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Abstract

We investigate the emergence of quantum scars in a general ensemble of random Hamil-
tonians (of which the PXP is a particular realization), that we refer to as quantum local
random networks. We find a class of scars, that we call “statistical”, and we identify
specific signatures of the localized nature of these eigenstates by analyzing a combina-
tion of indicators of quantum ergodicity and properties related to the network structure
of the model. Within this parallelism, we associate the emergence of statistical scars to
the presence of “motifs” in the network, that reflects how these are associated to links
with anomalously small connectivity. Most remarkably, statistical scars appear at well-
defined values of energy, predicted solely on the base of network theory. We study the
scaling of the number of statistical scars with system size: by continuously changing the
connectivity of the system we find that there is a transition from a regime where the con-
straints are too weak for scars to exist for large systems to a regime where constraints
are stronger and the number of statistical scars increases with system size. This allows
to define the concept of “statistical robustness” of quantum scars.
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1 Introduction

Recently a great deal of research has focused on the fundamental concepts of thermalization
and ergodicity shifting the focus from many-body spectra [1, 2] to the dynamics of observ-
ables [3]. A cornerstone of this program has been the formulation of the eigenstate thermal-
ization hypothesis (ETH) [4,5], which identifies the statistical properties of matrix elements of
observables with the observation of thermal behaviour in their expectation values and corre-
lation functions. More recently, the conditions of quantum chaos in many body systems have
been further refined with the introduction of out-of-time-order correlations (OTOC) [6] and
adiabatic gauge potentials [6,7].

While two broad classes of systems have been introduced, nonergodic/localized [8,9] vs.
thermalizing [3], several systems have been shown to display intermediate behavior, where
ETH is satisfied only at sufficiently high energies or for portions of the spectrum (weak ETH
[10]). A prominent example in this class are quantum scars [11], that are non-ergodic einges-
tates embedded within the ergodic continuum. While those states are irrelevant for thermo-
dynamics, they can still lead to very specific, intrinsically many-body phenomena in quantum
quench experiments, provided the initial state has a significant overlap with them [12]. These
states, which are qualitatively similar to localized states rarely occurring in the delocalized
continuum of Anderson-type models [13], have been predicted in a variety of specific mod-
els [14–22], starting with constrained ones such as the PXP model [23–33].

As for localized states in the delocalized continuum, it was recently found that quantum
scars of the PXP model are unstable against perturbations, suggesting that their occurrence
might need fine tuning [34, 35]. It is thus presently unclear whether scarring is a robust
phenomenon (and if so, in which sense), or if it generically requires parameter tuning to
survive the thermodynamic limit.

While the approach to quantum scarring typically pivots around the analysis of spectral
properties of ‘deterministic’ models, here, we pursue a different approach, and analyze the
robustness of scar manifolds statistically. It was already noticed that the analysis of the network
representation of the Hamiltonian is particularly convenient to understand many properties
of constrained models displaying scars [23] (or even shattering of the Hilbert space [36,37]):
these models are geometrically equivalent to networks with a number of nodes exponentially
large in system size N , but an average degree per node only linear in N as a result of the
locality of the Hamiltonian [24]. We build upon this analogy to define a general ensemble of
Hamiltonians, called quantum local random network models, which includes the PXP model as
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Figure 1: (a) Illustrative example of a QLRN: states differing by a single spin flip
have probability p of being connected by an edge. (b) Graphical representation of an
eigenstate with ε= 0 localized in the periphery of the network for N = 13, p = 0.15.
The color indicates the weight of the eigenstate on each node. The weight is con-
centrated on few nodes that are loosely connected with the rest of the network. (c)
Bipartite entanglement entropy and (d) betweenness centrality of the eigenstates vs
their energy for p = 0.15, N = 14. The different colors refer to different realizations.
Dashed grey lines indicate the special energies (ε∗ = ±1,±

p
2,±(
p

5± 1)/2,±
p

3)
associated with statistical scars. At these energies, degenerate eigenstates are found,
whose entanglement entropy and betweenness centrality are anomalously small with
respect to the other eigenstates belonging to the thermal cloud.

a particular realization. Hamiltonians belonging to this ensemble are the adjacency matrices
of networks whose nodes are indexed by a string of quantum numbers (e.g., {01001 . . . })
while edges are drawn randomly with probability p only among vertices differing by local
moves (spin flips): in this way, the constraints are statistically encoded in the dynamics. The
probability p represents a continuous parameter that quantifies the strength of the constraints
(a small p indicates strong constraints, and vice versa).

