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Abstract
Building upon the recent works of Bertola; Fasondini, Olver and Xu, we define a class
of orthogonal polynomials on elliptic curves and establish a corresponding Riemann–
Hilbert framework. We then focus on the special case, defined by a constant weight
function, and use the Riemann–Hilbert problem to derive recurrence relations and
differential equations for the orthogonal polynomials. We further show that the sub-
class of even polynomials is associated to the elliptic form of Painlevé VI, with the
tau function given by the Hankel determinant of even moments, up to a scaling factor.
The first iteration of these even polynomials relates to the special case of Painlevé VI
studied by Hitchin in relation to self-dual Einstein metrics.
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1 Introduction

Orthogonal polynomials constitute a fundamental class of special functions with
important applications to a wide array of topics, from combinatorics to signal pro-
cessing. Particularly, they provide useful tools to understand universality of random
matrix ensembles [12] and large N limits of matrix models [14], and describe special
solutions to integrable systems such as Painlevé equations [38].

Traditionally, orthogonal polynomials define a basis of real polynomials, orthogonal
with respect to an inner product defined by integrating against a weight function on a
subset of the real line. For example, Hermite polynomials are orthogonal with respect
to the weight e−x2 on the real line. Moreover, it is known that generalisations of
classical Chebyshev and Jacobi polynomials can be described by elliptic functions,
see for instance [1, 9, 21, 30, 39]. Some other notable papers studying orthogonal
polynomials in many variables on algebraic curves are [23, 24, 32–34].

In the past couple of years there were notable breakthroughs in defining orthogonal
polynomials directly on elliptic curves, with modern techniques facilitating a system-
atic analysis of their properties [5–7, 15, 16]. Inspired by these works, we consider
sequences of meromorphic functions with increasing degrees, which can be written as
polynomials in the Weierstrass ℘-function and its derivative, that are orthogonal with
respect to a given weight function along a real curve, and call them elliptic orthogonal
polynomials (EOPs) due to their proximity in construction of those introduced by
Heine [19] and Rees [30].

In this paper, we establish a general framework to analyse such polynomials using
their moments and the Riemann–Hilbert method. Consequently, we derive the linear
difference and differential equations satisfied by the solutions of the Riemann–Hilbert
problem associated to our elliptic polynomials. To our knowledge, such a structure
was previously unknown in the literature. Furthermore, when the weight is constant,
we show that the even EOPs, indexed by k, are related to the elliptic form of Painlevé
VI. For k = 1, the parameters of the elliptic Painlevé VI equation are

( 1
8 ,

1
8 ,− 1

8 ,
3
8

)
,

for which the general solution is known to be described by elliptic functions [20, 28].
The notion of EOPs we use in this paper is as follows: let τ be an element of the

upper half-planeH and π(z) be an elliptic function with periods 1 and τ . We call π(z)
an elliptic polynomial if all of its poles are located on the lattice Z+ Z · τ . Its degree
is n if the pole at z = 0 is of order n, and we call it monic if, for n ≥ 0,

π(z) = z−n(1 + O(z)), as z → 0.

123



Constructive Approximation

Note, in particular, that there exists no elliptic polynomial of degree one. We con-
sider sequences of elliptic polynomials (πn)n≥0,n �=1, with πn monic of degree n for
n ∈ N�=1, which satisfy an orthogonality condition of the form

∫ τ
2+1

τ
2

πm(z)πn(z)w(z)dz = δmnhn, (1.1)

for some hn ∈ C, where δmn is the Kronecker delta function andw(z) is an L1 function
on the interval γ := [ τ

2 , τ
2 + 1], called the weight function, for all m, n ∈ N�=1. In this

case, we call (πn)n≥0,n �=1 a sequence of elliptic orthogonal polynomials (EOPs). The
choice of support γ is motivated by the fact that, if we consider it as a subset of the
torus

T := C/(Z + Z · τ),

see Fig. 1, then it is invariant under negation and complex conjugation on the torus
and does not contain [0] ∈ T.

We note that our notion of elliptic orthogonal polynomials is disjoint from [5–7],
since in these papers the elliptic polynomials have an additional simple pole away
from z = 0, whose location is not fixed.

The following analogy between elliptic polynomials and traditional complex poly-
nomials can be made. A complex polynomial can be characterised as a meromorphic
function onCP1, with at most one pole, at ∞. Analogously, an elliptic polynomial, as
defined above, can be characterised as a meromorphic function on the torus T, with at
most one pole, at [0] ∈ T.

A useful basis for elliptic polynomials can be constructed in terms of theWeierstrass
℘-function and its z-derivative,

B = {En}n≥0,n �=1, E2k = ℘(z)k, E2k+3 = − 1
2℘

′(z)℘ (z)k, k ≥ 0, (1.2)

chosen such that En is monic of degree n, for n ∈ N�=1. Recall the isomorphism

x = ℘(z), y = ℘′(z), (1.3)

from T to the cubic curve

y2 = 4x3 − g2x − g3,

where g2,3 are the elliptic invariants. Under this map, the EOP πn becomes a bivariate
polynomial in {x, y} of weighted degree n, where

deg(x) = 2, deg(y) = 3.

Under this identification, our definition of elliptic polynomials then coincides with
that used in [15], and the transformation (1.3) results in an equivalent definition of the
bases of elliptic polynomials to that given in (1.2).
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Fig. 1 The orthogonality interval
in the fundamental domain T

When w(z) is even in z around the midpoint of the contour γ , that is,

w( 12 (1 + τ) + z) = w( 12 (1 + τ) − z) z ∈ [0, 1], (1.4)

the monic elliptic-polynomials naturally split into even and odd polynomials:

π2k(z, τ ) =
k∑

i=0

âi,2k(τ )℘ (z)k−i , â0,2k = 1,

π2k+3(z, τ ) = −
k∑

i=0

âi,2k+3(τ )℘ (z)′℘(z)k−i/2, â0,2k+3 = 1,

where,

π2k(−z) = π2k(z), π2k+3(−z) = −π2k+3(z).

Henceforth, we refer to π2k and π2k+3 as the respective even and odd EOPs. Note
that π2k(z) is purely a function of x = ℘(z) according to (1.2), and such polynomials
are similar in nature to the Akheizer polynomials in [22], and generalised Jacobi
polynomials studied in the literature by [9, 19, 21, 30] among others.

In this paper, we show how the EOPs, for any choice of weight function, can be
written in terms of determinants of moments and characterised as the (1, 1) entry of
the unique solution of a corresponding 2 × 2 Riemann–Hilbert problem (RHP).

The connection between orthogonal polynomials and the RHP was established in
the 1990s byFokas, Its, andKitaev [17]. Since then it has been instrumental in a number
of settings to prove a variety of results for different classes of orthogonal polynomials
[11, 26, 29], most often finding application in determining the asymptotics of different
classes of orthogonal polynomials, and universality of random matrix ensembles.
RHPs were also used in [5] to determine large degree asymptotic behaviours within
an analytically distinct class of orthogonal polynomials on elliptic curves, allowing
for an additional pole in the basis.

A family of orthogonal polynomials corresponding to a given weight function are
completely determined by the moments of the weight function [35]. Such a represen-
tation plays an important role in several aspects of orthogonal polynomials, as well as
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their applications in areas such as combinatorics and probability theory, see the sur-
vey articles [10, 27] for example. Specifically, the Hankel determinants of moments
were exploited to study the partition functions of ensembles of random matrices and
to study the corresponding tau-functions or, equivalently, the solutions of integrable
equations. See Forrester and Witte [18] for this approach in the case of Painlevé VI
and Bertola [4] for other classes of isomonodromic systems. In the present case, the
relevant moments and the determinant are defined as

μi, j :=
∫

γ

Ei (z)E j (z)w(z)dz, Dn := det(μi, j )
n−1
i, j=0.

As is the case for classical orthogonal polynomials [17], the aforementioned RHP
for EOPs is uniquely solvable if and only if the determinant Dn �= 0. Furthermore,
the moment matrix is a block matrix consisting of a checkerboard pattern of odd and
even moments. Consequently its determinant factorises into two Hankel determinants,
consisting of even and odd moments respectively, both of which define Painlevé tau-
functions. A similar result connecting Hankel determinants constructed out of certain
elliptic functions and the tau-function of Painlevé VI was obtained by [3] from the
study of generalized Jacobi polynomials.

1.1 Outlook

We list a few possible future directions following the results presented here:

(1) with the construction in Sect. 2, one can systematically increase the complexity
of the weight function. For example,
a weight function that is algebraic in ℘(z), which may lead to solutions of other
integrable equations,

(2) the large degree asymptotics of EOPs can be studied using the RHPs described
here.

(3) Hankel determinants are related to partition functions of randommatrix ensembles.
It would be interesting to see the elliptic extensions of such relations.

(4) Another natural question would be the extension of the Riemann–Hilbert setup
developed here to study orthogonal polynomials on higher genus surfaces [15].

1.2 Outline

In Sect. 2 we begin by describing the general and even polynomials in terms of the
determinants of their moments, and the construct the solutions Yn and Y2k of the
Riemann–Hilbert problems associated to each class of polynomials respectively. The-
orem 2.1 proves the existence and uniqueness of the solution of the general RHP. For
the remainder of the paper we set the weight w(z) ≡ 1.

In Sect. 3, we obtain differential and discrete linear systems satisfied by the solution
of the general RHPYn in Propositions 3.1 and 3.2 respectively. In Theorems 3.1 and 3.2
we derive recurrence relations for the polynomials πn and the coefficients.
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In Sect. 4, Theorem 4.1 shows that the linear problems satisfied by the solution of
the even RHP Y2k describe the Lax pair of the elliptic form of Painlevé VI. For k = 1,
the monodromy exponents assume a special form which is related to the Hitchin case
of Painlevé VI as shown in Proposition 4.3.

