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Abstract

Magnetic monopoles are intriguing hypothetical particles and inevitable pre-
dictions of theories of Grand Unification. They should be produced during phase
transitions in the early universe, but also mechanisms like the Schwinger e�ect in
strong magnetic fields could contribute to the monopole number density. In this
thesis, we demonstrate the importance of the studies on the physics of magnetic
monopoles in cosmic environments. In particular, we show how understanding the
interplay between the monopoles and cosmic magnetic fields is crucial for the search
of monopoles of astrophysical origin.

We provide a comprehensive analysis of the acceleration of magnetic monopoles
in intergalactic magnetic fields and galactic magnetic fields. We demonstrate that
monopoles with intermediate to low masses can be accelerated to relativistic velocities.
This can significantly a�ect direct and indirect searches for magnetic monopoles.
Concerning indirect searches, we show that the Parker bounds on the survival of
galactic magnetic fields are modified in the presence of intergalactic fields. We also
find that a cosmic population of monopoles can produce significant backreaction
on the intergalactic fields. In the case of direct searches, experimental constraints
on the monopole flux are often expressed in terms of the monopole velocity. From
the study of the monopole acceleration, we obtain a speed-mass-abundance relation
for the monopoles that might be detected by the terrestrial detectors. With this
relation, we revisit for the first time the current bounds on the monopole flux from
terrestrial experiments in terms of the monopole mass, providing a recipe for future
works. We also show that by improving their constraints such experiments will soon
be sensible to values of the monopole flux where the monopole velocity is influenced
by the physics of magnetic fields in intergalactic voids.

We also present a comprehensive study of Parker-type bounds on magnetic
monopoles with arbitrarily magnetic charges, including minicharged monopoles and
magnetic black holes. In particular, we provide new bounds on the cosmic abundance
of magnetic monopoles based on the survival of primordial magnetic fields during the
reheating and radiation-dominated epochs. The new bounds can be stronger than
the conventional Parker bound from galactic magnetic fields, as well as bounds from
direct searches. We find that monopoles with di�erent magnetic charges are best
constrained by di�erent astrophysical systems: while monopoles with a Dirac charge
are tightly constrained by seed galactic magnetic fields, minicharged monopoles
are strongly constrained by primordial magnetic fields, and magnetic black holes
by the density of dark matter. We also assess the viability of the various types
of monopoles as dark matter, by studying whether they can cluster with galaxies
hosting magnetic fields. Finally, we apply our primordial bounds to monopoles
produced by the primordial magnetic fields themselves through the Schwinger e�ect
and derive additional conditions for the survival of the primordial fields.

This Ph.D. thesis is based on the works [1, 2, 3, 4], as well as on some preliminary
results, carried out during the Ph.D. program in Astroparticle Physics at SISSA.
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Chapter 1

Introduction

Magnetic monopoles have long been a topic of intense study since Dirac showed
in 1931 that their existence is consistent with quantum electrodynamics [5]. This
discovery was followed by ’t Hooft [6] and Polyakov [7] who found in the ’70s classical
soliton solutions of the classical field equation that correspond to monopoles. Such
solitonic monopoles are an inevitable prediction of theories of grand unification and
can be produced during phase transitions in the early universe [8, 9, 10]. Magnetic
monopoles would then exist as cosmic relics in the present time, since the magnetic
charge is conserved. The mass of solitonic monopoles is tied to the symmetry
breaking scale, which depends on the details of the theory and thus can vary over
many orders of magnitude. In particular, the breaking of the GUT symmetry
would lead to supermassive monopoles at m & 1016 GeV. Such magnetic monopoles
would retain the velocity distribution of particles in the galaxy at — = 10≠3, which
approximately corresponds to the virial velocity of the Milky Way and to the proper
motion of the Milky Way in the CMB rest frame [11]. Theories predicting later phase
transitions could have generated intermediate mass monopoles, that could be easily
accelerated to relativistic velocities by cosmic magnetic fields. Magnetic monopoles
can also be produced in the presence of strong magnetic fields through the magnetic
dual of the Schwinger e�ect [12, 13, 14]. Although magnetic monopoles have not
been detected so far, the search for monopoles continues to be an active field of
research with a potential to unlock new insights into the nature of our universe.

Magnetic monopoles would not only make the Maxwell equations symmetric
between electricity and magnetism, but also be related to the observed quantization
of the electric charge. The existence of magnetic monopoles implies in fact the
quantization of the electric charge via the Dirac quantization condition [5] as
eg = 2fin, n œ Z. Due to this condition, experimental searches over the years
have focused mainly on monopoles with a charge g ≥ 2fi/e. However, several
theoretical works have recently considered monopoles possessing a wide range of
charges. Minicharged monopoles with g π 2fi/e can be realized by having a physical
Dirac string. Such configurations can arise, for instance, from a kinetic mixing
between the Standard Model photon and a dark massive photon, in which case the
monopole’s charge under the visible magnetic fields is proportional to the mixing
parameter [15, 16, 17, 18, 19, 20]. Going to very large masses, magnetically charged
black holes can be seen as giant monopoles with small charge-to-mass ratio. The
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phenomenology of black holes with magnetic charge has recently been discussed
in [21, 22, 23, 24, 25, 26, 27, 28]. Such black holes are interesting as they cannot
Hawking evaporate beyond extremality, leading to the possibility for primordial black
holes with very small masses to survive until today. Both minicharged monopoles
and magnetic black holes have also been considered interesting candidates for dark
matter.

The flux of magnetic monopoles has been constrained in the past decades
by a series of terrestrial experiments. The first attempts to direct search for
magnetic monopoles mainly relied on the detection of an induced electric current in
superconducting rings [29]. However, more recently the most promising mechanism
of monopole detection is based on the energy released into calorimeters from the
interactions of a monopole crossing a target, either man-made or natural (like the
Earth atmosphere, oceans or polar ice) [30, 31, 32, 33, 34, 35, 36]. A subclass of GUT
monopoles can catalyze nucleon decay, and searches based on this process have been
performed, resulting in even stronger constraints [37, 38, 39, 40]; however, whether
monopole catalysis occurs or not depends on the details of the model. Moreover,
search for monopole pairs produced by the Schwinger e�ect in the presence of strong
magnetic fields has been carried on by the MoEDAL collaboration [41, 42], and later
by ATLAS [43].1 It is extremely di�cult to apply these methods for direct search to
minicharged monopoles because of the sensitivity of the detectors and the selection
algorithms used in the experiments. For magnetic black holes, their very large
masses combined with the constraint from the critical density of the universe restrict
their flux on Earth to be extremely tiny; hence, they are also minimally constrained
by direct searches. We should also note that, although a subclass of minicharged
monopoles can catalyze nucleon decay, whether monopole catalysis occurs depends
on the details of the model. Thus, the possibility of deriving indirect bounds from
astrophysical observations is even more compelling for monopoles possessing charges
that are very di�erent from the Dirac charge.

The relic abundance of magnetic monopoles is constrained by the requirement
that they do not exceed the critical density of the universe [8, 46, 47]. However, even
stronger constraints can be obtained from the magnetic fields present in the universe.
The idea behind this is that magnetic fields lose energy by accelerating monopoles,
hence requiring their survival imposes an upper bound on the monopole abundance.
This was first proposed by Parker, who derived an upper bound on the monopole
flux inside our Galaxy from the survival of the Galactic magnetic fields [48, 49, 50].
This limit, known as the Parker bound, was later extended to the survival of the seed
magnetic field of our Galaxy [51], as well as magnetic fields in galactic clusters [52].
In the literature, Parker bounds based on Galactic magnetic fields have been derived
under the assumption that monopoles have a velocity of v ≥ 10≠3, which corresponds
to the virial velocity or the peculiar velocity of the Milky Way Galaxy [11]. However,
the bounds strongly depend on the kinetic energy of the monopoles, and thus are
significantly a�ected by processes that accelerate the monopoles before they enter
the Galaxy. Intergalactic magnetic fields [53, 54, 55, 56], on the other hand, may

1Lower bounds on the monopole mass have been also obtained by analyzing this e�ect on the
surface of magnetars [18, 44], in heavy-ion collisions at the LHC [42, 44], and in primordial magnetic
fields [1, 45].
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not directly yield Parker-type bounds. This is because the accelerated monopoles
do not e�ectively dissipate their kinetic energy in the intergalactic voids, and thus
can end up returning the energy to the magnetic field. However, if the intergalactic
fields have a primordial origin, as suggested by various studies (see e.g. [57] for
a review), the monopoles could have shorted out the magnetic fields in the early
universe by transferring the magnetic energy into the cosmic plasma. Parker-type
bounds from primordial magnetic fields have thus been derived based on the fields’
survival during the radiation-dominated and the reheating epochs [1, 2, 58].

Cosmic magnetic fields have been observed in the universe on various scales, from
planets and stars to galaxies, galaxy clusters, filaments, and beyond, while their
origin still remains unknown. Magnetic fields of B ≥ 10≠6 G [59] have been observed
within spiral galaxies. We now have a lot of information on the structure of the
GMFs. In particular, thanks to a combination of a large dataset of rotation measures
(RMs) and polarization, Unger and Farrar [60] provided the latest model for the
coherent GMFs with great precision. Intergalactic magnetic fields (IGMFs), which
extend across the vast intergalactic voids between galaxies over cosmological scales,
are of significant importance for cosmic populations of magnetic monopoles. IGMFs
have not yet been detected, although we have very significant indirect evidences
which support their existence. They have been for long only constrained by upper
limits on the field amplitude, mainly from cosmological observations of the cosmic
microwave background as B . 10≠9 G. At present, upper bounds on the field
amplitude are set by several measurements. Among the most constraining and
conservative survives the one based on CMB anisotropies [61]. However, in the past
decade the existence of IGMFs has been suggested from gamma-ray experiments with
the non-observation around blazars of extended halos or delayed emission formed
by secondary photons [53, 54, 55, 56]. High-energy (TeV) extragalactic gamma rays
from the blazar sources should be reprocessed to lower-energy (GeV) gamma rays due
to cascading processes in the intergalactic space: ““ æ e+e≠ æ “+showers [62, 63].
A recent conservative lower bound was set by the MAGIC collaboration [56] and less
conservative bounds were set with Fermi-LAT [64]. Present and future observations
on “≠ray reprocessing from Gamma Ray Burst (GRBs) could also probe IGMF
strengths at a competitive level [65, 66]. These studies set lower limits on the IGMF
strength of B & 10≠15 G, if the correlation length ⁄ is of Mpc scale or larger. If ⁄
is much smaller than a Mpc, the lower limit further improves as ⁄≠1/2.2 Finally,
strong lower bounds on the magnetic field coherence length come from the decay
of magnetic fields due to magnetic di�usion [69]. See e.g. [63, 70] for reviews on
IGMFs.

The existence of intergalactic magnetic fields in intergalactic voids gives a strong
indication that the fields have their origin in primordial magnetic fields produced
in the early universe. Regarding the origin of the primordial magnetic fields, a
class of scenarios that have been extensively studied invokes an explicit breaking
of the Weyl invariance of the gauge field action, to excite magnetic fields during
cosmic inflation [71, 72] or in the subsequent epoch dominated by an oscillating

2Explanations of the blazar observations that do not invoke IGMFs have also been proposed, see
e.g. [67, 68].
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inflaton [73].3 A generic feature of these scenarios is that the magnetic fields are
generated while the universe is cold because after reheating completes the universe
turns into a good conductor and the magnetic flux freezes in. Hence the interplay
between primordial magnetic fields and monopoles may well have been important
from times prior to radiation domination.

The starting point of this thesis is the very simple observation that magnetic
monopoles are accelerated by the magnetic fields in the universe, at di�erent
scales and times. Although based on very simple physics, the relationship be-
tween monopoles and cosmic magnetic fields presents many interesting aspects
that can be used to improve our understanding of the characteristics of magnetic
monopoles. In the following, we review the main results of this thesis, which will be
addressed in detail in the following chapters.

In light of the observational results, in this study we analyze the acceleration of
magnetic monopoles in IGMFs and GMFs, which represent the main contributions
to the monopole velocity on cosmic scales, in a simplified model. Although IGMFs
are extremely weak compared with Galactic fields, they contribute significantly to
the monopole velocity by the large coherence length of the fields, accelerating the
monopoles in homogeneous fields along cosmological distances. We demonstrate that
IGMFs can easily accelerate the monopoles to relativistic velocities. 4 Moreover, we
show that the backreaction of the monopoles on the IGMFs can drastically a�ect the
acceleration process and must be taken into account for an accurate calculation of
the monopole velocity. As an application of our study of the monopole acceleration
in GMFs, we present a detailed derivation of Galactic Parker bounds for arbitrarily
charged monopoles (including magnetic black holes). We also derive conditions
for monopoles to be able to cluster with galaxies hosting magnetic fields, based
on which we examine whether the various types of monopoles can provide viable
dark matter candidates, being clustering a necessary condition. On the other hand,
studying monopole acceleration in IGMFs, we show how Galactic Parker bounds are
modified by taking into account the acceleration e�ects in the extra-galactic space.
In particular, we find that the bounds from the survival of seed Galactic magnetic
fields can be significantly relaxed in the presence of IGMFs within the observational
limits.

Adopting our new calculation of monopole acceleration in cosmic magneic fields,
we also recompute the most constraining experimental bounds on magnetic monopoles
as a function of the monopole mass. Experimental bounds are mostly computed as
a function of the monopole velocity at the detectors, because of the dependence of
the energy loss in the medium to the velocity of the particles. However, the relevant
information for testing theories of magnetic monopoles is the monopole flux in terms
of the monopole mass, which is directly related to the fundamental parameters of the
theory. The consistent framework of acceleration of magnetic monopoles in cosmic
magnetic fields that we describe in this work allows us to relate the monopole mass
to the velocity at the Earth surface. Analyzing the characteristics of each detector
and taking into account the e�ects of the energy loss of the monopoles while crossing

3Cosmological phase transitions can also give rise to primordial magnetic fields [74, 75].
4See also the earlier works [76, 77, 78] which discussed relativistic monopoles from Galac-

tic/intergalactic fields.
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the Earth, we can relate the monopole velocity at the Earth surface to the velocity
at the detectors, and then recast the experimental bounds in terms of the monopole
mass.

As we have already mentioned, the process of monopole acceleration extracts
energy from the fields. The energy that the monopoles extract from the primordial
magnetic field is transferred to the primordial plasma through scattering processes
with relativistic charged particles of the plasma [10]. With a monopole number
density large enough, this can cause the disappearance of the field. Thus, from
the survival of primordial magnetic fields until today, bounds similar to the Parker
bound for galactic magnetic fields can be derived. Such bounds from the primordial
magnetic fields during the radiation-dominated epoch were first considered by [58].
In this work, we present a comprehensive study of the Parker limit from primordial
magnetic fields. We generalize the analysis of [58] to arbitrarily charged monopoles
and evaluate the e�ects of monopole acceleration in primordial magnetic fields
throughout the post-inflation universe, starting from the reheating epoch when the
universe is dominated by an oscillating inflaton. We show that, depending on the
early cosmological history, the survival of primordial magnetic fields during reheating
imposes bounds on the monopole abundance that are more stringent than the Parker
limit from Galactic magnetic fields and the bound presented in [58]. We also present
a comprehensive study of primordial Parker-type bounds on the flux of magnetic
monopoles with arbitrary charge, including minicharged monopoles and magnetically
charged black holes. After deriving the flux bounds based on the survival of galactic
magnetic fields, seed magnetic fields, and primordial magnetic fields, we clarify the
range of applicability of each bound along the way and we compare the results.
We find that, depending on the type of monopoles, the strongest bound arise from
di�erent astrophysical systems. In particular, we show that while seed galactic
magnetic fields impose tight bounds on monopoles with a Dirac charge, minicharged
monopoles are strongly constrained by primordial magnetic fields, and magnetic
black holes by comparison with the dark matter density.

Although the magnetic fields in the universe today are rather weak, if they
have a primordial origin, in the early universe they could have been extremely
strong. Such strong magnetic fields can themselves produce monopole-antimonopole
pairs through the magnetic dual of the Schwinger e�ect [12, 13, 14], even in the
absence of any initial monopole population. Even superheavy monopoles can thus
be produced in primordial magnetic fields [45]. The pair production in turn depletes
energy from the magnetic fields, which, along with the subsequent acceleration of
the produced monopoles, induce a self-screening of the fields. Hence, we also apply
our generic bounds from the acceleration of monopoles in the primordial plasma to
such pair-produced monopoles, in order to obtain the most conservative condition
for the survival of primordial magnetic fields. The bound we derive is comparable
to those obtained in [45] from considerations of the magnetic field screening by the
Schwinger process, and the overproduction of monopoles.

This work is organized as follows. In Chapter 2 we review the theory of magnetic
monopoles. In particular, we present some of the models of magnetic monopoles,
the e�ective description of their interaction with matter, and the most relevant
mechanisms of monopole production. In Chapter 3 we analyze monopole acceleration
in the late universe, both in IGMFs and Galactic magnetic fields. We also study the
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e�ect of backreaction on the IGMFs from monopole acceleration. In Chapter 4 we
derive the Parker bound for the survival of galactic magnetic fields for arbitrarily
charged monopoles. We also describe how the Galactic Parker bounds are a�ected by
acceleration in IGMFs. In Chapter 5 we show how it is possible to recast terrestrial
experiments on magnetic monopoles in terms of the monopole mass for a given
scenario of cosmic acceleration. In Chapter 6 we describe the motion of arbitrarily
charged magnetic monopoles in the early universe and in the presence of primordial
magnetic fields. In Chapter 7 we apply the results for monopole acceleration in the
early universe to a condition for the survival of primordial magnetic fields, getting
new bounds on the average cosmic abundance of monopoles. In Chapter 8 we
describe the process of Schwinger pair production of magnetic monopoles in the early
universe and we derive conditions for the survival of the fields after the process of
production and acceleration of the monopoles. In Chapter 9 we describe a solution
to the monopole problem alternative to the standard inflationary paradigm, which
involves the production of the monopoles in the early universe as global monopoles.
We then conclude in Chapter 10.

Throughout this work we use Heaviside-Lorentz units, with c = ~ = kB = 1, and
use MPl to denote the reduced Planck mass (8fiG)≠1/2. We use Greek letters for
spacetime indices and Latin letters when we mean only the three spatial components.
We choose the metric tensor signature (+ ≠ ≠≠). We denote the monopole’s mass
by m, and the amplitude of the magnetic charge by g. The fundamental Dirac
charge of a magnetic monopole is written as gD = 2fi/e ¥ 21. Our analysis can be
applied to both elementary and solitonic monopoles.
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Chapter 2

Monopoles: theory, interaction,
production

In 1873, Maxwell proposed the fundamental dynamical equations describing the
theory framework of Electromagnetism, which is the Gauge Unified theory of Elec-
tricity and Magnetism. However, these equations are not symmetric under the
exchange of electric and magnetic fields. This asymmetry is a direct consequence of
the absence of magnetic charges: for some reason, in nature only isolated electric
charges are permitted. As one can imagine, the scientific community could not be
satisfied with some “a priori” motivation for the absence of magnetic charges. The
“symmetrization” of the Maxwell’s equations under an “electric–magnetic duality”
has therefore intrigued and captivated physicists as early as the late 19th Century.

Pierre Curie was the first to propose in 1894 the existence of a magnetic charge
and hence a magnetic current with the purpose of symmetrizing Maxwell’s equations.
Shortly after, Henri Poincaré used the expression for the force of a magnetic pole at
rest in the presence of a moving electric charge to explain the Birkeland experiment
in 1896, which observed the focusing of cathodic beams in a Crook’s tube in the
presence of a magnet. The field of a stationary isolated magnetic pole carrying
“magnetic charge” g corresponds to that of a magnetic monopole with that magnetic
charge

Bmono = g
r
r3

. (2.1)

For an electron with mass m, electric charge e, and position vector r, in the presence
of a magnetic field generated by a stationary magnetic pole carrying magnetic charge
g, the nonrelativistic Lorentz force law implies an acceleration

d2r
dt2

= eg

mc

1
r3

dr
dt

◊ r, (2.2)

where c is the speed of light in vacuum. The solution for the electron’s trajectory
r(t) corresponds to conical geodesics, thereby explaining the focusing e�ect observed
in the Birkeland experiment.

Later, Thomson [79] showed in 1904 that the total classical angular momentum
of the electron in the presence of a magnetic field pole is

L = mr ◊ dr
dt

≠ eg

c

r
r

. (2.3)
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The final term on the right comes from the interaction of the electron with the
magnetic field pole, computed from the volume integral of the Poynting vector

Leg = 1
4fic

⁄
d3rÕ !

rÕ ◊ (E ◊ Bmono)
"

= ≠ g

4fic

⁄
d3rÕ rÕ

rÕ
!
ÒÕ · E

"
= ≠eg

c

r
r

. (2.4)

Here E represents the electric field of the classical point-like electric charge of the
electron, which vanish at infinity, and we applied Maxwell’s equations to write
ÒÕ · E = 4fie”(3)(r ≠ rÕ).

It is interesting to note that by invoking the standard quantization rule for the
angular momentum of the electromagnetic field part, |Leg| must take integer or
half-integer values, and therefore

eg

c
= n

2 · 4fi~, n œ Z. (2.5)

This is essentially already the Dirac quantization condition of the monopole charge,
derived by Dirac over two decades later in a coherent quantum theory for magnetic
monopoles and which we will describe in the next section.

2.1 Models of magnetic monopoles
We now review the most important models of magnetic monopoles proposed over the
years. We start with the first model proposed by Dirac and then move to the more
recent ’t Hooft-Polyakov magnetic monopole. We will then briefly review the more
exotic model of the Calabi-Yau monopoles, as representative of the monopoles that
arise in compactified space-time geometries. For further details, see, for example,
[10, 47, 80, 81].

2.1.1 Dirac monopoles
Electric charges are always detected as integer multiples of the electron charge, indi-
cating a fundamental property of nature that demands explanation. In 1931, Dirac
[5] proposed that the existence of magnetic monopoles could provide a theoretical
motivation for the quantization of the electric charge.

In Dirac’s theory, the magnetic monopole is located at one end of a semi-infinite
one-dimensional solenoid that carries the magnetic flux. Such solenoid is usually
called the “Dirac string”. The magnetic field at the end of the solenoid resembles that
of a point-source for the magnetic field. In Dirac’s theory the magnetic monopole is
considered a new fundamental particle, and the Dirac string is therefore not physical.
This implies that no experiment should be able to detect the solenoid, and therefore
the quantum wave function Â(r) of the electron in the static magnetic field of a
monopole must be single-valued when it surrounds it.

Consider now an experiment of electron interference to detect the solenoid. The
experiment yields no result (that is, Â(r) is single valued) if the phase acquired
by the electron wave function when transported along a closed path around the
solenoid is trivial. Suppose now to have a point monopole with a magnetic charge
g at the origin, producing the radial magnetic field Bmono = g/r2. Let us also
assume conventionally that the solenoid extends along the positive z semi-axis. Dirac
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assigned to the magnetic field pole the singular electromagnetic potential A defined
as

Ò ◊ A = Bmono = g
r
r3

. (2.6)

In spherical coordinates and a suitable gauge, the only non-zero component of the
vector potential is

A„ = g(1 ≠ cos◊), (2.7)

where the A„ is defined as A · dr = A„d„. When encircling the Dirac string in a
closed loop l, at constant distances r far from magnetic monopole, the electron’s
wave function acquires a phase change as

Â(r) æ Â(r) exp
3

ie
j

l

A · dx
4

. (2.8)

Therefore, the electron interference experiment does not detect the solenoid if

e
j

l

A · dx = eg = 2fin, n œ Z, (2.9)

which from the expression in Eq. (2.7) leads to the Dirac quantization condition of
Eq. (2.5) (with ~ = c = 1).

According to the quantization condition, all magnetic charges must be integer
multiples of the Dirac charge gD = 2fi/e. We can reverse this argument as follows.
Assume there is a magnetic monopole with magnetic charge gD. Hence, a particle
with electric charge Q (and zero magnetic charge) can consistently exist only if
exp (i2finQgD) = 1, which means Q must be a multiple integer of 2fi/gD. Hence,
the existence of even only one magnetic monopole implies the quantization of the
electric charge.

The nonlocal Dirac string singularity, though invisible due to the Dirac quanti-
zation condition, significantly a�ects the formulation of e�ective field theories for
magnetic monopoles. To avoid the use of Dirac strings, Cabibbo and Ferrari [82],
Salam [83], and Zwanziger [84] developed a two-potential framework for classical
field theories of magnetic monopoles, where the first potential corresponds to the
standard photon, while the second one accounts for the magnetic potential of the
magnetic monopoles. In particular, Salam suggested that ‘photons’ corresponding
to the second potential should have di�erent charge conjugation and parity prop-
erties compared to the conventional photon. On the other hand, in Zwanziger’s
approach, to ensure that the physical degrees of freedom match those of the observed
electromagnetic photon, additional conditions are imposed on these two potentials.

2.1.2 ’T Hooft-Polyakov monopoles
A completely di�erent interpretation of magnetic monopoles, based on modern
gauge theories, was independently proposed in 1974 by ’t Hooft and Polyakov
[6, 7]. They showed for the first time that magnetic monopoles can arise from
non-trivial topologies of the vacuum manifold in simply connected symmetry groups
spontaneously broken by a Higgs mechanism. In their theories, the monopole
corresponds to a classical soliton solution of the equation of motion of a given
Lagrangian. This solution is commonly known as the ’t Hooft-Polyakov monopole.
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The most simple theory that presents the monopole solution is the Georgi-
Glashow SU(2) gauge theory model, wherein a spontaneous symmetry breaking
SU(2) æ U(1) is achieved through an adjoint Higgs triplet field. We now describe
the monopole solution of the model. The fields of the theory are a scalar triplet
„a(t, x) and a gauge field Aa

µ(t, x), with a = 1, 2, 3 an SU(2) index. The Lagrangian
density is

LÔ
≠g

= ≠1
4F a

µ‹F aµ‹ + 1
2(Dµ„a)(Dµ„a) ≠ 1

4⁄(„a„a ≠ v2)2. (2.10)

Here v is the vacuum expectation value of the theory and ⁄ (> 0) is the self-coupling
of the scalar. The field tensor F a

µ‹ is defined as

F a

µ‹ = ˆµAa

‹ ≠ ˆ‹Aa

µ + g̃‘abcAb

µAc

‹ , (2.11)

where ‘abc stands for the antisymmetric Levi-Civita symbol and g̃ is the charge of
the scalar under the gauge field. The covariant derivative Dµ„a is defined as

Dµ„a = ˆµ„a + g̃‘abcAb

µ„c. (2.12)

From the Lagrangian, we obtain the equations of motion for the gauge field and
the scalar

DµF aµ‹ = g̃‘abc
1
D‹„b

2
„c, (2.13)

DµDµ„a = ≠⁄
1
„b„b

2
„a + ⁄v2„a. (2.14)

We now choose the gauge condition Aa
0
(x) = 0 and we search for static solutions of

the equations of motion. We start from the spherically symmetric ansatz

„a(x) = ”iavh(r)xi

r
, Aa

i (x̨) = ‘aij (1 ≠ K(r)) xj

g̃r2
, (2.15)

with i, j = 1, 2, 3 and r = |x|. This is the ansatz for the so-called “hedgehog solution”,
which characterizes the monopole structure. We want our solution to recover at
spatial infinity the standard conditions for the vacuum space in the broken phase and
for the potential to correspond at that for a point source of the magnetic field, while
at the origin we require regularity of the solution. Notice also that the asymptotic
behavior for r æ Œ of the magnetic field must be given by:

B(r) ≥ 2fi

g̃

r
r3

, (2.16)

which corresponds to the magnetic field of a point source. Therefore, we ask for the
asymptotic behaviours

h(r) æ 1, K(r) æ 0 when r æ Œ, (2.17)

and
h(0) = 0, K(0) = 1. (2.18)
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Figure 2.1 Radial profiles for the Higgs field „a (blue curve), the gauge field Aa
i (red

curve) (as in Eq. (2.15)), and the energy contained in a sphere with radius r (orange
curve) (as in Eq. (2.20)), as a function of the distance r from the monopole center, in the
Georgi-Glashow model and in the Prasad-Sommerfeld limit ⁄/g̃2 æ 0 (see Eq. (2.19)).

It has been shown [85] that for this simple model an analytic solution can be derived
in the Prasad-Sommerfeld limit ⁄/g̃2 æ 0. This is the explicit result:

„a = (g̃vr coth(g̃vr) ≠ 1) xa

g̃r
, Aa

i = ‘aij

3
1 ≠ g̃vr

sinh(g̃vr)

4
xj

g̃r2
. (2.19)

One of the most important properties of the ’t Hooft-Polyakov model is that
their total energy (the rest mass, in flat spacetime) remains finite. The energy of a
static monopole in flat spacetime is obtained by integrating the T t

t component of
the monopole stress-energy tensor and is given by

E = 1
2

⁄
d3x

5
Ba · Ba + D„a · D„a + 1

2⁄(„a„a ≠ v2)2

6
. (2.20)

One can show that the configuration for which the static energy is minimized
corresponds to the monopole mass

m ≥ 4fi

g̃2
mV, (2.21)

where mV = g̃v is the mass of the vector boson.
In Figure 2.1 we show the solution in the Prasad-Sommerfeld limit for the Higgs

field „a, the gauge field Aa

i
as in Eq. (2.19) and the energy contained in a sphere
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with radius r, as a function of the distance from the monopole center, calculated
from Eq. (2.20).

One might wonder under which conditions a monopole solution exists for a given
lagrangian and a specific pattern of spontaneous symmetry breaking. Such conditions
must be derived from the underlying topological structure of the theory. Let us
consider an arbitrary gauge field theory with a gauge group G that is spontaneously
broken into a subgroup H. The order parameter for the breaking of the symmetry is
a multiplet of scalar fields �, which transforms under some representation of G. H
is the group that leaves the arbitrary chosen minimum �0 invariant. The manifold
of the equivalent minima of the theory can be parametrized as the coset space,

G/H = {� : � = ��0, � œ G} . (2.22)

We want to construct finite energy solutions of the classical field equations of
the theory, and therefore we are interested in the field configurations where �
approaches its minimum at spatial infinity. It is always possible for each finite-energy
field configuration to associate a mapping from the two-dimensional sphere S2 at
spatial infinity into the vacuum manifold G/H. If this map cannot be continuously
deformed to the trivial constant mapping that associates every point of S2 to
�0, the configuration represents a topological defect called “topological monopole”.
Mappings from S2 into G/H where the north pole of the sphere is mapped into
�0 lie in homotopy classes, which present a natural group structure. This group
is called �2(G/H), the “second homotopy group” of G/H. Topological monopoles
appear in the theory if �2(G/H) is nontrivial, that is, it has more than only one
element:

�2(G/H) ”= {0}. (2.23)
We now discuss the properties of this group, explaining how those are related to the
characteristics of magnetic monopoles in gauge theories.

First of all, �2(G/H) is a discrete group, whose elements are the possible
“topological charges” of the finite-energy field configuration. Topological charges
are conserved, and the classical field theory has a topological conservation law.
It is possible to show that the topological charge of the Georgie-Glashow model
corresponds to the magnetic charge of the monopole solution, that is stabilized by
the topological conservation law. This can be generalized to all the gauge theories
that end up with a broken group phase containing electromagnetism. Secondly,
it is possible to demonstrate the following important relation between the second
homotopy group of the coset group and the first homotopy groups of the groups G
and H, assuming G connected:

�2(G/H) ≥= �1(H0)/�1(G0), (2.24)

where we indicate with G0 and H0 the components of the groups G and H connected
to the identity. In the case when G is also simply connected, that is �1(G0) = {0},
the condition for the existence of monopoles reduces to

�2(G/H) ≥= �1(H0). (2.25)

Under this assumption, the presence of U(1) symmetries in the group H is a su�cient
condition for the existence of the monopole solution because �1(U(1)) ≥= Z. In



2.1 Models of magnetic monopoles 13

particular, this is the case of the SU(2) Georgie-Glashow model previously discussed,
where one can now easily compute

�2(SU(2)/U(1)) ≥= Z, (2.26)

where Z corresponds to the integer n in the Dirac quantization condition. This
means that the integer number labeling the elements of the second homotopy group
corresponds to the magnetic charge of the monopole in Dirac units.

The symmetry group correctly describing the phenomenology of the real world is
the non-compact group SU(3)c ¢ SU(2)L ¢ U(1)Y of the Glashow-Weinberg-Salam
Standard Model. Unfortunately, according to the previous discussion, finite-energy
monopoles are not expected in the framework of the electroweak symmetry breaking.
However, once the Standard Model group is embedded in a larger compact group
of some Grand Unified Theory (GUT), as SU(5) or SO(10), the existence of the
monopoles is unavoidable. The estimate of their mass parallels that of the Georgi-
Glashow model previously discussed, and hence the finite energy of the GUT
monopole is given by Eq. (2.21), where now g̃ represents the GUT gauge group
coupling, and mV is the vector boson mass of the spontaneously broken GUT theory,
much heavier than the electroweak gauge bosons. Typically, scales of GUT theories
lie in the range of 1014 ≠ 1016 GeV. Hence, such monopoles are out of the production
reach of current colliders, and one can only search for those produced from cosmic
sources. However, the existence of magnetic monopoles in GUTs requires only that
the U(1) of electromagnetism is embedded in a larger compact group. Therefore,
such a larger group can also result from a previous breaking of the GUT group. This
may lead to significantly lighter monopoles than in a typical GUT SU(5) theory.
An example is provided by the following symmetry-breaking pattern of an initial
SO(10) GUT group:

SO(10) ≠æ SU(4) ¢ SU(2) ¢ SU(2) ≠æ SU(3)c ¢ SU(2) ¢ UY (1). (2.27)

The first phase transition might occur at GUT scales 1015 GeV, close to the infla-
tionary scales, breaking the SO(10) symmetry into the cross product group SU(4) ¢
SU(2) ¢ SU(2). Hence, the second transition, where the SU(4) ¢ SU(2) ¢ SU(2)
group breaks into the Standard Model group, might occur at much lower scales,
as 109 GeV. In view of the mass relation in Eq. (2.21), one expects the resulting
monopole mass to be of order 109 GeV ◊ g̃, where g̃ is the coupling of the group in
SU(4) ¢ SU(2) ¢ SU(2) that is broken into the hyperchange U(1) group. In this
way, one obtains much lighter monopoles than the prediction of the original GUT
models.

2.1.3 Kaluza-Klein monopoles
There are many exotic models that provide the existence of monopoles. Among
them, those related to non-trivial geometries of compactified extra-dimensions are
of particular interest for modern theories as string theories.

One very important example is the Kaluza-Klein monopole which arise in the
Kaluza-Klein theories [86, 87, 88], which try to merge General Relativity with the
other gauge forces by the implementation of additional space-time dimensions in the
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theory. Indeed, the fundamental premise of Kaluza-Klein theories is that space-time
is not just 4-dimensional, but rather (4+n)-dimensional. The (4 + n) dimensional
spacetime is then described by a metric where the n additional dimensions are
spontaneously compactified into a compact manifold N with radii close to the Planck
length.

The classical vacuum solution of the Kaluza-Klein space-time is represented by
the manifold M4 ◊N , which is the direct product of the four-dimensional Minkowski
space M4 and the compact manifold N . Any classical spherically symmetric field
configuration that reaches the vacuum solution at spatial infinity therefore defines an
N bundle [89] over a sphere. This bundle locally looks like the direct product S2 ◊N .
However, if the N bundle over S2 cannot be continuously deformed to the global
direct product S2 ◊ N , then also the field configuration cannot be continuously
deformed to the vacuum solution and is classified as a topological soliton. We can
correlate every N bundle over S2 with a loop in the isometry group H. The N bundle
over S2 is topologically non-trivial only if the loops in H have a non-trivial winding
number. Consequently, all topological solitons possess a magnetic charges in the H
group.

