spin-orbit coupling of the Kane-
Mele model. With the definitions used in the lattice model, Eq. (1.9), the transition takes
place at M = 2. In this thesis we will use the BHZ model in this lattice version as the
paradigmatic model for a topological transition to a QSHI that we augment by including
a local multiorbital repulsion, as we discussed in the next section. The choice of the BHZ
model over the Kane-Mele one is motivated by the local nature of the mass term M (as
opposed to the non-local SOC) which is more suited for a theoretical treatment including
local interactions. Moreover, Dynamical Mean-Field Theory and related methods in their
standard single-site implementation are expecteed to properly account for the competition
of these local terms, providing us with a reliable and accurate method to address the
problem. Yet, we expect that the concepts that we discuss in this work can be applied also
to the Kane-Mele model and to other models featuring non-trivial topology.

1.4 Models for interacting electron systems

A large number of materials are well described by the band theory of solids, at least
qualitatively, meaning that metallic and insulating behavior are understood, respectively, in
terms of partially or completely filled conduction bands. However, already in the first half of
the 20th century it has been indeed experimentally shown that some transition-metal oxides
display an insulating behavior at low temperature despite the partially filled conduction
band would imply a metallic system according to the band theory of solids. Immediately
after this discovery, N. Mott (and Peierls) [29] proposed that the experimental evidence
could be accounted for by incorporating electron-electron interactions in the description
of these solids. For this reason such interaction-driven insulators are now called Mott
insulators.

The important role of electron-electron interactions and the consequent failure of the
band theory of solids can be traced back to the fact that transition-metal oxides and rare
earth elements, are generally characterized by open d- or f -shells, leading to narrow energy
bands2.

As a matter of fact, the small band kinetic energy implies that the screened Coulomb
interaction between valence electrons must be treated on equal footing. As we will briefly
outline in the following, this means that the delocalizing effect of the kinetic energy is
counteracted by a localization tendency arising from the strong interactions. When the
interaction energy prevails on the delocalization energy and the number of conduction elec-
trons is equal to the number of ions, the conduction electrons become essentially localized
around the ions, turning the solid into something similar to a collection of isolated atoms.
Therefore the system transitions to the Mott insulating state.

2The key energy scale in the problem is the degree of overlap between neighboring orbitals which mainly
contribute to valence bands. The estimation of this quantity is given by the hopping matrix elements,
which control the bandwidth. As we know from basic quantum mechanics, the spatial extension of the
wave-functions essentially increases as the atomic number grows. There are however anomalies in this
trend. This is a consequence of the fact that the orbital quantum number l can assume integer values
smaller than the principal quantum number n. As a results, for a given n, the orbitals with l = n − 1
are automatically orthogonal to all the orbitals with a lower value of n. Hence the radial part of such
wave-functions needs not have nodes or extend far away from the nucleus. This argument explain why 3d
and 4f shells are more localized around the lattice sites and why materials which contain them display
strong correlation effects.
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We usually refer to materials in which the electron-electron interactions lead to a break-
down or to a poor predictive power of the band theory as strongly correlated electron
systems, or simply strongly correlated materials. A range of extraordinary phenomena
emerge in regimes where localized behavior on short time scales and itinerant behavior on
long time scales coexist. High-temperature superconductivity [30–32], colossal magnetore-
sistance [33], and large thermoelectric responses [34] are notable examples.

These scenarios pose substantial theoretical challenges, as conventional electronic struc-
ture methods, such as the local density approximation (LDA) within density functional
theory (DFT) [11, 12] or Hartree–Fock theory, are completely inadequate for studying
correlated materials.

A large number of theoretical approaches rely on model Hamiltonians that capture dom-
inant effects and relevant single-particle orbitals around the Fermi level, thereby addressing
key low-energy physics. The paradigmatic Hubbard model [35] is one of the simplest and
it is considered fundamental in understanding the physics of strongly correlated electron
systems. Despite its simplicity, solving it is challenging. Various methods have been de-
veloped to solve the Hubbard model and to characterize the Mott transition [36–39], yet it
remains solvable only in one dimension. Analytical approximate methods include the Hub-
bard I [35] and III [40], the Gützwiller variational method [41–43], various slave-particles
approaches [44] and the renormalization group approaches [45]. Numerical methods worth
mentioning are the quantum Monte Carlo method in its various forms, Exact Diagonaliza-
tion, Density-Matrix Renormalization Group, other Tensor-Network based methods, and
Dynamical Mean-Field Theory (see App. B).

The landscape of models, results and methods to study strongly correlated models is
incredibly large and complex. Therefore in this chapter we do not aim at a review of the
field, but we simply introduce the main information to introduce our study of electronic
correlations in the BHZ model. Since the latter model features two orbitals, we can not
limit ourselves to the standard single-orbital Hubbard model, but we will introduce a
multiorbital Hubbard model, or Kanamori-Hubbard model.

1.4.1 Spectral Functions and Quasiparticle weight

In this section we introduce some of the most important notions and definitions that are
commonly used to study the physics of strongly correlated models. The single-particle
Green’s function is a fundamental quantity in the study of quantum many-body systems
which allows to quantify the effect of interactions on the single-particle properties.

The knowledge of the Green’s function provides crucial insights into the electronic
properties of a system, such as its renromalized single-particle energy spectrum, density of
states, and the nature of quasi-particle excitations. Moreover it is pivotal in understanding
phenomena like the renormalization of electron mass, the emergence of interaction-induced
energy gaps which in turn sheds light on phase transitions of different kind.

The Green’s function is represented mathematically as a time-ordered expectation value
of a product of creation and annihilation operators, which can be computed both in real
and imaginary time. We opt here for the imaginary-time formulation

Gjj′σσ′(τ, τ ′) = −⟨Tτcjσ(τ)c†j′σ′(τ
′)⟩. (1.13)

Here c†j′ creates an electron in the j′-th site at time τ ′ while cj annihilates an electron in the
j-th site at time τ , the averages are in the gran canonical ensemble and the τ -dependence
means we are in Heisenberg representation.
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For a non-interacting fermionic system, the Fourier transform with respect to both time
and space degrees of freedom reads

G0(k, iω) =
1

iω − ϵk + µ
, (1.14)

where ϵk are the single-particle eigenvalues and µ is the chemical potential.
When interactions are included, the Green’s function can be written as

G(k, iω) =
1

iω − ϵk − Σ(k, ω)
. (1.15)

Essentially, the non-interacting Green’s function is modified by including a self-energy term
Σ(k, ω), which accounts for all the effects of the interaction at the single-particle level. The
same information can be also written as Σ(k, ω) = G0(k, ω)

−1−G(k, ω)−1, which is known
as the Dyson equation. In principle, the knowledge of the self-energy is sufficient to learn
allthe information about single-particle properties of a many-body problem in physics, and
it can be approached using various methods, based for instance on Feynmann diagram
perturbative expansion or on numerical simulation.

The spectral function, which provides information about the many-body eigenvalues at
a given momentum can be derived from the Green’s function. Specifically, it is proportional
to the imaginary part of the Green’s function in real frequencies A(k, ω) = − 1

π
ImG(k, ω).

For non-interacting systems, analytical continuation of (1.14) leads to a delta function
A(δ(ω − ϵk), while for a general interacting system it assumes the form

A(k, ω) = − 1

π

ℑΣ(k, ω)
(ω − ϵk −ℜΣ(k, ω))2 + ℑΣ(k, ω)2

. (1.16)

If we discard the frequency-dependence of the self-energy, Eq. (1.16) describes a Lorentzian
whose width is proportional to the imaginary part of Σ, which measures the inverse of the
lifetime that the excitations acquire because of the interactions. On the other hand, the real
part of the self-energy is responsible for shifting the poles of the Green’s function, which
can lead to changes of the electronic structure, potentially including the interaction-driven
opening of a gap.

The self energy also provides information about the so-called quasi-particle weight

m∗

m
=

(
1− ∂ℜΣ(kF , ω)

∂ω

∣∣∣∣
0

)
=

(
1− ∂ℑΣ(kF , iω)

∂iω

∣∣∣∣
0

)
≡ 1

Z
(1.17)

where m represents the intrinsic band mass of an electron moving in a periodic potential,
and m∗ is the effective band mass, reflecting the electron’s reduced mobility due to the
interactions among particles. Their ratio is a good measure of the degree of correlation
(the larger m∗, the more correlated the system), and Z is in general smaller than 1 when
the self-energy is finite, signaling the reduced metallicity. Although initially introduced
in the context of Fermi liquid theory, this approach also serves as a means to identify
deviations from, or breakdowns of, this paradigm. For instance, if the self-energy exhibits
a divergence in its imaginary part near the Fermi level, a spectral gap will emerge in the
corresponding Green’s function. In such a scenario, the quasiparticle weight is reduced to
zero, meaning that the electrons become localized and rendering the description in terms of
a renormalized band structure ineffective. As we will see, this behavior is linked to metal-
insulator transitions induced by correlation effects, which can be monitored by following
the evolution of Z as a function of the relevant control parameters.
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1.4.2 The Hubbard model and the Mott transition

In this section we briefly introduce the Hubbard model as the paradigmatic description of
strongly correlated electron systems and the transition from a metal to a Mott insulator
(Mott-Hubbard transition) as the most spectacular signature of electron-electron corre-
lation. The Hubbard model was introduced independently by Hubbard, Kanamori and
Gutzwiller [46] to study itinerant magnetism in the 1960s. It consists in a tight-binding
model which includes a screened short range Coulomb repulsion and can be derived [19, 47]
as a simplification of the second quantization many-body Hamiltonian describing electrons
in a solid:

H = H0 +Hint =

=
∑
σ

∫
dr Ψ†

σ(r)

[
− ℏ2

2me
∇2 + V (r)

]
Ψσ(r) +

∑
σσ′

∫
drdr′ Ψ†

σ(r)Ψ
†
σ′(r

′)
1

2

e2

|r− r′|
Ψσ′(r′)Ψσ(r)

(1.18)

where V (r) = −
∑

α
Zαe2

|Rα−r| is the ionic potential and Ψ†
σ(r) and Ψσ(r) are the field operators

creating and annihilating a particle with spin σ at the point r. If we assume we have a
lattice of atoms where electrons are almost localized at each site, as it happens in strongly
correlated materials, we can use a basis of atomic Wannier orbitals:

wn(r−Ri) =
1√
N

∑
k∈BZ

e−ik·Riϕkn(r) (1.19)

associated to each lattice position Ri and expressed in terms of the Bloch wavefunctions
ϕkn(r), which diagonalize the non interacting part H0. We omit the spin index since it is
important only for the spin-orbit interaction, that we will not be dealing with. In this way,
the Fermi fields read:

Ψ†
σ(r) =

∑
in

w∗
n(r−Ri)c

†
inσ

Ψσ(r) =
∑
in

wn(r−Ri)cinσ
(1.20)

where c†inσ and cinσ are the operators which create and destroy an electron with spin σ in
the n-th Wannier orbital associated to site Ri. In this basis, the Hamiltonian governing
the motion of the particles can be written as:

H =
∑

ijmm′σ

tmm′

ij c†imσcjm′σ +
1

2

∑
ijkl

∑
mm′nn′

∑
σσ′

V mm′nn′

ijkl c†imσc
†
jm′σckn′σ′clnσ (1.21)

where

tmm′

ij =

∫
dr w∗

m(r−Ri)

[
− ℏ2

2me

∇2 + V (r)

]
w′

m(r−Rj) (1.22)

and

V mm′nn′

ijkl =

∫
drdr′ w∗

m(r−Ri)w
∗
m′(r−Rj)

e2

|r− r′|
wn(r−Rk)wn′(r−Rl). (1.23)

This lattice model is still described by a an infinite number of parameters describing
the hopping and the interactions between lattice sites. First of all, we notice that when
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an orbital is highly localized in space, as in the case of 3d or 4f electrons, the hopping
amplitude tmm′

ij decays exponentially with the distance between the sites i and j [48]. Then
to a good approximation we can eliminate all but nearest-neighbor contribute to the kinetic
energy. For the sake of simplicity, we assume just intra-orbital hoppings, so that m = m′

and tmij = −t for i next to j and 0 otherwise. In the same way, the matrix element of
the Coulomb interaction between electrons at different sites, decaying rapidly with the
distance, will be dominated by the on-site interaction between two electrons:

V mm′nn′

ijkl = Umm′nn′
δijδikδil (1.24)

where:

Umm′nn′
=

∫
drdr′ w∗

m(r−R)w∗
m′(r−R)U(r− r′)wn(r−R)wn′(r−R) (1.25)

Here we replace the electronic repulsion with a screened interaction U(r − r′), that take
into account the effect of the eliminated inert degrees of freedom. That is because we
restrict the treatment to the valence electrons, i.e. to the subset of bands near the Fermi
level, sufficient to capture the main physics of the system.

Finally, if we consider just one orbital on every site (m = m′ = n = n′), we obtain the
single-band Hubbard model:

HHubbard = −t
∑
⟨ij⟩σ

c†iσcjσ + U
∑
i

ni↑ni↓ (1.26)

where niσ ≡ c†iσciσ is the number operator which measures the occupancy of the site i
with electrons of spin σ. This model, despite the number of approximations, retains the
central physics of strongly correlated systems and in particular the competition between
hopping and interactions. Furthermore, the two-dimensional Hubbard model on a square
lattive is widely believed to be at least the main building block for the understanding of
high-temperature superconducting cuprates, where one band with mainly copper dx2−y2

character crosses the Fermi level.
Since the kinetic and the interaction terms in Eq. (1.26) do not commute, they cannot

be simultaneously diagonalized. The solution of the model turns out to be highly nontrivial
because the hopping term can be diagonalized in momentum space, while the interaction
is diagonal in real space and it imposes real-space constraints to the electronic motion. As
a matter of fact, the model can be only in one dimension using the Bethe ansatz [49, 50]
and in the infinite dimensional limit where DMFT is exact, while it becomes particularly
complex in two and three dimensions. Here, exact solutions are feasible only in the extreme
cases: U = 0, representing independent electrons, and t = 0, the atomic limit.

At U = 0, we expect the model to describe a metal for every number of electrons.
The standard tight-binding model gives rise, if we consider a (hyper)cubic lattice in d
dimensions, to a single band of width W = 2td. In particular, when the number of
electrons equals the number of sites, we will have a half-filled band (half-filling condition).
However, as the interaction strength U increases, a competition arises between the kinetic
energy, favoring electron delocalization, and the interaction energy, which restricts electron
motion. This balance shifts markedly when U becomes significantly larger than the kinetic
energy, leading to a state where each electron is localized on its lattice site. In this regime,
where any hopping process would create energetically unfavorable doubly occupied sites,



20 CHAPTER 1. TOPOLOGICAL PROPERTIES AND ELECTRONIC CORRELATIONS

Figure 1.4: Evolution of the density of states in the Hubbard model at half-filling, in the
paramagnetic case. (a) Non interacting limit. (b) Weak interaction, leading to a modest
broadening of the density of states. (c) Under strong interactions, the density of states
features three prominent peaks, indicative of quasiparticle excitations near the Fermi level
and the emergence of upper and lower Hubbard bands. (d) When the interaction strength
exceeds a critical value Uc, the quasiparticle peak disappears, signaling the transition of
the system to an insulating state characterized by two distinct Hubbard bands, separated
by a gap roughly equivalent to U . Figure from [51].

the electrons are localized. This is nothing but the picture of a Mott insulator. Hence,
the two trivial limits (U/W = 0 and W/U = 0) must be connected by some transition,
controlled by the ratio between U and W . As we will discuss the transition is expected
to occur for U/W ≃ 1, where perturbative approaches are severly limited, which helps to
understand why the model has proved so hard to solve.

Here we do not attempt at a review of the methods proposed to solve the Hubbard
model, but we just provide some basic information to introduce the main concepts and
methods used in this thesis. A seminal work on the Mott transition has been published
by Brinkman and Rice [52], who used the Gutzwiller variational method to focus on the
evolution of the metallic phase with increasing interaction.

This methods predicts a reduction of the bandwidth and an increase in effective mass
as U is increased which culminates in a divergency at a finite critical U . However, the
approach failed to fully describe the Mott insulator beyond this point. The original works
by Hubbard, on the other hand, taking the atomic limit as a starting point, illustrated the
splitting of the bandstructure into a lower and an upper bands, offering a richer insight into
the insulating phase but not adequately addressing the low-energy aspects of the metallic
phase.

For a rather long time, it turned out very hard to connect these two pictures in a single
unifying scenario. This goal was indeed achieved through the development of Dynamical
Mean-Field Theory. In Fig. 1.4 we show the evolution of the interacting single particle
density of states as predicted by DMFT for the half-filled Hubbard model. In the non
interacting limit, the system is described by the free-electron density of states, with a bare
bandwidth W . As U is increased, some spectral weight moves towards high energy sym-
metrically around the Fermi level. At low energy we still have a coherent quasiparticle
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peak which loses spectral weight and it is shrunk, while two distinct structures arise as-
sociated with high-energy excitations resulting from electron-electron interactions. In this
range of interactions the electrons exhibit a dual nature: they display localized properties
at high energies, while at low energies, they show metallic characteristics thanks to the
existence of itinerant quasiparticles. As the ratio U/W is further increased, the two peaks
gradually separate more, and the spectral weight at the Fermi energy diminishes. Ap-
proaching the Mott transition (U → Uc), this three-peak structure becomes more distinct.
The quasiparticle peak become more and more narrow until it abruptly disappears at the
Mott transition. As a consequence a finite gap of order U − W separates the Hubbard
bands as soon as we enter in the insulating phase.

The Mott localization, as we discussed, occurs only when the number of electrons equals
the number of lattice sites in a single-band model. We will discuss in the next section the
case of multi-orbital models, in which a Mott transition can take place at any commensurate
filling with an integer number of electrons per site. Doping these insulators with either
holes or electrons turns the system metallic. Of course for large interactions this metallic
phase will show important signatures of electron correlations measured by a small Z. Yet
Z remains finite signaling that a Mott state is not accessible.

It is noteworthy that Mott insulators typically exhibit long-range spin (and orbital)
ordering of localized electrons. In the single-band Hubbard model, this translates in strong
coupling U/W ≫ 1 into a Heisenberg interaction with antiferromagnetic coupling which
leads to antiferromagnetic long-range order unless geometrical frustration inhibits it. How-
ever, this work focuses on paramagnetic solutions, where magnetic or orbital ordering is
inhibited to concentrate on the intrinsic correlation effects induced by interactions, rep-
resentative of the finite-temperature behavior above the ordering temperature in actual
materials.

1.4.3 Multi-orbital Systems: The Hubbard-Kanamori Hamilto-
nian

The single-band Hubbard Hamiltonian is the paradigmatic model for the study of the
strongly correlated materials. However, its applicability is questionable in the case of
compounds whose electronic structure cannot be approximated with a single active band
at the Fermi level. Hence a more realistic description of the properties of multi-orbital
systems can be achieved via a multi-band generalization of the Hubbard model [53], which
includes different kinds of local interactions.

Since in the previous section we have considered m = m′ = n = n′, we obtain just one
Coulomb integral:

U =

∫
drdr′ |wm(r)|2U(r− r′)|wm(r

′)|2 (1.27)

appearing in the Hubbard model, Eq. (1.26). In doing so, we have neglected the other
independent integrals deriving from the general expression, Eq. (1.25), where wave func-
tions corresponding to different orbitals appear. Assuming rotational invariance between
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the orbitals, they do not depend on the orbital indices and are defined as:

U ′ =

∫
drdr′ |wm(r)|2U(r− r′)|wm′(r′)|2

J =

∫
drdr′ w∗

m(r)w
∗
m′(r′)U(r− r′)wm(r

′)wm′(r)

J ′ =

∫
drdr′ w∗

m(r)w
∗
m′(r′)U(r− r′)wm′(r)wm(r

′)

(1.28)

All others integrals vanish for symmetry reasons. The term U ′, being associated with the
overlap between the electron densities of two different Wannier orbitals, is clearly smaller
than U . The terms J and J ′, are instead related to the exchange integrals which are
responsible for that we designate generally as Hund’s physics. In particular, if we consider
as the reference case for strong correlations the valence bands arising from 3d orbitals, the
Wannier functions wm(r) can be chosen real and we get the further simplification J = J ′.

The many-body Hamiltonian was originally proposed by Kanamori [54] for t2g states
to describe the ferromagnetism of transition metals and takes the form

Hint =U
∑
m

nm↑nm↓ + U ′
∑
m̸=m′

nm↑nm′↓ + (U ′ − J)
∑

m<m′,σ

nmσnm′σ+

− J
∑
m̸=m′

c†m↑cm↓c
†
m′↓cm′↑ + J

∑
m̸=m′

c†m↑c
†
m↓cm′↓cm′↑

(1.29)

with nmσ =
∑

mσ c
†
mσcmσ that counts electrons on orbital m = 1, 2, 3 with spin σ. Nonethe-

less the Kanamori Hamiltonian it is routinely used to study also manifold with different de-
generacy, such as the eg-like states that we consider in this thesis, when the sum is restricted
to m = 1, 2. The requirement of full rotational symmetry (i.e. invariance under charge,
spin and orbital gauge transformations, separately, denoted as U(1)C ⊗ SU(2)S ⊗ SO(3)O
symmetry) impose the additional condition: U ′ = U − 2J3. This is also required by the
cubic symmetry of the eg doublet.

The first three terms of the Kanamori Hamiltonian involve density-density interactions
between: electrons with opposite spins in the same orbital (U), electrons with opposite
spins in different orbitals (U ′ < U) and electrons with parallel spins in different orbitals
(U ′ − J) (Fig. 1.5). It is quite intuitive that Coulomb repulsion between two electrons is
reduced when these occupy two different orbitals. Moreover in this case the Pauli principle
does not prevent the electrons to have aligned spins along the quantization axis ẑ, hence
in such configuration the energy is further lowered by the so-called Hund’s coupling J ,
reflecting Hund’s first rule (maximum multiplicity). The last two terms of Eq. (1.29),
describe spin-flip and pair-hopping interactions (Fig. 1.6), accounting for the same effect
(favouring high-spin configurations) along the x̂ and ŷ directions, so that their inclusion
with equal coefficients restores the SU(2)S-invariance. Indeed neglecting these latter terms
would simply break the degeneracy between local triplet states, making the states with
Sz = ±1 favored with respect to the third member of the triplet manifold.

In the last fifteen years, an incredible number of studies have focused on multiorbital
Hubbard models, mainly triggered by the growing awareness that most materials are char-
acterized by a multi-band electronic structure. A huge boost in this direction has been

3This condition is not exact in symmetries other cubic and furthermore implies the spherical symmetry
of U(r−r′) that is only approximate in a solid state environment, but is often considered to be a reasonable
assumption.



1.5. THE INTERACTING BHZ MODEL 23

Figure 1.5: Electron-electron Coulomb interactions in multi-orbital systems: (a) intra-
orbital, (b) inter-orbital with anti-parallel and (c) inter-orbital with parallel spins.

Figure 1.6: Hund’s exchange processes: (a) spin-flip and (b) pair-hopping.

given by the discovery of superconductivity in a class of iron-based superconductors[55] that
display a multiorbital electronic structure where all the five iron 3d orbitals are relevant.
A complete review of this immense body of work is outside the scope of the present thesis.
We only limit ourselves to observe that all these studies have clarified that the physics of
multi-orbital Hubbard models can not be extrapolated from that of the single-band model
and that the Hund’s exchange coupling plays a major role in shaping the correlation ef-
fects [56]. Within the context of this thesis the main role of J will be to compete with
the crystal field splitting M , thus favouring a high-spin Mott insulator. The competition
between M and J is easily understood. While the first term favours an uneven occupation
of the orbitals, the second favors equal occupation in order to maximize the spin.

Among the important effects induced by J we mention that if favours a differentiation
between the correlation properties of the different orbitals, which can even lead to orbital-
selective Mott transition in which one or more orbitals are Mott localized, while others
remain metallic [57, 58], a phenomenology which is believed to be relevant to understand
the correlation properties of iron-based superconductors[59, 19].

Another distinctive effect induced by a sizeable Hund’s coupling is the existence of the
so-called Hund’s metal phase [60, 61], an interaction resilient metallic state which displays
strong correlations for a wide range of U without being close to a Mott transition which
can take place at very large U as J/U grows up to a limiting value of 1/3 where the system
remains metallic also for infinite U [62, 63]. While this thesis will cover different aspects,
it is an intriguing future perspective to explore how these novel signatures of correlations
can combine with topological effects.

1.5 The interacting BHZ model

In most of this work, we consider a minimal archetypal model for a quantum spin Hall
system with short range interactions whose non-interacting part coincides with the two-
dimensional BHZ model on a square lattice, while the interactions are modelled via a
Hubbard-Kanamori model (1.29).



24 CHAPTER 1. TOPOLOGICAL PROPERTIES AND ELECTRONIC CORRELATIONS

The Hamiltonian reads

H =
∑
k

ψ†
kH0(k)ψk +

∑
i

Hint(i) + µN (1.30)

where ψk = [ck1↑ ck2↑ ck1↓ ck2↓]
T is a four-component spinor of the annihilation operators

of an electron with momentum k, in the orbital m = 1, 2 and with spin σ =↑, ↓; µ is the
chemical potential and N the total number of particles operator. From eqs. (1.6) and (1.9)
the single-particle Hamiltonian

H0(k) = diag[h(k), h∗(−k)] (1.31)

is block diagonal in the spin index and the Hamiltonian for each spin component is

h(k) = λ sin kxτx + λ sin kyτy + [M − 2t(cos kx + cos ky)]τz; (1.32)

where τi=x,y,z denotes the Pauli matrices in the orbital pseudo-spin space. The specific
structure in spin space follows from the U(1) spin rotational symmetry, i.e. Sz is conserved,
while the relation between the two blocks is imposed by time-reversal symmetry T . The
model is also invariant under inversion symmetry P . In order to be consistent with previous
literature we set the hopping amplitude t = 1

2
, so that H0(k) describes two bands which

are symmetrical with respect to the horizontal axis separaterd by an energy splitting 2M ,
and with total width W = 4. Since the model is particle-hole symmetric, setting µ = 0
implies a half-filled system.

As we discussed in Sec. 1.3.2, the non-interacting model has a continuous topological
transition between a QSHI for M < 2 and a trivial BI for M > 2 through the formation of
a gapless Dirac state at M = 2.

Since we will extensively use the notation in terms of ΓΓΓ-matrices, defined as Γµν =
σµ ⊗ τν , we write the model in an alternative way

H0(k) = (M + ϵk)Γ0z + xkΓzx + ykΓ0y (1.33)

where we also introduce the notation xk = sin kx and yk = sin ky and ϵk is the square
lattice dispersion.

The interaction term is purely local, so the Hamiltonian is the sum over all the sites of

Hint(i) =U
∑
m

nim↑nim↓ + U ′
∑
m̸=m′

nim↑nim′↓ + (U ′ − J)
∑

m<m′,σ

nimσnim′σ+

− JX
∑
m̸=m′

c†im↑cim↓c
†
im′↓cim′↑ + JP

∑
m ̸=m′

c†im↑c
†
im↓cim′↓cim′↑

(1.34)

that is essentially the generalized version of Eq. (1.29). The choice of this form of the
interaction, while it might appear arbitrary, is justified as it facilitates comparison with
other works on the physics of multi-orbital systems [64]. Specifically, this choice enables us
to focus exclusively on two relevant constants: one that characterizes Mott physics, U , and
another that splits the atomic multiplets in accordance with Hund’s rules, J . However, we
acknowledge that alternative choices, which more distinctly differentiate the two orbitals,
might be more adequate [65].

The interplay between the non-trivial physics of the BHZ model and the effect of the
interactions is obviously complex and far from trivial. As mentioned above, the main
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target of this work is the destiny of the topological transition when the interactions become
sizeable introducing important many-body effects.

A first look can be taken analyzing the atomic limit, where the hopping terms are
neglected, but the local energy splitting M is included. We focus on the case of a half-
filled lattice, i.e. two electrons on two orbitals. If we neglect the electronic repulsion,
the system is in the configuration with both electrons in the lower-lying orbital, say 1,
leaving the orbital 2 empty. Introducing U for J = 0 would not change this result as U
does not make any distinction between all the local configurations with the same number
of electrons. On the other hand J favours states with one electron per orbital and, and
in particular where the spin is the same in the two orbitals (S = 1, Sz = ±1), thereby
contrasting the effect of M and pushing towards configurations where the two orbitals
are equally populated. This underlines that the competition between the various local
terms reflects in a different behavior of the orbital polarization, i.e. the difference in the
occupation of the two orbitals n1 − n2. Crucially this variable,is the handle that tunes the
system across the topological transition, as we commented above. Hence we can expect a
significant effect of electron-electron interactions on the topological phase transition.

In following chapters, we will solve the model using different approximations and we
will provide a unified and comprehensive picture of this phenomena which will reveal
unexpected properties.

1.5.1 Interacting topological invariant

The initial part of the chapter presents topological invariants, specifically the Z2 formula
for Quantum Spin Hall systems, based on the concept of Bloch states within band theory.
However, it is possible to expand these definitions of topological invariants to broader
contexts where band structure is not explicitly defined or does not exist, by utilizing
Topological Field Theory. Within this framework, it is possible to directly access important
observables, such as Hall conductance, and the associated topological invariants. These
invariants are now defined in terms of Green’s functions, which are, as discussed earlier,
well-suited for describing both interacting and non-interacting systems.