In Sect. 5, we derive explicit solutions of Painlevé VI built out of Hankel determi-
nants of even moments, see Theorem 5.1. Furthermore, we show that these Hankel
determinants are the corresponding Painlevé VI tau-functions, in Theorem 5.2.

2 Riemann–Hilbert Problems andMoments

In this section, we begin by detailing the representation of the general and even EOPs
in terms of determinants of moments. We then show that the consecutive EOPs, and
their suitable Cauchy transforms, form a unique solution to a corresponding Riemann–
Hilbert problem (RHP). We relate the existence and uniqueness of the polynomials to
the unique solvability of the RHP and find explicit expressions for the determinants
of the solutions. This will in turn allow us to derive differential and difference linear
systems satisfied by the polynomials for the case w(z) ≡ 1.

2.1 Moments in the General Case

We start by assuming τ ∈ iR, so that the Weierstrass ℘-function is real on γ , i.e
the basis B of elliptic polynomials consists of real functions on γ . If, in addition, the
weight function w(z) is strictly positive, then

〈 f , g〉 =
∫

γ

f (z)g(z)w(z)dz

defines an inner product on the space of real elliptic polynomials and theGram-Schmidt
process shows that the corresponding EOPs exist and are unique, with πn given by

πn(z) = D−1
n

∣
∣∣∣∣∣∣
∣∣∣∣∣∣

μ0,0 μ0,2 μ0,3 . . . μ0,n
μ2,0 μ2,2 μ2,3 . . . μ2,n
μ3,0 μ3,2 μ3,3 . . . μ3,n

...
...

...
. . .

...

μn−1,0 μn−1,1 μn−1,2 . . . μn−1,n
E0(z) E2(z) E3(z) · · · En(z)

∣
∣∣∣∣∣∣
∣∣∣∣∣∣

,

where

μi, j =
∫

γ

Ei (z)E j (z)w(z)dz (i, j ∈ N�=1), (2.1)
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Fig. 2 Graph displaying function values of the even EOPs π0, π2, π4 and π6, on the interval 1
2 τ + [0, 1],

in red, blue, green and purple respectively, with τ = i (Color figure online)

and

Dn = |Sn|, Sn :=

⎛

⎜⎜⎜
⎜⎜
⎝

μ0,0 μ0,2 μ0,3 . . . μ0,n−1
μ2,0 μ2,2 μ2,3 . . . μ2,n−1
μ3,0 μ3,2 μ3,3 . . . μ3,n−1

...
...

...
. . .

...

μn−1,0 μn−1,1 μn−1,2 . . . μn−1,n−1

⎞

⎟⎟⎟
⎟⎟
⎠

. (2.2)

See Appendix C for an illustration. The following identity then follows from the above
equation,

hn :=
∫ 1

2 τ+1

1
2 τ+0

πn(z)2w(z)dz =
∫ 1

2 τ+1

1
2 τ+0

Enπn(z)w(z)dz = Dn+1

Dn
.

For τ /∈ iR, or w(z) is not strictly positive, the polynomial πn(z) exists and is unique
if and only if the determinant Dn is nonzero. Similarly, we will find that the associated
RHP has a unique solution if and only if Dn �= 0.

In Figs. 2, 3 and 4, the first couple of EOP’s are plotted on γ , with τ = i and
w(z) ≡ 1.

2.2 Riemann–Hilbert Problem for the General Case

The first step in defining the RHP is to define the Cauchy transform on γ ,

C( f )(z) :=
∫

γ

f (w)C(w, z)
dw

2π i
( f ∈ L1(γ )).

Generally, the Cauchy kernel C(w, z)dw is a meromorphic function in z and a one
form in w, with residues ±1 at its poles, i.e it is an Abelian differential of the third
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Fig. 3 Graph displaying function values of the odd EOPs π3, π5, π7 and π9, on the interval 1
2 τ + [0, 1],

in red, blue, green and purple respectively, with τ = i (Color figure online)

Fig. 4 Graph displaying function values of the EOPs π3, π4, π5 and π6, on the interval
1
2 τ + [0, 1], in red,

blue, green and purple respectively, with τ = i (Color figure online)

kind. The precise form of such a kernel on a torus is not unique and several examples
can be found in the literature [5, 8, 13, 31]. For the present case, we consider the scalar
kernel

C(w, z) = ζ(w − z) − ζ(w),

where ζ(.) denotes the Weierstrass ζ -function (see Appendix A). This Cauchy kernel
has the following properties.

(1) The periodicity of ζ -function, see Eq. (6.1), implies that

C(w, z + 1) = C(w, z) − η1(τ ), C(w, z + τ) = C(w, z) − η2(τ ). (2.3)

(2) The kernel C(w, z) has poles at w = z, w = 0 with residues ±1 respectively,
(3) In the limit w → z,

C(w, z) = 1

w − z
+ O(w − z), (2.4)
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(4) and in the limit z → 0,

C(w, z) =
∞∑

k=1

(−1)k zk

k! ζ
(k)(w), (2.5)

where ζ (k)(·) denotes the kth derivative of ζ .

In particular, as a consequence of Eq. (2.4) we have the following variant of the
Plemelj–Sokhotski formula. For f ∈ L1(γ ), the Cauchy transform C( f )(z) has
boundary values

C( f )±(w) := lim
ε↓0 C( f )(w ± ε) (w ∈ γ ),

which are L1(γ ) functions, related by the jump condition

C( f )+(w) = C( f )−(w) + f (w), (w ∈ γ ). (2.6)

Regarding the Cauchy transforms of the EOPs, we have the following lemma.

Lemma 2.1 For n ≥ 2, the Cauchy transform of πn is a doubly periodic function,
analytic away from γ , with continous boundary values that satisfy

C(πnw)+(z) = C(πnw)−(z) + πn(z)w(z), (z ∈ γ ).

Proof It is immediate from the definition, that C(πn)(z) is analytic away from γ . From
the relations (2.3), we see that

C(πnw)(z + 1) = C(πnw)(z) −
∫

γ

η1(τ )πn(w)w(w)
dw

2π i
,

and due to orthogonality (1.1), the second term vanishes for n �= 0. Similarly we see
that C(πnw)(z + τ) = C(πnw)(z).

The jump condition follows from (2.6), which finishes the proof of the lemma. �

Lemma 2.2 In the asymptotic limit z → 0, the polynomials have an asymptotic
expansion of the form

πn(z) =
∞∑

j=0

c j,n(τ )

zn− j
, c0,n = 1, (2.7)

and, similarly, their Cauchy transform have an asymptotic expansion of the form,1

C(πnw)(z) = hn(τ )

2π i

∞∑

j=0

c̃ j,n(τ )zn+ j−1, c̃0,n = 1, c̃1,n = −c1,n+1. (2.8)

1 all the coefficients are τ -dependent unless stated otherwise. We often omit the τ -dependence of the
coefficients for ease of notation.
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Proof Using the Taylor expansion around z = 0 of the Cauchy kernel in Eq. (2.5),
which holds uniformly in w ∈ γ , we obtain the following asymptotic expansion as
z → 0,

C(πnw)(z) = 1

2π i

∫

γ

∞∑

k=1

(−1)k zk

k! ζ
(k)(w)πn(w)w(w)

dw

2π i

= 1

2π i

∞∑

k=1

(−1)k zk

k!
∫

γ

ζ (k)(w)πn(w)w(w)
dw

2π i

= 1

2π i

∞∑

k=n−1

(−1)k zk

k!
∫

γ

ζ (k)(w)πn(w)w(w)
dw

2π i

= hn(τ )

2π i

∞∑

j=0

c̃ j,n(τ )zn+ j−1,

where, in the third equality we used orthogonality and the fact that ζ (k)(w) is an elliptic
polynomial of degree k + 1, for k ≥ 1. The coefficients c̃ j,n are given by

hn(τ )

2π i
c̃ j,n(τ ) = (−1)n−1+ j

(n − 1 + j)!
∫

γ

ζ (n−1+ j)(w)πn(w)w(w)
dw

2π i
,

for j ≥ 0. To compute the leading order coefficients, note that

(−1)n−1+ j

(n − 1 + j)!ζ
(n−1+ j)(w) = w−(n+ j)(1 + O(w2)),

as w → 0, so that

(−1)n−1

(n − 1)!
∫

γ

ζ (n−1)(w)πn(w)w(w)dw =
∫

γ

πn(w)2w(w)dw = hn,

and

(−1)n

n!
∫

γ

ζ (n)(w)πn(w)w(w)dw =
∫

γ

(πn+1(w) − c1,n+1πn(z))πn(w)w(w)dw

= −c1,n+1hn .

Therefore, c̃0,n = 1 and c̃1,n = −c1,n+1 and the lemma follows. �

Remark 2.1 For w(z) ≡ 1, the value of hn specialises and all the odd-indexed
coefficients vanish, that is, c j,n = c̃ j,n = 0 for j ≥ 1 odd.

Let us now define a RHP such that the 11 entry of its solution is the polynomial
πn(z).
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Riemann–Hilbert problem 1 The Riemann–Hilbert Problem comprises of finding a
2 × 2 matrix valued function Yn(z, τ ) with the following properties:

• Yn(z, τ ) is analytic in z ∈ T \ (γ ∪ {0}).
• The following jump condition hold for z ∈ γ :

Yn,+(z, τ ) = Yn,−(z, τ )

(
1 w(z)
0 1

)
,

where, following the standard notation, ± indicate the piece-wise analytic
functions to the left and right side respectively of γ w.r.t its orientation, see Fig. 1.

• In the limit z → 0:

Yn(z, τ ) = (1 + O(z))

(
z−n 0
0 zn−2

)
.

Theorem 2.1 Let n ≥ 3, then RHP 1 is uniquely solvable if and only if the determinant
Dn �= 0, in which case the solution is given by

Yn(z, τ ) =
(

πn(z) C(πnw)(z)
2π i
hn−1

πn−1(z)
2π i
hn−1

C(πn−1w)(z)

)
, (n ≥ 3). (2.9)

Proof To prove the theorem, we analyse the two rows of a solution to the RHP
separately.