The Kaluza-Klein monopole solution has been explicitly derived in the case of the
original five-dimensional Kaluza-Klein theory, where N is a circle and H is the U(1)
of electromagnetism. Among the most interesting characteristics of these monopoles,
we observe that monopole-antimonopole pairs have a di�erent topology than the
vacuum, and hence they cannot classically annihilate. Generally, it is expected that
the five dimensional Kaluza-Klein monopole would approximately have the mass

m ≥
Ô

8fi

e
MPl ≥ 5 ◊ 1019 GeV. (2.28)

2.2 E�ective field theories and interaction with matter
A comprehensive quantum field theory of monopoles has not yet been fully developed,
though several attempts have been made. The initial theoretic approaches for a
local field theory utilized two electromagnetic potentials, one for the electric field
and one for the magnetic field, but restricted to a single on-shell propagating degree
of freedom through specific constraints. However, this approach was classic in the
sense that it did not take into account second quantization. Although many formal
approaches have been proposed over time, none of them have reached a suitable
level for practical uses in discussing the interaction of monopoles with matter, which
is important for monopole detection e�orts. In particular, the results from collider
physics obtained by the experiments of CMS, ATLAS, and MoEDAL [90, 91, 92]
from photon fusion and Drell-Yan processes, although among the strongest lower
bounds on the monopole mass, su�er from very strong theoretical uncertainties and
are of not very practical use.1

Let us considering non-relativistic quantum scattering of a point particle with
electric charge e o� a monopole with magnetic charge g, for small relative velocities v

1As we discuss later, the situation is di�erent for the results obtained by MoEDAL [42] and
ATLAS [43] from pair production in strong magnetic fields.
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Figure 2.2 Feynman diagram for a fermion (Â, black line)-monopole (M, blue line)
scattering with the exchange of a photon (“, wavy line). The monopole vertex shows an
e�ective interaction and is defined only for small monopole velocities.

of the scattered monopoles. It has been shown [93] that the di�erential cross section
for small scattering angles is

d‡

d� ƒ
3

eg

2µv

4
2 1

(◊/2)4
. (2.29)

We note that once we define an e�ective velocity-dependent velocity for the monopoles,

ge� © gv, (2.30)

this result corresponds to the Rutherford di�erential cross-section for non-relativistic
electrically charged particles. It is therefore possible to describe the behavior of
a magnetic monopole in matter considering such a “velocity-dependent” e�ective
magnetic charge. E�ective U(1) gauge theories with the coupling in Eq. (2.30) have
been proposed to search for magnetic monopoles at colliders. In particular, one
can consider an e�ective U(1)em ¢ U(1)dual gauge field theory for the coupling of
monopoles and photons, where U(1)em represents the weakly coupled electromagnetic
gauge group and U(1)dual represents a strongly coupled gauge group, which presents
a velocity-dependent coupling. Unfortunately, the nonperturbative nature of the
magnetic charge, as a result of the Dirac quantization, invalidates any attempt to
use such an e�ective perturbative approach to interpret the data for relativistic
monopoles. On the other hand, in virtue of the velocity-dependent magnetic coupling,
such e�ective theories show a perturbative nature for small v π 1.

In Fig. 2.2 we show the Feynman diagram associated with a single-photon
exchange during a fermion-monopole scattering in the discussed e�ective U(1)em ¢
U(1)dual. One can demonstrate that in this theory the e�ective charge of the
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monopole is the one in Eq. 2.30, and therefore the diagram makes sense only for
small monopole velocities. The e�ective description mentioned above can also
describe the production of pairs of monopoles and antimonopoles from charged
matter, by rotating the graph of Fig. 2.2 by 90° counterclockwise.

Finally, we must note that the interpretation of the magnetic charge as a
velocity-dependent electric coupling is disputed, since at present there is no rigorous
justification for its validity. Additionally, the fundamental e�ective field theory
underlying monopoles production and/or scattering of matter is not yet fully un-
derstood. It has been also argued that because of the extended nature of the ’t
Hooft-Polyakov monopoles, with unknown inner structure, the cross-section for the
production of extended topological objects is greatly suppressed by the finite size
of the objects. This would completely invalidate attempts for the production of
monopole-antimonopole pairs at colliders.

At the end of this section, we must cite an important physical e�ect of GUT
monopoles interacting with matter, which defines some of the corresponding search
strategies. This is the so-called Callan-Rubakov e�ect [37, 38] which asserts that in
the presence of magnetic monopoles proton decay might be catalyzed, due to the
induced baryon number non-conservation. Callan and Rubakov have shown that
this e�ect is associated with dyonic excitations of the monopoles, resulting from the
anomalous electric charge Q = ≠e◊, which characterizes monopoles in CP-violating
theories due to the vacuum misalignment angle ◊. Rubakov explained the e�ect
highlighting that due to the axial anomaly, the monopole is not an eigenstate of
chirality or baryon number, which permits large cross sections of baryon-number and
chirality violative interactions in fermion-monopole scattering. Callan, on the other
hand, pointed out the existence of baryon-number-violating boundary conditions
when one regularizes the monopole solution with a finite core region and then
allows the core size to approach zero. He argued that these boundary conditions
reflect the complex physics inside the monopole core and result in unsuppressed
baryon-number-violating cross sections for fermion-monopole scattering. Due to
monopole-induced baryon-number-violating processes, proton decay can be enhanced
in the presence of a GUT monopole. Protons moving with a relative velocity v with
respect to the monopole can decay with a cross section roughly ‡v ≥ 10≠27cm≠2,
leading to a visible series of proton decays along the monopole’s path. However,
we underline that this is the property of only a subclass of the magnetic monopole
models and cannot be applied generically.

2.3 Magnetic monopole production
Considering the very heavy mass of standard magnetic monopoles, even assuming
their existence, it is really di�cult to find e�cient mechanisms of production. There
are essentially three possible ways for the production of a significant amount of
magnetic monopoles: production during phase transitions in the early universe,
thermal production, and production via strong magnetic fields through the magnetic
dual of the Schwinger e�ect. We now describe each of them in detail.
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2.3.1 Production during phase transition in the early universe
’T Hooft-Polyakov magnetic monopoles are topologically stable, but they are not
the minimum energy configurations. However, their production in cosmological
phase transitions seems unavoidable. The process that describes the cosmological
production is addressed as “Kibble mechanism” [94] and closely resembles the method
for generating topological defects in standard laboratory phase transitions.

The Kibble mechanism relies on the fact that during a cosmological phase
transition, any correlation length is invariably constrained by the particle horizon.
The particle horizon represents the farthest distance over which a massless particle
could have traveled since the Big Bang. This can be expressed as

dH = a(t)
⁄

t

0

dtÕ

a(tÕ) , (2.31)

where a is the scale factor describing the time-dependent expansion of the Universe.
If a is proportional to tn, with n > 1, then the horizon distance is given by
dH = t/(1 ≠ n). The correlation length › of the phase transition determines the
furthest range over which the Higgs field remains correlated and depends on the
specifics of the phase transition. This length changes with temperature, and is
connected to the temperature-dependent Higgs mass as › ≥ MH(T )≠1 ≥ T ≠1.
However, the limited horizon distance in standard cosmology means that during
the phase transition (t = tc, T = Tc, where “c” stands for “critical”), the vacuum
expectation value acquired by the Higgs field cannot correlate on scales larger than
dH ≥ H≠1 ≥ MPl/T 2. Hence, the particle horizon provides a strict upper limit for
the correlation length and is the scale used in the Kibble mechanism to estimate the
correlation length of the Higgs field.

Because of the finite correlation length of the Higgs field, if admitted by the
theory, non-trivial vacuum configurations such as those for magnetic monopoles
will necessarily be produced, with an approximated abundance of one per horizon
volume. Hence, one can estimate the number density of the monopoles as nM ≥
d≠3

H
≥ T 6

c /M3

Pl
. Considering that the entropy density at temperature Tc is s ≥ T 3

c , the
monopole-to-entropy ratio nM /s ≥ (Tc/MPl)3. Assuming no significant monopole-
antimonopole annihilation2 or entropy production, this ratio stays constant and
determines the current abundance of the monopole. For GUT monopoles we have
Tc ≥ 1014 GeV and mM ≥ 1016 GeV, and therefore the present monopole mass
density results to be about 1011 times the critical density of the universe, which
is clearly impossible. This is usually addressed as the “monopole problem”. The
monopole problem presents as optimal solution inflation, which should happen after
the phase transition, exponentially diluting the initial monopole-to-entropy ratio.

We now compute more carefully the abundance of magnetic monopoles expected
from the Kibble mechanism. Let us start with the scenario where the phase transition
is either second order or weakly first order. According to standard cosmology, the
age of the Universe when the phase transition occurs is approximately given by
tc ≥ 0.3g≠1/2

ú MPl/T 2
c . Taking as the correlation length dH ≥ tc, we get the monopole-

2Preskill in [8] has shown that monopole-antimonopole annihilation is significant only if nM /s &
10≠10. In that case, the ratio is reduced by annihilation to nM /s ≥ 10≠10.
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to-entropy ratio to be
nM

s
≥ 102

3
Tc

MPl

43

. (2.32)

From this result, assuming adiabatic expansion since T ≥ Tc, we compute the mass
density in units of the critical density as

�M h2 ≥ 1011

3
Tc

1014 GeV

43 3
mM

1016 GeV

4
. (2.33)

Therefore, considering that the magnetic monopole mass is of the order mM ≥
4fiTc/e, the safety condition �M < 1 translates into the upper limit for the critical
temperature of the phase transition, that is, Tc π 1011 GeV if the transition does
not happen before inflation. Based on the optimistic estimate provided for the
correlation length in the Kibble mechanism, a phase transition at Tc ≥ 1011 GeV
likely remains unsafe; should one develop an appealing unified model with Tc = 1011

GeV, a more precise estimation of the correlation length would thus be necessary.
In the case of strongly first-order phase transitions, the estimate of the monopole

abundance is slightly modified. In this case, the transition proceeds by bubble
nucleation at the nucleation temperature Tn π Tc, when the nucleation rate becomes
comparable to the Hubble rate H. Inside each bubble, the Higgs field is coherent;
whereas, in distinct bubbles, it has no correlation. Consequently, it is expected that
roughly one monopole forms per bubble. Specifically, as the Universe cools down
to temperature Tn, bubbles start to form, expand, and quickly occupy all space.
If rb represents the average bubble size during this phase, the expected monopole
density is nM ≥ r≠3

b
. Once the bubbles merge the Universe warms up again, and

the entropy density becomes s ≥ gúT 3
c . Therefore, the monopole-to-entropy ratio

becomes nM /s ≥ (gúr3

b
T 3

c )≠1. It has been shown in [95] that the bubble size can be
approximately expressed as

rb ≥
1
MPl/T 2

c

2 1
log

1
M4

Pl/T 4

c

22≠1

, (2.34)

resulting in a relic monopole abundance of

nM

s
≥

C3
Tc

MPl

4
log

A
M4

Pl

T 4
c

BD
3

. (2.35)

Therefore, with a first order phase transition the monopole problem is even worse.
Several potential solutions to the monopole problem have been proposed. Cur-

rently, as mentioned, the most compelling is the inflationary Universe model. The
rapid expansion that comes with inflation allows a small, sub-horizon region of space,
where the Higgs field is coherent, to extend across the entire observable Universe.
Consequently, according to the Kibble mechanism, there is less than one monopole
in the observable universe.

We cite also here two of the alternative solutions to the monopole problem
present in the literature. The first one is that if there is no complete unification of
the forces, for example, if G = H ¢ U(1), or if the full symmetry of the GUT is not
restored in the very early Universe (e.g., if the maximum temperature the Universe
achieved was less than Tc), then the monopole problem would not arise because
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monopoles would have never been produced. A second solution proposed in [96] is
based on the unusual symmetry breaking pattern SU(5) æ SU(3)¢SU(2)¢U(1) æ
SU(3) æ SU(3) ¢ U(1). The monopoles are produced during the first phase
transition, but between the second and the last phase transition, when the U(1)
of the electromagnetism is spontaneously broken, the Universe transitions to a
superconducting state. Consequently, the magnetic flux confines into flux tubes,
enhancing the annihilation rate of the monopoles and antimonopoles generated during
the first transition. In this scenario, the final monopole density is approximately one
per horizon volume by the conclusion of the superconducting phase, and therefore
possibly smaller than in the standard scenario.

2.3.2 Thermal production in the early universe
There is another contribution to the production of magnetic monopoles in the early
universe that is present even if the monopoles are not topological or if the Kibble
mechanism can be avoided. This mechanism corresponds to the production of
monopole-antimonopole pairs from the collisions of very energetic particles. This
can be interpreted as thermal production of monopoles in the thermal plasma of the
early universe. Thermal pair production leads to a relic monopole abundance of

nM

s
≥ 102

3
mM

Tmax

4
3

exp
3

≠2mM

Tmax

4
, (2.36)

with Tmax the highest temperature reached after the spontaneous symmetry breaking
[97]. Unfortunately, the amount of topological monopoles produced thermally is
inherently small, since topological monopole configurations do not exist in the theory
before the spontaneous symmetry breaking, that is for T & Tc.

Considering that the monopoles possess a mass mM ≥ 100 Tc, in general we have
mM /Tmax . 100, which leads to a thermally produced monopole mass density today
of �M . 10≠40, indicating a completely negligible amount of produced monopoles.
However, the number density of the produced monopoles is highly sensitive to the
ratio mM /Tmax. So, even a change of a factor 3 or 5 can cause a significant shift
in the expected production numbers. Moreover, in the case of non-topological
monopoles, the temperature Tmax might be much larger than the monopole mass. It
is therefore plausible that thermal monopole production could result in a significant
relic abundance of monopoles.

2.3.3 Pair production in strong magnetic fields
The last mechanism of monopole production that we describe here is based on
non-perturbative monopole-antimonopole pair production in strong magnetic fields.
This computation was first proposed by Schwinger in [12] for the pair production
of electrically charged particles in an external electric field. Although the original
computation invokes a weak coupling, and this is not the case for magnetic monopoles,
the authors of [13, 14] were able to derive an expression for the vacuum decay rate
due to monopole-antimonopole pair production in a static magnetic field through an
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instanton method. They compute the rate of pair production as

� = (gB)2

(2fi)3
exp

C

≠fim2

gB
+ g2

4

D

, (2.37)

where B is the magnetic field strength, and in this formula we take the charge g
non-negative. This result holds for both Dirac point-like monopoles and ’t Hooft-
Polyakov extended objects, under the condition that the loop radius of the instanton
solution R = m/(gB) is much larger than the typical radius of a magnetic monopole
r = g2/(4fim). We will discuss in detail the applicability of the formula in Chapter 8,
so we skip here a more complete discussion of the result.

Di�erently from the perturbative Drell-Yan process of monopole pair production
from electron-positron collision, the computation of the Schwinger production rate
completely relies on non-perturbative techniques. Therefore, the computation is
not a�ected by the large magnetic coupling of the monopoles to the photons, which
causes a series of problems in defining a consistent e�ective field theory for the
monopoles, as discussed in Section 2.2.

The expression for the pair production rate should be corrected by finite-
temperature e�ects when the inverse of the thermal bath temperature is less than
the instanton radius, 1/T < R. These thermal corrections to the monopole produc-
tion rate have been calculated in [98, 99]. Gravitational influences on monopole
production are less explored, but it is generally expected that the production rate
is a�ected when the curvature radius of spacetime is less than R. In a Fried-
mann–Robertson–Walker (FRW) universe, this is expressed as 1/H < R, where
H represents the Hubble expansion rate. These corrections would boost the pair
production rate, potentially allowing production via sphalerons if the temperature
and/or Hubble scale are su�ciently high.

The main contribution to the abundance of magnetic monopoles from pair
production in strong magnetic fields would come from primordial magnetic fields
[45], which could have been much stronger than known magnetic fields in the present
universe. However, there have also been studies on monopole pair production in
magnetars [44], and in heavy ion collisions at LHC [42, 43, 44], for small monopole
mass.
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Chapter 3

Monopole dynamics in the late
universe

In this chapter we describe the acceleration of the magnetic monopoles in cosmic
magnetic fields in the late universe. Magnetic monopoles are accelerated by magnetic
fields through the magnetic force as in the equation of motion

m
d

dt
(“v) = gB, (3.1)

with g the magnetic charge, B the magnetic field vector, m the monopole mass, v the
velocity of the monopoles and “ =

!
1 ≠ v2

"≠1/2. Cosmic magnetic fields accelerate
the magnetic monopoles at di�erent scales. We will show that, as a consequence of
the acceleration, depending on the strength of the fields and the monopole mass,
the population of cosmic magnetic monopoles can reach relativistic velocities.

In this analysis, we are interested in the velocity of the magnetic monopoles
when they enter the Milky Way and when they approach the Earth or the terrestrial
detectors. As we will discuss later, the incident velocity on the Milky Way is
important for the Galactic Parker bounds, while the velocity at the Earth for direct
search in terrestrial detectors.

For the computation of the incident velocity on the Milky Way, we must consider
only acceleration in extra-galactic magnetic fields. Among the di�erent extra-
galactic contributions, we will consider acceleration from intergalactic magnetic
fields (IGMFs) in cosmic voids, as we are interested in the average velocity of the
cosmic population of MMs. There can be additional extragalactic magnetic fields,
for instance fields in cosmic filaments, as well as fields transported by galactic winds
(see, e.g. [100, 101, 102, 103, 104]). However, it is expected that such fields do not fill
the entire universe [105], and thus can only a�ect the velocity of a small fraction of
the cosmic MMs. Moreover, although weaker than the magnetic fields that surround
the Milky Way, IGMFs accelerate magnetic monopoles over very long distances and
therefore constitute the main extra-galactic contribution to the monopole velocity.
Finally, the structure of the additional extra-galactic fields is not yet completely
understood, while we search for conservative results. We hence exclude additional
contributions from our analysis.

On the other hand, for the monopole velocity observed at the Earth it is also
necessary to consider the acceleration in Galactic Magnetic Fields (GMFs), integrated



3.1 Acceleration in Galactic magnetic fields 22

into a consistent framework together with IGMFs. This allows us to obtain a relation
between the mass and the velocity of the monopoles. In the following chapter, we
will use such a relation to recast velocity-dependent bounds into mass-dependent
ones.

3.1 Acceleration in Galactic magnetic fields
From the analysis of the dataset of RMs and polarization of extra-galactic photons, we
now have solid data-driven models for GMFs [60]. Observations provide GMFs with
average amplitude BG ≥ 2 ◊ 10≠6 G and coherence length ⁄G ≥ 1 kpc. Currently,
however, the motion of magnetic monopoles in the Milky Way has never been
simulated numerically in realistic models of the GMFs, and this goes beyond the
scope of this work. Hence, we will work in a simplified picture.

For this study, we introduce a method for the computation of monopole velocity
given a certain framework of cosmic magnetic fields. Our results can be easily
updated with di�erent choice of magnetic fields scenarios. We estimate the energy
gain of magnetic monopoles within the Milky Way modeling the GMFs as cells of
uniform magnetic field BG with size comparable to the coherence length of the fields
⁄G. Here we analyze the monopole acceleration as they pass through multiple cells.

The equation of motion of a monopole passing through the Nth cell with uniform
magnetic field BN is

m
d

dt
(“v) = gBN . (3.2)

Here g denotes the amplitude of the magnetic charge, i.e. g > 0, and thus the
monopole here has a positive charge. However, the following discussion can be
applied to negatively charged monopoles by replacing v æ ≠v. By integrating the
equation, one obtains the change in the monopole’s Lorentz factor in the Nth cell
as,

“2

N ≠ “2

N≠1 =
3

gB·N

m

42

+ 2gBN · vN≠1“N≠1·N

m
. (3.3)

Here ·N denotes the time it takes for the monopole to pass through the Nth cell, and
“N is the Lorentz factor when the monopole exits the Nth cell and simultaneously
enters the (N + 1)th cell; the same notation is used for the velocity vN . For N = 1,
then “N≠1 and vN≠1 in the equation are replaced by the initial Lorentz factor “i

and velocity vi upon entering the first cell.
We take all cells to have the same size ⁄G and field strength, i.e. B = |BN | for

all N . Thus, the kinetic energy of a monopole changes within each cell by at most
≥ gB⁄G. If the kinetic energy is initially large such that m(“i ≠ 1) ∫ gB⁄G, then
the energy barely changes in the first cell. On the other hand if m(“i ≠ 1) π gB⁄G,
the monopole is quickly accelerated so that upon exiting the first cell its energy
reaches m(“1 ≠ 1) ƒ gB⁄G, and thereafter the energy does not change much within
each cell. Hence independently of “i, we can write the crossing time for the second
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cell onward as1

·N ≥ ⁄G

vN≠1

for N Ø 2. (3.4)

Let us consider nonrelativistic monopoles for the moment. Then (3.3) at N Ø 2
can be rewritten using (3.4) as,

v2

N ≠ v2

N≠1 =
v4

mag

4v2

N≠1

+ v2

magB̂N · v̂N≠1. (3.5)

Here a hat denotes a unit vector: B̂N © BN /B and v̂N © vN /vN . We also
introduced

vmag ©

Û
2gB⁄G

m
, (3.6)

which corresponds to the velocity a monopole initially at rest obtains after passing
through a single cell. From the discussions above (3.4) it follows that v1 & vmag for
general vi.

Supposing for simplicity that the direction of the magnetic field is uncorrelated
from one cell to the next, the second term in the right-hand side of (3.5) sources a
random walk of v2 in each cell. As we are interested in the mean behavior of the
monopoles, let us ignore this term for now. Then we obtain a recurrence relation of
the form2

—N ≠ —N≠1 = 1
—N≠1

, (3.7)

where —N © 2v2

N
/v2

mag. Since —1 & 1, this recurrence relation has an approximate
solution,

—N ƒ
Ò

—2
1

+ 2(N ≠ 1). (3.8)

Hence the exit velocity from the Nth cell is obtained as

v2

N ƒ

Û

v4
1

+ N ≠ 1
2 v4

mag. (3.9)

If vi & vmag, the discussions from (3.4) onward apply also to N = 1, then one can
make the replacements v1 æ vi and N ≠1 æ N in the right-hand side of (3.9). On the
other hand if vi π vmag, then v1 ƒ vmag and (3.9) becomes v2

N
ƒ


(N + 1)/2 v2

mag.
In both cases, (3.9) can be rewritten at the order-of-magnitude level as

v2

N ≥

Û

v4

i
+ N

2 v4
mag. (3.10)

1The exact value of ·N also depends on the shape of the cell and the incident angle, however the
expression (3.4) is good enough for our purpose of obtaining an order-of-magnitude estimate of the
average energy gain.

2Here we are also roughly approximating the mean È1/v
2

N≠1Í by 1/Èv2

N≠1Í.
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In particular, the net change in the velocity squared in the limit of small and large
N takes the forms,

�v2

N = v2

N ≠ v2

i ≥

Y
_____]

_____[

N

4
v4

mag

v2

i

for N π 8
A

vi

vmag

B
4

,

Û
N

2 v2

mag for N ∫ 8
A

vi

vmag

B
4

.

(3.11)

In the first line the acceleration is tiny such that �vN . vi; this regime exists only
if vi & vmag. Eventually, the monopole is accelerated as in the second line, where
�vN & vi.

Let us discuss the second term in (3.5) which we have been ignoring. This sources
a random walk behavior of �v2 in each cell with step size Æ v2

mag, which after N cells
yields a root-mean-square distance of order

Ô
Nv2

mag. Now, consider p number of
monopoles with initial velocity vi, each passing through N cells in di�erent parts of
the galaxy. From the central limit theorem, the distribution of the average of �v2

N

with large enough p is approximated by a normal distribution with mean (3.11) and
standard deviation of

‡ ≥
Û

N

p
v2

mag. (3.12)

The expression (3.11) describes well the average behavior for the set of monopoles
if it is much larger than ‡. For this, the second line of (3.11) requires only p ∫ 1,
while the first line requires

pN ∫ 16
A

vi

vmag

B
4

. (3.13)

For relativistic monopoles (vN ƒ 1), the mean recurrence relation becomes

“2

N ≠ “2

N≠1 =
3

gB⁄G

m

42

, (3.14)

which yields

“N =

Û

“2
1

+ (N ≠ 1)
3

gB⁄G

m

42

. (3.15)

By following a similar analysis as for nonrelativistic monopoles, one arrives at results
that match at the order-of-magnitude level with (3.11) and (3.13), with v2 replaced
by 2(“ ≠ 1).

In summary, for both nonrelativistic and relativistic monopoles, the average
energy gain after passing through N cells takes the form

�EN = m(“N ≠ “i) ≥

Y
____]

____[

N

4
(gB⁄G)2

m(“i ≠ 1) for N π 8
3

m(“i ≠ 1)
gB⁄G

42

,

Û
N

2 gB⁄G for N ∫ 8
3

m(“i ≠ 1)
gB⁄G

42

.

(3.16)
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For this to describe well the average behavior of a set of monopoles, the first line
requires a su�ciently large number of monopoles p such that

pN ∫ 16
3

m(“i ≠ 1)
gB⁄G

42

, (3.17)

while the second line requires only p ∫ 1.
Let us now concentrate on magnetic monopoles that do not cluster with the

Milky Way. If we define R as the size of the magnetic region of the Galaxy, the
unclustered monopoles pass through N ≥ R/⁄G number of cells of uniform magnetic
fields before reaching the Earth. Hence, in this case we can simply estimate the
typical kinetic energy of a singly charged monopole accelerated in the Milky Way as

Ek,G = m (“G ≠ 1) ≥ gDBG⁄G

Ô
N ≥ 1011 GeV, (3.18)

where in the last term we assume BG = 10≠6 G, ⁄G = 1 kpc , and R ≥ 10 kpc.3
In Section 3.4, we will shown that the energy losses of magnetic monopoles

due to interactions with the interstellar medium are negligible. Therefore, in this
work, we ignore any dissipative energy loss for the monopoles. We also neglect
any backreaction on the GMFs because the flux values for which the e�ect is non-
negligible are excluded by the Galactic Parker bound [48, 49, 50], and not considered
in this analysis.

3.2 Acceleration in intergalactic magnetic fields
IGMFs in cosmic voids are constrained by a large number of experiments (see [62, 63]
for recent reviews). In particular, the amplitude of the IGMFs is constrained to be
below 10≠9 G from CMB observation [61, 106], and above 10≠16 G from gamma-ray
observatories [56, 64]. The coherence length is instead constrained to be larger
than ⁄I & 10≠5 Mpc from the combination of limits from early magnetic dissipation
bounds [69] and from gamma-ray observatories.

In this section, we derive the velocity of magnetic monopoles after they have
been accelerated in IGMFs for a Hubble time. We start by treating the IGMFs as
a background. Then we discuss the backreaction of magnetic monopoles on the
IGMFs, and evaluate the actual velocity that monopoles obtain in the intergalactic
space.

3.2.1 Acceleration in an intergalactic magnetic field background
In a way similar to the galactic case, we model IGMFs with coherence length ⁄I

by dividing the universe into cells of uniform field, with each cell having a size ⁄I.
We take the field strength in all cells to have the same value BI, and compute the
monopole velocity after a Hubble time. We will ignore numerical factors of order
unity.

3Magnetic monopoles that cross the Galaxy perpendicularly to the disk cross only 1-2 cells of
uniform magnetic fields before exiting the Galaxy. In these cases, Eq. (3.18) overestimates the
monopole kinetic energy by a factor ≥


R/⁄G ≥ 3. However, this does not a�ect our results

significantly.
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First cell

Let us consider all magnetic monopoles to be initially at rest at t = 0. They are
then accelerated by a uniform field in the first cell as

m“v = gBIt, (3.19)

where “ = 1/
Ô

1 ≠ v2. This can be used to compute the time it takes for the
magnetic monopoles to travel a distance ≥ ⁄I and exit the first cell as

�t1 ≥ max.

I

⁄I,
3

m⁄I

gBI

41/2
J

. (3.20)

The first term applies to magnetic monopoles that are accelerated to relativistic
velocities within the first cell, while the second term is for monopoles that stay
nonrelativistic.

Second cell onward

As the monopoles pass through multiple cells, they are deflected by the magnetic
field in each cell. Assuming the directions of the field to be uncorrelated from one
cell to the next, the average kinetic energy of each monopole grows with the number
of cells crossed N as

m(“ ≠ 1) ≥ gBI⁄IN
1/2. (3.21)

The detailed derivation is the same as that described in the previous section. In
particular, the second line of Eq. (3.16) applies to our current case with a vanish-
ing initial velocity. The number of cells each monopole crosses before becoming
relativistic can be read o� from (3.21) as,

Nrel ≥
3

m

gBI⁄I

4
2

. (3.22)

Using this, (3.21) can be rewritten as an expression for the product “v in the
nonrelativistic and relativistic regimes as,

“v ≥

Y
___]

___[

3
N

Nrel

41/4

for N < Nrel,

3
N

Nrel

41/2

for N > Nrel.

(3.23)

If m < gBI⁄I (i.e. Nrel < 1), the monopoles become relativistic within the first cell
and thus the second line in (3.23) holds for all N .

One sees from (3.23) that from the second cell onward, the monopole velocity
does not change in each cell by more than an order-unity factor. Hence the crossing
time for the Nth cell can be estimated as

�tN ≥ ⁄I

v
, (3.24)
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using the exit velocity v from the Nth cell as given in (3.23). For 2 Æ N < Nrel, the
first line of (3.23) yields

�tN ≥ ⁄I

3
Nrel

N

41/4

. (3.25)

At N > Nrel, the monopole is relativistic and hence the crossing time becomes

�tN ≥ ⁄I. (3.26)

These expressions for the cell-crossing time can also be used for the first cell
(N = 1), since (3.25) and (3.26) match respectively with the second and first terms
in (3.20). By adding up (3.25) and (3.26) for all cells, and using the approximationq

N

n=1
n≠1/4 ≥ (4/3)N3/4, one can express the elapsed time in terms of the number

of crossed cells as,

t =
Nÿ

n=1

�tn ≥
I

⁄IN
1/4

rel
N3/4 for N < Nrel,

⁄IN for N > Nrel.
(3.27)

One sees from this result that monopoles with m > gBI⁄I become relativistic after
a time period of trel ≥ ⁄INrel.

Velocity after a Hubble time

We are now ready to evaluate the velocity of monopoles that have been accelerated
in an IGMF background. We consider the acceleration over a Hubble time 1/H0,
and hence ignore cosmic expansion. In Appendix A we show that, even if the IGMF
are remnants of primordial fields and the monopoles have been accelerated since
the early universe, our estimate of the final monopole velocity is modified only by
order-unity factors.

Homogeneous IGMF. If the magnetic coherence length is larger than the Hubble
radius, ⁄I > 1/H0, then the field is e�ectively homogeneous and the final value of
“v is obtained by substituting t = 1/H0 into (3.19). This yields

(“v)
0

≥ gBI

mH0

. (3.28)

Inhomogeneous IGMF. With sub-horizon coherence lengths, ⁄I < 1/H0, the
present-day velocity takes the forms,

(“v)
0

≥

Y
__________]

__________[

gBI⁄I

m

1
(⁄IH0)1/2

for m <
gBI⁄

1/2

I

H1/2

0

,

3
gBI⁄I

m

42/3 1
(⁄IH0)1/3

for gBI⁄
1/2

I

H1/2

0

< m <
gBI

⁄IH2
0

,

gBI

mH0

for m >
gBI

⁄IH2
0

.

(3.29)

These can be understood as follows. Firstly, if the monopole mass is as large as
m > gBI/⁄IH2

0
, then one sees from (3.20) that �t1 > 1/H0. The monopoles thus

do not exit their first cells, and the final velocity is given by the same expression
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as (3.28). Lighter monopoles, on the other hand, pass through multiple cells. However
if �t1 < 1/H0 < ⁄INrel, then the monopoles on average stay nonrelativistic after a
Hubble time. Hence the final velocity can be obtained by combining the first lines
of (3.23) and (3.27) with t = 1/H0; this yields the second line of (3.29). Finally,
for even lighter monopoles satisfying 1/H0 > ⁄INrel, the second lines of (3.23) and
(3.27) yield the relativistic velocity in the first line of (3.29).

In the above discussions we have ignored the energy loss of magnetic monopoles
due to interactions with the intergalactic medium and radiative emissions. In
Section 3.4 we will show that these e�ects are actually negligible.

3.2.2 Backreaction on intergalactic magnetic fields
We have thus far treated the IGMFs as a background. However, magnetic monopoles
extract energy from the IGMFs as they are accelerated, and hence the total kinetic
energy of the monopoles cannot become larger than the initial energy of the IGMFs.
We therefore have a constraint,

nm(“ ≠ 1) <
B2

I

2 , (3.30)

where n is the average number density of magnetic monopoles in the universe. This
sets the maximal Lorentz factor of the monopoles,

“max ≠ 1 = B2

I

2nm
, (3.31)

from which one can also obtain the maximal velocity vmax.
If the velocity v0 given in Eqs. (3.28) or (3.29) is much smaller than vmax, the

backreaction on the IGMFs is negligible. On the other hand if the monopole velocity
approaches vmax, then it implies that the energy of the IGMFs has been transferred
to the monopoles. However, monopoles do not e�ectively dissipate the gained energy
into the intergalactic medium as shown in Section 3.4, and thus they eventually
return the energy to the IGMFs. This initiates an energy oscillation between the
IGMFs and the population of magnetic monopoles [58], with the oscillation-averaged
monopole velocity being of order vmax. We expect the IGMF-magnetic monopole
oscillation to avoid Landau damping; see Appendix B for discussions on this point.

The monopole velocity in the above two cases can collectively be written as

vCMB = min. {v0, vmax} . (3.32)

Here we used the subscript “CMB” to highlight that this is the monopole velocity
with respect to the CMB rest frame. We also write the monopole flux in the CMB
rest frame per area per time per solid angle4 as FCMB = nvCMB/4fi.

In the case where v0 > vmax, the expression (3.31) for the maximal velocity can
be rewritten in terms of the flux as

“max ≠ 1 = B2

I
vmax

8fimFCMB

. (3.33)

4This expression for the flux implicitly assumes the monopoles to be moving in random directions,
which is not the case if the IGMF is homogeneous. However this is good enough for obtaining
order-of-magnitude results.
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Figure 3.1 Threshold value of the monopole flux beyond which the backreaction to the
IGMFs becomes significant. The IGMF amplitude is varied as BI = 10≠9 G (blue),
10≠12 G (purple), 10≠15 G (red), with the correlation length ⁄I > 1/H0 (solid) and
⁄I = 1 Mpc (dashed). The monopole charge is fixed to g = gD.

This can be solved in the nonrelativistic and ultrarelativistic limits to give the
product (“v)max as,

(“v)max ƒ

Y
___]

___[

B2

I

4fimFCMB

for B2

I π 8fimFCMB,

B2

I

8fimFCMB

for B2

I ∫ 8fimFCMB.

(3.34)

Notice that vmax is independent of the IGMF coherence length, while it depends on
the monopole flux (or the density).

Writing the threshold value of the monopole flux beyond which the backreaction
to the IGMFs becomes significant as FBR, this can be obtained by solving v0 = vmax.
For ⁄I > 1/H0, matching Eqs. (3.28) and (3.34) yields

FBR ≥ BIH0

4fig
. (3.35)
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(a) BI = 10≠15 G, ⁄I = 1 Mpc.
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(b) BI = 10≠15 G, ⁄I > 1/H0.
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(c) BI = 10≠10 G, ⁄I = 1 Mpc.
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(d) BI = 10≠10 G, ⁄I > 1/H0.

Figure 3.2 Velocity of magnetic monopoles accelerated in IGMFs, in the CMB rest frame.
The contours show log

10
(“v)CMB. The monopole charge is fixed to g = gD, while the

IGMF amplitude and coherence length are varied in each panel. Dashed gray lines
highlight where vCMB = 10≠3.

For ⁄I < 1/H0, Eqs. (3.29) and (3.34) give

FBR ≥

Y
__________]

__________[

BI

4fig

3
H0

⁄I

41/2

for m <
gBI⁄

1/2

I

H1/2

0

,

1
4fi

A
B4

I
H0

g2m⁄I

B
1/3

for gBI⁄
1/2

I

H1/2

0

< m <
gBI

⁄IH2
0

,

BIH0

4fig
for m >
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0

.

(3.36)
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Figure 3.3 monopole velocity in the CMB rest frame for fixed values of the monopole
flux: FCMB = 10≠30 cm≠2 sr≠1 s≠1 (solid lines) and 10≠20 cm≠2 sr≠1 s≠1 (dashed). The
IGMF strength and coherence length are taken as BI = 10≠15 G and ⁄I = 1 Mpc for the
red lines, while BI = 10≠10 G and ⁄I > 1/H0 for the blue lines. The monopole charge is
fixed to g = gD.

We note that since the two expressions in (3.34) di�er only by a factor 2, here we
just used the first line to obtain order-of-magnitude estimates of FBR.

