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Splitting of a Gap in the Bulk of the Spectrum of

Random Matrices

Benjamin Fahs Igor Krasovsky

Abstract

We consider the probability of having two intervals (gaps) without eigenvalues in the

bulk scaling limit of the Gaussian Unitary Ensemble of random matrices. We describe

uniform asymptotics for the transition between a single large gap and two large gaps.

For the initial stage of the transition, we explicitly determine all the asymptotic terms

(up to the decreasing ones) of the logarithm of the probability. We obtain our results

by analyzing double-scaling asymptotics of a Toeplitz determinant whose symbol is

supported on two arcs of the unit circle.

1 Introduction

Let A be the union of m open disjoint intervals on R, and Ks be the (trace-class) integral

operator on L2(A, dx) given by the kernel

Ks(x, y) =
sin s(x− y)

π(x− y)
. (1)

Consider the Fredholm determinant

Ps(A) = det(I −Ks)A. (2)

For a wide class of random matrix ensembles [1], in particular for the Gaussian Unitary

Ensemble, Ps(A) is the probability that the set s
π
A = { s

π
x : x ∈ A} contains no eigenvalues

in the bulk scaling limit where the average distance between the eigenvalues is 1. In this

paper, we are interested in the asymptotics of Ps(A) as s→ ∞, and we study the transition

between a single interval A0 = (α, β) to the set A composed of 2 disjoint intervals

A = A1

⋃
A2, A1 = (α1, β1), A2 = (α2, β2). (3)

1

http://arxiv.org/abs/1705.10587v2


Such problems have a rich history, of which we mention some relevant results. For the single

interval case A0 = (α, β),

logPs(A0) = −(β − α)2s2

8
− 1

4
log s− 1

4
log

β − α

2
+ c0 +O(s−1),

c0 =
1

12
log 2 + 3ζ ′(−1),

(4)

as s → ∞, where ζ is the Riemann zeta-function. The leading term and logarithmic term

in (4) were conjectured by des Cloizeaux and Mehta [5] in 1973, while the constant term

c0 remained undetermined until Dyson [9] conjectured an expression for it in 1976, relying

on inverse scattering techniques and the work of Widom [16] on Toeplitz determinants (see

below). The constant c0 became known as the Widom-Dyson constant. The first rigorous

confirmation of the leading term in (4) was given by Widom [17] in 1994. In a landmark

paper of 1997, Deift, Its, Zhou [7] were able to confirm the leading term and the logarithmic

term, but the proof of the constant c0 continued to defy their techniques. Finally, two

independent proofs of the constant were later given by Erhardt [10] and the second author

[12], and a further third proof given in [8]. The proofs in [12], [8] use Riemann-Hilbert (RH)

methods, while [10] uses operator theoretical techniques.

When A is composed of any (fixed) number of intervals, the main term was found and

proved by Widom [18] in 1995, where he was also able to identify the next term in the

following result:

d

ds
logPs(A) = sC1 + C2(s) + o(1), (5)

as s → ∞. The constant C1 is explicitly computable, while C2(s) is an oscillatory function

given by a Jacobi inversion problem. In [7], which was mentioned above, the authors were also

able to find the full asymptotic expansion for the logarithmic derivative of the determinant

on any number of intervals and describe the oscillations in terms of θ-functions. Here we

present their result when A is composed of 2 intervals as in (3):

d

ds
logPs(A) = −2sG0 +

d

ds
log θ(sV ; τ) +O(s−1). (6)

More precisely, for any j = 1, 2, . . . , the error term here is of the form

G1(s)

s
+
G2(s)

s2
+ · · ·+ Gj(s)

sj
+O(s−j−1). (7)

where Gj(s), j = 1, . . . , are bounded periodic functions of s. Here

θ(z) = θ(z; τ) =
∑

m∈Z
e2πizm+πiτm2

(8)
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is the Jacobi Theta-function of the third kind, see e.g. [19]. The constants (in s) V, τ, G0,

are given in terms of elliptic integrals, and G1(s), G2(s), . . . are given in terms of θ-functions.

Let

r(z) = ((z − α1)(z − β1)(z − α2)(z − β2))
1/2, (9)

with branch cuts on A such that r(z) > 0 for z > β2, and let q(z) be the unique monic

polynomial of degree 2 such that

∫

Aj

q(z)dz

r+(z)
= 0, j = 1, 2, (10)

where r+(z) is the limit of r(z + iǫ) as ǫ → 0+ (where the ”+” side is chosen merely for

definiteness). Then q/r has no residue at infinity. Hence as z → ∞, q/r has the form

q(z)

r(z)
= 1 +

G0

z2
+O(z−3), (11)

which defines the constant G0 appearing in (6).

The parameters V, τ appearing in the arguments of the θ-function in (6) are as follows:

V = −1

π

∫ α2

β1

q(x)dx

r(x)
, τ = i

∫ α2

β1

dx
|r(x)|∫ β2

α2

dx
|r+(x)|

. (12)

Integrating (6) in s from some large value s0 to s, and using the properties of G1(s),

Deift, Its, and Zhou concluded that

logPs(A) = −s2G0+log θ(sV ; τ)+Ĝ1 log s+c1+O(s−1), Ĝ1 = lim
x→∞

1

x

∫ x

s0

G1(t)dt. (13)

The value of the constant c1 is unknown as there is no point s0 for the lower limit of

integration where Ps0(A) would be explicitly known.

In this paper we study the transition between the single interval formula (4) and the

two-interval formula (13). We obtain an explicit expression (up to the decreasing terms

in the expansion of logPs(A)) for the asymptotics in the regime where the length ℓ of the

interval between the gaps decreases sufficiently fast (slightly faster than 1/s: see below) as

s→ ∞. On the other hand we show that the asymptotics of [7], obtained for fixed gaps, can

be extended (with proper adjustments) to the regime when ℓ is no longer fixed but decreases

sufficiently slowly as s→ ∞. These two regimes overlap. Thus our analysis provides uniform

asymptotics for the whole transition. Note, however, that since the constant in (13) is not

determined, the expression for the asymptotics in the second regime is not fully explicit.
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Obtaining an explicit expression for these asymptotics and establishing the constant in (13)

is a separate problem and we plan to address it in future work.

The initial phase of the transition between (4) and (13) resembles the birth of a cut —

emergence of an extra interval of support of the limiting eigenvalue density in a unitary

ensemble of random matrices: asymptotics for the correlation kernel of the eigenvalues in

that case were obtained independently by Bertola & Lee [3], Claeys [4], Mo [14]. From the

technical point of view, our analysis is very different as we are dealing with so-called hard

edges rather than soft edges in [3, 4, 14] and in the context of a different model, so both

the g-function needed in the analysis and the local parametrix are different. Moreover, the

works [3, 4, 14] deal with correlation kernels and not determinants.

Consider the Toeplitz determinant whose symbol f(z) is the characteristic function of a

subset J of the unit circle C:

Dn(J) = det (fj−k)
n−1
j,k=0 , fk =

∫

eiθ∈J
e−ikθ dθ

2π
, (14)

where integration is in the positive direction around the unit circle. The proofs of the

expansion (4) including the constant term c0 in [8, 12] were based on an analysis of the

Toeplitz determinant Dn(J2) where J2 is an arc of the unit circle

J = J2 =
{
eiθ|θ ∈ (−π, θ2) ∪ (θ1, π]

}
. (15)

The asymptotics of Dn(J2), as n → ∞, for a fixed arc J2 were found by Widom [16]. In

[8, 12], Widom’s result was extended to the case of J2 = J
(n)
2 varying with n such that

|θ1 − θ2| → 0 sufficiently slowly. Namely,

logDn(J
(n)
2 ) = n2 log cos

θ1 − θ2
4

− 1

4
log

(
n sin

θ1 − θ2
4

)
+ c0 +O

(
1

n sin θ1−θ2
4

)
(16)

as n → ∞, uniformly for s0
n

≤ θ1−θ2
2

≤ π − ǫ, for ǫ > 0 and with s0 sufficiently large.