Although the field-theoretical derivation of these topological invariants is generally com-
plex, under certain conditions, a more straightforward and computationally manageable
expression can be formulated. The explicit analytical form of the Z2 invariant (i.e. the sec-
ond Chern number) characterizing the QSH state was originally proposed by Qi, Hughes
and Zhang in [66] and then generalized for interacting topological insulators in [67]. It
employs a dimensional extension to the (4 + 1)D analog of the effective topological ac-
tion describing the quantum Hall effect, therby involving a five-fold frequency-momentum
integration. It explicitily reads

P3 =
π

6

∫ 1

0

du

∫
d4k

(2π)4
Tr[ϵµνρσG∂µG

−1G∂νG
−1G∂ρG

−1G∂σG
−1G∂uG

−1] (1.35)

where, k represents the quadrimomentum including the imaginary Matsubara frequency,
and u is the Weiss-Zumino-Witten (WZW) extension parameter, that connects the Green’s
function G(iω,k, 0) to a basic constant reference function G(iω,k, 1).

While we do not comment the derivation of this result, it is important to highlight this
particularly complex expression. The presence of multiple integrals, along with the neces-
sity to know both the Green’s function and its derivative, make the numerical evaluation
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rather difficult. However, in the presence of inversion symmetry, a significant simplifi-
cation has been achieved by Wang, Qi and Zhang in [68]. As a matter of fact, for the
practical computation of such interacting invariants one has to start from the definition
of an auxiliary non-interacting problem, where the zero-frequency self-energy corrects the
spectrum

Htop(k) = −G−1(ω = 0,k) = H0(k) + Σ(ω = 0) (1.36)

which has been coined topological Hamiltonian. Indeed Wang and Zhang [69] proved that
given an adiabatic connection to a non-interacting state, the topological invariant can be
obtained from the Green’s function at ω = 0 only. In particular, if inversion symmetry is
not broken, as for our model, the Green’s function has to be determined only at the four
time-reversal invariant momenta and this is quite similar in spirit to the work of Fu and
Kane [26]. First, one calculates the eigenstates of H⊤ at the four TRIM Γi and for the
occupied bands α. These states can be chosen as eigenstates of the parity operator P with
eigenvalue ξiα = ±1. Next, one computes δiα =

√
ξiα and finally the Z2 invariant can be

expressed as in Eq. (1.4).



Chapter 2

Mean-Field Analysis of the
Interacting BHZ Model

Mean-field (MF) theory serves as an invaluable tool to tackle the complex issue of corre-
lated electrons. The conceptual core of this approach is to simplify the intricate problem
of electron-electron interactions by averaging their effects, leading to a time-independent
effective field so that the many-body problem is transformed into a single-particle problem
in which every electron experiences an interaction with an average medium created by the
others. Such an independent electron problem can always be solved, at least in principle,
regardless of its potential complication[70]. In this light, sometimes MF, or Hartree-Fock
approximation, is usually called a static mean-field, in contrast with Dynamical Mean-
Field Theory. In a system exhibiting broken symmetries, the static effective potential can
explicitly depend on one or more order parameters. Although topological transitions are
not described within the framework of spontaneous symmetry breaking, we will show that,
when wisely chosen, the mean-field solutions still provide a meaningful starting point for
our analysis of the effects of electronic interactions.

MF theory is indeed one of the most natural starting points for the investigation of
an interacting model. The advantages are quite obvious, starting from the very low com-
putational cost, especially in terms of timescales, which enables a quick exploration of a
complete phase diagram varying different parameters. Additionally, this approximation is
instrumental in discriminating the effects of quantum fluctuations from the more conven-
tional impact of interactions. These features make MF methods a valuable tool to gain a
first physical insight into the properties of a model, which can be systematically improved
by adding fluctuations or using more advanced approaches like Dynamical Mean-Field The-
ory which, as the name evokes, makes the mean-field dynamical, i.e. time or frequency
dependent, thus including quantum effects beyond the static approximation. MF theory
is expected to be extremely accurate in the weakly interacting regime, where Dynamical
Mean-Field Theory results asymptotically lose their frequency dependence.

Finally, MF theory provides direct access to the free energy, which at zero temperature
coincides with the ground state internal energy, as a function of the mean-field variables
(order parameters in the broken symmetry case). This enables a Landau-like expansion in
powers of the order parameter, that has a two-fold purpose in the context of the present
work. First of all, it helps us comprehend the reasons behind the inadequacy of Landau’s
theory in the context of correlated topological insulators. However, it also highlights the
viability and the need of an analysis that focuses also on ”thermodynamic” observables

27
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(quantum expectation values of local observables) introduced by adding the interaction,
rather than relying solely on topological invariants.

This chapter begins with a concise overview of Hartree-Fock theory in Section 2.1,
followed by its direct application on the interacting BHZ model, showing the explicit ex-
pression of the decoupled interaction. We highlight the non-uniqueness of this approach
and the importance of carefully choosing the most appropriate mean-field variables. We
then demonstrate its implementation through an iterative method, leading to the presen-
tation of our results. The analysis of the results (Sec. 2.2) delves into the impact of Hund’s
coupling as well as the effect of hybridization. Our findings reveal that while Hund’s cou-
pling significantly influences the shape of the phase diagram, hybridization plays a lesser
role. Notably, we observe that even in the limit of λ = 0, effectively ignoring the model’s
topological aspects, the phase diagram remains largely unchanged. The chapter concludes
with an analysis of the topological transition’s nature, accomplished by expanding the free
energy around the gap closure condition (Sec. 2.3).

2.1 Hartree-Fock method

The most popular and transparent description of a static mean-field theory consists of
replacing the interaction Hamiltonian (Hint in Eq. (1.30) in our case), which is quartic in
the field operators cmσ and c†mσ, with an effective quadratic Hamiltonian which depends in
turn on the expectation values of some relevant operators [71].

Specifically, by assuming that the operators c†αcβ only slightly deviate from their average
values, we can interpret the quartic terms as products of two single-particle observables A
and B and subsequently approximate their product as:

AB → ABMF ≡ A⟨B⟩+ ⟨A⟩B − ⟨A⟩⟨B⟩ (2.1)

where the subtraction of the last term avoids the “double counting” of the iteraction (such
that ⟨ABMF ⟩ = ⟨A⟩⟨B⟩). In this way, the interaction between particles is replaced by
single-particle terms with amplitudes related to static “mean-fields” arising from quantum
averages over the whole system.

The decoupling of the correlations between the operators guarantees the diagonaliza-
tion of the approximated Hamiltonian at the cost of neglecting both temporal fluctuations
and, in typical implementations, also spatial fluctuations. Indeed we can picture the ap-
proximation as the result of expressing an operator as the sum of its expectation value,
capturing the static effects of interaction, plus a compensating term that accounts for ad-
ditional effects, broadly referred to as quantum fluctuations, A = ⟨A⟩ + δA, subsequently
disregarding the correlation of fluctuations δAδB as a second-order correction.

This approach is completely equivalent to the Hartree-Fock method, which is funda-
mentally about identifying the optimal Slater determinant for a given problem minimizing
the expectation value of the Hamiltonian according to the variational principle. It is im-
portant to recognize that there could be multiple Slater determinants constructed using
N wavefunctions satisfying this condition: the challenge lies in selecting the Slater de-
terminant that minimizes the total energy. In our analysis, we will highlight this aspect
by examining the different forms that the interaction can assume, along with the various
possible decouplings. Through this examination, we will demonstrate how one particular
choice emerges as the most accurate.
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Solving the mean-field problem necessitates determining the unknown average quanti-
ties within HMF

int . Various methods can be employed for this purpose. In simpler scenarios,
it is possible to derive a set of self-consistency equations, with each equation correspond-
ing to a decoupling parameter (a very popular example is the Bardeen-Cooper-Schrieffer
gap equation). The formulation of these equations is guided by the requirement that the
gradient of the free energy should be zero. Alternatively, the free energy can be minimized
directly using standard optimization algorithms.

In a completely equivalent way, the optimization problem can be transformed into a
fixed-point problem, which can be solved iteratively. Specifically, if we view the process
as a mapping from the mean-field parameters that appear in the MF Hamiltonian to the
expectation values derived from its ground state, the solutions we seek are essentially the
fixed points of this mapping. In practical terms, this means that we have found a solution to
our problem for which the expectation values obtained from diagonalizing the Hamiltonian
match those used to define the effective Hamiltonian within a certain desired error. The
procedure is repeated until convergence is achieved, and thus, the solution that the system
assumes in thermodynamic equilibrium is the fixed point. For reasons which will be clear
in the next sections, here we adopt this second strategy.

2.1.1 Interaction decoupling

Turning to our model Eq. (1.30), we can write the mean-field approximation of the inter-
action term Eq. (1.34) as

HMF
int (i) = −

∑
µν

gµνΛµν(i)Λ̂µν(i) +
gµν
2

Λ2
µν(i) (2.2)

where the bilinear operators Λ̂µν(i) = 1
2
ψ†
iΓµνψi behave as bosonic fields and Λµν(i) are

the corresponding expectation values1. In particular, they become independent of the site
coordinate i if translational symmetry holds, i.e. Λµν(i) → Λµν . We remember that the
4×4 matrices Γ are defined as Γµν = σµ⊗τν , with σµ and τν the Pauli matrices respectively
in the spin and pseudo-spin space (µ, ν = 0, x, y, z).

The couplings gµν are specific linear combinations of the interaction parameters. A
straightforwards derivation reported in Appendix A provides us with the explicit form

g =


−U − 2U ′ + J U ′ − J − JX − JP U ′ − J − JX + JP −U + 2U ′ − J

U + JX U ′ + JP U ′ − JP U − JX
U + JX U ′ + JP U ′ − JP U − JX
U + J U ′ − J + JX + JP U ′ − J + JX − JP U − J

 (2.3)

Upon examining the matrix elements, we observe that gxµ = gyµ ̸= gzµ, indicating that the
decoupled interaction retains the U(1) symmetry of the non-interacting Hamiltonian.

The full form is extremely cumbersome and also contains bosonic fields which are hardly
expected to have a non-zero expectation value. Therefore, of the 16 elements, we choose to
focus only on those relevant to study the physics of the topological transition. Specifically,
considering our interest lies in solutions that preserve time-reversal symmetry, we restrict
our analysis to the components {00, 0z, z0, zz} of the above matrix, i.e., those containing
only the identity and/or the diagonal σz Pauli matrix in both spin and orbital space. To

1Here, we adopt the notation using a hat for operators to simplify the representation of observables,
given that our primary focus will be on the latter quantities.
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be precise, we are also considering the magnetization along z in order to investigate the
Mott phase.

We point out that the couplings associated with these channels do not contain JX and
JP , which implies that, within the present choice of mean-field variables, using the density-
density version of the Kanamori model is completely equivalent to the full form. For this
reason, from this point forward, unless specifically stated otherwise, we will be employing
such a simplified form of the interaction for our calculations.

A more transparent physical picture can be obtained by writing down the density-
density Kanamori interaction in terms of operators with a direct physical interpretation.
In particular the unitary transformation in the basis of the density operators generated by
the matrix

Θ =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (2.4)

so that [N̂ T̂z Ŝz R̂z]
T = Θ[n̂1↑ n̂2↑ n̂1↓ n̂2↓]

T , leads to the form

Hint(i) = −gN
2
N̂2

i − gT
2
T̂ 2
zi −

gS
2
Ŝ2
zi −

gR
2
R̂2

zi (2.5)

where

• N̂i=
1
2
ψ†
iΓ00ψi is half of the total occupation per site,

• T̂zi=
1
2
ψ†
iΓ0zψi is the z component of the orbital subspace, namely the orbital polar-

ization,

• Ŝzi=
1
2
ψ†
iΓz0ψi is the z component of the local magnetization,

• R̂zi =
1
2
ψ†
iΓzzψi is antisymmmetric in both spin and orbital.

The couplings are gN ≡ g00 = −(3U − 5J), gT ≡ g0z = U − 5J , gS ≡ gz0 = U + J and
gR ≡ gzz = U − J . To be more concrete the MF interaction is

HMF
int (i) =− gNNN̂i − gTTzT̂zi − gSSzŜzi − gRRzR̂zi

+
gN
2
N2 +

gT
2
T 2
z +

gS
2
S2
z +

gR
2
R2

z

(2.6)

where we identify the expectation values of the bosonic fields in the general expression
Eq. (2.2) as N ≡ Λ00, Tz ≡ Λ0z, Sz ≡ Λz0 and Rz ≡ Λzz. Here, we assume translational
invariance, and we drop the index i.

From Eq. (2.6), it becomes immediately evident, as previously hinted, that the inter-
action channels we selected do not disrupt the time-reversal symmetry of the free model,
assuming non-magnetic solutions, i.e. Sz = Rz = 0. Specifically, while the N term merely
results in a shift of the chemical potential -a parameter we will fix, given our focus on
half-filled states- the Tz term enters with the same Γ0z matrix associated with the bare
mass termM of the free model, Eq. (1.33). Consequently, the value assumed by the orbital
polarization will play a crucial role in mapping out the phase diagram for the interacting
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BHZ model and even in defining the nature of the topological transition within the inter-
acting regime. Fundamentally, Tz is key to adjusting the band splitting, thereby redefining
the gap closure condition as

Meff =M − gT
2
Tz = 2. (2.7)

The fulfillment of this condition, depending on the sign of the coupling gT , occurs for M
being either greater or smaller than 2. Hence, as the interaction increases, we expect either
an expansion or a contraction of the stability range of the topological phase. Additionally,
given that ΣMF = −gT

2
Tz essentially is a component of the Hartree-Fock self-energy, we can

obtain initial understanding of how the dynamical effects of the correlations will influence
the gap closure condition.

Note that Eq. (2.5) is the only recasting that allows us to reproduce a valid MF
result even from the decoupling of the physical operators instead of that for the pairs of
creation and annihilation operators. For instance, a more common way to rewrite the
density-density Kanamori interaction would be

Hint(i) = (U − J)
N̂i(N̂i − 1)

2
− J

(
N̂2

i

4
+ Ŝ2

zi − 2T̂ 2
zi

)
(2.8)

which evidences that our choice favors states with the largest z-component of the spin,
enforcing the spirit of the Hund’s rules. Moreover, it further confirms that omitting spin-
flip and pair-hopping terms is not a drastic approximation, as it merely lifts the degeneracy
between local triplet states, preferring the states with Sz = ±1 over the third component
of the triplet manifold.

By applying the decoupling of the quadratic operators in the expression (2.8) as outlined
in Eq. (2.1), we find that the renormalized mass of the BHZ model, as influenced by the
static electronic correlations, is given by

Meff =M + 2JTz (2.9)

as the orbital polarization component of the interaction couples with the bare mass of the
free model. However, as we will see more thoroughly in the next subsection, this solution
contrasts with the expected effective mass

Meff =M − U − 5J

2
Tz (2.10)

resulting from the density operator decoupling, which identifies the only physically justified
choice for a Slater determinant. Notably, performing the decoupling approach directly on
the quadratic operators appearing in Eq. (2.5) would yield an identical result as Eq. (2.10),
making this interaction the most unbiased form in terms of observables of the system2. This

2Even in the context of the simpler Hubbard model, it is important to recognize that multiple repre-
sentations of the interaction exist, due to the Pauli principle. For instance, the various formulations

Hint(i) = Un̂i↑n̂i↓ =
U

2

(
n̂i − m̂2

i

)
= U

(
n̂2i
2

− m̂2
i

6

)
=
U

4

∑
i

(
n̂2i − m̂2

i

)
in terms of the charge n̂i = n̂i↑ + n̂i↓ and the magnetization m̂i = n̂i↑ − n̂i↓, are all equivalent options.
However, only the last one, when considered in static approximation, i.e. when decoupled, results in the
Hartree-Fock solution at the ground state.



32 CHAPTER 2. MEAN-FIELD ANALYSIS OF THE INTERACTING BHZ MODEL

equivalence stems from the unitary transformation in Eq. (2.4). The interaction outlined
in Eq. (2.5) is expressed in terms of four operators, each directly corresponding on a one-
to-one basis with the four density operators for both orbital and spin, i.e., the four linear
independent combinations.

This brings us to another key aspect of Eq. (2.5): it exclusively features (independent)
quadratic operators. This detail will greatly aid future computations, particularly in de-
termining the assignment of mean-field expectation values for the bosonic fields we decide
to fix or neglect, in order to concentrate on the desired physical phenomena. For instance,
compared to equation Eq. (2.8), the influence of the channel Rz of interaction is somewhat
distributed among the coefficients of the other three operators N , Tz and Sz, complicating
its precise identification. The advantages behind our choice of interaction will prove to be
crucial, even in more advanced dynamical calculations, as we will explore in Chapter 4.

2.1.2 Iterative Method

Having thoroughly examined the decoupling process and the characteristics of our chosen
interaction Eq. (2.5), we are now able to write down a simple and transparent form of the
effective Hamiltonian, by adding Eq. (2.6) to the free model Eq. (1.33). As previously
noted, the existence of nonzero mean-field parameters Sz and Rz leads to an energetic
favoring of spin polarization, thereby breaking time-reversal symmetry. Nonetheless, in
the regime of weak interactions, we anticipate these parameters to approach zero, thereby
assuring the conditions necessary to accurately investigate the symmetry-preserving topo-
logical transition. This is because, in the absence of interactions, the magnetization is
identically zero, meaning it can only become finite if the interaction is sufficiently strong
to induce spontaneous symmetry breaking. Consequently, we opt to maintain the potential
for magnetically ordered solutions within the system, as this aligns with our expectations
for the Mott phase when the dynamics of interaction are fully accounted for. In order
to reduce the number of parameters we need to optimize, stabilizing the phases in the
diagram, we choose to allow Sz to vary while fixing Rz = 0. Moreover, we set N = 1 to
ensure two electrons per site, i.e., in a half-filling condition. We then obtain the mean-field
Hamiltonian of the interacting BHZ model as

HMF (k) = (M + ϵk)Γ0z + xkΓzx + ykΓ0y −
(gT
2
Tz

)
Γ0z −

(gS
2
Sz

)
Γz0 (2.11)

that clearly shows the presence of an additive correction (proportional to the Γ0z matrix)
to the crystal-field splitting term3. Specifically, while M already breaks the symmetry
between the orbitals with Tz merely correcting the bands splitting, the spin term introduces
an entirely new aspect of symmetry breaking.

For the sake of definiteness, we illustrate schematically the iterative procedure we have
followed in order to solve the MF theory and to obtain the T = 0 phase diagram for
different parameter values.

• We start with a guess for the mean-field parameters T 0
z and S0

z .

• We diagonalize the matrix (2.11) for every point (kx, ky) in the BZ. In our actual im-
plementation, we have chosen a 100 × 100 grid, checking that increasing the number

3Although the interaction was initially formulated in real space, its straightforward translation into
k-space is ensured by the Fourier transform

∑
i nimσ =

∑
k nkmσ.
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of k-points does not change appreciably the results. Thus we have

U †HMFU = diag[εασ(k)] (2.12)

where U is the matrix of the eigenvectors and εασ(k) are the eigenvalues; α = ± is
the band index, where − indicates the valence bands and + the conduction ones,
both spin-degenerate in the non-magnetic case.

• We get the average single-particle densities in diagonal form as the sum over the
k-points of a Fermi function which has as argument εασ(k)

nασ =
∑
k∈BZ

1

1 + eβεασ(k)
(2.13)

and an effective β = 1000 which is only introduced to smoothen the step function we
would achieve in the zero-temperature limit that we are considering.

• We obtain the average occupation numbers on the original basis by performing the
transformation

nmσ = UnασU † (2.14)

and with these quantities we find the new mean-field parameters (T 1
z , S

1
z ) directly

from their definition:{
Tz =

1
2
⟨ψ†

iΓ0zψi⟩ = 1
2
[(n1↑ + n1↓)− (n2↑ + n2↓)]

Sz =
1
2
⟨ψ†

iΓzzψi⟩ = 1
2
[(n1↑ − n1↓) + (n2↑ − n2↓)].

(2.15)

• We use as successive input parameters the values:

(T n
z , S

n
z ) = wmixf [(T

n−1
z , Sn−1

z )] + (1− wmix) (T
n−1
z , Sn−1

z ) wmix ∈]0, 1[ (2.16)

resulting from the linear mixing of the obtained solutions f [(T n−1
z , Sn−1

z )] with the
given inputs (T n−1

z , Sn−1
z ) which ensures a faster convergence and avoids limit cycles.

The inclusion of wmix helps to dampen oscillations in the convergence process, making
it more robust in situations where the standard method might fail or converge too
slowly. The value of the mixing parameter has to be chosen carefully since it can
significantly affect the convergence rate; smaller values make the method more stable
but potentially slower, while larger values can speed up convergence but may lead to
instability.

• We repeat this procedure until we reach the self-consistency within a desired error,
that we set to

|(T n+1
z , Sn+1

z )− (T n
z , S

n
z )| < 10−6. (2.17)

We tested the solution with lower error threshold values and found that this particular
setting strikes an optimal balance between achieving a high degree of accuracy while
maintaining rapid convergence.

• Varying the most important model parameters U andM , we finally obtain the ground
state solutions of the interacting BHZ model for every selected J/U in MF approxi-
mation. In particular, we have constructed the phase diagrams as a series of “phase



34 CHAPTER 2. MEAN-FIELD ANALYSIS OF THE INTERACTING BHZ MODEL

stripes”: we have proceeded to fix a specific value of the interaction strength U and
then vary the non-interacting mass M . At every step, we have used the final result-
ing parameters as the input of the Hamiltonian for the successive value of M , with
a small shift to avoid remaining trapped in the initial phase in some regions of the
phase diagram.

An alternate method to get the mean-field solutions consists, as we have already men-
tioned, of finding the extrema of the free energy. Here, we comment for simplicity on the
procedure in the non-magnetic case and at zero temperature. Indeed, when T = 0, the free
energy coincides with the ground state internal energy, that for Rz = Sz = 0, has the form

E[Tz] =
2

N
∑
k∈BZ

ε−(k) +
gT
2
T 2
z (2.18)

obtained occupying twice the states in the conduction band

ε−(k) = −
√

[Meff(Tz) + ϵk]2 + x2k + y2k (2.19)

and adding the extra term in T 2
z . The value of the orbital pseudo-spin that optimizes the

functional E[Tz] can be trivially evaluated asking its derivative equal to zero

∂E

∂Tz
= gT

(
− 1

N
∑
k∈BZ

Meff(Tz) + ϵk
ε−(k)

+ Tz

)
≡ 0. (2.20)

Here we have stressed the dependence of Meff on Tz in order to make it clear that the
solutions of this equation have to be computed numerically. Should we choose to account
for spin polarization as indicated in Eq. (2.11), we would end up with a pair of coupled
self-consistent equations in both variables Tz and Sz.

It is important to notice that the factor gT = U − 5J discriminates two different trends
depending on its sign: when J < U/5 (gT > 0) we have a minimum of the free energy, while
when J > U/5 (gT < 0) we have a maximum. As previously mentioned, this distinction
leads to either a positive or negative shift in the gap closure condition relative to the non-
interacting case where M = 2 (Eq. (2.7)). This aspect will be thoroughly explored in the
upcoming section 2.2 on the results, and then when discussing the DMFT calculations in
Sec. 3.1.3. Anyhow, both regimes of J correspond to physically viable solutions, as the
repulsive character of T̂ 2

z does not directly influence the signs of the interaction parameters
U , U ′ and U ′ − J in the density-density Kanamori Hamiltonian. The advantage of the
iterative method is that it is insensitive to this distinction. Regardless, we have verified
the consistency of the two results through numerical checks.

2.2 Numerical results

In this section, we present our phase diagrams in the U -M plane where we will identify
the effect of the interactions on the topological phase transition, with a particular care on
the role of the Hund’s coupling to shape up the phases.

We will always keep the ratio J/U fixed, as in most of previous studies of Hund’s
related physics Ref. [72, 6]. Throughout this section, we set a constant hybridization value
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of λ = 0.3, except for in the subsection 2.2.3 specifically dedicated to exploring variations
in this parameter.

From the analysis of the mean-field equation (2.20) discussed above, and from the form
of the renormalized mass, Meff of Eq. (2.10), we expect a qualitative change in the effect of
the interaction on the topological transition when we cross the value U = 5J . Indeed, if we
tune the interactions exactly at U = 5J the mean-field correction to the mass term vanishes.
As a consequence, the value at which the topological transition occurs coincides for any U ,
with the non-interacting value M = Meff = 2. Above or below this specific value of J the
correction to the mass term appearing in the definition of Meff is, respectively, positive or
negative. Correspondingly we expect the transition line defined by the condition Meff = 2
to have positive (J > U/5) or negative (J < U/5) slope in the U -M diagram, which means
that in the former case, the interaction makes the topological transition “easier”, while in
the latter it becomes “harder”. For this reason, we will examine the two cases separately.
We begin with a detailed analysis of the J > U/5 case and will subsequently highlight the
key distinctions in the alternative one.

2.2.1 The regime J > U/5: Interactions increase the non-trivial
region

Figure 2.1: Phase diagrams of the interacting BHZ model in the U -M plane. Data are for
J = U/4 and λ = 0.3. (a) The diagram as a function of the orbital polarization Tz. (b)
The diagram as a function of the spin polarization Sz. The black continuous line indicates
the topological quantum phase transition separating the BI from the TI. The grey dashed
line inside the magnetic phase indicates in both panels the critical value of U at which
Sz = 1. The thick dashed line indicates the discontinuous transition between the TI and
the FI.

In this section we present a thorough analysis for J = U/4, obviously representative of
the regime J > U/5.
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Using the method of solution outlined in the previous section we mapped out the phase
diagram of the model in the U -M plane. In Fig. 2.1 we plot as color maps the values of
the two relevant MF parameters Tz and Sz using different color scales adapted to the range
of values that the two variables assume4.

In the non-interacting regime (U = 0, y-axis in our plots) we recover the conventional
topological quantum phase transition, signaled by a gap closing at M = 2. Such critical
point separates the topological phase TI, i.e., the quantum spin Hall insulator (M < 2),
from the trivial phase BI (M > 2). Correspondingly, the orbital polarization Tz shows
a smooth increase from zero for M = 0 (semi-metal) to the topological transition point,
where it reaches its maximum absolute value (Tz → −1 for our positive M), corresponding
to the fully orbital polarized BI. On the other hand, the spin polarization is zero for every
value of M .

When we introduce and increase the interaction strength U the two phases, BI and
TI, undergo a different evolution. The BI, with two electrons in the lower-lying orbital,
remains essentially unaffected by the increasing interactions. This is well evident from the
lack of change in the orbital polarization Tz which remains constant as a function of U as
long as we do not hit the line associated with the renormalized topological transition (see
below). On the other hand, the TI is more exposed to the effect of the interaction, which
tends to change the charge distribution between the two orbitals, opposing the effect ofM .
This is reflected in a variation of Tz (reduction of the absolute value) as we move along
horizontal lines in our diagram. Because of the smaller value of the effective mass term
Meff with respect to the bare one M , the value of the orbital polarization |Tz| < 1 in the
TI state is smaller (see panel (a)), i.e. the two orbitals are more equally occupied when we
increase U .

The TI-BI transition line in the phase diagram (i.e. the black solid line) is defined as
the locus where Meff = 2, i.e. where the effect of the U is balanced by the increase of
M . A simple estimate of the transition line can be obtained assuming that Tz remains
equal to -1 all the way to the transition. Plugging this value into the equation (2.10) and
imposing Meff = 2, we obtain the estimate M = 2 + U−5J

2
= 2 + U

8
. We notice, however,

that the transition does not indeed occur for a fully polarized system. Therefore, the
actual transition line obtained by solving the MF equations does not follow exactly the
simple prediction given above. For instance, with our choice of λ the transition occurs for
Tz ≃ −0.958 (see. Sec. 2.3), which leads to a line which is indeed quite close to the above
estimate. The actual MF line is shown as a black solid line in the two panels.

This prediction based on the value of the effective mass term is confirmed by explicit
evaluation of the Z2-invariant, evaluated from the (single-particle) effective Hamiltonian
as described in Sec. 1.5.1, which is zero in the whole region below the transition line and
1 above it.

Besides the topological phase transition, our model also displays a transition towards a
magnetic state, as clearly shown by the results for the spin polarization shown in panel (b).
In particular, it is evident that, upon increasing the interaction strength U , the topological
state in the region Meff < 2 becomes unstable in favor of the formation of a spin polarized
phase (Sz = 1 in the blue region of (b)) with equal population of the orbitals (Tz = 0 in
the red region of (a)). The transition curve between the paramagnetic phase (Sz = 0 in
the light green region of (b)) and the ferromagnetic phase (Sz ≃ 1) appears to be of first

4For definiteness we restrict our analysis to the positive values of the splitting M. Analogous results
can be obtained for the M < 0 case.
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Figure 2.2: Spin polarization Sz as a function of U for two values of the bare massM = 1.5
and M = 2.5.

order and it happens through a region where both order parameters simultaneously exist.

In this region indeed the optimal solution shows a residual orbital polarization Tz ̸= 0,
yet a finite value of the spin polarization 0 < Sz < 1. Increasing the interaction, Sz

progressively increases, until saturation to Sz = 1 is reached at the transition point (see
dashed line in Fig. 2.1(b)). For a larger initial value of the mass term, e.g., M = 2.5, the
system undergoes a direct transition to the ferromagnetic state, characterized by a dramatic
jump from 0 to 1 in the spin polarization, as shown in Fig. 2.2. A direct calculation of the
topological invariant ν seems to indicate that in such a region a topological state coexists
with a ferromagnetic solution. However, the breaking of time-reversal symmetry induced
by the emergence of a magnetic state should spoil the topological character of the solution.
As we shall discuss later this region corresponds to a semi-metallic state (see Fig. 2.4(f)).