In Figure 3.1 we plot FBR as a function of the monopole mass. The IGMF
amplitude is varied as BI = 10≠9 G (blue), 10≠12 G (purple), 10≠15 G (red), with the
correlation length taken as ⁄I > 1/H0 (solid lines) and ⁄I = 1 Mpc (dashed lines).
The solid and dashed lines with the same color join at large masses. The charge is
fixed to g = gD. As one goes toward smaller masses each curve drops by a factor 2;
this corresponds to the di�erence between the nonrelativistic and ultrarelativistic
regimes as shown in Eq. (3.34). The displayed results match with the approximate
expressions (3.35) and (3.36) up to order-unity factors. One sees that FBR increases
for larger BI, since the IGMF becomes more resilient to the backreaction from the
monopoles. FBR at small masses increases also for smaller ⁄I, since the monopole
acceleration becomes less e�ective.

3.2.3 Summary of monopole acceleration in IGMFs
In Figure 3.2 we show the value of (“v)CMB in Eq. (3.32) as a function of the
monopole mass and flux in the CMB rest frame. We display four combinations of the
IGMF strength (BI = 10≠15 G and 10≠10 G) and correlation length (⁄I = 1 Mpc and
⁄I > 1/H0). The monopole charge is fixed to g = gD. The values of FCMB for which
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the contour lines of (“v)CMB are seen to bend correspond to the threshold FBR,
which we showed in Figure 3.1. In the lower regions of each plot where FCMB < FBR,
the backreaction on the IGMFs is negligible and we have vCMB = v0, which is
independent of the monopole density. On the other hand in the upper regions where
FCMB > FBR, the backreaction is significant and vCMB = vmax; here the monopole
velocity depends on the flux but is independent of the IGMF coherence length,
as shown in (3.34). The dashed gray line in the plot shows where vCMB = 10≠3.
This value is on the same order as the peculiar velocity of the Milky Way. We will
comment in the following paragraphs why this value is important.

In Figure 3.3 we show (“v)CMB as a function of the monopole mass for fixed
values of the flux: FCMB = 10≠30 cm≠2 sr≠1 s≠1 (solid lines) and 10≠20 cm≠2 sr≠1 s≠1

(dashed). The IGMF strength and coherence length are taken as BI = 10≠15 G and
⁄I = 1 Mpc for the red lines, while BI = 10≠10 G and ⁄I > 1/H0 for the blue lines.
The flux on the solid lines satisfy FCMB < FBR, and thus the monopole velocity is
set by v0. On the other hand, the dashed lines have FCMB > FBR and the monopoles
move at vmax.

The above results show that, due to the acceleration in IGMFs, intermediate to
low mass monopoles can become relativistic. This remains true even when taking
into account the backreaction on the IGMFs, albeit with a reduction in the monopole
velocity.

The peculiar velocity of the Milky Way Galaxy with respect to the CMB rest
frame, vp ≥ 10≠3, sources a relative velocity between the cosmic magnetic monopoles
and the Galaxy. However if the monopole velocity vCMB obtained in the IGMFs
is even larger, this would dominate the relative velocity. Therefore, the monopole
velocity in the rest frame of the Milky Way can be written as

vI = max. {vp, vCMB} . (3.37)

We also denote the incident flux of monopoles on the Milky Way by FI = nvI/4fi;
this is equivalent to the monopole flux inside the Milky Way from the conservation
of the number of magnetic monopoles. In Figure 3.2 we showed the combination
of m and FCMB for which vCMB ≥ vp by the dashed gray line. On the left of the
gray line where vCMB > vp, the quantities vCMB and FCMB are identical to vI and
FI, respectively. On the other hand, on the right of the gray line where vCMB < vp,
the monopole velocity in the Milky Way’s rest frame becomes vp. Therefore, contour
plots of (“v)I in the m-FI plane are the same as in Figure 3.2 except for that on the
right of the gray dashed lines, (“v)I is fixed to a constant value of (“v)p.

3.3 Comparison of the acceleration mechanisms
In this section we study the velocity of magnetic monopoles arriving on Earth, by
focusing on monopoles that are not clustered with the Milky Way. Such unclustered
monopoles are first accelerated in the IGMFs, then after entering the Milky Way
they are further accelerated in the Galactic magnetic fields.

Considering the acceleration in both GMFs and IGMFs, the monopole velocity
at the Earth is

(“v)
E

= max {(“v)
I
, (“v)

G
} . (3.38)
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(b) BI = 10≠15 G.

Figure 3.4 monopole velocity on Earth evaluated by taking into account the acceleration
in intergalactic and Galactic magnetic fields. The contours show log

10
(“v)E. The

parameters for the Galactic magnetic field are fixed to BG = 10≠6 G, ⁄G = 1 kpc, and
R = 10 kpc. The IGMF is taken as homogeneous (⁄I > 1/H0), with the strength varied
in each panel. The monopole charge is fixed to g = gD. The color scheme is the same as
in Figure 3.2. The gray region is excluded by the Galactic Parker bound.

The dominance of one of either terms depends on the monopole mass and flux, and
the characteristic of the considered IGMFs, as explained in the previous sections.
In particular, the dependence on the monopole flux comes from the e�ect of back-
reaction on IGMFs. We note that the velocity of the Earth with respect to the
Milky Way is ≥ 10≠3, which is comparable to the Milky Way’s peculiar velocity vp.
Since vE Ø vp as is clear from Eq. (3.37), the monopole velocity in the rest frame
of the Milky Way matches with that in the rest frame of Earth, at least at the
order-of-magnitude level. Hence vE can also be considered as the relative velocity
between the monopoles and the Earth. For the same reason, and also because the
flux of unclustered monopoles is conserved inside the Galaxy, the monopole flux
incident on the Milky Way FI is the same as that on Earth FE, i.e. FI = FE. We
will use the expression in Eq. (3.38) in the following chapters to relate the monopole
velocity at the Earth to the monopole mass.

In Figure 3.4 we show the values of vE in Eq. (3.38) as a function of the monopole
mass and flux on Earth. Here we assume a homogeneous IGMF with its amplitude
varied as BI = 10≠10 G (left) and 10≠15 G (right), while the parameters for the
Galactic magnetic field are taken as BG = 10≠6 G, ⁄G = 1 kpc, and R = 10 kpc. The
monopole charge is fixed to g = gD, and the color scheme follows that in Figure 3.2.
The left plot exhibits a variety of behaviors of the monopole velocity. In the upper
region, the acceleration by Galactic fields is dominant over that by IGMFs; here
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the velocity is set by vG and does not depend on the monopole flux. In the central
region, the acceleration by IGMFs dominates with the monopoles’ backreaction being
significant; hence the velocity is given by vmax. In the lower region, the acceleration
by IGMFs dominates with negligible backreaction; the velocity is set by v0 which
is independent of the monopole flux. In the right part, the velocity is set by the
peculiar velocity of the Milky Way, vp ≥ 10≠3. On the other hand in the right plot
with a weaker IGMF, the acceleration from Galactic fields completely dominates
over that from IGMFs for all values of the monopole flux. From Eq. (3.18), the
mass dependence of the velocity induced by the Galactic field can be read o� as
(“v)G Ã m≠1 at small masses where vG ƒ 1, while (“v)G Ã m≠1/2 at large masses
where vG π 1; these behaviors are actually seen in the plots.

We note again that upon evaluating the acceleration in Eq. (3.18), we have
ignored the backreaction of the magnetic monopoles on the Galactic fields. In reality,
the monopole flux FE (= FI) cannot exceed the Galactic Parker bound [48, 49, 50],
otherwise the monopoles would short out the Galactic fields and contradict with
observations. In the plots, the regions excluded by the Galactic Parker bound are
shown in gray.

In Figure 3.5 we show the monopole velocity at the Earth of Eq. (3.38) as a
function of the monopole mass for di�erent values of the monopole flux. We consider
four di�erent benchmark scenarios for the IGMFs, assuming parameters within the
experimental constraints. For the GMFs we consider BG = 10≠6 G, ⁄G = 1 kpc, and
R = 10 kpc, and the monopole charge is fixed to g = gD. The monopole speed is
limited from below by the peculiar velocity of the Milky Way, vp ≥ 10≠3, which is
the proper velocity of the Galaxy in the rest frame of the CMB. In Fig. 3.5a, we
start showing an IGMF scenario for which the Galactic contribution to the monopole
velocity is always dominant. By comparing Eqs. (3.18) and (3.37) in the relativistic
case, the condition for the domination of the Galactic contribution can be expressed
as

BI . 5 ◊ 10≠11 G
3 1 Mpc

min (⁄I, 1/H0)

41/2

. (3.39)

In this case, the mass-speed relation is set by the single relation displayed with a
solid red line for all the possible monopole fluxes and monopoles are relativistic for
masses smaller than 1012 GeV.

On the other hand, Figs. 3.5b, 3.5c and 3.5d show the cases of IGMFs close to
the experimental upper limits of the magnetic field strength (Fig. 3.5d: BI = 10≠9 G,
⁄I & 1/H0; Fig. 3.5b: BI = 10≠10 G, ⁄I & 1/H0; Fig. 3.5c: BI = 10≠9 G,
⁄I = 1 Mpc). In these cases, once one fixes the parameters of the IGMFs, the
question whether the most significant contribution to the monopole velocity comes
from GMFs or IGMFs depends on both the mass and the flux of the magnetic
monopoles. In general, the bottom red solid curve signals that the acceleration in
GMFs is predominant, while any departure from that regime means that IGMF
acceleration is the dominant contribution and is shown in blue curves. We now
discuss each of the possible cases in details.

For monopole fluxes in the largest allowed limit (F & 10≠18 cm≠2sr≠1s≠1 in panel
3.5b, 3.5c and F & 10≠20 cm≠2sr≠1s≠1 in panel 3.5d), the monopole velocity receives
the dominant contribution from the acceleration in GMFs. The correspondent
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Figure 3.5 monopole velocity on Earth as a function of the monopole mass evaluated
by taking into account the acceleration in intergalactic and GMFs. The results are
shown for di�erent monopole fluxes, and the amplitude BI and coherence length ⁄I of
IGMFs vary in each panel. The parameters for the Galactic magnetic field are fixed at
BG = 10≠6 G, ⁄G = 1 kpc, and R = 10 kpc. The monopole charge is fixed to g = gD.
We show in black dotted lines the thresholds of the IceCube (IC), IACT, and Auger
(PAO) experiments for the detection of magnetic monopoles.

mass-velocity relation is given by the bottom red solid curve and is independent
on the monopole flux and the characteristic of the IGMFs. In this case, monopoles
move at relativistic velocities (“— & 1) for masses larger than 1012 GeV.

For smaller monopole fluxes (F . 10≠22 cm≠2sr≠1s≠1 in panel 3.5b, F .
10≠23 cm≠2sr≠1s≠1 in 3.5c, and F . 10≠20 cm≠2sr≠1s≠1 in panel 3.5d, the ac-
celeration in IGMFs dominates over that in GMFs and there is no back-reaction
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on the IGMFs. In this case, the mass-velocity relation is shown in the plots by
the upper solid blue curve and is still independent on the monopole flux. In this
case, magnetic monopoles move at relativistic velocities for masses smaller than a
maximum mass in the interval 1013 ≠ 1015 GeV, depending on the IGMFs.

For intermediate monopole fluxes between the two extreme cases discussed above,
the dominant contribution to the monopole velocity can come from the acceleration
in IGMFs, but the mass-velocity relation shows a flux dependence. This is because for
monopole flux large enough the energy transferred from the fields to the monopoles
is comparable with the total energy of the IGMFs and therefore backreaction on the
fields is nonnegligible.

In Figure 3.5 we also show the speed thresholds for monopole observation
of the detectors considered for this analysis. For monopole fluxes larger than
≥ 10≠19 cm≠2sr≠1s≠1, the Galactic contribution to the velocity is always dominant
over that from IGMFs, or at most comparable at the order of magnitude (solid red and
dashed blue curves in the plots). For these values of the monopole flux, we will assume
for the monopoles the kinetic energy in Eq. (3.18). As we discuss in Chapter 5, direct
search limits constrain the monopole flux to values & 10≠21 cm≠2sr≠1s≠1. For such
fluxes, the intergalactic contribution is subdominant for amplitudes BI < 10≠9 G,
or at most comparable at the order of magnitude (see Figures 3.5b and 3.5c).
However, as shown in Figure 3.5d, in the extreme case of BI = 10≠9 G and ⁄I &
1/H0, intergalactic acceleration gives a significant contribution to the monopole
velocity. Therefore, in this case, the experimental limits on the flux below ≥
10≠19 cm≠2sr≠1s≠1 should also take into account acceleration in IGMFs. We will
discuss this in detail later.

We have demonstrated that the monopole velocity on Earth can be governed
either by the acceleration in IGMFs, in Galactic fields, or by the Milky Way’s peculiar
velocity. Which of them dominates depends on a number of parameters, including
the monopole flux, mass, and the relative strength of the intergalactic and Galactic
fields.

3.4 Energy loss and radiative emission of monopoles
In this chapter we have ignored any dissipative energy loss for the monopoles. We
now show that energy losses due to interactions with a nonrelativistic plasma and
the interstellar medium are really negligible, as well as radiative emissions.

3.4.1 Energy loss of fast monopoles in a nonrelativistic plasma
A magnetic monopole traveling in a plasma loses its kinetic energy as it scatters
o� electrically charged particles. We evaluate the drag force experienced by the
monopole by following the procedure outlined in Section 14.2 of [10]. However, here
we consider the plasma to consist of nonrelativistic particles, and focus on cases
where the monopole velocity is much larger than the velocities of the individual
plasma particles in the rest frame of the plasma.

We start in the rest frame of a magnetic monopole with charge g. The magnetic
field around the monopole is given by B = gr/4fir3. (In this section g is not
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necessarily the charge amplitude and thus can be negative.) Hence the equation of
motion of a particle with electric charge q, velocity u, and momentum p is

dp

dt
= qg

4fi

u ◊ r

r3
. (3.40)

Integrating this yields the total change in the momentum of the particle scattered
by the monopole’s magnetic field. Focusing on small-angle scatterings, and hence
ignoring the e�ect of the magnetic field on the particle’s trajectory, one obtains

�p = |qg|
4fi

⁄ Œ

≠Œ
dt

u sin „

r2
= |qg|

2fib
, (3.41)

where „ is the angle between r and u, and b is the impact parameter. Upon moving
to the far right-hand side we used sin „ = b/r, and r =


(ut)2 + b2 with t = 0

corresponding to when the distance between the particle and the magnetic monopole
is minimized. The scattering angle is ◊ = �p/p, with which the di�erential cross
section is obtained as

d‡

d◊
= ≠2fib

db

d◊
= (qg)2

2fip2◊3
. (3.42)

We assume that in the rest frame of the plasma, the monopole velocity v has a
much larger amplitude compared to the velocities of the individual plasma particles.5
Then in the monopole rest frame, the particles can be considered to move with a
universal velocity u = ≠v, and the scatterings with a collection of the particles
induce the magnetic monopole to experience a force,

F = “np

⁄
d◊

d‡

d◊
up(1 ≠ cos ◊)

= C(qg)2np

4fimp

u

u
.

(3.43)

Here mp represents the mass of the plasma particles, and np is the particle number
density in the plasma rest frame; note that in the monopole rest frame the number
density is enhanced by the Lorentz factor “ = 1/

Ô
1 ≠ v2. The particle momentum

is written as p = mp“u, and we used that the average momentum transfer for a
scattering with a small angle ◊ is p(1 ≠ cos ◊). Upon moving to the second line, we
have written the integral over small angles as

C = 2
⁄

d◊
1 ≠ cos ◊

◊3
ƒ

⁄
d◊

◊
= ln ◊max

◊min

. (3.44)

The upper limit of integration ◊max can be set to unity as we are focusing on small-
angle scatterings. The lower limit ◊min arises from the fact that the above calculation
based on single-particle scatterings breaks down if the impact parameter b becomes
larger than the mean free path of the particles in the plasma and/or the Debye length.
Here we do not evaluate the detailed value of ◊min since F is only logarithmically
sensitive to it.

5A large relative velocity between the monopole and the plasma particles also supports the
assumption of an unperturbed particle trajectory.
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The expression for the drag force can be covariantized by noting that the force
vector Fµ should, in the monopole rest frame, have spatial components matching
with (3.43), along with a vanishing time component since the monopole’s energy
does not change. These are satisfied by a force vector with the form,

Fµ = ≠C(qg)2np

4fimp

1
vrel

; uµ

u‹v‹
+ vµ

<
, (3.45)

where we use (≠ + ++) for the metric signature, vµ is the four-velocity of the
monopole, uµ is the four-velocity of the plasma, and vrel =


1 ≠ (u‹v‹)≠2 denotes

the amplitude of the relative velocity between the monopole and the plasma (in the
monopole rest frame, the spatial components of uµ reduce to “u, and vrel = u.)

The covariant equation of motion of a magnetic monopole with mass m in
electromagnetic fields is given by

mv‹Ò‹vµ = gF̃ µ‹v‹ + Fµ, (3.46)

with F̃ µ‹ being the dual electromagnetic field tensor. Taking a Minkowski metric
and supposing that in the rest frame of the plasma there is only magnetic fields but
no electric fields, then the equation of motion in the plasma rest frame reduces to

m
d

dt
(“v) = gB ≠ C(qg)2np

4fimp

v

v
. (3.47)

Let us now compare the deceleration and acceleration terms in (3.47) in cosmic
environments, by estimating their ratio:

‘ = 1
gB

C(qg)2np

4fimp

. (3.48)

As particles with smaller masses yield a larger drag force, here we focus on free
electrons (instead of protons). In the intergalactic space, using the electron density
in the intergalactic medium (IGM) ne ≥ 1 m≠3, the IGMF lower limit BI ≥ 10≠15 G,
and further taking g = gD and6 C ≥ 1, one finds ‘ ≥ 10≠10. In the Milky Way,
considering instead the interstellar medium (ISM) with ne ≥ 1 cm≠3 and Galactic
fields of BG ≥ 10≠6 G gives ‘ ≥ 10≠13. We thus see that both in the intergalactic
space and the Milky Way, since the electron density is so small such that ne/me π B,
the acceleration of magnetic monopoles in the magnetic fields completely dominates
over the deceleration by scattering free electrons.

Let us comment on e�ects that we have not taken into account. Firstly, the above
calculation is based on classical single-particle scatterings. A quantum field theory
computation may give rise to corrections to the scattering cross section, especially in
the ultrarelativistic regime. We also note that the picture of single-particle scatterings
breaks down at distances larger than the Debye length, where plasma e�ects become
important. These have been studied in [107, 108] for slow monopoles, for which
it was shown that the energy loss from plasma e�ects is typically not significantly
larger than that from single-particle scatterings. Finally, we remark that magnetic

6Even if C is larger by a few orders of magnitude, our main conclusion does not change.
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monopoles can further loose energy through ionization of neutral particles, atomic
excitations, bremsstrahlung, electron-pair production, and photonuclear interactions;
the last two processes become particularly important in the ultrarelativistic regime.
(See e.g. [78] for a study of various energy-loss processes for magnetic monopoles. In
the next section we give a rough estimate of the interactions with neutral particles
in the ISM, according to which they are negligible for a wide range of parameters.)
It would be important to study all these e�ects, in particular in the ultrarelativistic
regime. We leave this for future work.

3.4.2 Monopole energy loss in neutral interstellar medium
Here we provide a rough estimate of the energy loss from monopole’s interactions
with the interstellar medium and show that they are negligible.

Considering for simplicity a monopole moving more or less along a magnetic field
line, its energy gain from the magnetic field per unit length is

3
dE

dx

4

mag

≥ gB. (3.49)

For instance for a charge g = gD and field strength B = 10≠6 G, the energy gain is
(dE/dx)

mag
≥ 10≠2 eV cm≠1.

Monopoles lose energy in the interstellar medium by ionization and atomic
excitation of the constituent neutral particles. The energy loss can be evaluated
from the Bethe–Bloch formula considering monopoles as particles with a velocity-
dependent electric charge, q = gv [109]. This gives, at the order-of-magnitude
level,

≠
3

dE

dx

4

ion

≥ e2g2nm

me

, (3.50)

where nm is the number density of atoms in interstellar space and me is the electron
mass. Assuming nm = 1 cm≠3 [110] and g = gD, the energy loss is ≠ (dE/dx)

ion
≥

10≠14 eV cm≠1, which is completely negligible with respect to the energy gain from
the magnetic field. Other electromagnetic processes that induce energy loss of
monopoles in matter include pair production and photonuclear interactions, however
both contributions are subdominant compared to the ionization e�ect for “ < 104

[78]. There can also be energy loss through bremsstrahlung radiation in collisions;
however this e�ect is inversely proportional to the monopole mass [78], so we expect
it also to be subdominant.

We expect the main results of this section to be generic, however it would be
important to analyze energy losses in more realistic models of the distribution of the
interstellar medium, and also to perform a systematic study in the full parameter
space. We leave these for the future.

3.4.3 Energy loss of fast monopoles through radiative emission
Here we estimate the energy loss of monopoles through the emission of electromag-
netic radiation. Using the Liénard formula (i.e. relativistic version of the Larmor
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formula), and exchanging the electric charge to magnetic, the energy loss per time
of an accelerating monopole is

P ≥ g2“6
Ó

(v̇)2 ≠ (v ◊ v̇)2
Ô

= g4B2

m2
, (3.51)

where an overdot denotes a time-derivative. Upon moving to the far right-hand side,
we have considered a magnetic monopole accelerating along a homogeneous magnetic
field and dropped the cross product, and also used the equation of motion (3.47)
without the drag force term. The ratio between the radiative energy loss, and energy
gain per time from the acceleration in the magnetic field, gBv (here we take g > 0),
is thus

” ≥ g3B

m2v
. (3.52)

For IGMFs of BI = 10≠15 G, relativistic (v ≥ 1) monopoles with g = gD give
” ≥ 10≠31(1 GeV/m)2. For Galactic fields of BG = 10≠6 G, this becomes ” ≥
10≠22(1 GeV/m)2. In either case, radiative emissions are negligible for relativistic
monopoles as long as the mass satisfies m2 ∫ g3B.
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Chapter 4

Galactic Parker bounds for
arbitrarily charged monopoles

Galactic Parker bounds are the most famous and important indirect bounds on the
monopole flux in the Milky Way. They are based on the survival of the Galactic
magnetic fields to the acceleration of the monopoles. In this chapter we first revisit
the bounds, we generalize the results to arbitrarily charged monopoles (including
magnetic black holes), we discuss conditions for the applicability of the bounds and,
finally, we discuss how the bounds are modified by the acceleration of the monopoles
in intergalactic magnetic fields.

4.1 Bounds from galactic magnetic fields
In this section, we revisit the Parker bounds on the monopole flux from galactic
magnetic fields [48, 49] and seed fields [51]. We extend the previous computations
to allow for the monopoles to carry arbitrarily magnetic charge, and we also clarify
the range of applicability of the bounds.

Let us consider a generic galaxy hosting magnetic fields, that are amplified by
dynamo action with a time scale ·gen. After the dynamo saturates, the magnetic
field is assumed to stay nearly constant, and we represent the time period between
saturation and today by ·sat. All cases with ·sat being comparable to or smaller
than ·gen describe a similar situation where the fields have been growing until very
recent times. Hence, without loss of generality we impose ·sat Ø ·gen.

Monopoles within a galaxy are accelerated by the magnetic fields. As explained
in the previous section, we model the fields such that they exist in a region of size R,
which is further divided into cells of uniform field. The size of each cell, i.e. the
magnetic field’s coherence length, is denoted by ⁄G (< R). We further assume
that the field strength B is the same in all cells, but the direction of the field is
uncorrelated from one cell to the next. The average energy gain per monopole after
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it has passed through N uncorrelated cells is derived in Section 3.1 as
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(4.1)

where “i is the initial Lorentz factor of the monopole upon entering the first cell.1
In the first line the energy gain is smaller than the initial kinetic energy, i.e. �EN <
m(“i ≠ 1), while in the second line the monopole has been su�ciently accelerated
such that �EN > m(“i ≠ 1). If m(“i ≠ 1) π gB⁄G, the energy gain is given by the
second line from the first cell.

4.1.1 Do monopoles cluster with a galaxy?
If monopoles are bound in a galaxy, they would be moving with the virial veloc-
ity vvir (π 1). However since the monopoles, on average, are constantly accelerated
in galactic magnetic fields, they will eventually acquire a large enough velocity to
escape from the galaxy. Considering that the escape velocity is not much larger
than the virial velocity, let us estimate the time scale for the monopoles to escape
from the galaxy as the time it takes for the monopoles’ velocity to become larger
than vvir by a factor of order unity.

If mv2
vir

/2 π gB⁄G, then the monopole is accelerated to the escape velocity
within a single cell. Then it su�ces to consider a uniform magnetic field, in which
the velocity varies as �v = gB�t/m while the monopole is nonrelativistic. Hence
we can estimate the escape time as

·esc ≥ mvvir

gB
. (4.2)

On the other hand if mv2
vir

/2 ∫ gB⁄G, the monopoles pass through multiple cells
before reaching the escape velocity. The two limiting expressions in (4.1) represent
the regimes where the monopole velocity has barely/significantly increased from its
initial velocity. The escape velocity is acquired in between the two regimes, when
the number of cells passed through is

Nesc ≥ 2
A

mv2
vir

gB⁄G

B
2

. (4.3)

Hence the escape time is

·esc ≥ Nesc⁄G

vvir

≥ 2m2v3
vir

g2B2⁄G

. (4.4)

1It would be very interesting to study more realistic models where the directions of magnetic
fields are not completely random; this should realize a more e�cient acceleration of monopoles
and thus yield stronger flux bounds. The analysis here also neglects the e�ect of the galaxy’s
gravitational potential, as well as the possibility that the monopoles spend ample time in galactic
regions without magnetic fields.
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The escape time for both cases mv2
vir

/2 π gB⁄G and mv2
vir

/2 ∫ gB⁄G can collec-
tively be written as
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(4.5)

The escape time decreases as B is amplified, given that the other parameters
do not change as much as B. Monopoles can thus stay clustered with a galaxy if
the escape time is longer than the time elapsed since the magnetic field achieved its
present-day strength B0, i.e.,2

·esc|B=B0
> ·sat. (4.6)

Let us assume hereafter that the time scale of dynamo is comparable to or larger
than the time it takes for a particle with virial velocity to cross the magnetic field
region of the galaxy,

·gen & R

vvir

≥ 107 yr
3
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4 3
vvir

10≠3

4≠1

. (4.7)

From this it follows that ·sat > ⁄G/vvir, indicating that monopoles that obtain the
escape velocity within a single cell cannot stay clustered until today. Hence for
monopoles to be clustered, mv2

vir
/2 ∫ gB⁄G is a necessary condition. An even

stronger condition is obtained by substituting (4.4) into (4.6), which yields a lower
bound on the mass of clustered monopoles as
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. (4.8)

Considering for instance the Milky Way, for which the typical parameters of the
magnetic field and virial velocity are shown on the right-hand side as the reference
values [59, 111, 112], monopoles with a Dirac charge can be clustered today only if
their mass is larger than 1018 GeV.3 Producing such ultraheavy monopoles in the
postinflation universe presents a challenge for monopoles with charge g Ø gD to serve
as dark matter. This is no longer the case for minicharged (g π gD) monopoles,
which can cluster with smaller masses.

2The derivation of ·esc uses the assumption of a constant B, which breaks down if ·esc > ·sat. In
such cases the exact value of ·esc can be modified from (4.5), but we can still conclude that the
monopoles can cluster with the galaxy. A similar discussion applies to the magnetic field dissipation
time which we derive later.

3A similar bound can be obtained by requiring the gravitational acceleration of a monopole
with virial velocity on a circular orbit at the radius of the galaxy (v2

vir/rg), to be larger than the
magnetic acceleration (gB0/m). This yields
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3

g
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4 1
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10≠6 G

2 3
rg

10 kpc

4 1
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. (4.9)
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4.1.2 Backreaction from monopoles
We now derive bounds on the flux of monopoles inside galaxies by studying the
backreaction from the monopoles on galactic magnetic fields.

Unclustered monopoles

We start by considering monopoles that are not trapped inside a galaxy but pass
through it. The incident flux of such unclustered monopoles on a galaxy is equivalent
to the flux inside the galaxy, from monopole number conservation.4 Writing the
flux per area per solid angle per time as F , and modeling the magnetic field region
of the galaxy by a sphere with radius R, then the number of monopoles passing
through the magnetic region per time is 4fi2R2F . (The extra power of fi is from
integrating over the solid angle on one side of the surface of the magnetic region.)
Each monopole crosses roughly N = R/⁄G cells as it traverses the magnetic region,
and on average gains energy of �EN=R/⁄G

. In turn, the magnetic field loses energy
at a rate,

ĖB ≥ ≠4fi2R2F �EN=R/⁄G
. (4.10)

Comparing this with the total magnetic field energy, EB = (4fiR3/3)(B2/2), the
time scale for the magnetic field to be dissipated is computed as

·dis = EB

|ĖB|
≥ max.

I
2m(“i ≠ 1)
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,
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2figF

Û
R
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J

, (4.11)

where we substituted (4.1) into �EN=R/⁄G
. Here “i is understood as the Lorentz

factor of the monopoles with respect to the galaxy, upon galaxy entry, that is “G of
the previous chapter.

The backreaction from the monopoles has little e�ect on the magnetic field
evolution if the field amplification by dynamo proceeds at a faster rate,

·dis > ·gen. (4.12)

This condition should hold throughout the galactic history for negligible backre-
action,5 and it translates into an upper bound on the monopole flux in the Milky
Way,
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(4.13)
4The velocity and number density upon entering the galaxy can each be di�erent from those inside

the galaxy, however their product remains constant. Here we do not consider initially unclustered
monopoles becoming clustered, or vice versa. We also neglect monopole-antimonopole annihilation.

5This guarantees negligible backreaction even after the dynamo saturates, if ·gen also sets the
time scale for the magnetic field’s deviations from the saturation value to decay. However since
the field amplification lives on a finite supply of energy of the galaxy, one may instead require
·dis > ·sat, giving a stronger bound.
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The first (second) line sets the bound when m is larger (smaller) than the threshold
value,

m̂ ≥ 1017 GeV
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Monopoles with masses smaller than this exit the galaxy with a velocity much larger
than their incident velocity vi.

By using the expression (4.1) for �EN in the above derivation, it was implicitly
assumed that the monopoles each pass through at least one cell within the dissipation
time ·dis. Moreover for small-mass monopoles which gain energy as �EN Ã

Ô
N

(cf. second line of (4.1)), we assumed that the time it takes for the monopoles to
cross the entire magnetic region is shorter than ·dis. These two assumptions are
automatically satisfied when the condition (4.12) holds along with

·gen & R

vi

≥ 107 yr
3

R
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4 3
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10≠3

4≠1

. (4.15)

In other words, the flux bound (4.13) applies without modification under (4.15).
It should also be noted that for the first line of (4.1) to well describe the mean

behavior of monopoles, the monopole number needs to be large enough to satisfy
Eq. (3.17). The total number of unclustered monopoles passing through the magnetic
region before the field is dissipated is p = 4fi2R2F ·dis. Using also the first term in
the far right-hand side of (4.11) for ·dis, and N = R/⁄G for the number of cells each
monopole crosses, then (3.17) yields an upper bound on the monopole mass,
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. (4.16)

The condition (3.17) is not necessary when ·dis is given by the second term in (4.11),
however even in this case the monopole number p ≥ BR5/2/g⁄1/2

G
should be larger

than unity for the derivation of the flux bound to be valid. This requires

B & 10≠52 G
3

g

gD

4 3
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41/2 3
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. (4.17)

This condition is equivalent to requiring that m̂ given in (4.14) is smaller than the
upper mass limit of (4.16). The conditions (4.16) and (4.17) seem rather weak,
however they can become important when considering systems with extremely
weak B, or when constraining extremely massive monopoles such as magnetic black
holes.

The magnetic field energy taken away by the monopoles can, in principle, later
be returned to the field. Then ·dis would only correspond to the half-period of the
energy oscillation between the magnetic field and monopoles, and the flux bound
would be invalidated. However it was pointed out in [48, 50] that for monopoles with
charge of g ≥ gD, the galactic magnetic fields cannot be maintained in this way since
the oscillations are subject to Landau damping, and also because the oscillations
would give features of the field that do not match with observations. It would be
important to analyze whether Landau damping is e�ective with minicharges, g π gD.
We leave this for future work. We also note that for unclustered monopoles, they
may fly away from the galaxy before returning the energy to the field.
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Clustered monopoles

Monopoles that are bound in a galaxy move with the virial velocity vvir, and hence
each monopole crosses approximately N = vvir/⁄G cells per unit time. The energy
the monopoles steal from the magnetic field per time per volume is thus

fl̇B ≥ ≠n �EN=vvir/⁄G
, (4.18)

where n is the number density of clustered monopoles. While a monopole is clustered,
its energy follows �EN Ã N as shown in the first line of (4.1), with “i ≠ 1 ƒ v2

vir
/2.

Taking the ratio with the magnetic energy density flB = B2/2, and noting that the
flux is written as F = nvvir/4fi, the dissipation time scale is obtained as

·dis = flB

|fl̇B| ≥ mv2
vir

4fig2F⁄G

. (4.19)

This matches up to an order-unity factor with the first expression in (4.11) for
unclustered monopoles,6 after the replacement vi æ vvir. Hence the requirement of
negligible backreaction on the magnetic field, ·dis > ·gen, yields a flux bound that is
similar to the first line of (4.13), but with v2

vir
/2 instead of “i ≠ 1.

The derivation assumes that the monopoles pass through at least one cell before
their backreaction becomes relevant, i.e. ·dis > ⁄G/vvir. This is automatically
satisfied under ·dis > ·gen and the condition (4.7). From (4.7) it also follows that
the lower mass limit (4.8) for clustered monopoles is larger than the threshold mass
(4.14) where the flux bound for unclustered monopoles switches its behavior, if
vi = vvir. The flux bound also requires a monopole number large enough to satisfy
(3.17), which yields a mass limit similar to (4.16).

Here we ignored the possibility of the monopoles escaping from the galaxy before
dissipating the magnetic field, while in Section 4.1.1 we ignored the monopoles’
backreaction on the magnetic field. By combining the discussions, however, we
can say that clustered monopoles need to satisfy both the flux bound and the
mass bound (4.8). Otherwise, either the galactic magnetic field is dissipated, the
monopoles are ejected from the galaxy, or both.7

4.1.3 Summary of bounds from galactic magnetic fields
We have seen that the bounds on the flux of clustered and unclustered monopoles
inside galaxies are collectively described by (4.13), given that the dynamo time scale,
monopole mass, and magnetic field respectively satisfy (4.15), (4.16), and (4.17).
For unclustered monopoles “i in these expressions denotes the initial Lorentz factor
with respect to the galaxy, while for clustered monopoles it is given by the virial
velocity as “i ≠ 1 = v2

vir
/2. Clustered monopoles further need to satisfy the lower

bound on the mass (4.8) in order to stay clustered until today.
6This is because in both (4.19) and the first expression of (4.11), monopoles gain energy as

�EN Ã N , and the number of cells crossed per unit time by all the monopoles in the magnetic
region is ≥ 4fi

2
F R

3
/⁄G.

7We may guess what happens by comparing the energy required to eject all monopoles from
the galaxy per volume, flej ≥ nmv

2

vir/2, and the magnetic energy density today, flB = B
2

0/2. The
former is larger if mF & B

2

0/4fivvir. This threshold matches with the value of mF where the mass
lower limit (4.8) and flux upper limit (4.13) becomes equal, up to a factor of ≥ ·sat/·gen.
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Figure 4.1 Upper bound (4.13) on the monopole flux as a function of mass, from the
survival of Galactic magnetic fields (B = 10≠6 G, solid lines) and seed fields (B = 10≠11 G,
dashed). The magnetic charge is varied as g = gD (red), 10≠3gD (purple), 10≠6gD (blue).
The lower mass limit (4.8) for monopoles to stay clustered with the Galaxy is shown
by the vertical dotted lines with di�erent colors corresponding to di�erent g. Other
parameters are fixed to ⁄G = 1 kpc, R = 10 kpc, ·gen = 108 yr, ·sat = 1010 yr, and
“i ≠ 1 = 10≠6. Also shown are bounds from requiring the density of monopoles not
to exceed that of dark matter, for unclustered (gray solid) and clustered (gray dotted)
monopoles.