We study in detail the spectra and the corresponding eigenfunctions and prove that
generic Hamiltonians in this class can display statistical scars, a class of eigenstates
that are localized on the network. Statistical scars occur always at specific energies
ε∗ = 0,±1,±

p
2,±
p

3,±(
p

5 ± 1)/2, . . . , whose values are governed by spectral graph the-
ory [38,39]. A study of the scaling of the average degeneracy of statistical scars as a function
of system size shows the occurrence of a series of eigenstate phase transitions as a function
of p between phases in which scars at a given energy ε∗ proliferate and phases in which their
number decreases.
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2 Quantum many-body scars

The first model in which quantum scars were discovered is the PXP model [23] which, on a
chain of N sites with open boundary conditions, is defined by

HPX P =
N−2
∑

i=1

PiX i+1Pi+2 + X1P2 + PN−1XN , (1)

where Pi = (1− Zi)/2 and X i , Zi are local Pauli matrices. The dynamics of the PXP model is
highly constrained (reflecting the microscopic mechanism of Rydberg blockade [12,40]): it is
impossible to flip a spin from down to up, if one of its nearest neighbours is up. Interestingly,
the model in the subspace containing the spin-down state | ◦ ◦ ◦ . . . 〉 can be represented as a
tight-binding Hamiltonian on a specific network (Fibonacci or Lucas cube) [24].

While the majority of scars, identified through their overlap with theZ2 state | ◦•◦•. . . 〉 and
their low entanglement entropy, feature size-dependent effects, it was recently shown [29] that
this model possesses also a few exact scar states (of the form of exact matrix product states)
in the thermodynamic limit at the special energies ε = 0,±

p
2. Individual scars are unstable

with respect to perturbations: perturbations respecting the symmetries of the PXP model make
them evaporate in the continuum of ergodic states. The instability of individual scars does not
imply however that deformations of the PXP model cannot possess a scar manifold, i.e., a
set of non-ergodic, low-entangled states immersed in the ergodic continuum, which are not
continuous deformations of PXP scars. In this case, the existence of a scar manifold as a whole
could be described as statistically robust.

3 Quantum local random networks

In order to address the question of statistical robustness of quantum scars, we notice that a
common tract of constrained models is their representability as hopping Hamiltonians on net-
works whose nodes are indexed in the computational basis (| {σ}〉 with σ = ◦,• for the PXP
model). It is therefore appealing to embed the PXP in a much broader ensemble of Hamiltoni-
ans, which we call Quantum Local Random Networks (QLRN) sharing the common ingredients
of locality (in a way we specify below) and constrained dynamics.

Let us illustrate the construction of a QLRN in the simplest case (see Fig. 1-(a)): con-
sider the network whose vertices are the sequences of N elements {σi}, where σi = 0, 1 and
i = 1, . . . , N , representing the computational basis of the Hilbert space of a spin system. Each
pair of vertices is connected by an edge with probability 0 ≤ p ≤ 1 provided they differ by a
single flip of a boolean variable. The Hamiltonian for a model of this type reads

H =
∑

i

X i

∑

{σ}

s{σ}i |{σ}〉 〈{σ}| , (2)

where s{σ}i are random variables that can assume the values 0 or 1 with probability 1 − p

and p respectively. These variables satisfy s{σ}i = s{σ
′}

i for |{σ′}〉 = X i |{σ}〉, such that the
Hamiltonian is Hermitian, but are otherwise independently distributed.

The adjacency matrix of the resulting network is then the Hamiltonian whose spectrum
and eigenfunctions will be the subject of our study. We note that, in this context, locality is
intended in the sense that states connected by the Hamiltonian only differ by the properties
of a single site i, but in general the Hamiltonian does not have a representation as a sum of
terms with finite support. Evidently, the PXP model is a particular realization of a QLRN with
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p = 0.25, since in this model only one in four configurations of the nearest neighbours of a
spin allows it to be flipped.