The existence of the ferromagnetic region is clearly reminiscent of the Mott-Hubbard
transition to a high-spin Mott insulator that we expect to take place in a more accurate
solution –using, for instance, Dynamical Mean-Field Theory– of a two-orbital Hubbard
model. We now briefly comment on the nature of the magnetic transition. In this study,
we limited our analysis to the formation of a ferromagnetic state solution. However, it is
known that a strong coupling large anti-ferromagnetic exchanges determines the behavior
of the system, eventually leading to the formation of an anti-ferromagnetic (AFM) state.
The formation of an AFM state can be captured in a mean-field analysis, at the cost of
breaking translation invariance, yet we checked for selected points in the introduction of a
more complicated AFM order parameter does not change qualitatively our results.

A better insight into the evolution of the model solution with increasing interaction U
is obtained by looking at the behavior of the orbital polarization for selected values of the
mass term M and of the interaction strength U . In figure 2.3 we report the behavior of Tz
as a function of M for different values of the interaction U . The different lines correspond
to vertical cuts in the phase diagrams in Figs. 2.1. In the weak interaction regime, the
solution is associated with a smooth increase, in absolute value, of the orbital polarization.
The continuous topological transition is characterized by a change in the slope of Tz as a
function of M . Upon increasing the value of the interaction U the behavior of Tz becomes
characterized by a large discontinuity exiting the non-polarized magnetic insulator (Tz = 0)
towards the TI state. The TI-BI transition remains continuous throughout the range of



38 CHAPTER 2. MEAN-FIELD ANALYSIS OF THE INTERACTING BHZ MODEL

Figure 2.3: Orbital polarization Tz as a function of the mass term M for different values
of the interaction strength U . This quantity displays a jump at the magnetic transition,
while it continuously evolves from the TI to the BI at the topological transition, indicated
by the grey dashed line.

variation of the U .
Finally, we discuss the behavior of the band structure and the spectral functionAmσ(ω) =

− 1
π
ℑGmσ(ω), where Gmσ(ω) =

∑
k[ω + i0+ −HMF (k)]−1

mσ is the mean-field Green’s func-
tion for the orbital m and spin σ. Our results for the selected points in the phase diagram
(U,M) are reported in Fig. 2.4. In each panel, we report on the left the electronic band
structure along the X − Γ−M −X − Γ path in the Brillouin zone, on the right the spin
and orbital resolved spectral functions.

In the panels (a)-(b) of Fig. 2.4 we report the case of, respectively, a trivial BI with
(U,M) = (2, 3) and a TI with (U,M) = (2, 1). The color code of the band structure indi-
cates the spin and orbital character of the solution. Because of the time-reversal symmetry
the system shows a spin degeneracy. A direct band gap (at k = Γ) equal to 2(Meff−2) = 2,
characterizes the BI solution with two distinct orbital bands, well above and below the
Fermi level (ω = 0). In the TI regime (see panel (b)) the gap around Γ is inverted as
well as the orbital character. The inversion of the gap is more evident by comparing the
spectral function of the two panels (a) and (b). In both cases, the DOS exhibits two van
Hove singularities at the middle of each energy band, resulting from the integration of
D(ϵ) =

∑
k∈BZ δ(ϵ− ε±(k)).

We now turn our attention to the magnetic solution. The onset of a spin polarization
Sz > 0 lifts the spin degeneracy which characterizes the band structure in both the BI
and TI. In the panel 2.4c we report the solution for a point in the coexistence region
(U,M) = (5, 1.5). In this regime, the small value of the spin polarization, which splits the
spin degenerate bands, is not enough to overcome the effect of the orbital band separation
driven by Meff . The result is the partial (accidental) overlap of two bands with opposite
spins and different orbital character. The bands cross in two distinct Dirac points, giving
rise to the formation of a semi-metallic solution. This is evident also when looking at the
spectral functions. In three-dimensional systems, such band crossing usually gives rise to
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(a) (U,M) = (2, 3) (b) (U,M) = (2, 1)

(c) (U,M) = (5, 1.5) (d) (U,M) = (12, 1)

(e) (U,M) = (12, 2) (f) (U,M) = (12, 2.5)

Figure 2.4: Evolution of the spin- and orbital-resolved electronic band structure (left panel
in each panel) and of the spectral function A(ω). The vertical axis in the energy in the
same units as the rest of the manuscript

the formation of a Weyl semi-metallic state, which retains non-trivial topological properties
notwithstanding the broken time-reversal symmetry. It is worth observing the persistence
of an indirect band gap, below and above the Fermi level, in each couple of bands with the
same spin. As we discussed above the presence of such a gap is signaled by the non-zero
value of the topological invariant, although this can be considered a false positive.

Well into the magnetic phase, the larger value of the spin polarization Sz is enough to
open a band gap of order U . For a given spin orientation, however, we can still distinguish
different cases, corresponding to the initial value of the mass term M . For M < 2, see
Fig. 2.4d, each spin-resolved band structure shows the presence of a small inverted gap
across which orbital character is exchanged. As expected such gap closes for M = 2,
leaving behind a Dirac point well below or above the Fermi level. Finally, a well-separated
set of electronic bands is obtained for M > 2 (see Fig. 2.4f).
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2.2.2 The regime J < U/5: Interactions decrease the non-trivial
region

We now move to the analysis of the J = U/8 case. Here Tz decreases smoothly from
the transition line towards the M = 0 limit. Interestingly the variation of the orbital
occupation proceeds along lines essentially parallel to the transition line Meff = 2, with a
slope that increases upon decreasing J .

Unlike the J > U/5 discussed before where the TI region seemed to be open ended, for
0 < J < U/5 the topological transition line intersects the boundary line of the magnetic
phase into a triple point. In turn, the magnetic phase is pushed towards a larger value
of the interaction U , while its area gets smaller, with decreasing J . As we shall see in
the next section this behavior mirrors the evolution of the Mott insulating region in the
DMFT solution (Sec. 3.2). In the limit of zero Hund’s coupling J = 0 the magnetic
solution completely disappears.

Figure 2.5: Phase diagrams of the interacting BHZ model for λ = 0.3 as a function of the
orbital polarization Tz. Left panel: J = U/8. Right panel: J = 0. Being J < U/5, the
BI-TI transition line (black solid line) has a negative slope. The grey dotted line illustrates
the projected path of the topological transition line for J = U/8, assuming the possibility
of the system to spontaneously magnetize is ignored. When J = 0, the FI phase vanishes
correspondingly.

2.2.3 The effects of orbital hybridization λ

Finally, we study the effects of orbital hybridization λ on the mean-field solution of the
interacting BHZ model. In this study, we focus on the case J = U/4. We tested that
our results do not qualitatively change for different values of J . We recall that λ derives
from the intrinsic SOC and it is essentially responsible for the formation of a non-trivial
topological phase.
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(a) λ = 0, Tz ≃ −0.567 (b) λ = 0.3, Tz ≃ −0.541

(c) λ = 1.0, Tz ≃ −0.448 (d) λ =
√
3, Tz ≃ −0.367

Figure 2.6: Band structure in the topological phase (U,M) = (2.0, 1.0) for J = U/4 and
different values of the inter-orbital hybridization λ. Moving from (a) to (d) transitions us
from the trivial (metallic) phase into the ”strongly” topological phase, characterized by
λ > t.

Qualitatively, a slight change in λ does not affect the shape of the phase diagrams, as
described in the previous sections. This is expected given the role of λ in controlling the
mixing of the orbital character. Although this introduces a small change in the occupations
of the two orbitals, it does not significantly alter the band-structure itself, as long as
0 < λ ≤ t (Fig. 2.6). Remarkably, the overall shape of the phase diagram remains
consistent even in limit cases λ = 0, Fig. 2.7.

In fact, the parameter λ does not enter in the definition of the effective mass termMeff ,
if not marginally through Tz (see Eq. (2.22)), and thus does not influence the transition
among the BI and the TI. A change in the inter-orbital hybridization slightly alters the
evolution of the orbital polarization Tz in the topological region. However, the onset of
the magnetic order is independent of the specific value of λ. We illustrate this point in
Fig. 2.8(a) where we show the behavior of the spin polarization Sz as a function of U for
different values of the mass term M and λ. For each value of M (see the two panels)
the transition point at which the magnetization attains its maximum value Sz = 1 is
independent of λ. Interestingly, however, the coexistence region hosting the semi-metallic
solution (see Fig. 2.4(c)) contracts upon increasing λ. This effect is associated to the
decrease of the orbital polarization Tz introduced by a larger value of λ which favors an
more equal distribution of the occupation among the two orbitals. This ultimately favors
the formation of magnetic moments, in a way similar to a reduction of the effective mass.

We underline this effect by presenting some results about the behavior of Tz as a
function of the mass term M in Fig. 2.8(b). We show results for three different values of
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Figure 2.7: (a) Phase diagrams of the trivial model for λ = 0 and J = U/4, as a function
of the orbital polarization Tz. The black solid line separates the metallic from the band
insulating phase. The thick dashed line denotes the discontinuous transition to the mag-
netic phase. The grey dotted line delimits the Weyl semi-metal phase. (b) Figure from
Ref. [64]. DMFT phase diagram in the ∆-U plane. The crystal field splitting is denoted
by ∆, which, in our case, corresponds to the parameter M . The paper aims to study
the interplay of ∆ and Hund’s coupling in a two-orbital model. The transition lines for
J/U = 0.25 present the same overall trend of our MF solution, although the FI is replaced
by the Mott insulator.

Figure 2.8: (a) Spin polarization Sz as a function of U for three values the hybridization
term λ = 0.2, 0.3 and 0.4, for M = 1.0. The extension of the semi-metallic region (0 <
Sz < 1) decreases as λ increases. (b) Orbital polarization Tz as a function of the bare mass
M for different values of λ and three selected values of U . Left to right: TI-BI transition
for U = 2, FI-semi-metal-BI transition for U = 5 and FI-BI transition for U = 8.
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the interaction U , respectively in the weak, intermediate and strong coupling regime. In
all cases, we observe that the orbital polarization Tz gets smaller (in absolute value) as λ
increases. For large enough interaction strength, Tz displays a large discontinuity associated
to crossing the magnetic boundary line. For U = 5 this jump is preceded by a region where
orbital polarization grows smoothly. Remarkably, all the curves corresponding to different
values of λ collapse on the same line in this region.

2.3 Towards a Landau-like Approach

In the previous section, we have thoroughly explored the influence of interaction on the
topological transition in the BHZ model through a mean-field analysis, particularly high-
lighting how different regimes of J and the value of λ influence the transition. Regardless of
parameter variations (excluding the trivial case λ = 0), the topological phase transition of
the non-interacting BHZ model remains robust against interaction effects, with no interme-
diate phase between the band and the topological insulator, owing to the TRS requirement
on the interaction form. The emergence of a ferromagnetic (FI) phase for large repulsion
and small-to-intermediate mass term does not change the picture substantially. In particu-
lar, for J > U/5 the magnetic transition occurs within the topological insulator phase, and
the region where the FI is stable is disconnected from the topological transition line. When
J < U/5, the topological transition occurs for smaller M than for U = 0, which leads to a
tricritical point that connects BI, TI, and FI phases, which ultimately determines a critical
value of M to actually find the topological transition. Below this threshold, increasing U
directly transitions the system from a topological state to the magnetic solution, thereby
interrupting the phase transition line. As in the J = 0 phase diagram, the topological
transition line would reach zero in the absence of a magnetic phase.

As outlined in the introductory chapter 1, the distinction between topological and trivial
phases in the free model hinges on the invariant ν, which assumes a value of 1 for the TI
and 0 for the BI. We recall that for M < 2, the differing parities of the two orbitals lead
to a change in the parity eigenvalue of the occupied Kramers pairs at one TRIM, resulting
in a nonzero topological invariant. Conversely, for M > 2, the parity eigenvalues of the
occupied states are the same at every TRIM and ν vanishes. The transition is governed
by the crystal field splitting, with the gap closure at M = 2 acting as the definitive marker
for phase transition.

Within the mean-field approximation, the topological invariant can be computed just
like for the non-interacting model owing to the single-particle nature of the theory. Yet, the
correction introduced by the mean-field can affect the gap closure condition quantitatively,
Eq.(2.7). The interaction-driven correction is notably determined by the orbital polariza-
tion Tz, the conjugated variable to the “mass term” M , which is both easily accessible and
has a direct physical meaning. This establishes a fundamental link between the topologi-
cal properties and a standard observable, which can also be used beyond the mean field,
and it can couple to fluctuations in various channels when the mean-field approximation
is relaxed.

This simple observation also makes it clear why the BHZ model holds distinct advan-
tages over the first model for a QSHE, the Kane-Mele model. The role played by the local
orbital polarization in the BHZ model is played by the density difference between the two
sublattices in the Kane-Mele one. The latter quantity is non-local, which makes the gen-
eralization of our analysis more complicated already at a mean-field level, and even more
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strikingly for more advanced many-body methods such as Dynamical Mean-Field Theory
(or the variational Gaussian method that we also use in the present thesis).

Analyzing the phase transition in terms of the closure of the effective gap renormalized
by interactions brings us closer to interpreting topological transitions in a spirit close to
Landau theory, i.e., by analyzing the behavior of the free energy as a function of one (or
more) relevant parameters. Of course, we do not claim that a standard Landau theory can
be developed or that a local order parameter can be defined for our topological transition.

The lack of spontaneous symmetry breaking (Tz is already finite in the absence of inter-
actions) and the non-analytic character of the free energy expansion at the transition point
are clear differences with respect to the conventional Landau theory [73]. Nevertheless, the
study of the free energy holds an intrinsic value, as it allows us to analytically determine
the value of Tz at the transition and characterize the nature of the topological transition.

We conclude that, despite its limitations, this analysis opens up the possibility for
employing a free energy framework to characterize topological transitions, even in the
more complex scenario of dynamic correlation effects. As will be discussed in Chapter 4,
properly adopting this methodology can yield surprisingly accurate results. Furthermore,
it facilitates a physical interpretation of the mechanisms driving topological transitions.

2.3.1 Free energy expansion

In this section, we expand the free energy formula in Eq. (2.18) around the point where
the gap closes, which is given by the condition Meff − 2, where Meff is given by Eq. (2.10).
Therefore we define η ≡ Meff − 2 to measure the distance from the point where the gap
closes.

It is important to emphasize that while we treat the orbital polarization as the funda-
mental local parameter of our analysis, its value does not vanish due to the asymmetry
between the orbitals induced by the presence of the mass term M . Consequently, Tz does
not serve as a traditional order parameter, and this is reflected in the behavior of its shifted
value η, which does not behave as an order parameter, which is zero in the symmetric phase
and finite in the broken-symmetry phase. Instead, η vanishes at the critical interaction
value (for a given M) while the two phases have respectively positive and negative values.

Expanding the free energy in powers of η we obtain

E[η] =E0[η] + a(gT )η + b(gT )η
2 + cη3 + o(η4)
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where E0[η] = 2
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is a constant energy-shift, v2k = x2k + y2k and ε0k =√

(2 + ϵk)2 + v2k is the absolute value of the conduction band dispersion at the point η = 0
where the gap is closed. Note that the latter quantity becomes zero at the Γ point,
which leads to the divergence of all the terms beyond the third in the expansion as it
enters the denominators of the coefficients with increasing powers as the order grows. This
clarifies our previous statement about the non-analytical behavior of the free energy and
the introduction of the function R(η).
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Let us nonetheless examine the first terms of the expansion. First of all, the linear term
has to vanish to make the η = 0 point stationary. Using Eq. (2.10) the stationary condition
provides us with an explicit expression for the orbital polarization at the transition point

T ∗
z = − 1

N
∑
k

2 + ϵk
ε0k

. (2.22)

This shows that this value of polarization depends on λ through ε0k, while it is com-
pletelely independent on M and U signaling that it will remain a constant throughout our
phase diagrams. As a matter of fact, the only dependence we have to take care of is a weak
dependence on λ. We estimate this value to be T ∗

z ≃ −0.958 for λ = 0.3.
The second-order coefficient is expected to distinguish a potential first-order transition

from the anticipated continuous transition. In the standard Landau theory, where we
expand in powers of the order parameter, this coefficient would coincide with the inverse
of the relevant susceptibility, whose divergence pinpoints a critical point. Quite naturally
a discontinuous transition separating the two regimes of η > 0 and η < 0 takes place if
b(gT ) < 0, while a continuous transition occurs when a(gT ) = 0 and b(gT ) > 0 (Fig. 2.9).

This is because if we follow the transition line, the value of η should be zero in the
continuous segment of the transition, i.e., when the gap closes.

Conversely, η might acquire a finite value if the nature of the transition were to shift,
for instance, if the massless Dirac fermions, which characterize the continuous topological
transition, were to obtain a finite mass.

In this case, the transition between the topological and the trivial insulator would
occur without gap closure. Specifically, the second-order coefficient vanishes exclusively in
a region of the phase diagram that does not correspond to realistic values of parameters
within the Hubbard-Kanamori framework.

To clarify, in the repulsive regime of the T 2
z interaction, this coefficient would disappear

for negative values of the interaction strength U . On the other hand, in the attractive
regime, the value of U (or gT ) that balances the term(gT c
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in Eq. (2.21), being gT c ≃ 1.618, exceeds the value of U intersecting the x-axis (M = 0),
thereby placing it in the M < 0 portion of the phase diagram. We therefore conclude,
in line with what we anticipated from our numerical findings, that within the mean-field
approximation and in the absence of symmetry breaking, the topological phase transition
is invariably continuous.

A more direct method to determine this involves computing the orbital compressibility
κ, which is the derivative of the orbital polarization with respect to the crystal field M ,
ensuring it does not diverge at any point. Specifically, from Eq. (2.20), we obtain

κ =
∂Tz
∂M

= − χMF
T

1− gT
2
χMF

T

(2.24)

with
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The r.h.s. of Eq. (2.23) coincides with the bare susceptibility evaluated at the gap closure
condition.

Our statement about the continuous behavior of the TPQT diverges from that presented
in [74], where the authors sought to account for the discontinuous nature of the topological
phase observed in the context of more advanced DMFT calculations in [6], all within the
static mean-field theoretical framework. We agree that their findings hold for transitions
along theM = 0 line. However, their broader assertion could be due to oversight, influenced
by the simultaneous errors of relying on a continuous description at the Γ point and defining
dimensionless coupling, which obscured the determination of whether their predictions fell
within a physically realistic regime.

For these reasons, the second part of this thesis will delve into the dynamic effects of
electronic correlations on the topological transition. Beginning with numerical Dynamical
Mean Field Theory calculations similar to those in reference [6] (in Ch. 3), we will scruti-
nize the impact of system parameters with the same level of detail as in the present MF
chapter. Subsequently, adopting the free energy functional framework presented here, we
will undertake a more theoretical investigation to discern why and how correlations are
pivotal in altering the transition’s nature.
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Figure 2.9: Overview of the hypothetical phase transition predicted by the free energy
expansion. Top left panel: Phase diagram of the interacting BHZ in the g-M plane, in
the attractive regime of the coupling. The hypothetical transition line displays a QCP
that separates the continuous from the discontinuous phase transition. Top right panel:
Characterization of the free energy as function of the parameter η, varying the coefficients
a and b of the expansion. The former governs the phase of the system (TI if a < 0 and
BI if a > 0), while the letter establishes the nature of the phase transition (continuous if
b > 0 and discontinuous if b < 0). Bottom left panel: Behavior of η along the transition
line as a function of g. The pseudo-order parameter is zero in the continuous part of the
transition and acquires a nonzero value after the QCP. Bottom right panel: comparison of
the gap opening for η̄ in the two phases. The discontinuous case is evidently characterized
by a mass generation mechanism, signaled by a gap opening.





Chapter 3

Local Dynamical Effects on the
Topological Phase Transition

In the previous chapter, we started our investigation of the effects of a local interaction
on the topological transition between the trivial insulator and the quantum spin Hall
insulator within the BHZ model, using a mean-field approximation for the interaction. In
particular we have identified the key role of one local parameter, the orbital polarization
Tz. This quantity emerges naturally as it is coupled, to the mass parameter of the theory
M , which is indeed a crystal-field splitting, acting as an external field on the orbital
polarization. The main result of the mean-field is that Tz induces a shift of the mass term
and consequently of the location of the topological transition in the phase diagram. Yet, Tz
evolves smoothly across the transition, which remains continuous and essentially identical
to the non-interacting model, namely it is characterized by the closure of the gap at the
transition point. Consequently, a Landau-like expansion of the mean-field free energy as
a function of the distance from the transition displays a second-order coefficient which
cannot vanish as in a standard continuous transition.

However, physical intuition and the immense body of work on multi-orbital Hubbard
models suggest that the static mean-field theory will become less and less accurate as the
interaction grows, and that all the dynamical quantum effects may change the picture
qualitatively or even lead to a breakdown of the mean-field scenario. We underline that
we are going to focus on solutions where the symmetry protecting the QSHI is not broken.

At the very least, we can expect that the critical value of gT c from Eq. (2.23) could
be modified going beyond mean-field, but more fundamental differences can arise. A pos-
sible scenario has been highlighted by previous numerical Dynamical Mean-Field Theory
(DMFT) calculations [6] revealing that the continuous transition turns discontinuous at
a critical value of the interaction (and mass term). Within this picture the orbital po-
larization has a jump at the transition point, in contrast with the standard gap closure
paradigm. However, while this effect was attributed to fluctuation effects and their stronger
role within the QSHI phase, the mechanism which turns the transition discontinuous was
not clearly identified, as well as the generality of the result and its dependence on various
microscopic effects.

In this thesis we aim to fill this gap of knowledge, and at the same time drawing a clear
picture of the effects of interactions on topological phase transition establishing a firm link
between the character of interacting topological phase transitions and specific quantum
many-body effects.

49
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In this chapter we will exploit the power of DMFT to explore the robustness and
dependence on different physical parameters on the topological transition and in particular
of the quantum critical point separating a continuous transition with a discontinuous one.
For readers new to DMFT, we recommend a brief overview provided in Appendix B. In
the next section we introduce only the main quantities and observables that we use to
characterize the phase diagram of our models within DMFT, limiting ourselves to the
basic information necessary to follow our analysis.

The adoption of DMFT, which maps the lattice model into an effective dynamic local
theory to be determined self-consistenly [8], is justified by its ability to accurately cap-
ture the competition between local repulsion and the crystal-field splitting M , pivotal in
governing the topological transition, at the same time describing accurately the physics
of strong correlations in a more general sense, in particular addressing the Mott-Hubbard
transition. The non-perturbative character of DMFT is instrumental to address the com-
petition between different effects without assuming any hierarchy in their characteristic
energy scales.

The main outcomes of this chapter can be organized as follows, where the first two
items contain the crucial information related to the main thread of this work, while the
other two items complement the work in other relevant directions:

• Generality of the results as a function of the parameters. We study the
evolution of the phase diagram as a function of J/U and of λ. The first aspect
has been addressed in a related three-dimensional model [75], but we are not aware
of investigations of the two-dimensional BHZ model. In particular, we supplement
the study of [6, 76], where a relatively large value of J = U/4 has been used with
a thorough investigation for a smaller coupling J = U/8 in Sec. 3.1.3, where we
present a systematic analysis. We clearly show that the discontinuous transition for
large U is present also in this case, despite some differences in the shape of the phase
diagram. We then discuss the evolution with the Hund’s coupling of the quantum
critical point (Sec. 3.1.4). This clearly signals that the effect of interactions on the
topological transition is quite robust and is not directly related to the Mott transition.

• Role of the interation model. A second important piece of information comes
from comparing the results obtained for a Hubbard-Kanamori modeling of the inter-
action with simplified interactions. The idea is that the mean-field analysis shows
that the only channel which plays a role is the orbital polarization Tz. This may
suggest that, among the four terms of the Hamiltonian Eq. (2.5), one could retain
only that involving Tz in order to capture the effects of the interactions on the topo-
logical phase transition. Nevertheless, we demonstrate that this expectation is not
correct and that a model with an interaction of the form −gT

2
T̂ 2
z (i.e. we take the

decoupled form Eq. (2.5) and we set all the couplings to zero except for gT ) dis-
plays a continuous transition even when dynamic effects are treated consistently and
non-perturbatively within DMFT.

Conversely, we outline that the minimal interaction form that leads to a quantum
critical point along the transition line contains both the Tz term and the total charge
channel N , suggesting a crucial role for the interplay between the two channels.

• The Mott Transition. In order to complete our survey of the physics of strong cor-
relations in a BHZ model, we dedicate a short section to the Mott-Hubbard transition
(Sec. 3.2).
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3.1 First-order character of topological transitions

3.1.1 DMFT analysis: the main markers and observables

In the DMFT framework, the self-energy, describing the effects of the electronic interaction
on the single-particle Green’s function, is momentum independent by design Σ(k, iωn) ≡
Σ(iωn). This result is exact in infinite spatial dimensions, but it provides accurate re-
sults also for finite-dimensional systems provided that the momentum-dependence of the
self-energy is not fundamental. On the other hand, a frequency dependent self-energy
is sufficient to describe a variety of interaction-induced phenomena, ranging from Mott
localization to several symmetry-breaking instabilities.

Consequently the lattice Green’s function’s (written here as a matrix in the orbital/spin
space) can be written as

Ĝ(k, iωn) = (iωnÎ + Ĥ0(k)− Σ̂(iωn))
−1, (3.1)

where Î is the 4×4 unity matrix, Ĥ0(k) is the momentum-dependent single-particle Hamil-
tonian, here the BHZ model. It is clear that it depends on k only via the non-interacting
Hamiltonian. The local self-energy directly corrects local terms of the Hamiltonian, such as
the crystal-field splitting, while the dispersion is renormalized via a momentum-independent
quasiparticle weight Z.

In order to assess the topological nature of our solutions, we use the topological Hamil-
tonian [69]

Ĥtop(k) = Ĥ0(k) + Σ̂(ω = 0). (3.2)

It is apparent from this expression that the real part of the zero-frequency self-energy plays
the role of an additive correction to the non-interacting Hamiltonian. If we assume that
none of the symmetries of the model is broken, the real part of Σ̂(ω = 0) has the same
orbital and spin structure of the bare local Hamiltonian (i.e. it is spin-independent, while
the orbital components have opposite sign), while the imaginary part is the same for every
orbital and spin. Therefore, for our model, the whole self-energy is diagonal and it reads

Σ(ω) = iℑΣ(ω)Γ00 + ℜΣ(ω)Γ0z. (3.3)

Since the imaginary part of the self-energy linearly vanishes as ω → 0 in both the trivial
BI and in the QSHI, only the real part enters into Htop(k), thereby preserving its Hermi-
tian nature. Therefore, the topological invariants can be easily calculated based on the
eigenvalues of the topological Hamiltonian, as detailed in Sec. 1.5.1. As a matter of fact
the effects of the interaction on the topology of the BHZ model are thus captured by the
single coefficient ℜΣ(ω). In the following we will refer to this amplitude as the self-energy,
even if strictly speaking the self-energy is a matrix and ℜΣ(ω) is the only independent
component of the self-energy matrix.

This value, in the zero frequency limit, can be utilized to identify the new effective mass
term [77–79]

Meff =M + ℜΣ(ω = 0) (3.4)

which, similarly to the mean-field theory, is the crucial quantity to follow to assess the
topological properties crucial of the system within DMFT calculations.

One could argue about the robustness of the DMFT results with respect to the inclusion
of a momentum-dependent self-energy Σ(k, ω) that might affect the gap closure condition
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or even overturn the topological gap protection and the consequent definition of topological
phases. However, a previous investigation using a cluster extension of DMFT has shown
that the the inclusion of non-local effects has been demonstrated not to significantly alter
the overall picture [80] as far as the topological transition is concerned, so we can safely
limit our investigation to the DMFT approximation.

Eq. (3.4) represents the dynamical extension of the renormalized band splitting that
we introduced in the mean-field context. The DMFT expression indeed reduces to Eq.
(2.10) in a static mean-field approximation, as −U−5J

2
Tz corresponds to the Hartree-Fock

self-energy. As a matter of fact the real part of the self-energy can be seen as a frequency-
dependent renormalization of Tz. Notice however that the topological invariant is deter-
mined by the zero-frequency limit of the self-energy, which is expected to be mostly affected
by the dynamical quantum effects, while a static mean-field behavior can be recovered at
large frequencies. This change is not minor. Indeed in the present DMFT framework the
remormalization of the mass term due to the interaction can be much stronger, because
ℜΣ(ω = 0), unlike Tz whose absolute value is bounded between 0 and 1, can in princi-
ple vary without constraint. Among the consequences of this simple fact, the condition
Meff = 2 condition might not be realized at the transition if the self-energy in the QSHI
becomes very large at small frequency, as we can expect to happen when the interaction
strength increases.

3.1.2 The phase diagram for J = U/4

In this section we briefly review the results obtained in Ref. [6] solving DMFT at zero
temperature using an exact diagonalization solver [81] for our BHZ model with λ = 0.3
supplied with the density-density Kanamori interaction with J = U/4. As we mentioned
above, in this publication the possibility of a discontinuous topological transition in this
model for sizeable values of U has been reported for the first time to the best of our
knowledge.

In Fig. 3.1 (panel a) we reproduce the phase diagram of the model at half-filling.
The authors of [6] chose to illustrate the phase diagram against the reciprocal of the bare
mass 1/M and the interaction strength 1/U in order to convey graphically the fact that the
interactions turn a pure topological transition into something closer to a more conventional
phase transition and to a phase diagram which reminds that of water.