Asymptotics (4) are obtained from (16) by using the fact that

lim
n→∞

Dn(J
(n)
2 ) = det(I −Ks)A0 (17)

for fixed s and by taking the limit in (16) as n→ ∞ with θ1 =
2sβ
n

and θ2 =
2sα
n
, where α, β

are fixed. The approach of the present paper is based on an analysis of Dn(J) where J = J (n)

is the union of 2 arcs J (n) = J
(n)
1 ∪ J (n)

2 , with J
(n)
1 ⊂ C \ J (n)

2 of sufficiently small length in

comparison with C \ J (n)
2 (see Theorem 1.2 below). We obtain our results on the sine-kernel

determinant by taking the limit n → ∞ of Dn(J
(n)). However, we believe Theorem 1.2

below to be of independent interest for a future study of Toeplitz determinants with symbols

supported on several arcs.
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1.1 Results

The kernel (1) is translationally invariant and so we can assume the following form for A:

A = (α,−ν)
⋃

(ν, β), α < 0 < ν < β. (18)

In this paper we provide the asymptotics of logPs(A) (including the constant term) in the

double scaling limit as s → ∞ while ν → 0 in such a way that sν log ν−1 → 0, and connect

these asymptotics with those of [7].

Let γ = 1
8
(β−1 − α−1) and

ω =
s
√
|αβ|

log(γν)−1
> 0. (19)

Clearly, ω is uniquely represented in the form

ω = k + x, k = 0, 1, 2, . . . , x ∈ [−1/2, 1/2). (20)

We note that ν has the form

ν = γ−1e−
s
√

|αβ|

k+x . (21)

We prove the following:

Theorem 1.1. As s→ ∞, uniformly for ν ∈ (0, ν0), where sν0 log ν
−1
0 → 0,

logPs(A) = logPs(A0) + s
√
|αβ|

(
ω − x2

ω

)
+ c(k) + δk(x)

+O(max{sν0 log ν−1
0 , 1/ log ν−1

0 , s−1}),

c(k) = log

(
22k

2−k

πk

G(k + 1)4

G(2k + 1)

)
,

δk(x) = log
(
1 + 2πκ2k−1(γν)

1+2x
)
+ log

(
1 + (2πκ2k)

−1(γν)1−2x
)
,

(22)

where G is the Barnes G-function, and where κj is the leading coefficient of the Legendre

polynomial of degree j orthonormal on the interval [−2, 2], given by

κj = 4−j−1/2
√
2j + 1

(2j)!

j!2
, j = 1, 2, . . . , κ0 = 1/2, κ−1 = 0, (23)

and logPs(A0) is given in (4).
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As s→ ∞, uniformly for ν ∈ (ν1, ν0), where sν0 log ν
−1
0 → 0, s

log ν−1
1

→ ∞ (i.e., k → ∞),

formula (22) reduces to

logPs(A) = s2
(
−(β − α)2

8
+

|αβ|
log(γν)−1

)
− 1

2
log s+

1

4
log log(γν)−1 − x2 log(γν)−1

+ log
(
1 + (γν)1−2|x|)− 1

4
log

(
β − α

2

√
|αβ|

)
+

1

6
log 2 + 6ζ ′(−1)

+O
(
max

{
sν0 log ν

−1
0 ,

1

log ν−1
0

,
log ν−1

1

s

})
,

(24)

where ζ is the Riemann zeta-function.

Remark 1.1. Note that if k = 0 and s → ∞ while x ∈ (0, 1/2 − ǫ) for ǫ > 0, then (22)

shows that Ps(A)
Ps(A0)

→ 1.

Remark 1.2. As we show in Section 5 (Lemma 5.1), the Deift-Its-Zhou asymptotics (6) for

2 fixed gaps where we set α2 = −β1 = ν, α1 = α, β2 = β, can be extended (with a worse

error term) to the region where ν → 0 in such a way that

sν1/2+ε → ∞,

for any ε > 0. Clearly, this region overlaps with the region of validity

sν log(γν)−1 → 0

of Theorem 1.1. For example, ν = s−3/2 belongs to both regions. In Remark 5.1 we explicitly

show the coincidence of the main (order s2) asymptotic terms. Full explicit formulas for this

matching will be a subject of future work.

Remark 1.3. The function c(k) can alternatively be described in terms of the coefficients

(23) of the Legendre polynomials:

c(k) = −
k−1∑

j=0

log 2πκ2j , k = 1, 2, . . . , c(0) = 0. (25)

Formula (25) shows that δk(x) + c(k) is continuous also at the points |x| = 1/2.

Remark 1.4. The rescaled sine process (with expected distance between particles π/s) is

the determinantal point process with the m’th correlation function ρm, for m = 1, 2, . . . ,

given by

ρm(x1, . . . , xm) = det(Ks(xi, xj))
m
i,j=1. (26)
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Consider the rescaled sine process conditioned to have no eigenvalues in A. Denote this

process by PA and its m’th correlation function by ρAm. In Section 4.2, we show that for

x1, . . . , xm ∈ (−1, 1),

νmρAm(νx1, . . . , νxm) → det(2KLeg(2xi, 2xj))
m
i,j=1 (27)

as s→ ∞ and ν → 0 such that k ∈ N and |x| < 1/2 remain fixed, where

KLeg(x, y) =
κk−1

κk

Lk(x)Lk−1(y)− Lk(y)Lk−1(x)

x− y
, (28)

and Lk is the Legendre polynomial of degree k, orthonormal on [−2, 2]:

∫ 2

−2

Lj(x)Li(x)dx = δij =




0 for i 6= j,

1 for i = j.
(29)

Recall that for a set B ⊂ R and a point process Λ with its m-th correlation function denoted

rm, we have

Expectation(# ordered m-tuples in B) =
1

m!

∫

Bm

rm(x1, . . . , xm)dx1 . . . dxm

=
∞∑

j=0

(
m+ j

m

)
Prob(#(Λ ∩B) = m+ j).

(30)

The process with kernel KLeg is a k-point process. Thus we obtain from (27) and the first

equation of (30) that, as s → ∞ and ν → 0 such that k ∈ N and |x| < 1/2 remain fixed,

the expected number of (k + 1)-tuples of PA on (−ν, ν) converges to 0, while the expected

number of k-tuples on the same interval converges to 1. It follows from the second equation

of (30) that

Prob (PA has k particles in (−ν, ν)) → 1. (31)

Thus the asymptotics of logPs(A) as s → ∞ depends on the value of ν, and we give an

overview of the various scaling limits:

• If ν = 0, the asymptotics are given by (4).

• If ν → 0 as s → ∞, such that sν log ν−1 → 0, the asymptotics are given by Theorem

1.1.
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• If ν log ν−1 is of order 1/s or larger, the asymptotics of Theorem 1.1 breaks down and

the transition to the asymptotic formula (13) containing θ-functions takes place. This

is discussed in Section 5.

• If ν > 0 is fixed, the asymptotics are given by the θ-function regime (13).

For Toeplitz determinants, we obtain the following result. Let Dn(J) be given by (14)

with J = J (n) = J
(n)
1 ∪ J (n)

2 where

J
(n)
1 =

{
eiθ : θ ∈

(
−2sν

n
,
2sν

n

)}
, J

(n)
2 =

{
eiθ : θ ∈

(
−π, 2sα

n

)⋃(
2sβ

n
, π

]}
, (32)

with some α < 0 < ν(s) < β. Then, with the notation of Theorem 1.1, we have

Theorem 1.2. As s, n→ ∞, uniformly for ν ∈ (0, ν0), where sν0 log ν
−1
0 → 0 and

s3/n→ 0,

logDn

(
J (n)

)
= logDn

(
J
(n)
2

)
+ s
√
|αβ|

(
ω − x2

ω

)
+ c(k) + δk(x)

+ O(max{s3/n, sν0 log ν−1
0 , 1/ log ν−1

0 , s−1}), (33)

where the expansion of logDn

(
J
(n)
2

)
is given in (16) with θ1 = 2sβ/n, θ2 = 2sα/n.