Note that, similarly to the PXP model, each Hamiltonian of the QLRN ensemble has ma-
trix elements only between states with opposite Z parity, and hence anticommutes with the
operator C =
∏

i Zi . As a consequence, the spectrum is symmetric around ε = 0. Another
consequence is that, from the point of view of network theory, in a QLRN the clustering coeffi-
cient of each node (which is proportional to the number of triangles through the node [41]) is
always zero, because the nearest neighbours of a vertex have the same parity, so they cannot
be joined by an edge.

The construction of a QLRN can also be generalized to larger local Hilbert space dimensions
(see Appendix A). We leave the study of these generalized QLRNs to future works.

4 Localized eigenstates

The use of the language of network theory in condensed matter physics has a long history,
starting from studies of Anderson-type localization in generic networks [42], disorder-free
localization on random trees [38] or as a function of clustering coefficient [43, 44]. The pos-
sibility to generate localized states without disorder by taking advantage of geometrical con-
straints suggests that models of this type could be of interest for numerous problems, as was
recently recognized in the context of the physics of many-body localization [45] and thermal-
ization [46,47].

To study how the physics of localization emerges in a QLRN, we analyze the spectrum
numerically for a finite size N at different p. We first consider the density of states (DOS) (see
Appendix B): while for p = 1 the spectrum is obviously the sequence of peaks associated to a
spin of size N in unit magnetic field, as p diminishes the peaks first broaden, merging in a bell
shaped DOS with a clear delta-function peak at ε= 0. This peak was also observed in the DOS
of tight-binding models defined on random Erdös-Rényi networks [43], where it was associated
with localized states. We remark, however, that localization is not the only possible origin of
this delta peak, and we will have to consider other quantities (such as the participation ratio)
to prove the emergence of localized eigenstates. Another mechanism that may lead to the
presence of a large degeneracy at ε = 0 is, for example, the interwining of spectral reflection
symmetry [48] and an ordinary symmetry of the Hamiltonian: while QLRNs have spectral
reflection symmetry, in general they do not possess other symmetries (e.g., inversion), and
therefore we cannot use this property to argue that their zero-energy eigenspaces have to be
exponentially degenerate.

In the case of QLRN one has to pay attention to a trivial type of localization associated
to disconnected vertices which get isolated as p diminishes (a phenomenon similar to the
fragmentation of Hilbert spaces observed in Ref. [36, 49], as shown in Appendix C). Since in
this work we will be interested in non-trivial localized states on QLRN and their connection to
the physics of scars, in the following we will always identify the giant connected component
of a QLRN and study localized states in this subspace. As expected a peak at ε = 0 in its
spectrum is present also under this restriction. We find that within this degenerate subspace it
is possible to find non-trivial eigenstates localized on the periphery of the network as depicted
in Fig. 1-(b).

The localized states at ε = 0 are just the simplest of a class of nontrivial localized
states on the QLRN emerging at sufficiently small p. In order to characterize the localiza-
tion properties of these and other eigenstates one may write them in the computational basis
|Ψn〉=
∑

{σ} cn({σ})|{σ}〉 and study the participation ratio
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Figure 2: Participation ratio Pn of the eigenstates for different values of p for system
size N = 14. The colors indicate different realizations of the network. Statistical
scars have large value of Pn: they are localized in the computational basis. For large
p their number goes to zero.

Pn =
∑

{σ}

|cn({σ})|4 . (3)

In addition, the structure of wave functions on the QLRN can be studied using standard
measures of the character of nodes: i) the degree k({σ}), i.e., the number of connections that
the node {σ} has to other nodes; ii) the centrality C({σ}) = 1/

∑

σ′ ̸=σ lσ′σ, where lσ′σ is the
distance between two nodes in the network, which characterizes how close a node {σ} is to
the other nodes; and iii) the betweenness centrality B({σ}) defined as the number of shortest
paths among different vertices passing through {σ}, which quantifies how “central” a given
node is in the network. One can easily use these quantities to study eigenstates by defining
their averages over a generic eigenstate |Ψn〉, e.g., for the betweenness

〈B〉n =
∑

{σ}

| cn({σ}) |2 B({σ}) . (4)

Finally, since these eigenstates can be interpreted as many-body states of a spin system of
size N one may compute the half- system entanglement entropy Sn to connect localization on
QLRN to the physics of scars.