The background colors, differentiating the insulating phases, correspond to the varia-
tions of

Ξ =
ℜΣ(0)−ℜΣ(∞)

ℜΣ(∞)
, (3.5)

a quantity which measures the relative amplitude of the quantum correlations obtained
comparing the low-frequency and the high-frequency limits of the self-energy, i.e. a marker
of the degree of correlation. It is evident that the degree of correlation is small in the trivial
band insulator, where the completely filled band does not leave room for interaction effects
beyond mean-field, while it has a significant amplitude in the QSHI, where correlation
effects are possible, and it becomes substantial in the Mott insulating phase, which is
dominated by strong correlation effects.

The dotted line with orange squares for small U and M (large 1/U and 1/M) marks
the topological phase transition between the QSHI and the band insulator. The figure
makes it clear that the continuous branch ends into a critical point, beyond which we have
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Figure 3.1: Figure readapted and captions from [6]. a) T = 0 phase diagram in the 1/U
vs 1/M plane for J = U/4 and λ = 0.3. Besides delimiting the different phases – Mott,
Topological and Band Insulator (MI, QSHI and BI, respectively, in the main text) – the
color quantifies the many-body character. The orange squares and the dotted line mark
the continuous BI-QSHI transition for small U . The blue diamonds and the thick solid
line mark the first-order transition between the same phases for large U . The two lines
are connected by a quantum critical point. White circles and a dashed line denote the
boundary of the MI. b) Evolution of the poles P (k) (positive part) of the single-particle
Green’s function near the Γ point across the topological transition for U = 5.5 (top panel)
and U = 7.0 (bottom panel). At weak-interaction (top panel) the transition occurs with a
closure of the band-gap with the formation of a semi-metallic state (Dirac cone). At strong-
interaction (bottom panel) the transition takes place without closure of the spectral gap.
Here we follow the QSHI solution in its whole existence region.

a discontinuous transition (solid line with blue diamonds). The first order line appears to
merge with the Mott transition (found at very large U) in a tricritical point.

At least for small values of the interactions, the slope of the topological transition line
is given by the self-energy correction to the non-interacting band gap 2M , which is indeed
reduced by U so that a larger value of M is required to turn the QSHI into a trivial BI.
This observation aligns with our understanding from the mean-field analysis about the
influence of the Hund’s coupling when J > U/5 (Fig. 2.1). However, as we increase the
interaction while the slope of the transition line does not change significantly, the transition
becomes of first order. A generic explanation of this is simply that the self-energy acquires
a significant frequency dependence in the QSHI phase, while it is basically constant in the
trivial BI. Consequently, the strong correlations break the link with the U = 0 physical
picture, meaning that the ground states of the two insulating phases can no longer be
connected adiabatically and the transition becomes discontinous. This reflects directly in
the absence of gap closure, as shown in the panel (b) of Fig. 3.1 where we contrast the
essentially standard result obtained for U = 5.5, where the gap closes continuously on both
sides of the transition leaving us with a gapless state along the transition line, with the
non-conventional results found for U = 7 with a gap which remains finite on both sides of
the discontinuous transition.

We conclude our short account of the previous results commenting the existence of
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a Mott insulating state, which is obviously not accessible within static mean-field. The
finite value of J triggers a high-spin state in the Mott insulator, in particular the choice
of a purely density-density interaction breaks the spin-rotation invariance, so that the two
configurations favoured in the Mott state are those having two electrons with the same
spin populating the two orbitals. Thus the Mott state features a uniform occupation of the
orbitals on each lattice site, so it directly competes with theM term, so that the transition
towards a Mott insulator is shifted to larger U as M increases. As a matter of fact the
region where the high-spin Mott insulator is stable tracks the ferromagnetic region found
at a mean-field level. The transition from the Mott insulator to the quantum spin Hall
phase appears discontinuous within DMFT, echoing the behavior observed at mean-field
level between the ferromagnetic and topological phases. This transition ends up in a triple
point where all three insulating phases are connected.

3.1.3 Robustness against the Hund’s coupling regime: J = U/8
study

Figure 3.2: T = 0 phase diagram in the U -M plane of the interacting BHZ model with
J = U/8 and λ = 0.3. Besides delimiting the different phases - Mott, Topological and
trivial Band insulator - the colors quantifies: for the Left panel) the many-body character,
for the Right panel) the orbital polarization value. The black lines mark the topological
transition: a solid line in the continuous regime and a dashed one in the discontinuous one.
The dotted grey line indicates the Mott transition.

In this section we report novel DMFT calculations using the same numerical solver of
Ref. [6] to explore different parameter regions. The mean-field theory calculations have
revealed two distinct qualitative trends in the transition line that separates the topological
from the trivial phases. Specifically, the condition J = U/5 separates two regimes in which
U favours, for J > U/5 or unfavours, for J < U/5 the topological phase, determining two
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opposite slopes of the transition line in the U -M phase diagram. For J = U/5 the effective
mass (2.10) coincides with the bare mass, precisely maintaining the gap closure condition
at M = 2, as the non-interacting scenario.

Therefore, to verify the generality of the quantum critical point reported in [6] for
J = U/4, we repeat the DMFT calculations spanning different J/U regimes. For the sake
of definiteness, we discuss in details the results for J = U/8 as a representative of the
region J < U/5.

We have solved the effective quantum impurity problem with a Lanczos-based exact
diagonalization solver as described in App. B. The bath is restricted to a finite number
Nb of levels, chosen equal to 8 (4 sites with 2 orbitals each), coupled to the No = 2
impurity orbitals. The test performed in order to reproduce the results of Refs. [6, 77]
have been useful to tune the input parameters of the code and to verify the convergence with
Nb. In particular all the calculation has been performed setting the inverse temperature
β = 1000 and the convergence threshold to 10−5 (See the Appendix for more details about
the definition of these quantities).

In order to set the stage for a discussion of our DMFT results, we anticipate the zero
temperature non magnetic (U,M)-phase diagram obtained for J = U/8 (Fig. 3.2). At
variance with Ref. [6], we use the more standard U -M diagram in order to make the
comparison with the mean-field results easier. Fig. 3.2 contains two panels in which the
same transition lines are drawn, while colour maps correspond to two relevant observables,
the degree of correlation Ξ (left panel) and the orbital polarization Tz (right panel).

The region of stability of the QSHI phase has been identified through the topological Z2

invariant computed using the topological Hamiltonian. As we shall discuss the , while the
continuous or discontinuous character of the BI-QSHI transition is measured through the
behaviour of of the orbital polarization. The Mott insulator is characterized by a vanishing
quasiparticle weight Z. Most of this section will be indeed devoted to the topological
transition, while the Mott transition is briefly discussed in Sec. 3.2.

In the non-interacting limit we recover the standard transition at M = 2, as expected
since DMFT becomes exact in any dimensionality in the non-interacting limit. When
we turn on the interaction U , the data of Fig. 3.2 show that the critical M for the
topological transition decreases linearly. This is agreement with the mean-field analysis,
where the correction to M leads to a negative slope, in contrast with the large-J/U results
of Refs.[6, 77] where the topological transition line has a positive slope. This means that,
in the present case U disfavours the topological insulator with respect to the trivial state
and the self-energy at zero frequency is positive and increasing with U .

We can follow this behavior in Fig. 3.3 (left panel), where we plot the real part of the
self-energy as a function of the Matsubara frequency for different values of U andM = 1.5,
which crosses the topological transition line for U ≃ 3.0. This horizontal cut shows that
the self-energy is always positive and its value increases with U . The plot also highlights
that, while for small U Σ(iωn) is almost constant as a function of frequency, it develops
a marked dependence when U is increased which signals the important role of quantum
effects beyond a static mean field (where the self-energy is a constant by construction). The
evolution of the frequency dependence of Σ when we approach the topological transition is
made much clearer considering a vertical cut for U = 4. Here it is clear that for small M ,
when the system is in the topological insulating state, the self-energy displays a marked
frequency dependence, with a much smaller value at small frequency with respect to the
high-frequency limit. As we cross the transition and we enter in the trivial insulator, which
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Figure 3.3: (Left panel) Matsubara frequency dependence of the real part of the self-energy
for an increasing interaction strength U from bottom to top and for M = 1.5, when the
transition is from the topological to the band insulator. (Right panel) Matsubara frequency
dependence of the real part of the self-energy for an increasing mass term M (denoted by
the color scale) and U = 4.0.

happens abruptly at M ≃ 1.34, the frequency dependence becomes much weaker. These
data show that, similarly to the large-J case, (i) the topological insulator has much stronger
dynamical correlation effects than the trivial phase, and (ii) the transition is discontinuous,
as the zero-frequency limit of the self-energy has clearly an abrupt jump.

This change in the dynamical behavior of the self-energy that we described in Fig. 3.3
suggests that the degree of correlation Ξ can be a crucial guide to understand the phase
diagram. We recall that, according to the definition in Eq. (3.5), Ξ is the normalized
difference between the ω → 0 limit, which is expected to be dominated by corrections
beyond mean-field, and the high-frequency limit where we recover a mean-field-like constant
behavior. We notice that the asymptotic value does not actually coincide with the Hartree-
Fock mean-field, signaling an additive correction also to the static term. We will address
this discrepancy in Chapter 4.

We now revert to the evolution of Ξ throughout our phase diagram. In the weakly
interacting small-U regime Ξ is almost 0, indicating that there are minimal deviations of
the solutions from the static approximation both for small and largeM . It is interesting to
observe that in this case the change of Ξ across the TI-BI transition is smooth. When we
increase U it is evident that in the QSHI region there is a gradual increase of Ξ as a function
of U , while in the trivial region above the transition line Ξ remains small. This completely
different degree of correlation for solutions on the two sides of the boundary between the two
phases is the landmark of the discontinuous character of the transition. As a matter of fact,
it is not possible to continuously connect two phases which display a completely different
degree of correlation. We conclude the analysis of the degree of correlation noting that the
Mott insulating region found at large U is correctly characterized by very large correlation
effects which are the origin of the breakdown of the Quantum-Spin Hall insulator.
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Figure 3.4: The first-order character of the topological phase transition is shown through
a series of key quantities, calculated as functions of M and for progressively increasing
values of U . The critical value Mc is denoted by the grey dashed line. a) Evolution of
the correlation strength. b) Evolution of the orbital polarization. c) Evolution of the
effective band splitting parameter. d) The orbital compressibility shows a maximum in the
continuous regime of the transition and starts diverging from the QCP.

We have thus shown that the degree of correlation Ξ allows us to characterize the
different phases that populate the phase diagram and it gives us a first indication about
the effects of the interactions on the topological transition which is indeed analogous to
what has been found for J/U = 0.25.

We can now compare the behavior of Ξ with that of the orbital polarization which, as
we have abundantly discussed, is closely connected with the topological transition. The
band insulator is characterized by a nearly complete polarization with two electrons in the
lowest orbital (Tz ≃ −1), while the topological insulator is partially polarized. The nearly
complete polarization of the band insulator makes the interaction essentially mean-field
suppressing dynamical effects, while the partial polarization leaves room for non-trivial
correlations. Fig. 3.2 highlights how Tz is correlated with to correlation effects. Indeed,
precisely like in its twin phase diagram, we observe a gradual color change between the band
and topological insulator phases in the regime of weak interaction, becoming more distinct
as U exceeds the critical value Uc. The Mott insulating state is instead characterized by a
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nearly completely even occupation of the orbitals, hence Tz = 0.
We can summarize the picture of the correlated topological transition considering some

cuts at fixed U spanning the different regions of the same diagram. We choose to consider
vertical plots where M is the running variable in order to compute more effectively the
numerical derivative κ = ∂MTz.

The first two panels of Fig. 3.4 display the parallel between Ξ (panel (a)) and Tz (panel
(b)) and the development of the first-order jump of both quantities as U increases. A small
jump develops already after U = 2 and it gets larger and larger as U grows for both Ξ and
Tz.

This behavior is particularly important for the orbital polarization Tz which is the con-
jugate variable ofM . Hence the increase of the slope of Tz is the enhancement of a physical
susceptibility κ = ∂MTz. The development of a jump happens through a divergence of the
slope, i.e., of the susceptibility, marking a quantum critical point separating the continuous
region from the discontinuous one. The results for κ obtained via numerical differentiation
are shown in Fig. 3.4 (d), where the evolution of the peak into a divergence emerges despite
the numerical discretization errors.

Naturally, the evolution of Tz reflects directly in the effective mass Meff , shifted around
2, (Panel (c)) computed using the zero-frequency self-energy. Once again, the continuous
evolution, similar to the mean-field case, obtained for U = 1 and U = 2 is replaced by a
discontinuous behavior which grows substantially with the bare interaction strength.

The effect of the orbital hybridization λ

We conclude our analysis of the phase diagram dependence on the band structure parame-
ters of the interacting BHZ model by discussing the effects of the variation of the intrinsic
spin-orbit coupling, i.e. the inter-orbital hybridization λ. As pointed out in the previous
chapter, where we presented the mean-field analysis of the model solution, a change in λ
does not in general produce a relevant qualitative modification on the boundaries of the
phase diagram. This expectation is confirmed also in the DMFT calculation: λ significantly
affects only the evolution of the degree of correlation within the topological insulating re-
gion. This is associated to the modified distribution of the orbital occupations, i.e. Tz,
following the change in the amplitude of the hybridization. Another distinctive effect is the
slight shift of the critical points along the topological transition lines towards the U = 0
value for decreasing λ. This can be easily understood considering that along such lines,
identified by the condition Meff = 2, the only relevant amplitude is λ.

3.1.4 The transition and the quantum critical point as a function
of J

We are now in the position to discuss in more details the dependence of our results on the
ratio J/U . As we have already discussed, the Hund’s coupling favors maximal spin config-
urations by populating with the electrons different orbitals. This implies that, increasing
J , the QSHI will be favoured with respect to the band insulator, which has a completely
filled orbital. This observation led to the definition of Hund’s topological insulator given
by Budich et al. in Ref. [77].

On the contrary, in the extreme case J = 0, the interactions favors the band insulating
phase because of the large value of Meff . The absence of J makes the inter-orbital and the
intra-orbital repulsions equal. This means that all the configurations with two electrons on
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Figure 3.5: Transition lines between the topological and the trivial insulating phase for the
analyzed values of J (see legend). As usual, continuous line refer to the continuous branch,
while dashed lines refer to the discontinuous regime. A dot marks the critical points, which
are connected by a guide to the eye.

a site are equivalent as far as the interaction terms is concerned. Obviously this means that,
for anyM ̸= 0, the system will occupy the lower-energy orbital, leading to a band insulator.
The trend we discussed is shown in Fig. 3.5, where we plot the transition lines between
the BI and the TI phase as a function of U for different values of J/U . Starting from
J = U/4 and reducing the ratio down to zero, we clearly observe the expected decrease of
the transition for every value of U , which means that for any fixed U , the critical value ofM
monotonically decreases with J/U as we anticipated. We also observe that the corrections
from the mean-field behavior emerge for smaller U as J/U is decreased. Consequently, also
the position of the critical point signaling the end of the second-order regime (marked with
a dot on every curve) shifts towards smaller values of the Hubbard U by decreasing J/U .
This means that dynamical correlations enter in the game ”earlier”. Hence the system is
more exposed to the critical behavior superimposed to the topological transition by the
electronic correlation effects when J → 0. This justify our limited analysis up to U = 6,
in the regime where we get a faster convergence.

This behavior indeed aligns with expectations based on the free energy expansion, al-
ready at the mean-field level (2.21). In this case the vanishing of the second-order term,
necessary for a discontinuous transition, can take place in principle only when the coeffi-
cient gT = U − 5J is positive, given the inherently positive value of the polarization bare
susceptibility. However, we found that also for J < U/5, where the second order coefficient
could potentially vanish, it actually stays finite. Thus the small-U regime always show a
continuous transition also in DMFT.

The quantum corrections beyond DMFT are therefore the mechanism that limits the
region of continuous transitions, giving rise to a quantum critical point. The comparison
with mean-field suggests a reason why it turns out to be easier to make the transition
discontinuous when J is small. In the former regime the mean-field corrections contribute
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to decreasing the second-order corrections beyond mean-field are entirely of the appearance
of the QCP along the topological transition line.

3.1.5 On the relevant channels of the interaction

[h]

Figure 3.6: Transition lines between the topological and the trivial insulating phase for
different forms of the interaction. The DMFT solution, obtained using an effective single-
channel interaction that solely incorporates the orbital polarization channel (green line),
aligns with the MF solution (pink line). This indicates that the dynamical fluctuations of
Tz are not substantial enough to reveal the quantum critical point. The DMFT solution,
obtained using an effective two-channels interaction that also incorporates the charge (yel-
low line), aligns with the DMFT solution of the density-density Kanamori Hamiltonian
(blue line). As U increases, the lines begin to diverge from one another.

In this section we discuss the generality of the result we discussed as the form of the
interaction is changed. We recall that the density-density Kanamori interaction can be
written as

Hint =
∑
i

[
−gN

2
N̂2

i − gT
2
T̂ 2
zi −

gS
2
Ŝ2
zi −

gR
2
R̂2

zi

]
(3.6)

emphasizing the different independent channels.

Our mean-field analysis shows clearly that, as expected, the T̂z channel is crucial and
its mean-field value corrects the effective mass of the theory (Eq. 2.10). The DMFT results
also corroborate the central role of this parameter, as anticipated intuitively, given that it
is the parameter conjugated to the mass M .

It is therefore tempting to consider whether an interaction only featuring this term, by
setting gN = gS = gR = 0, would show the quantum critical point. We notice that a similar
form can not be derived directly from the Kanamori-Hubbard model, but it is simply
introduced to test whether the first-order behavior is triggered by quantum corrections to
the mean-field only in the same channel Tz which is active at the mean-field level.
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The results, shown in Fig. 3.6, clearly show that this is not the case, and the transition
of a pure-Tz model is continuous and it is actually very close to the mean-field result, which
is reported for comparison, while the DMFT results naturally depart from it as U increases.
The result is not trivial, and it suggests that, in the full Kanamori model, the susceptibility
in the Tz channel is not normalized mainly by the fluctuations in the same channel, but it
is actually strongly affected by the other channels, whose contributions induce a singular
behavior which is not found at the mean-field level. This results highlights therefore the
necessity to include other channels in any calculation aiming to properly describe the effect
of fluctuations beyond mean-field on the topological transition.

We can then ask ourselves whether it is necessary to include all the channels, or in other
words the full density-density interaction to give rise to the critical behavior. Since the
DMFT results have been obtained for a non-magnetic solution, a natural idea is to exclude
the two terms with a magnetic character, involving the Sz and Rz operators, leaving us
with only the first two terms of Eq. (3.6). This appears as a promising minimal interaction
as it contains the key parameter Tz and the density N , which is generally associated with
strong correlation (or Mott) physics.

In order to compare the results more directly with the mean-field, instead of keeping
gT and gN to their Kanamori value, we made a small manipulation (see App. A). In
particular we tweaked the parameters so that the effective mass obtained through a mean-
field decoupling of this reduced Hamiltonian coincides with that obtained by the decoupling
of the full model in the four channels given by Eq. 2.10. This corresponds to take gT = −5J
and gN = −(4U − 5J). The results obtained solving this reduced model with DMFT
are reported in the figure and they clearly show the first-order jump. Surprisingly, they
appear to be very close to the DMFT calculations for the full model also far from the
weak-coupling regime, where the agreement was enforced by our choice of couplings. We
emphasize that the rescaling of the coupling does not influence the very existence of the
first-order transition, but it only changes its position.

Therefore, we gain a clear information. The interplay between the Tz and N chan-
nels is sufficient to give rise to the critical behavior of the topological transition. This
is an important guideline to build the minimal theory for the emergence of a quantum
critical point out of a topological transition. The most natural strategy may appear to
include gaussian fluctuations of the density operator hoping that they would capture the
renormalization of the Tz susceptibility. However, our mean-field analysis has shown that
the gaussian fluctuations around the mean-field of different channels are decoupled, which
implies the need to go beyond a standard gaussian expansion. In the next chapter we will
present this theory and its results. We will actually consider the full model including all
the four channels, which will provide a direct information about the quantitative role of all
the channels and it will also rationalize the agreement between the reduced two-parameter
model and the full Hamiltonian.

We finally comment that our analysis suggests that any interaction containing at least
the Tz andN channels is expected to give rise to the critical behavior that we have discussed
for the Kanamori model. We notice that, for example, this includes a model where every
orbital has a Hubbard-like interaction and no inter-orbital interaction is present. For this
model we easily find that the interaction can be recast as Hint =

∑
i U(T̂

2
zi+N̂

2
i −Ŝ2

zi
−R̂2

zi
),

for which one finds Meff =M + U
2
Tz in mean field, which implies that the critical point is

pushed to very large values of U , which may be overlooked in a numerical analysis spanning
values of U comparable to those studied for the Kanamori model.
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3.2 Mott transition

Figure 3.7: Mott transition for U = 4.0. Left panel) Evolution of the orbital occupations
with M . At sufficiently low values, both orbitals are equally occupied, indicating the Mott
phase. The shift to the topological phase occurs through a discontinuous transition. Right
panel) Matsubara frequency dependence of the real part of the self-energy for an increasing
mass term M .

We finally turn our focus to the most direct signature of the U -J interactions, the
Mott insulating state. As in any Hubbard-like model, we expect that for integer filling
and large U , the large cost to create charge excitations will lead to Mott localization. We
underline that in this work we limit ourselves to paramagnetic solution without long-range
order. This choide is very common in the field, and it is meant to isolate the pure effects
of correlation from the magnetic ordering tendencies, which are often influenced by single-
particle physics. We expect that, similarly to previous calculations, the high-spin Mott
state will become antiferromagnetically ordered at low temperature on a bipartite lattice.

As we discussed while commenting the previous results for large J/U , in the present
model the high-spin Mott insulator, which is favoured by J , competes with the effect of
the crystal-field splitting M , which favours the occupation of the low-energy orbital, thus
leading to a band insulator. Thus we expect a Mott state when U is large enough to
localize the electron and M is small enough to allow for an even occupation of the orbitals
which is connected to the high-spin state.

Therefore, as we already discussed when we gave an overview of the phase diagram, we
expect the Mott insulator to have a vanishing orbital polarization Tz, as shown in Fig. 3.7,
where we plot the occupation of the two orbitals along a vertical cut for U = 5 as function
of M . For small M we are in the Mott insulating state, and increasing the splitting we
enter in the QSHI via a first-order transition where the occupations jump.

We can examine how the topological insulator is transformed into the Mott insulator,
as shown in panel (b) of Fig. 3.7, where we plot the self-energy as a function of the
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Figure 3.8: Transition lines between the QSHI and the Mott insulator for the analyzed
values of J. We notice that for smaller value, such as J = U/16 the transition is pushed
out of the scale along the U -axis.

Matsubara frequency for several values ofM along the same cut of panel (b). A color scale
is used to mark the plots according to the value of M . It is quite clear that the data in
the Mott insulating region are characterized by very large values of Σ in the low-frequency
region, while the topological insulator has a finite self-energy which follows the behavior
that we discussed in Sec. 3.1.3. Indeed the QSHI phase is found as long as ℜΣ(0) does not
exceed the highest eigenvalue of the topological Hamiltonian. When this value is crossed
the system transitions into the Mott state characterized by Tz = 0 and the expected large
level of correlation that we recover in the phase diagrams of Fig. 3.2. As we mentioned
above, for all the parameters we considered the transition into the Mott phase is first-order,
as shown by the abrupt change of the orbital polarization and the presence of a hysteresis
loop as a function of U .

Finally, in Fig. 3.8, we present the transition curves between the topological insulator
and Mott insulator phase for different values of J/U , once again all of the first-order.
Given that J favors localization tendencies, the onset of the Mott phase shifts towards
larger values of U as J decreases, and it is also limited to a smaller region of M . Thus
the region of stability of the Mott insulator shrinks in both directions as we reduce J ,
eventually disappearing for J = 0.





Chapter 4

Mechanism for Topological Gap
Opening without Symmetry Breaking

In Chapter 3, a thorough DMFT analysis of the interacting BHZ model revealed the pres-
ence of a quantum critical point (QCP) at the boundary between the topological and the
trivial band insulator. The existence of the QCP indicates that, when U > Uc, electronic
correlations superimpose a discontinuous behavior to the topological transition, challeng-
ing the traditional paradigm that a gap closure is necessary to connect the two insulating
phases. We demonstrated that the change of nature of the topological transition is a gen-
uine feature of the model by altering the parameters, and that a QCP emerges already at
low interaction strengths when J/U < 1/5, i.e. when the channel T 2

z of the interaction is
in the attractive regime. This indicates that, at the transition, Dirac fermions acquire a
mass, measurable through the discontinuity detected in the orbital polarization values in
the two phases, or in the real part of the self-energy as it approaches the ω → 0 limit.

The standard phenomenology for the gap opening to occur requires a spontaneous sym-
metry breaking (SSB) [1, 13, 82–85], and it is understood in terms of the Anderson-Higgs
mechanism. Clearly, a SSB can lead to break any of the symmetry protecting the topolog-
ical state, thus leaving behind a topologically trivial long-range ordered phase. A similar
scenario can be described within a static mean-field picture in the channel where SSB
takes place. This is essentially what was observed in the discontinuous transition between
the topological insulator and the ferromagnetic insulator in the mean-field numerical anal-
ysis (Sec. (2.2)). Here, the appearance of finite local magnetization, which breaks the
time-reversal symmetry, is associated with the formation of a gap in the spectrum at the
transition point.

The same MF analysis indicated an unchanged continuous behavior for the topological
transition when the interaction maintains the symmetric structure characteristic of the
free model. Additionally, we demonstrated that it is essential for charge fluctuations to
couple with orbital polarization to identify the QCP. Consequently, we deduce that in
such instances, the generation of the mass relies entirely on the dynamical effects of the
interaction. The mechanism require to attain a symmetric gapped state must go beyond
the perturbative approach applied to free fermions.

This chapter is structured into two primary sections. In the first part, we thoroughly
introduce and discuss the theoretical framework we formulated for exploring the topological
phase transition in the interacting BHZ model, encompassing its dynamics. In particular,
we show how to overcome the limitations of the MF by approximating the exact free

65
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energy functional with a second-order expansion in the fluctuating fields, whose coefficients
are variationally chosen [10]. The outcome is a set of self-consistent equations that are
notably straightforward to interpret: the variables are the orbital polarization and the
components of the self-energy corrections. This establishes a clear interconnection between
the expectation value of what we identify as the system’s significant observable and the
quantum fluctuations of all the channels of the interaction. Furthermore, within this more
generalized Landau-like approach, we identify a new condition for the quantum critical
point that can effectively be met in the region where U > 0 and M > 0.

In the second part, we show explicitly that the quantum fluctuations make indeed the
topological phase transition discontinuous for sufficiently large interactions [6, 86]. The
results we find with our algorithm are in impressive good agreement with the DMFT
results. The first-order line ends in a critical endpoint, where we show a Gross-Neveu
quantum critical behavior [87] as a function of the relevant coupling strength gT , that
is henceforth adopted in place of U . We conclude by discussing how the mechanism we
uncovered is reminiscent of the Coleman-Weinberg (CW) theory of mass generation [88, 89].

4.1 Dynamical Correlations Theory

In the opening chapter of this Thesis (Ch. 1), we introduced Landau’s theory of phase
transitions along with the notion of an order parameter and spontaneuous symmetry break-
ing. Chapter 2 was dedicated to the exploration of the interacting BHZ model through
the lens of the mean-field approximation. Although Landau’s theory does not extend to
topological transitions, our study led to the identification of a local parameter that exhibits
distinct behavior across the trivial and the topological phase. The orbital polarization Tz,
while not a conventional order parameter, turns out to be instrumental in governing the
topological transition. Yet, this does not reflect in the possibility to fully characterize the
transition via an expansion of the free energy in powers (Sec. 2.21). Specifically, this
Landau-inspired approach fails to predict a quantum critical point, separating the contin-
uous from the discontinuous behavior of the topological transition, that is observed from
DMFT calculations (Sec. 3.1).

This limitation calls for the inclusion of quantum fluctuations beyond mean field, for
which a more comprehensive approach to the problem is necessary. Our goal is to develop
a framework that effectively addresses the complexities of many-body physics (beyond
the simplistic single-particle perspective), while still reflecting the significance of the local
parameter that we pinpointed as crucial to describe the nature of the topological transition.
The natural framework to build a similar scheme is the functional integral method, also
known as path integral formalism, which starts from a theory including time-and-space
fluctuating fields and allow for physics-driven approximations indentifying the relevant
parameters. While a detailed and rigorous exposition of this formalism is beyond the
scope of this Thesis1, it is essential to highlight how this approach can help to introduce a
perspective based on dynamical fluctuations into the analysis of free energy.

Exploiting the basic idea of Feynman’s path integral [90], the partition function Z =
Tr[e−βH ] can be formulated as a functional integral, covering all the possible configurations
of the particle fields:

Z =
∑

periodic paths

e−S[ϕ̄,ϕ] (4.1)

1For a deeper understanding, we recommend, e.g., Chapter 12 of Coleman’s book [48].
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where ϕ is the expectation value in space-time of the bosonic field operator ϕ̂ and ϕ̄ indicates
its complex conjugate. This integral is weighted by the exponential of the action

S =

∫ β

0

dτd3x [ϕ̄(x, τ)∂τϕ(x, τ) +H(ϕ̄, ϕ)] (4.2)

effectively integrating the dynamics and interactions at microscopic level into the statistical
description of the system. Here H is the many-body Hamiltonian, where field operators
are substituted by the numerical values ϕ and ϕ̄. This technique can straightforwardly be
extended to fermionic fields by employing Grassmann variables [91], which preserve the
inherent anticommutative property.