We use Theorem 1.2 to prove Theorem 1.1.

Proof of Theorem 1.1. It is well-known that

|Dn(J
(n))− det(I −Ks)A| → 0 (34)

as n→ ∞ for fixed s, a fact which we also prove in the appendix for the reader’s convenience.

Taking the limit n → ∞ in (33), we then obtain (22). To obtain (24), we substitute (4)

for Ps(A0), and note that the standard asymptotics of the Barnes G-function G(z + 1) as

z → ∞

logG(z + 1) =
z2

2
log z − 3

4
z2 +

z

2
log 2π − 1

12
log z + ζ ′(−1) +O(z−2), (35)

imply that as k → ∞,

c(k) = −1

4
log k +

1

12
log 2 + 3ζ ′(−1) +O(1/k2). (36)

Furthermore, we note that 2πκ2k = 1 +O(k−1) as k → ∞. �

8



J1J2

Σ1

Σ2

a = eiθ0

ā = e−iθ0

b1 = eiθ1

b2 = eiθ2

Figure 1: Interval J .

1.2 Outline of the proof of Theorem 1.2

It remains to prove Theorem 1.2.

Let −π < θ2 < 0 < θ0 < θ1 < π and define J = J1 ∪ J2 where J1, J2 are as in Figure 1:

J1 = J1(θ0) = {eiθ|θ ∈ (−θ0, θ0)}, J2 = {eiθ|θ ∈ (θ1, π] ∪ (−π, θ2)}. (37)

We denote the complement of J as Σ = Σ1 ∪ Σ2 where

Σ1 = {eiθ|θ ∈ (θ0, θ1)}, Σ2 = {eiθ|θ ∈ (θ2,−θ0)}. (38)

It follows from the integral representation for Toeplitz determinants (see (295) in the Ap-

pendix) that Dj(J) > 0 for all j ∈ N. Consider the polynomials φj for j = 0, 1, 2, . . . given

by

φ0(z) =
1√
D1(J)

,

φj(z) =
1√

Dj(J)Dj+1(J)
det




f0 f−1 . . . f−j+1 f−j

f1 f0 . . . f−j+2 f−j+1

. . .

fj−1 fj−2 . . . f0 f−1

1 z . . . zj−1 zj




= χjz
j + . . . , j > 0,

(39)

where the leading coefficient χj is given by

χj =

√
Dj(J)

Dj+1(J)
, j = 0, 1, 2, . . . , (40)

and we set D0(J) = 1. The polynomials φj are orthonormal with weight 1 on J :

∫

J

φk(z)φj(z)
dθ

2π
= δjk, z = eiθ, j, k = 0, 1, 2, . . . . (41)

9



Define a 2× 2 matrix Y (z) = Yn(z) in terms of these orthogonal polynomials as follows:

Y (z) =

(
χ−1
n φn(z) χ−1

n

∫
J

φn(ζ)
ζ−z

dζ
2πiζn

−χn−1z
n−1φn−1(z

−1) −χn−1

∫
J

φn−1(ζ−1)
ζ−z

dζ
2πiζ

)
. (42)

Then Y is the unique solution of the following Riemann-Hilbert (RH) Problem

(a) Y : C \ J → C2×2 is analytic;

(b) Y possesses L2 boundary values Y+ and Y− on the + and − side of J , respectively,

related by the condition:

Y+(z) = Y−(z)

(
1 z−n

0 1

)
for z ∈ J ;

(c) Y (z) = (I +O(1/z))

(
zn 0

0 z−n

)
as z → ∞.

The fact that orthogonal polynomials satisfy a RH problem was first observed for polynomials

orthogonal on the real line by Fokas, Its, Kitaev [11], and extended to polynomials orthogonal

on the unit circle by Baik, Deift, Johansson [2]. The RH problem provides an efficient tool,

via the Deift-Zhou steepest descent method, for the asymptotic analysis of the polynomials,

see e.g. [6].

In Section 2 we express the logarithmic derivative of the Toeplitz determinant d
dθ0

logDn(J)

in terms of the polynomials φn and φn−1. These are, in turn, expressed in terms of Yn. In

Sections 3 and 4 we analyse the RH problem for Yn as n→ ∞ in a double scaling limit where

J depends on n such that θj =
s
n
uj for j = 0, 1, 2; where s→ ∞ such that s3/n→ 0; where

u0 → 0 such that su0 log u
−1
0 → 0, while u1 and u2 remain fixed. As a result, we obtain

the asymptotics of Yn. Substituting these into the differential identity for d
dθ0

logDn(J), and

integrating with respect to θ0, we obtain the asymptotics of Dn(J), where u1 = 2β, u2 = 2α,

and u0 = u0(ν) is a function of ν, which proves Theorem 1.2.

2 Differential Identity

We will now obtain the following:

Proposition 2.1. (Differential identity) Let a = eiθ0. The Toeplitz determinant Dn(J)

satisfies

∂

∂θ0
logDn(J) = − 1

2π
[F (a) + F (a)], (43)

10



where

F (z) = nχ2
n|Y11(z)|2 − 2χ2

nRe

(
zY11(z)

d

dz
Y11(z)

)
, (44)

and J was given in (37).

Proof. From the definition of the orthogonal polynomials it is clear that

Dn(J) =
n−1∏

j=0

χ−2
j . (45)

The orthogonality conditions imply that

1

2π

∫

J

∂φj(z)

∂θ0
φj(z)dθ =

1

2π

∫

J

∂χj

∂θ0
(zj + poly of deg j − 1)φj(z)dθ =

1

χj

∂χj

∂θ0
, (46)

and similarly,

1

2π

∫

J

φj(z)
∂φj(z)

∂θ0
dθ =

1

χj

∂χj

∂θ0
. (47)

By (45)–(47) we obtain:

∂

∂θ0
log(Dn(J)) =− 2

n−1∑

j=0

∂χj

∂θ0
/χj

=− 1

2π

∫

J

∂

∂θ0

(
n−1∑

j=0

|φj(z)|2
)
dθ.

(48)

On the other hand, one can express F given in (44) in terms of the orthogonal polynomials:

F (z) = n|φn(z)|2 − 2Re

(
zφn(z)

d

dz
φn(z)

)
. (49)

Now the Christoffel-Darboux formula for orthogonal polynomials gives

n−1∑

k=0

|φk(z)|2 = −F (z) for z ∈ C, (50)

(see eg. [12]), and hence (48) can be written as

∂

∂θ0
logDn(J) =

1

2π

∫

J

∂

∂θ0
(F (z)) dθ. (51)

Since, by (50) and orthogonality,
∫
J
F (z) dθ

2π
= n, we obtain

0 =
∂

∂θ0

(∫

J

F (z)dθ

)
=F (a) + F (a) +

∫

J

∂

∂θ0
F (z)dθ, (52)

upon which Proposititon 2.1 follows immediately.

11



3 Analysis of Riemann-Hilbert problem

We start by setting θ0 = 0 so that J1 is a point, and then let J1 develop into an arc.