As seen in Fig. 1-(c) by plotting the half-chain entanglement entropy Sn for a QLRN at
p = 0.15 as a function of eigenstate energy ε one can easily identify a number of eigen-
states whose Sn is significantly lower than the typical value at that energy, therefore behav-
ing as quantum scars. Most of these eigenstates share the feature of having significant (and
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Figure 3: Graphical representation of examples of localized eigenstates with energy
(a) ε∗ = 1 and (b) ε∗ =

p
2.

untypical) participation ratio (see Fig. 2), and are therefore localized on the network. The
participation ratio of the other eigenstates decreases with system size and gets closer to a
thermal cloud with a smooth dependence on ε (see Appendix D). The untypical localized
eigenstates have another remarkable property, as shown by plotting the eigenstate average
betweenness 〈B〉n vs. ε (Fig. 1-(d)). Localized scars at specific energies (vertical lines at
ε⋆ = 0,±1,±

p
2,±(
p

5±1)/2,±
p

3, . . . ) tend to have a lower betweenness than the rest, indi-
cating that they are not just localized, but localized on the periphery of the network: those are
the key features that define statistical scars. Similar features are observed in the degree and
closeness centrality of the eigenstates (see Appendix E). As shown in Fig. 2, statistical scars
proliferate as p is lowered below a certain threshold p ≃ 0.2.

5 Statistical scars

We now further investigate the presence of statistical scars at specific energies. The special en-
ergies ε⋆ are well known to be the eigenvalues of the adjacency matrices of small trees [38,39].
The fact that various figures of merit, including the centrality and degree (see Appendix E),
suggest that statistical scars are localized on the periphery of the network, indicates that small
elementary subgraphs (motifs) might be the basic elements associated to statistical scars. This
is indeed the case as shown in Fig. 3: the number next to each node is the coefficient cn({σ})
of the eigenstate |Ψn〉 in the computational basis. Each state is localized in the grey rectan-
gles: all other nodes have cn({σ}) = 0. In both examples, the eigenstate of the full graph is
constructed using as building block an eigenstate of a small motif (of two sites in (a) and three
sites in (b)): the graph contains two copies of the motif; the coefficient of the motif eigenstate
are assigned with opposite signs on the two copies. More general networks with the same
eigenstates can be constructed by adding edges to the graphs depicted here, provided that, for
each node not belonging to the grey subgraph, the sum of the coefficients of its neighbours
is 0. These examples show that the eigenfunction of subgraphs of two vertices (eigenvalues
±1) or three vertices (eigenvalues ±

p
2, 0) can be easily incorporated into eigenfunctions of

the whole QLRN whenever geometrical structures of the type of Fig. 3-a or Fig. 3-b occur on
its periphery. The construction can be generalized to all the energies ε∗ that are eigenvalues
of small motifs (see Appendix F). These motifs are responsible for the presence of statistical
scars: this claim is corroborated by the numerical observation that the degeneracy of statistical
scars almost coincides with the number of occurrences of the (duplicated) motifs for accessible
system sizes1 (see Fig. 4 and Appendix F).

1For small N we observe that statistical scars can come also from more complicated structures than the ones
shown in Fig. 3: for example, we find groups of two or more intersecting motifs. However, for larger sizes, the
simple motifs are the most frequent structures.
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Figure 4: Average degeneracy Nscars of the eigenspace with ε∗ = 1, average number
of occurrences (Nmotifs) of the motif in Fig. 3(a) and expected number of occurrences
[Nth, from Eq. (F.1)] as a function of system size N . For p < pc ≃ 0.1591 the
degeneracy increases with N , while it decays for p > pc .