The flux bound (4.13) at large m increases with m whereas it is independent
of B, and vice versa at small m. Considering present-day magnetic fields, whose
amplitude in spiral galaxies is typically of B0 ≥ 10≠6 G, one reproduces the results
of [48] (see also [20, 23]). However, the bound applies throughout the history of a
galaxy, and thus the bound at low masses can be improved by studying galaxies in
the past when their magnetic fields were weaker. Strong bounds are obtained from
the initial seed field for galactic dynamo [51],8 although there is a huge uncertainty
in the seed field ranging typically between 10≠30 G . B . 10≠10 G [59, 111, 112].
We note that the seed Parker bound of the form (4.13) neglects the cosmic expansion
since the initial time when the dynamo begins to operate. Hence, the bound can be
modified for seed fields at high redshifts. We also note that increasing ⁄G and/or g
improves the flux bound, as well as the lower mass limit for clustered monopoles.

In Figure 4.1 we show the flux upper bound (4.13) as a function of the monopole
mass, with the magnetic charge varied as g = gD (red), 10≠3gD (purple), 10≠6gD

(blue). The solid lines denote bounds from the magnetic field in the present Milky
Way, taken as B = 10≠6 G. The dashed lines show how the bound improves by

8The results in [48] and [51] are slightly di�erent at the high mass end where the bound is
independent of B; this is because the two works use di�erent values for the other parameters such
as ⁄G, and also di�erent rounding methods.
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considering a seed field of B = 10≠11 G. The dotted vertical lines represent the
lower mass limit (4.8) of clustered monopoles in the Milky Way. Here the other
parameters are taken as ⁄G = 1 kpc, R = 10 kpc, ·gen = 108 yr, ·sat = 1010 yr, and
“i ≠ 1 = 10≠6.

In the plot we also show bounds from the requirement that the density of
monopoles flM does not exceed the dark matter density flDM. Using flM = mn
for nonrelativistic monopoles with n being the number density, the requirement
translates into an upper bound on the monopole flux F = nvi/4fi as,

F Æ flDMvi
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4
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(4.20)

The flux of unclustered monopoles is bound by setting the dark matter density to the
average value in the universe, flDM ¥ 1.3 ◊ 10≠6 GeV cm≠3 [113]; this is shown in the
plot as the gray solid line. On the other hand, the abundance of clustered monopoles
should be compared to the local dark matter density in galaxies; the gray dotted
line shows the bound using the value in our Milky Way, flDM ¥ 0.4 GeV cm≠3 [114].

One sees in the plot that for clustered monopoles, the bound from the local
dark matter density (which scales as Ã m≠1) is stronger than that from the survival
of galactic fields (Ã m) for most of the mass range where the monopoles can be
clustered. This can be shown explicitly by comparing the mass meq where the two
upper bounds ((4.20) and the first line of (4.13)) become equal, to the lower limit
on the mass mcl for clustered monopoles (cf. (4.8)); their ratio is
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This shows that meq and mcl are not too di�erent in the Milky Way whose magnetic
field and dark matter parameters are typically given by the reference values in the
right-hand side. This means that if monopoles can cluster with our Galaxy and their
density does not exceed that of dark matter, then they almost automatically satisfy
the Parker bound from Galactic fields.9 In the literature the Galactic Parker bound
has often been analyzed for constraining monopoles as a dark matter candidate;
however, most such studies focus on parameter regions where the monopoles actually
cannot cluster with our Galaxy and hence obviously cannot serve as dark matter.

4.1.4 Magnetically charged extremal black holes
In this section we apply the bounds from the survival of Galactic magnetic fields to
magnetically charged black holes. In particular, we focus on (nearly) extremal black
holes for which Hawking radiation can be neglected. Assuming this, we do not loose
generality since our primary focus is on a mass range where uncharged black holes
would have already evaporated within the last Hubble time.

9It would be interesting to understand whether meq ≥ mcl holds for generic galaxies hosting
magnetic fields, by studying the relation between the dark matter density and the dynamo action.
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At extremality the charge of a black hole is related to its mass through the
relation:

m =
Ô

2 gMPl. (4.22)

Extremal magnetic black holes can be considered as monopoles with large mass
and small charge-to-mass ratio. Thus, all the bounds we discussed in the previous
sections can basically be applied to magnetically charged black holes. However, the
direct relation between the charge g and the mass m of Eq. (4.22) changes the mass
dependence of the bounds, as we will show in the following discussion.

The bound from galactic magnetic fields in Eq. (4.13) is rewritten for extremal
magnetic black holes as:
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This bound is inversely proportional to the black hole mass. The first (second) line
sets the bound when B is weaker (stronger) than the threshold value:

B̄ ≥ 10≠3 G
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Since galactic fields are typically weaker than this, the bound is given by the first
line, which is independent of the field strength. This implies that the bound for
extremal magnetic black holes does not improve by considering seed fields. We also
remark that the conditions in Eqs. (4.16) and (4.17), which are necessary for the
bound to apply, can be violated for massive magnetic black holes.10

For extremal magnetic black holes that are initially bound in a galaxy, their
escape time is obtained using Eq. (4.5) as,
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Note that the escape time of extremal magnetic black holes is independent of the
mass, and is determined only by the galactic field properties and the virial velocity.
For galaxies similar to the Milky Way, the second line sets the escape time, which
depends rather sensitively on the galactic parameters.

The work [23] derived a constraint on the fraction of extremal magnetic black
holes as dark matter by studying the Andromeda Galaxy, whose parameters were
inferred from [115] and taken as ⁄G ≥ 10 kpc, ·gen ≥ 1010 yr, and vvir ≥ 10≠3.
It was claimed that the large values of ⁄G and ·gen improve the bound (4.23)

10If B is below the threshold value (4.24), then (4.16) gives a stronger condition than (4.17).
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compared to the Milky Way. However, these combined with the Andromeda’s field
strength B ¥ 5 ◊ 10≠6 G [115] yield ·esc ≥ 1010 yr, which is comparable to the
age of Andromeda itself. With the uncertainties in the parameters, we cannot yet
give a definite answer on whether magnetic black holes can remain clustered with
Andromeda until today. However, the general lesson here is that if some galaxy
appears to give a significantly stronger Parker bound on extremal magnetic black
holes than the Milky Way, then it is improbable that this galaxy can currently
host magnetic black holes. The Parker bound from such a galaxy thus applies to
unclustered black holes.

In the above discussions we have treated extremal magnetic black holes simply
as very massive monopoles with charges much larger than the Dirac charge, and
ignored black hole-specific features. However if accretion disks form around the black
holes in galaxies, the interaction between the disks and the interstellar medium may
a�ect the acceleration of black holes along the galactic fields. Extremal magnetic
black holes can also be surrounded by an electroweak corona, where the value of
the Higgs field varies [22, 23]. The presence of electroweak coronas can also change
the interaction between the black holes and the interstellar medium, modifying the
Parker-type bounds. We leave detailed studies of these e�ects for the future.

4.2 Modification of Parker bound from intergalactic
acceleration

The Parker bound applies to both magnetic monopoles that are clustered with the
Galaxy, and unclustered magnetic monopoles which only pass through the Galaxy.
However, with the typical parameters of the Galactic field shown as the reference
values in the above equation, Magnetic monopoles with a Dirac charge can stay
clustered until today only if they are ultraheavy as m & 1018 GeV. As in this
section we are primarily interested in intermediate to low mass monopoles which
are significantly accelerated in IGMFs, in the following we focus on unclustered
monopoles.

The Parker bound uses the entire Galaxy as a monopole detector, and con-
sequently the bound depends on the monopoles’ incident velocity on the Galaxy.
The first line of (4.13) actually depends on “MW, and in particular, the Parker
bound becomes weaker for larger “MW. This is because fast-moving monopoles pass
through the Galaxy while being minimally deflected by the Galactic field, hence do
not e�ectively dissipate the magnetic energy. In the literature, the incident velocity
has always been assumed to be vMW ≥ 10≠3 (i.e. “MW ≠ 1 ≥ 10≠6), as both the
Milky Way’s peculiar velocity and the monopoles’ gravitational infall velocity are of
this order.11 However, we have seen in the previous chapter that magnetic monopoles
can be accelerated to much larger velocities in the IGMFs. In the following, we study
how the presence of IGMFs a�ect the Parker bound.

In Figure 4.2 we plot the Parker bound in Eq. (4.13), with the monopole Lorentz
factor “MW evaluated through Eq. (3.37). The monopole charge is fixed to g = gD.
The gray solid line shows the bound from the survival of Galactic fields with

11The same value is used for clustered monopoles since the virial velocity of the Milky Way is
also of this order.
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Figure 4.2 Galactic Parker bound and seed Galactic Parker bound in the presence of
IGMFs with strength BI Æ 10≠9 G. The monopole charge is fixed to g = gD. The
Galactic Parker bound is not a�ected by the IGMFs and thus is shown by a single gray
solid line. The seed Galactic Parker bound is a�ected, which is shown by dashed curves
with di�erent colors corresponding to di�erent IGMF strengths. The Galactic field
strength is taken as BG = 10≠6 G, and the seed field as BG = 10≠11 G, with the other
parameters taken as ⁄G = 1 kpc, R = 10 kpc, ·gen = 108 yr. The curves overlap in the
right part of the plot.

BG = 10≠6 G, while the dashed curves are from seed fields with an assumed strength
of BG = 10≠11 G. The other Galactic parameters are fixed to ⁄G = 1 kpc, R = 10 kpc,
·gen = 108 yr, and vp = 10≠3. The IGMF strength is varied between BI = 10≠9 G
and BI = 10≠13 G. IGMFs within this range do not a�ect the Galactic bound, which
hence is shown by a single solid line. On the other hand, the seed bound is strongly
a�ected by the presence of IGMFs; dashed lines of di�erent colors correspond to
di�erent IGMF strengths as shown in the plot legend. The Parker bounds for a
fixed monopole velocity of vMW = 10≠3, as have been assumed in the literature, are
reproduced for su�ciently weak IGMFs. The Galactic and seed bounds in the weak
IGMF limit are shown respectively by the gray solid and red dashed curves. All
the curves join at large masses, in other words, IGMFs modify the seed bound at
intermediate to low masses. We also note that with the choice of parameters, the
flux bounds are independent of the IGMF correlation length, as long as it is as large
as ⁄I & 10≠5 Mpc. This is because for values of FMW that saturate the bound, vMW

is set either by vp or vmax, both of which do not depend on ⁄I. This can also be seen
from Figures 4.2 and 3.1 showing that the upper bounds of FMW are larger than the
threshold value FBR for the backreaction to the IGMFs to become relevant.
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For magnetic monopoles with large kinetic energies, the expression (4.13) for the
Parker bound is set by the first line which explicitly depends on the kinetic energy.
On the other hand for small kinetic energies, the bound is set by the second line
which depends neither on the monopole mass nor on the velocity. The presence of
IGMFs thus modify the Parker bound if the monopoles are accelerated to velocities
larger than the Milky Way’s peculiar velocity, and further if the monopole kinetic
energy is su�ciently large such that the first line of the Parker bound applies.

For the choice of parameters in the plot, the upper bound on the flux from Galactic
fields (BG = 10≠6 G) in the weak IGMF limit is of FMW ≥ 10≠16 cm≠2sec≠1sr≠1 or
larger. The threshold kinetic energy between the two expressions for the Parker
bound is m(“MW ≠ 1) ≥ 1011 GeV. For flux values saturating the bound, the
energy that monopoles acquire from IGMFs with BI Æ 10≠9 G is smaller than the
threshold, which is why the Galactic bound is not altered by IGMFs. On the other
hand, seed fields (BG = 10≠11 G) give an upper bound in the weak IGMF limit of
FMW ≥ 10≠21 cm≠2sec≠1sr≠1 or larger, with the threshold energy between the two
expressions being m(“MW ≠ 1) ≥ 106 GeV. For these flux values, the energy can
exceed the threshold with IGMFs of BI & 10≠12 G, hence the seed Parker bound is
modified.

In order to understand the behavior of the modified Parker bound, note that
substituting Eq. (3.37) for “MW into the first line of Eq. (4.13) yields an upper
limit which itself depends on the monopole flux. In particular when vMW = vmax

(i.e. vp < vmax < v0), one sees from Eq. (3.34) that (“v)MW Ã 1/ (mFMW). For
su�ciently small masses such that vMW is relativistic, the kinetic energy scales as
m“MW Ã 1/FMW. Thus the first line of Eq. (4.13) yields an inequality of the form
FMW < Ÿ/FMW where Ÿ is a factor that is independent of the monopole mass and
abundance. Solving this gives a flux bound FMW < Ÿ1/2, which is independent of the
monopole mass, as shown in the plot for the modified seed Parker bound at small
masses. On the other hand for larger masses with nonrelativistic vMW, the kinetic
energy scales as mv2

MW
/2 Ã 1/mF 2

MW
, and hence the first line of Eq. (4.13) takes a

form FMW < Ÿ/mF 2

MW
. This gives a bound FMW < (Ÿ/m)1/3, which is stronger for

larger masses, as is seen for the middle parts of the modified seed bounds in the plot.
Before ending this section, we should remark that if a su�ciently strong IGMF

existed at the time of Galaxy formation, this could have grown during a protogalactic
collapse into the currently observed Galactic field. In this scenario, the necessity for
a seed Galactic field and the dynamo amplification is obviated, and hence the Parker
bounds are modified; in particular, the seed Parker bound is nullified. Our findings
indicate that even if a seed field coexisted with a strong IGMF and hence the seed
Parker bound holds, it would be significantly relaxed due to the acceleration e�ect.
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Chapter 5

Modification of bounds from
terrestrial experiments

Experimental bounds on the monopole flux are usually given in terms of the monopole
velocity at the detector. In this chapter, we describe how to use the results for the
acceleration of cosmic magnetic monopoles obtained in Chapter 3 to recast such
bounds in terms of the monopole mass. The mechanism of monopole acceleration
discussed in Chapter 3 provides the monopole velocity on the surface of the Earth.
Therefore, the main goal of this chapter is to determine the relationship between
the speed at the Earth surface and at the detector for each experiment. The result
of the revisitation are reported in Fig. 5.3.

Hereafter, in this chapter we assume that monopoles do not cluster with the
Milky Way. For the assumed typical parameters of the GMFs, monopoles with a
Dirac charge can stay clustered with the Milky Way until today only if they have a
mass m & 1018 GeV [2, 48]. As we are primarily interested on monopoles that are
accelerated to relativistic velocities, the results of this chapter are unchanged by
such an assumption.

When magnetic monopoles cross a medium, the varying magnetic field induces
a strong electric field. As we discussed in Section 2.2, this opens the way to
a classical interpretation of the interactions where the monopoles are treated as
electrically charged particles with an equivalent speed-dependent electric charge of
g—. The search for magnetic monopoles is naturally based on their speed at the
detector. For — & 10≠3 the energy loss is mostly through elastic collisions. For
non-relativistic monopoles with 10≠3 . — . 10≠2, the medium is seen as a free
degenerate gas of electrons [119], and the energy loss comes from the interaction with
energy level crossings. Relativistic monopoles with — Ø 0.1 ionize and excite atoms.
The ionization yield of a relativistic unit charge monopole is ≥ 4700 times that
of a minimum ionizing particle [120]. Ultra-relativistic monopoles, with “ > 104,
lose energy mostly by pair production and photo-nuclear radiative processes, while
bremsstrahlung is suppressed because of the large monopole mass. As we already
mentioned, GUT monopoles can also catalyze nucleon decays [39]. However, this is
not true for all the possible models of magnetic monopoles and therefore we do not
consider this e�ect in our analysis.

If the medium is transparent, such as the Earth atmosphere or water or ice, also
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Figure 5.1 Some of the most constraining upper limits on monopole flux (90% CL) ex-
pressed in term of monopole speed at the detector. We show limits from the IceCube [32]
and RICE [116] neutrino experiments in the South pole, the MACRO detector at LNGS
(now dismissed) [30], by the Pierre Auger Observatory for cosmic rays in Argentina [117]
and by a preliminary study [118] for the High Energy Stereoscopic System (H.E.S.S.), an
imaging atmospheric Cherenkov telescope (IACT) for high energy gamma-ray astronomy
in Namibia. Conservative extrapolations of some limits are also reported.

Cherenkov radiation can be generated either directly from the magnetic monopoles or
from secondary ionized electrons. The threshold for Cherenkov emission is — > 1/n,
where n is the refraction index of the medium. As modeled in [36, 121], the Cherenkov
photon yield of a monopole would be (gD n/e)2 ƒ 4700 times more than that of
a muon with the same speed. The condition for Cherenkov radiation emission by
magnetic monopoles is “— & 1.17 (— & 0.76) in ice or water (index of refraction
n = 1.33) and “— & 70 in the atmosphere at the ground level (index of refraction
n ≥ 1 + 10≠4). Similarly, ultra-relativistic monopoles emit fluorescence light. The
emission occurs radially from the monopole direction and can be sampled with large
field of view optical detectors at ground or from space.

The experimental search for magnetic monopoles began soon after the original
Dirac proposal [5]. A complete recent compilation of all experimental constraints
can be found in [122, 123]. In the following, we limit ourselves to some of the
most constraining limits produced so far. In Fig. 5.1, we report some of the most
relevant experimental limits expressed in term of monopole speed. They encompass
results from the IceCube and the Radio Ice Cherenkov Experiment (RICE) neutrino
experiment in the South Pole [32, 116], the MACRO detector at the Italian National
Laboratories of Gran Sasso (now dismissed) [30], the Pierre Auger Observatory
(Auger) for cosmic rays in Argentina and a preliminary study [118] of the High
Energy Stereoscopic System (H.E.S.S.), an imaging atmospheric Cherenkov telescope
(IACT) for high energy gamma-ray astronomy in Namibia. Some of the published
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limits were extrapolated with the conservative assumptions generally considered in
the literature. We now describe separately the details of each experiment relevant
for our discussion.

5.1 IceCube
Located at the South Pole in Antarctica, the IceCube detector is an array of 5160
photomultiplier tube-based optical modules arranged in 86 vertical strings deployed
into the ice between 1500 m and 2500 m below the surface, with a total volume of
1 km3. Its main scope is the detection of astrophysical and cosmological neutrinos
in the ultra-high energy (PeV–UeV) range through the collection of Cherenkov light
in the clean Antarctic ice, emitted after the decay into leptons. Magnetic monopoles
would be directly detectable by the luminescence and Cherenkov light generated at
their passage in ice. As mentioned above, the monopole signature would appear as a
similar signal but extremely brighter and straighter than neutrino-induced events. As
mentioned, considering the refraction index of ice n = 1.33, the threshold for direct
Cherenkov emission is — & 0.76 (horizontal black dotted line with IceCube label
in Fig. 3.5). Cherenkov light from secondary electrons produced by ionization can
instead occur if — & 0.51. Therefore, taking into account also secondary Cherenkov
emission, it is possible to slightly extend the bound to smaller monopole speeds.

IceCube reported limits on monopole flux over several years [31, 32, 33, 34]. The
2012 work [32] reports the first IceCube limits on mildly relativistic monopoles in
the range 0.51 Æ — Æ 0.85 using the first year of IceCube data. The monopole
detection technique of IceCube is described at length in that seminal work and
in [124]. The latest limits (2022) on relativistic monopoles are reported in [31]
between 0.51 Æ — Æ 0.995 using 8 years of data, updating previous limits [32, 33].
We show in Fig. 5.1 the limits reported in [31] with a thin purple curve for 0.51 .
— . 0.76 (Cherenkov light from secondary electrons) and a thick purple curve for
0.76 . — . 0.995 (direct Cherenkov light). IceCube mentions that those limits
can be conservatively extrapolated above — > 0.995 under the assumption that no
significant further energy loss occurs above this value. Following this hypothesis,
in Fig. 5.1 we show in a dashed purple line the conservative extrapolation of the
IceCube limits to a higher monopole speed.

IceCube is sensitive to monopoles coming from all directions, but only those com-
ing from below the detector can be easily discriminated from the ample background
of atmospheric neutrinos. For monopoles crossing the Earth, the monopole energy
loss, as discussed in [125], happens through collisional loss for “ . 104, while through
pair production and photo-nuclear losses for larger Lorentz factors. Considering the
density of Earth, monopoles lose a maximum energy of 1011 GeV by crossing the full
length [125], while a smaller energy loss is expected from slanted directions. In order
to be detected, the monopoles shall remain relativistic at the detector. Thus, the
acceptance of the detector depends on whether the kinetic energy of the monopoles
at the Earth surface is bigger than the energy loss in the Earth for a given direction
of the monopoles at the detector. Therefore, a full computation of the detector
acceptance depends on both the monopole mass and its incoming direction, once
assumed a mechanism for the monopole acceleration.
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Ref. [31] collects all previous results from IceCube and provides the strongest
limits over all the sensitivity range. However, the limits are shown only in terms of
the velocity of the monopoles at the detector. Thus, there is no updated computation
of the acceptance of the detector in terms of the kinetic energy of the incoming
monopoles in function of the distance traveled inside the Earth, as done only earlier
in [34, 124]. We then now proceed with an estimate of the e�ects of the IceCube
acceptance for the latest results, assuming the models described in [34, 124]. In
particular, we use Tab. F2 of [124] where the acceptance was explicitly calculated.
The table shows for a given monopole mass and kinetic energy at the Earth surface the
fraction of solid angle under which IceCube can see the monopoles, and consequently
the correspondent acceptance.

Fig. 5.2 displays the method used for our re-computation and the impact on the
results shown in [31]. In the left plot, we synthesize the results in Tab. F2 of [124] for
the monopole acceptance. The region above the solid line represents the combination
of monopole mass-kinetic energy at the Earth surface in which monopoles remain
relativistic from any direction with respect to the detector (4fi sr acceptance). On
the other hand, monopole mass-kinetic energy combinations below the solid line show
a detection e�ciency ‘ < 1. This means that the limits in this mass-energy range are
weakened by a factor ‘. In these cases, monopoles that cannot reach the detector are
those that cross the largest amount of Earth. Those monopoles are also the easiest
to be discriminated from the background. Therefore, the ‘ factor is not only taking
into account the reduced solid angle but also the reduced discriminating power of IC.
monopole mass-kinetic energy combinations along the dashed line can be accepted
only with an acceptance of 3fi sr; using the results in Tab. F2 of [124], this translates
into an e�ciency ‘(3fi) = 0.6. Similarly, monopole mass-kinetic energy combinations
along the dot-dashed line can be accepted only with an acceptance of 2fi sr. This
translates into an e�ciency ‘(2fi) = 0.09. In the shadowed area below the diagonal
line, which corresponds to — = 0.76, monopoles do not reach the detector above
the minimum speed to generate Cherenkov light, and thus they cannot be detected.
Curves of constant acceptance show two di�erent behaviours, depending on the
dominant mechanism of energy loss of the monopoles. When the curves are in the
area of the plot where the mass-kinetic energy combinations correspond to values of
“ . 104, monopoles lose energy through collisional loss and the curves show only a
mild dependence on the monopole mass. On the other hand, in the region where
the mass-kinetic energy combinations correspond to “ & 104, the monopoles lose
energy more e�ciently through pair production and photo-nuclear losses and the
mass dependence of the curves is significantly more pronounced.

The flux constraints by IceCube are of the order of 10≠18 cm≠2m≠1, and therefore
the speed-mass relation corresponds to the solid red line of Fig. 3.5, where the
monopole velocity is set by acceleration in GMFs. From the intersection between
the solid red line and the dotted black IceCube Cherenkov threshold line of Fig. 3.5,
we read from the plots that IceCube is sensitive to magnetic monopoles with masses
smaller than ≥ 1011 GeV. Additionally, IceCube cannot constrain monopoles lighter
than 104 GeV [32] because they would be absorbed in the Earth before reaching the
detector from any direction. From the discussion in the previous section, we know
that the reference kinetic energy gained through monopole acceleration in the GMFs
is of the order 1011 GeV. In the left plot of Fig. 5.2, we show with a red dashed
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horizontal line such a reference value for the kinetic energy. The range of monopole
mass covered by the red line is the range of mass for which IceCube is capable of
detecting magnetic monopoles, that hence is for m œ

#
104, 1011

$
GeV.

Using Tab. F2 of [124], we found that for a kinetic energy of 1011 GeV the
constraints for monopoles with 0.51 . — . 0.76 (thin solid purple line in Fig. 5.1)
correspond to monopole masses for which IceCube does not have acceptance for
the monopoles. Therefore, those limits are not valid in our framework, and are not
reported further. On the other hand, in the region with — & 0.76 (thick solid purple
line in Fig. 5.1) we retrieve the mass range between 104 GeV and 1011 GeV for
which IceCube has acceptance for the monopoles, as we get from Fig. 5.2a. However,
we cannot directly convert these limits without considering the di�erential kinetic
energy loss due to the di�erent monopole path in the Earth. We therefore take the
acceptance values tabulated in Tab. F2 of [124] every 0.5 dex in log-scale and recast
IceCube limits. This method is described by IceCube for the generation of Fig. 11
of [32].

The right plot of Fig. 5.2 shows the e�ect of the recomputation (purple dashed line
with markers in steps of 0.5 of the logarithm of the monopole mass, as extracted from
Tab. F2 of [124]) of the original limits (solid violet line) considering the e�ciencies
described above, and for a kinetic energy of 1011 GeV (red horizontal line in the
left plot). One can see that for monopole masses 108 ≠ 1010 GeV the limits are
only slightly a�ected by the recomputation. For lower masses, down to 104 GeV,
up to an order of magnitude sensitivity is lost due to the reduced e�ciency of the
detector. Above 1010 GeV a similar e�ect is seen. As already mentioned, IceCube
cannot constrain monopoles lighter than 104 GeV. Therefore, also the ’extrapolated’
IceCube limits are not considered further in Fig. 5.2b.

5.2 Pierre Auger Observatory
Ultra-relativistic magnetic monopoles deposit a large amount of energy when they
cross the Earth atmosphere. For “ < 104, the dominant contribution is through
elastic collisions, which deposit around 10 GeV/(g/cm2). The Bremmstrahlung is
suppressed due to the large monopole mass. For “ > 104, the energy deposit occurs
through photonuclear e�ects and pair productions, increasing the cross section with
“. At “ = 1011 the energy loss is 700 PeV/(g/cm2). This results in the generation of
secondary electromagnetic showers initiated by ionized ultra-relativistic electrons
along the full path of the monopoles in the atmosphere. This is substantially di�erent
from the showers initiated by ultra-high energy (> PeV) cosmic rays, which die o�
after some interaction lengths. A magnetic monopole would therefore be equivalent to
a highly energetic long-lived charged particle, observable in the atmosphere through
extended atmospheric particle showers as well as fluorescence light. Instruments
searching for these signals consist of extensive arrays of particle detectors spread
across several hundred square kilometers, provided with fluorescence detectors with
a large field-of-view. Examples of such instruments are the Pierre Auger Observatory
(hereafter simply called “Auger”) in Argentina and the Telescope Array in the U.S.A.
Telescope Array has never provided a dedicated analysis for magnetic monopoles,
and therefore in the following we focus only on the Auger experiment.
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(a) (b)

Figure 5.2 Left: Conversion factors between implicit limits obtained with IceCube [31] and
mass-energy dependent limits obtained with full computation of the IceCube acceptance
as described in [32, 124]. The red dashed line shows the monopole mass range accessible
to IceCube for kinetic energy at the Earth of 1011 G. Right: Comparison between
IceCube data in [31] (violet solid curve) and the bound after the use of the conversion
factors (purple dashed curve).

Auger is the largest ultra-high-energy cosmic-ray detector currently in operation.
It is located in Argentina and covers an area of 3, 000 km2. It is provided with a
surface-detector array that directly samples the charged particles of atmospheric
showers, and 24 fluorescence detectors, each of them with a field-of-view of 30 ◊
30 deg2. The surface detector array is made of large-area water tanks equipped with
photomultipliers, while the fluorescence detectors search for the UV fluorescence
light emitted by nitrogen molecules excited by CRs or magnetic monopoles along
their trajectory in the atmosphere.

The latest search for magnetic monopoles in Auger is reported in [117]. For
this search, Auger requires the operation of both the fluorescence and the surface
detectors. This allows for a sensitivity to monopole velocities in the range “ > 108

(horizontal black dotted line labeled “Auger” in Fig. 3.5). This threshold derives
from the fact that for “ < 108 a monopole would produce too little fluorescence
or Cherenkov light to trigger the detectors. Although an energy of 1016 GeV is
assumed in [117] for the Monte Carlo simulations of the monopole energy loss in the
Earth atmosphere, the energy loss in the ultra-relativistic regime does not depend
on the monopole energy, but only on the relativistic factor “. Therefore, we can
assume the results to be valid for generic monopole energy. The current Auger
limits (solid brown curve in Fig. 5.1) constrain monopole fluxes in the interval
10≠21 ≠ 10≠17 cm≠2sr≠1s≠1.

In Figure 3.5 we show that monopoles with masses m . 104 GeV are accelerated
by the GMFs to “ & 108. Therefore, monopoles with m . 104 GeV fall within the
sensitivity range of Auger. Depending on the monopole flux and the characteristics of
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the IGMFs, if the contribution of the IGMFs to the acceleration is large enough, even
monopoles with mass as large as 106 GeV (see Fig. 3.5d with F . 10≠22 cm≠2sr≠1s≠1)
can be accelerated to “ & 108 and might be energetic enough to be detected by
Auger.

Considering the mechanism of acceleration described in Chapter 3, we express
the speed dependence of the Auger bounds in terms of the monopole mass. Unlike
IceCube, the Auger analysis considers only trajectories that come from within a
60¶ cone around the zenith. Therefore, the analysis does not consider magnetic
monopoles that cross the Earth. Hence, no e�ects from energy loss must be taken
into account and there is no need for additional considerations on the detector
acceptance. We show the results of our analysis in Fig. 5.3. The solid brown line of
Fig. 5.3 corresponds to the Auger results recomputed in function of the monopole
mass, assuming contributions to the monopole velocity from GMFs only. For the
range of monopole flux constrained by Auger, this assumption describes almost all
IGMF scenarios within the experimental constraints. The only case where the IGMF
contribution is non-negligible is for the extreme scenario of IGMFs with amplitude
BI = 10≠9 G and coherence length ⁄I & 1/H0. This case corresponds to the largest
possible contribution to the monopole velocity of IGMFs, which is the dominant one
for monopole fluxes F . 10≠20 cm≠2sr≠1s≠1 (see Figure 3.5d). As a consequence of
this additional contribution to the monopole velocity, the Auger velocity-dependent
limit translates in even more constraining bounds on the monopole flux for a given
monopole mass. These results are reported in Figure 5.3 as a dotted brown line. As
one can see from the figure, at the current flux sensibility, even in such an extreme
case Auger constraints only monopoles with mass m . 104 GeV. This is because
the Auger limit is less constraining for values of “ close to the lower threshold of
“ = 108, and therefore the experiment is still not sensible to fluxes for which the
IGMF contribution is dominant when approaching the end of the sensibility range.
Higher masses will be constrained only when Auger enhances its sensitivity to the
monopole flux, achieving F . 10≠20 cm≠2sr≠1s≠1 even for “ ≥ 108.

5.3 Imaging Atmospheric Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) are large parabolas built to
detect Cherenkov light induced by primary gamma ray and cosmic rays in the Earth
atmosphere. They are sensitive to the Cherenkov light emitted by the passage of a
magnetic monopole in the atmosphere, while they are not sensitive to the signals of
secondary charged particles. The number of Cherenkov photons by monopoles in the
atmosphere was computed by [126] to be 4700 times that of a unit-charge particle.

The search for monopole Cherenkov emission in the atmosphere was investigated
in [127] by the H.E.S.S. experiment and presented in [118] for a total lifetime of
about 5 years of data. Although at ground the refraction index is n ≥ 1 + 10≠4, and
therefore the Cherenkov threshold translates into “— > 70 (horizontal black dotted
line with “IACTs” label in Fig. 3.5), at a height of 30 km, where n ≥ 1 + 10≠6, the
threshold translates into “— > 700 because of the smaller density of the atmosphere.
Therefore, faster monopoles emit Cherenkov light starting at higher altitudes than
slower monopoles and the Cherenkov emission angle cos ◊ = 1/(n—) increases with
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the depth reaching a semi-aperture of 1.2¶ at ground. The increasing Cherenkov
angle has a peculiar e�ect on the image recorded by the IACT. For fast monopoles
impinging close to the telescopes, a double image would be observed: a first one
by Cherenkov photons emitted at small angles in the high atmosphere, followed
by a second one from Cherenkov photons emitted much closer to the ground. At
intermediate depths the Cherenkov light would be focused outside the telescope
camera. In case of monopoles impinging far from the telescopes, only the Cherenkov
light emitted at intermediate altitude would be observed, providing a single image.
In the first case, the monopoles would be hardly mistaken with a primary gamma
ray because of the peculiarity of the image, constituted by a bright compact first
spot and a bright secondary extended image (ellipse like or ring-like). The second
case is not investigated by [118] but we expect that the image would also be hardly
mistaken with primary gamma rays due to the much larger Cherenkov photon yield
of magnetic monopoles.

The main limitation of IACTs is connected to their small field of view of a
few squared degrees, which strongly reduces the acceptance with respect, for in-
stance, to Auger. The H.E.S.S. collaboration in [118] reports limits of of 4.5 ◊
10≠14 cm≠2s≠1sr≠1, as shown in Fig. 5.1 (dotdashed magenta line). A future genera-
tion of IACTs is under development for the Cherenkov Telescope Array Observatory
(CTAO). While H.E.S.S. has only 5 telescopes (among which, only 4 have been
considered in [118]), CTAO will be comprised of two arrays of telescopes (one in
the North and one in the Southern hemisphere), endowed with 13 and 70 telescopes
respectively. This would grant a larger energy range, better sensitivity and energy
resolution, but also, because of instrument improvements, a larger field of view. In
fact, CTAO will be assembled with telescopes of di�erent sizes. Among them, the
Small Size Telescopes (SSTs) while having a primary mirror size of 6 m, thanks to a
Schwarzchild-Couder optics, will allow for a field of view of 10 degrees.

In Fig. 5.3 we show a forecast for monopole searches with CTAO (dotdashed
magenta line), obtained by upscaling the H.E.S.S. results of [118] considering the
following factors: a) H.E.S.S. has a field of view of 6¶ (at least this was assumed in
[127]), while CTAO will host SSTs of 10¶, thus entailing a factor 3 larger field of view;
b) CTAO will display a factor of 10 ≠ 100 larger e�ective area than H.E.S.S. [128];
c) CTAO is planned to observe for 30 years, a time of exposure 6 times longer
than H.E.S.S. in [127]. Hence, globally we may expect a factor 3 ◊ 10 ◊ 6 ≥ 200
of improvement. We have therefore estimated a sensitivity of CTAO at about
2 ◊ 10≠16 cm≠2s≠1sr≠1, as shown in Fig. 5.3. Furthermore, [127] applies a speed
threshold at “ > 105 to not account for the e�ects of the Earth magnetic field. We
believe that by modeling this further e�ect, the speed threshold can be reduced to
that required to generate Cherenkov photons close to the ground, that is “ & 100.

Assuming the model of monopole acceleration described in Chapter 3 and
considering the results shown in Figure 3.5a, for values of the monopole flux within
the sensibility of CTAO, the main contribution to the monopole velocity comes
from the acceleration in GMFs. Thus, using Eq. (3.18) to compute the the kinetic
energy of the monopoles accelerated in GMFs, we can interpret the speed threshold
of “ & 100 as an upper limit on the monopole mass,

m . Ek,G ◊ (100 ≠ 1)≠1 ≥ 109 GeV, (5.1)
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which means that monopoles lighter than m = 109 GeV are accelerated to relativistic
velocities above the speed threshold of CTAO. This value of the monopole mass
corresponds to the endpoint of the magenta dotdashed line in Fig. 5.3.

Despite being generically less sensitive than Auger or IceCube, CTAO will allow
independent measurement for magnetic monopole, bridging Auger and IceCube
results.