A crucial feature of path integrals is the possibility to reformulate interacting problems
into problems of “free” particles in a fluctuating effective field. This can be achieved by
performing the Hubbard-Stratonovich (HS) transformation [92, 93], which offers a way
to represent quartic terms describing fermionic interactions through the introduction of
an effective boson field coupled with bilinear fermionic fields. This boson effectively cap-
tures the fluctuations of a related local parameter ∆, simplifying the complex electronic
interactions into more tractable forms:

Zint =
∑
{∆}

path integral of fermions moving in the field ∆̂ (4.3)

where the sum is over all the possible configurations of the field.
As a matter of fact, for non-interacting fermions where the action comprises only bi-

linears of the Fermi fields, the path integral takes a Gaussian form, which can always be
computed analytically. Consequently, the HS transformation allows for the microscopic
fermions to be formally “integrated out,” recasting the problem into an effective field the-
ory. This theory delineates the thermal and quantum fluctuations of the local parameter
within a path integral framework, guided by a newly established effective action which in
turn corresponds to a free energy.

This method, which is based on the quadratic recasting of interactions, assumes a piv-
otal role in the analysis of standard phase transitions, and it will demonstrate its effective-
ness in our symmetry-preserving scenario as well, even if it will require a non-conventional
solution scheme. By construction the HS transformation is an exact formulation which
contains all the dynamical effects beyond classical static mean-field decoupling, and it
therefore captures the essence also of fluctuation-driven phenomena, thus enriching our
understanding of many-body systems and their critical behavior.

4.1.1 Functional Integral Method

Given the interacting BHZ model (1.30), the total free energy2 F of the system is expressed
through the partition function Z in the interaction representation as follows:

Z = e−βF = Tr

[
e−βH′

0 T exp

(
−
∫ β

0

HI(τ) dτ

)]
. (4.4)

Here the trace is taken over the whole Fock space, β is the inverse of the temperature, T
denotes the time-ordered product, H′

0 = H0 − µN =
∑

k ψ
†
kH0(k)ψk − µN and HI(τ) =∑

i Hint(i).

2In this context, we specify “total” when referring to free energy F to differentiate it from free energy
density F [∆], which is simply termed free energy as it is the primary focus of analysis in this work.
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In path integral formulation, it explicitly reads

Z =

∫
D[ψ, ψ̄] exp

[
−
∫ β

0

dτ

(∑
k

ψ̄k(∂τ − µ+H0(k))ψk −
∑
ai

ga
2
Λ̂2

ai(τ)

)]
(4.5)

where the {ψk} represent now anticommuting Grassmann variables and
D[ψ, ψ̄] = limN→∞

∏N
j=1 dc̄jdcj, with N the number of segments of the interval [0, β]. We

consider the density-density Kanamori interaction in the form Eq. (2.5) that we used
for the mean-field analysis. In this way the saddle point of our path-integral formulation
will coincide with the Hartree-Fock mean-field and the role of the different fluctuation
channels will be assessed. We recall that the fields Λ̂µνi = 1

2
ψ̄iΓµνψi represent the 16

potential mass terms introduced by the interaction, that can reduce the symmetry of the
free model. Analogously to the mean-field analysis, among these parameters, we focus
on the spin-orbital diagonal components: Λ̂00 = N̂ , Λ̂03 = T̂z, Λ̂30 = Ŝz and Λ̂33 = R̂z.
Consequently, the index a spans {N, T, S,R} which correspond to a redefinition of the
components µν = {00, 03, 30, 33}, respectively. From now on we rescale the associated Γ
matrices as Γa =

1
2
Γµν .

The HS decoupling transforms the two-body interaction, i.e., the quartic term in the
spinors, into a quadratic term coupled to a time-dependent fluctuating potential by ex-
ploiting the identity

e
g
2
Λ̂2

=
1√
2πg

∫
dx e−

x2

2g
+Λ̂x g > 0. (4.6)

Applying it to Eq. (4.5) we obtain

Z =

∫
D∆ exp

(
−
∑
ai

∫ β

0

dτ sgn(ga)
∆2

ai(τ)

2|ga|

)
ZE[∆] (4.7)

with

ZE[∆] =

∫
D[ψ, ψ̄] exp

[
−
∫ β

0

dτ

(∑
k

ψ̄k (∂τ − µ+H0(k))ψk + V̂

)]
(4.8)

where we have introduced a set of (real) auxiliary variables, their integral defined by
D∆ =

∏
ai D∆ai(τ). In particular, the vector ∆ = (∆N ,∆T ,∆S,∆R) contains the expecta-

tion values of the bosonic fields associated respectively to the operators Λ̂a. Through this
approach, we ultimately have to solve ZE[∆], that is the partition function for noninter-
acting electrons under a fluctuating external potential

V̂ = −
∑
ai

∆ai(τ)Λ̂ai(τ) = −
∑
ai

∆ai(τ)[ψ̄iΓaψi] (4.9)

in a particular space-time configuration.
Since the exponential in ZE[∆] (4.8) is a quadratic function of fermionic fields, the

integral is Gaussian and it can be evaluated in closed form. In particular, following some
straightforward manipulations, fully detailed in Appendix C, we arrive to the expression

Z = e−βF =

∫
D∆ e−βNF [∆] (4.10)
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which describes a bosonic theory where

F [∆] =
∑
aq

|∆a
q |2

2ga
− 1

βN
Tr ln[−G−1

kq (∆)] (4.11)

is the free energy density functional. For sake of clarity, we clarify that here Tr should be
understood as a trace over momentum, frequency, orbital and spin. The argument of the
logarithm

Gkq(∆) = (iωn + µ−H0(k)δk,k−q − Vq)
−1 (4.12)

is the interacting Green’s function of the fermions, where Vq = −∆q · Γ is the effective
time-dependent external potential in momentum and frequency domain. We adopt the
quadrivector notation q = (q, iνm) and k = (k, iωn), in order to deal with more compact
formulas in the following calculations.

In the end, we are able to express the total free energy of the system given by (4.10) as

F = − 1

β
ln

∫
D∆ e−βNF [∆]. (4.13)

and we can evaluate the ensemble average of a certain physical quantity described by the
operator Â as

⟨A⟩ =
∫

D[∆] Â(∆)p(∆), (4.14)

that means averaging over the configurations of the fluctuating field the quantum expec-
tation value

Â(∆) =
1

ZE[∆]

∫
D[ψ, ψ̄] Â exp

[
−
∫ β

0

dτ H(∆)
]

(4.15)

with the probability density

p(∆) =
e−βNF [∆]∫

D∆ e−βNF [∆]
. (4.16)

We are indeed interested in the expectation values of each quantity appearing in the
interaction (2.5). In order to get them we have to derive the free energy F with respect
to the corresponding conjugate ensemble variables. We verify that this is equivalent to
optimize the thermal average of the derivatives of the free energy functional with respect
to the bosonic fields 〈

∂F [∆]

∂∆a
q

〉
=

1

Z

∫
D∆

∂F [∆]

∂∆a
q

e−βNF [∆] = 0. (4.17)

From Eq. (4.11) we find

0 =

〈
∆a

−q

ga

〉
+

〈
1

βN
Tr
[ 1

Gkq(∆)

∂Gkq(∆)

∂∆a
q

]〉
(4.18)

and thus we obtain the stationary condition

∆̄a

ga
=

1

βN
Tr [⟨Gkq(∆)⟩Γa] (4.19)

where we have dropped the q dependence in the bosonic field values because of the trans-
lational invariance: ∆̄a = ⟨∆a

−q⟩. We can conclude that ∆̄a = gaΛa.
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Saddle point Approximation and Perturbative Expansion

The most standard starting point of applications of the functional integral formalism is
the so-called saddle-point approximation. This is indeed the most natural approximation
in particular to study phase transitions in scenarios with conventional symmetry breaking.
The saddle-point approximation consists in approximating the averages in Eq. (4.14) with
a single (static) value[94]:

⟨A⟩ =
∫

D[∆] Â(∆)p(∆) ≃ A(∆̄0) (4.20)

which is chosen as the value that maximizes the probability distribution p(∆). In other
words, the integral is approximated with its largest contribution. In practice the saddle-
point contribution is found minimizing the free energy (4.11)

∂F [∆]

∂∆a
q

∣∣∣∣
∆a=∆̄a

0

= 0. (4.21)

As a matter of fact, the saddle point realizes the mean-field approximation within the
path-integral scheme. Within this method there is however a simple and systematic way
to include effects beyond the static mean field, which amounts to consider small fluctuations
of the variables ∆ around their saddle-point values. As we will discuss in the following,
this conventional fluctuation-based approach turns out to be unsuitable to characterize the
effects of interactions on topological transitions. However, we find it important to briefly
discuss it, in order to underline both the differences and the advantages of the theoretical
framework we describe in the next section.

The basic idea is to expand the local parameters (i.e. each component of the fluctuating
field introduced by the HS decoupling) in terms of small fluctuations around the saddle
point [48], writing

∆a
q = ∆̄a

0 + δ∆a
q (4.22)

so that, for our model, the interacting Green’s function in Eq. (4.12) becomes

Gkq(∆) =
(
iωn −H0(k)δk,k−q + ∆̄T

0ΓT − δVq
)−1

(4.23)

if we assume non magnetic saddle-point solutions ∆̄S
0 = ∆̄R

0 = 0 while the contribution of
the density fluctuation is absorbed in a redefinition of the chemical potential µ′ = µ+∆̄N

0 =
0 in order to respect particle-hole symmetry and enforce the half-filling condition. It is
important to notice that, even in our case where only one of the possible saddle point
amplitudes is not zero, all the channels contribute to the correction of the mean-field
theory through the term δVq = −

∑
a δ∆

a
qΓa.

To expand the free energy (4.11), we proceed by factoring out the inverse of the renor-
malized propagator

G−1(∆) = (iωn −H0(k) + ∆̄T

0ΓT ) (4.24)

inside the logarithm, which allows us to isolate the fluctuating contribution as

F [∆] =
∑
aq

|∆̄a
0 + δ∆a

q |2

2ga
− 1

βN
Tr ln[−G−1(∆)]− Tr ln[1−G(∆)δVq] (4.25)

where we have used the identity Tr ln(AB) = Tr ln(A) + Tr ln(B). Assuming that the
fluctuations are small, we can apply the logarithmic series ln(1− x) =

∑∞
n=1

1
n
xn, yielding
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an infinite series of Feynman diagrams that describe scattering due to fluctuations in the
local parameters.

Because of the stationary condition (4.21), the linear order in the fluctuations vanishes
resulting in the self-consistency equation

∆̄T
0

gT
= Tr ln

[
G−1(∆̄T

0 )ΓT

]
. (4.26)

As we mentioned above, this expression recovers the mean-field self-consistent solution of
Eq. (2.20) once the Matsubara summation is performed, i.e. ∆̄T

0 = ∆̄T
MF = gT T̄

MF
z , and

approximates the more correct solution (4.19).
Thus the leading-order corrections are quadratic in the fluctuations3

F [∆] = F [∆̄0] +
1

2

∑
q

δ∆a
q

[
∂2F

∂∆a
q∂∆

b
−q

]
∆̄0

∆b
−q + o(δ∆3)

≃ F [∆̄0] +
1

2

∑
q

δ∆a
q

[
δab
ga

− χ0
ab(q)

]
∆b

−q

(4.27)

where we have defined the bare susceptibility as

χ0
ab(q) = − 1

βN
Tr [ΓaGk+q(∆)ΓbGk(∆)] . (4.28)

The corresponding renormalized susceptibilities are determined from the coefficient of the
second-order term of Eq. (4.27) and they realize the so-called Random-Phase Approxima-
tion (RPA).

We observe that in the long-wavelength limit q → 0, the correlation function χ0
TT (q)

matches exactly with the mean field uniform susceptibility (2.25). Therefore, the only
corrections to the mean-field value that we can obtain within perturbation theory are
associated with the effects of the additional channels of the interaction.

Specifically, inspired by the DMFT results and by the intuition on the model, our goal
is to derive an effective free energy depending exclusively on the orbital polarization field,
including however the contributions from the fluctuating modes coupled to δ∆T

q . Within
the expansion in fluctuations this is easily obtained evaluating the Gaussian integrals over
the other variables:

∫
δ∆a

q exp(−Aδ∆a
q
2 + Bδ∆T

q∆
a
q) ∝ exp[(Bδ∆T

q )
2/(4A)] with a ̸= T ,

as in Ref. [95]. However, we find that due to the symmetries of the model and the odd
hybridization between the orbitals, the off-diagonal susceptibility(4.28) between different
variables a ̸= b vanish, thus making the variables essentially disconnected. Hence, within
this standard expansion in terms of Gaussian fluctuations, there is no chance to change
the behavior of the relevant observables with respect to mean field. Obviously, as far as
the topological transition, this implies that the transition would remain continuous.

We conclude that a straightforward perturbative summation of diagrams up to a small
fixed finite power of δVq is not an effective method for describing the critical behavior
of interacting many-body systems when we expect important and qualitative differences
between the mean-field picture and some higher-level theory like DMFT which includes
dynamical corrections.

3Here we adopt the Einstein notation in order to simplify the formalism for the matrix products:∑
q =

∑
qab.
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As a matter of fact the significant discrepancy between the saddle-point value of the
relevant parameter ∆̄T

MF and the actual minimum of the (total) free energy ∆̄T poses a
serious challenge on the assumption that the dynamical correction in the external potential
are small. This is the main reason why, although the gaussian expansion often works well for
systems in which spontaneous symmetry breaking takes place (where the order parameter
is typically zero at the transition already at the mean field level), it falls short in our
model, in which the symmetry between the orbitals is broken explicitly by the mass term,
and no spontaneous symmetry breaking takes place when the interactions are included.
In this case, the possibility of the emergence of a fermionic mass along the transition
line can only be realized including dynamical correlations beyond a perturbative series.
This involves effectively summing up specific classes of diagrams to an infinite order of
interaction strength [96].

4.1.2 Variational Gaussian Free Energy

In the previous section we have discussed the shortcomings of the standard perturbative
approach and the reason behind the inability to predict deviations from the continuous
topological transition Consequently, it becomes essential to find a different strategy to
capture the correct behavior of the expectation values of the local parameters (especially
the orbital polarization), which can then serve as a basis for examining the corrections at
the transition line. A possible strategy is to identify a manageable approximation of the free
energy (4.11), beyond the obvious and unsatisfactory static approximation, that allows for
a feasible integration over field configurations in Eq. (4.14). We present a solution which
combines the power of the variational principle with the notion that Gaussian integrals can
always be evaluated.

The method, that we label as Variational Gaussian Approximation (VGA) was intro-
duced by Hertz and Klenin [10] to study spin fluctuations in itinerant-electron param-
agnets. Using this approach, they have been able to explain why these systems remain
paramagnetic in the intermediate coupling regime, despite the Stoner criterion suggesting
they should be ferromagnetic when UN(EF ) > 1, with N(EF ) the density of states at
the Fermi level. In particular, Hertz and Klenin identified the key role of a renormalized
density of states as a tool to properly incorporate electronic correlations in the redefinition
of the Stoner criterion, moving beyond the commonly assumed method of reducing the in-
teraction strength (U → Ueff) within the Hartree-Fock theory. The scenario solved in Ref.
[10] echoes with the problem we are facing, where despite perturbation theory suggests
a continuous topological transition, we observe a discontinuous behaviour at intermediate
coupling, leading us to explore the underlying reasons with the same strategy.

As we mentioned above, the key idea of the present approach is to exploit the variational
principle. Hence we define F (2)[∆] as an effective quadratic functional introduced to ap-
proximate the exact free energy F [∆]. At the lowest order in the difference F [∆]−F (2)[∆],
the total free energy satisfies

F ≤ F (2) + ⟪F [∆]− F (2)[∆]⟫ (4.29)

where F (2) = − 1
β
ln
∫
D∆ e−βNF (2)[∆] is the total free energy calculated with the trial

functional. The expression is commonly known as Feynman inequality [97]. The symbol⟪·⟫ indicates that the averages are calculated using F (2) to define the probability density
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of the fluctuating field

p(2)(∆) ∝ e−βNF (2)[∆]. (4.30)

The choice of a quadratic functional of the fields is motivated by the fact that it allows
for a direct evaluation of the integrals and hence a straightforward evaluation of the right-
hand side of Eq. (4.29). As a matter of fact we approximate

F [∆] → F (2)[∆] = F [∆̄] +
1

2

∑
q

δ∆a
qAab(q)δ∆

b
−q, (4.31)

where the parameters ∆ and Aab
q are determined to minimize the right-hand side of Eq.

(4.29). This leads to a new stationary condition

⟪∂F [∆]

∂∆a
q

⟫ = 0 (4.32)

and second order coefficients

Aab(q) = ⟪ ∂2F

∂∆a
q∂∆

b
−q

⟫ (4.33)

that are substantially different from the coefficients of the standard perturbative approach
Eqs. (4.21) and (4.27). The rationale is that VGA extends beyond the static solution,
as the averages over the approximate free energy allow, albeit in a simplified form, the
effective inclusion of the feedback from the fluctuations of all the various field, so that, in
principle, the optimal values of the parameters are different fromt the mean-field values
∆̄a ̸= ∆̄a

MF . Within our analysis of the BHZ model this means in particular that the orbital
polarization can assume a different optimal value with respect to mean-field theory.

Therefore the (variational) solution including corrections beyond meanfield is deter-
mined by solving the set of self-consistent equations

∆̄a

ga
=

1

βN
Tr [⟪Gk(∆)⟫Γa] (4.34)

and

Aab(q) =
δab
ga

− χab(q) (4.35)

where

χab(q) = − 1

βN
Tr [Γa ⟪Gk+q(∆)⟫Γb ⟪Gk(∆)⟫] (4.36)

are the dressed susceptibilities. The advantage of the Gaussian form of the distribution is
that we can directly infer the fluctuations of the different parameters from

⟪δ∆α
q δ∆

α
−q⟫ = 1

βN
1

g−1
α − χαα(q)

(4.37)

where the new index α spans the basis that makes the matrix Aab(q) diagonal. These
response functions can be viewed as an augmented and variationally optimized version of
the RPA susceptibilities, which, in terms of Feynman diagrams, correspond to the dressed
dynamical bosonic propagators.

Therefore, whenever we will use the expression “second order” henceforth, we will refer
to the quadratic choice for the modeling free energy, but this should not be confused with
a standard second-order perturbation theory. The main difference is that (4.34) and (4.35)
contain the interacting Green’s function, which implies that the susceptibilities include (a
part of the) corrections of higher order in perturbation theory.
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Self-Energy and Local Approximation

Eqs. (4.34), (4.35) and (4.36), despite their formal simplicity, still require the evaluation
of integrals of the interacting Green’s function over configurations of the fluctuating field,
which are essentially unfeasible. To circumvent this problem, one approach is to approxi-
mate these averages as

⟪Gk(∆)⟫→ Ḡk = [iωn + µ−H0(k)− Σk]
−1 (4.38)

by introducing an auxiliary potential Σk that depends on momentum and frequency. This
unknown parameter is determined self-consistently through the stationary condition

∂F
∂Σk

= 0 (4.39)

that in turn yields nothing but a Dyson equation where Σk appears as the self-energy [96],
which justifies the notation we used and allows us to henceforth call Σk the self-energy
within our VGA approximation.

Following straightforward calculations detailed in Appendix C, we find that the self-
energy assumes the form

Σk = Σ(0) + δΣk = −
∑
a

∆̄aΓa +
∑
q

Ḡk−q

(∑
ab

⟪δ∆a
qδ∆

b
−q⟫
)

(4.40)

where Σ(0) is a static Hatree-like term which is in general different from the Hartree-Fock
value Σ(0) ̸= ΣMF , while δΣk is the second-order the dynamical correction. The quantities
in the parenthesis are readily determined from the covariance matrix of the random field.
Eq. (4.40) establishes a direct connection between the dynamical bosonic propagators
in the auxiliary problem obtained from the HS decoupling, and the one-loop fermionic
self-energy of the interacting electrons system. We mention that a similar strategy was
employed in Ref. [98] to investigate the emergent non-Fermi liquid behavior at the QCP
of topological phase transitions.

The set of self-consistent equations can be further simplified by taking a local approx-
imation on the self-energy Σk which is assumed to be momentum independent while re-
taining the frequency dependence. This obviously reduces substantially the computational
cost of the calculation by drastically reducing the number of variables. This approxima-
tion is indeed justified as numerical calculations have shown that non-local effects do not
significantly alter the physics of the topological quantum critical point obtained within
DMFT[80] (where the self-energy is indeed local). Furthermore, since no long-range or-
dering is involved in the transition, it is reasonable to assume that local fluctuations are
predominant. However, it should be noted that the local approximation is not a prereq-
uisite for the implementation of the method, as it is completely general. Nonetheless,
when applicable, it offers a convenient reduction in the number of parameters within the
self-consistent scheme.

In order to enforce the local approximation on the self-energy we replace the Green’s
function in Eq. (4.38) with the local Green’s function, defined as the average over the
whole Brillouin zone

Gloc(iωn) =
1

N
∑
k

Ḡk =
1

N
∑
k

[iωn + µ−H0(k)− Σ(iωn)]
−1 (4.41)
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which contains the momentum-independent self-energy computed accordingly as a function
of the local Green’s function

Σ(iωn) =
1

N
∑
k

Σk = −∆̄TΓT +
∑
m

Gloc(iωn−m)

(∑
aq

⟪|δ∆a
q |2⟫

)
. (4.42)

We emphasize that, however, this does not imply that the Green’s function is momentum
independent, but only that the local component enters in the calculation of the self-energy.
In particular, the momentum-dependent Green’s function is used to compute the correlators
that appear in the last term of (4.42).

A crucial point is that, as we also found in the saddle-point approximation, the correla-
tion functions appearing in Eqs. (4.34), (4.35) and (4.36) are diagonal in the channel index.
This property follows directly from the symmetries of the model and the odd hybridization
between the orbitals, once we impose constraints for non-magnetic (∆̄S = ∆̄R = 0) and
half-filled (µ′ = µ + ∆̄N = 0) solutions4. Notice also that the result does not rely on the
local approximation.

This diagonal structure constitutes a major advantage of the approximation scheme,
enabling a diagnostic of the self-energy fluctuations in a way that is akin to, yet more
straightforward than, the procedure detailed in Ref. [99]. The contribution of each inter-
action channel to the dynamical corrections of the self-energy is then explicitly isolated
and it is directly derived from the corresponding dressed susceptibility.

We finally notice that the formulation of our method, and in particular the final expres-
sion for a local self-energy (4.42), are reminescent of the so-called Iterative Perturbation
Theory (IPT) [100] which represents a cheap and surprisingly accurate solver for the ef-
fective local theory within DMFT. Within IPT the self-energy of the impurity model is
in fact approximated with the second-order perturbation theory in the interaction using
dressed Green’s functions.

While Eq. (4.42) may bear resemblance to the self-energy approximation utilized in
IPT, the differences are important and substantial. IPT is obtained truncating to second
order the series expansion of the self-energy in terms of the dressed local Green’s function,
so it has no information from the momentum-dependents Green’s function.

On the other hand, Eq. (4.42) is derived from a variational approach aimed at mini-
mizing a free energy by incorporating correlators. This implies that we first calculate the
susceptibilities utilizing the k-dependent Green’s function, and only subsequently, we im-
plement the local approximations for the fluctuations. This distinction makes the methods
completely different, and it will prove pivotal for our analysis of the QCP.

Also from a conceptual point of view, we do not introduce the VGA with local self-
energy as a kind of light impurity solver for DMFT, but rather as an analytical tool
designed to provide us with the direct control of the microscopic ingredients entering in
the self-energy.

4.1.3 Self-consistency Equations

In this section we explicitly write down the self-consistent set of equations required to
obtain the solution that optimizes the free energy within the VGA scheme we have just

4The explicit proof of this result is provided in Appendix C.
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described. We also provide details about our practical implementation of the solution and
we discuss the condition for the quantum critical point.

The self-consistent equations Eqs. (4.34), (4.35) and (4.36), featuring the local Green’s
function, Eq. (4.41), together with the auxiliary self-energy, Eq. (4.42), result in solving
the system of nonlinear equations

∆̄T

gT
=

1

βN
Tr

[
Gloc(iωn)

Γ0z

2

]
(4.43)

ℜδΣ(ωn) =
∑
m

ℜGloc(ωn−m)

(∑
aq

⟪|δ∆a
q |2⟫′

)
(4.44)

ℑΣ(ωn) =
∑
m

ℑGloc(ωn−m)

(∑
aq

⟪|δ∆a
q |2⟫′

)
. (4.45)

Here ℜδΣ(ωn) and ℑΣ(ωn) are the two independent functions of the frequency defining
the self-energy matrix, which, in the symmetry-preserving scenario we consider, takes on
the simplified form Σ = iℑΣΓ00 +

(
−1

2
∆̄T + ℜδΣ

)
Γ0z, fully mirrored in the local Green’s

function Gloc = iℑGlocΓ00 + ℜGlocΓ0z. Our calculations essentially confirm the expression
that we obtained in DMFT, Eq. (3.3). For the sake of clarity here we have restored the
notation Γµν .

The ′ symbol on the averages ⟪.⟫ indicates that the fluctuations are replaced with

⟪|δ∆a
q |2⟫′ = ⟪|δ∆a

q |2⟫− ga
βN

=
1

βN
g2aχaa(q)

1− gaχaa(q)
(4.46)

wherein we correctly subtract the intrinsic mean-square fluctuation of the fields [94]. The
explicit expressions for the susceptibilities are reported in the Appendix C. However, it is
worth noting that the matrix χab is not simply diagonal, but it assumes the form χab =
diag{χN , χT , χN , χT}. This means that the fluctuations in the spin component Sz and in the
antisymmetric field Rz precisely correspond, respectively, to fluctuations in the charge N
and in the orbital polarization Tz, modulo the different couplings. This observation provides
an analytical explanation of the reason why DMFT calculations using the renormalized
interaction in Eq. (A.17) could accurately replicate the results of the full interaction, Eq.
(2.5), and confirms that the physical information is brought by the different behavior of
the Tz and N channels.

Iteration Scheme

• We start with a guess for the parameters T̄ 0
z , ℜδΣ0(ωn) and ℑΣ0(ωn). A simple

choice is T̄z = T̄MF
z and ℜδΣ0(ωn) = ℑΣ0(ωn) = 0.

The self-energy components are evaluated in L values of the fermionic Matsubara
frequency ωn = (2n−1)π

β
, with n = 1, . . ., L. The use of Matsubara frequency is a

standard recipe which eases numerical calculations. Hence we use an artificial
temperture that we set to β = 500, chosen to strike a compromise between
recovering the zero temperature limit and dealing with a limited number of
frequencies necessary to capture the asymptotic behavior of the self-energy. The
values for negative frequencies are simply obtained by imposing the symmetries
ℜδΣ(−ωn) = ℜδΣ(ωn) and ℑΣ(−ωn) = −ℑΣ(ωn). We set the total number of
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(positive) frequencies to be L = 213 = 81925 after numerically verifying that
this value gives a good approximation of the long frequency behavior of the
self-energy. This allows for properly truncating the infinite value that would be
required to perform the Matsubara summations. Therefore, the iterative scheme
requires to optimize 2L+ 1 = 16385 parameters.

• With these values for the parameters:

1. We construct the Green’s function as

G(k, iωn) = − 1

ω′
n
2 + E2

k

(iωnΓ00 +MkΓzz + xkΓzx + ykΓ0y) (4.47)

where ω′
n = ωn−ℑΣ(ωn),Mk =M+ϵk− 1

2
∆̄T+ℜδΣ(ωn) and E

2
k =M2

k+x
2
k+y

2
k.

The k values belong to a discrete momentum-space grid that we use to discretize
the BZ. In the present results we use 20× 20 k-points.

2. We calculate the sum of the local fluctuations over all channels of the interaction
and for each Matsubara frequency as

ζ(νm) =
1

N
∑
aq

g2aχaa(q)

1− gaχaa(q)
(4.48)

where bosonic moments q lie on the same grid6 we constructed for the vectors
k and νm = 2mπ

β
, with m = 1, . . .Lb. We set Lb = 211 = 2048, after testing and

verifying that it correctly satisfies the condition limνm→∞ χaa(νm) = 0.

This step requires the calculation of the susceptibilities

χTT (q) = χ+(q)− χ−(q) χNN(q) = χ+(q) + χ−(q) (4.49)

with

χ+(q) = − 1

βN
∑′

k

−ω′
nω

′
n+m +MkMk+q

(ω′2
n + E2

k)(ω
′2
n+m + E2

k+q)
(4.50)

χ−(q) = − 1

βN
∑′

k

xkxk+q + ykyk+q

(ω′2
n + E2

k)(ω
′2
n+m + E2

k+q)
. (4.51)

As already mentioned, the symmetries of the Hamiltonian allow us to find sim-
ple analytical expressions for the susceptibilities, Eqs. (4.50) and (4.51), which
are directly used in the self-consistent loop. This approach avoids the time-
consuming operation of performing the matrix product between four 4 × 4
matrices in Eq. 4.36 for every (q, νm) value. The prime ′ in the summa-
tion symbol indicates that the fermionic Matsubara summation is truncated
to Lf = L − Lb = 6144, to ensure that the self-energies at ωn+m lie within the
computed set. This operation involves certain technicalities, which we elaborate
on in Appendix C.

5The choice of this number being a power of 2 is solely for the purpose of efficiently performing fast
Fourier transforms.