The occurrence of network motifs associated to statistical scars depends both on the overall
system size N and, most crucially, on p. In order to investigate how many scars are to be
expected as a function of system size, we studied how the degeneracy of statistical scars (Nscars)
with a given value of ε⋆ and the number of occurrences of the associated motifs (Nmotifs),
averaged over realizations of the QLRN, scale with N for a fixed p. This is shown in Fig. 4
for ε⋆ = 1: while for p = 0.25 both Nmotifs and Nscars decrease with N , a completely different
behavior, characterized by a continuous growth, is seen for smaller p. This fact seems to
suggest the presence of an eigenstate transition as a function of p. The transition is the result
of the competition between two effects: when the system size grows, motifs are less dense
(the probability of having m nodes disconnected from the rest of the network decreases as
(1 − p)mN ) but the number of nodes in the network grows (∼ 2N ). With this argument, we
can estimate the number of motifs (see Appendix F)

Nth(ε
∗ = 1) = 2N (1− p)4N−6p4 N(N − 1)

2
(N − 1)2 . (5)

We hence obtain the transition point pc(ε∗ = 1) = 1 − 2−1/4 ≃ 0.1591, in agreement with
the numerical data of Fig. 4. A similar behaviour is observed for other values of ε⋆. We note
that, differently from eigenstate phase transitions in the context of many-body localization,
in the present case the transition occurs at exactly known values of the energy only, and not
in a continuous part of the spectrum. This may facilitate future studies, targeting, e.g., exact
energy manifolds.

As a last comment, we note that some of the characteristic energies of statistical scars
correspond to the energies of the exact scars found in the PXP [29] and in the generalized
PXP models [35]. This is not a coincidence: those scars, of the form of matrix product states
(MPS), realize an effective “decoupling” of the system in small blocks; the eigenenergies are
then originated from the diagonalization of the small blocks, akin to the motifs of statistical
scars. Moreover, the participation ratio of exact PXP scars is larger than the typical value
of thermal eigenstates (see Appendix G). Despite these similarities, we do not find a direct
connection between the two types of scars. In contrast with statistical scars, the number of
MPS scars does not grow with the size of the system; moreover, the structure of MPS scars is
specific of the low dimensionality of the model. We leave the question of a deeper connection
between the two types of scars to future works.
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6 Conclusions and outlook

We studied the statistical robustness of a scar manifold by introducing a class of Hamiltonians,
Quantum Local Random Networks, that combine locality and constrained dynamics, and that
include PXP as a particular instance. Focusing on the giant connected component of a QLRN
we have shown that for sufficiently small p it is expected to display statistical scars, which
occur at special energies ε⋆ = 0,±1,±

p
2,±(
p

5±1)/2,±
p

3, . . . . The latter are solely dictated
by random graph theory, and are associated to localized states on certain geometrical motifs
on the periphery of the QLRN. A study of the degeneracy of statistical scars for various p
as a function of systems size indicates the presence of a quantum phase transition for each
special energy ε∗ between a phase in which scars proliferate and one in which their number
goes to zero for increasing N . These states appear in a variety of specific realizations, from
(generalized) PXP [29, 35] to Hubbard models [50]. Studying in detail this phenomenon,
together with potential generalizations to other QLRN, is an intriguing perspective, that we
leave to future investigations.
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A Generalized quantum local random networks

The notion of QLRN can be generalized to encompass situations in which either the elementary
degrees of freedom are not spin 1/2 or the number of spins flipped locally is larger than one,
as in Ref. [36,49], maintaining locality and constrained dynamics.

For concreteness, let us consider the set of sequences {σi}, where i = 1, . . . , N and
σi = {0, . . . , q}, (q is a positive integer). Two nodes {σi} and {σ′i} are connected with proba-
bility 0 ≤ p ≤ 1 if: i) - the string {σi −σ′i} has nonzero entries only locally, i.e. in a compact
interval of finite size L0 ≤ N and ii) - the distance

∑

i |σi −σ′i| ≤ S0. The random local Hamil-
tonian associated to this network is then its adjacency matrix and the resulting ensemble of
Hamiltonians will be denoted as Hp(L0, S0). Note that if S0 ≥ 2 in general the Hamiltonian
does not anticommute with the total parity. It is evident that if q = 1, L0 = 1 and S0 = 1
we have the special case discussed in the main text and that the PXP Hamiltonian is just one
of the realizations in Hp(1,1). Networks with larger local Hilbert space q, S0 > 1 and more
complex spin flips L0 > 1 are naturally related for example to spin-1 models [36] or fermionic
models [49], whose analysis is left for future work.
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B Spectra of QLRN

Figure 5: Histograms of the density of states ν vs. energy ε of the eigenstates for a
QLRN with N = 12 and p = 1 (panel a), p = 0.75 (panel b), and p = 0.15 (panel c).