5.4 MACRO
The Monopole, Astrophysics and Cosmic Ray Observatory (MACRO) was a dedicated
instrument to search for magnetic monopoles [30]. It was operated at Gran Sasso
INFN National Laboratories (LNGS), at water equivalent depth of 3,800 m, for
a decade, until 2000. MACRO was composed of three sub-detectors operated in
combination: scintillation counters that measured the particle position, energy
deposition and time of flight of monopoles; limited streamer tubes that exploited the
Penning e�ect and measured the monopole energy release in excited gas molecules;
and nuclear track detectors that measured etchable tracks in stacks of layers of dense
materials. Each sub-detector was sensitive to di�erent monopole speeds with an
overall sensitivity between 4◊10≠5 Æ — < 1 [30]. The latest global limits based on 4.2
to 9.5 years of data were reported in Fig. 9 of [129] in the range 4 ◊ 10≠5 Æ — Æ 0.99.
The analysis in [129] shows an upper bound on the monopole flux moving at — > 10≠4

at an average of 1.4◊10≠16 cm≠2s≠1sr≠1 for masses & 1016 GeV. We show this result
in Figure 5.1 with a solid blue line. MACRO analysis did not consider monopole
with velocities — > 0.99 because for higher velocities monopole could induce showers
in the detector, reducing the e�ciency of the analysis. However, in the literature this
limit is usually improperly extrapolated to arbitrarily fast monopoles (blue dashed
line in Figure 5.1).

As in the case of IceCube, the acceptance of the MACRO detectors depends on
the direction of the magnetic monopoles, which cross di�erent portions of the Earth
before reaching the detector, losing di�erent amount of energy. MACRO analysis
distinguishes between monopoles that have enough kinetic energy to reach the
detector both from below and above or only from above, for which the limit is twice
less constraining. This translates into a monopole mass dependence of the acceptance.
As an example, for a velocity — > 0.1, monopoles with mass in the interval 1010 ≠
1016 GeV reach the detector both from below and above and the flux limit is at
1.4 ◊ 10≠16 cm≠2s≠1sr≠1, while for masses between 106 ≠ 1010 GeV monopoles reach
the detector only from above and the limit is at 2.8 ◊ 10≠16 cm≠2s≠1sr≠1 (see
Tab. 2 of [129]). For — > 0.1, monopoles with masses < 106 GeV do not reach the
detector even from above and therefore are not constrained by MACRO. This result
is explained by the fact that monopoles with lower mass require higher velocities to
cross the Earth and reach the detector: if the monopoles can reach the detector only
from above, the expected monopole flux is half the total and the bound is weakened.
The complete analysis of the energy-mass dependence of the MACRO acceptance
is reported in [39] and [130], and we refer to those works in this paper. Once the
kinetic energy of the monopoles is enough to reach the detector and the monopole
velocity is — < 0.99, the bound is independent of the monopole speed.
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As we show in Figure 3.5, for the monopole flux constrained by MACRO (which
is, never below 10≠16 cm≠2s≠1sr≠1), monopole acceleration is dominated by the
Galactic contribution. Therefore, we use Eq. (3.18) to estimate the kinetic energy of
monopoles on the Earth’s surface. In Fig. 6.18 of [130] the values of the monopole
mass for which the MACRO acceptance is only from above the experiment or
also from below are shown in function of the monopole velocity at the Earth’s
surface. Referring to those results, we can then compute whether monopoles have
enough kinetic energy to reach the detector from below, or only from above, as a
function of the monopole mass. We find that the kinetic energy in Eq. (3.18) is
in the range for which the monopoles can reach the detector only from above the
experiment. Therefore, we reproduce with a blue solid line in Fig. 5.3 the limit as
F . 2.8 ◊ 10≠16 cm≠2s≠1sr≠1.

As already mentioned, MACRO cannot constrain magnetic monopoles with
velocity — > 0.99. Considering the kinetic energy of the monopoles accelerated in
GMFs in Eq. (3.18), we can interpret such an upper limit on the velocity as a lower
limit on the monopole mass, below which the MACRO limits are not applicable. We
find that such a limit is

m > Ek,G ◊
31

1 ≠ 0.992
2≠1/2

≠ 1
4≠1

≥ 1010 GeV. (5.2)

This value of the monopole mass corresponds to the endpoint of the blue solid line
in Fig. 5.3.

5.5 MoEDAL
The Monopole and Exotics Detector at the LHC (MoEDAL) [41] is the first LHC
experiment dedicated to the search for new physics through the detection of highly
ionizing particles, and in particular magnetic monopoles and dyons. The experiment
is also the only sensitive to high monopole magnetic charges and performed the
first dedicated collider search for dyons. It is a largely passive detector, which
provides a permanent physical register of the monopole passage through microscopic
damages along the trajectory in the nuclear track detector. MoEDAL is also
provided with monopole trappers, which capture particles with magnetic charge.
The aluminum absorbers are therefore analyzed in the superconducting quantum
interference device magnetometer, searching for di�erences in the persistent current
through the superconducting loop [131]. A significant di�erence between the current
before and after several transits of the same sample would be interpreted as a clear
signal of a trapped magnetic monopole in the aluminum volume.

Heavy-ion collisions at the LHC produce the strongest known magnetic fields
in the universe. These fields are about four orders of magnitude stronger than
the magnetic fields on the surfaces of magnetars [132], which are the strongest
known astrophysical magnetic fields. Such strong magnetic fields allow MoEDAL
to search for pairs of monopoles produced by the magnetic dual of the Schwinger
e�ect [12, 13, 14]. As we mentioned, the Schwinger pair production rate is calculated
through semi-classical techniques, which overcomes the non-perturbativity of the
monopole–photon coupling. This is not the case for the analysis of monopole
production in proton-proton collision [90, 91, 92].
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Figure 5.3 Bounds on the monopole flux. Gray: cosmological bound from comparison
with the average dark matter density in the universe, red: Galactic Parker bound, pink:
seed Galactic Parker bound (light: BI < 10≠13 G, dotdashed: BI = 10≠11 G, dotted:
BI = 10≠9 G), blue: limits from the MACRO experiment, purple: limits from the IC
experiment, brown: limits from the Auger collaboration (solid: Galactic acceleration
only, dotted: intergalactic acceleration with BI = 10≠9 G and ⁄I & 1/H0), orange:
lower limits on the monopole mass from Schwinger production given by the MoEDAL
experiment [42], dotdashed magenta: expected sensibility for CTAO (next generation of
IACTs detectors).

The analysis is based on the monopole trappers exposure to heavy-ion LHC
collisions and yields the first theoretically robust lower mass limit on monopoles up
to n = 3 Dirac charges. The results are compatible with the absence of monopoles,
and therefore singly charged monopoles with mass smaller or equal to 75 GeV have
been excluded [42]. The experiment is based on the detection of magnetic monopoles
produced within the detector and therefore is independent of the cosmic mechanisms
of monopole acceleration.

In Fig. 5.3 we report the lower limit on the monopole mass for the results obtained
by MoEDAL [42] from the study of monopole pair production from the Schwinger
e�ect in strong magnetic fields [12, 13]. The limit is independent of the monopole
flux.

5.6 Discussion of the results
In this section, we discuss the results shown in Figure 5.3, which represents the main
result of this chapter. We now address in detail the large amount of information
contained in the figure.

For the first time, the accounting of the cosmic monopole acceleration is con-
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sidered, and we show how the experimental limits are di�erently sensitive to that:
the most constraining limits come from di�erent experiments in di�erent ranges
according to the actual scenario. This should drive experiments to include the
modeling of the monopole acceleration in their limits, as we discuss in detail below.
Here we report the results for the specific model of monopole acceleration described
in Chapter 3.

In Figure 5.3 we show also the indirect bounds on the monopole flux in Eq. (4.13)
(Galactic and seed Galactic Parker bounds, with ⁄G = 1 kpc, R = 10 kpc, ·gen =
108 yr and for the Galactic field strength BG = 10≠6 G, and the seed field BG =
10≠11 G) and in Eq. (4.20) (cosmological abundance bound, with flDM ¥ 1.3 ◊
10≠6 GeV cm≠3 and vi = 10≠3). The Galactic Parker bound (solid red curve)
appears to be the weakest of all bounds, but it remains a very important limit as
long as the Galactic magnetic field history is known with improved accuracy. In
fact, the seed Galactic Parker bound (pink curves) would be the most constraining
in several scenarios, especially at low IGMF amplitude or large monopole masses
(case BI < 10≠13 G or for m & 1012 GeV). We show also how strongly seed Galactic
Parker bound is modified once taken into account monopole acceleration from IGMFs
[3] (dotted: BI = 10≠9 G, dotdashed: BI = 10≠11 G, light solid: BI . 10≠13 G).
Monopoles with overplanckian masses remains mostly constrained by cosmological
abundance (solid gray curve).

The MACRO limits (solid blue line) are the strongest of those from direct searches
for large monopole masses. The reason is that large-mass magnetic monopoles are
more and more di�cult to accelerate to the relativistic velocities required to enable
indirect observation of Cherenkov or fluorescence light with the other detectors. Non-
relativistic monopoles can be probed only directly through interactions in matter
such as those investigated in MACRO.

IceCube limits (solid purple curve) start to be competitive at small —, below the
Cherenkov threshold in ice. After an initial regime in which the limits are strongly
dependent on the mass/speed of the monopole, the instrument reaches full acceptance
and the limits are almost flat for a large mass range. As already mentioned, IceCube
is not sensitive to monopoles with masses smaller than 104 GeV due to energy loss
to the Earth. Therefore, approaching m = 104 GeV, the constrain power of IceCube
decreases again. For the fluxes tested by IceCube the acceleration mechanism is
dominated by the GMFs. However, as shown in Fig. 3.5, once the IceCube constraints
will improve below 10≠19 cm≠2sr≠1s≠1, they will become sensible to the acceleration
in IGMFs for the extremal values of the IGMF parameters compatible with the
experimental data.

The bounds from Auger (brown curves) are the strongest at the very large Lorentz
factors required to generate a su�cient signal in the atmosphere. Although the masses
sensible to the Auger limits are currently almost completely excluded by the MoEDAL
lower mass limit, increasing the sensibility of Auger to the monopole fluorescence track
would easily give access to larger monopole masses. The current flux limits of Auger
are sensitive to intergalactic acceleration only for an amplitude of BI = 10≠9 G
(dotted curve for dominant IGMF acceleration, solid curve in the other cases).
However, once the limit will improve with larger statistic, intergalactic acceleration
will be dominant also for smaller IGMF amplitude. When the acceleration mechanism
is dominated by IGMFs, moving to smaller fluxes also means an increase of the
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monopole velocity. Consequently, Auger would become sensible to larger masses
with more statistics, even with the current sensibility.

Finally, our estimates for the sensitivity of future IACTs are interesting for
low mass monopoles in the intermediate region between the sensitivity range of
Auger and IceCube (for m ≥ 104 ≠ 105 GeV). A precursor of CTAO, the ASTRI
Mini-Array [133], comprised of 9 standalone SSTs, can also be a valid IACT to
search for monopoles, before the advent of CTAO. Also, the Trinity wide-field of
view ground-based Cherenkov telescopes [134], principally meant for tau-neutrinos
searches, may be optimal for monopole searches. Considering that the search for
mangetic monopoles at IACTs is in its infancy, we strongly recommend to consider
pursuing this research.

In this study, we have illustrated that accounting for the acceleration of magnetic
monopoles in cosmic magnetic fields can fundamentally alter the framework of direct
monopole searches, especially in the lower mass range. We have indicated that
as a result of this acceleration, monopoles with masses under 1012 GeV travel at
relativistic speeds. Consequently, experiments targeting high and ultra-high energy
cosmic rays, such as IceCube, Auger, and IACTs, are best positioned to enhance
the constraints on monopole flux in the near future. Upon achieving sensitivity
to fluxes below 10≠18 cm≠2 sr≠1 s≠1, these detectors will also become sensitive to
IGMF physics, o�ering a novel approach to examining the IGMF structure through
monopole detection. Given the crucial role of analyzing monopole energy loss within
the Earth to correlate monopole velocity at the detector with monopole mass, we
encourage the experimental collaborations to publish their future results on monopole
flux with analysis similar to those of this chapter.

Our model for the cosmic magnetic field strength and correlation length does
not aim to be a complete model for monopole acceleration. More sophisticated
cosmological or astrophysical scenarios may certainly be the actual case. As an
example, we remark that the real structure of the GMFs is still not completely
understood. Furthermore, in order to get a correct estimate of the energy gain one
should also take into account the e�ects of the turbulence of the magnetic fields.
However, we expect the contribution to be negligible because of the large mass of
the monopoles. We highlight also that here we assume a single speed for the current
population of monopoles, while depending on the direction of the monopoles at
the entrance of the Milky Way a velocity distribution is expected in the case of
acceleration in GMFs. We assume that this does not change significantly our results,
given that the number of crossed cells for unclustered monopoles cannot change of
more than one order of magnitude. We also neglect any contribution due to possible
anisotropies of the monopole velocity dispersion. In the current absence of numerical
simulations of the monopole dynamics in the Milky Way, we leave this to future
studies.
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Chapter 6

Arbitrarily charged monopole
dynamics in the early universe

Although the cosmological expansion history from Big Bang Nucleosynthesis onward
is constrained by various observations [46, 113], we have very few information on
what happened before. In this chapter, we assume that at the time of the end of
inflation, tend, the universe is initially dominated by an oscillating inflaton field, which
decays perturbatively into radiation. At time tdom the radiation component starts to
dominate the universe, until matter domination begins at matter-radiation equality,
at time teq. During reheating, the cosmological plasma sourced by the inflaton decay
is not necessary in thermal equilibrium, and then it is not possible to define a cosmic
temperature. In any case, we assume the plasma to be in thermal equilibrium during
both the reheating and radiation-dominated epochs. Imposing this assumption leads
to a conservative bound, as we will explain later. In Appendix C we review the
evolution of the Hubble rate and of the cosmic temperature during the reheating
epoch and the subsequent radiation-dominated epoch.

As we discussed in the previous chapters, gamma-ray observations suggest the
existence of an intergalactic magnetic field B0 & 10≠15 G coherent on Mpc scales or
larger [53, 54, 55] (the subscript “0” here denotes quantities in the present universe).
Throughout this chapter, we assume that this large-scale intergalactic magnetic
field was produced in the early universe. We expect that large-scale magnetic fields
redshift as B Ã a≠2 in the absence of significant back-reaction from the monopoles
or of any external source for the fields [135], where a(t) is the scale factor. Magnetic
fields coherent on scales of Mpc have always been outside the Hubble horizon during
the period that we are going to analyze. Thus, the distance crossed by the monopoles
during the period of interest is smaller than the correlation length of the magnetic
fields. This allows us to consider the magnetic field to be e�ectively homogeneous.

We now describe the motion of monopoles in a homogeneous magnetic field with
a friction force due to the primordial relativistic plasma. Under these conditions,
the general covariant form for the equation of motion of the monopoles is:

mv‹Ò‹vµ = m
3

dvµ

d·
+ �µ

–—
v–v—

4
= Fµ

mag + Fµ

p , (6.1)

where Ò‹ is the covariant derivative, Fµ
mag is the magnetic force responsible for the

acceleration of the monopoles, Fµ
p is the drag force from the interaction with the
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primordial plasma, �µ

–—
are the Christo�el symbols of the metric, m is the monopole

mass, vµ is the four-velocity of the monopole, with vµvµ = 1, and · its proper time.
The magnetic force can be expressed through the four-vector [136]:

Fµ

mag = gF̃ µ‹v‹ , (6.2)

where F̃ µ‹ = 1

2
‘µ‹–—F–— is the dual electromagnetic tensor and ‘µ‹–— is a totally

antisymmetric pseudotensor normalized as |‘µ‹–— | = 1/
Ò

≠det(gfl‡), if µ, ‹, – and
— are all distinct. Without loss of generality, we take the magnetic charge of the
monopole g to be positive.

We limit our analysis to times before e+e≠ annihilation, i.e. T & 1 MeV, when
the cosmological plasma consists of relativistic charged particles. Monopoles interact
with the plasma through elastic scattering M + x± æ M + x±, where x± is a generic
charged particle of the Standard Model and beyond1. The result is an e�ective drag
force acting on the monopoles. We adopt the covariant form of the drag force shown
in [10]:

Fµ

p = fp h(vrel) (u · v)≠1 [uµ ≠ (u · v)vµ], (6.3)

where uµ is the mean four-velocity of the particles in the plasma and vrel = (1 ≠ (u ·
v)≠2)1/2 is the velocity of the monopole in the rest frame of the plasma. Here h(w)
is a slowly-varying function with h(0) = 1 and h(1) = 3/2:

h(w) = 3
2w2

C

1 + 1 ≠ w2

2w
ln

31 ≠ w

1 + w

4D

. (6.4)

For simplicity we fix h(vrel) to unity in the following analyses. For relativistic
scatterers that are in thermal equilibrium, fp can be expressed as2:

fp ≥ e2g2Nc

16fi2
T 2. (6.5)

Here T is the temperature of the plasma and Nc the number of relativistic and
electrically charged degrees of freedom in thermal equilibrium including also the
contributions of the spin and the charge of the scatterers. In this work, we always
assume for the electric charge a value e = 0.30.3 Due to the drag force, the energy in
the magnetic fields that is used to accelerate the monopoles eventually gets dissipated
into the thermal plasma4.

We now consider a Friedmann-Robertson-Walker (FRW) background spacetime
ds2 = dt2 ≠ a2dxidxi, assuming sum over repeated spatial indices irrespective of

1The details of the calculation and phenomenological aspects of the e�ective operator of the
interaction can be found in [81, 137].

2The expression of fp is di�erent by a factor 16fi
2 from that in [58], which used CGS units

instead of Heaviside-Lorentz.
3Before the electroweak phase transition, the monopoles and primordial magnetic fields are those

of the hypercharge U(1), and thus quantities such as the charge are modified by a number of order
unity that depends on the Weinberg angle. We ignore this e�ect, as well as the running of the
parameters; this treatment should be good enough for the order-of-magnitude calculations in this
work.

4Depending on the amount of the magnetic field energy that is dissipated, the plasma experiences
an additional reheating that can have non-negligible e�ects on the evolution of the universe.
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their positions, and suppose the plasma to be at rest in the coordinate system (t, xi),
i.e. uµ = (1, 0, 0, 0). In this reference frame, the velocity of the monopoles can be
expressed as vµ = (“, “vi/a), with “ = 1Ô

1≠v2
, vi = a(dxi/dt), and v = (vivi)1/2 the

modulus of the three-velocity.
In the absence of magnetic fields, the motion of the monopoles can be described

as a Brownian motion within the plasma [10]. Consequently, the monopoles present
thermal velocities vT ≥ (T/m)1/2, with zero mean velocity after taking an average
over the three directions. In the early universe, the thermal velocity can be larger
than the mean velocity induced by a primordial magnetic field. However, in this
work we ignore the thermal velocity, assuming that it does not leave any coherent
e�ects on large scales. The mechanisms of monopole production that we assume for
our analysis are not able to give the monopoles a significant mean velocity upon
production. In addition, any initial mean velocity of the monopoles decays away due
to the drag forces. This allows us to assume for the monopoles a zero mean velocity
when the magnetic fields are generated, simplifying the analysis.

The magnetic field vector is Bµ = F̃ µ0, with BµBµ = ≠B2 and B the amplitude
of the magnetic field. Choosing the x3-axis along the direction of the magnetic field
(namely, B3 = B/a and B1 = B2 = 0), we can ignore the monopole velocity along
the other directions, i.e. v3 = v and v1 = v2 = 0. Under these assumptions, the
motion of the monopoles can be described by the equation for the average velocity:

m
d

dt
(“v) = gB ≠ (fp + mH“) v, (6.6)

where H(t) = ȧ/a is the Hubble rate, and an overdot denotes a time derivative. The
contribution of the universe expansion can be seen as an additional frictional term
proportional to the Hubble rate. In [1] the solution of the equation of motion has
been studied for magnetic monopoles with Dirac charge gD = 2fi/e, while in [2] we
were interested in generalizing the results to generic magnetic charges.

We do not specify the detailed mechanism for the generation of the primordial
magnetic fields. According to the models proposed in the literature, the magnetic
fields can be generated during inflation [71, 72], after inflation when the universe
is dominated by an oscillating inflaton [73], or at cosmological phase transitions
[74, 75].

We define tend as the moment when the generation of the magnetic fields has
concluded and the fields start to redshift freely with the expansion of the universe
(the subscript “end” denotes quantities at the end of magnetic field generation5). In
this work we assume the primordial magnetic field to be suddenly switched on at
time tend. This corresponds to considering only times after the end of the process of
the magnetic field generation. Although it is possible to obtain further constraints
by taking into account also the time interval during the production of the magnetic
fields, we leave this for future analysis. For this work we assume that tend is at the
end of inflation or in the subsequent epochs. In other words, we consider the Hubble
rate during inflation to be no smaller than that at the magnetic field generation, i.e.

5Notice that in [1] we referred to the time at the end of magnetogenesis as ti, instead of tend.
Moreover, we used n to denote the number density of monopole-antimonopole pairs, while in this
paper we will use it for the total number density of monopoles and antimonopoles, i.e. n æ n/2.
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Hinf Ø Hend. Moreover, we define Tdom as the temperature at the end of reheating
when the universe becomes dominated by radiation (the subscript “dom” denotes
quantities computed at this time, i.e. tdom).

At time tend, the monopoles have a mean velocity equal to zero. (Here we
are tacitly assuming that the monopoles are present when the magnetic fields are
switched on. For monopoles produced afterward the ‘initial time’ should be taken
as the time when the monopoles are produced.) Considering time intervals t ≠ tend

shorter than the time scales of the frictional forces (which will be specified below),
the e�ects of the universe expansion and of the plasma can be ignored and the
product of the velocity and gamma factor can be expressed as:

“v ƒ gBend

m
(t ≠ tend). (6.7)

Thus, monopoles can be freely accelerated to relativistic or non-relativistic velocities
depending on the intensity of the fields and on their mass. At later times, the
frictional terms become important, and the velocity of the monopoles starts to
decrease. Depending on the temperature, one of the frictional terms eventually
dominates over the other, giving rise to di�erent behaviors of the velocity. We
analyze the velocity evolution for two di�erent regimes: during radiation domination
(t > tdom), and during the reheating epoch (t < tdom).

6.1 Velocity of magnetic monopoles with Dirac charge
In this section, we compute the evolution of the magnetic monopoles, assuming a
magnetic charge comparable to the Dirac charge. We will comment on the dynamics
of arbitrarily charged magnetic monopoles in the next section. We discuss separately
the dynamics during radiation domination and during reheating.

6.1.1 Radiation-dominated epoch
During radiation domination, the Hubble rate and the cosmic temperature redshift
as H Ã a≠2 and T Ã a≠1, up to the time variation of the number of relativistic
degrees of freedom, gú(s). For t > tdom, let us for the moment assume that the
Hubble friction on the monopoles is negligible. We also assume that the monopoles
move at non-relativistic velocities because of the interaction with the plasma. Under
these assumptions, the equation of motion of the monopoles can be rewritten as:

mv̇ = gB ≠ fpv. (6.8)

Neglecting the time variation of B, fp and H, the general solution of the equation
is v = C exp (≠(fp/m)t) + vp, where C is a constant that depends on the initial
conditions and vp is the terminal velocity:

vp = gB

fp

≥ 16fi2B

e2gNcT 2
. (6.9)

The characteristic time necessary for the monopoles to feel the e�ects of the in-
teraction with the particles of the plasma can then be defined as �tp ≥ m/fp ƒ
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16fi2m
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e2g2NcT 2
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[58]. After a time �tp, the monopoles approach the terminal

velocity vp.
As long as we consider magnetic fields of order 10≠15 G today, they cannot

have dominated the energy density of the universe during radiation domination, i.e.
B π T 2. Thus, for g ≥ 2fi/e the expression in Eq. (6.9) gives vp π 1. This justifies
our use of non-relativistic equations.

Comparing the timescale �tp with the Hubble time �tH ≥ 1/H ≥ MPl/(g1/2

ú T 2),
we observe that for a magnetic charge of g = 2fi/e the e�ect of the expansion of the
universe can be neglected for masses:

m <
MPlNc

g1/2

ú
. (6.10)

Limiting our analysis to sub-planckian values for the masses of the monopoles, this
condition is always satisfied. Therefore, this justifies our assumption of neglecting
the Hubble friction during radiation domination.

Using T0 ≥ 10≠4 eV and B0 ≥ 10≠15 G ƒ 2 · 10≠17 eV2, the terminal velocity
at T ≥ 1 MeV (at which time Nc ≥ gús ƒ 10.75) is estimated as vp ≥ 10≠8 for
g ≥ 2fi/e.

6.1.2 Reheating epoch
Within this work, for simplicity we assume the total number of relativistic degrees
of freedom gú(s), as well as the number of charged relativistic degrees of freedom
Nc, to stay constant for t < tdom. During the reheating epoch, assuming that the
plasma is in thermal equilibrium, then H Ã a≠3/2 and T Ã a≠3/8 (see Appendix C
for the computation). Consequently, the Hubble friction can play an important role
in the monopole dynamics, and moreover the monopoles can move with relativistic
velocities.

Thus, let us compare fp and mH“ in the equation of motion in Eq. (6.6), to see
which of the friction terms dominates during the reheating epoch. We introduce the
ratio r(t) = flrad(t)/fltot(t), where fltot is the total energy density of the universe and
flrad the energy density in radiation, with r Æ 1/2. The value of r decreases going
back in time. The Hubble rate then can be expressed as:

H ≥ g1/2

ú T 2

r1/2MPl

& g1/2

ú T 2

MPl

. (6.11)

If the monopoles move at non-relativistic velocities and assuming g ≥ 2fi/e, in
order for mH“ to be smaller than fp, the radiation fraction needs to satisfy:

r &
A

g1/2

ú m

NcMPl

B2

. (6.12)

For example, with a mass m ƒ 1016 GeV and with gú ≥ Nc ƒ 100, the condition in
Eq. (6.12) can be read as r & 10≠7. If the magnetic fields are generated su�ciently
in the past, going back in time eventually the condition in Eq. (6.12) breaks down.
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This signals fp < mH“, namely, the Hubble friction dominates, and the equation of
motion of the monopoles can be approximately written as:

m
d

dt
(“v) = gB ≠ mH“v. (6.13)

The terminal velocity can be estimated by equating the terms in the right-hand side
as,6

(“v)
H

≥ gB

mH
. (6.14)

This can also take relativistic values, unlike the terminal velocity in Eq. (6.9) due to
the plasma friction.

In Figure 6.1 we show the time evolution for “v, by numerically solving the
equation of motion Eq. (6.6). The results are shown for H(t) < Hend, and for di�erent
values of the monopole mass. For H(t) > Hdom, each value of the mass is associated
to a di�erently colored solid curve (from bottom to top, brown: m = 1019 GeV; red:
m = 1017 GeV; orange: m = 1015 GeV; green: m = 1014 GeV; blue: m = 1013 GeV;
purple: m = 1011 GeV). The dashed line in the regime H(t) > Hdom shows vp given
in Eq. (6.9), which corresponds to the terminal velocity set by the plasma when
vp π 1. For H(t) < Hdom the velocity is constant and independent of the mass of
the monopoles, hence it is represented by a single solid horizontal grey line. For the
computation we assume g = 2fi/e, B0 = 10≠15 G and gú = Nc = 100 throughout. We
use the results presented in Appendix C for setting the time dependence of a, T and
B. We start the computation at Hend = 1011 GeV, with an initial condition v(ti) = 0.
Moreover, we choose the cosmic temperature when radiation domination takes over
as Tdom = 106 GeV, which corresponds to the Hubble rate Hdom ƒ 10≠6 GeV.

Independently from the initial condition, the monopole velocity rapidly falls into
one of the attractor solutions, vp in Eq. (6.9) and vH in Eq. (6.14). The evolution of
the velocity for H(t) < Hend is hence independent of the value of Hend. However,
the choice of Hend determines how far back in time can one go with the attractor
solutions. With a su�ciently large Hend, the Hubble friction initially dominates
over the friction from the plasma, yielding (“v)H which redshifts as H1/3. During
reheating the fraction of energy density in the radiation component increases with
time and at some point Eq. (6.12) starts to be satisfied. This is the signal that
the velocity begins to be controlled by the friction from the plasma, cf. Eq. (6.9),
and then the velocity decreases as H5/6. For masses satisfying the condition in
Eq. (6.10), monopoles achieve vp before radiation domination and the value of the
velocity at T = Tdom is independent of the mass.

Of crucial relevance is the time tú of the transition between the domination of
the Hubble friction term and that of the friction term by the primordial plasma:

fp,ú = mHú“ú , (6.15)

where the subscript “ú” stands for quantities computed at time tú. For t < tú the
monopoles move at the terminal velocity set by the expansion of the universe shown

6The time scales for v to achieve vH, and for the redshifting of B and H, are all of order the
Hubble time. Hence d(“v)/dt actually does not vanish and the terminal velocity is (“v)H = 2gB/mH

(see Eq. (A7) in [45] for the derivation). However we will omit the factor 2 since we are interested
in order-of-magnitude estimates.



6.1 Velocity of magnetic monopoles with Dirac charge 72

in Eq. (6.14). For t > tú the frictional term due to the interaction with the plasma
dominates the evolution and the velocity of the monopoles can be expressed through
Eq. (6.9). Rewriting Eq. (6.15) as an expression for the velocity of the monopoles
vú, we get:

v2

ú = 1 ≠
A

mHú
fp,ú

B
2

. (6.16)

When v > vú the motion of the monopole is set by the Hubble friction term, while
for v < vú it is dominated by the friction force of the plasma. We can obtain the
Hubble rate at the transition by using Eq. (6.14) and setting vú ƒ vH,ú as:

m2H2
ú

f2
p,ú

+ g2B2
ú

f2
p,ú

ƒ 1. (6.17)

Considering that fp Ã H1/2 and B Ã H4/3 during reheating, we can rewrite Eq. (6.17)
in terms of quantitites at tdom as:

–
3

Hú
Hdom

45/3

+ —(m)
3

Hú
Hdom

4
ƒ 1, (6.18)

where we define:

– =
A

gBdom

fp,dom

B
2

, (6.19a)

—(m) =
A

mHdom

fp,dom

B
2

. (6.19b)

Depending on the value of the monopole mass, one of the two terms on the left-hand
side of Eq. (6.18) is larger than the other. The two terms are always positive and they
are of the same order only if both of them are of order unity, i.e. –(Hú/Hdom)5/3 ≥
—(m̄)(Hú/Hdom) ≥ 1, where we define m̄ as the mass for which the two terms are
comparable. From these considerations we obtain the relation for m̄:

–—(m̄)≠5/3 ≥ 1. (6.20)

Substituting the definition for – and —, we get the explicit expression for m̄:

m̄ ≥

1
g3B3

dom
f2

p,dom

2
1/5

Hdom

. (6.21)

Notice that the combination B3f2
p/H5 is actually time-independent during the

reheating epoch, up to mild variations from changes in the numbers of relativistic
degrees of freedom. Hence m̄ is constant in time. Using Eq. (C.5) in Appendix C to
rewrite the expressions for fp,dom, Bdom and Hdom in terms of their values at the
present time, we obtain:

m̄ ƒ 1014 GeV
3

B0

10≠15 G

43/5 3
g

10

4
7/5

3Nc,dom

100

42/5

. (6.22)
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Assuming B0 ≥ 10≠15 G, Nc ≥ 100 and g ≥ 2fi/e ≥ 10, we get m̄ ƒ 1014 GeV.
Thus, in Figure 6.1 the green curve corresponds to the evolution of the velocity of
monopoles with a mass m = m̄.

For m π m̄ the left-hand side of Eq. (6.18) is dominated by the first term and
the expression for Hú is independent of the monopole mass:

Hú
Hdom

ƒ 1
–3/5

=
3

fp,dom

gBdom

46/5

, (6.23)

while for m ∫ m̄ the second term dominates and:

Hú
Hdom

ƒ 1
—(m) =

3
fp,dom

mHdom

42

. (6.24)

Using Eq. (C.5), the expressions for Hú can be further rewritten as:

Hú ƒ

Y
_____]

_____[

104 GeV
3

g

10

4
6/5

3Nc,dom

100

46/5 3
Tdom

106 GeV

42
A

10≠15 G
B0

B
6/5

, m π m̄,

104 GeV
3

g
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4
4

3Nc,dom

100

42 3
Tdom

106 GeV

42
A

1014 GeV
m

B
2

, m ∫ m̄.

(6.25)
In Figure 6.1 we plot in vertical line the value of Hú in the limit m π m̄, i.e. the
first line of Eq. (6.25).

For m π m̄, the monopole velocity is always relativistic while it is on the
Hubble-friction branch, v = vH; this is seen for the purple and blue curves in the
plot. On the other hand, for m ∫ m̄, the monopoles become non-relativistic before
switching to the plasma-friction branch, v = vp, as it is seen for the brown, red,
and orange curves. In other words, if m π m̄, the balancing of the frictional forces
happens while the monopoles are relativistic, and the monopole velocity jumps from
an ultrarelativistic vH to a mildly relativistic vp. On the other hand if m ∫ m̄,
the balancing happens while the monopoles are nonrelativistic, and the velocity
transition is smooth.

Let us better estimate the time it takes for monopoles with m π m̄ to jump
from a relativistic vH branch to a non-relativistic vp branch. For times t . tú we
can consider v ƒ 1 and the equation of motion for the monopoles can be rewritten
in terms of the relativistic factor “:

“̇ = gB ≠ fp

m
≠ H“. (6.26)

Using B Ã a≠2, fp Ã a≠3/4, and H Ã a≠3/2, one can check that this equation has a
solution,

“ = 2 gB

mH
≠ 4

7
fp

mH
= “ú

C
11
7

3
a

aú

4≠1/2

≠ 4
7

3
a

aú

4
3/4

D

, (6.27)

which asymptotes to “ ƒ 2gB/mH in the past. Upon moving to the far right-
hand side, we used Eq. (6.15). For “ú ∫ 1, the “ factor approaches unity at
a = (11/4)4/5aú ƒ 2.2aú, which is obtained by equating the terms in the square
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Figure 6.1 Evolution of the monopole velocity in primordial magnetic fields for di�erent
values of the monopole mass (from bottom to top, brown: m = 1019 GeV; red: m =
1017 GeV; orange: m = 1015 GeV; green: m = 1014 GeV; blue: m = 1013 GeV; purple:
m = 1011 GeV) and for magnetic charge g = 2fi/e. The expression in Eq. (6.9) for the
terminal velocity set by the friction with the thermal plasma is also shown in dashed line.
Here Hdom = 10≠6 GeV, B0 = 10≠15 G, gú = Nc = 100 and we use Hend = 1011 GeV as
the starting point of the evolution. The value of Hú ≥ 105 GeV for monopole masses
smaller than m̄ is also shown in the plots (see the text for details).

brackets in Eq. (6.27). Thus, the jump from an ultra-relativistic vH to a non-
relativisitc vp happens with a time scale of 1/Hú, as shown in the figure for the
purple and blue curves.

Before closing this section, we should also remark that, as one goes back in
time in the reheating epoch, the energy density in primordial magnetic fields grows
relative to the total density as flB/fltot Ã a≠1. Hence for primordial magnetic fields
generated at the end of inflation or during reheating, i.e. tinf Æ tend < tdom, requiring
that they have never dominated the universe constrains the time when magnetic
field generation happened. The constraint is written using (C.5) and (C.6) as,

Hend . 1022 GeV
3

Tdom

106 GeV

42
A

10≠15 G
B0

B
3

. (6.28)

With a reasonable choice of parameters (such as g ≥ 10, B0 ≥ 10≠15 G, and
Nc,dom ≥ 100), one sees that Hú in Eq. (6.25) is well below this limit on Hend,
independently of Tdom and m.

6.2 Generalization to arbitrarily charged monopoles
We now move to the generalization of the analysis in the previous section to arbitrarily
charged monopoles. In particular, we comment on how the results are a�ected by
small values of the magnetic charge.
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As we have already explained, depending on the parameters of the model, one of
the two frictional terms in the equation of motion of Eq. (6.6) becomes dominant
and eventually the monopoles achieve a terminal velocity. We recall that if the
Hubble friction is the dominant term, i.e. mH“ ∫ fp, the terminal velocity is set
approximately by:

(“v)
H

≥ gB

mH
. (6.29)

The expression is directly proportional to the magnetic charge of the monopoles.
Thus, smaller magnetic charge corresponds to smaller vH.

On the other hand, when the drag force by the interaction with the plasma is
dominant, i.e. mH“ π fp, and the monopoles move at nonrelativistic velocities, the
terminal velocity corresponds to:

vp = gB

fp

≥ 16fi2B

e2gNcT 2
. (6.30)

Since the interaction rate with the particles of the plasma is proportional to g2

and the monopole acceleration by the magnetic field to g, the velocity vp scales as
vp Ã g≠1.