We start with the first row, (Y11(z), Y12(z)). The conditions imposed in the RHP
translate to

• Y11(z) and Y12(z) are analytic and doubly periodic on T \ (γ ∪ {0}),
• Y11(z) has no jump across γ while Y12(z) satisfies the condition

(Y12)+(x) = (Y12)−(x) + Y11(x)w(x) (x ∈ γ ).

• asymptotic conditions

Y11(z) = z−n(1 + O(z)), Y12(z) = O(zn−1); z → 0.

We refer to this as the row one RHP.
Assume that we have a solution (Y11(z), Y12(z)). Note that as their is no jump for

Y11(z), Y11(z) is necessarily a monic elliptic polynomial of degree n. We are going to
show that,

Y12(z) = C(Y11w)(z).

To this end, we consider the following function,

r(z) := Y12(z) − C(Y11w)(z) + ζ(z)
∫ τ

2+1

τ
2

Y11(x)w(x)dx,

which we will prove to be identically zero.
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By the Plemelj-Sokhotski formula, Eq. (2.6), r(z) has no jump on γ . Furthermore,
r(z) is a periodic function with respect to 1 and τ , so it must be an elliptic function.
By the asymptotic conditions,

r(z) = z−1
∫ τ

2+1

τ
2

Y11(x)w(x)dx + O(1) (z → 0).

Since r(z) has no poles away from the lattice Z + Z · τ and there exists no elliptic
function of degree one, it follows that r(z) must be a constant and

∫ τ
2+1

τ
2

Y11(x)w(x)dx = 0. (2.10)

But, by the last equality, and the asymptotics of Y11(z) and Y12(z), we now have

r(z) = Y12(z) − C(Y11w)(z) = O(z)

as z → 0. Thus, r(z) ≡ 0 and it follows that

Y12(z) = C(Y11w)(z).

In particular, by the asymptotics of Y12(z),

C(Y11w)(z) = O(zn−1) (z → 0).

In other words, by the expansion of the cauchy kernel around z = 0, see Eq. (2.5),

∫ τ
2+1

τ
2

Y11(z)ζ
(k)(z)w(z)dz = 0

for 1 ≤ k ≤ n − 2, implying that

∫ τ
2+1

τ
2

Y11(z)Em(z)w(z)dz = 0 (2.11)

for 2 ≤ m ≤ n − 1. We have already seen that this equality also holds for m = 0, see
Eq. (2.10).

Now, let us write

Y11(z) = c0E0 + c2E2 + c3E3 + . . . + cn−1En−1 + En .
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Then Eq. (2.11) is equivalent to

Sn

⎛

⎜⎜⎜
⎝

c0
c2
...

cn−1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

−μn,0
−μn,2

...

−μn,n−1

⎞

⎟⎟⎟
⎠

, (2.12)

where Sn is the matrix defined in Eq. (2.2).
All in all, we find that a solution (Y11(z), Y12(z)) to the row one RHP exists and is

unique if and only if Eq. (2.12) has a unique solution, which in turn is true if and only
if Dn �= 0. In particular, in that case, πn(z) exists and

Y11(z) = πn(z), Y12(z) = C(πnw)(z).

The second row of Y is analysed in much the same way. We note that the second
row (Y21(z), Y22(z)) must satisfy

• Y21(z) and Y22(z) are analytic and doubly periodic on T \ (γ ∪ {0}),
• Y21(z) has no jump across γ while Y22(z) satisfies the jump condition

(Y22)+(x) = (Y22)−(x) + Y21(x)w(x) (x ∈ γ ).

• asymptotic conditions

Y21(z) = O(z−(n−1))), Y22(z) = zn−2(1 + O(z)) (z → 0).

We refer to this as the row two RHP.
It follows that Y21(z) is required to be an elliptic polynomial of degree less or equal

to n − 1,

Y22(z) = C(Y21w)(z),

and we find that

∫ τ
2+1

τ
2

Y21(z)Em(z)w(z)dz = δm,n−12π i,

for m = 0, 2, 3, . . . , n − 1. Upon writing

Y21(z) = c0E0 + c2E2 + c3E3 + . . . + cn−1En−1,
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this is equivalent to

Sn

⎛

⎜⎜⎜⎜⎜
⎝

c0
c2
...

cn−2
cn−1

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

0
0
...

0
2π i

⎞

⎟⎟⎟⎟⎟
⎠

, (2.13)

where Sn is the matrix defined in Eq. (2.2).
All in all, we find that a solution (Y21(z), Y22(z)) to row two RHP exists and is

unique if and only if Eq. (2.13) has a unique solution, which in turn is true if and only
if Dn �= 0.

Furthermore, if Dn �= 0, then

2π i

hn−1
πn−1(z) = 2π i

Dn
π̃n−1(z),

is well-defined and necessarily

Y21(z) = 2π i

hn−1
πn−1(z), Y22(z) = 2π i

hn−1
C(πn−1w)(z).

We have now shown that both rows of a solution to the RHP exist and are unique
if and only if Dn �= 0. The theorem follows. �


The asymptotic expansions in Lemma 2.2 now help us obtain the precise form of
the determinant of the solution of the RHP: 1 Yn .

Lemma 2.3 The determinant of the solution takes the form

det Yn(z, τ ) = ℘(z, τ ) + αn(τ ) =: fn(z), (2.14)

where αn(τ ) is given by

αn := c2,n + c̃2,n−1 − βn, βn := hn

hn−1
. (2.15)

Proof Setting w(z) ≡ 1, let us begin by noting that det Yn

(1) is a doubly-periodic function

det Yn(z + τ) = det Yn(z + 1) = det Yn(z), (2.16)

(2) and has no jump on γ ,

det Yn,+ = det Yn,−. (2.17)
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With the asymptotic behaviour of πn(z) (2.7), and C(πn)(z) (2.8) in the determinant
of Yn (2.9), we see that in the limit z → 0

det Yn(z, τ ) = 1

z2
+ c2,n + c̃2,n−1 − hn

hn−1
+ O(z2).

Since det Yn is an elliptic function due to properties (2.16)–(2.17), it only has one
pole, which is of order 2 at z = 0, and therefore must be equal to the Weierstrass
℘(z)-function plus a constant αn defined in (2.9), (2.15). �


Let us now restrict to even polynomials and repeat the methods presented above.

2.3 Hankel Determinants and the Even Case

Consider the vector space of even elliptic polynomials,

Peven = Peven(τ ) = {even elliptic functions with only a pole at 0},

with corresponding basis

{1, ℘ (z), ℘ (z)2, ℘ (z)3, . . .}.

Let w be an even weight function on the interval 1
2τ + [0, 1], that is,

w( 12 + 1
2τ + x) = w( 12 + 1

2τ − x), x ∈ 1
2τ + [0, 1].

For any natural number k ∈ N, we define the kth orthogonal polynomial π2k(z) with
respect to w, if it exists, by the conditions

∫ 1
2 τ+1

1
2 τ+0

℘(z)mπ2k(z)w(z)dz = 0, (0 ≤ m < 2k),

π2k(z) = ℘(z)k(1 + O(℘ (z)−1)) (z → 0).

For i + j = k ∈ N,

ν2i,2 j ≡ ν2(i+ j) = ν2k :=
∫ 1

2 τ+1

1
2 τ+0

℘(z)kw(z)dz. (2.18)

Then, π2k(z) exists if and only if the Hankel determinant of moments


2k :=

∣∣∣∣∣
∣∣∣∣

ν0 ν2 . . . ν2k−2
ν2 ν4 . . . ν2k
...

...
. . .

...

ν2k−2 ν2k . . . ν4k−4

∣∣∣∣∣
∣∣∣∣

, (2.19)
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is nonzero, with 
0 = 1. In turn, π2k is explicitly given by

π2k(z) = 1


2k

∣∣∣∣∣
∣∣∣∣∣
∣

ν0 ν2 . . . ν2k

ν2 ν4 . . . ν2k+2
...

...
. . .

...

ν2k−2 ν2k . . . ν4k−2

1 ℘(z) . . . ℘ (z)k

∣∣∣∣∣
∣∣∣∣∣
∣

,

further implying that

h2k :=
∫ 1

2 τ+1

1
2 τ+0

π2k(z)
2w(z)dz =

∫ 1
2 τ+1

1
2 τ+0

℘(z)kπ2k(z)w(z)dz = 
2k+2


2k
.

(2.20)

Another direct consequence is that the even polynomial can now be expanded as

π2k(z) = ℘(z)k − �2k


2k
℘(z)k−1 + �2k


2k
℘(z)k−2 + O(℘ (z)k−3), (2.21)

where

�2k :=

∣∣∣∣∣
∣∣∣∣

ν0 ν2 . . . ν2k−4 ν2k

ν2 ν4 . . . ν2k−2 ν2k+2
...

...
. . .

...
...

ν2k−2 ν2k . . . ν4k−6 ν4k−2

∣∣∣∣∣
∣∣∣∣

, �2k :=

∣∣∣∣∣
∣∣∣∣

ν0 ν2 . . . ν2k−6 ν2k−2 ν2k

ν2 ν4 . . . ν2k−4 ν2k ν2k+2
...

...
. . .

...
...

...

ν2k−2 ν2k . . . ν4k−8 ν4k−4 ν4k−2

∣∣∣∣∣
∣∣∣∣

,

for k ≥ 1 with �2 = μ2 and �0 = �2 = �0 = 0.

Proposition 2.1 For w(z) ≡ 1, the moments satisfy the following recursion

(8k + 12)ν2k+4 = (2k + 1)g2ν2k + 2kg3ν2k−2.