Throughout the rest of the paper we use the notation

a = eiθ0 = eiu0s/n, b1 = eiθ1 = eiu1s/n, b2 = eiθ2 = eiu2s/n. (53)

We let s, n → ∞ such that s3/n → 0, and let u0 → 0 as s → ∞ such that su0 log u
−1
0 → 0,

while u2 < 0 < u1 remain constant. Denote Σo = Σo
1

⋃
Σo

2 where

Σo
1 = {eiθ|0 < θ < θ1}, Σo

2 = {eiθ|θ2 < θ < 0}. (54)

Let g1 be the function:

g1(z) = log

(
1

b
1/2
1 + b

1/2
2

(
z + (b1b2)

1/2 + ((z − b1)(z − b2))
1/2
))

, (55)

where the square root has branch cut on J2 and is positive as z → +∞, and the logarithm

log x has a branch cut for x < 0 and is positive for x > 1. At infinity,

g1(z) = log z − log

√
b1 +

√
b2

2
+ o(1) as z → ∞. (56)

The boundary values of the function g1 satisfy

g1,+(z) + g1,−(z) = log z, for z ∈ J2, (57)

and at b1, b2 we have

g1(b1) =
1

2
log b1, g1(b2) =

1

2
log b2. (58)

Alternatively, for z = eiθ ∈ Σo we can write g1 in the following form:

exp
(
g1
(
eiθ
))

= eiθ/2
cos 1

2

(
θ − θ1+θ2

2

)
+
√

| sin θ−θ1
2

sin θ−θ2
2

|
cos 1

4
(θ1 − θ2)

. (59)

On the + and − side of J2, we have

exp
(
(g1)±

(
eiθ
))

= eiθ/2
cos 1

2

(
θ − θ1+θ2

2

)
∓ i
√

| sin θ−θ1
2

sin θ−θ2
2

|
cos 1

4
(θ1 − θ2)

, (60)

from which it follows that eg1 maps the + side of J2 to Σo and the − side to J2, and that

eg1 maps C \ J2 to the outside of the unit disc.
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Set

w =
n

s
(z − 1), Bj =

n

s
(1− bj) (61)

for j = 1, 2. Note that B1 and B2 remain bounded as s/n→ 0. Then

g1(z) = g1(1) + log

(
1 +

s

n

(
1− s

n
B1

)1/2
+
(
1− s

n
B2

)1/2

eg1(1)
wH(w)

)
,

H(w) =
1

w

(
w + ((w +B1)(w +B2))

1/2 − (B1B2)
1/2
)
,

(62)

where H(w) is analytic in w at the point 0. Thus g1 has the following expansion in w at the

point w = 0

g1(z) = g1(1) +
s

n
(c1w +O(w2)), (63)

where

g1(1) = log

(
cos(θ1 + θ2)/4 +

√
| sin θ1/2|| sin θ2/2|

cos(θ1 − θ2)/4

)
=
s
√

|u1u2|
2n

(
1 +O

( s
n

))

c1 =
1√

(1− b1)(1− b2)

(
1−

√
b1 +

√
b2

2eg1(1)

)
=

(
1

2
+
i

4
(u−1

1 + u−1
2 )
√

|u1u2|
)(

1 +O
( s
n

))
,

(64)

as s
n
→ 0.

Define

r(z) = ((z − b1)(z − b2))
1/2, (65)

where the square root has a branch cut on J2, and is positive as z → +∞. Let

h(z) = r(z)

∫

Σo
2

dξ

r(ξ)(ξ − z)
, z ∈ C \ (J2 ∪ Σo

2), (66)

where integration is taken in counter-clockwise direction. It is easily verified by differentiation

that

−r(z)
∫ t

C̃

dξ

r(ξ)(ξ − z)
= log

(
2r2(z) + (2z − b1 − b2)(t− z) + 2r(z)r(t)

t− z

)
+C(z, C̃), (67)

for any constant C̃ and some function C(z). Thus

h(z) = r(z)

∫ 1

b2

dξ

r(ξ)(ξ − z)

= log
b2 − b1

2
(z − 1)− log

(
z

(
1− b1 + b2

2

)
+ b1b2 −

b1 + b2
2

+ r(z)r(1)

)
.

(68)
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The function h has a logarithmic singularity at z = 1 and a jump on Σo
2

⋃
J2, such that

h+ − h− =




0 for z ∈ Σo

1,

2πi for z ∈ Σo
2,

h+ + h− = 0 for z ∈ J2.

(69)

The jump conditions (69) also imply that

h(b1) = 0

h+(b2) = −h−(b2) = πi.
(70)

As z → ∞,

h(z) → log
b2 − b1

((1− b1)1/2 + (1− b2)1/2)
2 ≡ h(∞). (71)

On the interval Σo we can alternatively write h in the following form:

exp(h(z)) =
sin θ1−θ2

2
sin θ

2

cos θ−θ1−θ2
2

− cos θ1−θ2
2

cos θ
2
+ 2
√
| sin θ−θ1

2
sin θ−θ2

2
sin θ1

2
sin θ2

2
|
. (72)

With the notation of (61) we can write

h(z) = logw
B1 − B2

(B1 +B2)w + 2B1B2 + 2
√
(w +B1)(w +B2)

√
B1B2

. (73)

Then we can expand h at the point z = 1:

h(z) = logw + c′0 + c′1w +O(w2), (74)

where

c′0 = − log 4
B1B2

B1 − B2
=

(
−πi

2
+ log

(u−1
1 − u−1

2 )

4

)
+O

( s
n

)
,

c′1 = −B1 +B2

2B1B2
= − i

2
(u−1

1 + u−1
2 ) +O

( s
n

)
,

(75)

as s
n
→ 0.

We define the g-function by:

g(z) = g1(z) +
Ω

2π
h(z), (76)

where Ω > 0 is a constant yet to be fixed. The jump conditions for g1 and h imply that

g+ + g− = log z for z ∈ J2,

g+ − g− = 0 for z ∈ Σo
1,

g+ − g− = iΩ for z ∈ Σo
2.

(77)
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We define the local variable ζ on a disc U0 containing the interval J1 (but not the points

b1, b2), by

ζ(z) = e
2π
Ω (g(z)−

1
2
log z) = eh(z)+

2π
Ω (g1(z)−

1
2
log z). (78)

The jump conditions for g imply that the function ζ is analytic in U0. The precise radius of

U0 will be determined later on by requiring that the mapping ζ be conformal on U0.

Since eg1 maps C \ J2 to the exterior of the unit disc, we have

eg1(e
±iθ0 )∓iθ0/2 > 1. (79)

For u0 < ǫ with some ǫ > 0, it follows from (72) that

eh(e
±iθ0 ) ∈




(0, 1) for “+”,

(−1, 0) for “−”.
(80)

Now consider, as a function of Ω,

ζ(a)− ζ(a). (81)

By (79) and (80) it follows that if we let Ω = +∞ in (78) then (81) is smaller than 2, and if

we instead set Ω = +0 then (81) is equal to +∞. Since (82) is monotone in Ω, there exists,

for u0 < ǫ, a unique value for Ω > 0 such that

ζ(a)− ζ(a) = 4. (82)

We define Ω so that ζ satisfies (82). From (59) and (72), it follows that ζ(Σo) ⊂ R. By (63)

and (74) we have the following expansion at the point z = 1:

ζ(z) =wζ0

(
1 + ζ1w +O

(( sw
nΩ

)2))
, w =

n

s
(z − 1),

ζ0 = ec
′
0+

2π
Ω
g1(1),

ζ1 = c′1 +
2πs

nΩ
(c1 − 1/2).

(83)

In what follows, it will be apparent that Ω → 0 in the limit s, n → ∞ and u0, s/n → 0.

Moreover, by (64) and (75),

ζ0 = − i

4
(u−1

1 − u−1
2 )e

π
Ω

s
√

|u1u2|

n
(1+O(s/n))(1 +O(s/n))

ζ1 =
2πs

nΩ
(c1 − 1/2)− i

2
(u−1

1 + u−1
2 ) +O(s/n).

(84)
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Substituting these expansions into (83), which we in turn substitute into (82), we obtain

u0

(
1 +O

(
1

Ω2

u20s
2

n2

))
=

8

u−1
1 − u−1

2

e−
2π
nΩ

s
√

|u1u2|

2
(1+O(s/n))(1 +O(s/n)), (85)

or upon taking the logarithm,

log

(
u0
u−1
1 − u−1

2

8

)−1

=
πs
√
|u1u2|
Ωn

(
1 +O(s/n) +O(Ω) +O

(
1

Ω

u20s

n

))
. (86)

Therefore,

Ω =
πs
√
|u1u2|
n

/
log

8

(u−1
1 − u−1

2 )u0

(
1 +O(s/n) +O

(
u20 log u

−1
0

))
. (87)

Using the definition of g1, h and ζ in (55), (68), (78), and the expansion of Ω in (87), it

is easily seen that there are constants m1 < m2 independent of s, n, u0 such that ζ ′(z) has

at least one zero in the set
{
z :

sm1

n log u−1
0

< |z − 1| < sm2

n log u−1
0

}
. (88)

By (84) and expansion (87), m1 may be chosen such that

∣∣∣∣ζ1w +O
(( sw

nΩ

)2)∣∣∣∣ < 1 (89)

as sw
nΩ

→ 0 and so ζ is conformal on the following disc

{
z : |z − 1| < sm1

n log u−1
0

}
, (90)

for u0, s/n < ǫ for some fixed ǫ > 0. Thus we define U0 to be the set (90).