Even for generic magnetic charge, due to the “ factor in front of the Hubble
friction term, for relativistic monopoles (“ ∫ 1) the drag force due to the expansion
of the universe tends to become dominant. In this case the terminal velocity of the
monopoles corresponds to the value of vH shown in Eq. (6.29). However, in the case
when the monopoles move at relativistic velocities and mH“ π fp, the monopole
velocity rapidly decreases to nonrelativistic values and eventually starts to follow
the terminal velocity vp.

In Figure 6.2 we plot the time evolution of “v for small values of the magnetic
charge. The time evolution of “v is obtained by numerically solving the equation
of motion Eq. (6.6) with an initial condition of vend = 0. For the plots we assume
Hend = 1011 GeV, Hdom = 10≠6 GeV (i.e. Tdom ≥ 106 GeV, see Appendix C), and fix
the number of relativistic (charged) degrees of freedom as gú = Nc = 100 throughout
the displayed epochs. The magnetic field strength is taken such that it approaches a
present-day strength of B0 = 10≠15 G.

In Figure 6.2a, the results are shown for a magnetic charge g = 10≠3gD and for
di�erent values of the monopole mass. The value of the magnetic charge has been
chosen in order to cover a wide range of possible behaviors of the monopole velocity
which we will explain in the following sections. Each value of the mass is associated
to a di�erently colored solid curve; from bottom to top, red: m = 1019 GeV, orange:
m = 1016 GeV, green: m = 1013 GeV, blue: m = 1010 GeV, purple: m = 107 GeV.
The purple curve disappears when it is behind the blue curve. In Figure 6.2a,
the dashed gray line shows “v with v substituted by vp given in Eq. (6.30). This
corresponds to the terminal velocity set by the plasma when vp π 1, and it overlaps
with the blue and purple lines in the right part of the figure.

In Figure 6.2b, the results are shown for a mass m = 1011 GeV and for di�erent
values of the magnetic charge. As in the previous case, the value of the mass has
been chosen in order to show the various behaviors of the monopole velocity. Each
value of the charge is associated to a di�erently colored solid curve; from top to
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bottom, red: g = gD, orange: g = 10≠3gD, green: g = 10≠6gD, blue: g = 10≠9gD,
purple: g = 10≠12gD. The dashed curves show (“v)p for di�erent charges, indicated
by the colors. The red and orange dashed curves overlap with the corresponding
solid curves in the right part of the plot. The blue and purple dashed curves are
not shown because a terminal velocity set by the friction with the plasma cannot be
defined in those cases, being vp ∫ 1.

In the figures, the monopole velocity follows vp in Eq. (6.30) shown as the dashed
lines, otherwise it follows vH in Eq. (6.29) (except for at the left edges of the plots
where H ≥ Hend

7). This indicates that one of the two terminal velocities always
gives an attractor solution for the monopole velocity. One also sees from the figures
that the velocity can make a transition from vH to vp as the universe expands, but
not vice versa. The transition can be smooth as for the blue curve in Figure 6.2a,
but can also take the form of a sudden jump as for the purple curve in Figure 6.2a.

Whether the monopole velocity during radiation domination follows vp or vH

depends on the monopole properties and the magnetic field strength. This is
illustrated in Figure 6.3 in the m-g plane, where we took the field strength such that
it becomes B0 = 10≠15 G today. The numbers of relativistic (charged) degrees of
freedom are fixed to gú = Nc = 10.75. The purple curve shows where the plasma and
Hubble frictions in the monopole’s equation of motion in Eq. (6.6) are comparable,
i.e. fp = mH“H. In the red region the plasma friction is dominant (fp ∫ mH“H)
and the monopole velocity is given by vp. On the other hand, in the blue region the
Hubble friction is dominant (fp π mH“H) and the velocity is given by vH.

The balance condition fp = mH“H is rewritten using Eqs. (6.30) and (6.29) as
A

e2g2NcT 2

16fi2

B
2

≥ (gB)2 + (mH)2. (6.31)

This can be solved for the magnetic charge, and the solution g = gmin is approximated
by:

gmin ≥

Y
____]

____[

16fi2

e2Nc

B

T 2
for m π 16fi2

e2Nc

B2

HT 2
,

A
16fi2

e2Nc

mH

T 2

B
1/2

for m ∫ 16fi2

e2Nc

B2

HT 2
.

(6.32)

For g > gmin the monopole velocity approaches vp, and for g < gmin it approaches vH.
In other words, gmin sets the minimum charge for a monopole during radiation
domination to lose its kinetic energy mainly through its interaction with the plasma.
The expressions of Eq. (6.32) describe the two asymptotic behaviors of the purple
curve in the figure. In the first line the balance condition is realized for relativistic
velocities ((“v)H ∫ 1), while the second line is for nonrelativistic velocities ((“v)H π
1). In the figure, the dashed gray line shows where (“v)H = 1, with (“v)H < 1 on
its right side. One actually sees that the dashed gray and purple lines intersect at
the point where the purple line bends. We also note that the first line of Eq. (6.32)
corresponds to the charge that gives vp = 1; this is depicted in the figure by the

7Radiative emission may a�ect the monopole dynamics before one of the terminal velocities is
reached. However this also depends on how the magnetic field is initially switched on.
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(a) g = 10≠3gD with varying m.
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(b) m = 1011 GeV with varying g.

Figure 6.2 Time evolution of the monopole velocity in primordial magnetic fields. The
Hubble scales at the end of magnetogenesis and at the onset of radiation domination
are taken respectively as Hend = 1011 GeV and Hdom = 10≠6 GeV. The present-day
magnetic field strength is taken as B0 = 10≠15 G. The numbers of relativistic (charged)
degrees of freedom are fixed to gú = Nc = 100. In the upper panel, the charge of
the monopole is fixed to g = 10≠3gD while the mass is varied as m = 1019 GeV (red),
1016 GeV (orange), 1013 GeV (green), 1010 GeV (blue), 107 GeV (purple), from bottom to
top. In the bottom panel, the mass is fixed to m = 1011 GeV while the charge is varied
as g = gD (red), 10≠3gD (orange), 10≠6gD (green), 10≠9gD (blue), 10≠12gD (purple),
from top to bottom. The dashed colored curves in the upper panels show the terminal
velocity set by the friction from the cosmological plasma.

dashed black line. In the region below this line the expression Eq. (6.30) yields
vp > 1, indicating that the plasma friction does not yield a terminal velocity for
monopoles.
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Figure 6.3 Velocity of monopoles accelerated by primordial magnetic fields during radia-
tion domination. The solid purple curve shows the combination of the monopole mass
and charge for which the friction term due to the interaction with the primordial plasma,
fp, is comparable to the friction term due to the expansion of the universe, mH“H.
In the red region above the curve the monopole velocity is controlled by the plasma
friction, fp ∫ mH“H. In the blue region below the curve the velocity is controlled by
the Hubble friction, fp π mH“H. The dashed gray line shows where (“v)H = 1. The
dashed black horizontal line shows where vp = 1. Here we assume B0 = 10≠15 G and
gú = Nc = 10.75.

The expressions in Eq. (6.32) are time independent during radiation, up to mild
variations due to the change in the numbers of relativistic degrees of freedom. The
cosmic temperature and the Hubble rate during the radiation-dominated epoch are
related to the redshift as

T ≥ 1 MeV
A

10≠10

a/a0

B

, H ≥ 10≠15 eV
A

10≠10

a/a0

B
2

, (6.33)

where we ignored their mild dependence on gú(s). For the number of relativistic
charged degrees of freedom, hereafter we use Nc ≥ 10 as a reference value. Combining
these with the magnetic scaling B = B0(a0/a)2, one can rewrite Eq. (6.32) as

gmin ≥

Y
___]
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4
1/2

for m ∫ 102 GeV
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.

(6.34)

The terminal velocities of Eqs. (6.30) and (6.29) can also be rewritten during radiation
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domination as,

vp ≥ 10≠8

3
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4≠1
3
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4
, (6.35)

(“v)
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3
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3
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4 3
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4
. (6.36)

The monopole velocity during radiation domination shown in the right parts
of Figure 6.2 can be understood from Figure 6.3, and by noting that the terminal
velocities scale with the monopole mass and charge as vp Ã g≠1, (“v)H Ã gm≠1.
The variation of the velocities in Figure 6.2a is understood by moving horizontally
in Figure 6.3 along g = 10≠3gD; for small m the velocity is set to vp which is
independent of m (cf. purple and blue lines in Figure 6.2a), while for large m
the velocity is vH which decreases with m (cf. green, orange, and red lines). On
the other hand, Figure 6.2b corresponds to moving vertically in Figure 6.3 along
m = 1011 GeV; for small g the velocity vH increases with g (cf. purple, blue, and
green lines in Figure 6.2b), while for large g the velocity vp decreases with g (cf.
orange and red lines).
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Chapter 7

Bounds from the survival of
primordial magnetic fields

In the previous chapter, we treated the primordial magnetic field as a background,
however the magnetic fields themselves lose energy as they accelerate the monopoles.
Here we study the energy depletion of the magnetic field, and derive conditions for
the primordial magnetic field to survive until today. The kind of bounds analyzed
in this section are analogous to the Parker bounds but with respect to large-scale
magnetic fields in the early universe, instead of galactic magnetic fields in the recent
universe1. The bound during radiation domination has already been proposed in
[58]. In this chapter we review the bound for times t > tdom and we extend the
analysis for t < tdom. We first describe the evolution of the primordial magnetic
fields in the presence of magnetic monopoles from the end of magnetogenesis to the
epoch of e+e≠ annihilation, when the number of charged particles in the universe
becomes drastically reduced. Then, we derive bounds on the monopole abundance
from the survival of the primordial magnetic fields. Finally, we generalize the results
to arbitrarily charged monopoles.

As in the previous chapter, in our analysis we suppose that the process of
magnetogenesis terminates at the end of inflation or during the reheating phase.
Thus, we study the dynamics of the primordial magnetic fields during the reheating
epoch when the energy density of the universe is dominated by an oscillating inflaton
field, and the subsequent epoch of radiation domination.

The magnetic fluid is described by the barotropic equation of state PB/flB = 1/3,
where PB is the pressure of the magnetic fluid and flB = B2/2 is the physical
energy density. This corresponds to assuming that there are no external sources for
the magnetic field for t > tend. Under the hypothesis of a spatially homogeneous
magnetic field, the evolution of the energy density flB within a FRW background,
taking into account the e�ects of the monopole acceleration, is described by:

d
Ë
flB(t)a(t)3

È
= ≠PB(t)d

Ë
a(t)3

È
≠ 2gB(t)dt

⁄
t

≠Œ
dtÕa

!
tÕ"3 �

!
tÕ" v

!
tÕ, t

"
, (7.1)

where �(t) is the production rate for either monopoles or antimonopoles at time t.
The second term on the right-hand side of the equation denotes the loss of energy

1See also [23] for an extension of the Parker bound using Andromeda galaxy.
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due to accelerating the population of monopoles and antimonopoles produced from
the infinite past to time t. All the possible production mechanisms that we take into
account, i.e. monopole pairs produced by the magnetic fields, thermal production
and production during phase transitions, cannot produce an asymmetry on the
number of monopoles with respect to that of antimonopoles. Therefore, we always
consider the monopole and antimonopole number densities to be equal and there is a
factor 2 in the second term of Eq. (7.1). Here a(tÕ)3�(tÕ)dtÕ represents the comoving
number density of monopoles produced between tÕ and tÕ + dtÕ, v(tÕ, t) corresponds
to the velocity in the direction of the magnetic field at time t of monopoles produced
at tÕ (with t Ø tÕ). For the antimonopoles, we choose a charge of ≠g and a velocity
≠v(tÕ, t).2

The monopoles can be produced at a phase transition [8, 80], through a thermal
process [138, 139], or by the magnetic field itself via the Schwinger e�ect. In this
section we keep the discussion general and do not specify the production mechanism.
The particular case of the Schwinger pair production will be the topic of the next
chapter.

It has been shown that the monopole-antimonopole annihilation is relevant only
if the monopole abundance is large enough to overdominate the universe [8, 9]. Thus,
we assume monopole-antimonopole annihilation to be negligible.

Eq. (7.1) can be then rewritten as:

fl̇B

flB

= ≠�red ≠ �acc, (7.2)

where �red and �acc are the dissipation rates of the magnetic field energy due to
redshifting and monopole acceleration:

�red(t) = 4H(t), (7.3a)

�acc(t) = 4g

a(t)3B(t)

⁄
t

≠Œ
dtÕa

!
tÕ"3 �

!
tÕ" v

!
tÕ, t

"
. (7.3b)

Once the expression for the monopole velocity and for the total production rate is
given, the evolution of the magnetic field energy density can be derived by solving
Eq. (7.2).

In the previous chapter we have shown that the memory of the monopole velocity
at the time when the magnetic field is switched on is quickly lost. Hence, we assume
that the monopoles have a uniform velocity independent of when they were produced,
i.e. v(tÕ, t) = v(t). Under this assumption, it is possible to rewrite the expression for
�acc in the following way:

�acc(t) = 4g

B(t)v(t)n(t), (7.4)

2Primordial magnetic fields can lose their energy also by pair-producing monopoles through the
Schwinger e�ect. This e�ect can be taken into account by adding a term ≠2m�sw(t)a(t)3

dt on
the right-hand side of Eq. (7.1), where �sw is the rate of monopole pair production through the
Schwinger e�ect. However, we neglect such a contribution in our analysis. Back-reaction of pair
production on the magnetic field energy density has been studied in [45].
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where n(t) is the physical number density of the monopole pairs,

n(t) = 1
a(t)3

⁄
t

≠Œ
dtÕa(tÕ)3�(tÕ). (7.5)

Hereafter we assume n Ã a≠3 at times t > tend, namely, that there is no further
monopole production after the magnetic fields have switched on. This is a good
approximation also for monopoles produced by the magnetic field, since in such a
case the monopole population is dominated by those produced at t ≥ tend, as we
will discuss in the next section.

Using for �red the definition in Eq. (7.3a), we can express the ratio �acc/�red as:

�acc(t)
�red(t) = g

B(t)H(t)v(t)n(t). (7.6)

In the case �acc/�red π 1 the solution of Eq. (7.2) gives simply flB Ã a≠4, i.e.
the energy density of the magnetic field redshifts as radiation. In the opposite
case �acc/�red ∫ 1, the back-reaction on the magnetic fields due to the monopole
acceleration is non-negligible and the energy of the fields is transferred to the
monopoles at a time scale shorter than the Hubble time.

While the monopoles interact with the plasma, the energy given to the monopoles
by the magnetic fields is further passed on to the plasma. If the interactions are
e�cient and in the absence of mechanisms for the regeneration, the magnetic fields
would quickly decay away. In this case, the condition �acc/�red ∫ 1, corresponds
to a rapid dispersion of the energy of the magnetic fields into the plasma and the
disappearance of the fields. On the other hand, as discussed in [48, 58], if the
interaction with the plasma is negligible, the kinetic energy of the monopoles is
eventually transferred back to the magnetic fields, giving rise to oscillatory behaviors.
Such oscillations can happen at late times, i.e. T < 1 MeV, after the cosmological
e+e≠ annihilation drastically reduces the number density of the scatterers, and
possibly at early times when v ƒ vH and the interaction rate is negligible compared
to the Hubble rate.

Without the necessity of specifying the production mechanism for the monopoles,
it is then possible to give bounds on their number density from the persistence
of the primordial magnetic fields still today. This can be done requiring that the
condition �acc/�red π 1 holds when the interaction with the particles of the plasma
is non-negligible3.

As in the previous chapter, we first discuss the results for magnetic monopoles
with order the Dirac charge. Then, we generalize the discussion to arbitrarily charged
monopoles in the next section.

7.1 Bounds on magnetic monopoles with Dirac charge
We now describe the computations for the derivation of the bounds from the survival
of the primordial magnetic fields for magnetic monopoles with Dirac charge.

3If the initial magnetic field is extremely strong, then the leftover after the damping by the
monopoles may serve as the present-day cosmological magnetic fields. However we do not investigate
such a possibility in this paper.
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Figure 7.1 Evolution of the monopole velocity in primordial magnetic fields (top) and of
the normalized damping rate of the magnetic fields (bottom) for di�erent values of the
monopole mass (from bottom to top, brown: m = 1019 GeV; red: m = 1017 GeV; orange:
m = 1015 GeV; green: m = 1014 GeV; blue: m = 1013 GeV; purple: m = 1011 GeV) and
for magnetic charge g = 2fi/e. The expression in Eq. (6.9) for the terminal velocity set
by the friction with the thermal plasma is also shown in dashed line in the top plot.
Here Hdom = 10≠6 GeV, B0 = 10≠15 G, gú = Nc = 100 and we use Hend = 1011 GeV as
the starting point of the evolution. The value of Hú ≥ 105 GeV for monopole masses
smaller than m̄ is also shown in the plots (see the text for details).

We show in Figure 7.1 the evolution of the ratio �acc/�red from time tend

for di�erent values of the mass. The monopole velocity necessary for computing
�acc/�red is taken from Figure 6.1, which was obtained by solving the equation
of motion Eq. (6.6). We ignore back-reaction on the B field and we apply the
relations in Eq. (C.4) and Eq. (C.5) to rewrite all the quantities that present a time
dependence in terms of H(t). Since �acc/�red Ã n, we have normalized the value of
�acc/�red in the plot by n0 so that its value is independent of the monopole number
density today. The parameter choice and the mass for each colored curve are the
same as for Figure 6.1. Notice that the blue and purple curves overlap with each
other almost everywhere in the plot.

For t > tdom the monopoles move at the terminal velocity set by the interactions
with the plasma shown in Eq. (6.9). In this case the expression for the ratio is:

�acc

�red

ƒ g2

fpH
n. (7.7)

During radiation domination, the ratio constantly grows as �acc/�red Ã a Ã H≠1/2.
Such behavior is shown in the right part of Figure 7.1 as the grey line and it is
independent of the monopole mass.

For t < tdom, the time evolution can be more complicated and exhibits mainly
three kinds of behaviors. The first case is realized for monopoles light enough to
be initially accelerated to relativistic velocities, i.e. v ƒ 1. In this case the Hubble
friction dominates over the friction from the plasma. As long as the monopoles
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maintain a relativistic velocity, the expression for the ratio is:

�acc

�red

ƒ g

BH
n. (7.8)

This ratio scales as �acc/�red Ã a1/2 Ã H≠1/3 and increases with time. Eq. (7.8)
corresponds to the growing segments of the purple, blue, green, and orange curves
in the left part of Figure 7.1. For the parameter choice in the plot, the velocity is
relativistic soon after tend for m . 1016 GeV.

The second case is when the Hubble friction is dominant over the plasma friction
and the monopoles present non-relativistic velocities. In this case, the velocity is
given by v ≥ gB/ (mH) and the ratio is constant in time:

�acc

�red

ƒ g2

mH2
n. (7.9)

This case corresponds to the horizontal segments of the brown, red, and orange
curves of Figure 7.1.

The last case is realized when the monopoles achieve the terminal velocity set by
the interaction with the plasma. The expression for the ratio in this case is the same
as that in Eq. (7.7), but during reheating this scales as �acc/�red Ã a≠3/4 Ã H1/2,
decreasing in time. This case is shown in Figure 7.1 as the decreasing segments of
the colored curves.

During the reheating epoch, the �acc/�red ratio given by monopoles with masses
m < m̄ is maximized at the time when the monopoles turn non-relativistic. On the
other hand, for m > m̄, the ratio �acc/�red exhibits a plateau-like behavior while
the monopole velocity follows vH and is non-relativistic.

In correspondence to the jump from a relativistic velocity to a non-relativistic
velocity shown in Figure 6.1 for m < m̄, a jump in the value of the ratio is seen in
Figure 7.1 for the purple and blue curves. Such a jump corresponds to a sudden
transition during reheating from the value of the ratio shown in Eq. (7.8) to that of
Eq. (7.7).

Below we obtain bounds on the cosmic abundance of monopoles by requiring
that �acc/�red stays smaller than unity during radiation domination and reheating.

7.1.1 Radiation-dominated epoch
The analysis that we present for the bound during radiation domination follows the
work in [58]. For times t > tdom, we express the value of �acc/�red through the
result shown in Eq. (7.7). Using the expression for fp given in Eq. (6.5), we can
rewrite the ratio �acc/�red as:

�acc

�red

ƒ 16fi2

e2NcT 2H
n. (7.10)

Using H ƒ (fi/
Ô

90)g1/2

ú T 2/MPl, n Ã a≠3 and the relation between the scale factor
and the temperature in Eq. (C.2), the expression for �acc/�red becomes:

�acc

�red

ƒ 48
Ô

10figúsMPl

e2Ncg
1/2

ú gús,0

n0

T 3
0

1
T

, (7.11)
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where gús,0 ƒ 3.9. As shown in Figure 7.1, the ratio increases with time during
radiation domination. The expression in Eq. (6.5) for the friction assumes relativistic
plasma particles, and hence our analysis is valid up to the time of e+e≠ annihilation,
namely, when T ≥ 1 MeV. After the annihilation, the number of charged particles
in the plasma decreases by a factor 10≠10 [140] and thus the monopoles cannot give
away their energy e�ectively to the plasma. For this value of the temperature we
have Nc ≥ gú ƒ gús ƒ 10.75. Therefore, the maximum value of the ratio during
radiation domination is:

�acc

�red

(T = 1 MeV) ƒ n0

10≠21 cm≠3
. (7.12)

The survival of the primordial magnetic field then requires �acc/�red(T = 1 MeV) .
1. This yields the Primordial Parker Bound of [58]:

n0 . 10≠21 cm≠3. (7.13)

The bound does not depend on B0, g, or m. It should also be noted that this is a
bound on the average monopole number density in the universe.

Introducing the flux of monopoles at time t as F (t) = n(t)v(t)/4fi, we can express
the above bound in terms of the present-day monopole flux F0:

F0 . 10≠15 cm≠2sr≠1s≠1

3
v0

10≠3

4
. (7.14)

Here, we use the virial velocity in the Galaxy 10≠3 as a reference value [47], although
as we mentioned above this result applies to the average monopole flux in the
universe. Let us also notice that we define the flux as that of only monopoles (or
antimonopoles) and thus our results di�er by a factor 2 from those for the flux of
both monopoles and antimonopoles. However, such a di�erence is negligible for the
order-of-magnitude bounds we derive in this work.

Strictly speaking, the above analysis is valid only for monopoles with sub-
Planckian masses, cf. Eq. (6.10). For monopoles that present masses m >

MPlNc/g1/2

ú , the Hubble friction term of the equation of motion is dominant over the
drag force of the plasma even during radiation domination. Such monopoles never
achieve the terminal velocity set by the plasma, and hence the bound in Eq. (7.14)
must be modified.

7.1.2 Reheating epoch
Bounds on the monopole number density can also be derived based on the survival
of primordial magnetic fields during the reheating epoch. Here we assume the
cosmological plasma during reheating to be in thermal equilibrium, however let
us remark that this assumption leads to a conservative bound on the monopole
abundance. Without the assumption of thermal equilibrium, the number density
of the particles of the plasma is not related to the mean energy of the particles.
Inflaton decay results in an initially dilute plasma that contains a small number
of very energetic particles that are not in thermal equilibrium [141]. Under these
conditions the monopoles are more easily accelerated by the magnetic fields than in
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the case of thermal equilibrium.4 Thus, the drag force is smaller and the monopole
velocity larger. Hence, the damping rate of the magnetic field, �acc Ã v, turns out
to be larger than in the case of thermal equilibrium, and the resulting bound on
the monopole abundance can become stronger. We leave the case of a non-thermal
plasma for future analysis.

As discussed below Eq. (7.6), the survival of the primordial magnetic fields
requires the condition �acc/�red π 1 to be satisfied while the monopoles frequently
interact with the plasma particles. Hence we can restrict ourselves to times when
the monopole velocity is controlled by the plasma friction, instead of the Hubble
friction5. And since we are interested in times after the magnetic fields have been
generated, we focus on the regime max {tú, tend} Æ t Æ tdom, where tú is defined in
Eq. (6.15). The expression for �acc/�red during this regime is given in Eq. (7.7),
which decreases with the Hubble scale as Ã H1/2. Therefore, in order to derive
the strongest bound from the reheating epoch, we should evaluate �acc/�red at
t = max {tú, tend}.6

Considering that n Ã a≠3, the expression for the value of the ratio at t =
max {tú, tend} is:

�acc

�red

(t = max {tú, tend}) ƒ 16fi2

e2Nc,domH3/2

dom
T 2

dom

3
a0

adom

4
3

(min {Hú, Hend})1/2 n0.

(7.15)
Now we derive the bounds on the monopole abundance in both the cases Hend < Hú
and Hend > Hú. Once the value of Hú is fixed, the bound in the case Hend < Hú is
always weaker than the bound for Hend > Hú.

Case with Hend < Hú

For Hend < Hú, we rewrite the condition �acc/�red . 1 on Eq. (7.15) as a bound on
the average monopole number density in the present universe using the relations in
Eq. (C.5):

n0 . 10≠16 cm≠3

3Nc,dom

100

4 3
Tdom

106 GeV

42
A

104 GeV
Hend

B
1/2

. (7.16)

As a reference value for Hend, here we chose 104 GeV which is the reference value for
Hú in Eq. (6.25). We express the result also in terms of the monopole flux today:

F0 . 10≠10 cm≠2sr≠1s≠1

3
v0

10≠3

4 3Nc,dom

100

4 3
Tdom

106 GeV

42
A

104 GeV
Hend

B
1/2

. (7.17)

4The rough estimate of the drag force is fp ≥ n‡�p, where ‡ ≥ e
2
g

2
E

≠2 is the cross section of
the interaction with the particles of the plasma with mean energy E and �p ≥ E is the exchanged
momentum. Since the number density n is smaller and ‡�p Ã E

≠1, the drag force is also smaller
in the absence of thermal equilibrium.

5If �acc/�red > 1 during t < tú, the energy rapidly oscillates between the magnetic field and
monopoles, whose e�ect is to modify the redshifting of the magnetic energy density from the usual
flB Ã a

≠4 [58].
6For m < m̄, the ratio �acc/�red actually continues to increase after t = tú for about a Hubble

time. However, we use simply Eq. (7.7) to derive our bound because the value of the ratio does not
change substantially within a Hubble time. This leads to a conservative bound on the monopole
abundance.
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Case with Hend > Hú

We get a bound for the average monopole number density in the present universe
applying the condition �acc/�red . 1 on Eq. (7.15) to the case Hend > Hú and using
the expression for Hú shown in Eq. (6.25):

n0 .

Y
___]

___[

10≠16 cm≠3

3
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43/5 3
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4 310
g

4
3/5

, m π m̄,

10≠16 cm≠3

3
m

1014 GeV

4 3
Tdom

106 GeV

4 310
g

4
2

, m ∫ m̄.

(7.18)

Here we drop the dependence on Nc,dom, because the final results depend weakly on
its value. The bound for the monopole flux today is:

F0 .
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___]
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10≠10 cm≠2sr≠1s≠1

3
v0

10≠3
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, m π m̄,
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3
v0
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4 3
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4 3
Tdom

106 GeV

4 310
g

4
2

, m ∫ m̄.

(7.19)
Recall that m̄ divides monopoles that are relativistic (m π m̄) or non-relativistic

(m ∫ m̄) when the interactions with the plasma become important. For m π m̄
the bound depends on the value of the magnetic field today, while it is independent
of the monopole mass. On the contrary, for m ∫ m̄ the result is independent of B0,
while it is proportional to the mass of the monopoles.

In Figure 7.2 we compare various upper bounds on the monopole flux today as
functions of the monopole mass. The blue curves show the bounds that we derived
in Eq. (7.19) from the survival of the primordial magnetic fields during reheating
for three di�erent values of Tdom = 100 MeV (solid curve), 100 GeV (dashed curve),
105 GeV (dotted curve). The red line shows the bound in Eq. (7.14) from the survival
of primordial magnetic fields during radiation domination, which was first obtained
in [58]. The orange line corresponds to the original Parker bound from the survival
of the Galactic magnetic field [48]. The pink line corresponds to the “extended
Parker bound” that has been derived from the survival of the Galactic seed field
by [51].7 The black line shows the limit obtained by the MACRO experiment [30],
which corresponds to the strongest bound from the direct search of non-relativistic
monopoles. The dashed grey line shows the cosmological abundance bound from
the requirement that the monopole energy density is smaller than the total energy
density of the universe [8, 47]. In the plot we assume g = 2fi/e, B0 = 10≠15 G and
the reference value of the monopole velocity today v0 = 10≠3.

In the plot we have displayed the various bounds for comparison purpose, however
we should remark that their targets are di�erent: the bounds based on primordial
magnetic fields and the relic abundance constrain the average monopole number
density in the universe, while the bounds from Galactic fields (the original and

7The original and extended Parker bounds in the large m region (where the bounds grow with
m) are independent of the magnetic field strength, and thus should be equivalent if the other
parameters are the same. The lines in the plot do not coincide because they exhibit the results
presented in [48] and [51], which use slightly di�erent values for the parameters, as well as di�erent
rounding methods.
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Figure 7.2 Upper bounds on the magnetic monopole flux today. Here g = 2fi/e, B0 =
10≠15 G and v0 = 10≠3. Blue: bounds from primordial magnetic fields during the
reheating epoch shown in Eq. (7.19), for reheating temperatures Tdom = 100 MeV
(solid curve), 100 GeV (dashed curve), 105 GeV (dotted curve). Red: the bound from
primordial magnetic fields during radiation domination shown in Eq. (7.14). Orange:
the original Parker bound. Pink: the extended Parker bound. Black: direct search limit
from the MACRO experiment. Dashed grey: the cosmological abundance bound.

extended Parker bounds) and direct searches constrain the monopole density inside
the Galaxy. If the monopoles are clustered with the Galaxy, their local density in
the Galaxy can be significantly larger than the average density in the universe; in
such a case the bounds on the local density translate into much stronger bounds on
the average density.

As shown in the plot, for a su�ciently small Tdom, our bound in Eq. (7.19) from
the analysis during reheating becomes stronger than the original Parker bound and
the limits from direct searches. For a GUT scale monopole, our bound is comparable
to the original Parker bound for Tdom ≥ 1 GeV. The bound during reheating can also
be stronger than that during radiation domination, Eq. (7.14), for Tdom . 10 GeV
and in the low-mass range.

7.2 Generalization to arbitrarily charged monopoles
In this section, we extend the computations for the bounds from primordial magnetic
fields to allow for the monopoles to carry an arbitrarily magnetic charge.

As in the previous section, we require that the condition �acc/�red π 1 holds
during the period from the end of magnetogenesis, t = tend, to e+e≠ annihilation.
This condition corresponds to having negligible backreaction on the primordial
magnetic fields from the monopole acceleration. In order to rewrite such a condition
as a bound on the monopole abundance, we use the results for the evolution of the
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monopole velocity in the early universe as described in Section 6.2. We show in
Figure 7.3 the time evolution of the ratio �acc/�red from the end of magnetogenesis
to the time of e+e≠ annihilation. In Figure 7.3a we fix the monopole charge to
g = 10≠3gD, while the mass is varied as m = 1019 GeV (red), 1016 GeV (orange),
1013 GeV (green), 1010 GeV (blue), 107 GeV (purple). In Figure 7.3b we fix the
monopole mass to m = 1011 GeV while the charge is varied as g = gD (red), 10≠3gD

(orange), 10≠6gD (green), 10≠9gD (blue), 10≠12gD (purple). The monopole velocity
necessary for computing �acc/�red is taken from Figure 6.2, which was obtained by
solving the equation of motion Eq. (6.6). Since �acc/�red Ã n, we have normalized
the value of �acc/�red in the plot by n0 so that its value is independent of the
monopole number density today. The parameter choice and the mass for each
colored curve are the same as for Figure 6.2. Notice that the blue and purple curves
overlap with each other almost everywhere in the upper plot, and the red and orange
in the right part of the lower plot.

As in the previous section, below we obtain bounds on the cosmic abundance of
arbitrarily charged monopoles by requiring that �acc/�red stays smaller than unity
during radiation domination and reheating.

7.2.1 Radiation-dominated epoch
We start by analyzing the backreaction of monopoles on primordial magnetic fields
during the radiation-dominated epoch. Neglecting the time dependence of gú(s) and
Nc, then during radiation domination the Hubble rate redshifts as H Ã a≠2, and
the temperature of the plasma as T Ã a≠1. These, together with B Ã a≠2, render
both vp and vH constant in time. The monopoles during radiation domination thus
move with a constant velocity.

With constant velocities the dissipation rate ratio grows as �acc/�red Ã a. Thus,
as for monopoles with a Dirac charge, requiring negligible monopole backreaction
while there are abundant charged particles in the universe amounts to demanding
that this ratio is smaller than unity at e+e≠ annihilation, i.e.,

3�acc

�red

4

T ≥1 MeV

< 1. (7.20)

This also means that the bounds we derive in this section apply as long as the
primordial magnetic fields have been generated before e+e≠ annihilation.

In the case of g > gmin, the ratio �acc/�red is evaluated by substituting v = vp

into Eq. (7.6) and the result is the same than that for Dirac charged monopoles.
Hence, the condition in Eq. (7.20) can be rewritten as,

n0 . 10≠21 cm≠3, (7.21)

or in terms of the present-day monopole flux F = n0v0/4fi:

F . 10≠14 cm≠2sr≠1s≠1

3
v0

10≠3

4
. (7.22)

The bound is mainly determined by the temperature and redshift at e+e≠ annihi-
lation, and thus is independent of the amplitude of the magnetic fields and of the
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(a) g = 10≠3gD with varying m.
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(b) m = 1011 GeV with varying g.

Figure 7.3 Time evolution of the normalized dissipation rate of the magnetic fields
due to monopole acceleration. The Hubble scales at the end of magnetogenesis and
at the onset of radiation domination are taken respectively as Hend = 1011 GeV and
Hdom = 10≠6 GeV. The present-day magnetic field strength is taken as B0 = 10≠15 G.
The numbers of relativistic (charged) degrees of freedom are fixed to gú = Nc = 100.
In the upper panel, the charge of the monopole is fixed to g = 10≠3gD while the
mass is varied as m = 1019 GeV (red), 1016 GeV (orange), 1013 GeV (green), 1010 GeV
(blue), 107 GeV (purple), from bottom to top. In the bottom panel the mass is fixed
to m = 1011 GeV while the charge is varied as g = gD (red), 10≠3gD (orange), 10≠6gD

(green), 10≠9gD (blue), 10≠12gD (purple), from top to bottom.

mass and the charge of the monopoles. However, the red region in Figure 6.3 where
the bound can be applied (g > gmin) becomes smaller for stronger magnetic fields.

In the case of g < gmin, the monopoles do not e�ciently transfer the magnetic
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energy to the plasma. Hence their presence does not lead to the dissipation of
primordial magnetic fields, but can only induce oscillations of the fields and a�ect
their redshift evolution. In order for the fields’ redshifting to be unaltered by
monopoles, the condition �acc/�red < 1 should hold all the way until today. However,
in order to connect with the bounds we derived for g > gmin, here let us only require
the redshifting to be unaltered at temperatures T > 1 MeV and impose Eq. (7.20).
We further limit our analysis to nonrelativistic monopoles, i.e. (“v)H . 1, which
from Eq. (6.36) is equivalent to considering masses of:

m & 1010 GeV
3

g

gD

4 3
B0

10≠15 G

4
. (7.23)

(We are thus focusing on the region in Figure 6.3 on the right of both the purple and
gray dashed lines.) Then the dissipation rate ratio can be evaluated by substituting
v = vH ≥ gB/mH into Eq. (7.6), and the condition of Eq. (7.20) translates into:

n0 . 10≠22 cm≠3

3
m

1017 GeV

4 3
g

gD

4≠2

. (7.24)

The condition in terms of the present-day monopole flux is:

F . 10≠16 cm≠2sr≠1s≠1

3
m

1017 GeV

4 3
g

gD

4≠2
3

v0

10≠3

4
. (7.25)

7.2.2 Reheating epoch
We now discuss the bounds from the reheating epoch generalizing the results of
Section 7.1.2 to arbitrarily charged monopoles. For simplicity, here we discuss only
the case Hend > Hú.

During reheating the universe is e�ectively matter-dominated, and the Hubble
rate redshifts as H Ã a≠3/2. The final results of this section depend only mildly
on the numbers of relativistic degrees of freedom. Thus, for simplicity we ignore
their time dependences and use gú(s) ≥ Nc ≥ 100 in the following analyses. We also
assume the plasma particles to be in thermal equilibrium during reheating. Under
these assumptions, the temperature of the primordial plasma redshifts as T Ã a≠3/8

[47]. Consequently, the plasma-induced terminal velocity scales as vp Ã a≠5/4, and
the Hubble-induced terminal velocity scales as (“v)H Ã a≠1/2; the redshifting of
the former being faster is related to the fact that the monopole velocity during
reheating can make a transition from vH to vp but not vice versa [1], as was shown
in Figure 6.2. Combining this with the discussion in the previous chapter, we see
that monopoles make the transition to the vp-branch before reheating completes if
the charge satisfies g > gmin, with gmin given in Eq. (6.34).