Proof With the prescribed weight function, the moment (2.18) reads

ν2k =
∫ 1

2 τ+1

1
2 τ+0

℘(z)kdz =
∮

cycle

xk

y
dx, (2.22)

where y2 = 4x3 − g2x − g3, as can be seen by a change of variables x = ℘(z). Note
that expression

d

dx
xk y = kxk−1y + 1

2y
(12xk+2 − g2xk),
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from which we obtain the following identity

k
∮

cycle
xk−1y dx = g2

2 ν2k − 6ν2k+4, (2.23)

for k ≥ 1. Therefore,

4ν2k+4 = 4
∮

cycle

4xk+2

y
dx,

=
∮

cycle

xk−1y2 + g2xk + g3xk−1

y
dx

=
∮

cycle
xk−1ydx + g2ν2k + g3ν2k−2

= 1

k
(

g2
2 ν2k − 6ν2k+4) + g2ν2k + g3ν2k−2,

where we used identity (2.23) in the last equality. This gives the recursion in the
proposition. �


The first values are

ν0 = 1, ν1 = −2η1, ν2 = 1

12
g2, ν3 = 1

10
(g3 − 3g2η1),

where η1 = ζ( 12 ) is the first period of the second kind. Correspondingly, the first few
even Hankel determinants, defined in Eq. (2.19), are given by


0 = 
2 = 1,


4 = 1

12
(g2 − 48η21),


6 = 1

37800
(25g3

2 − 378g2
3 + 108g2g3η1 − 1872g2

2η
2
1 + 43200g3η

3
1).

The Hankel determinants of moments are functions of the modular parameter τ ∈
H, and they can be written as explicit functions in τ using the equations for g2, g3 and
η1, as functions of τ , in Appendix A. They satisfy the following symmetries,


2k(τ )� = 
2k(τ
�), 
2k(τ + 2) = 
2k(τ ) (τ ∈ H),

where (α + βi)� = −α + βi for α, β ∈ R.
In Fig. 5, the zero distribution of 
2k(τ ) is displayed in blue, for k = 2, 4, 6, 8, in

the upper-half plane cut off by

� τ ≥ 1
π
log( 54 ).
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Fig. 5 In these plots the zero distributions of 
2k−1(τ ) and 
2k (τ ) are displayed in respectively red
and blue, for k = 2, 3, 4, 5, in the domain defined by −1 ≤ � τ ≤ 1 and � τ ≥ 1

π log( 54 ) ≈ 0.071.

Furthermore, in each plot the dashed line is the line � τ = 1
π log( 54 )

The reason for this cut, is that the numerics become unstable near the real line. In
particular, even though only finitely many zeros are shown in the plots, there might in
fact be an infinite number of zeros accumulating at points τ ∈ Z, for the even Hankel
determinants 
2k , k ≥ 2.

Remark 2.2 A similar computation follows for the odd case starting from (2.1):

ν2i+3,2 j+3 =
∫ 1+ τ

2

τ
2

(℘′(z))2℘(z)i+ j dz =
∮

cycle
yxkdx

123



Constructive Approximation

with the change of variables as in (2.22). After a direct manipulation, we get

ν2k+3 = 4ν2k+6 − g2ν2k+4 − g3ν2k .

The determinant of the odd moments is


2k+3 :=

∣∣∣
∣∣∣∣∣∣

ν3 ν5 . . . ν2k+1
ν5 ν7 . . . ν2k+3
...

...
. . .

...

ν2k+1 ν2k+3 . . . ν4k−1

∣∣∣
∣∣∣∣∣∣

.

We have plotted the zero distributions of the first couple of odd Hankel determinants
in red in Fig. 5.

Note that 
2k and 
2k+1 are Hankel determinants, for k ≥ 0. However, the deter-
minant Dn is generally not Hankel, but has a checkerboard pattern of even and odd
moments leading to the factorisation

Dn = 
n
n+1, n ≥ 2.

2.4 Riemann–Hilbert Problem for the Even Case

If the weight function is even on γ , i.e. Eq. (1.4) holds, the sequence of orthogonal
polynomials splits into two sequences of even and odd EOPs and we can define a
RHP corresponding to the even polynomials π2k , k ≥ 0. The analysis for the odd case
mirrors the even one and so we restrict our analysis to the even case.

Analogous to RHP 1, the even polynomials π2k appear as the 1,1 elements of the
solution

Y2k(z, τ ) =
(

π2k(z) C(π2kw)(z)
2π i

h2k−2
π2k−2(z)

2π i
h2k−2

C(π2k−2w)(z)

)
, k ≥ 1, (2.24)

to the following RHP.

Riemann–Hilbert problem 2 • The function Y2k(z, τ ) is piece-wise analytic on
T\ (γ ∪ {0}),

• for z ∈ γ , the following jump condition holds

Y2k,+(z, τ ) = Y2k,−(z, τ )

(
1 w(z)
0 1

)
,

• and in the limit z → 0,

Y2k(z, τ ) = (1 + O(z))

(
z−2k 0
0 z2k−3

)
.
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Analogously to Theorem 2.1, RHP 2 is solvable if and only if the Hankel determinant
of even moments satisfies 
2k(τ ) �= 0.

Mimicking the analysis for the general polynomials, we begin with the asymptotic
behaviour of the even polynomials and their Cauchy transform.

Lemma 2.4 In the limit z → 0, the polynomials

π2k(z) =
∞∑

i=0

ai,2k

z2(k−i)
, a0,2k = 1,

and their Cauchy transform

C(π2k)(z) = h2k

2π i

∞∑

i=0

ãi,2k z2(k+i)−1, ã0,2k = 1, ã1,2k = −a1,2k+2. (2.25)

Proof The proof is the same as for Lemma 2.2. �

Lemma 2.5 The determinant of Y2k is

det Y2k(z, τ ) = −℘′(z)
2

. (2.26)

Proof Consider the determinant det Y2k(z) of the solution to RHP 2. Note that
det Y2k(z) has a trivial jump along γ and thus extends to an elliptic function with
only a pole at z = 0. Furthermore, from the asymptotic behaviour of Y2k(z), it follows
that

det Y2k(z) = z−3(1 + O(z)) (z → 0).

Finally, note that Y2k(−z)σ3 also solves RHP 2, thus Y2k(z) = Y2k(−z)σ3, and
det Y2k(−z) = − det Y2k(z). We have now shown that det Y2k(z) is an odd, monic,
elliptic polynomial of degree 3. There exists only one such polynomial,− 1

2℘
′(z). The

lemma follows. �


3 Linear Problems for the General Case and Recurrence Relations

In this section we show that the solution of the RHP 1 for the general polynomials πn

satisfies a systemof linear differential and difference equations, and their compatibility
condition leads to the recurrence relation for the polynomials and the recursion for
their coefficients. Henceforth, we use the notation

′ = d

dz
, ˙= d

dτ

We start with the recurrence relation, which we emphasise, holds for general weight
functions.
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Proposition 3.1 The solution of the RHP 1 solves the linear difference equation

Yn+1 = RnYn, Rn = 1

fn

(
−℘′(z)/2 − hn

2π i fn+1
2π i
hn

fn 0

)

, n ≥ 3, (3.1)

where fn is the determinant of Yn (2.14).

Proof We begin with the (n + 1)th solution (2.9)

Yn+1(z, τ ) =
(

πn+1(z) C(πn+1w)(z)
2π i
hn

πn(z) 2π i
hn

C(πnw)(z)

)
,

and observe that

Yn+1Y −1
n det Yn =

(
πn+1(z) C(πn+1w)(z)
2π i
hn

πn(z) 2π i
hn

C(πnw)(z)

)(
2π i
hn−1

C(πn−1w)(z) −C(πnw)(z)

− 2π i
hn−1

πn−1(z) πn(z)

)

=
(

2π i
hn−1

(πn+1C(πn−1w) − πn−1C(πn+1w)) − hn
2π i det(Yn+1)

2π i
hn

det(Yn) 0

)

.

(3.2)

The 11 element in the above expression is determined as follows. In the limit z → 0,

2π i

hn−1
(πn+1(z)C(πn−1w)(z) − πn−1(z)C(πn+1w)(z)) = 1

z3
(1 + O(z)) ,

and following from the periodicity properties of Yn , det Yn , the LHS of (3.2) is a matrix
valued elliptic function. Therefore,

(
Yn+1Y −1

n det Yn

)

11
= −℘′(z)

2
.

The above expression along with (2.14) gives (3.1). �


Corollary 3.1 The EOPs satisfy the following three-term recurrence relation,

πn+1 = −℘′πn

2 fn
− βn fn+1

fn
πn−1, (3.3)

for n ≥ 3.

Proof This follows directly from the (1, 1) entry of Eq. (3.1). �


From here on, we assume that the weight function w(z) ≡ 1.
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Proposition 3.2 The solution of the RHP 1, Yn, solves the following linear differential
equation for n ≥ 3:

Y ′
n = LnYn, Ln = 1

fn

(
n℘′(z)/2 hn

2π i ((n − 1) fn + n fn+1)
2π i
hn−1

((2 − n) fn−1 + (1 − n) fn) (2 − n)℘′(z)/2

)

.

(3.4)

Proof With the derivative2 of Yn in (2.9), we get

Y ′
nY −1

n det Yn =
(

π ′
n(z) ∂zC(πn)(z)

2π i
hn

π ′
n(z) 2π i

hn
∂zC(πn)(z)

) (
2π i
hn−1

C(πn−1)(z) −C(πn)(z)

− 2π i
hn−1

πn−1(z) πn(z)

)

.

(3.5)

Recalling the asymptotic behaviour of the following entities near z → 0 in Lemma 2.2
now paying attention to the fact that with our weight the polynomials split into odd
and even parts,

πn(z) = 1

zn
+ c2,n

zn−2 + . . . ,

C(πn)(z) = hn

2π i

(
zn−1 + c̃2,nzn+1 + . . .