We define g̃ as

g̃ = lim
z→∞

eg(z)−log z =
2

b
1/2
1 + b

1/2
2

(
b2 − b1

((1− b1)1/2 + (1− b2)1/2)
2

) Ω
2π

, (91)

and T as

T (z) = g̃nσ3Y (z)e−ng(z)σ3 . (92)

It follows by (77) that T satisfies the following RH problem:

(a) T : C \ C → C2×2 is analytic.
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a

ā

b1

b2

ΓIn
SΓOut

S

Figure 2: Contour ΓS.

(b) T has the following jumps on C:

T+ = T−

(
en(g−−g+)(z) 1

0 en(g+−g−)(z)

)
for z ∈ J2,

T+ = T−e
−inΩσ3 for z ∈ Σ2.

T+ = T−

(
e−inΩ z−nen(g++g−)

0 einΩ

)
for z ∈ (a, 1) = Σo

2

⋂
J1,

T+ = T−

(
1 z−ne2ng

0 1

)
for z ∈ (1, a) = Σo

1

⋂
J1.

T+ = T− for z ∈ Σ1.

(c) As z → ∞,

T (z) = I +O(z−1).

The jump of T on J2 factorizes as
(
en(g−−g+)(z) 1

0 en(g+−g−)(z)

)
=

(
1 0

en(g+−g−)(z) 1

)(
0 1

−1 0

)(
1 0

en(g−−g+)(z) 1

)
. (93)

Define

φ(z) = 2g(z)− log(z), (94)

Then the jumps of eφ are induced by g and we obtain by (77) that for z ∈ J2.

exp(φ+(z)) = exp[(g+(z) + g−(z)− log(z)) + g+(z)− g−(z)]

= exp(g+(z)− g−(z)),
(95)
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and similarly

exp(φ−(z)) = exp(g−(z)− g+(z)). (96)

We proceed to open the lenses around J2 as in Figure 2.

Proposition 3.1. For z on the edges of the lense Γin

S ∪Γout

S in Figure 2 such that |z−b1|, |z−
b2| > ǫs/n for some fixed ǫ > 0, there exists a constant C > 0 independant of s, n, z such

that

e−ng(z) < e−sC , (97)

as s, n→ ∞ and for u0 sufficiently small.

Proof. Since eg1 sends C \ J2 to the outside of the unit disc, it is clear that for |z| < 1 we

have

|e2g1(z)−log(z)| > 1. (98)

Let g
(−)
1 denote the function defined as in (55), but with +((z− b1)(z− b2))

1/2 replaced with

−((z − b1)(z − b2))
1/2 Then eg

(−)
1 maps C \ J2 to the inside of the circle and for z ∈ C \ J2

we have the relation

eg1(z)+g
(−)
1 (z) = z. (99)

It follows that if |z| > 1, then

|e2g1(z)−log z| = |elog z−2g
(−)
1 (z)| > 1. (100)

Using (98), (100), the definition of g, and the fact that Ω = O(s/(n log u−1
0 )), as s/(n log u−1

0 ) →
0, it follows that e−φ(z) lies in interior of the unit disc for z sufficiently close to the interval

J2, and in particular that

e−nφ(z) = O
(
e−cn

)
, (101)

uniformly for z on the lense that is opened around J2 in Figure 2, except near the endpoints

b1 and b2, for some constant c > 0.

Consider h(z) and g1(z) at z = b1. Let w1 = n
s
(z − b1). From (68) we have, with

Bj =
n
s
(1− bj),

h(z) = log
B1 − B2

2
(w1−B1)−log

(
w1
B1 +B2

2
+
B2 − B1

2
B1 + (w1(w1 +B2 − B1)B1B2)

1/2

)
.
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(102)

It follows from (69) and (102) that h(z)/w
1/2
1 is analytic at w1 = 0, and we have

h(z) = −w1/2
1

2

(B2 − B1)1/2

(
B2

B1

)1/2

(1 +O(w1)). (103)

Likewise, we let w2 =
n
s
(z − b2). Then at the point w2 = 0 we have the expansion

h(z) = ±πi− w
1/2
2

2

(B1 − B2)1/2

(
B1

B2

)1/2

(1 +O(w2)), (104)

where ± means + on the +side and − on the −side of the unit circle C (so the jumps agree

with (69)).

We evaluate g1 using the definition (55):

g1(z) = log
b1 + (b1b2)

1/2 + s
n
((w1(w1 +B2 − B1))

1/2 + w1)

b
1/2
1 + b

1/2
2

. (105)

From (105) and (57), we have that (g1(z)− log z
2
)/w

1/2
1 is analytic at w1 = 0, and that at the

point w1 = 0 we have the expansion

g1(z)−
log z

2
=
s

n
w

1/2
1

(B2 − B1)
1/2

b1 + (b1b2)1/2
(1 +O(w1)). (106)

Likewise we expand g1 at the point w2 = 0:

g1(z)−
log z

2
=
s

n
w

1/2
2

(B1 − B2)
1/2

b2 + (b1b2)1/2
(1 +O(w2)). (107)

Consider now a neighbourhood of b1. The error terms in (103), (106) are uniform for

0 < s/n < δ for some sufficiently small δ. By (103), (106) and the fact that Ω = O
(

s
n log u−1

0

)
,

it follows that there is a constant C1 > 0 independant of s, n, z for u0 sufficiently small such

that

Re (g) > w
1/2
1 C1s/n (108)

as z → b1, s/n → 0. Thus from (108) it follows that there exists ǫ, C > 0 such that for all

|z − b1| > ǫs/n we have

e−ng(z) < e−sC (109)

as n, s→ ∞, and for u0 sufficiently small. The same may be shown at the point b2, concluding

the proof.
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Let

S(z) =





T (z) for z outside the lenses,

T (z)


 1 0

e−nφ(z) 1


 for z inside the lense and outside the unit disc,

T (z)


 1 0

−e−nφ(z) 1


 for z inside the lense and inside the unit disc.

(110)

Then S satisfies the following RH problem:

(a) S : C \ ΓS → C
2×2 is analytic, where ΓS = C ∪ Γin

S ∪ Γout
S as shown in Figure 2.

(b) On ΓS \ {a, a, b1, b2}, S has the following jumps:

S+ = S−

(
0 1

−1 0

)
for z ∈ J2,

S+ = S−

(
1 0

e−nφ(z) 1

)
for z ∈ Γin

S ∪ Γout
S ,

S+ = S−e
−inΩσ3 for z ∈ Σ2.

S+ = S−

(
e−inΩ z−nen(g++g−)

0 einΩ

)
for z ∈ (a, 1) = J1

⋂
Σo

2,

S+ = S−

(
1 z−ne2ng

0 1

)
for z ∈ (1, a) = J1

⋂
Σo

1.

S+ = S− for z ∈ Σ1.

(c) As z → ∞,

S(z) = I +O
(
z−1
)
. (111)

3.1 Main parametrix

In the region C\ (U0∪U1∪U2), we approximate the RH problem for S by a main parametrix

M , which satisfies the RH problem:

(a) M : C \ {J2
⋃

Σo
2} → C2×2 is analytic.
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(b) On J2 and Σo
2, M has the following jumps:

M+(z) =M−(z)

(
0 1

−1 0

)
for z ∈ J2,

M+(z) =M−(z)e
−inΩσ3 for z ∈ Σo

2.

(c) As z → ∞,

M(z) = I +O
(
z−1
)
.