6This subroutine constitutes the major portion of the computational time in every loop, even after
parallelization over the bosonic frequencies has been performed. Increasing its efficiency would involve
understanding the values of q to which we should restrict the summation.
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• We update the parameters:

1. The new value of the orbital polarization T̄z is derived from the Γ0z combination
of the densities n1

ασ for the orbital α and spin σ. At each step, we similarly obtain
the quantities N̄ , S̄z, and R̄z from the corresponding Γ matrices. We verify
that the half-filling condition and the non-magnetic constraint are preserved
throughout the calculation by ensuring that the first value is 1 while the other
two vanish within an error of 10−15. To be concrete, we compute

T̄z =
1

2

∑
k∈BZ

(nk1↑ − nk2↑ + nk1↓ − nk2↓) (4.52)

where for every value of k, the densities are obtained by (fast) Fourier trans-
forming the diagonal components of the Green’s function:

nkασ =
1

β

∑
n

Gασ(k, iωn)e
iωn0+ = Gασ

k (τ = 0−). (4.53)

2. The new values of the components of the self-energy are obtained from the
convolution between the local Green’s function and the total fluctuations (4.48):

δΣ(ωn) =
1

β

∑
m

G1↑
loc(ωn−m)ζ(νm) (4.54)

with δΣ(ωn) = iℑΣ(ωn)+ℜδΣ(ωn). To improve the efficiency of this operation,
we compute these quantities as the product G(τ) · ζ(τ), and then perform the
inverse Fourier transform to return to the frequency domain.

• We use as successive input parameters the values:

Υn = wmixf [Υ
n−1] + (1− wmix) Υ

n−1 wmix ∈]0, 1[ (4.55)

resulting from the linear mixing of the obtained solutions f [Υn−1] with the given
inputs Υn−1 which ensures a faster convergence and avoids limit cycles, exactly as
we did in the MF iterative scheme (Sec. 2.1.2). Here Υ indicates the vector of the
2L+ 1 parameters.

• We repeat this procedure until we reach the self-consistency within a desired error,
that we set to

|Υn+1 −Υn| < 10−5. (4.56)

We tested the solution with lower error threshold values and found that this choice
of convergence threshold strikes an optimal balance between achieving the desired
degree of accuracy while keeping the convergence time under control.

Using the above described iterative procedure we can span the whole phase diagram of
the model varying the most important model parameters U and M . We present results for
the selected value J/U = 1/8 for which we presented a detailed DMFT analysis in Chapter
3. In particular we have constructed the phase diagrams as a series of “phase stripes”:
we have proceeded fixing a specific value of the non-interacting mass M and then varying
the interaction strength U . At every step we have used the final resulting parameters as
the input of the Hamiltonian for the successive value of U , with a small shift to avoid to
remain trapped in the initial phase in some regions of the phase diagram. In this way we
have derived the optimal solutions for the interacting BHZ model within the VGA scheme.
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Figure 4.1: Sketch of the iterative scheme for minimizing the free energy functional within
the VGA method. Starting with the static mean field solution (represented by the blue
line), our goal is to find the dynamical solution, by self consistently including the fluctu-
ations. This captures the frequency dependence of the self-energy (illustrated by the red
curve) and corresponds to identifying a new minimum value for the orbital polarization.
When the convergence is reached, this value corresponds to the ω → ∞ limit of the real
part of the self-energy (indicated by the grey dashed line), which becomes the basis for our
expansion, allowing for an accurate examination of the critical behavior associated with
the topological transition.

Quantum Critical Point

Before discussing the results of the VGA solution of the interating BHZ model, in this
section we elaborate on the self-consistency equations in order to gain insight about the
possibility to describe a quantum critical point between a continuous and discontinuous
transition.

We focus on the first self-consistent equation, Eq. (4.43), that reads

∆̄T

gT
= − 2

βN
∑
k

Mk

ω′
n
2 + E2

k

(4.57)

where ω′
n = ωn − ℑΣ(ωn), Mk = M + ϵk − 1

2
∆̄T + ℜδΣ(ωn) and E

2
k = M2

k + v2k. We recall
that we adopt the notation v2k = x2k + y2k. Ek represents the renormalized energy spectrum
and reduces to the band of the topological Hamiltonian (Eq. 1.36) in the zero-frequency
limit. Indeed, given that the imaginary part of the self-energy vanishes when ωn → 0 and
the real part can be approximated by a constant ℜδΣ(0), we can perform the Matsubara
summation7. Consequently, we obtain a self-consistency condition which coincides with
the mean-field Eq. (2.20),

∆̄T

gT
= − 1

N
∑
k

Meff + ϵk
Ek

. (4.58)

but with a novel expression for the effective mass Meff given by

Meff =M − 1

2
∆̄T + ℜδΣ(0) (4.59)

7We remember that: 1
β

∑
n

1
(iωn)2−ξ2 = − 1

2ξ (1− 2f(ξ)), with f the Fermi distribution.
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and with Ek =
√

(Meff + ϵk)2 + v2k. Equation (4.58) emphasizes the way in which dy-
namical effects correct the value of the orbital polarization obtained from the mean field
approximation.

According to Equation (4.57) it is necessary to consider the whole frequency dependence
of the self-energy to correctly calculate the orbital polarization. On the other hand, the
simplified and transparent formula Eq. (4.59) provides a reasonable estimate of the same

quantity which instead requires simply the knowledge of T̄z =
∆̄T

gT
and ℜδΣ(0), allowing us

to interpret the results in a transparent way in terms of two physically sound parameters.
Therefore, in order to gain insight about the response of the orbital polarization to the

external field, the bare mass M , we can calculate the orbital compressibility κ starting
from the simple expression Eq. (4.58)8.

The result is straightforward:

κ =
∂T̄z
∂M

= − χV GA
T

1−
(
gT
2
− γ
)
χV GA

T

(4.60)

where

χV GA

T =
1

N
∑
k

v2k
E3

k

(4.61)

and

γ =
∂ℜδΣ(0)
∂T̄z

. (4.62)

These two equations are clearly similar to Eqs. (2.24) and (2.25) obtained within mean
field. Yet, they display two major differences with respect to their static counterparts.
First of all, the calculation of the polarization susceptibility χV GA

T employs the topologi-
cal Hamiltonian bandstructure (including the zero-frequency self-energy) rather than the
bandstructure of the Hartree-Fock Hamiltonian. Moreover, the γ factor, which enters as
a shift of the critical coupling, is determined by purely by the dynamical correlations
according to the definition Eq. (4.62).

We emphasize that this result arises from an analysis the system of equations (4.43)-
(4.45), that we can formally recast as

Tz = f1(Tz,ℜδΣ(ωn),ℑΣ(ωn))

ℜδΣ(ωn) = f2(Tz,ℜδΣ(ωn),ℑΣ(ωn))

ℑΣ(ωn) = f3(Tz,ℜδΣ(ωn),ℑΣ(ωn)).

(4.63)

This formulation makes it clear the self-consistent character of the transition. In particular,
the value of Tz depends on the self-energy which in turn depends on Tz. If, hypothetically,
we could parametrize the dependence of the self-energy on Tz, we could derive an effective
free energy which depends only on the relevant parameter Tz, in complete analogy with
the mean-field approximation.

In the absence of a similar expression of the self-energy, we must however account for
the implicit dependence of ℑΣ(ωn)) and ℜδΣ(ωn) on Tz when we compute derivatives of
Tz with respect to M .

8The correct expression which retains the full frequency dependence is

κ = ∂T̄z

∂M = −2
(
1− gT

2
∂T̄z

∂M

)
χTT (0) + γ̃ ∂T̄z

∂M , γ̃ = − 2
βN
∑

k

[
∂ℜδΣ(ωn)

∂T̄z

ω′
n
2−M2

k+v2
k

(ω′
n
2+E2

k)
2 + ∂ℑΣ(ωn)

∂T̄z

2ω′
nMk

(ω′
n
2+E2

k)
2

]
.
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In this context we notice, after a simple manipolation, that the vanishing of the de-
nominator of Eq. (4.60) occurs when the condition(gT

2

)−1

− χV GA
T

1 + γχV GA
T

∣∣∣∣
Meff=2

, (4.64)

is met. This coefficient is indeed closely reminiscent of the second-order coefficient in a
Landau-like expansion in the effective mass parameter around the transition line (cfr. Eq.

(2.21)) so that we can interpret the quantity
χV GA
T

1+γχV GA
T

as a renormalized susceptibility.

When this quantity vanishes, and correspondingly the orbital compressibility diverges,
Eq. (4.60), the value of gcT identifies the quantum critical point distinguishing the two
behaviors of the topological transition in the interacting BHZ model. The presence of γ,
that accounts for the dynamical response to the crystal field M , is crucial to shift this
condition within the region where U > 0 and M > 0.

It is important to note that the self-energy corrections contains the dynamical contri-
butions from all interaction channels. Thus, this approach offers an alternative to incorpo-
rating their effects on the relevant local parameter Tz, as suggested in the section on the
perturbative approach, but in our non-perturbative scenario.

The essence of the Variational Gaussian Approximation we developed for the analysis
of the topological transition lies in the familiar RPA expression in Eq. (4.60), but with a
twist: both the coupling and the polarization bubble are renormalized. The adjustment
in the coupling constant gT transcends a mere perturbative correction, as the dynamical
effects in γ could even surpass the static contribution of the interaction. This scenario
is particularly evident in the repulsive regime of the Tz channel, where by showing that
γ < 0, we can finally explain the presence of a quantum critical point along the transition
lines for J > U/5.

4.2 Numerical Solution of the VGA equations

We are now in the position to present results of the VGA for the interacting BHZ model,
with J = U/8 and λ = 0.3 and compare them with the other methods.

We start by presenting the zero temperature phase diagram that summarizes the VGA
results for the topological transition between the Quantum Spin-Hall Topological Insulator
(TI in the figure) and the band insulator (BI in the figure). Fig. 4.2 compares the VGA
with mean-field and DMFT in the plane (gT ,M) focusing on the region of parameters where
the topological transition takes place. We decided to plot the diagram using gT instead
of U because the former appears naturally in all the VGA equations. Our results can be
readily recast in terms of U using the relation gT = U − 5J , which means U = 8

3
gT in our

J = U/8 case.
The TI-BI boundaries predicted by the three approaches are shown. In particular,

the red line marks the transition obtained with the VGA algorithm. The topological
transition is continuous along the solid line segment, for small values of gT , and becomes
discontinuous in the region where the line is dashed. The red cross marks the quantum
critical point separating the two regimes. The black solid line represents the continuous
transition predicted by static Mean Field (MF) theory. The square markers denote the
transition points identified through a vertical sampling of the phase diagram using DMFT,
while the blue square indicates the Quantum Critical Point position in DMFT.
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Figure 4.2: Phase diagram in the gT -M plane comparing the topological transition line in
the two approximations, MF and VGA. The solid lines (black and red) denote a continuous
topological phase transition, while the (red) dashed line marks a discontinuous one. The
two regimes are separated by a QCP, denoted with a red cross. Data from DMFT are
indicated with filled symbols (gray); in blue the corresponding QCP. The insets A, B and
C show the free energy F as a function of the orbital polarization for the three points
marked on the curves. Figure slightly readapted from [101].

It is therefore clear that the VGA is able to capture the strong-correlation physics
that turns the topological transition discontinuous also within DMFT. The transition lines
predicted by DMFT and VGA are indeed extremely close for every value of the coupling,
signaling an almost quantitative agreement. The position of the QCP is indeed underesti-
mated by the VGA scheme.

The comparison between MF and VGA results shows that the two transition lines
remain close for small values of the interaction gT . However, upon increasing the interaction
strength the two curves start deviating significantly signalling a crucial impact of the
fluctuations that makes the VGA curve approach the DMFT one.

It is interesting to compare the behavior of the free energy as a function of ∆T/gT in
three representative points. The inset A displays the free energy obtained using VGA of
MF for the point A. Here we have a single minimum for both methods. This reflects in the
behavior of the free energy near the transition point in the intermediate to strong coupling
regime, i.e. gT > gcT . In the insets B and C we compare the free energies of a QSHI state
immediately below the topological transition for a value of the coupling after the critical
point gT > gcT obtained using , respectively, the static MF and the fluctuation-corrected
VGA. While the static mean-field displays only one minimum at the orbital polarization
of the TI, the VGA result displays two minima, a stable TI with an orbital polarization
clearly different from -1 and a metastable BI with Tz = −1. It is clear that the topological
transition develops a strong similarity with standard first-order transition.



4.2. NUMERICAL SOLUTION OF THE VGA EQUATIONS 83

4.2.1 Comparison with DMFT results
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Figure 4.3: (a) Polarization curves as a function of the interaction strength gT forM = 1.4,
plotted for the three solution approaches. The VGA curve (red line) shows a sharp discon-
tinuity at the transition point, while the MF curve (black line) remains always continuous.
The DMFT data (grey square markers) are in perfect agreement with the VGA solution.
The blue and green dashed lines identify two values of the coupling constant, one in the
topologically insulating (TI) phase and one in the band insulating (BI) phase, selected
for comparing the self-energy components. (b) and (c) Real and imaginary part of the
self-energy for gT = 1.125: in gray computed from DMFT, in red from VGA. (d) and (e)
Analogous comparison for gT = 1.875.

The comparison between MF and VGA demonstrates that the improvement brought
by the latter method is not purely quantitative, but it leads to a qualitative change in the
scenario which resembles qualitatively the picture drawn within DMFT. A more detailed
comparison between VGA and DMFT is therefore in order. While DMFT was primarily
employed as a benchmark in this context, the remarkable, and even quantitative, agreement
between the two transition lines that we have shown in Fig. 4.2 deserves our attention.

In Fig. 4.3 (a) we further explore the comparison by showing the curve of the polar-
ization as a function of gT corresponding to a horizontal cut of the phase diagram of Fig.
4.2. Specifically, we illustrate the evolution of ∆T/gT as the interaction strength increases,
for a value of the bare mass smaller than the critical value, M = 1.4. This enables us to
scrutinize and juxtapose the solutions derived from both methods in a regime of parame-
ters where the difference between static mean field and VGA is sizeable. The plot clearly
highlights that VGA significantly changes the behavior of ∆T/gT making it very close to
DMFT. The agreement observed for the polarization curves confirms that the consistency
between the transition lines is not coincidental. Although DMFT (grey square marks)
predicts the transition at a slightly lower value of gT and with a smaller jump compared
to VGA (red line), the polarization values deep within the two insulating phases are re-
markably close, with a discrepancy that reasonable error part for almost every value of
parameters, except very close to the transition point, whose position is in turn slightly
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overestimated by VGA with respect to DMFT.
We remark that the quantitative difference between DMFT and VGA can be at least

partially due to some important technical differences in the actual numerical implementa-
tion, which have little two do with the fundamental difference between the two methods.

• Both methods require the definition of a fictitious inverse temperature in order to
introduce Matsubara frequencies despite our methods are naturally working at zero
temperature. The value of β used in the DMFT calculations is 1000, chosen to
make the Matsubara grid as dense as possible and to appropriately describe the
zero-temperature limit. In contrast,our VGA employs a reduced β of 500 to balance
the accuracy of zero-temperature approximation against the computational challenge
posed by handling a large number of Matsubara frequencies.

• The two methods are characterized by different convergence criteria. Within VGA
the self-consistent equations realize a minimization of the self-energy, while in DMFT
we require that the local Green’s function is self-consistently determined.

• The strategies that we employed to explore the phase diagram differ significantly
between the two methods. Within DMFT we opted for a vertical sampling by holding
gT constant and variably adjusting M , typically starting from the band insulating
phase and moving downwards. In VGA, on the other hand, we used a horizontal
sampling by fixing M and incrementally increasing gT . Given that in both cases we
use the converged solution from a specific point (gT ,M) as the starting point for the
next step, this procedure could contribute to the minor variations observed in the
solutions. The choice of a different sampling is dictated by the fact that within DMFT
the vertical sampling allows to compute numerically compute κ as the derivative of
Tz with respect to M , while in VGA the orbital compressibility can be computed
explicitly, so we can use horizontal cuts which turn out to be more effective in order
to draw the full phase diagram

We can push our comparison between VGA and DMFT at a deeper level by com-
paring the self-energies as a function of frequency. We recall that when considering the
dynamical effects of interaction, the bare mass of the BHZ model is renormalized by the
low-frequency limit of the real part of the self-energy. This means that the agreement that
we found for the transition line and for the behavior of the orbital polarization necessary
follows from similar results for the zero-frequency self-energy. It is however interesting to
verify whether the agreement between DMFT and VGA self-energies extends also to finite
frequecy. Specifically, we focus on comparing the real and imaginary components of the
self-energy in the two insulating phases, using the same cut at M = 1.4.

In the topological phase (panels (b) and (c) in Fig. 4.3, blue sides), for gT = 1.125, we
recover the typical real part of the self-energy within DMFT that we discussed in Chapter
3 with a large negative value at zero frequency and a smaller (in absolute value) limit for
large frequencies. The VGA reproduces accurately this behavior even quantitatively.

There are indeed minor discrepancies at low frequencies, but the intermediate-to-large
frequency behavior of DMFT is captured perfectly. This is mirrored by the behavior of
the imaginary part of the self-energy (panel (c)). Although there is a slight shift in the
frequency at which the minimum occurs, the curves decay approximately with the same
linear coefficient, and consistently approach zero as ω → ∞.
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In the band insulator phase (panels (e) and (f) in Fig. 4.3, green sides), the agreement
betwen the VGA and DMFT self energies is a little less spectacular. Specifically, the real
part of the self-energy suggests that the degree of correlation at the point gT = 1.875 is
larger in DMFT compared to what is observed in VGA (panel (d)). Despite this, there
is a perfect match between the two curves at higher frequencies. A similar pattern is
observed in the imaginary part of the self-energy, where the decay towards ω → 0 occurs
with different slopes (panel (e)). These observations seems to indicate that VGA seems
to slightly underestimate the effect of the dynamical fluctuations compared to DMFT.
This difference can explain why the jump at the topological phase transition appears more
pronounced in the VGA and why the quantum critical point takes place at lower interaction
strength values in VGA compared to DMFT. It is also worth noting that in this range the
variation with frequency of the real part is relatively small also in DMFT and the same
holds also for the imaginary part. This means that the absolute error between VGA and
DMFT is quite small also in this case and that its effect on the whole picture is quite
limited, as expected by the results we have shown above.

We can therefore conclude that the VGA captures very accurately the DMFT results,
not simply in terms of the position of the phase transition in the phase diagram and in the
presence of the critical point, but it actually reproduces well all the microscopic dynamical
features of the DMFT self-energy, except for a minor underestimate of the correlation
effects in the band insulating solution which has a minor (and merely quantitative) effect
on the scenario.

4.2.2 Inside the VGA results: The mechanism behind a discon-
tinuous transition

We are now in the position to scrutinize more closely the VGA results to extract a more
solid and insightful picture of the correlated topological transition.

In Fig. 4.4(a) we show the evolution of the orbital polarization with the relevant
coupling gT , obtained from the self-consistent value of the bosonic field T̄z = ∆̄T/gT . The
behavior at the transition point g∗T (M) changes qualitatively according to the value of the
bare mass M . In particular we show three representative cuts: one below (black line),
one equal to (red line), and one above (blue line) the critical value Mc ≃ 1.74. The
curves are presented shifted around the respective transition point to enhance the clarity
of the comparison. For a value close to M = 2, i.e. the non-interacting transition point,
the orbital polarization is continuous with respect to the increasing interaction gT . This
corresponds to a smooth modification of the BI into a non-trivial insulator through the
formation of a gapless state at the topolotical phase transition point. We highlight that
even in this case, where the effect of quantum fluctuations does not change the character
of the transition, the concavity of the curve in the topological phase changes, in contrast
to the consistently convex mean-field solution. This effect can be seen as a precursor of the
impending alteration in the nature of the transition, which signals that dynamical effects
can be important even when they are not able to qualitatively change the picture of the
transition.

ReducingM moving away from the non-interacting transition, we clearly see the curves
of orbital polarization that develop a critical behavior at the transition characterized by
a divergent compressibility κ = ∂M T̄z. Beyond this point, for any value of M , the orbital
polarization is characterized by a discontinuous evolution across the topological transition.
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Figure 4.4: (a) Orbital polarization ∆̄T/gT as a function of gT measured with respect to
the transition point g∗T . (b) The gap η along the topological transition line as a function
of the interaction gT . MF is the dotted grey line, while fluctuation-corrected results are
indicated by open symbols and solid line. The (red) dashed line is a linear fit A(gT −gcT )β=1

(A ≃ 0.042) of the critical behavior. Figure slightly readapted from [101].

This jump reflects the inability to fulfill the gap closure condition in Eq. (4.59). Remark-
ably, the value of the polarization at which the quantum critical point occurs remains close
to the mean-field MF estimate, T̄ ∗

z ≃= −0.958.
We have therefore shown that also in VGA, the nature of the transition changes at a

correlation-driven QCP. Below the QCP the condition for the closure of the gap is met when
Eq. (4.59) holds and we recover a conventional continuous scenario with only qualitative
effects of the interactions. For gT > gcT the gap cannot close at the transition and we have
a discontinous jump between two gapped phases.

We can estimate the gap η from the zero-frequency limit of Σ(iωn)

η = lim
ωn→0

ℜΣ(ωn)− Σ(0). (4.65)

By assessing the increasing value η in the gap between the two insulating states solutions
around the transition point, we can determine the mass gained by the Dirac fermions at
the boundary line. In Fig. 4.4(b) we report the behavior of η walking along the transition
line when it crosses the critical point as a function of the interaction strength gT . While in
MF the gap is always zero, including the fluctuations we find a finite gap above the QCP
(gT > gcT ) which clearly increases as we increase the coupling and we move deep inside the
region of discontinuous transitions.

In addition, we find that our numerical evaluation of the gap in the proximity of the
QCP falls in the (2+1)D Gross-Neveu universality class [102, 87], with an estimated critical
exponent β ≃ 1.

We notice that this scenario is fully consistent with a spontaneous Symmetric Mass
Generation (SMG) process [102–104], in which the low-energy fermions acquire a mass
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Figure 4.5: The denominator of Eq. (4.60) as a function of the orbital polarization ∆̄T/gT
across the topological phase transition in the fluctuation-corrected approximation and for
different values of the bare mass M . The narrow grey stripe indicates the minimum with
its numerical uncertainty. Figure slightly readapted from [101].

without spontaneous symmetry breaking, hence the name of symmetric mass generation.
We recall that the Gross-Neveu model describes a system of Dirac fermions that in-

teract through quartic fermion interactions. The realization of a Gross-Neveu criticality
around our correlation-induced QCP confirms a picture in which the generation of gapped
states at the transition can be seen as originating from the interactions between the Dirac
fermions which characterize the gapless states at the standard weakly correlated topological
transition.

A key feature of this model is indeed the phenomenon of dynamical mass generation,
where, despite the fermions being fundamentally massless, their interactions can give rise
to a non-zero mass. This was demonstrated using the effective action technique introduced
by Sidney Coleman [88], and showing that the potential attains its minimum at a non-zero
value of the condensate, thus establishing this value as the true state.

While the mechanism for symmetric mass generation is fundamentally different from
the mass generation through spontaneous symmetry breaking, it nonetheless motivates the
examination of solutions in a similar manner, as we will discuss in the conclusive part of
the section.

In order to better identify the mechanism leading to the development of a critical
behavior starting from an essentially regular evolution, we turn to the expression for the
orbital compressibility (Eq. (4.60))

κ =
∂T̄z
∂M

= − χV GA
T

1−
(
gT
2
− γ
)
χV GA

T

(4.66)

which is the thermodynamic susceptibility associated with the orbital polarization and
it therefore signals its possible instability. The enhancement and divergence of κ are
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naturally associated with the behavior of the denominator, that we report in Fig. 4.5.
If we start from a relatively large M , 1.9 in the figure, we find a mild reduction of the

denominator when the orbital polarization approaches its transition value, which is close
to -1. This results in an enhancement of κ which develops a relatively broad maximum
around the transition. When M is decreased and the QCP is approached, the maximum
denominator is reduced so that the maximum of κ becomes more and more pronounced
and it becomes narrower. This line of maxima in the region where the transition is still
continuous is a Widom line [105–107].

Finally, the denominator vanishes at the transition point when M reaches the critical
value that we identified above. Here the compressibility diverges, in agreement with the
behavior of the orbital polarization and the system becomes critical before entering in
the discontinuous region. We do not show results for the discontinuous region where a
forbidden region of parameters opens.

Our analytical study provides some further understanding of the mechanism in which
the fluctuations lead to a divergent orbital compressibility. As a matter of fact the key
effect is given by the term γ which turns out to be negative since the derivative of the real
part of the self-energy with respect to Tz turns out to be negative in the proximity of the
transition. As a result, the presence of the fluctuations tends to reduce the denominator
and accordingly to enhance the orbital compressibility.

Synergetic coupling between the fluctuations channels
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Figure 4.6: (a) Local static fluctuations ⟪|δ∆a
0|2⟫ = 1

N
∑

q ⟪|δ∆a
q,ν=0|2⟫ for a = T,N, S,R

as a function of gT across the topological transition forM = 1.70. Figure slightly readapted
from [101]. (b) and (c) Real part of the self energy in the zero frequency limit as a function
of gT . In the continuous regime of the transition (panel b), there is a linear dependency
with the interaction coupling, in agreement with the mean-field approximation. In the
discontinuous regime (panel c), the function develops a polynomial dependence on gT , but
recovers the linear behavior when transitioning to the band insulating state.

As previously mentioned in Section 4.1.2, one of the most appealing aspects of the VGA
scheme that we propose lies in the ability to disentangle the individual contributions from
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the interaction channels to the dynamical part of the self-energy. This feature promises to
lead us to a clear physical picture which is usually very hard to attain with computational
approaches that provide a numerical evaluation of the self-energy.

The identification of the relevant fluctuation channels is crucial because we have clearly
shown that it is precisely the abrupt increase of the dynamic corrections ℜΣ(ω → 0) as the
interaction grows that triggers the development of a discontinuous transition and makes the
gap closure impossible according to Eq. (4.59). Therefore, through the present analysis,
we aim to identify the primary factor behind this phenomenon.

In the context of DMFT, we demonstrated the essential need to incorporate at least the
charge interaction channel to capture the discontinuity in the topological phase transition.
Utilizing this knowledge in the VGA, we avoided the simplistic error of focusing exclusively
on orbital polarization. Ultimately, we chose to include all contributions to ensure the
approach reproduce the correct Hartree-Fock solution in the static limit.

Fig. 4.6(a) illustrates the contribution of the fluctuations in the different channels
to enhance the pronounced frequency-dependent behavior of the self-energy within the
topological phase. The fast increasing behavior with the interaction gT in all the channels
stops at the topological transition towards the QSHI, where these quantities display a
discontinuous drop and a successive slow increase in the BI phase. While all the different
channels have the same qualitative behavior, it is evident that the charge channel (blue
line) provides the most significant contribution, thereby corroborating our DMFT findings.
The terms ⟪|δ∆a

q |2⟫ enter, through (4.42), in Σ(iωn) giving it a dynamical nature which

significantly deviates from its static Hartree form Σ(0) = −∆̄T Γ0z

2
. This results in the

crucial shift of the self-consistent saddle point value of the bosonic fields with respect to
mean field that is one of the key points of the present analysis.

This is clearly demonstrated in panels (b) and (c) of Fig. 4.6, where we present the
real part of the self-energy at zero frequency as a function of interaction strength for two
different values of M chosen to represent the two regimes. In the continuous transition
regime (M = 1.9 reported in panel (b)), the evolution is linear, just like in Hartree-Fock,
thus confirming the validity of the mean field treatment in this case. Conversely, in the
discontinuous regime (M = 1.4 in (c)), the real part of the self-energy grows sublinearly
as a function of gT within the topological phase, which is more exposed to non-trivial cor-
relation effects. This indicates that dynamical contributions in Eq. (4.48) are particularly
significant in this phase and they correct qualitatively the Hartree-Fock behavior. On the
other hand, in the band-insulating phase, where correlations play a smaller role, the linear
behavior is recovered. We can picture the onset of a discontinuity as the result of the
inability to connect and reconcile these two functions which in turn reflect two completely
different effects of correlations. These observation represent thus a formal justification of
the intuitive argument that we discussed in Chapter 3: The fact that the interactions are
much more effective in the QSHI solution than in BI makes the two connection between
the two phases discontinuous.

In Fig. 4.7, we present the susceptibilities of Eq. (4.49) in the q → 0 limit as functions
of the Matsubara frequency, for both the polarization, panels (a) and (c), and the charge,
panels (b) and (d). The first two panels are for a solution in the TI region, while the third
and the fourth are in the BI region. We recall that these susceptibilities are equivalent
to those for the Rz and the Sz operators, respectively. While χTT (ν) simply displays
a renormalization (enhancement) due to the inclusion of the the dynamical corrections,
χNN(ν) remains zero in the mean field scenario (grey dashed lines) and becomes finite
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in the fluctuation-corrected VGA (black solid lines). Specifically, this fluctuation-driven
enhancement is more pronounced in the topological phase (b) than in the band phase
(d). We emphasize that the possibility to differentiate between the orbital polarization
susceptibility and the charge susceptibility is due to the inclusion of the hybridization term,
as shown in Eq. (4.51). For this reason, an approach based purely on the local Green’s
function would be extremely limited, being unable to properly describe the different role
of the two fundamental channels.

Figure 4.7: Comparison between the VGA (solid black lines) and the MF (dashed grey
lines) susceptibilities, for M = 1.4. Plots (a) and (b) are for gT = 1.125 (TI). Plots (c) and
(d) are for gT = 1.875 (BI).