)
,

the asymptotic behaviour of the 11 element of (3.5) is

(
Y ′

nY −1
n det Yn

)

11
= − n

z3
− 1

z

(
nc̃2,n−1 + (n − 2)c2,n + (n − 1)βn

) + O(z),

and because the LHS is an elliptic function,

(
Y ′

nY −1
n det Yn

)

11
= n

℘′(z)
2

,

with the constraint

nc̃2,n−1 + (n − 2)c2,n + (n − 1)βn = 0. (3.6)

Also note that

c2,n + c̃2,n−2 = 0. (3.7)

The 12 element in the limit z → 0 is

(
Y ′

nY −1
n det Yn

)
12 = hn

2π i

(
n

z2
+ (n − 1)

z2
+ (2n + 1)̃c2,n + (2n − 3)c2,n + O(z2)

)
,

2 We drop the z, τ dependence in favour of brevity.
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and we can check that

(n − 1) fn + n fn+1 = (n − 1)
(
℘(z) + c2,n + c̃2,n−1 − βn

)

+ n
(
℘(z) + c2,n+1 + c̃2,n − βn+1

)

(3.6)= (n − 1)

z2
+ n

z2
+ (n − 1)c2,n + (n − 1)̃c2,n−1 + nc̃2,n−1

+ (n − 2)c2,n
+ nc2,n+1 + nc̃2,n + (n + 1)̃c2,n + (n − 1)c2,n+1

(3.7)= (n − 1)

z2
+ n

z2
+ (2n − 3)c2,n + (2n + 1)̃c2,n .

Therefore,

(
Y ′

nY −1
n det Yn

)

12
= hn

2π i
((n − 1) fn + n fn+1) .

Similarly, the 21 element

(
Y ′

nY −1
n det Yn

)

21

= 2π i

hn−1

(
1 − n

z2
+ 2 − n

z2
+ (5 − 2n)c2,n−1 + (1 − 2n)̃c2,n−1 + O(z2)

)
,

and as before, we can see that

(2 − n) fn−1 + (1 − n) fn

= (2 − n)
(
℘(z) + c2,n−1 + c̃2,n−2 − βn−1

)

+ (1 − n)
(
℘(z) + c2,n + c̃2,n−1 − βn

)

= (2 − n)

z2
+ (1 − n)

z2
+ (2 − n)c2,n−1 + (2 − n)̃c2,n−2 − (2 − n)βn−1

+ (1 − n)c2,n + (1 − n)̃c2,n−1 − (1 − n)βn

(3.6)= (2 − n)

z2
+ (1 − n)

z2
+ (2 − n)c2,n−1 + (2 − n)̃c2,n−2 + (1 − n)̃c2,n−2

+ (3 − n)c2,n−1 + (1 − n)c2,n + (1 − n)̃c2,n−1 − nc̃2,n−1 + (2 − n)c2,n

(3.7)= (2 − n)

z2
+ (1 − n)

z2
+ (5 − 2n)c2,n−1 + (1 − 2n)̃c2,n−1.

Therefore,

(
Y ′

nY −1
n det Yn

)

21
= 2π i

hn−1
((2 − n) fn−1 + (1 − n) fn) .
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Finally, we see that

(
Y ′

nY −1
n det Yn

)

22
= (2 − n)

℘′(z)
2

,

which finishes the proof of the proposition. �

An immediate consequence of the above proposition is that the 11 entry of the linear

Eq. (3.4) gives an ODE for the polynomials.

Corollary 3.2 The polynomials πn solve the following second order differential
equation

π ′′
n =

(
℘′

fn
+ n

(
fn+1

fn

)′ (
(n − 1) + n

fn+1

fn

)−1
)

π ′
n

+
((

n℘′

2 fn

)′
− n

(
fn+1

fn

)′ n℘′

2 ((n − 1) fn + n fn+1)
− det Ln

)

πn .

3.1 Recurrence Relations

By iteratingEq. (3.3),withweight functionw(z) ≡ 1,weobtain the following theorem.

Theorem 3.1 The polynomials {πn}∞n=4, satisfy the relation

πn+2 = (℘ − Bn) πn − βnβn−1πn−2, (3.8)

where,

Bn = βn+1 + βn + αn + αn+1.

Furthermore,

−α3
n + g2

4
αn − g3

4
= βn(αn−1 − αn)(αn+1 − αn).

Proof Iterating (3.3) by n ± 1 we find that

πn+2 =
(

(℘′)2

4(℘ + αn)(℘ + αn+1)
− βn+1

℘ + αn+2

℘ + αn+1
− βn

℘ + αn−1

℘ + αn

)
πn

−βnβn−1πn−2. (3.9)

However, from the difference equation of the even case (4.11), we see that πn+2 can
be written in terms of πn and πn−2 using the equation

πn+2 = (℘ − Bn) πn − βnβn−1πn−2,
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where Bn is a constant. Moreover, the behaviour of the first term in (3.9) near z = 0
gives the expression

Bn = βn+1 + βn + αn + αn+1.

Considering the behaviour of (3.9) near the poles of ℘ +αn we further determine that

− α3
n + g2

4
αn − g3

4
= βn(αn−1 − αn)(αn+1 − αn), (3.10)

and the theorem follows. �

We now use the compatibility condition of the linear system (3.1), (3.4) to obtain

the recurrence relation for the coefficients of the elliptic polynomials.

Theorem 3.2 The compatibility condition

R′
n − Ln+1Rn + Rn Ln = 0, (3.11)

gives the following recurrence relations:

βn = g3 − g2αn + 4α3
n

4(αn−1 − αn)(αn − αn+1)
, (3.12)

αn+1 = (1 − n)αn
(
4α3

n − 3g2αn + 4g3
) − αn−1

(
4(n − 2)α3

n + ng2αn − (2n − 1)g3
)

4nα3
n + (n − 1)αn−1

(
g2 − 12α2

n

) + g2(n − 2)αn − g2(2n − 3)
.

(3.13)

Proof Substituting (3.1) and (3.4) into Eq. (3.11) we find that the (1,1) entry is the
only non-zero term, and is cubic in ℘(z). Equating the coefficients of the powers of
order 3, 2, 1, 0 to zero we find the following set of equations respectively

0 = (n − 2)αn − (n + 1)αn+1 + (2n − 3)βn − (2n + 1)βn+1, (3.14)

3αnαn+1 + g2
2

= ((n − 2)αn−1 + (n − 1)αn + 2(2n − 3)αn+1)βn

− ((4n + 2)αn + nαn+1 + (n + 1)αn+2)βn+1,

3g3 + g2nαn − g2(n − 1)αn+1 = 4αn+1(2(n − 2)αn−1 + 2(n − 1)αn + (2n − 3)αn+1)βn

− 4αn((2n + 1)αn + 2nαn+1 + 2(n + 1)αn+2)βn+1,

− αn+1(g2αn + g3(n − 2)) + g3(n + 1)αn = −4(nαn+1 + (n + 1)αn+2)α
2
nβn+1

+ 4((n − 2)αn−1 + (n − 1)αn)α2
n+1βn . (3.15)

The recurrence for βn (3.12) follows from (3.10). Substituting (3.12) in (3.14), we
obtain a constraint that is cubic in αn , αn+1 and linear in αn−1, αn+2:

αn+2 = X

Y
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with

X = αn+1

(
2g2(1 − 2n)αn + αn−1

(
4(n − 2)α2

n + 2g2n + g2
)

+ 4(n − 1)α3
n + g3(2n − 3)

)

− g3(2n + 1)(αn−1 − αn) + 4n(αn − αn−1)α
3
n+1 − 4(2n − 1)(αn−1 − αn)αnα2

n+1,

Y = αn(4αn((n − 2)αn−1 + (n − 1)αn) + g2(3 − 2n)) + 4(n + 1)(αn−1 − αn)α2
n+1

+ 4(2n − 1)αn(αn − αn−1)αn+1 + g3(2n − 3).

Manipulating the set of Eqs. (3.14)–(3.15) using the above expression gives (3.13). �

Initial conditions for the recurrence (3.13) of theαn in Theorem3.2 can be computed

directly, yielding

α3 = 3g3 − 4g2η1
g2 − 48η21

,

α4 = 5g3
2 − 108g2

3 + 108g2g3η1 − 432g2
2η

2
1 + 8640g3η31

18(3g3 − 4g2η1)(g2 − 48η21)
,

where we remark that explicit formulas for g2, g3 and η1 are given in Appendix A.

4 Linear Problems for the Even Case and the Elliptic form of Painlevé
VI

In this section, we restrict to the case of the even elliptic polynomials. Firstly, we
express the polynomials in terms of Hankel determinants. Secondly, the solution of
the RHP yields the Lax pair of the elliptic form of Painlevé VI where the modular
parameter τ assumes the role of the isomonodromic time. Moreover, the recurrence
relation coming from the corresponding discrete linear system provides a formulation
of the solution of the elliptic form of the Painlevé VI equation.

4.1 Lax Pair of the Elliptic Form of Painlevé VI

Theorem 4.1 For k ≥ 1, the solution (2.24) solves the following pair of linear
equations that correspond to the elliptic form of Painlevé VI

L2k(z, τ ) := Y ′
2k(z, τ )Y2k(z, τ )−1 =

3∑

i=1

℘′(z)
L(i)
2k

(℘ (z) − ei )
, (4.1)

M2k(z, τ ) := d

dτ
Y2k(z, τ )Y2k(z, τ )−1 =

3∑

i=1

L(i)
2k (℘̇(z) − ėi )

2(℘ (z) − ei )
, (4.2)

where the matrices L(i)
2k are given in (4.6).

We begin with the z-derivative and then compute the τ -derivative.
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Proof Recall the asymptotic behaviour of the even polynomials and their Cauchy
transform near z = 0 from Lemma 2.43

π2n = 1

z2n
+ a1,2n

z2n−2 + a2,2n

z2n−4 + O(z6−2n),

C(π2n)(z) = h2k

2π i

(
z2n−1 + ã1,2nz2n+1 + ã2,2nz2n+3 + O(z2n+5)

)
.