A solution to the RH problem for M is given by

M(z) =

(
I +

F

z − 1

)
D−1(∞)

(
γ1(z) −γ2(z)
γ2(z) γ1(z)

)
D(z), (112)

where F is a constant matrix and

γ1(z) =
1

2

((
z − b1
z − b2

)1/4

+

(
z − b2
z − b1

)1/4
)

γ2(z) =
1

2i

((
z − b1
z − b2

)1/4

−
(
z − b2
z − b1

)1/4
) (113)

with branch cuts on J2 and such that γ1(z) → 1 and γ2(z) → 0 as z → ∞. For y ∈ R, let

〈y〉 be defined such that

〈y〉 ∈ [−1/2, 1/2), y − 〈y〉 ∈ Z. (114)

Then D is given by

D(z) = exp

(
−
〈
nΩ

2π

〉
h(z)σ3

)
, (115)

where it follows from the jumps of h (69) that D is analytic for z ∈ C \ (Σo
2

⋃
J2), and

D−1
− D+ = exp

(
−2πi

〈
nΩ

2π

〉
σ3

)
for z ∈ Σo

2,

D−D+ = I for z ∈ J2.

(116)

The function M defined in (112) will solve the RH problem for M with any constant matrix

F , which we will define later in (128). The reason for the prefactor I + F
z−1

in (112), which

does not affect the jump conditions for M , will become apparent later on.
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3.2 Model RH problem Φ

Consider the following RH problem for Φ(ζ ; k), where k ∈ N:

(a) Φ(ζ) : C \ [η1, η2] → C2×2 is analytic for given η1 < η2.

(b) Φ has L2 boundary values for ζ ∈ (η1, η2) satisfying

Φ+(ζ ; k) = Φ−(ζ ; k)

(
1 1

0 1

)
.

(c) As ζ → ∞,

Φ(ζ ; k) =

(
I +

Φ1

ζ
+

Φ2

ζ2
+O

(
ζ−3
))

ζkσ3. (117)

It is well-known by the standard theory and is easy to verify that the unique solution to this

RH problem is given by

Φ(ζ ; 0) =


1 1

2πi
log
(

ζ−η2
ζ−η1

)

0 1




Φ(ζ ; k) =

(
1
κk
Lk(ζ)

1
2πiκk

∫ η2
η1

Lk(x)
x−ζ

dx

−2πiκk−1Lk−1(ζ) −κk−1

∫ η2
η1

Lk−1(x)

x−ζ
dx

)
for k ≥ 1,

(118)

where Lk are the Legendre polynomials of degree k with positive leading coefficients, or-

thonormal on (η1, η2):

∫ η2

η1

Lk(ζ)Lj(ζ)dζ = δjk =




0 for j 6= k,

1 for j = k,
(119)

and we denote the first 3 leading coefficients as follows:

Lk(ζ) = κkζ
k + µkζ

k−1 + νkζ
k−2 + . . . . (120)

Writing the large ζ expansion of (118) and using orthogonality in the second column, we

obtain that

Φ1 =

(
µk

κk
− 1

2πi
κ−2
k

−2πiκ2k−1 −µk

κk

)
for k ≥ 1,

Φ2 =




νk
κk

µk+1

2πiκk+1κ
2
k

−2πiκk−1µk−1
1

κkκk+1
(µkµk+1 − νk+1κk)


 for k ≥ 2.

(121)
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When k = 0 we have

Φ1 =

(
0 −η2−η1

2πi

0 0

)
. (122)

It is well known that Lk has the explicit representation for k ≥ 0:

Lk(ζ) =

√
2k + 1

η2 − η1

k∑

j=0

(
k

j

)(
k + j

j

)(
ζ − η2
η2 − η1

)j

=

√
2k + 1

η2 − η1

k∑

j=0

(
k

j

)(
k + j

j

)(
ζ − η1
η2 − η1

)j

(−1)k−j,

(123)

where
(
0
0

)
= 1. As a consequence, the coefficients in (120) are given by

κk = (η2 − η1)
−k−1/2

√
2k + 1

(
2k

k

)
,

µk = −(η2 − η1)
−k−1/2

√
2k + 1

(
2k

k

)
k

2
(η1 + η2),

νk = (η2 − η1)
−k−1/2

√
2k + 1

(
2k − 2

k − 2

)
k

2

(
k(η1 + η2)

2 −
(
η21 + η22

))
,

(124)

for k ≥ 0, 1, 2 respectively. From (118), (123), (124), it follows that for k ≥ 1,

Φ(ζ) =




(−1)k (η2−η1)k

(2kk )

(
1− k(k+1)

η2−η1
(ζ − η1) +O((ζ − η1)

2)
)

∗

(−1)k2πi(2k − 1)(η2 − η1)
−k
(
2k−2
k−1

) (
1− k(k−1)

η2−η1
(ζ − η1) +O((ζ − η1)

2)
)

∗


 , as ζ → η1

Φ(ζ) =




(η2−η1)k

(2kk )

(
1 + k(k+1)

η2−η1
(ζ − η2) +O((ζ − η2)

2)
)

∗

−2πi(2k − 1)(η2 − η1)
−k
(
2k−2
k−1

) (
1 + k(k−1)

η2−η1
(ζ − η2) +O((ζ − η2)

2)
)

∗


 , as ζ → η2

(125)

3.3 Local parametrix at 1

Recall that U0 defined by (90) is an open disc containing J1 and that as s, n → ∞, u0 → 0

the radius of U0 is of length ǫs/(n log u
−1
0 ) for some ǫ > 0. On U0 we defined a local variable

ζ in (78). We define the local parametrix P on U0 by

P (z) = E(z)Φ (ζ(z); k) e−n(g(z)− log(z)
2 )σ3 , k =

Ωn

2π
− x, x =

〈
Ωn

2π

〉
, (126)

where Φ is given by (118), and where E is an analytic function on U0 given by

E(z) =

(
I +

F

z − 1

)
D(∞)−1

(
γ1(z) −γ2(z)
γ2(z) γ1(z)

)
B(z)

(
I − X

ζ(z)

)
,

B(z) = e
2π
Ω
x(g1(z)− 1

2
log z)σ3 ,

(127)
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with constant matrices F and X defined below. From (59) and (72) we see that ζ(J1) ⊂ R.

We let η1 = ζ(a) and η2 = ζ(a). Then ζ(J1) = (η1, η2), and so P (z) has a jump on J1

induced by that of Φ on (η1, η2). F is a constant, nilpotent matrix

F = h̃−σ3

(
f ψf

−f/ψ −f

)
h̃σ3 , (128)

where

ψ =




−γ1(1)

γ2(1)

γ2(1)
γ1(1)

for 0 ≤ x < 1/2,

for − 1/2 ≤ x < 0,

h̃ = D11(∞) = exp(−xh(∞)) =

(
(1− b1)

1/2 + (1− b2)
1/2

b2 − b1

)−x

f =




− (1−b1)1/2(1−b2)1/2ρ

1+ρ

− (1−b1)1/2(1−b2)1/2ρ
1−ρ

for 0 ≤ x < 1/2,

for − 1/2 ≤ x < 0,

ρ =





1
2πκ2

k
exp

[
2π
Ω
g1(1) (−1 + 2x)

]

−2πκ2k−1 exp
[
2π
Ω
g1(1) (−1 − 2x)

]
for 0 ≤ x < 1/2,

for − 1/2 ≤ x < 0,

(129)

where h(∞) was defined in (71) and X is a constant matrix given in terms of elements of

(121)

X =





Φ1,12


0 1

0 0


 for 0 ≤ x < 1/2,

Φ1,21


0 0

1 0


 for − 1/2 ≤ x < 0.