Figure 6: (a) Histogram representation of the spectrum of the giant connected com-
ponent for a QLRN with N = 12 and p = 0.25. The peak at ε = 0 is still visible and
is associated to wavefunctions mainly localized on the periphery of the network as
shown in panel (b).

Let us now consider the spectra of QLRN as a function of p as shown in Fig. (5) for N = 12.
When p = 1 all states that can be connected by a single spin flip are connected and the Hamil-
tonian is H =
∑

i σ
x
i : the resulting spectrum is therefore trivial, highly degenerate with eigen-

values εi = N − 2i, with i = 0, . . . , N , and degeneracy Di =
�N

i

�

(see Fig. (5-a)). Introducing a
slight stochasticity in the selection of edges splits the degeneracies leading to a characteristic
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Figure 7: Left: The fraction of states in the largest connected components goes to 1
for large N . Right: The number of connected components grows as aN , with a < 2.

spectrum similar to that shown in Fig. (5-b) for p = 0.75. A further reduction of p leads to a
fragmentation of the Hilbert space: in the network representation one observes a giant con-
nected component and a few disconnected nodes associated to a peak at ε = 0 as well as, for
sufficiently small p (Fig. (5-c) for p = 0.15), pairs of nodes connected by an edge (peaks at
±1 in Fig. (5-c) in the histogram of the eigenvalues).

Localization is expected to occur when p is sufficiently small. Of course there is a trivial
localization related to wave functions completely localized in small disconnected components
which will contribute to the peaks at ε= 0 and ε= ±1 in Fig. (5-c). A much more interesting
type of localization is however happening in the giant connected component of the network
that contains most of the nodes: as shown in Fig. (6) the peak at ε= 0 persists also in this case.
A visualization of the weights of the corresponding wave functions in the network, shows that
these localized states are associated to wave functions with large amplitudes on nodes at the
boundaries of the network. Qualitatively similar results are obtained for different N .

C Hilbert space fragmentation

To obtain the connected components of the graph of the QLRN we use the Python package
networkx. In the range of probabilities p that we consider, our numerical analysis (see Figure
7) is compatible with the scenario of weak fragmentation [36, 51]: the average number of
connected components grows as aN with a < 2, while the ratio between the dimension of
the largest connected component and the total Hilbert space dimension approaches 1 in the
thermodynamic limit. For the purpose of this work, we will focus solely on the spectrum of
the largest connected component.

D Participation ratio and system size

In Fig. (8) we plot the participation ratio of the eigenstates for different values of the system
size N . We note that, as N is increased, the majority of the eigenstates get closer to a smooth
dependence of P on the energy ε (the thermal cloud). Statistical scars, instead, remain well
isolated, with strongly non-thermal values.
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Figure 8: Participation ratio Pn of the eigenstates for p = 0.2 and different system
sizes N .

E Centrality and degree of statistical scars

The characterization of the localization of stochastic and statistical scars done in the main text
with the participation ratio Pn and the betweenness Bn can be done using other figures of
merit such as the degree and the centrality of the eigenstates, defined as

〈k〉n =
∑

i

| cn({σ}) |2 k({σ}) , (E.1)

〈C〉n =
∑

i

| cn({σ}) |2 C({σ}) . (E.2)

As shown in Fig. (9), statistical scars are characterized by anomalously small values of both
quantities.

F Eigenstate phase transitions

In the main text, we discussed for the presence of an eigenstate phase transition based on the
degeneracy of statistical scars at ε⋆ = 1. It is possible to extend this picture to all network-
predicted values of quantized energies.

In Fig. 10, we show the degeneracy scaling (Nscars, marked by squares) versus system
size for three additional values of ε⋆. For small p we consistently observe that degeneracy is
increasing with system size. To better analyze the critical value of p for the different energies,
we count the occurrences of the motifs associated with statistical scars (Nmotifs, marked by
circles in Fig. 10): the number of these motifs represents a lower bound on the number of
scars; we expect that, close to the transition, the number of scars coincides with the number of
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Figure 9: Degree 〈k〉n and centrality 〈C〉n of the eigenstates as a function of their
energy εn. Different colors refer to different realizations of the network. Statistical
scars are chacterized by small values of both 〈k〉n and 〈C〉n.

motifs in the thermodynamic limit. We observe that – with the exception of the case ε∗ =
p

3
– the number of occurrences of the motifs is in good agreement with the total degeneracy of
the scars, confirming our expectation that statistical scars are associated with the presence of
these motifs.