The leading behaviour of solution Y2k (2.24) near z → 0 is then

Y2k =
(
1 + z2U + z4V + O(z6)

) (
z−2k 0
0 z2k−3

)
, (4.3)

where

U =
(

a1,2k
h2k
2π i

2π i
h2k−2

ã1,2k−2

)

, V =
(

a2,2k
h2k
2π i ã1,2k

2π i
h2k−2

a1,2k−2 ã2,2k−2

)

, (4.4)

and due to (2.25), U is traceless. Then, in the same limit,

Y ′
2kY −1

2k det Y2k = 1

z4

(−2k 0
0 2k − 3

)
+ 1

z2

(
2U +

[
U ,

(−2k 0
0 2k − 3

)])

+ 4V − 2U 2 +
[

V ,

(−2k 0
0 2k − 3

)]
+ O(z2).

Note that the LHS of the above expression is an elliptic function

Y ′
2k(z + τ)Y2k(z + τ)−1 = Y ′

2k(z + 1)Y2k(z + 1)−1 = Y ′
2k(z)Y2k(z)

−1.

Therefore using (2.26) we have

Y ′
2kY −1

2k = 1

℘′(z)

(
L̃(2)
2k ℘2(z) + L̃(1)

2k ℘(z) + L̃(0)
2k

)
, (4.5)

where

L̃(2)
2k = −2

(−2k 0
0 2k − 3

)
, L̃(1)

2k = −2

(
2U +

[
U ,

(−2k 0
0 2k − 3

)])

L̃(0)
2k = −2

(
4V − 2U 2 +

[
V ,

(−2k 0
0 2k − 3

)])
,

3 we drop the z, τ dependence for the remainder of the proof.
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and

tr L̃(1)
2k = 0 tr L̃(0)

2k = −2h2k−2

iπ

(
β2k + a2

1,2k

)
.

Furthermore, using the cubic equation

(
℘′(z)

)2 = 4 (℘ − e1) (℘ − e2) (℘ − e3) ,

(4.5) can be re-written as

L2k(z, τ ) := Y ′
2kY −1

2k = ℘′(z)
(

L(1)
2k

℘(z) − e1
+ L(2)

2k

℘(z) − e2
+ L(3)

2k

℘(z) − e3

)

,

with the relations

L(1)
2k = e1(1 − e2)L̃(2)

2k + L̃(0)
2k − e1e3 L̃(1)

2k

4(e1 − e2)(e1 − e3)
,

L(2)
2k = e2(e1 − 1)L̃(2)

2k + e2e3 L̃(1)
2k − L̃(0)

2k

4(e1 − e2)(e2 − e3)
,

L(3)
2k = L̃(0)

2k + e23 L̃(1)
2k + e3(1 + 2e3)L̃(2)

2k

4(e1 − e3)(e2 − e3)
.

(4.6)

Now we derive the τ -derivative. From (4.1) we have

∂z log Y2k(z, τ ) =
3∑

i=1

L(i)
2k ∂z log (℘ (z) − ei ) ,

implying that Y2k has the following local behaviour around z − ωi
2 → 0:

Y2k(z, τ ) ∼ Gi (℘ (z) − ei )
�i

(
1 + O(z2)

)
Ci ,

where

�i = G−1
i L(i)

2k Gi .

The τ -derivative in the vicinity of z = wi
2 is

dY2k

dτ
=

(
dGi

dτ
(℘ (z) − ei )

�i + Gi�i (℘ (z) − ei )
�i −1

( ˙℘(z) − ėi
)) (

1 + O(z2)
)

Ci ,

⇒ dY2k

dτ
Y −1
2k = dGi

dτ
G−1

i + L(i)
2k

( ˙℘(z) − ėi
)

(℘ (z) − ei )
+ O(z4).
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Moreover, near z = 0,

Ẏ2kY −1
2k ∼ z2

(
U + U̇

) + O(z4).

Therefore, using Liouville theorem, we can uniquely determine that

dY2k

dτ
Y −1
2k =: M2k(z, τ ) =

3∑

i=1

L(i)
2k (℘̇(z) − ėi )

(℘ (z) − ei )
,

and the following periodicity relations hold

M2k(z + 1, τ ) = M2k(z, τ ), M2k(z + τ, τ ) = M2k(z, τ ) + L2k(z, τ ).

�

The matrices L2k , M2k are in fact the Lax pair of the elliptic form of the Painlevé

VI [36, 40], which, with a change of variables reduces to the usual Lax pair, as will be
shown in Proposition 4.3. Furthermore, we can compute the eigenvalues of the residue
matrices of L2k , which turn out to have the following values owing to the specific form
of the determinant of Y2k (2.26).

For what follows it will be useful to make the linear system (4.1) traceless. To do
this, we start by noting that L2k(z) (4.1) is an elliptic matrix function, and its trace is
obtained using Jacobi’s formula,

tr L2k(z) = d

dz
log det Y2k(z) = ℘′′(z)

℘′(z)
,

where we used that the determinant (2.26) satisfies

det Y2k(z) = − 1
2℘

′(z) = f2k . (4.7)

We now use the following gauge transformation to obtain a traceless linear system:

Y2k(z) = f
− 1

2
2k Y2k(z), (4.8)

so that

Y ′
2k(z) = L2k(z)Y2k(z), L2k(z) = L2k(z) − ℘′′(z)

2℘′(z)
1, (4.9)

Proposition 4.1 The monodromy exponents ±θi around the singularities ωi , and ±θ0
around the singularity z = 0 of the linear system (4.9), are given by

θ0 = 1

2
(4k − 3) , θi = 1

2
, i = 1, 2, 3,

and k = 1 is the case related to self-dual Einstein metrics [20, 37].
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Proof We start with the behaviour of Y2k at z → 0:

Y2k = (1 + O(z))

(
z−2k 0
0 z2k−3

) (
z3/2 0
0 z3/2

)
,

therefore the monodromy exponents around z = 0 are ± 1
2 (4k − 3), which can be

read off from the asymptotics (4.3). The coefficient matrix has simple poles at z =
w1, w2, w1 + w2, 0 coming from the term ℘′(z). We now determine the eigenvalues
of the residue matrices at the singularities. The asymptotic behaviour of Y2k(z) near
z = wi , i = 1, 2, 3 is

Y2k(z) = c− 1
2 (z − w1)

− 1
2 Y2k(w1)(I + O(z − w1)),

as f2k = (z − wi )(c + O(z − wi )) for some c �= 0. Moreover, (4.7) implies that
det Y2k(wi ) is zero and therefore Y2k(wi ) is a rank one matrix and can be expressed
as

Y2k(wi )C =
(
0 ∗
0 ∗

)
,

where the second column is nonzero with C being a constant matrix. We then obtain
that for z → wi ,

Y2k(z)C = U0(1 + O(z − wi ))(z − wi )
1
2 σ3 , U0 ∈ SL2(C)

as z → wi , for a matrix. Therefore the monodromy exponents around z = wi are ± 1
2 .�


We will see in what follows (from (4.21)) that the unique zero of the (1, 2) entry of
L2k(z) will be z = Q(τ ), where Q(τ ) satisfies the elliptic form of Painlevé VI [36]
in the present case reads

(2π i)2
d2Q(τ )

dτ 2
=

3∑

i=0

αi℘
′(Q(τ ) + wi ), (4.10)

where w0 = 0, and

α0 = (θ0 − 1)2

2
= (4k − 5)2

8
, α1 = −θ21

2
= −1

8
, α2 = θ23

2
= 1

8
,

α3 =
(
1 − θ22

)

2
= 3

8
.
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For k = 1 this is the Hitchin case [20, 28], and the corresponding solution Q = Q(τ ),
is given by

℘(Q(τ )) = e1 + e2 + 2
16η31 + g2η1 − g3

48η21 − g2
.

This formula follows from Eq. (5.3).
We finish this subsection with a recursive formula for the Y2k .

Proposition 4.2 The matrix function Y = Y2k satisfies the following discrete evolution
with respect to k,

Y2k+2 = R2kY2k, R2k :=
(

℘(z) + a1,2k+2 − a1,2k − h2k
2π i

2π i
h2k

0

)

, (4.11)

for k ≥ 1.

Proof The proof is similar to that of Proposition 3.1 and follows from a direct
substitution of (2.24) with the expressions of Lemmas 2.4 and 2.5. �


From the above proposition, we obtain the following three-term recurrence relation
for the orthogonal polynomials,

℘(z)π2k = π2k+2 + α̃2kπ2k + β2kπ2k−2,

which coincides with (3.8), as can be seen by using the relations (2.15), (2.8), and
(2.25).

4.2 Relation to Painlevé VI

Under a simultaneous transformation of the dependent and independent variables,

t = e3 − e1
e2 − e1

, u(t) = ℘(Q(τ )) − e1
e2 − e1

, (4.12)

the elliptic form of Painlevé VI (4.10) reduces to the usual form [2, 36]

ü =
(
1

u
+ 1

u − 1
+ 1

u − t

)
u̇2

2
−

(
1

t
+ 1

t − 1
+ 1

u − t

)
u̇

+ u(u − 1)(u − t)

2t2(t − 1)2

(
(2k − 1

2 )
2 − t

4u2 + (t − 1)

4(u − 1)2
+ 3t(t − 1)

4(u − t)2

)
,

where u ≡ uk(t), and˙denotes derivative with respect to t .
In this section, we derive a corresponding transformation for the Lax pair.
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Proposition 4.3 The change of variables

x = ℘(z) − e1
e2 − e1

, t = e3 − e1
e2 − e1

, Ỹ2k(x, t) = Y2k(z, τ ) (e1 − e2)
−(k− 3

4 ) σ3 ,

(4.13)

transforms the linear system in Theorem 4.1 into the following 4-point Fuchsian sys-
tem, with the singularities at w1, w2, w3, 0 mapped to 0, 1, t,∞ respectively, and
corresponding deformation equation,

dỸ2k

dx
= A2k Ỹ2k,

dỸ2k

dt
= B2k Ỹ2k, (4.14)

with

A2k(x, t) = A(1)
2k

x
+ A(2)

2k

x − 1
+ A(3)

2k

x − t
, B2k(x, t) = − A(3)

2k

x − t
,

and coefficient matrices above are related to L2k as

A(i)
2k = (e2 − e1)

(4k−3)σ3/4 L(i)
2k (e2 − e1)

−(4k−3)σ3/4 , i = 1, 2, 3. (4.15)

In particular, the monodromy of Ỹ2k(x, t), with respect to x, is constant in t .