(130)

The factor I −X/ζ(z) in E(z) is needed to cancel the would be u
1−2|x|
0 log u−1

0 non-smallness

in the matrix elements of ∆
(1)
1 originating from Φ1,12B

2
11 for 0 ≤ x < 1/2 and Φ1,21B

−2
11 for

−1/2 ≤ x < 0 (see Proposition 3.2 below) so that P and M match to the main order on

the boundary ∂U0 for all x ∈ [−1/2, 1/2). This factor, however, has a pole at z = 1, but we

need E(z) to be analytic in U0. As is easy to verify, the analyticity of E(z) (i.e. the absence

of a pole at 1) is achieved by choosing F as defined in (128).

Proposition 3.2. As u0 → 0 and s, n → ∞, we have the following matching condition

uniformly on the boundary ∂U0:

P (z)M−1(z) = I +∆
(1)
1 (z) +∆

(1)
2 (z) + Ξ(1) +O(ẽu

−2|x|
0 (u0 log u

−1
0 )3 + ẽ(s2u40(log u

−1
0 )2),
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where

ẽ =
(
1 + u

1−2|x|
0 log u−1

0

)2
, (131)

and ∆
(1)
1 , ∆

(1)
2 and Ξ(1) are given by (138) below. We have, uniformly for z on the boundary

∂U ,

∆
(1)
1 (z) = O(ẽu

1+2|x|
0 log u−1

0 + ẽsu20 log u
−1
0 ),

∆
(1)
2 (z) = O

(
ẽu20(log u

−1
0 )2

(
s

log u−1
0

+ u
1−2|x|
0 log u−1

0

))
,

Ξ(1) = O
(
ẽsu

−2|x|
0 u30(log u

−1
0 )2

)
.

(132)

Proof. First, assume that k is bounded. Since

ζk(z)e−n(g(z)− log z
2 ) = e−

2πx
Ω (g(z)− log z

2 ), x =
nΩ

2π
− k (133)

we have on the boundary ∂U that (recall (76), (112), (117), (127))

P (z)M−1(z) = E(z)

(
I +

Φ1

ζ
+

Φ2

ζ2
+O(ζ−3)

)(
I − X

ζ(z)

)
E−1(z). (134)

It follows from (64), (87), (129) that

ρ = O
(
u
1−2|x|
0

)
,

f, F = O
(
su

1−2|x|
0 /n

)
,

(135)

as u0, s/n→ 0 and s, n→ ∞. Denote

Ẽ(z) =

(
I +

F

z − 1

)
D(∞)−1

(
γ1(z) −γ2(z)
γ2(z) γ1(z)

)
. (136)

From (135), the boundedness of h̃, h̃−1, ψ, ψ−1, γ1(z), γ2(z) for z ∈ ∂U0, and the fact that the

radius of U0 equals ǫ s
n log u−1

0

for some ǫ > 0, we have

Ẽ(z) = O(
√
ẽ) (137)

as u0 → 0 and s, n → ∞, uniformly for z ∈ ∂U0. From (134) and (136) it follows that

∆
(1)
1 ,∆

(1)
2 take the form

∆
(1)
1 (z) =





ζ−1(z)Ẽ(z)B(z)


Φ1,11 0

Φ1,21 Φ1,22


B−1(z)Ẽ−1(z) 0 ≤ x < 1/2,

ζ−1(z)Ẽ(z)B(z)(z)


Φ1,11 Φ1,12

0 Φ1,22


B−1(z)Ẽ−1(z) −1/2 ≤ x < 0,

∆
(1)
2 (z) = ζ−2(z)Ẽ(z)ĝ1

xσ3(z)(Φ2 −XΦ1)ĝ1
−xσ3(z)Ẽ−1(z),

Ξ(1)(z) = −ζ−3(z)Ẽ(z)ĝ1
xσ3(z)XΦ2ĝ1

−xσ3(z)Ẽ−1(z).

(138)
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From (63)–(64), and recalling (87) and the fact that w = O
(

1
log u−1

0

)
as u0 → 0, it follows

that

ĝ1(z) = O
(
u−1
0

)
(139)

as u0 → 0, uniformly on the boundary ∂U0. Similarly, substituting (84) into (83) and

recalling (87), we have

ζ(z) = O
(

1

u0 log u
−1
0

)
(140)

as u0 → 0, uniformly on the boundary ∂U0. From (83) and (84) we have

ζ(a) + ζ(a) = O(u0 log u
−1
0 ), (141)

as u0 → 0. Using (141) it follows from (121) and (124) that

Φ1,11,Φ1,22,Φ2,12,Φ2,21 = O
(
u0 log u

−1
0

)

Φ1,12,Φ1,21,Φ2,11,Φ2,22 = O (1)
(142)

as u0 → 0 (for finite k). Combining (137)–(142) the proposition is proven for bounded k.

Now consider k → ∞. From Stirling’s formula we have

2πκ2k → 1 (143)

as k → ∞. Thus (135) holds uniformly for k ∈ N. We study the particular double scaling

limit where k, ζ → ∞, and from (85), (141) we have that η1 + η2 → 0 in such a manner that

k/ζ, k(η1 + η2) = O(u0s) → 0. Thus using (143) we find that as k → ∞

Φ1 =

(
−k

2
(η1 + η2) i+O(k−1)

−i+O(k−1) k
2
(η1 + η2)

)
. (144)

We also find that as k → ∞ and (η1 + η2) → 0 such that (η1 + η2)k → 0

Φ2 =

(
−k

8
(η21 + η22) +O(1) ik

2
(η1 + η2) +O(η1 + η2)

ik
2
(η1 + η2) +O(η1 + η2)

k
8
(η21 + η22) +O(1)

)
. (145)

Thus we know the large k, ζ behaviour of ζ−1Φ1, ζ
−2Φ2, and upon substituting into (138)

this yields (132). It remains to calculate the error terms of order ζ−3Φ3 and higher, and

in particular establish their behaviour as k → ∞ with ζ . We rely here on the work by

Kuijlaars, McLaughlin, Van Assche and Vanlessen in [13] where the authors found uniform

error terms for the Legendre polynomials Lk as k → ∞. In the remaining part of the proof
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of the proposition, we let Ŷ , R̂, N̂ denote the functions Y,R,N found in [13]. We compare

Ŷ to Φ from (118) in the present paper:

Φ(ζ) = 2kσ3Ŷ (y(ζ)), y(ζ) =
1

2

(
ζ − η1 + η2

2

)
(146)

where the parameter n in [13] is set to be k here. For y bounded away from [−1, 1] it follows

from equations (3.1), (4.2), (5.5), (7.1) in [13] that

Ŷ (y) = 2−kσ3R̂(y)N̂(y)ykσ3

(
1 +

(
1− y−2

)1/2)kσ3

,

N̂(y) =




1
2
(a(y) + 1/a(y)) 1

2i
(a(y)− 1/a(y))

− 1
2i
(a(y)− 1/a(y)) 1

2
(a(y) + 1/a(y))


 , a(y) =

(
y − 1

y + 1

)1/4

.
(147)

By the form of N̂ in (147) above and formula (8.11) in [13] it is clear that

R̂(y(ζ); k)N̂(y(ζ)) = I +
χ1

ζ
+
χ2

ζ2
+O(ζ−3)

as ζ → ∞, where χ1 and χ2 are bounded for k ∈ N and the O(ζ−3) term is uniform for

k ∈ N. As ζ, k → ∞ and η1 + η2 → 0 such that k/ζ → 0, k(η1 + η2) → 0, we have

(
1 +

(
1− y−2

)1/2)±k

= 1∓kζ−1

(
η1 + η2

2
+ ζ−1

)
+O

(
k2|ζ |−2(|η1 + η2|+ |ζ |−1)2

)
. (148)

It follows from (147)-(148) that as ζ, k → ∞ and η1 + η2 → 0

such that k/ζ → 0, k(η1 + η2) → 0,

Φ(ζ ; k) =
(
I + χ1/ζ + χ2/ζ

2 +O
(
ζ−3
))
ζkσ3

×
(
1− kζ−1

(
η1+η2

2
+ ζ−1

)
+O (k2|ζ |−2(|η1 + η2|+ |ζ |−1)2)

0

0

1 + kζ−1
(
η1+η2

2
+ ζ−1

)
+O (k2ζ−2(|η1 + η2|+ |ζ |−1))2)

)
,

(149)

where, in particular, χ1 and χ2 are bounded for k ∈ N and the O(ζ−3) term is uniform for

k ∈ N. By comparing (149) with (117) it follows that as ζ, k → ∞ and η1 + η2 → 0 such

that k/ζ → 0, k(η1 + η2) → 0,

Φ(ζ ; k)ζ−kσ3 − I − Φ1/ζ − Φ2/ζ
2 =

O(ζ−3) +

(
O(k2(ζ−4 + |η1 + η2|ζ−3)) 0

0 O(k2(ζ−4 + |η1 + η2|ζ−3))

)
. (150)
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3.4 Model RH problem Ψ

The following RH problem has a solution in terms of Bessel functions.