From this observation, we can give an analytical estimate of the transition by counting
the expected number of occurrences of a certain motif. Let us first consider the single motif
associated with ε∗ = 1 in Fig. 3-(a): the expected number of occurrences has the form

Nth(ε
∗ = 1) = 2N (1− p)4N−6p4 N(N − 1)

2
(N − 1)2 , (F.1)

where the the factor 2N counts the possible choices of the “root” node C , the factor p4 comes
from the 4 edges, the factor (1− p)4N−6 is the probability that every other edge that can come
out of the nodes A, B, D, E is absent, and the last terms are combinatorial factors that count
the possible choices of the nodes B, D, and A, E. As shown in Fig. 4, The scaling of Eq. (F.1) is
in perfect agreement with the numerics. From Eq. (F.1) we find that the transition occurs at
pc = 1− 2−1/4 ≃ 0.1591. To generalize this argument to the other values of ε∗, we note that
the number of occurrences is in general proportional to Nth∝ 2N (1−p)mN N m where m is the
number of nodes (excluding the root node, marked by a yellow square in the right panels of
Fig. 10) in the motifs and terms subleading in N are neglected. We hence obtain the transition
probability pc = 1−2−1/m. As can be seen in Fig. 10, the number of occurrences of the motifs
increases also for values of p > pc for the accessible system sizes. This happens because, for
values of p not too far from pc , the scaling of Nth may be dominated by the power-law term
at these system sizes. In fact, for p > pc , Nth has a maximum at system size

Nmax = −
�

log
�

1− p
1− pc

��−1

. (F.2)

Since our largest system size is N = 24, we expect to observe a decaying trend only for
p > 1 − (1 − pc)−1/24, i.e., p > 0.193 for ε∗ = 1, p > 0.145 for ε∗ =

p
2, p > 0.120 for
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Figure 10: Degeneracy of statistical scars (squares) and occurrences of motifs Nmotifs
(circles) vs. system size N for different p for 100 realizations of the QLRN. The motifs
that are counted for each eigenvalue ε∗ are shown in the right panel. The “root node”
(marked by a yellow square) is the only one in the motif that is connected with the
rest of the network.

ε∗ =
p

3 and ε∗ = (
p

5± 1)/2. For all these values, we observe perfect agreement with our
numerical data in Fig. 10.

G Participation ratio in the PXP model

We now compute the participation ratio of the exact scars reported in Ref. [29] and compare
it with the value of thermal eigenstates.

For an unnormalized state |ψ〉 the participation ratio can be computed as

P|ψ〉 =
I4(|ψ〉)
[I2(|ψ〉)]2

, (G.1)

where we defined
Iq(|ψ〉) =
∑

{σ}

| 〈{σ}|ψ〉 |q . (G.2)

Using the same notation as in Ref. [29] to label the scars, we find

Iq(|Φ1〉) = Iq(|Φ2〉) = (2q/2 + 1)Lb + (2q/2 − 1)Lb + (2q − 1)[1+ (−1)Lb] , (G.3)
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Figure 11: Participation ratio of the eigenstates in the PXP model with L sites and
open boundary conditions. Red circles indicate the exact scars |Γ12〉, |Γ21〉 with en-
ergies ±

p
2. The dashed red line indicates the participation ratio of a completely

random state in a Hilbert space with same dimension.

Iq(|Γαβ〉) = (2q/2 + 1)Lb − 2+ [1− (−1)α+β+Lb]q , (G.4)

for Lb = L/2 and L (even) is the system size. We obtain that, in the limit of large L, the
participation ratio decays as Pscars ∝ (

p
5/3)L ∼ (0.745)L for all the exact scars, while it

decays as Prandom∝D−1
L ∼ φ

−L ∼ (0.618)L for a random state in a Hilbert space of the same
dimension DL . This proves that the participation ratio of scars decays much slower than the
one of random states. Moreover, as shown in Fig. 11, the participation ratio of the exact scars
in the PXP model is significantly larger than the typical value of thermal eigenstates.
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