Proof The linear system (4.9):

∂

∂z
Y2k(z, τ ) = ℘′(z)

(
L(1)
2k (τ )

℘ (z) − e1
+ L(2)

2k (τ )

℘ (z) − e2
+ L(3)

2k (τ )

℘ (z) − e3

)

Y2k(z, τ )

under the change of variables (4.13) reads

∂

∂x
Y2k(x, t) =

(
L(1)
2k (t)

x
+ L(2)

2k (t)

x − 1
+ L(3)

2k (t)

x − t

)

Y2k(x, t). (4.16)

Let us now understand the change of variables for the Eq. (4.2) τ after the gauge
transformation (4.8):

d

dτ
Y2k(z, τ ) =

(
3∑

i=1

(℘̇(z) − ėi )L(i)
2k

(℘ (z) − ei )

)

Y2k(z, τ ). (4.17)

We begin by simplifying the sum on the right-hand side. To this end, we note that
the definition of x in Eq. (4.13), and the fact that dx

dτ
= 0, imply

℘̇(z) = (℘ (z) − e1) ė2 − (℘ (z) − e2) ė1
e2 − e1

.
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From the above equation, and the identity e1 + e2 + e3 = 0, we obtain the following
relations

℘̇(z) − ė1
℘(z) − e1

= ė2 − ė1
e2 − e1

,

℘̇(z) − ė2
℘(z) − e2

= ė2 − ė1
e2 − e1

,

℘̇(z) − ė3
℘(z) − e3

= ė2 − ė1
e2 − e1

− 3
e1ė2 − ė1e2

(e2 − e1)(℘ (z) − e3)
.

Using the above identities, we can express the sum on the right-hand side of Eq. (4.17)
rationally in x , giving

d

dτ
Y2k(x, τ )Y2k(x, τ )−1 =

(
L(1)
2k + L(2)

2k + L(3)
2k

) (ė2 − ė1)

e2 − e1

− 3L(3)
2k (e1ė2 − e2ė1)(

x −
(

e3−e1
e2−e1

))
(e2 − e1)2

, (4.18)

where

L(1)
2k + L(2)

2k + L(3)
2k = 1

4
(4k − 3)σ3,

as can be seen from (4.6), along with the gauge transformation (4.9). We now observe
that, the gauge transformation

Ỹ := Y2k (e1 − e2)
−(4k−3) σ3/4 , (4.19)

removes the constant term in (4.18), giving

d

dτ
Ỹ (x, τ )Ỹ (x, τ )−1 = −3 (e1ė2 − e2ė1)

(e2 − e1)2
A(3)
2k(

x −
(

e3−e1
e2−e1

)) .

Using the identity below coming from the change of variable τ → t

dt

dτ
= 3

(ė2e1 − ė1e2)

(e2 − e1)2

implies that

d

dt
Ỹ (x, t)Ỹ (x, t)−1 = − A(3)

2k (t)

(x − t)
.
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Furthermore, (4.16) with the gauge transformation (4.19) and (4.15) is

d

dx
Ỹ (x, t)Ỹ (x, t)−1 = A(1)

2k

x
+ A(2)

2k

x − 1
+ A(3)

2k

x − t
. (4.20)

which finishes the proof of the proposition. �

We note that the following rational matrix is traceless,

A(1)
2k + A(2)

2k + A(3)
2k = −θ0

2
σ3, θ0 := 3

2 − 2k,

and

|A(i)
2k | = −θ2i

4
, θi ≡ θ = 1

2
(i = 1, 2, 3),

as can be obtained from Proposition 4.1 and (4.15). Introducing standard coordinates
(uk, vk, gk), see e.g. [25], through

(A2k)12(x, t) = −θ0gk
x − uk

2x(x − t)(x − 1)
,

(A2k)11(x, t) = vk − θ

2

(
1

uk
+ 1

uk − t
+ 1

uk − 1

)
, (4.21)

we obtain that u ≡ uk and v ≡ vk satisfy the equations below

t(t − 1)u̇ = − 1
2 t + u

(
t − 1

2u + 2p(u − t)(u − 1)
)
,

t(t − 1)v̇ = 3
16 + θ0

4
(θ0 − 2) − tv(1 + v) + vu + 2(1 + t)v2u − 3v2u2, (4.22)

and g(t) = gk(t) solves

g′
k(t)

gk(t)
= (1 − 4k)

u(t) − t

2t(t − 1)
. (4.23)

Note that the zero of (L2k)12 being z = Q(τ ) follows from (4.21) under the change
of variable (4.12).

5 The Painlevé VI tau-Function and Hankel Determinants

In this section, we find explicit formulas for the solution uk of Painlevé VI, introduced
in (4.21), in terms of the Hankel determinants of moments defined in Eq. (2.19). To
this end, we compute the first couple of matrix coefficients in the the expansion around
z = ∞ of the solution to RHP 2.
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Lemma 5.1 The asymptotic expansion of the solution of RHP 2 around z = 0 can be
written as

Y2k(z) =
(
1 + ℘(z)−1U + ℘(z)−2V + O(℘ (z)−3)

)(
℘(z)k 0
0 ℘(z)−k

)

×
(
1 0
0 − 1

2℘
′(z)

)
, (5.1)

where the matrices U and V are given explicitly by

U =
(

− �2k

2k


2k+2
2π i
2k

2π i
2k−2

2k

+ �2k

2k

)

, V =
(

�2k

2k

�2k+2
2π i
2k

− 2π i�2k−2

2k

v22

)

,

with

v22 = �2
2k


2
2k

+ 
2k−2
2k+2


2k
− �2k


2k
.

Proof Recall the explicit, and unique, solution Y2k(z) of RHP 2, defined in Eq. (2.24).
Note that Ŷ (z) = Y2k(−z)σ3, also satisfies all the conditions in the RHP, and thus

Y2k(z) = Y2k(−z)σ3.

It follows from this symmetry that Y2k(z) admits an expansion in powers of ℘(z) as
given in the lemma.

We proceed to compute the coefficient matrices U and V . The expressions for u11,
v11, u21 and v21 follow directly from the expansions of the corresponding orthogonal
polynomials in Eq. (2.21). Next, by Eq. (2.8), we have

C(π2k)(z) = h2k

2π i
z2k−1(1 + O(z2)),

from which the expression for u12 follows. Finally, note that |Y2k(z)| = − 1
2℘

′(z)
implies

|1 + ℘(z)−1U + ℘(z)−2V | = 1 + O(℘ (z)−3)

as z → 0, which is equivalent to

TrU = 0, Tr V + |U | = 0,

as can also be seen from (4.3) and (4.4). The expressions for u22 and v22 are obtained
from the above two equations. �
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It follows from the asymptotic expansion (5.1) for Y2k(z), that Ỹ2k(x) has an
expansion around x = ∞ of the form

Ỹ2k(x) = �2k(x)G(x),

�2k(x) = I + x−1Ũ + x−2Ṽ + O(x−3),

G(x) := x (k− 3
4 )σ3

(
1 + e2

(e1 − e2)x

)k σ3

((1 − t/x)(1 − 1/x))−
1
4σ3 ,

where

Ũ = U

e1 − e2
, Ṽ = V − e2 U

(e1 − e2)2
.

Now, by Eq. (4.20), we can express the coefficient matrix A2k(x), in terms of �2k(x),
as follows,

Ã2k(x) = � ′
2k(x)�2k(x)−1 + �2k(x)G ′(x)G(x)−1�2k(x)−1. (5.2)

This expression allows us to compute the coordinates (uk, vk, gk) introduced in Eq.
(4.21). Indeed, by expanding the right-hand side of Eq. (5.2) around x = ∞, we get
the following expansion for its (1, 2)-entry,

( Ã2k)12(x) = − 1
2 (4k − 1)̃u12x−2 + 1

2 s x−3 + O(x−4),

s := −(4k + 1)t − (4k − 3)̃u11ũ12 +
(
1 + t + 4k

e2
e1 − e2

)
ũ12.

Comparing this asymptotic expansion with Eq. (4.21), and recalling that

e1 − e2 = 4K(t)2,

where K(t) is the complete elliptic integral of the first kind (see Appendix A), we
obtain

uk(t) = 1

4K(t)2

(
2k − 3

2k − 1

�2k


2k
− 2k + 1

2k − 1

�2k+1


2k+1

)
+ 1 + t

3
, (5.3)

gk(t) = − (2k − 1)

4π i(2k − 3)
K(t)1−2kh2k(t). (5.4)

We are now in a position to prove the following theorem.

Theorem 5.1 For k ≥ 0,

uk(t) = 2t(t − 1)

2k − 1

(

̇2k(t)


2k(t)
− 
̇2k+2(t)


2k+2(t)

)
+ 1 − E(t)

K(t)
, (5.5)
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solves PVI, where K(t) and E(t) denote the complete elliptic integrals of the first and
second kind respectively (see Appendix A), with parameter values

θ1 = θ2 = θ3 = 1
2 , θ0 = 1

2 (3 − 2k).