Symmetric Mass Generation and Coleman-Weinberg Mechanism

A great deal of attention has been recently drawn in different fields [102–104] to novel
possible mechanisms of spontaneous mass generation which preserve the symmetry, beyond
the conventional SSB description. Here we have shown that such process describes the gap
opening for Dirac electrons at the boundary of a Quantum Spin Hall Insulator. More
concretely, we have addressed the question how electron-electron interactions can drive
the formation of a spontaneous mass for the otherwise gapless electrons at a topological
transition.

Currently, there is no unified theory for symmetric mass generation; instead, there
exists a collection of topological models and interaction forms known to exhibit this phe-
nomenon. Various numerical techniques, ranging from Density Matrix Renormalization
Group (DMRG) [108] to Quantum Monte Carlo (QMC) [109], have been employed to in-
vestigate these models. These studies consistently indicate the absence of fermion bilinear
condensation in the SMG phase, suggesting that mass generation does not arise from the
conventional Anderson-Higgs symmetry breaking mechanism.

To verify this, one approach involves introducing a minor source field that interacts
with the fermion bilinear term and observing its disappearance when the field is removed.
In our case it holds true: limM→0⟨ψ†Γ0zψ⟩ = 0. Alternatively, measuring the correlation
function and verifying its exponential decay, we can assess that the local parameter lacks
long-range order. However, it can be reasonably assumed that employing a symmetric
interaction Hamiltonian is sufficient to ensure reliability.

The authors of Ref. [103] suggested the parton-Higgs and s-confinement mechanisms
as possible theoretical frameworks to explain their numerical results. In contrast, our
study suggests that, at least for the model we investigated, SMG aligns with the Coleman-
Weinberg (CW) mechanism.
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The Coleman-Weinberg mechanism [88] illustrates how quantum corrections can induce
spontaneous symmetry breaking in field theories, even when the original, classical, setup is
symmetric. This concept hinges on the idea that quantum fluctuations, or loop corrections,
can reshape the effective potential in such a way that it favors a state of broken symmetry,
creating new minima away from the origin. This process naturally gives rise to mass scales
and symmetry breaking, deriving directly from the intrinsic dynamics of the theory (see
App. D).

Our application of the variational Gaussian approximation to the free energy, for ex-
amining dynamical effects in the interacting BHZ model, closely parallels the CW effective
potential approach. At the mean-field level, fermions remain massless, as the gap clo-
sure condition is invariably met. However, when we include one-loop corrections, i.e. the
dynamical corrections to the self-energy, we observe that the competition between fluctua-
tions in different interaction channels can induce mass generation. In this case, this occurs
without any symmetry breaking.

4.3 Outlook

In this chapter we examined the critical behavior that the presence of sizeable electronic
interaction induces on the topological phase transition of the BHZ model.

Our analysis has clearly shown that the standard perturbative approach around mean-
field is conceptually insufficient to reproduce and rationalize the numerical results obtained
within DMFT. This called for the development of an alternative method to adequately
account for the dynamical effects of the interaction in a controlled yet non perturbtive
way. To clarify, we do not claim that we are the authors of the VGA technique; the credit
for that, to our knowledge, belongs to Hertz and Klenin [10]. However, our contribution lies
in recognizing how to adapt this approach to our specific context of topological transitions
and in further refining the approximation scheme with the inclusion of the self energy in
the self-consistency set of equations. We believe that the latter improvement entails the
potential to extend VGA to a wider class of phenomena.

The primary reason for the failure of the perturbative expansion is the inability to
capture the phenomenon of the symmetric mass generation, i.e., the development of a
mass in an otherwise massless theory without breaking any symmetry, within a mean-
field theory. This led us to conclude that incorporating the one-loop corrections to the
self energy through the variational Gaussian approximation was a viable and promising
option. Ultimately, the use of this approach enabled us to define a ”renormalized” free
energy that on one hand explains in a direct way the development of a quantum critical
point separating a continuous topological transition from a discontinuous one, and on the
other hand to connect this result to a broader concept of spontaneous mass generation and
to the Coleman-Weinberg mechanism for mass generation.

Through this approach, we have rigorously explained the SMG in the interacting BHZ
model and we also identified charge fluctuations as the primary driver, providing a solid
conceptual base to a result that we obtained within DMFT in Chapter 3, namely that the
minimal condition for the development of a critical behavior at the topological transition
is the involvement of the orbital polarization and charge channels.

Moreover, the VGA analysis does not simply provide a qualitative account for the
quantum critical behavior, as it actually reproduces accurately the DMFT results at a
quantitative level with minor differences. The success of the VGA for a particularly subtle
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and delicate aspect such as a phase transition is extremely promising and it paves the
way for delving into the methodology further, exploring its accuracy in different models
displaying other relevant physical phenomena. Not only we are confident, based on the
current results, that this approach is adaptable to describe comparable phenomena in
various scenarios, such as by applying it to different topological models or varying the forms
of interaction, but it also offers the perspective to analyze phase transitions unrelated to
topology, as in its original purpose. The progress in computational efficiency and the more
intriguing physics of the strong correlations available to us now, compared to 1974, could
extend the concepts proposed by the authors of Ref. [10] into new realms of exploration.

Some possible extensions are quite natural. One of the first questions to address is the
ability of our VGA method to investigate the Mott-Hubbard transition in the present BHZ
model with correlations and in more general multiorbital models, that have revealed in the
last decade a number of intriguing novel phenomena ranging from orbital-selective Mott
physics to the presence of interaction-resilient Hund’s metals.

Should this method prove effective, the semi-analytical character of the approach and
the consequent direct access to the response functions would offer significant appeal. Fur-
thermore, the direct access to the contributions of fluctuations in different channels provides
a very simple way to perform a ”fluctuation diagnostics”[99] at a very cheap computational
cost.

Naturally, we anticipate the need for additional testing and possibly improving or adapt-
ing the approximation scheme before these wider applications can be implemented. How-
ever, the level of control that we have within this approach, compared to a purely numerical
strategy, is expected to provide an important guidance even in the case where the VGA
would not be able to accurately account for some physical phenomenon.

We also like to mention that, especially in view of applications to more general models,
including for instance the two-dimensional Hubbard model, one of the most interesting
extensions of the VGA would be to relax the local approximation for the self-energy, which
here has been takes, besides the obvious computational gain, based on previous calculations
that demonstrated that the quantum critical scenario for the topological transition of the
BHZ model relied mainly on local correlations.

Yet, the method does not require any conceptual development to be generalized to
non-local self-energies. This generalization can take different forms ranging from cluster
extensions, where we decide to parametrize the momentum dependence of the self-energy
in terms of the few cluster momenta of a small cluster, to the full numerical evaluation on
a finite grid of the momentum dependent self energy.



Conclusions

In the present thesis we have presented a complete and insightful investigation of the effect
of electron-electron correlations on a topological phase transition. We considered one of the
most popular models for topological insulator, namely the Bernevig-Hughes-Zhang (BHZ)
model[7] which describes a Quantum Spin Hall Insulator which turns into a trivial band
insulator when the mass parameter – an energy splitting between the two orbitals included
in the model – exceeds a given value. The interactions are included in terms of a multi-
orbital Hubbard-Kanamori model[56] (even if some different models are considered). This
model is particularly suited for our theoretical investigations because of the local character
of the mass term, but we argue that the results are more general and they can apply to a
wider class of topological transitions.

The main outcome of this research is a complete description of an intriguing phe-
nomenon in which the presence of strong correlation introduces ”thermodynamic” features
into the topological phase transition of the BHZ model. The common scenario for a topo-
logical phase transition of non-interacting fermions is indeed a continuous closure of the
gap from both sides of the transition, which is therefore continuous and it can be associated
with the change in a topological invariant. Previous investigations[6] using DMFT[8] have
however shown that this scenario can change in the presence of large local interactions,
where the transition becomes discontinuous. This defines a critical coupling where the
order of the transition changes, which defines a quantum critical point. This is indeed a
surprising scenario which connects a topological transition with a critical behavior which
is characteristic of thermodynamic transition.

This thesis reports a body of theoretical work that substantially advances our under-
standing of this phenomenon leading to a clear physical and mathematical picture of the
processes that turn the topological transition discontinuous and to an analysis in terms of
a suitable non-trivial expansion of the free energy which attempts a connection with the
classical Landau approach.

• Our construction starts from a Hartree-Fock analysis that clarifies several important
points. First of all, within the mean-field effective single-particle picture the topolog-
ical transition remains continuous also in the presence of interactions which can only
lead to a shift of the transition point, but are not able to change the nature of the
transition. Despite the lack of a local order parameter, the mean-field analysis con-
firms that one observable, the orbital polarization (difference in occupation between
the two orbitals of the model) is the most directly connected to the transition. In par-
ticular it is the only one that develops a non-zero mean-field value and it corrects the
mass parameter through an additive term. However, it evolves continuously across
the topological transition with no signature of critical behavior. We also address the
dependence of the phase diagram on important parameters such as the ratio J/U
between the Hund’s coupling and the Hubbard repulsion or the inter-orbital hopping

93



94 CONCLUSIONS

λ. While the value J/U shapes up the phase diagram in the U -M plane, we clarify
that λ as indeed a minor role.

• The next step of our investigation has been to complement previous DMFT studies
by performing a series of calculations spanning different regimes of parameters. This
led us to conclude that the development of a discontinuous topological transition is
a completely general phenomenon, at least in the present model. In particular we
have shown that the quantum critical point emerges for all the values of J/U that
we considered, spanning essentially the whole range of parameters, regardless of the
overall shape of the phase diagram that echoes the mean-field one. Importantly, we
show that an interaction which only involves a T 2

z term does not lead to a first-
order transition, which requires the interplay between the Tz channel and at least the
total charge fluctuations. This defines a minimal interaction model and some general
guiding principles to observe the critical behavior. The role of the charge fluctuations
establishes a deep connection with the physics of strong correlations which culminates
in Mott localization.

• The comparison between Hartree-Fock and DMFT suggests that the quantum cor-
relations neglected by the mean-field approximation are crucial to give rise to a
discontinuous transition and the related quantum critical behavior. This led us to
devise a new theoretical framework to include fluctuations beyond the standard Gaus-
sian approximation in a controlled way. The guiding principle it to disentangle the
contribution of different channels which are instead automatically summed up using
DMFT.

Within this novel approach, that we labelled Variational Gaussian Approximation
(VGA), we write an effective Gaussian action whose parameters are determined vari-
ationally. This leads to a self-consistent scheme in which we are able to describe
(i) a change of the typical value of Tz form its mean-field value and (ii) fluctuation
terms in the different channels which include effectively high-order fluctuations with
respect to mean field[101].

• This relatively simple analytical approach – which however requires a numerical self-
consistency – allows us to reproduce the DMFT phenomenology accurately, thus
identifying the key microscopic processes which turn the topological transition into
a discontinuous one. In particular we show that all the other channels indeed con-
tribute, but the largest contribution comes from the charge channel, confirming the
indirect information that we extracted from numerical DMFT calculations. Our new
results show that the contribution from the fluctuations beyond mean field are able
to open a gap at the otherwise gapless transition point despite our model does not
display a spontaneous symmetry breaking. This highlights an interesting similarity
with the Coleman-Weinberg mechanism of mass generation.

If we follow the behavior of the gap along the transition line increasing the interaction
strength, we obtain a vanishing value as long as the transition remains continuous.
Here the gapless states are the standard Dirac fermions of the non-interacting BHZ
model. When we reach the critical point and we enter the first-order region, we find
that the spontaneously generated gap follows a Gross-Neveu critical scaling expected
for Dirac fermions.
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• Our effective theory is able to some extent to build a description of the topological
transition in terms of a free-energy functional that evolves from a form with a single
minimum to one with two inequivalent minima, thus describing effectively the evo-
lution of the properties of the system in a language which resembles the standard
Landau theory. Of course this does not mean that the transition becomes ordinary
or that we should not use the Z2 topological invariant, but that the two pictures can
actually become much closer than what it is usually believed.

The results of the present analysis are quite general and they are essentially based
on the existence of a standard local observable coupled with the topological behav-
ior. For example the role played here by the orbital polarization is expected to be
played by the unbalance between the two sublattices in the Kane-Mele model. More
generally, our results provide a rather general recipe to generate a ”mass” via fluctu-
ations in different channels, which can be applied also in the absence of topologically
non-trivial bands. For example our method can be used in general to study strongly
correlated phases with partial unbalance between orbitals or sites.

• The remarkable agreement between DMFT and our variational Gaussian approxima-
tion is also very promising in light of future applications to more general and extensive
investigations of strongly correlated systems. A natural extension is to include other
symmetry-breaking channels in the model which can lead to other non-trivial phases
such as Weyl semimetals.

In the present work we limited to a local self-energy to keep the computational cost
light, motivated by the fact that the local DMFT self-energy is sufficient to lead to
the critical behavior. However, the VGA can be extended straightforwardly to non-
local self-energies, allowing to study a much wider class of phenomena, especially in
two dimensions.





Appendix A

Mean-Field decoupling

In this Appendix, we provide a detailed derivation of the mean-field decoupling for the
two-orbitals generalized Kanamori interaction in Eq. 1.34, resulting in Eq. 2.2.

We present the matrix basis

Γµν = σµ ⊗ τν (A.1)

were σ and τ represent the Pauli matrices in the spin and orbital spaces, respectively,
µ, ν = 0, x, y, z. Utilizing each of the 16 spin-orbital components, we are able to construct
an operator, or symmetry-breaking field: Λ̂µν = 1

2
ψ†Γµνψ

1. Specifically, we have

1

2


ψ†Γ00ψ
ψ†Γ0zψ
ψ†Γz0ψ
ψ†Γzzψ

 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



n1↑
n2↑
n1↓
n2↓

 (A.2)

where N̂ = 1
2
ψ†Γ00ψ is half of the occupation per site, T̂z = 1

2
ψ†Γ0zψ is the z-component

of the orbital polarization, Ŝz = 1
2
ψ†Γz0ψ is the z-component of the local magnetization

and R̂z =
1
2
ψ†Γzzψ is z-component of the ”spin polarization”;

1

2


ψ†Γx0ψ
ψ†Γy0ψ
ψ†Γxzψ
ψ†Γyzψ

 =
1

2


1 1 1 1
−i i −i i
1 1 −1 −1
−1 i i −i



c†1↑c1↓
c†1↓c1↑
c†2↑c2↓
c†2↓c2↑

 (A.3)

where Ŝx,y = 1
2
ψ†Γx0,y0ψ are the in plane components of the local magnetization, and the

other two operators are equivalent combinations of the raising and lowering spin operators
per orbital Sm+ = c†m↑cm↓;

1

2


ψ†Γxxψ
ψ†Γxyψ
ψ†Γyxψ
ψ†Γyyψ

 =
1

2


1 1 1 1
−i i −i i
−i −i i i
−1 1 1 −1



c†1↑c2↓
c†2↑c1↓
c†1↓c2↑
c†2↓c1↑

 (A.4)

where the terms constitute the exciton order parameters Px and Py (in plane triplet);

1In the following derivation, we omit the site index i in the spinors ψi, which is implicitly understood.
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1

2


ψ†Γ0xψ
ψ†Γ0yψ
ψ†Γzxψ
ψ†Γzyψ

 =
1

2


1 1 1 1
−i i −i i
1 1 −1 −1
−i i i −i



c†1↑c2↑
c†2↑c1↑
c†1↓c2↓
c†2↓c1↓

 (A.5)

where T̂x,y =
1
2
ψ†Γ0x,0yψ are the in plane components of the orbital polarization, and along

with the other two operators constitute the exciton order parameters P0 (singlet) and Pz

(z-axis triplet) [65, 85].
Hence, by applying Eq. (2.1) to the density operators c†αcβ in Eq. (1.34), we reformulate

the interaction in terms of the 16 fields we have introduced2.

We start considering the density-density part of the interaction Hamiltonian.

• Decoupling of the Hartree terms.

U
∑
m

nm↑nm↓ → U(⟨n1↑⟩n1↓ + n1↑⟨n1↓⟩+ ⟨n2↑⟩n2↓ + n2↑⟨n2↓⟩)

U ′
∑
m ̸=m′

nm↑nm′↓ → U ′(⟨n1↑⟩n2↓ + n1↑⟨n2↓⟩+ ⟨n2↑⟩n1↓ + n2↑⟨n1↓⟩)

(U ′ − J)
∑

m̸=m′σ

nmσnm′σ → (U ′ − J)(⟨n1↑⟩n2↑ + n1↓⟨n2↓⟩+ ⟨n2↑⟩n1↑ + n2↓⟨n1↓⟩)

(A.6)

By substituting the inverse of Eq. (A.2) for both the operators and the expectation
values of the density per spin orbital nmσ, we obtain

HHartree
int = −

∑
µν=0,z

gµνΛµνΛ̂µν (A.7)

with g00 = −(U + 2U ′ − J), g0z = −(U − 2U ′ + J), gz0 = U + J and gzz = U − J .

• Decoupling of the Fock terms.

By applying the anti-commutation relations we have

U
∑
m

nm↑nm↓ = −U
∑
m

c†m↑cm↓c
†
m↓cm↑

→ −U
∑
m

⟨c†m↑cm↓⟩c†m↓cm↑ + c†m↑cm↓⟨c†m↓cm↑⟩

U ′
∑
m̸=m′

nm↑nm′↓ = −U ′
∑
m̸=m′

c†m↑cm′↓c
†
m′↓cm↑

→ −U ′
∑
m̸=m′

⟨c†m↑cm′↓⟩c†m′↓cm↑ + c†m↑cm′↓⟨c†m′↓cm↑⟩

(U ′ − J)
∑

m ̸=m′,σ

nmσnm′σ = −(U ′ − J)
∑

m̸=m′,σ

c†mσcm′σc
†
m′σcmσ

→ −(U ′ − J)
∑

m ̸=m′,σ

⟨c†mσcm′σ⟩c†m′σcmσ + c†mσcm′σ⟨c†m′σcmσ⟩

(A.8)

2In the following derivation we omit the constant terms of the decoupling, as ⟨A⟩⟨B⟩ in Eq. (2.1)
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and substituting the inverse of Eq. (A.3), Eq. (A.4) and Eq. (A.5), respectively, we
obtain

HFock
int =− U(Λx0Λ̂x0 + Λy0Λ̂y0 + ΛxzΛ̂xz + ΛyzΛ̂yz)

− U ′(ΛxxΛ̂xx + ΛxyΛ̂xy + ΛyxΛ̂yx + ΛyyΛ̂yy)

− (U ′ − J)(Λ0xΛ̂0x + Λ0yΛ̂0y + ΛzxΛ̂zx + ΛzyΛ̂zy)

(A.9)

Next, we examine the other terms of the interaction, which, using the same algebraic
approach as previously described, transform accordingly.

• Decoupling of the spin-flip.

−JX(c†1↑c1↓c
†
2↓c2↑ + c†1↑c1↓c

†
1↓c1↑) → −JX(⟨c†1↑c1↓⟩c

†
2↓c2↑ + c†1↑c1↓⟨c

†
2↓c2↑⟩+

+ ⟨c†1↑c1↓⟩c
†
1↓c1↑ + c†1↑c1↓⟨c

†
1↓c1↑)⟩)

JX(c
†
1↑c2↑c

†
2↓c1↓ + c†2↑c1↑c

†
1↓c2↓) → JX(⟨c†1↑c2↑⟩c

†
2↓c1↓ + c†1↑c2↑⟨c

†
2↓c1↓⟩+

+ ⟨c†2↑c1↑⟩c
†
1↓c2↓ + c†2↑c1↑⟨c

†
1↓c2↓⟩)

(A.10)

which leads to

Hsf
int =− JX(Λx0Λ̂x0 + Λy0Λ̂y0 − ΛxzΛ̂xz − ΛyzΛ̂yz)

− JX(−Λ0xΛ̂0x − Λ0yΛ̂0y + ΛzxΛ̂zx + ΛzyΛ̂zy)
(A.11)

• Decoupling of the pair-hopping.

−JP (c†1↑c2↓c
†
1↓c2↑ + c†2↑c1↓c

†
2↓c1↑) → −JP (⟨c†1↑c2↓⟩c

†
1↓c2↑ + c†1↑c2↓⟨c

†
1↓c2↑⟩+

+ ⟨c†2↑c1↓⟩c
†
2↓c1↑ + c†2↑c1↓⟨c

†
2↓c1↑)⟩)

JP (c
†
1↑c2↑c

†
1↓c2↓ + c†2↑c1↑c

†
2↓c1↓) → JP (⟨c†1↑c2↑⟩c

†
1↓c2↓ + c†1↑c2↑⟨c

†
1↓c2↓⟩+

+ ⟨c†2↑c1↑⟩c
†
2↓c1↓ + c†2↑c1↑⟨c

†
2↓c1↓⟩)

(A.12)

which leads to

Hph
int =− JP (ΛxxΛ̂xx − ΛxyΛ̂xy + ΛyxΛ̂yx − ΛyyΛ̂yy)

− JP (−Λ0xΛ̂0x + Λ0yΛ̂0y + ΛzxΛ̂zx − ΛzyΛ̂zy)
(A.13)

Thus, by aggregating all the contributions from the mean field Eqs. (A.7), (A.9), (A.11)
and (A.13), we obtain

HMF

int = −
∑
µν

gµνΛµνΛ̂µν (A.14)

as in Eq. (2.2), and we recover the matrix representation in Eq. (2.3), which delineates
the couplings (or scattering amplitudes) for each interaction channel.

In particular, with the conditions U ′ = U − 2J and JX = JP ≡ J (cubic symmetry)
[53], the matrix of the couplings becomes

g =


−(3U − 5J) U − 5J U − 3J U − 5J
U + J U − J U − 3J U − J
U + J U − J U − 3J U − J
U + J U − J U − 3J U − J

 (A.15)
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while in the density-density form of the interaction, for JX = JP , it reduces to

g =


−(3U − 5J) U − 3J U − 3J U − 5J

U U − 2J U − 2J U
U U − 2J U − 2J U

U + J U − 3J U − 3J U − J

 (A.16)

In both cases we determine gN ≡ g00 = −(3U−5J), gT ≡ g0z = U−5J , gS ≡ gz0 = U+J
and gR ≡ gzz = U − J , thereby validating our selection of the couplings in Eq. (2.5). We
further substantiate our statement regarding the validity of the density-density Kanamori
approximation in the analysis of topological phase transitions.

A.1 Derivation of the effective two channels interac-

tion

We aim to formulate the effective interaction using the two channels that do not lead to
symmetry breaking of the free model (Eq. (1.33)), specifically the orbital polarization and
the charge:

Hint = −gT
2
T̂z −

gN
2
N̂ , (A.17)

where couplings are determined by enforcing the condition in Eq. (2.10) for the effective
mass in the static limit.

Given our previous discussion on the sole viable decoupling of the interaction being that
on the density operators, using the transformation in Eq. A.2, we convert this expression
as

Hint =− gT + gN
4

∑
m

nm↑nm↓ +
gT − gN

4

∑
m

nm↑nm′↓ +
gT − gN

4

∑
σ

nmσnm′σ+

+
gT + gN

8
N̂ .

(A.18)

This equation corresponds to a density-density Kanamori interaction with Ũ = −gT+gN
4

,

Ũ ′ = gT−gN
4

and J̃ = 0. The last term is reabsorbed in the redefinition of the chemical
potential.

Then, by performing a decoupling as in Eq. (A.6), we obtain

HHartree
int = −3gT − gN

4
TzT̂z +

gT − 3gN
4

NN̂ (A.19)

that coincides with

HHartree
int = −(U − 5J)TzT̂z + (3U − 5J)NN̂ (A.20)

as in Eq. (2.1), when gT = −5J and gN = −(4U − 5J).



Appendix B

Dynamical Mean-Field Theory

This appendix provides a concise overview of Dynamical Mean-Field Theory (DMFT)
[8, 9]1, a cutting-edge approach for the treatment of strongly correlated electron systems.

Tracing its historical development, the first step towards the construction of the DMFT
has been made in the pioneering work of Metzner and Vollhardt [111], who investigated
the Hubbard model in the limit of infinite dimension as a way to perform perturbation
analysis in the absence of any obvious small quantity. The main result was to demonstrate
the the self-energy becomes momentum independent in the limit of lattice coordination
number z ≫ 1. Shortly after Müller-Hartmann [112, 113] proved the locality of the Green’s
function and used it to derive self-consistent equations for the self-energy. This established
the framework for the step forward taken by Georges and Kotliar [114], who observed
and discuss the direct correspondence between the newly born DMFT and the classical
mean-field theory, thereby introducing the concept of a dynamical Weiss field.

As we will see, the mean-field character of the theory allows to map the quantum
many-body problem on a lattice onto a single-site effective model. Integrating out all
the other fermionic degrees of freedom we reduce to an impurity problem embedded in
an effective bath determined self-consistently. As a consequence of neglecting the spatial
fluctuations, this procedure becomes exact in the limit of infinite dimensions d → ∞ and
provides a good approximation for systems in 2- or 3-dimensions with strong electronic
interaction. Thus DMFT can be thought of as the quantum extensions of the classical
mean-field approach, with the improvement of capturing the temporal fluctuations due to
electron-electron interactions, justifying the adjective “dynamical”.

B.1 Mean-field theory, from classical to quantum

The idea of a mean-field approach is that every site is equivalent for the description of the
system or, in other words, that spatial fluctuations are frozen. As a matter of facts, this
implies, both in the standard classical mean-field and in the present DMFT, that we can
approximate the lattice problem with a single-site effective problem, with an immensely
reduced number of degrees of freedom. This means that the properties of the system
at any site can be described by the exchange of particles between the site, treated as a
fully interacting object, and the rest of the lattice, which is instead approximated with a
non-interacting reservoir, or bath.

1We mostly follow the Ref. [110]
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The most illustrative application of the Curie-Weiss theory is for the Ising model [115]:

HIsing = −
∑
⟨ij⟩

Jijsisj − h
∑
i

si (B.1)

with ferromagnetic couplings Jij ≡ J > 0 between nearest-neighbor sites of a lattice with
coordination z and an external magnetic field h. Indeed, if we focus on a given arbitrary
spin of the lattice, for example j = 0, we can assume that the neighboring spins act on it
as an average magnetic field, referred as Weiss field:

heff = −
〈∂HIsing

∂s0

〉
= h+

∑
i ̸=0

J0i⟨si⟩ = h+ zJm (B.2)

where m = ⟨si⟩ is the thermal average of the magnetization on each lattice size, because of
the translational invariance. Thus, ignoring the instantaneous configuration of the spins,
the problem can be recast in an effective one:

Heff = −heffs0 (B.3)

from which it is easy to derive the self-consistent equation for the magnetization, which
arises from the requirement that the magnetization on the chosen site j is identical to that
of every other lattice site:

m = tanh(βh+ zβJm) (B.4)

Varying the external magnetic field and the temperature, the solution of this transcendental
equation describes the paramagnetic-ferromagnetic phase transition.

It can be rigorously proved that the Ising mean-field approximation becomes exact in
the limit z → ∞ [116]. This is quite intuitive, since the spatial fluctuations of the local
field become statistically negligible as the number of neighbors increases.

This construction can be generalized to quantum many-body systems. In this case, the
primary quantity we are interested in is the fermionic single-particle local Green’s function
at a given lattice site i2:

Gσ
ii(τ − τ ′) = −⟨Tτciσ(τ)c†iσ(τ ′)⟩ (B.5)

which in frequency domain, neglecting from now on the indexes, reads:

G(iω) =

∫ β

0

dτG(τ)eiωnτ (B.6)

Here Tτ represents the time-ordered product and ωn ≡ (2n+1)π
β

, n ∈ Z are the fermionic
Matsubara frequencies.

As we will see in the following, mapping a many-body lattice problem to an effective
single-site problem will generate a quantity G0(τ − τ ′), that can be interpreted as the
quantum version of the local Weiss field heff of classical mean-field theory. Its physical
content is that of an effective amplitude for a fermion to be created on the isolated site
at time τ (coming from the external “bath”; i.e. from the other sites of the lattice) and
being destroyed at time τ ′ (going back to the bath). Hence the main difference with the
classical case is that the Weiss field in DMFT is not a number, but a function of the time

2It is worth to underline that the dependence on the time difference is correct only for translationally
invariant in time systems.
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(or frequency). In this way, DMFT, as any mean-field theory, neglects spatial fluctuations
in the system, focusing on the local physics at one (arbitrary) site, but takes full account
of local quantum fluctuations. This also points another substantial difference between
MF theory and DMFT: the mean-field theory of the Ising model becomes a single-spin
problem, while the local effective problem introduced by DMFT is fundamentally a many-
body problem, still difficult to solve although hugely simpler than the original lattice model.
For this reason the DMFT does not lead to a simple analytical result, but it requires some
non-trivial numerics.

The two above-mentioned functions are related by self-consistency equations that de-
termine the solution of the problem. In the next section we will provide the derivation in
the limit of large connectivity z.

B.2 Derivation of the DMFT equations

After an introduction about the main concepts defining DMFT, in this section we prove
that a mean-field like self-consistency condition emerges naturally in the limit of large
lattice coordination. We derive the equation for the simple case of the one-band Hub-
bard model (1.26) on a generic Bravais lattice. The extension to the multi-orbital case is
straightforward.

We follow the cavity method to derive DMFT equations. This approach provides a
direct connection with the classical statistical mechanics. We focus on a particular site of
the lattice model, averaging out all the degrees of freedom of the other sites. In this way
we obtain an effective local problem for the selected site, say i = 0 (fig. B.1). In presence
of lattice translational invariance, the tagged site is arbitrary and representative of any
equivalent site in the lattice. The derivation can also be generalized to lattices where the
unit cell contains more that one site.