For the case of g > gmin, we refer to the computation in Sections 6.1.2 and 7.1.2,
where we have defined tú as the time when the plasma friction takes over the Hubble
friction, i.e. fpú = mHú“Hú. For t < tú the monopoles move at the terminal velocity
vH, while for t > tú the monopoles follow vp. The balance of the frictional forces is
written as Eq. (6.31), which transform into an equation for Hú as in Eq. (6.18) by
considering that fp Ã H1/2 and B Ã H4/3.
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The relation Hú > Hdom holds if g > gmin and therefore it is always possible to
derive a bound during the reheating epoch. While monopoles carrying such a charge
move at the velocity vp and transfer the magnetic field energy into the plasma, the
dissipation ratio decreases in time as �acc/�red Ã a≠3/4 (this behavior is shown in
Figure 7.3a by the middle parts of the blue and purple lines). Hence requiring that
the fields survive during reheating amounts to imposing

3�acc

�red

4

ú
< 1. (7.26)

Combining this with v = vp and Eq. (6.25) yields a bound on the monopole abundance
that has the same expression than the one in Eq. (6.22), which we report here for
simplicity8
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The first (second) line sets the condition when m is smaller (larger) than m̄ given in
Eq. (6.22). We show also the condition in terms of the present monopole flux:
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As already discussed, the bounds in Eqs. (7.27) and (7.28) assume that the
velocity transition happens during the reheating epoch, and in particular after the
primordial magnetic fields are generated, hence

Hú < Hend, Hinf . (7.29)

Here Hinf is the inflationary Hubble rate, which is constrained by current observa-
tional limits on primordial gravitational waves as [142]

Hinf . 1014 GeV. (7.30)

Thus the condition of Eq. (7.29) would be violated if Hú becomes very large, for
instance due to a large Tdom. We also remember that for magnetic fields generated
at the end of inflation or during reheating, requiring that they have never dominated
the universe yields a constraint on the scale of magnetogenesis as in Eq. (6.28). For
B0 ≥ 10≠15 G and g . gD, there is a wide range for Hend where both this and (7.29)
are satisfied. However, this constraint can become relevant for magnetic black holes,

8For m π m̄, the ratio �acc/�red undergoes a jump shortly after tú (cf. purple line in Figure 7.3a).
By plugging v = vp, here we are approximately evaluating the value of �acc/�red after the jump.
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as we will later see. As we have analyzed in Section 7.1.2, if the fields are generated
after tú, i.e. Hend < Hú then the monopole bound becomes weaker. However, we do
not discuss again this possibility for arbitrarily charged monopoles.

If the charge is as small as g < gmin, the monopole velocity never approaches vp.
We can also derive the condition for such monopoles not to a�ect the redshifting
of the magnetic fields during the reheating epoch. In this case the dissipation
rate ratio is non-decreasing during reheating: It increases as �acc/�red Ã a1/2

while the monopoles move at relativistic vH, then stays constant after vH becomes
nonrelativistic. Hence we impose the condition at the onset of radiation domination,

3�acc

�red

4

dom

< 1. (7.31)

This condition assumes that the magnetic fields were produced before the radiation-
dominated epoch begins. We further focus on monopoles that become nonrela-
tivistic before tdom, which amounts to considering masses satisfying the condition
of Eq. (7.23). This allows us to plug vdom ≥ (gB/mH)dom into Eq. (7.31). One
can check that the upper bound on the present-day monopole number density thus
obtained is the same as the second line of Eq. (7.27), and the flux bound is the same
as the second line of Eq. (7.28).

7.2.3 Summary of bounds from primordial magnetic fields
We have seen that the bounds on the monopole flux from the survival of primordial
magnetic fields are described by Eq. (7.22) during radiation domination, and by
Eq. (7.28) during reheating. The bounds are valid under the condition g > gmin,
where the minimum magnetic charge gmin is given in Eq. (6.34). The bound from
radiation domination assumes that primordial magnetic fields are generated before
e+e≠ annihilation. For the bound from reheating it is further assumed that the
scales of magnetogenesis Hend, inflation Hinf , and Hú given in Eq. (6.25) satisfy the
condition of Eq. (7.29); here Hend is also constrained by Eq. (6.28), and Hinf by
Eq. (7.30).

The flux bound from radiation domination is independent of the amplitude of
the magnetic fields and of the mass and the charge of the monopoles, although the
minimum charge gmin depends on the field strength and mass. The bound from
reheating depends on a number of parameters, and in particular it becomes stronger
for larger charges and lower reheating temperatures.

For monopoles with g < gmin, we derived conditions for them not to alter the
redshifting of primordial magnetic fields.9 Focusing on masses satisfying Eq. (7.23),
the condition during radiation domination gives the flux bound in Eq. (7.25) (as-
suming magnetogenesis before e+e≠ annihilation), and from reheating arises the
bound which takes the same expression as the second line of Eq. (7.28) (assuming
magnetogenesis before the radiation-dominated epoch begins). For these bounds, we
stress that primordial magnetic fields can survive even if they are violated, however
in such cases one needs to take into account the monopoles in order to assess the
cosmological evolution of primordial magnetic fields.

9Monopoles with g > gmin can also a�ect the magnetic redshifting, however we did not analyze
this case.
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Figure 7.4 Upper bounds on the monopole flux as a function of mass, from the survival
of primordial magnetic fields during radiation domination (thick lines) and reheating era
(thin lines). The magnetic charge is varied as g = gD (red), 10≠3gD (purple), 10≠6gD

(blue). The dotted parts of the lines show where the fields exhibit modified redshifting
behaviors, instead of being dissipated. The magnetic field strength is taken such that it
realizes a present-day value of B0 = 10≠15 G, and the monopole velocity today is fixed to
v0 = 10≠3. The reheating bounds assume a reheating temperature of Tdom = 100 MeV.

In Figure 7.4 we show the upper bounds on the monopole flux from radiation
domination (thick lines), and from reheating with Tdom = 100 MeV (thin lines). The
magnetic charge is varied as g = gD (red), g = 10≠3gD (purple), and g = 10≠6gD

(blue). We have chosen a rather low reheating temperature just a few orders of
magnitude above the scale of Big Bang Nucleosynthesis, as an optimal value for the
reheating bound. The purple, blue, and red thick lines overlap in the left part of the
plot. Here we assume v0 = 10≠3, and B0 = 10≠15 G. The solid parts of the lines are
based on the survival of primordial fields (g > gmin), while the dashed parts are from
the requirement that the redshifting of the primordial fields is unaltered (g < gmin).
For the masses shown in the plot, gmin is given by the second line of (6.34), and
thus the condition g > gmin can be rewritten as:

m . 1019 GeV
3

g

gD

4
2

. (7.32)

The points in the plot show where this bound is saturated. We also note that
the parameters used for the plot allow for ranges of values for Hend and Hinf that
satisfy the assumptions in Eqs. (7.29), (7.30), and (6.28). Moreover, the condition
in Eq. (7.23) is satisfied on the dashed lines.

As shown in the plot, for Tdom = 100 MeV the bound from reheating is stronger
than the bound from radiation domination at low masses, for g & 10≠5gD. However
for Tdom & 102 GeV, the bound from radiation domination becomes stronger than
the bound from reheating even at g = gD. We stress again that the bound from
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Figure 7.5 Upper bounds on the monopole flux as functions of mass, for di�erent values
of magnetic charge. Gray: cosmological bound from comparison with the average
dark matter density in the universe. Orange: bound from Galactic magnetic fields of
B = 10≠6 G; the lower mass limit for monopoles to stay clustered with the Galaxy is
shown by the vertical dotted line. Pink: bound from Galactic seed magnetic fields of
B = 10≠11 G. Red: bound from primordial magnetic fields during radiation domination,
with present-day strength B0 = 10≠15 G. Blue: bound from primordial magnetic fields
during reheating era, with present-day strength B0 = 10≠15 G and reheating temperature
Tdom = 100 MeV. For the primordial bounds, the dashed parts of the lines show where
the fields exhibit modified redshifting behaviors, instead of being dissipated. The panel
for g = gD also shows the limit from direct searches by the MACRO collaboration [30]
in black. We assume v0 = 10≠3 and for the Galactic parameters lc = 1 kpc, R = 10 kpc,
·gen = 108 yr, and “i ≠ 1 = 10≠6. See the text for details.

the survival of primordial fields during radiation domination does not weaken for
smaller charges (although its range of applicability shrinks to smaller masses); this
feature makes the radiation domination bound particularly useful for constraining
minicharged monopoles.

7.2.4 Comparison of di�erent types of Parker bounds
Let us now compare the various bounds presented in this chapter and in Chapter 4
for arbitrarily charged monopoles. In Figure 7.5 we show the upper bounds on
the flux of magnetic monopoles as functions of the mass, for di�erent values of the
magnetic charge. The solid gray line shows the cosmological abundance bound in
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Eq. (4.20) where flDM is taken as the average dark matter density in the universe,
i.e. flDM = 1.3 ◊ 10≠6 GeV cm≠3, along with vi = 10≠3. The orange line shows
the bound based on the survival of Galactic magnetic fields, using Eq. (4.13) and
Galactic field strength B = 10≠6 G, along with the other parameters as lc = 1 kpc,
R = 10 kpc, ·gen = 108 yr, and “i ≠ 1 = 10≠6. Using the same set of parameters,
the dotted vertical line shows the lower mass limit in Eq. (4.8) for monopoles to
be clustered with our Galaxy. The pink line shows the bound from seed Galactic
fields, using again Eq. (4.13) but with the seed field assumed to be B = 10≠11 G; the
other parameters are the same as the orange line. The pink and orange lines overlap
on the right side of the plots. The red line shows the bounds in Eqs. (7.22) and
(7.25)) from primordial magnetic fields during radiation domination. The blue line
shows the bound in Eq. (7.28) from primordial magnetic fields during reheating, for
Tdom = 100 MeV. For the primordial bounds we assume the present-day amplitude
of the primordial magnetic fields to be B0 = 10≠15 G, and monopole velocity
v0 = 10≠3; moreover the solid parts of the lines are based on the survival of the
fields, while the dashed parts are from the requirement that the redshifting of the
fields is unaltered. With B0 = 10≠15 G, the smallest charge with which monopoles
can dissipate primordial magnetic fields is of 10≠8gD, cf. Figure 6.3. As a value
slightly above this, g = 10≠7gD is shown in panel 7.5d. In panel 7.5a for g = gD,
we also show in black the limit from direct searches by the MACRO collaboration
[30].10

We see that monopoles with large masses are most strongly constrained by the
cosmological abundance bound, while those with intermediate to low masses are
mainly constrained by the Parker bounds. Which of the Parker bounds is most
stringent for light monopoles depends on the charge. In particular, the bound
from seed Galactic magnetic fields is by far the strongest for monopoles with a
Dirac charge, while the primordial bounds become comparable or even stronger for
monopoles with small magnetic charges. However, we also note that the seed field
bound further improves at very small masses if the field strength is smaller than
B = 10≠11 G used in the plots.11

In Figure 7.5 we have displayed the various bounds for comparison purpose.
However, we should note that the target of each bound is not necessarily the same.
The cosmological abundance bound and the primordial bounds constrain the average
monopole density in the universe, while the Galactic bounds and the MACRO bound
constrain the local monopole density inside the Galaxy. If monopoles are clustered
with the Galaxy (although this can happen only in regions on the right of the dotted
lines), their local density can be much higher than the average density; then the
bounds on the local density translate into much stronger bounds on the average
density.

For monopoles that can cluster with the Galaxy, namely, for masses larger than
that indicated by the dotted lines, the cosmological abundance bound gives the
strongest constraint. The situation is similar even when comparing with the local
dark matter density; see Figure 4.1 and the discussion at the end of Section 4.1.3.

10We show here the MACRO limits extrapolated to arbitrarily light monopoles, without considering
the discussion on the MACRO results presented in Chapter 5.

11We do not consider here the relaxation of the seed Parker bound due to monopole acceleration
in IGMFs, as shown in Chapter 4.
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In other words, monopoles that cluster with our Galaxy and whose density does not
exceed that of dark matter almost automatically satisfy the Parker bounds. Hence
monopoles in this mass region, if they can be produced, are a valid candidate of
dark matter.

7.3 Magnetically charged extremal black holes
We now describe how the primordial bounds derived in this chapter can be applied
to magnetically charged extremal primordial black holes. We then compare the
bounds to those obtain from the survival of galactic magnetic fields, and discuss the
implication on magnetic black holes as dark matter candidates.

Using the relation in Eq. (4.22), the terminal velocity set by the Hubble friction
in Eq. (6.29) can be rewritten for extremal magnetic black holes as:

(“v)H ≥ BÔ
2MplH

. (7.33)

Thus, under the condition that the magnetic fields do not dominate the universe, i.e.
flB/fltot ≥ (B/(MplH))2 π 1, the velocity vH is always nonrelativistic, (“v)H π 1.
From this it also follows that extremal magnetic black holes satisfy the mass bound
in Eq. (7.23). Notice that (“v)H does not depend on the black hole mass.

With vH being nonrelativistic, the value of gmin is given by the second line of
Eq. (6.34). Consequently, using the relation in Eq. (4.22) the condition g > gmin

can be rewritten as:
m & 10≠3 gm. (7.34)

Extremal magnetic black holes with such masses are subject to the flux bound
of Eq. (7.22) which is based on the survival of primordial fields during radiation
domination.

Regarding the bound from the reheating epoch, we saw for generic monopoles
that the second line of Eq. (7.28) applies at larger masses for which the monopoles
are nonrelativistic upon making the transition from vH to vp. However for extremal
black holes, this instead applies at smaller masses, m < m̄BH, with the threshold
being

m̄BH ≥ 1010 gm
3

B0

10≠15 G

4≠3/2

. (7.35)

One can also check that for m > m̄BH, the scale Hú which is given by the first
line of Eq. (6.25), is comparable to or larger than the upper limit for Hend given
in Eq. (6.28); hence the assumption in Eq. (7.29) breaks down. Therefore only the
second line of the reheating bound in Eq. (7.28) applies for extremal black holes,
which is rewritten as

F . 10≠18 cm≠2sr≠1s≠1

3
m

1010 gm

4≠1
3

Tdom

106 GeV

4 3
v0

10≠3

4
. (7.36)

This bound applies to the mass range 10≠3 gm . m < m̄BH, given that the magne-
togenesis and inflation scales satisfy the conditions in Eqs. (7.29), (7.30), and (6.28).
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Figure 7.6 Upper bounds on the flux of extremal magnetic black holes. Gray solid:
abundance bound from comparison with the average dark matter density in the universe.
Gray dotted: abundance bound from comparison with the local dark matter density in
our Galaxy. Orange: bound from Galactic magnetic fields. Red: bound from primordial
magnetic fields during radiation domination, with present-day strength B0 = 10≠15 G.
Blue: bound from primordial magnetic fields during reheating, with present-day strength
B0 = 10≠15 G and reheating temperature Tdom = 100 MeV. For the primordial bounds,
the dotted parts of the lines show where the fields exhibit modified redshifting behaviors,
instead of being dissipated. Here we assume v0 = 10≠3 and for the Galactic parameters
lc = 1 kpc, R = 10 kpc, ·gen = 108 yr, and “i ≠ 1 = 10≠6. See the text for details.

At m > m̄BH, the bound is weaker than in the first line of Eq. (7.28) as discussed
in [1], however we will not analyze this in detail.

Extremal magnetic black holes as light as m . 10≠3 gm (i.e. g < gmin) move at
nonrelativistic vH throughout the early cosmic history. The condition for such black
holes not to alter the redshifting of the magnetic fields during radiation domination
is Eq. (7.25), which is now rewritten as

F . 10≠14 cm≠2sr≠1s≠1

3
m

10≠3 gm

4≠1
3

v0

10≠3

4
. (7.37)

The condition from the reheating epoch has the same expression as Eq. (7.36).

7.3.1 Comparison of bounds
In Figure 7.6 we show di�erent upper bounds on the flux of extremal magnetic black
holes. The solid gray line shows the cosmological abundance bound in Eq. (4.20)
with flDM taken as the average dark matter density in the universe, i.e. flDM ¥
1.3 ◊ 10≠6 GeVcm≠3. The dotted gray line shows the abundance bound with flDM

set to the local dark matter density in the Milky Way, i.e. flDM ¥ 0.4 GeV cm≠3.
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In both of the abundance bounds we also used vi = 10≠3. The orange line shows
the bound in Eq. (4.23) from the survival of Galactic magnetic fields, with the
parameters taken as lc = 1 kpc, R = 10 kpc, ·gen = 108 yr, and “i ≠ 1 = 10≠6;
this bound is independent of the Galactic field strength (as long as B . 10≠3 G),
hence the present-day and seed Galactic fields give similar bounds. We note that the
condition in Eq. (4.16) holds for all the values of the mass of the black holes shown
in the plot, as long as B & 10≠11 G. The red line shows the bounds in Eqs. (7.22)
and (7.37) from primordial fields during radiation domination. The blue line shows
the bound in Eq. (7.36) from primordial fields during reheating for Tdom = 100 MeV.
For the primordial bounds we assume a present-day field strength B0 = 10≠15 G, and
velocity v0 = 10≠3. The filled points on the primordial bounds show where the mass
limit of Eq. (7.34) is saturated, and the dashed parts of the lines show where the
fields exhibit modified redshifting behaviors, instead of being dissipated. Di�erently
from Figure 7.4, the dashed parts of the bounds are now on the lower mass end.
The blue open circle shows the threshold mass m̄BH given in Eq. (7.35). A reheating
bound also exists at m > m̄BH, however we did not analyze this case and hence the
blue line is truncated at m̄BH. Let us also note that an extremal magnetic black
hole with a Dirac charge g = gD has a mass of 7.1 ◊ 1019 GeV. However, lighter
extremal black holes can in principle exist by absorbing minicharged monopoles.

The bound from primordial fields during radiation domination does not depend
on the mass of the black holes, while the other Parker bounds become stronger
for larger masses. Consequently, the radiation domination bound is much less
constraining. The reheating bound, even with the rather low reheating temperature
chosen in the plot, is weaker than the Galactic bound; this is also seen in Figure 7.5
for the mass-dependent segments of the reheating and Galactic bounds.

We also see that the abundance bound is stronger than the Galactic Parker
bound, even when considering the local dark matter density. The Parker bound can
in principle be significantly improved by considering galaxies hosting magnetic fields
with coherence lengths much larger than the Milky Way; however it is unlikely that
magnetic black holes can be clustered with such galaxies, as was discussed at the
end of Section 4.1.4. And if magnetic black holes cannot cluster with some galaxies,
then they cannot make up all the dark matter.

As we have already mentioned in Section 4.1.4, in the above discussions we
have treated extremal magnetic black holes simply as very massive monopoles with
charges much larger than the Dirac charge, and ignored black hole-specific features.
There has not been enough time for accretion disks to form in the early universe [143],
hence this should not a�ect the bounds from primordial magnetic fields. On the
other hand, the presence of electroweak coronas around the extremal magnetic black
holes can also change the interaction between the black holes and the primordial
plasma, modifying the Parker-type bounds. We leave detailed studies of this e�ect
for the future.
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Chapter 8

Schwinger e�ect in the early
universe: production and
acceleration

8.1 Monopoles produced by primordial magnetic fields
In the previous chapter, we derived bounds on the abundance of magnetic monopoles
without specifying their origin. Here we focus on monopoles that are Schwinger-
produced by the primordial magnetic field itself, and study whether the magnetic
field is dissipated by the monopole acceleration. Here we note that even in the
absence of any initial monopole population, strong magnetic fields in the early
universe can trigger the monopole pair production. By studying this process, we
derive further constraints on monopoles, which also serve as the most conservative
condition for the survival of primordial magnetic fields.

The implications of monopole pair production in primordial magnetic fields were
recently investigated in [45], however, that work used a simplified treatment of the
magnetic field dissipation by monopole acceleration. In particular, it focused on
the acceleration right after the monopoles are pair-produced, but did not take into
account the integrated e�ect of monopole acceleration over the entire cosmological
history.

The Schwinger e�ect describes the production of particle-antiparticle pairs in an
external field. The analysis by Schwinger [12] assumed weak couplings; however, this
is not the case for magnetic monopoles which, due to the Dirac quantization condition,
have strong magnetic couplings. As we have already mentioned in Chapter 2, the
rate of monopole-antimonopole pair production at arbitrary coupling in a static
magnetic field has been derived in [13, 14] through an instanton method:

� = (gB)2

(2fi)3
exp

C

≠fim2

gB
+ g2

4

D

. (8.1)

This result is valid under the following weak field conditions:

B . m2

g
, (8.2a)
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B . 4fim2

g3
. (8.2b)

The second condition is stricter than the first one if g ∫ 1, and suggests that the
instanton computation is valid when the exponent of the expression in Eq. (8.1) is
negative. The second condition can be understood as the requirement that, in order
for the semi-classical instanton techniques to be valid, the loop radius of the classical
instanton solution [13, 14],

R = m

gB
, (8.3)

must be larger than the typical size of a monopole,

r = g2

4fim
. (8.4)

Under this condition, the instanton computation sees the monopoles as point-like
objects. Therefore, the result of Eq. (8.1) holds for both Dirac point-like monopoles
and ’t Hooft-Polyakov extended objects. We also notice here that it has been
suggested that basic Dirac monopoles might possess a comparable spatial size
[144, 145] to that of ’t Hooft-Polyakov monopoles; a straightforward reasoning is
that the classical point-particle model should fail at distances smaller than Eq. (8.4),
because otherwise the combined rest energy and potential energy of a monopole-
antimonopole pair could turn negative, destabilizing the vacuum. As explained, the
computation for the Schwinger e�ect should hold also in this case.

After the process of magnetogenesis, the primordial magnetic fields redshift as
B Ã a≠2. Thus, it su�ces to assume that the weak field condition Eq. (8.2b) is
verified at time tend. Defining:

I = 4fim2

g3Bend

, (8.5)

we rewrite the weak field condition Eq. (8.2b) as:

I & 1. (8.6)

Using Eqs. (C.5) and (C.6), the initial amplitude of the primordial magnetic
field can be written in terms of the field strength today as:

Bend = B0

3
a0

ai

4
2

ƒ 1043 G
3

B0

10≠15 G

4 3
Hend

1014 GeV

4
max

I3
Hend

Hdom

41/3

, 1
J

.

(8.7)
Here, the first expression within the curly brackets corresponds to the case with
tend < tdom and the second to tend > tdom. Substituting the expression for Bend into
the definition of I , we get:

I ƒ
310

g

4
3

A
10≠15 G

B0

B A
1014 GeV

Hend

B 3
m

1012 GeV
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,

(8.8)
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and we can express the weak field condition in Eq. (8.2b) as a lower limit on the
mass of the monopoles in terms of the Hubble rate at magnetogenesis:

m & 1012 GeV
3

g

10

4
3/2

3
B0

10≠15 G

41/2 3
Hend

1014 GeV

41/2

max
I3

Hend

Hdom

41/6

, 1
J

.

(8.9)
The number density of monopoles pair-produced by the magnetic fields can be

obtained using the expression in Eq. (7.5) and substituting the production rate
shown in Eq. (8.1). Because the production rate presents an exponential dependence
on the magnetic fields, the monopoles are produced predominantly within an interval
�t�end

≥ |�end/�̇end| ƒ (gBend)/(2fim2Hend) after tend [45]. Therefore, we can
approximately express the number density at times around tend as:

nend ƒ g�endBend

2fim2Hend

. (8.10)

Using n Ã a≠3, the monopole number density today is thus written as:

n0 ƒ
3

aend

a0

4
3 g�endBend

2fim2Hend

. (8.11)

It was pointed out in [45] that Eq. (8.2b) also gives an absolute upper bound
on the initial amplitude of primordial magnetic fields: saturating this bound leads
to either an overproduction of monopoles in the universe, or a self-screening of the
magnetic field. Below we revisit the magnetic field bounds in light of the energy
dissipation due to the production of monopole pairs and of the constraints derived in
the previous chapter. We show that for the monopoles produced by the primordial
magnetic fields, the bounds on the monopole flux approximately reduce to the weak
field condition in Eq. (8.2b).

8.2 Magnetic field dissipation by monopole production
We first take into account the energy dissipation due to the production of monopole-
antimonopole pairs. This analysis is taken from the work in [45].

In terms of the energy density of the magnetic field flB = B2/2, the redshifting
of the magnetic fields due to the cosmic expansion can be written as

(fl̇B)
red

= ≠4HflB. (8.12)

One can estimate the time scale of redshifting as �tred ≥ flB/(fl̇B)red = 1/(4H),
which is of order the Hubble time.

Furthermore, each time the magnetic fields produce a pair of monopole and
antimonopole the fields lose energy corresponding to the rest energy of the pairs
�EB = ≠2m. Therefore, we can estimate the energy dissipation due to pair
production per unit of time and volume as

(fl̇B)
prod

= ≠2m�, (8.13)

where � is the pair production rate in Eq. (8.1). From requiring that the dissipation
rate is smaller thant the rate of redshifting, we get an upper bound on the amplitude
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of the primordial magnetic fields necessary to have negligible back-reaction due to
pair production:

B < Bprod = 4fim2

g3

A

1 + 4
g2

log
A

g2

8fi3

m

H

BB≠1

. (8.14)

If the magnetic fields were stronger than the right hand side, they would have
decayed through pair production in less than a Hubble time, until the fields fall
below Bprod. Thus, Eq. (8.14) is an upper bound on the amplitude of the primordial
magnetic fields.

When the expression for Bprod becomes negative, i.e. if (4/g2) log(g2m/(8fi3H)),
the dissipation of the fields is significant only at the very strong fields for which
the computation for the pair production rate in Eq. (8.1) breaks down. However,
this is not usually the case for g π 1. In fact, considering the lower bound on
the monopole mass from heavy-ion collisions [42, 43] m & 70 GeV, and the upper
bound on the Hubble rate from the inflation scale [142] H . 1014 GeV, we get that
(4/g2) log(m/H) & ≠0.5 for g & 15. Normally the monopole charge is g ∫ 1 and
therefore Bprod is smaller than the field that saturates the weak field condition, i.e.
the weak field condition I & 1 is still valid for B = Bprod.

Considering that the ratio B/Bprod decreases with time, energy dissipation by
monopole pair production is more important in the past. Therefore, by taking
B = Bend it is possible to rewrite the upper limit for the primordial magnetic fields
from pair production as a lower limit for the monopole mass in terms of the Hubble
rate at magnetogenesis as:

I & 1 + 4
g2

log
A

g2

8fi3

m

Hend

B

, (8.15)

which di�ers from the mass bound from the weak field condition in Eq. (8.9) only
by the negligible logarithmic term.

8.3 Magnetic field dissipation by monopole acceleration
We now discuss the bounds on the primordial magnetic fields from the energy
dissipation due to the acceleration of the monopoles pair-produced by the magnetic
fields themselves. We first discuss the bounds from the acceleration during the
radiation domination, up to the time of e+e≠ annihilation, and then the bounds
from the acceleration during the reheating epoch after the end of the process of
magnetogenesis, before radiation domination.

8.3.1 Radiation-dominated epoch
We substitute the expression for the number density of monopoles produced by the
Schwinger e�ect in Eq. (8.11) into the expression for the maximum of �acc/�red

during radiation domination shown in Eq. (7.12). Making use of the relations in
Eqs. (8.7), (C.5), (C.6), we can rewrite the expression for the ratio as:

�acc

�red

(T = 1 MeV) ƒ x̃D exp
A

≠g2

4 (I ≠ 1)
B

, (8.16)
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where we define:

x̃D =
3

g

10

4
3

3
B0

10≠15 G

43
A

1016 GeV
m

B
2 3

Hend

1014 GeV

41/2

max
I3

Hend

Hdom

41/2

, 1
J

.

(8.17)
Under the requirement of negligible back-reaction on the primordial magnetic fields,
�acc/�red(T = 1 MeV) . 1, we get:

x̃D exp
A

≠g2

4 (I ≠ 1)
B

. 1. (8.18)

In Figure 8.1 we show in solid curves the bound in Eq. (8.18). We also plot the
weak field condition in Eq. (8.9) in dashed curves. The region below the curves
is not compatible with the survival of the primordial magnetic fields, namely, the
curves give lower bounds on the monopole mass. For the computation we assume
g = 2fi/e and B0 = 10≠15 G. The bound is shown for di�erent values of Tdom (from
bottom to top, red: 1015 GeV, which corresponds to Hdom = 1012 GeV; orange:
109 GeV, which corresponds to Hdom = 1 GeV; pink: 103 GeV, which corresponds to
Hdom = 10≠12 GeV). In cases where the magnetic fields are produced after reheating,
i.e. tend > tdom, the bound is independent of Tdom; this is seen in the plot as the red
and orange curves overlapping on the low-Hend end.

Due to the exponential dependence on I in Eq. (8.18), this condition reduces
approximately to the weak field condition Eq. (8.9), as seen in the plot. This can be
easily shown by computing the natural logarithm of the expression and rewriting it
as:

I & 1 + 4
g2

ln x̃D. (8.19)

The expression now takes a form similar to that for the weak field condition in
Eq. (8.6) with an additional logarithmic factor. For values of Hend that saturates
the upper bound on the inflation scale H . 1014 GeV [113] and assuming for B0

the reference value of 10≠15 G, the logarithmic term can become comparable to
1 only for very low monopole masses and very small values of Tdom. In any case,
the corrections are generically less than order unity and negligible for an estimate
at the level of the order of magnitude. In summary, the bounds on the monopole
abundance obtained for t > tdom approximately reduce to the weak field condition
in Eq. (8.9).

8.3.2 Reheating epoch
We now study the back-reaction of pair-produced monopoles on the primordial
magnetic field during the reheating epoch. Hence, in this subsection we only focus on
cases where the magnetic field generation takes place prior to radiation domination.

As explained in Section 7.1.2, the monopole bound is obtained by evaluating
the ratio �acc/�red at the time tend or tú, whichever is later (see Eq. (6.25) for the
definition of Hú). We compute the ratio by substituting Eq. (8.11) into Eq. (7.15).
Taking into account the relations in Eqs. (8.7), (C.5), (C.6), we obtain:

�acc

�red

(t = max {tend, tú}) ƒ x̃B exp
A

≠g2

4 (I ≠ 1)
B

, (8.20)
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Figure 8.1 Lower bounds for the monopole mass as a function of the Hubble scale at
magnetic field generation Hend. The plot shows the comparison between the weak field
condition in (8.9) (dashed curves) and the bound from requiring negligible back-reaction
on the primordial magnetic fields during radiation domination, shown in (8.18) (solid
curves). Here g = 2fi/e and B0 = 10≠15 G. The results are shown for three di�erent
values of the reheating temperature Tdom; from bottom to top, red: 1015 GeV, orange:
109 GeV, pink: 103 GeV. For Hend < Hdom, the results are independent from Tdom.

where we define:

x̃B =
3
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(8.21)

We remind the reader that the form of Hú in Eq. (6.25) depends on whether the
mass of the monopoles is smaller or larger than m̄.

Negligible back-reaction on the magnetic fields implies
�acc/�red (t = max {tend, tú}) . 1. From this condition, we get a bound in the
(Hend, m) plane similar to that obtained during radiation domination:

x̃B exp
A

≠g2

4 (I ≠ 1)
B

. 1. (8.22)

In Figure 8.2 we show in solid curves the condition in Eq. (8.22) and in dashed
curves the weak field condition given in Eq. (8.9) for di�erent values of Tdom (from
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Figure 8.2 Lower bounds for the monopole mass as a function of the Hubble scale at
magnetic field generation Hend. The plot shows the comparison between the weak field
condition in (8.9) (dashed curves) and the bound from requiring negligible back-reaction
on the primordial magnetic fields during reheating, shown in (8.22) (solid curves). Here
g = 2fi/e, Nc,dom = 100 and B0 = 10≠15 G. The results are shown for three di�erent
values of the reheating temperature Tdom; from bottom to top, red: 1015 GeV, orange:
109 GeV, pink: 103 GeV. The bound of Eq. (8.22) applies only for Hend Ø Hdom. The
endpoints of the solid curves correspond to where Hend = Hdom.

bottom to top, red: 1015 GeV, which corresponds to Hdom = 1012 GeV; orange:
109 GeV, which corresponds to Hdom = 1 GeV; pink: 103 GeV, which corresponds
to Hdom = 10≠12 GeV). For the computation we assume g = 2fi/e, Nc,dom = 100
and B0 = 10≠15 G. Since now we are focusing on the case where the magnetic fields
are generated before radiation domination, the bound of Eq. (8.22) applies only for
Hend Ø Hdom. In the plot, the endpoints of the red and orange curves correspond to
where Hend = Hdom.

Also in this case, the exponential factor mainly sets the left-hand side of Eq. (8.22).
Consequently, the bound reduces to the weak field condition up to an order-unity
factor, as seen in the plot. This is also seen by rewriting Eq. (8.22) as,

I & 1 + 4
g2

ln x̃B. (8.23)

The logarithmic factor can be generically neglected for an order-of-magnitude esti-
mate of the bounds.

The work [45] obtained a similar condition by only considering the acceleration
of monopoles soon after they are pair-produced. This indicates that the bound
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on the initial magnetic field strength does not improve significantly even when the
integrated e�ect of the monopole acceleration is taken into account over the entire
cosmological history. This insensitivity to the detailed dynamics of the monopoles is
due to the exponential dependence of the monopole production rate on the magnetic
field strength.

8.4 Symmetry breaking scale and weak field condition
We now describe some specific features [45] that applies to this discussion when we
consider topological solitonic monopoles, as in the t’ Hooft-Polyakov model.

For solitonic monopoles in spontaneously broken gauge theories, the symmetry-
breaking scale is typically of the order of M = m/g. If the cosmic temperature or
the Hubble rate upon magnetic field generation exceeds this scale, the symmetry is
unbroken; then the monopole solution does not exist and the monopole mass limit of
Eq. (8.9) can be evaded. The magnetic field itself can also restore the symmetry if
it exceeds the weak field limit of Eq. (8.2b) [146, 147, 148]. For topological solitons
the preceding discussions are not applicable if the symmetry is unbroken, as the
monopole solution does not exist in such a case. Consequently, strong magnetic
fields can be generated without the production of monopole pair when the cosmic
temperature or the Hubble rate is higher than the symmetry breaking scale, that is
‡ < max{T, H}, or if the value of Bend saturates the weak field condition.

If the symmetry is unbroken at some time during the post-inflation period,
monopoles are copiously produced at the symmetry breaking phase transition and
eventually dominate the universe, if the symmetry breaking scale is not su�ciently
low. It is important to note that the monopole problem is particularly grave if the
phase transition occurs before radiation domination. Therefore, while theoretically
magnetic field constraints could be bypassed by maintaining the symmetry unbroken,
this approach might cause the monopole problem and is not doable. As a result, we
can conclude that primordial magnetic fields beyond the stated upper limits could
not have existed post-inflation even in the case of solitonic monopoles.

We also observe that in a phase of broken symmetry, the magnetic field strength
in a radiation-dominated universe is limited above by the symmetry breaking scale,
thus is typically well below the threshold of the weak field condition. Conversely,
stronger fields are possible before radiation domination, when solitonic monopoles
can be abundantly produced by the fields [45].

In parts of the region displayed in Figures 8.1 and 8.2, the temperatures Ti

and/or Tdom are larger than M. However in such regions, the symmetry breaking
after inflation can induce a monopole problem, which leads to further constraints
on the monopole mass. We refer the reader to [45] for a detailed discussion on this
point.

In Figures 6.1 and 7.1, with the choice of parameters there, the weak field
condition implies m & 1014 GeV, and the condition of broken symmetry (Tend, Hend <
M) gives m & 1012 GeV. These conditions are violated in the plot by some of the
curves with low masses. Such curves, hence, should be taken only as a qualitative
indication of how light monopoles respond to primordial magnetic fields.