Proof Recalling that 
0(t) = 
2(t) = 1 and


4(t) = 16
3 K(t)2((t − 1)K(t)2 − 2(t − 2)K(t)E(t) − 3E(t)2),

it can be check by direct calculation that

u0(t) = 1 − E(t)

K(t)
, (5.6a)

u1(t) = 1 − E(t)

K(t)
− 2t(t − 1)

3


̇4(t)


4(t)
, (5.6b)

solve PVI for the parameter values indicated in the theorem.
Now, assume k ≥ 2. By combining the differential equation for the gauge factor

gk(t), Eq. (4.23), with the explicit expression for gk(t) in terms of h2k(t), Eq. (5.4),
we obtain

ḣ2k(t)

h2k(t)
= − (2k − 1)

2t(t − 1)

( E(t)

K(t)
+ uk(t) − 1

)
.

Solving this equation for uk(t) and using Eq. (2.20), we obtain the expression for
uk(t) given in the theorem. Since we already know that uk(t) solves Painlevé VI, the
theorem follows. �


5.1 The Painlevé VI �-Function

The Painlevé VI tau function Tk(t), corresponding to the linear system (4.14), can be
defined by

ζk(t) = t(t − 1)
d

dt
log Tk(t), (5.7)

up to a multiplicative constant, where

ζk = (t − 1)Tr A2A3 + t Tr A1A3

= uk(uk − t)(uk − 1)v2k − 1
2 (t − 2(1 + t)uk + 3u2

k)vk

− 1
2k(2k − 3)uk + 1

4 (4k2 − 6k + 1)t − 1
8 . (5.8)
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It is an analytic function on the universal covering space of the punctured sphere
CP

1 \ {0, 1,∞}, and satisfies the ODE

(t(t − 1)ζ̈ (t))2 = −2

∣∣
∣∣∣∣

1
8 t ζ̇ − ζ 3

8 − 1
4θ

2
0 + ζ̇

t ζ̇ − ζ 1
8 (t − 1)ζ̇ − ζ

3
8 − 1

4θ
2
0 + ζ̇ (t − 1)ζ̇ − ζ 1

8

∣∣
∣∣∣∣
.

In the following theorem, we give an explicit expression for Tk(t).

Theorem 5.2 For k ≥ 0,

Tk(t) = t
1
8 (1 − t)

1
8 (2K(t))−n(2k−3)
2k(t). (5.9)

Proof To prove the theorem, it is enough to derive the following expression for ζk(t),

ζk(t) = t(t − 1)

̇2k(t)


2k(t)
+ 1

2
(2k)(2k − 3)

( E(t)

K(t)
+ t − 1

)
+ 1

8
(2t − 1).

(5.10)

for k ≥ 0. We will prove this expression by induction.
We first deal with the cases k = 0 and k = 1. We recall the explicit expressions

for u0 and u1 in Eq. (5.6). Using Eq. (4.22), we obtain the following corresponding
expressions for v0 and v1,

v0(t) = 0,

v1(t) = − 3
4(t)

32K(t)E(t)(K(t) − E(t))((1 − t)K(t) − E(t)
,

and consequently, using Eq. (5.8), we obtain the following expressions for ζ0(t) and
ζ1(t),

ζ0(t) = 1
8 (2t − 1),

ζ1(t) = 1
8 (2t − 1) − 1

2

( E(t)

K(t)
+ t − 1

)
.

This shows that Eq. (5.10) holds for k = 0, 1.
Next, we derive a recursive equation for ζk(t). To this end, we note that the

recurrence in Proposition 4.2, translates to the following recurrence for Ỹ2k(x, t),

Ỹ2k+2(x, t) = R2k(x, t)Ỹ2k(x, t),

where

R2k(x, t) =
(

x + r11 r12
r21 0

)
,
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with

r12 = θ0k

2(θ0 − 1)
, r21 = −2(θ0 − 1)

θ0k
,

and

1

4
θ0(θ0 − 2)r11 = 1

2uk(uk − t)(uk − 1)v2k − 1
4

(
3u2

k − 2(t + 1)uk + t
)

vk

+ 3
32 (3uk − t − 1) + 1

8θ0(θ0 − 2)(uk − t − 1).

Here θ0 = 3
2 − k, as before.

From this recursive formula, we obtain the following recurrence for the coefficient
matrix of the linear system in Eq. (4.14),

Ã2k+2(x, t) = R2k(x, t) Ã2k(x, t)R2k(x, t)−1 +
(

∂

∂x
R2k(x, t)

)
R2k(x, t)−1.

Direct substitution now yields a very compact recursive formula for ζk(t),

ζk+1(t) = ζk(t) + (θ0 − 1)(uk(t) − t). (5.11)

By combining this recursive formula with the equation for uk(t) in Theorem 5.1, Eq.
(5.10) follows by induction. This completes the proof of the theorem. �

Corollary 5.1 From Eqs. (5.11), (5.5) and (5.7), we obtain the following recursion for
the Painlevé VI tau function Tk(t),

skTk−1(t)Tk+1(t) = 4(4k − 3)2t2(t − 1)2Tk(t)T̈k(t) − 4(4k − 1)(4k − 5)t2(t − 1)2Ṫk(t)
2

+ 2((4k − 3)2 + 1)t(t − 1)(2t − 1)Tk(t)Ṫk(t)

+ [
2(k − 1)(2k − 1)(4k2 − 6k + 1 + t − t2) − 1

4

]
Tk(t)

2,

for k ≥ 1. Here, the sk are some nonzero constants which are not rigidly defined
in general. However, using the exact formula (5.9), they become numerical constants,
and the first few are given by

s1 = −3, s2 = 525, s3 = 6237, s4 = 27885, s5 = 82365.

6 Appendix A. Elliptic Functions and Their Periodicity Properties

The Weierstrass cubic reads as

(
℘′(z)

)2 = 4℘3(z) − g2℘(z) − g3 = 4 (℘ (z) − e1) (℘ (z) − e2) (℘ (z) − e3) ,
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where

e1 = ℘ (w1) , e2 = ℘ (w2) , e3 = ℘ (w3) .

The Weierstrass ℘-function is doubly periodic

℘(z + 1) = ℘(z), ℘ (z + τ) = ℘(z),

and has a double pole at zero

lim
z→0

z2℘(z) = 1.

The Weierstrass ζ -function is defined to be the anti-derivative of ℘(z) uniquely
characterised by

ζ ′(z) = −℘(z), ζ(z) = 1

z
+ O(z) (z → 0),

and has the following periodic properties

ζ(z + 1) = ζ(z) + η1(τ ), ζ(z + τ) = ζ(z) + η2(τ ), (6.1)

which in turn define the Weierstrass η-functions.
The elliptic nome is defined by

q = exp
iπω3

ω1
= exp iπ(1 + τ),

and we define

t = e3 − e2
e1 − e2

= λ(τ),

where λ(·) is the modular lambda function.
We have the following explicit expressions for (e1, e2, e3) in terms of q and t ,

(e1, e2, e3) = π2

3

(
θ3(0, q)4 + θ4(0, q)4, θ2(0, q)4 − θ4(0, q)4), −θ2(0, q)4 − θ3(0, q)4

)

= 4

3
K(t)2(2 − t, −1 − t, 2t + 1),

where θ j (z, q) denotes the j th Jacobi elliptic function for 1 ≤ j ≤ 4. In particular

θ2(0, q) = 2q
1
4

∞∑

n=0

qn(n+1), θ3(0, q) = 1 + 2
∞∑

n=0

qn2 , θ4(0, q) = θ3(0,−q).
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This yields the following formulas for the invariants {g2, g3} in terms of q and t ,

g2 = 64

3
(t2 − t + 1)K(t)4,

= 4π4

3
(θ2(0, q)8 − θ2(0, q)4θ3(0, q)4 + θ3(0, q)8),

g3 = 256

27
(2t − 1)(t − 2)(t + 1)K(t)6,

= 8π6

27

(
θ2(0, q)12 + θ3(0, q)12 − 3

2
θ2(0, q)4θ3(0, q)4(θ2(0, q)4 + θ3(0, q)4

)
.

Finally, we note the following useful formula for η1,

η1 = −π2

6

θ
(3)
1 (0, q)

θ
(1)
1 (0, q)

= 2

3
K(t)((t − 2)K(t) + 3E(t)),

where θ
( j)
1 (z, q) denotes the j th derivative of θ1(z, q) with respect to z.

7 Appendix B. List of Polynomials

π0 = 1,

π2 = ℘(z) + a1,1,

π3 = − 1
2℘

′(z),
π4 = ℘2(z) + a1,2℘ + a2,2,

π5 = − 1
2℘

′(z)℘ + b2,2℘(z).

We compute the first few coefficients

a1,1 = 2η1(τ ), a1,2 = 2

(
4η1(τ )g2 − 3g3
5g2 − 240η21(τ )

)

,

a2,2 = 4η1(τ )

(
4η1(τ )g2 − 3g3
5g2 − 240η21(τ )

)

− g2
12

,

and

h1(τ ) = 1, h2(τ ) = −4η21(τ ) + g2
12

, h3(τ ) = 1

5

(
g2η

2
1(τ ) − 3g3

)
.
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Fig. 6 Moment matrix D9 (2.2) with the odd and even moments are colour coded

8 Appendix C. Structure of theMoment Matrix

Let us elaboratte on the structure of themomentmatrix Dn (2.2). There are three points
to note about the moments (2.1):

(1) all the mixed moments vanish, i.e for all i, j

μ2i,2 j+1 = 0,

(2) the following symmetry property holds

μi, j = μ j,i ,

(3) and, generally

μ2i,2 j �= μ2i−1,2 j+1.

With the above properties, following figure illustrates the moment matrix for n = 9.
Note that the matrix above has a block structure with the checkerboard pattern

generated by the element

Mi, j =
(

μ2i−1,2 j−1 0
0 μ2i,2 j

)
, i, j ≥ 2.

The even bands are a trivial consequence of dimensions of the space of meromorphic
functions in the genus 1 case.
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