Figure B.1: Schematic representation of the cavity method construction of the effective
impurity problem. One (arbitrary) site is picked out of the lattice and embedded in a
self-consistent bath obtained by integrating out the remaining degrees of freedom in the
lattice.

Let us start writing the action of the Hubbard model in terms of the Grassmann vari-
ables ciσ and c†iσ at imaginary time τ :

S =

∫ β

0
dτ

∑
iσ

c†iσ(τ) (∂τ − µ) ciσ(τ)−
∑
⟨ij⟩σ

tijc
†
iσ(τ)cjσ(τ) + U

∑
i

ni↑(τ)ni↓(τ)

 (B.7)
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From this expression that describes the whole lattice system, we want to get an effective
action for the site 0. This first step of the cavity method consists in splitting the action
into three parts: S = S0 + S(o) +∆S:

S0 =

∫ β

0
dτ

[∑
σ

c†oσ(τ) (∂τ − µ) coσ(τ) + U no↑(τ)no↓(τ)

]

S(o) =

∫ β

0
dτ

∑
i ̸=o,σ

c†iσ(τ) (∂τ − µ) ciσ(τ)−
∑

i,j ̸=o,σ

tijc
†
iσ(τ)cjσ(τ) + U

∑
i ̸=o

ni↑(τ)ni↓(τ)


∆S = −

∫ β

0
dτ
∑
iσ

(
tioc

†
iσ(τ)coσ(τ) + toic

†
oσ(τ)ciσ(τ)

)
(B.8)

where S0 is the action of the isolated site 0, S(o) is the action of the system after removing
0, i.e. it is the “cavity” action and the remaining term ∆S describes the “interaction”
between the tagged site 0 and the rest of the lattice.

In principle, the effective theory for site 0 is defined by the effective action Seff obtained
by formally integrating out all the fermionic fields except those of site 0:

1

Zeff

e−Seff [c
†
oσ ,coσ ] =

1

Z

∫ ∏
i ̸=0,σ

(
Dc†iσDciσ

)
e−S. (B.9)

Here Z =
∫ ∏

i,σ

(
Dc†iσDciσ

)
e−S and Zeff are respectively the partition function of the

original lattice model and the effective partition function corresponding to Seff . Indeed
from the eq. (B.9), it is straightforward to obtain:

Seff = const. + So + ln⟨e−
∫ β
0 dτ∆S⟩S(o) (B.10)

where the last term is the generating functional of the connected Green’s function of the
cavity Hamiltonian. If we introduce the variables ηi = coσtio and η†i = c†oσtoi in ∆S, which
formally represent fields acting on the site i, we can perform an expansion of the action
in powers of η. This allows us to express the average of the exponential in terms of the
exponential of the series of the connected Green’s functions of the fully interacting model
with site 0 removed. Therefore we have:

Seff =const.+ So −
∞∑
n=1

∑
i1...in

∑
j1...jn

∫ β

0

dτi1 . . . dτindτj1 . . . dτjn

η+i1(τi1) . . . η
+
in
(τin)ηj1(τj1) . . . ηjn(τjn)G

(o)
i1...inj1...jn

(τi1 . . . τin , τj1 . . . τjn)

(B.11)

Up to now no approximation have been done and the local theory contains all the n-
body connected Green’s functions G

(o)

i1...inj1j̇n
of the rest of the lattice. A great simplification

of the problem occurs in the limit of large dimensionality, when only the first term of the
series of many-body correlation functions survives. The explanation is simple: since the
hopping amplitude must be rescaled with 1√

z
, in order to preserve the extensivity of the

energy for z → ∞, it follows, from the definition of the ηi, that the n-th order term of the
expansion in eq.(B.11) scales as z1−n. Hence, explicitly writing S0 and ignoring the overall
normalization constant of Zeff , the effective action reduces to:

Seff = −
∫ β

0

dτdτ ′ c†oσ(τ)G−1
0 (τ, τ ′) coσ(τ

′) +

∫ β

0

dτ Uno↑(τ)no↓(τ) (B.12)
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where:
G−1
0 (τ, τ ′) = −(∂τ − µ)δτ,τ ′ −

∑
ij

tiotojG
(o)
ij (τ, τ

′) (B.13)

is the non-interacting single-particle Green’s function of the tagged site effective problem.
In eq. (B.12) the Green’s function that describes the propagation of the electrons in the

lattice with one site removed, namely G
(o)
ij (τ, τ

′), is an unknown object. Thus, to obtain

a closed set of equations, we have to relate the cavity Green’s function G
(o)
ij (τ, τ

′) to the
lattice Green’s function Gij(τ, τ

′). For d→ ∞, this leads to:

G
(o)
ij = Gij −GioG

−1
oo Goj (B.14)

where Goo is the local Green’s function of the site 0, that describes all the delocalization
processes the electron performs starting from the site 0 and returning back to it.

Fourier transforming to Matsubara frequencies eq. (B.13) and inserting the relation
(B.14), we end up with:

G−1
0 (iωn) =

∫ β

0

dτ G−1
0 (τ)eiωnτ = iωn + µ−

∑
ij

tiotoj G
(o)
ij (iωn)

= iωn + µ−
∑
ij

tiotoj
[
Gij(iωn)−Gio(iωn)G

−1
oo (iωn)Goj(iωn)

] (B.15)

and then we move to k-space to compute the sum in the equation above: Gij(iωn) =∑
k e

ik·RijG(k, iωn), where

G(k, iωn) =
1

iωn + µ− ϵ(k)− Σ(k, iωn)
(B.16)

is the interacting lattice Green’s function, ϵ(k) =
∑

j tije
ik·(Ri−Rj) is the non-interacting

dispersion relation and Σ is the lattice self-energy.
As we anticipated, a great simplification arises by taking the limit of infinite coordina-

tion number or dimensionality d→ ∞ as the self-energy becomes a local quantity:

Σ(k, iωn) −−−→
z→∞

Σ(iωn) (B.17)

At this point, the sum in the r.h.s of eq. (B.15), has been converted in a sum over the
wave vector k and can be evaluated as energy integrals introducing the non-interacting
density of states: ρ0(ϵ) =

∑
k δ(ϵ− ϵ(k)). The expression now reads:

G−1
0 (iωn) = iωn + µ−

∫ +∞

−∞
dϵ
ρ0(ϵ)ϵ

2

ζ − ϵ
−
(∫ +∞

−∞
dϵ
ρ0(ϵ)ϵ

ζ − ϵ

)2 /∫ +∞

−∞
dϵ
ρ0(ϵ)

ζ − ϵ
(B.18)

where we put ζ ≡ iωn + µ− Σ(iωn).
Finally, after some manipulations, which allow to express the three integrals in (B.18)

in terms of the local Green’s function, we obtain the self-consistency condition in the form:

G−1
0 (iωn) = G−1(iωn) + Σ(iωn) (B.19)

Since G can in principle be computed as a functional of G0 by solving the impurity
action Seff , eqs. (B.12) and (B.19) form a closed system of functional equations for the
on-site Green’s function G and the Weiss function G0.
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To summarize the DMFT equations read:

Seff = −
∫ β

0

dτdτ ′c†oσ(τ)G−1
0 (τ, τ ′)coσ(τ

′) +

∫ β

0

dτUno↑(τ)no↓(τ) (B.20)

G−1
0 (iωn) = G−1(iωn) + Σ(iωn) (B.21)

which can be solved using an iteration-substitution algorithm, as illustrated in fig. B.2.
The iterative scheme proceeds as follow. Starting from a guess for the Weiss field G0, one
can solve the impurity problem evaluating the single-particle impurity Green’s function:

Gimp(τ − τ ′) = −⟨Tτc(τ)c†(τ ′)⟩Seff
(B.22)

The impurity self-energy Σ(iω) can then be obtained, possibly using an impurity Dyson
equation of the form Σ(iω) = G−1

0 (iω) − G−1
imp(iω). The impurity self-energy is used to

approximate the local part of the lattice self-energy. In terms of such self-energy function
we can construct the local interacting Green’s function of the lattice model as:

G(iωn) =
∑
k

1

iωn + µ− ϵ(k)− Σ(k, iωn)
(B.23)

The quantities Σ andG are finally used as an input to the self-consistency condition (B.20b)
to generate a new Weiss field G0. This procedure is repeated until convergence is reached.

Figure B.2: Iteration-substitution algorithm used to solve the dynamical mean-field equa-
tions. Starting from an initial guess for G0, one can solve the associated local impurity
problem (top arrow) by using a suitable method. This permits the evaluation of a local
Green’s function G. The update of the Weiss field is then performed by using the self-
consistency condition (bottom arrow). This procedure is iterated until the convergence is
attained.

B.3 Mapping on the Anderson impurity model

As we have shown in previous section, the effective action (B.12) describes the local quan-
tum dynamics of a single site of the lattice, coupled to an effective electronic bath. As a
function of imaginary time, the occupation of the tagged site undergoes quantum fluctua-
tions between the four possible states {|0⟩, | ↑⟩, | ↓⟩, | ↑↓⟩}, by exchanging electrons with
the rest of the lattice (fig. B.3). This process is encoded in the Weiss field G−1

0 (τ − τ ′) in
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terms of a retardation effect. For this reason it is not possible to get an Hamiltonian formu-
lation involving only local operators. Hence, in order to construct an effective Hamiltonian,
we have to reintroduce description of the effective bath via auxiliary degrees of freedom.
We can do this by realizing an effective Anderson impurity model (AIM) [117, 118]:

HAIM =
∑
lσ

ϵlp
†
lσplσ +

∑
lσ

Vl(p
†
lσcoσ + c†oσplσ) + ϵc

∑
σ

c†oσcoσ + U nc↑ nc↓

(
nc↓ −

1

2

)
(B.24)

where one can view (coσ, c
†
oσ) as the creation and annihilation operators of electrons in an

”impurity orbital” with energy ϵc and the bath as a ”conduction band” described by oper-
ators (plσ, p

†
lσ) and with energy ϵl. The impurity orbital is hybridized with each conduction

electrons with an amplitude Vl, and a Coulomb interaction on the impurity site is modeled
by the Hubbard term in U . It is easy to see that the HAIM gives rise to an effective action
of the form of eq. (B.12), with:

G−1
0,And(iωn) = iωn + µ− ϵc −

∫ ∞

−∞
dω

∆(ω)

iωn − ω
(B.25)

and
∆(ω) =

∑
l

V 2
l δ(ω − ϵl) (B.26)

G0 is the non-interacting (U = 0) Green’s function of the Anderson impurity model and
∆(ω) is the retarded hybridization function of the impurity with the bath of conduction
electrons. The latter function can also be approximated with a discrete number of poles,
corresponding to a finite representation of the bath:

∆(iωn) =
∑
l

|Vl|2

iωn − ϵl
(B.27)

Therefore HAIM can be identified as the Hamiltonian representation of Seff provided
the function ∆(ω) (i.e. the parameters Vl and ϵl) satisfies the above condition (B.27).
In particular, the self-consistency condition in terms of the hybridization function can be
found by equating the (B.25) (evaluated with (B.27)) and the Weiss field (B.19):

∆(iωn) = iωn + µ− Σ(iωn)−G−1(iωn) (B.28)

Figure B.3: The DMFT captures the dynamics of electrons on the impurity atom. One
possible evolution of the occupation and how it fluctuates with time is shown.
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Figure B.4: Star geometry used to represent the effective conduction bath in the exact
diagonalization method. Filled circle denotes the impurity site, and open circles are the
sites of the bath.

B.4 Exact Diagonalization

The crucial step in the DMFT iterative solution is the calculation of the impurity Green’s
function and self-energy. To this end, a large number of impurity solvers of the auxiliary
AIM has been developed during the years. Among the variety of numerical methods
available we mention the most used, like iterated perturbation theory (IPT), quantum
Monte Carlo (QMC), exact diagonalization (ED) or the density matrix renormalization
group (DMRG). In this thesis, to obtain the results presented in Chapter 4, we use a
Lanczos based Exact Diagonalization technique. In the following we describe in some
details this algorithm [119].

The ED method is based on an approximation of the effective bath in terms of a finite
number of energy levels, by reducing the number of conduction states in the Anderson
impurity Hamiltonian, in principle infinite, to a manageable value ns, of the order of 5-12

3.
As a consequence the hybridization function that appears in the expression of the Weiss
field (B.25) assumes the discretized form (B.27), with l = 1, . . . , ns.

According to the ”star geometry” form (fig. B.4), the corresponding problem, can be
diagonalized exactly using standard Lanczos-bases algorithms (e.g. Arpack [120]4), which
allows to obtain an accurate description of the low lying part of the spectrum valid for
in the low temperature T ≡ 1

β
regime. Once we have eigenvalues and eigenvectors of the

approximated HAIM have been determined, a second use of the Lanczos technique allows
to obtain the impurity Green’s function G(τ) = Tr [ρTτ (c

+(τ)c(0))]. At zero temperature
the trace reduces to sum contributions from the possibly degenerate ground-states only.

G(iω) = G>(iω) +G<(iω)

= ⟨0|c(iω − (H − E0))
−1c+|0⟩+ ⟨0|c+(iω + (H − E0))

−1c|0⟩
(B.29)

The second Lanczos procedure starts either from the vector c+|0⟩ or the c|0⟩ one in order
to obtain the two contributions to the sum in eq. (B.29). In both cases this method

3This boundary is due to the exponential growth of the Hilbert space dimension with the number of
sites.

4ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted
Arnoldi Method (IRAM).
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enables to construct an approximate Krylov basis in which the Hamiltonian is tri-diagonal
and its the inverse is readily available. Diagonalizing the resolvant we obtain an accurate
approximation of the Kallen-Lehman sum. Repeating the same procedure for any states
|n⟩, n = 0, 1, ... in the low part of the spectrum we obtain:

G<,>(iωn) =
1

Z

∑
n

e−βEn
∑
m

|⟨m|c†σ|n⟩|2

iωn ± (Em − En)
(B.30)

where Z =
∑

n e
−βEn is the partition function.

Through the self-consistency condition we find a new Weiss field. In order to proceed
with the iterative scheme, we have to map the Weiss field into the discrete functional
subspace where our ED solver can act. This is realized by a fitting procedure, which
amounts to minimize a functional distance between the computed local Green’s function
and the finite size parametrization of the cavity Green’s function as a function of the
discrete set of Anderson parameters {Vl, ϵl}:

χ2 =
nmax∑
n=0

|G−1
0 (iωn)− G−1

0,ns
(iωn)|2 (B.31)

The procedure is iterated until convergence.





Appendix C

Supplementary Material Chapter 4

C.1 Hubbard-Stratonovich Decoupling

Here, we explicitly present the calculations which lead us from Eq. (4.8) to the expression
for the free energy functional of Eq. (4.11) in Section 4.1.1.

The quantity sgn(ga) appearing in the (4.7) is +1 for a = S,R and −1 for a = N , while
for a = T it depends on the sign assumed by the coupling of the channel T̂ 2

z . The reason
we have introduced it is because the transformation (4.6) can be extended to repulsive
couplings (as for the N̂2 term) by considering the square of the complex operator iΛ̂.
However, since we prefer to deal with real quantities, relabelling i∆Ni(τ) → ∆Ni(τ), we end
up with a negative sign. This clarifies why, despite seeming unusual, we adopted a negative
value for the coupling of the charge term when we rewrote the interaction as in Eq. (2.5),
i.e. gN = −(3U−5J). Moving forward, to simplify the notation, we will properly substitute
sgn(ga)
|ga| = 1

ga
, acknowledging that the couplings may have an indeterminate sign. This also

explains why the applicability of the derivation we provide extends to both scenarios,
J > U/5 and J < U/5, when considering the orbital polarization channel. However, we
deemed it essential to execute the Hubbard-Stratonovich transformation through rigorous
mathematical procedures rather than presuming our notation from the outset.

As previously mentioned, the strength of the HS decoupling lies in its ability to render
the many-body problem effectively manageable. Since the exponential in ZE[∆] (4.8)
is a quadratic function of fermion fields, the integral is Gaussian and can be evaluated
in closed form. To carry out the integral, it is convenient to move to the momentum
representation, where the kinetic part of the Hamiltonian is diagonal. Exploiting the
relation ψi =

1√
N

∑
k ψke

ik·xi in Eq. (4.9), we have

V̂ = −
∑
i

ψ̄i [∆i(τ) · Γ]ψi = −
∑
kq

ψ̄k [∆q(τ) · Γ]ψk−q =
∑
kq

ψ̄kVq(τ)ψk−q (C.1)

where ∆q(τ) =
1
N
∑

i ∆i(τ)e
−iq·xi (q = k − k′) is the Fourier transform of the field and

Vq(τ) = −∆q(τ) · Γ.
The integration over D[ψ, ψ̄] gives [48]

ZE [∆] =

∫
D[ψ, ψ̄] exp

−∫ β

0
dτ
∑
kq

ψ̄k(∂τ − µ+HE(k,q))ψk−q

 = det[∂τ − µ+HE(k,q)]

(C.2)
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where we have defined the effective Hamiltonian

HE(k,q) = H0(k)δk,k−q + Vq(τ) (C.3)

Hence, substituting the result in Eq. (C.2) in Eq. (4.7) we have

Z = e−βF =

∫
D∆ e−βNF [∆]

=

∫
D∆ exp

(
−N

∑
aq

∫ β

0

dτ
∆2

aq(τ)

2ga

)
det[∂τ − µ+HE(k,q)]

(C.4)

from which one can readily deduce the free energy functional (per-particle) as

F [∆] =
1

β

∑
aq

∫ β

0

dτ
∆2

aq(τ)

2ga
− 1

βN
ln det[∂τ − µ+HE(k,q)]. (C.5)

To facilitate the expansion using Feynman diagrams, we express the Weiss field in terms
of its Matsubara Fourier modes

∆q(iνm) =
1

β

∫ β

0

dτ ∆q(τ)e
iνmτ . (C.6)

and we obtain the expression

F [∆] =
∑
aqm

|∆aq(iνm)|2

2ga
− 1

βN
Tr ln[−iωn − µ+HE(k,q)] (C.7)

where we have replaced ∂τ → −iωn in the fermionic determinant of (C.2) and used the
property ln detA = Tr lnA. For sake of clarity, here Tr means a trace over momentum,
frequency, orbital and spin.

We arrive to the final expression for the free energy functional by identifying in the
argument of the logarithm the interacting one-body Green’s function

Gkq(∆) = (iωn + µ−H0(k)δk,k−q − Vq)
−1 (C.8)

with the effective time-dependent external potential Vq = −∆q(iνm) · Γ. It reads

F [∆] =
∑
aq

|∆a
q |2

2ga
− 1

βN
Tr ln[−G−1

kq (∆)] (C.9)

were we made the substitution ∆aq(iνm) → ∆a
q , with q = (q, iνm) indicating the quadrivec-

tor.

C.2 Coherent Potential Approximation

In order to calculate Σk we start considering the Green’s function in the static approxima-
tion

Gk(V ) = (iωn + µ−H0(k)− V )−1 (C.10)
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as in Eq. (4.24) with V = −∆̄TΓT and ∆̄T ̸= ∆̄T
MF . We find that (4.38) and (C.10) are

related by the expression
G = (1− Ḡ(V − Σ))−1Ḡ (C.11)

from which we deduce the scattering matrix

T = (V − Σ)(1− Ḡ(V − Σ))−1. (C.12)

Next, we develop the second order perturbation theory. Introducing δV = V − V̄ and
δΣ = Σ− V̄ , and requiring that the average of eq.(C.12) vanishes we arrive to

⟨(δV − δΣ)(1− Ḡ(δV − δΣ))−1⟩ = 0. (C.13)

Then taking into account 1 = ⟨(1− Ḡ(V − Σ))−1⟩ that comes from (C.11), we obtain

δΣ = ⟨δV (1− Ḡ(δV − δΣ))−1⟩. (C.14)

from which expanding the geometric series we come to

δΣ = ⟨δV (1 + Ḡ(δV − δΣ) + . . . )⟩. (C.15)

Since all the linear terms in δV vanish, we obtain the first dynamical correction to the
static Hartree self energy as

δΣ = ⟨δV ḠδV ⟩. (C.16)

C.3 Susceptibilities

From the equation (4.36), computed with the substitution in Eq. (4.41), we obtain

χ(q) =


χNN(q) χNT (q) 0 −χST (q)
χNT (q) χTT (q) χST (q) 0

0 −χ0
ST (q) χ0

NN(q) χNT (q)
χST (q) 0 χNT (q) χTT (q)

 (C.17)

with

χNN(q) = − 1

βN
∑
k

−ω′
nω

′
n+m +MkMk+q + λ2(sin(kx) sin(ky + qy) + sin(ky) sin(kx + qx))

(ω′2
n + E2

k)(ω
′2
n+m + E2

k+q)

(C.18)

χTT (q) = − 1

βN
∑
k

−ω′
nω

′
n+m +MkMk+q − λ2(sin(kx) sin(ky + qy) + sin(ky) sin(kx + qx))

(ω′2
n + E2

k)(ω
′2
n+m + E2

k+q)

(C.19)

χNT (q) = − i

βN
∑
k

ω′
nMk+q + ω′

n+mMk

(ω′2
n + E2

k)(ω
′2
n+m + E2

k+q)

(C.20)

χST (q) = − i

βN
∑
k

λ2(sin(kx) sin(ky + qy)− sin(ky) sin(kx + qx))

(ω′2
n + E2

k)(ω
′2
n+m + E2

k+q)

(C.21)
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where: ω′
n = ωn − ℑΣ(ωn), Mk = M + ϵk − ∆̄t

2
+ ℜδΣ(ωn) and E

2
k = M2

k + λ2(sin2(kx) +
sin2(ky)).

In particular we can prove by performing the change of variable k → −k − q in the
second addend of (C.20) and (C.21), that χNT (q) and χST (q) are zero, so that the bare
susceptibilities matrix assumes the easy diagonal form {χNN(q), χTT (q), χNN(q), χTT (q)}.
This allow us to deduce immediately from the Gaussian distribution the fluctuations of the
bosonic fields

⟨δ∆a
qδ∆

a
−q⟩ =

1

βN
1

g−1
a − χaa(q)

(C.22)

to calculate the self energy corrections.



Appendix D

Coleman-Weinberg mechanism

The purpose of this appendix is to provide an overview of the Coleman-Weinberg mecha-
nism and its link to phase transitions. This is not intended to be an exhaustive overview
of the topic, but rather a concise exposition of the aspects relevant for the thesis. A deeper
discussion about the connection with the renormalization group theory is beyond the scope
of this appendix.
In the first section, we are going to describe the basic assumptions that Coleman and
Weinberg postulated in their seminal work. We are going to go through and comment on
how to derive the main result.
The second section focuses on the application of the Coleman-Weinberg (CW) mechanism
in condensed matter. Starting from the most well-known example, i.e. the superconduct-
ing transition in an external electromagnetic field, the equivalence to a CW mechanism
is outlined. As we shall see, there is an evident parallel to be drawn with the role of
fluctuations in Quantum Critical Points (QCPs). Finally, a link between one of the main
results in the thesis, namely the discontinuous topological phase transition, and the CW
mechanisms is outlined.

D.1 Introduction

Coleman-Weinberg mechanism explains the spontaneous symmetry breaking (SSB) of the-
ories as a result of radiative quantum corrections [121]. It is a mass-generation mechanism,
other than the Higgs phenomenon, that predicts spontaneous symmetry breaking without
the need of a massive exchange boson. In fact, it is possible to show that higher-order
corrections involving virtual particles are a driving mechanism comparable to a negative
mass term in the Lagrangian, proving the existence of spontaneous symmetry breaking,
similar but not identical to the Higgs mechanism.

An analytical description of this process relies on the use of an effective action [122].
We start from the quantum field theory of a scalar field φ with Lagrangian density L and
the addition of an external source J(x)

L(φ, ∂µφ) −→ E[J ] = L(φ, ∂µφ) + J(x)φ(x). (D.1)

In perfect analogy with the case of statistical mechanics, the functional E[J ] plays the role
of the Helmholtz free energy, meaning that [122]

Z[J ] := e−iE[J ] =

∫
Dφ exp

{
i

∫
d4x [L(φ, ∂µφ) + J(x)φ(x)]

}
(D.2)
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is the partition function of the theory and E[J ] is the vacuum energy. Continuing this
analogy, the functional derivative of E[J ] with respect to J

δ

δJ(x)
E[J ] = i

δ

δJ(x)
logZ[J ] =

∫
Dφ exp

{
i
∫
[L+ Jφ]

}
φ∫

Dφ exp
{
i
∫
[L+ Jφ]

} = −⟨Ω|φ|Ω⟩J , (D.3)

is the vacuum expectation value in the presence of a source J(x) and |Ω⟩ being the vacuum
state of the theory. This expectation value can be considered as the conjugate variable to
J(x) [122]

φcl(x) := ⟨Ω|φ|Ω⟩J . (D.4)

We are now ready to perform a Legendre transform of E[J ] to define

Γ[φcl] := −E[J ]−
∫
d4yJ(y)φcl(y), (D.5)

called the effective action. Expanding this quantity in power of ∂µφcl, around the point
where this quantities are zero, we get [121]

Γ =

∫
d4x

[
Veff(φcl) +

1

2
(∂µφcl)

2 + ...

]
. (D.6)

The function Veff is the effective potential. It is called ”effective” because it includes all
terms coming from all connected irreducible Feynman diagrams. It is a standard potential
dressed with all possible radiative corrections. Therefore, Veff reduces to the usual potential
term V in L if the diagrams with closed loops are neglected. V is also termed the tree
level potential [121].

The derivative of the effective potential establishes masses and coupling constants of
the radiative-corrected theory in analogy with the standard definitions from classical field
theory.

In their original paper, the authors wanted, among other things, to clarify the stability
of the spectrum of the massless scalar electrodynamics [121]. The renormalizable theory
for the complex charged scalar field (φ1, φ2) interacting with photons has the following
lagrangian density

L = −1

4
(Fµν)

2+
1

2
(∂µφ1−eAµφ2)

2+
1

2
(∂µφ2−eAµφ1)

2− 1

2
µ2(φ2

1+φ
2
2)−

λ

4!
(φ2

1+φ
2
2)

2, (D.7)

and for µ2 > 0, this is a ”normal field theory”, meaning that its spectrum is known: massive
particle and anti-particle and massless photon. At that time, the spontaneous symmetry
breakdown when µ2 < 0 was also an established result due to Higgs.

Coleman and Weinberg demonstrated that also the case with µ2 = 0 belongs to the
latter case. Indeed, in both cases we are left to deal with massive fields for both matter
and interaction.

They found that the effective potential at first order (one-loop contributions) is [121]

Veff =
µ2

2
φ2 − µ2

4⟨φ⟩2
φ4 +

3e4

64π2
φ4

[
log

(
φ2

⟨φ⟩2

)
− 1

2

]
, (D.8)

where ⟨φ⟩ is the minimum of the potential. It is important to stress that even in the case
µ2 = 0, the effective potential returns a minimum value that is non-zero. This implies that
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the scalar field can be shifted, acquiring a mass that spontaneously breaks the symmetry
of the system.

So far, we have considered a perturbative expansion. In more recent years, it has been
demonstrated that the mechanism is valid non-perturbatively and it is not restricted to
small values of the coupling constants [123]. We have decide to present the perturbative
version only, because of the similarities with our approach.

D.2 Applications in condensed matter theory

Discoveries of new phases of matter have been accompanied by an increasingly complex
interplay of quantum field theory, topology, and symmetry, highlighting the necessity of
employing methods beyond a mean-field approach. The CWmechanism is one such method
[124]. In particular, broken or unbroken symmetries can often be naively interpreted by
limiting the calculations at the leading order, giving qualitatively wrong results or contra-
dicting predictions.

Coleman-Weinberg phenomenon was recognized to play a significant role in supercon-
ductivity (SC) [125, 126]. Superconductivity theory always offered a fertile playground
to explore coupling and degeneracies in continuous symmetric quantum system. This was
the case also for spontaneous symmetry breaking. It is therefore not surprising to find an
analogy with the CW mechanism.

A superconductor at T = 0 coupled to the electromagnetic field has exactly the same
lagrangian density as in Eq. (D.7) and, as a consequence, the same effective potential
(D.8). The only significant difference is that the charge e can be substitute by a generic
charge q [125, 126]. This establishes the existence of a critical mass

µ2
c =

3q4

32π2
⟨φ⟩2 (D.9)

and the corresponding conversion from a continuous transition to a first-order transition
for a superconducting state with broken symmetry. It is evident that the electromagnetic
field contributions are interfering with the thermal nature of the phase transition, acting
as an additional source of fluctuations for the system [125, 126].

The lists of examples does not stops with the superconducting transition. More gen-
erally, every interacting system that displays a QCP can be a good candidate to explore
radiative-induced spontaneous symmetry breakdown [125, 126]. Indeed, in the vicinity of a
QCP, short- and long-range interactions compete, resulting in a superposition of different
type of fluctuations [125, 126], the SC case been a striking instance of this phenomenon.
Hence, the CW mechanism is responsible for changing the nature of a phase transition from
continuous to first-order, this change being a byproduct of the radiative corrections that
drive the spontaneous symmetry breaking. A rough argument to visualize this modification
of the QCP is the following: the coherence length ξ that characterizes the second-order
transition is reduced by fluctuations whose characteristic length is smaller than ξ. The
long-range order is therefore disrupted, leading to the discontinuity.
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