In Figure 7.2 we showed monopole bounds based on primordial magnetic fields
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during reheating, which were derived by evaluating the ratio �acc/�red at the time
tú. (Recall that we do not need to specify the value of Hend for these bounds, as long
as Hend > Hú is satisfied.) The magnetic field strength at tú, i.e. Bú, satisfies the
weak field condition in the entire range of m and Tdom displayed in the plot. The
condition Tú, Hú < M is also satisfied in the entire range, and thus the symmetry is
broken at tú.

We also remark that the constraint on the Hubble rate in Eq. (6.28) from the
requirement that the magnetic field energy does not dominate the early universe
is satisfied by the values of Hend shown in Figures 6.1,7.1, 8.1, 8.2, and also by Hú
shown in Figure 7.2.
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Chapter 9

Global solution to the
cosmological monopole problem

In this chapter, we propose a solution to the monopole problem (see the discussion
in Section 2.3.1) based on a modification of the kinetic term of the gauge field
that breaks the conformal symmetry of the gauge sector. Similar models have
been proposed for the implications on the processes of primordial magnetogenesis
[72, 73, 149], however here we are interested in the consequences for monopole
production during primoridal phase transitions.

9.1 The global monopole solution
In the case of the spontaneous breaking of a global symmetry of the lagrangian, a
monopole solution can still be defined. Such monopoles do not have a magnetic
charge, but they have a global charge in the unbroken global group. They are usually
called “global monopoles”, in constrast with the standard gauge monopoles, which
we address here also as “local”. Global monopoles present some peculiar and exotic
characteristics that we review here in some detail.

As for the ’t Hooft-Polyakov monopoles, global monopoles are produced during
the spontaneous symmetry breaking of a global symmetry G into a smaller group H
such that the second homotopy group of the vacuum manifold G/H is nontrivial,
i.e. �2 (G/H) ”= I. The simplest model where a global monopole solution can be
defined is the global version of the Georgi-Glashow model discussed in Section 2.1.2:

LÔ
≠g

= ≠1
2(ˆµ„)a(ˆµ„)a ≠ ⁄

4 („a„a ≠ v2)2. (9.1)

Here „a is a triplet of SO(3) and the vacuum expectation value v breaks the SO(3)
global symmetry into a SO(2) global symmetry.

The global monopole solution is characterized by the topological charge

N = 1
8fi

j
dSij |„|≠3‘abc„

aˆi„
bˆj„c, (9.2)

which corresponds to the global charge of the monopole. In the fundamental case
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N = 1 the solution is the spherically-symmetric configuration:

„a = vh(r)xa

r
, (9.3)

where the function h(r) vanishes for r = 0 and approaches 1 in the limit r æ Œ.1
As in the gauge case, one can compute the mass of the global monopole by

integrating the time-time component of the stress-energy tensor outside the monopole
core of size ” ≥ (

Ô
⁄v)≠1 [10],

m ≥ 4fi
⁄

R

”

T t

t r2dr ≥ 4fiv2R, (9.4)

where R is a cut-o� radius. This integral is clearly divergent for R æ Œ. However,
for practical realizations, a cuto� radius can be approximately fixed to the distance
of the closest antimonopole. So, although one isolated global monopole would
have infinite mass, the problem is solved in a physical realization of the symmetry
breaking, where the coherence length of the Higgs field is finite.

As a consequence of the peculiar structure of the stress-energy tensor of global
monopoles, the energy of a monopole-antimonopole pair separated by a distance R
is E ≥ 4fiv2R and the attractive force is independent of the distance:

F = ˆE

ˆR
≥ 4fiv2. (9.5)

Such a large attractive force between global monopole-antimonopole pairs make the
pair annihilation process very e�cient. Simulations [150] suggest that the global
evolution rapidly reach a scale-invariant regime with a monopole number density

nM = (4 ± 1.5) R≠3

H
, (9.6)

where RH is the horizon length. This result has been shown to hold in both radiation
and matter eras. As a consequence of the very e�cient mechanism of annihilation,
the monopole problem from over-production during the phase transition in the early
universe does not exist for global monopoles.

9.2 I2FF theories
Let us consider now gauge theories of the type [72] which break the conformal
symmetry of the gauge sector through a modification of the kinetic sector of the
vector boson field,

LÔ
≠g

∏ ≠I2

4 Fµ‹F µ‹ , (9.7)

where Fµ‹ is the field strength of the U(1) (hypercharge or electromagnetism,
depending on the energy scale) gauge field, and I(> 0) represents a generic coupling
between the gauge field and some other fields. Supposing that I is constant in space,
then it can be absorbed by the redefinitions

Ãa

µ = IAa

µ, ẽ = e/I. (9.8)
1Notice that here the symmetry is global and therefore there is no monopole solution for a vector

boson field as in the gauge case.
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Then, the e�ect of I is merely to shift the gauge coupling e, and in particular it
is clear that a small I would lead to strong couplings [149]. In order to avoid the
problem we assume I Ø 1. We also assume I to be time-dependent and constantly
decreasing until it becomes equal to 1. We then define tcon as the time when we
recover the conformal invariance of the gauge sector, i.e. I(tcon) = Icon = 1 (the
subscript “con” denotes quantities computed at tcon). We assume the temperature
Tcon to be larger than 1 MeV to avoid the constraints from BBN. As a toy model,
we assume that the time evolution of the function I can be expressed as

I =

Y
_]

_[

3
acon

a

4
s

for a Æ acon,

1 for a Ø acon,
(9.9)

where s is a positive integer.
We now want to embed the conformal-violating term into the toy model of a

G = SO(3) gauge theory with a triplet Higgs [6, 7]. We discuss here only the case
of minimal coupling with I. In this case, the Weyl symmetry-violating coupling I
exists only in front of the gauge kinetic term:

LÔ
≠g

= ≠I2

4 F a

µ‹F aµ‹ ≠ 1
2(Dµ„)a(Dµ„)a ≠ ⁄

8 („a„a ≠ v2)2, (9.10)

where a = 1, 2, 3, F a
µ‹ = ˆµAa

‹ ≠ ˆ‹Aa
µ + eÁabcAb

µAc
‹ , (Dµ„)a = ˆµ„a + eÁabcAb

µ„c,
Áabc is the Levi-Civita symbol, and ⁄, v > 0. We therefore canonically redefine the
gauge field and the gauge coupling as in Eq. (9.8).

After the symmetry breaks at the critical temperature Tc, which is typically
Tc ≥ v,2 the particle spectrum consists of a Higgs particle with mass MH =

Ô
⁄v, one

massless gauge boson, and two massive gauge bosons with mass MV = |ẽ|v. There
also exist topological monopoles with fundamental magnetic charge g̃ = ±4fi/ẽ,
mass MM ≥ |g̃|v = 4fiv/|ẽ|, and size rM ≥ 1/MV = 1/ (|ẽ|v). The shift in the gauge
coupling e further leads to the following I-dependence of the the mass of the gauge
boson and the charge, mass and radius of the monopole,

MV Ã I≠1, g Ã I, MM Ã I, rM Ã I. (9.12)

Given that I decreases in time, one sees that a large I in the asymptotic past
gives rise to a strong coupling for the monopoles, i.e. large g̃. However, one also
sees that MV/v decreases towards the past. Hence, in the asymptotic past, the
condition MV < Hinf < Tc ≥ v might hold; in this regime, the monopoles in the
theory are expected to be e�ectively global, i.e. chargeless under the gauge group,
as only the global part of the symmetry is e�ectively spontaneously broken and
the monopole radius extend beyond the Hubble horizon.3 Then, when I approach

2The critical temperature where the e�ective mass of the Higgs field at symmetry-preserving
vacuum is [10]

Tc =
3

12

5

1 + 12

5

e2
⁄

4
1/2

v. (9.11)

3Hence there should also be two electrically charged Nambu-Goldstone bosons. These, along
with other electrically charged particles like electrons, would be pair produced by the electric fields
and may back-react to the gauge fields.
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unity, one eventually enters the regime Hinf < MV < Tc ≥ v, and the monopoles
get dressed by the gauge fields becoming magnetically charged.4 We explain the
implication of this for monopole production in the next section.

9.3 Solution of the monopole problem without inflation
Let us assume that during the early universe before BBN the function I is much
larger than 1. We consider for simplicity that radiation domination holds for all the
period we consider for the analysis.

When the temperature of the universe goes down below the critical temperature
of the phase transition, i.e. T . v, if the Hubble rate is larger than the vector boson
mass, i.e. H ∫ ẽv = ev/I, the gauge sector is decoupled from the scalar sector and
the monopoles are produced as global. We define Tglobal = v as the temperature
at the time of the global monopole production. When the Hubble rate becomes
comparable to the vector boson mass, also the local gauge part of the symmetry is
broken and the monopoles become magnetically charged. We define

Hlocal = e

Ilocal

v, (9.13)

T 2

local = e

Ilocal

Mplv, (9.14)

as the Hubble rate and the temperature at the time of the breaking of the local
symmetry.

In the time period when Tlocal < T < Tglobal, the number density of monopoles
is fixed to the value in (9.6) and the number of monopoles per Hubble volume is
time invariant. When the temperature drops below the temperature at which even
local symmetry breaking occurs, the monopoles recover their standard evolution.

The energy density of non-relativistic monopoles is define as

flM = nMm̃M, (9.15)

where m̃M is defined as the time-dependent mass of the monopoles. Considering
that the monopole masses for which a monopole problem subsist are very heavy, we
do not lose generality by assuming nonrelativistic monopoles. Assuming nM(tlocal) ¥
4 ◊ H3

local
and considering that non-relativistic monopoles redshift as matter, we can

rewrite the energy density today as

flM,glo = nM,local mM

3
alocal

a0

4
≥ flcrit

3
v

1014 GeV

4 3
Tlocal

103 GeV

43

, (9.16)

where mM = 4fiv/e is the mass of the monopoles after the restoring of the conformal
symmetry and we assume gú(s) constant over time. Let us compare this with the
standard estimate for the monopole energy density through the Kibble mechanism
in the local case,

flM,loc = flcrit ◊ �M h2 ≥ flcrit

3
v

1011 GeV

4
4

, (9.17)

4If when the monopoles become local, the magnetic charge g̃ is still su�ciently large, strong
primordial magnetic fields would give rise to very e�cient monopole pair production. This would
serve as an obstacle for magnetogenesis, or a new production mechanism for monopoles.
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where �M is defined in Eq. (2.33). For low values of Tlocal, much higher symmetry-
breaking scales (even higher than the GUT scale) are admitted by the model without
incurring into the monopole problem.

We now want to discuss the e�ective range of applicability of our model. The
model has three degrees of freedom; we choose as free parameters the vacuum
expectation value, v, the temperature at which the conformal symmetry is restored,
Tcon, and the exponent for the time dependence of I defined in Eq. (9.9), s. We can
express Tlocal in terms of the chosen parameters as

Tlocal = (evMPlT
s

con)≠2≠s . (9.18)

Our new estimate of the relic monopole energy density in Eq. (9.16) is valid
under the assumptions: Tcon & TBBN ≥ 1 MeV (the conformal symmetry must be
recovered before BBN to not a�ect standard cosmology), Tlocal & Tcon (the local
phase transition must occur before the restoring of the conformal symmetry), and
Tglobal > Tlocal (the global symmetry breaking must occur before the local one).
From the last two conditions, we get relations between the free parameters of the
model (v, Tcon, s). In particular, from the second condition we get

T 2

con & eMplv, (9.19)

and from the third one
vs+1 & eMPlT

n

con. (9.20)

If the condition in Eq. (9.20) is not verified, the symmetry breaking follows the usual
pattern and occurs at the temperature Tc ≥ v. Hence, the monopoles are produced
as local and the energy density follows the expression in Eq. (9.17). For realistic
values of the paramenters, the condition in Eq. (9.19) is usually weaker than that
in Eq. (9.20), and therefore in the following we focus mainly on the condition in
Eq. (9.20).

In Figure 9.1 we show the values of the symmetry breaking scale of the theory v
and the temperature at the restoration of the conformal symmetr Tcon for which the
monopole energy density is lower than the critical energy density of the universe
and therefore there is no monopole problem. We show the results for two di�erent
values of the integer s (Figure 9.1a: s = 3, Figure 9.1b: s = 6). We show in the
plots values of Tcon that satisfy the condition Tcon & TBBN, and of v larger than the
electroweak symmetry breaking scale and smaller than the Planck mass.

The purple line corresponds to the values of the parameters for which the
temperature at the local symmetry breaking, i.e. Tlocal, is equal to the temperature
at the global symmetry breaking, that is, when the two phase transitions occur at
the same time and in Eq. (9.20) the equality holds. On the right of the purple line
the global symmetry breaking occurs before the local one and the monopoles are
first produced as global. On the left of the purple line the symmetry breaking a�ects
at the same time both the gauge and the Higgs sector, and therefore the monopoles
are produced directly as the standard gauge monopoles through the standard Kibble
mechanism. The brown line signals the combination of the parameters for which
the monopole energy density in Eq. (9.16) is equal to the critical energy density of
the universe flcrit ¥ 10≠46GeV4. In the region above the brown line the abundance
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Figure 9.1 Parameter space for the relic monopole energy density as a function of the
vacuum expectation value of the theory v and the temperature at which the conformal
symmetry of the gauge kinetic sector is restored Tcon. We show the results for two
di�erent values of s, as defined in Eq. (9.9). The gray area is excluded because the
monopole energy density is larger than the critical energy density of the universe. In
the red area the monopoles are produced directly as local, the energy density is fixed
by Eq. (9.17) and they are not excluded by the critical energy density of the universe.
In the blue area the monopoles are first produced as global, and only later acquired a
magnetic charge. In this case the energy density is set by Eq. (9.16) and they are not
excluded by the critical energy density of the universe. The dashed contours in the blue
area show the value of the monopole energy density in units of GeV4. The solid brown
line shows the combination of m and Tcon for which the expression in Eq. (9.16) is equal
to the critical energy density of the universe, while the solid black line when the latter
is equal to the expression in Eq. (9.17). The dashed gray line shows the combination
of the parameters for which Eq. (9.16) and Eq. (9.17) are equal. The solid purple line
shows the parameters for which Tlocal = v. Here we assume gú(s) constant in time.

of monopoles in our new setup overcloses the universe, while below is compatible
with the cosmological parameters. The solid vertical black line corresponds to the
value of v for which the standard calculation for the monopole energy density in
Eq. (9.17) corresponds to the critical energy density. On the left of that line the
monopole problem does not exist in the standard scenario, while on the right the
standard calculation excludes monopole production after inflation. The dashed gray
line shows the values of the parameters for which the monopole energy density in the
standard scenario from Eq. (9.17) and in our model from Eq. (9.16) are the same.
Above that line the value of Tlocal is large enough to have flM,glo > flM,loc, while the
opposite is true below the line.

The gray area of the plots is excluded because the monopole energy density in
our model is larger than the critical energy density of the universe. Notice that
there is a gray region on the left of the vertical solid black line. In that region, the
number of monopoles produced in our model overcloses the universe, while this is
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not the case in the standard scenario. On the other hand, in the red and blue areas
the monopole energy density is less than the critical energy density of the universe.
In the red area the monopoles are produced directly as local and the energy density
is fixed by Eq. (9.17). In the blue area the monopoles are first produced as global,
and only later acquired a magnetic charge. In this case the energy density is set by
Eq. (9.16). The dashed contours in the blue area show the value of the monopole
energy density in units of GeV4.

We have demonstrated that the modification of the kinetic term of the gauge
sector in Eq. (9.7) might enlarge the interval of allowed symmetry breaking scales to
admit higher values of the vacuum expectation value. In particular, in our simplified
model we have shown that for a quick enough redshifting of the I function (for
s Ø 3), it is possible to solve the monopole problem up to scale close to the Planck
mass without the necessity of an inflationary epoch. Hence, once embedded in this
model, even GUT-scale monopoles can be produced during phase transitions after
inflation without any problem for the cosmology, solving the monopole problem.
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Chapter 10

Conclusion

In this thesis, we have highlighted the importance of the studies on the dynamics of
magnetic monopoles accelerated by cosmic magnetic fields within a cosmic setting,
exploring various potential applications of analyzing the monopole-cosmic magnetic
field interaction. In this conclusion, we review the main results of the work and
discuss future directions.

The first half of this thesis has been dedicated to the study of the monopole
system in the late universe. In particular, we have comprehensively analyzed the
acceleration of magnetic monopoles in intergalactic and galactic space, in light of the
modern understanding of galactic and intergalactic magnetic fields. We found that
monopoles with intermediate to low masses are accelerated to relativistic velocities.
We have also shown that if the cosmic flux of magnetic monopoles is larger enough,
their backreaction on IGMFs is non-negligible. In this case, the energy oscillates
between the IGMFs and the monopoles, and the oscillation-averaged monopole
velocity depends on the monopole density. Future developments in studies of IGMFs
may be able to constrain such IGMF-monopole oscillations, which will allow us to
improve bounds on the monopole flux. Although this will not happen presumably
in the near future, this is the first time that a cosmological probe for a monopole
abundance well below the dark matter abundance or the terrestrial experiment
sensitivity has been proposed for the detection of magnetic monopoles. Finally, we
also note that a cosmic population of relativistic monopoles from IGMF acceleration
can serve as dark radiation, which may be further constrained by cosmological
studies. Given the monopole acceleration mechanism in intergalactic voids that we
have described, this might be an independent test to constrain the cosmic monopole
abundance.

We have then shown some applications of the monopole acceleration study, as a
deeper understanding of the monopole acceleration in cosmic magnetic fields is crucial
for both indirect and direct bounds on the monopole abundance. In particular, we
first studied the mechanism at the basis of the galactic Parker bounds, generalizing
the bounds for arbitrarily charged monopoles. We noticed that while monopoles
with a Dirac charge have to be heavier than 1018 GeV to cluster with our Galaxy,
minicharged monopoles can cluster with much lighter masses. For monopoles that
can cluster with our Galaxy, the Parker bounds are generically less constraining
than the bound from the dark matter density. Such monopoles can thus make up
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the entire dark matter. Subsequently, we studied how the Galactic Parker bounds
are modified for fast-moving monopoles accelerated in the IGMFs. Although it has
been assumed in the literature that the initial monopole velocity with respect to
the Milky Way Galaxy is of the order of the peculiar velocity or the virial velocity
of the Galaxy, this is not necessarily the case in the presence of IGMFs. Therefore,
we have shown that large monopole velocities weaken the so-called extended Parker
bound based on the survival of seed Galactic magnetic fields. On the other hand,
the Parker bound from the present-day Galactic field is una�ected by IGMFs that
are compatible with observations. Any additional magnetic fields around the Milky
Way, such as those transported by galactic winds, can also accelerate the monopoles
and further weaken the Parker bound. An accurate study of the e�ects of such fields
requires numerical analyses, which we leave for future works.

Monopole acceleration in cosmic magnetic fields is also crucial for terrestrial
experiments that seek magnetic monopoles. From our model of monopole acceleration
in cosmic magnetic fields, we were able to rewrite the limits on the monopole flux
in terrestrial experiments, usually presented in terms of the monopole velocity
at the detector, in terms of the monopole mass. We have shown the updated
monopole limits in Figure 5.3. We obtained that light monopoles m < 104 GeV
are mostly constrained by the results from the Pierre Auger Observatory, while
intermediate mass monopoles with 104 GeV < m < 1011 GeV are mostly constrained
by the IceCube results. Monopoles with masses 1011 GeV < m < 1016 GeV are
still mostly constrained by the MACRO results, and more massive monopoles only
by the cosmological abundance of dark matter. We encourage the experimental
collaborations to present their future results following the same logic of this chapter.
These results show that ultra-high energetic cosmic ray experiments can put very
stringent bounds on the abundance of light to intermediate monopoles. We encourage
other experimental collaborations to work on similar analysis.

The analysis in this thesis serves as a first step toward a complete understanding
of monopole acceleration in cosmic environments. An accurate knowledge of the
velocity of magnetic monopoles entering the Earth is crucial for interpreting the
constraints from terrestrial detectors in terms of the monopole mass, as well as for
strengthening the galactic Parker bounds. It would also be interesting to study
relativistic monopoles as a possible explanation of the recently claimed detection
of an extremely high-energy cosmic ray [151]1. It will then be really important in
the future to compute numerical simulations of monopole propagation in cosmic
magnetic fields, and we encourage new studies on this topic.

In the second part of the thesis, under the assumption that the IGMFs we
observe in intergalactic voids have a primordial origin, we have presented new
results from the study of the monopole system in the early universe. We carried
out a comprehensive study of the monopole dynamics in the early universe and its
back-reaction to the primordial magnetic fields from the time when the primordial
magnetic fields were generated to the epoch of e+e≠ annihilation. Hence, we derived
new bounds on the average abundance of magnetic monopoles in the universe by
extending the Parker bound to the survival of the primordial magnetic fields during
the radiation-dominated epoch and reheating.

1See also the earlier papers [76, 77, 152, 153, 154] that studied similar ideas.
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In the case of magnetic monopoles with Dirac charges, for a su�ciently low
reheating temperature, the bound from reheating is stronger than the original Parker
bound and the limits from direct searches, even for GUT-scale monopoles. At low
masses, the bound from reheating is stronger than that during radiation domination
for a reheating temperature Tdom . 10 GeV. In our analyses we assumed the plasma
particles during the reheating epoch to always be in thermal equilibrium, however
removing this assumption may further strengthen the bound on monopoles. We
leave this for future studies.

We have then carried out a comprehensive study of the Parker-type bounds on
magnetic monopoles with arbitrary charges, comparing the various bounds. Heavy
monopoles are mainly constrained by the dark matter density limit, while intermedi-
ate to low mass monopoles are mainly constrained by the Parker bounds. Among
the Parker bounds, the seed galactic field bound strongly constrains monopoles
with a Dirac charge,2 while the primordial bound from radiation domination can
be the strongest for monopoles with small magnetic charges. This is because the
bound from radiation domination in the low-mass regime is independent of the
monopole charge, while the other Parker bounds become weaker for smaller charges.
Minicharged monopoles are typically connected by dark strings, whose tension is set
by the mass µ of dark photons; in addition, they appear as minicharged monopoles
only at distances greater than 1/µ (see, e.g., [18, 19]). In our analyses we ignored
these e�ects, supposing that the force from the background magnetic field is stronger
than the string tension, and that the field’s coherence length is larger than 1/µ.
These assumptions can break down depending on the dark photon mass, in which
case our bounds can be modified.

We also studied extremal magnetic black holes, finding that they are mainly
constrained by comparison with the dark matter density. However, even stronger
constraints can in principle be obtained if there exist galaxies whose magnetic fields
have coherence lengths much larger than those of the Milky Way. The large coherence
lengths also lead to the acceleration of black holes up to the escape velocity within a
rather short time period, and hence it is improbable that black holes remain clustered
with such galaxies until today. The existence of galaxies not being able to host
magnetic black holes, if confirmed, would rule out the possibility of magnetic black
holes as a dark matter candidate. Although not yet certain, this might be the case
for the characteristics of the Andromeda galaxy’s magnetic fields. Therefore, it is
very unlikely that extremal magnetic black holes might be dark matter. For extremal
black holes, some of the Parker bounds could be modified by the presence of accretion
disks and/or the electroweak corona [22, 23]. We leave detailed considerations of
these e�ects for future analysis.

The monopole-primordial magnetic field system is also interesting for Schwinger
production of monopole pairs in the early universe. Although not investigated in
this thesis, this might provide a workable process for the production of magnetic
monopoles after inflation. Hence, monopole pair production must be taken into
account in the di�erent mechanisms of primordial magnetogenesis presented in the
literature because the produced pairs might induce a self-screening of the field

2We note however that, as we have shown in Chapter 4, in the presence of strong IGMFs the
seed Galactic Parker bound might be significantly relaxed.
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amplitude. Monopole pair production during primordial magnetogenesis is an
important topic that should be investigated in the future. As a first contribution to
the topic, we applied our new primordial bounds to the monopole pairs produced
in primordial magnetic fields after the end of magnetogenesis to obtain the most
conservative condition for the survival of the fields. We found that the bounds on
the monopole density reduce to a weak field condition on the initial strength of the
primordial magnetic fields, which can also be translated into a lower bound on the
monopole mass. The work [45] obtained a similar bound by only considering the
energy extraction by the production of the monopole pairs. We then concluded that
as long as the initial amplitude of the primordial magnetic field is su�ciently below
such a weak field condition, the back-reaction from Schwinger-produced monopoles
can be safely ignored.

Finally, we have proposed a new solution to the problem of the over-abundance of
monopoles produced during primordial phase transitions after inflation. Our model
involves a modification of the kinetic term of the gauge sector of the lagrangian that
breaks the conformal invariance on the same line of many models of magnetogenesis
proposed in the literature. We demonstrated that in this model the monopoles
are first produced as global and this involves a drastic reduction of the monopole
abundance after monopole-antimonopole annihilation. This allows for symmetry-
breaking scales as large as the Planck mass, reviving the possibility for even GUT-
scale magnetic monopoles to be produced in sensible quantities after inflation,
without any monopole problem.

At the end of this thesis, we remark that the physics of magnetic monopoles in
the universe is far from being completely understood. We have shown that by a
rigorous analysis of their dynamics in the late and early universe, it is possible to test
high-energy fundamental physics, as well as models of primordial magnetogenesis,
phase transitions in the early universe, the structure of cosmic magnetic fields
and even models of dark matter. We hope that this work, which showed some
applications of the analysis of the monopoles-cosmic magnetic fields system, may
renew the interest of the community in the centenary, but more relevant than ever,
quest for magnetic monopoles.
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Appendix A

Primordial contribution to the
monopole velocity

In Chapter 3, we did not specify the origin of the IGMFs. In particular in Section 3.2,
we evaluated the velocity of magnetic monopoles that have been accelerated in
IGMFs for a Hubble time. However it is often claimed in the literature that IGMFs
have a primordial origin.1 Based on this premise, one might inquire about the
relevance of monopole acceleration in primordial magnetic fields after the epoch of
e+e≠ annihilation, since primordial fields would have been much stronger at higher
redshifts. In this appendix, we demonstrate that the acceleration in primordial fields
only give an order-unity correction to the results derived in Section 3.2.

Let us consider for simplicity a homogeneous primordial magnetic field. As
shown in Chapter 6, the equation of motion of a magnetic monopole in an expanding
universe filled with a homogeneous magnetic field with strength B is

m
d

dt
(“v) = gB ≠ fpv ≠ mH“v, (A.1)

where we ignored velocity components perpendicular to the direction of the magnetic
field. The last two terms in the right-hand side denote frictional forces from the
monopole scattering on charged particles in the primordial plasma, and from the
cosmological expansion, with H being the Hubble rate.

Before electron-positron annihilation, one can write the friction coe�cient fp

as [1, 58]

fp ≥ e2g2Nc

16fi2
T 2, (A.2)

where Nc is the number of relativistic and electrically charged degrees of freedom in
thermal equilibrium, and T is the temperature of the plasma. Considering magnetic
monopoles with charges not too far from the Dirac charge, the Hubble friction is
negligible compared to the friction from the plasma [1, 2]. The monopoles thus
approach a terminal velocity which results from equating the first two terms in the
right-hand side of Eq. (A.1) as

vp = gB

fp

≥ 10≠8

3
gD

g

4 3
BI

10≠15G

4
. (A.3)

1See, e.g., [155] for an alternative explanation.
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We note that the terminal velocity before the electron-positron annihilation is
constant, since the homogeneous magnetic field B and the friction coe�cient fp Ã T 2

both redshift2 as (1 + z)2. In the far right-hand side of Eq. (A.3), BI represents the
present-day magnetic field strength.

After electron-positron annihilation, the number of the free charged particles
drops by 10 orders of magnitude, so one can neglect the plasma friction, i.e. the
second term in the right-hand side of Eq. (A.1). Then the present-day monopole
velocity can be obtained by integrating Eq. (A.1) as

(“v)0 = (“v)p

1 + zan

+
zan⁄

0

gB(z)
mH(z)(1 + z)2

dz ¥ (“v)p

1 + zan

+ 3 ◊ gBI

mH0

, (A.4)

where zan ≥ 109 is the redshift at electron-positron annihilation. Since the homoge-
neous magnetic field redshifts as B(z) Ã (1 + z)2, the only redshift dependence in
the integrand comes from the Hubble rate H(z). Upon moving to the far right-hand
side, we have used the cosmological parameters for �CDM cosmology [113] and
numerically integrated the second term. Using Eq. (A.3), the ratio between the two
terms in Eq. (A.4) is written as

(“v)p

1 + zan

3
gBI

mH0

4≠1

≥ 10≠8

3
gD

g

4
2

3
m

1018 GeV

4
, (A.5)

which shows that the first term is negligible for monopole masses considered in
this paper. Hence we obtain the velocity of magnetic monopoles accelerated in a
homogeneous primordial magnetic field as

(“v)0 ¥ 3 ◊ gBI

mH0

. (A.6)

This matches with the result given in Eq. (3.28) at the order-of-magnitude level.
We therefore conclude that the order-of-magnitude results of this paper remain
una�ected, even if the IGMFs have a primordial origin.

2Magnetic fields with small coherence lengths can evolve di�erently, when the wave mode is
inside the Hubble horizon [70].
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Appendix B

Monopole-magnetic field
oscillation

If magnetic monopoles accelerated in magnetic fields do not dissipate their kinetic
energy into the ambient plasma, they eventually return the energy to the magnetic
fields. In this way the energy can move back and forth between the magnetic field
and monopoles. However one would expect such oscillations to be subject to Landau
damping, if the phase velocity of the magnetic field were smaller than the random
velocity of the individual monopoles [48].

In order to estimate the phase velocity, we start by considering a homogeneous
one-dimensional system where the magnetic field has a component B along a certain
direction, and the monopoles with charge g (> 0) have a velocity component v
along the same direction. (In this appendix, B and v are not the amplitudes and
thus can be negative.) Then by combining the monopoles’ equation of motion,
m d(“v)/dt = gB, with the conservation of total energy density fltot = nm“ + B2/2
where n is the monopole number density, one obtains an evolution equation for the
magnetic field,

d2B

dt2
+ �2B = 0. (B.1)

Here � is the e�ective frequency taking the form:

� = g

“3/2

3
n

m

4
1/2

. (B.2)

This becomes time-independent for nonrelativistic monopoles (“ ƒ 1), hence let us
focus on this case for simplicity. Further supposing that inhomogeneous fields with a
finite coherence length ⁄ also oscillate with this frequency, then the magnetic field’s
phase velocity is obtained as vph = ⁄�/2fi.

Galactic magnetic fields. The phase velocity of Galactic fields with coherence
length ⁄G is of

vph ≥ 10≠5

3
vMW

10≠3

4≠1/2
3

FMW

10≠15 cm≠2sec≠1sr≠1

41/2 3
g

gD

4 3
m

1018 GeV

4≠1/2
3

⁄G

1 kpc

4
.

(B.3)
We have rewritten n in terms of the monopole flux in the rest frame of the Milky Way
Galaxy (cf. below (3.37); however here we consider both clustered and unclustered
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monopoles). The reference value for the flux is set to the Galactic Parker limit
at m = 1018 GeV (cf. Figure 4.1). Note that magnetic monopoles with a Dirac
charge and mass m & 1018 GeV can cluster with the Galaxy [2, 48]. Such clustered
monopoles obtain a virial velocity of 10≠3, which is larger than the magnetic field’s
phase velocity; hence the oscillation is expected to rapidly evaporate. The phase
velocity can in principle become larger for smaller masses, however light monopoles do
not cluster and hence should pass through the Galaxy before (completely) returning
the energy to the Galactic fields. A flux much larger than the Parker limit can
also increase the phase velocity beyond the virial velocity, however [50] claimed
that oscillating Galactic fields do not match with observations, and also that the
inhomogeneity in the monopole distribution further leads to the damping of the
oscillations. For these reasons, one can trust the Parker bound without worrying
about the possibility that the Galactic fields survive as oscillating fields.

Intergalactic magnetic fields. The phase velocity of IGMFs is of

vph ≥ 10≠5 v≠1/2

CMB

3
FCMB

10≠27 cm≠2sec≠1sr≠1

41/2 3
g

gD

4 3
m

1010 GeV

4≠1/2
3

⁄I

1 Mpc

4
.

(B.4)
Here we rewrote n in terms of the flux in the CMB rest frame (cf. below (3.32)),
and for its reference value used the flux threshold where the monopole backreaction
becomes relevant for IGMFs with BI = 10≠15 G at m = 1010 GeV (cf. Figure 3.1).
Note that the phase velocity increases for smaller m and vCMB. Magnetic monopoles
in the intergalactic space can obtain random velocities from scattering with the
IGM and/or from gravitational potentials. However we expect these to be much
smaller than the IGMF’s phase velocity, and hence in this paper we consider the
IGMF-monopole oscillations to survive.
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Appendix C

The universe from the end of
inflation to the matter-radiation
equality

In this appendix, we derive the relations between the Hubble rate, the cosmic
temperature and the scale factor both during reheating and in the following radiation-
dominated epoch. We define tend as the time of the end of inflation, when the universe
begins to be dominated by an oscillating inflaton field. The inflaton eventually decays
into radiaton, and at time tdom the radiation component starts to dominate the
universe. Then at time teq, the time of matter-radiation equality, matter domination
begins. Setting tend = tdom corresponds to the case of an instantaneous reheating.

During radiation domination, for times tdom π t π teq, the Friedmann equation
gives 3M2

Pl
H2 ƒ flrad, with flrad = (fi2/30)gúT 4 the radiation energy density and

T the radiation temperature. Considering the expression for the entropy density
s = (2fi2/45)gúsT 3, we get (the subscript “0” denotes quantities in the present
universe):

H ƒ
3 45

128fi2

4
1/6 g1/2

ú

g2/3

ús

s2/3

0

MPl

3
a0

a

4
2

, T ƒ
3 45

2fi2

s0

gús

4
1/3 a0

a
. (C.1)

Here we have assumed the conservation of entropy until today, i.e. s Ã a≠3. The
relation between the scale factor and the temperature during radiation domination
is as follows: 3

a0

a

4
3

= gúsT 3

gús,0T 3
0

. (C.2)

During reheating, for times tend π t π tdom, the oscillating inflaton field decays
perturbatively into relativistic particles. During this period the universe is e�ectively
matter-dominated, with H Ã a≠3/2. Let us assume that the relativistic particles are
in thermal equilibrium also during this period, so that flrad = (fi2/30)gúT 4 holds.
For simplicity, we ignore the time dependence of gú(s) before radiation domination.
This amounts to assuming that no additional relativistic degrees of freedom appear
as one goes back in time from t = tdom. Then the radiation density, which is sourced
by the inflaton decay, evolves as flrad Ã a≠3/2. The scaling behavior of flrad can be
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verified by solving the continuity equation fl̇rad + 4Hflrad = �„fl„, where �„ is the
inflaton decay rate and fl„ = fl„ inf(ainf/a)3e≠�„(t≠tinf) is the energy density of the
inflaton field [47]. The radiation temperature thus redshifts as T Ã a≠3/8. We can
also write the relation between the scale factor and the temperature before radiation
domination as:

a0

a
= adom

a

a0

adom

=
3

T

Tdom

48/3
A

gús,dom

gús,0

B
1/3 3

Tdom

T0

4
. (C.3)

We summarize the dependence on the scale factor of the Hubble rate and of the
temperature in the following expressions:

H ƒ Hdom min

Y
]

[

3
adom

a

4
3/2

,

A
gú

gú,dom

B
1/2 3

gús,dom

gús

4
2/3

3
adom

a

4
2

Z
^

\ ,

T ƒ Tdom min
I3

adom

a

4
3/8

,
3

gús,dom

gús

4
1/3

3
adom

a

4J

.

(C.4)

The first expression in the curly brackets holds for tend < t < tdom and the second
for tdom < t < teq.

By extrapolating Eq. (C.1) to the time when radiation domination begins, we can
obtain the relations between Hdom, Tdom, and adom. After substituting numerical
values for the reduced Planck mass MPl and for the cosmological parameters we get:

a0

adom

ƒ 1029

3
Hdom

1014GeV

41/2

, Tdom ƒ 1016GeV
3

Hdom

1014GeV

41/2

. (C.5)

We also underline that these expressions present only a weak dependence on gú(s)

and then the order-of-magnitude estimates are not a�ected by its precise value.
Reversing the first line in Eq. (C.4) and ignoring the contributions of gú(s), we
express the scale factor as a function of the Hubble rate:

adom

a
ƒ

3
H

Hdom

41/2

max
I3

H

Hdom

41/6

, 1
J

. (C.6)

The first term inside the curly brackets holds for tinf < t < tdom and the second for
tdom < t < teq.
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