(a) Ψ : C \ ΓΨ → C2×2 is analytic, where ΓΨ = R− ∪ Γ±
Ψ, with Γ±

Ψ = {xe± 2π
3
i : x ∈ R+},

and with orientation taken in the direction of increasing real part.

(b) Ψ has continuous boundary values Ψ+,Ψ− on ΓΨ satisfying the following jump condi-

tions:

Ψ+(ζ) = Ψ−(ζ)

(
0 1

−1 0

)
for ζ ∈ R

−, (151)

Ψ+(ζ) = Ψ−(ζ)

(
1 0

1 1

)
for ζ ∈ Γ±

Ψ. (152)

(c) As ζ → ∞, Ψ has the following asymptotics:

Ψ(ζ) =
(
πζ

1
2

)−σ3
2 1√

2

(
1 i

i 1

)(
I +

1

8
√
ζ

(
−1 −2i

−2i 1

)
+O

(
ζ−1
)
)
eζ

1
2 σ3 . (153)

(d) As ζ → 0, the behaviour of Ψ is

Ψ(ζ) = O(log |ζ |). (154)

This RH problem has a solution given in [13], in terms of Bessel functions. For definitions

and properties of Bessel functions see [15]. We take the principal branches of the Bessel

functions. For | arg ζ | < 2π/3, we have

Ψ(ζ) =

(
I0(ζ

1/2) i
π
K0(ζ

1/2)

πiζ1/2I ′0(ζ
1/2) −ζ1/2K ′

0(ζ
1/2)

)
. (155)

For 2π/3 < arg ζ < π we the solution is given by

Ψ(ζ) =
1

2


 H

(1)
0 (e

πi
2 ζ1/2) H

(2)
0 (e

πi
2 ζ1/2)

πζ1/2
(
H

(1)
0

)′
(e

πi
2 ζ1/2) πζ1/2

(
H

(2)
0

)′
(e

πi
2 ζ1/2)


 . (156)

For −π < arg ζ < −2π/3 it is defined as

Ψ(ζ) =
1

2


 H

(2)
0 (e

πi
2 ζ1/2) −H(1)

0 (e
πi
2 ζ1/2)

−πζ1/2
(
H

(2)
0

)′
(e

πi
2 ζ1/2) πζ1/2

(
H

(1)
0

)′
(e

πi
2 ζ1/2)


 . (157)

We have the following useful asymptotics as ζ → 0 for I0 and K0:

I0(ζ) = 1 +
ζ2

4
+
ζ4

64
+O(ζ6), (158)

K0(ζ) = − log
ζ

2

(
1 +

ζ2

4
+
ζ4

64
+O(ζ6)

)
. (159)
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3.5 Local parametrix at b1 and b2

Let U1 and U2 be discs of radius ǫs
n
for some fixed but sufficiently small ǫ > 0, centered at

b1 and b2 respectively. Recalling wj =
n
s
(z − bj) for j = 1, 2, we have |wj| = ǫ on ∂Uj . For

z ∈ U1, define

ζ1(z) =
n2

4
φ(z)2, (160)

where φ was defined in (94). Recall the notation Bj =
n
s
(1− bj) for j = 1, 2. By (103) and

(106) we have the following expansion of ζ1(z) for w1 in a neighbourhood of 0:

ζ1(z) = s2ζ1,0w1 (1 +O(w1))

ζ1,0 =
B2 −B1

(b1 + (b1b2)1/2)2

(
1− nΩ

πs

b1 + (b1b2)
1/2

B2 −B1

(
B2

B1

)1/2
)2

,
(161)

and by considering (77) in addition, one verifies that ζ1 is analytic on U1.

Recall from (58), (70) that φ±(b2) = ±Ωi and define

φ̃(z) =




φ(z)− Ωi for z ∈ U2 and z ∈ D,

φ(z) + Ωi for z ∈ U2 and z /∈ D.
(162)

where D denotes the unit disc. Then φ̃ : U \J2 → C is analytic, with a square root singularity

at b2. We define the local variable

ζ2(z) =
n2

4
φ̃2(z),

which is analytic on U2. Then, by (104) and (107), ζ2(z) has the following expansion at

w2 = 0:

ζ2(z) = s2ζ2,0w2 (1 +O(w2))

ζ2,0 =
B1 −B2

(b2 + (b1b2)1/2)2

(
1− nΩ

πs

b2 + (b1b2)
1/2

B1 −B2

(
B1

B2

)1/2
)2

,
(163)

and by considering (77) in addition, one verifies that ζ2 is analytic on U2.

The local parametrix is given by

Pj(z) = Ej(z)σ
j
3Ψ(ζj(z))σ

j
3e

−n
2
φ(z)σ3 (164)

Ej(z) =M(z)e±
n
2
φ+(bj)σ3

1√
2

(
1 (−1)j+1 i

(−1)j+1 i 1

)
(
πζj(z)

1/2
) 1

2
σ3
, (165)
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on the ± side of the contour C, where φ+(b1) = 0 and φ+(b2) = Ωi. As a consequence of the

expansions of ζj above, we have

ζ
−1/4
j,− ζ

1/4
j,+ = (−1)ji, (166)

and recalling the definition ofM in (112), one may verify that Ej is analytic on Uj . Recalling

the jumps of φ in (95)–(96) and jumps of g in (77), one verifies that the jumps of Pj match

those of S on Uj .

Since, recalling (129), F = O(s/n) as s/n → 0 while D(∞) remains bounded, we have

that Ej is uniformly bounded on ∂Uj , and it follows that uniformly for z ∈ ∂Uj we have the

following matching condition of M and Pj

(
PjM

−1
)
(z) = I +∆

(bj )
1 (z) +O(1/s2), ∆

(bj )
1 (z) = O(1/s), (167)

as s→ ∞. A simple calculation yields

∆
(b1)
1 (z) =

(B2 − B1)
1/2

16s
√
ζ1,0w1

(
I +

F

b1 − 1

)
D(∞)−1

(
1 i

i −1

)
D(∞)

(
I − F

b1 − 1

)
+O(1) (168)

as z → b1, where the O(1) part is analytic on U1. Similarly, as z → b2 we have:

∆
(b2)
1 (z) =

(B1 − B2)
1/2

16s
√
ζ2,0w2

(
I +

F

b2 − 1

)
D(∞)−1

(
1 −i
−i −1

)
D(∞)

(
I − F

b2 − 1

)
+O(1),

(169)

again with O(1) analytic.

3.6 Small norm RH problem

We define R as follows:

R(z) =





SM−1 for z ∈ C \
(
∪2
j=0Uj

)
,

SP−1 for z ∈ U0,

SP−1
j for z ∈ Uj where j = 1, 2.

(170)

Using standard small norm analysis, it follows from Proposition 3.2, (168)-(169) and

the fact that the contour lengths are ∂Uj = O(s/n) for j = 1, 2 as s/n → 0 and ∂U0 =

O(s/n(log u−1
0 )) as s/n, u0 → 0 that given ǫ > 0,

R(z) = I +O(1/n), (171)
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uniformly for |z − 1| > ǫ.

If z ∈ U0 then it follows from Proposition 3.2, and (168)-(169) that

R(z) = I+R1(z)+R2(z)+O(||R1|| ||R2||+ ẽu−2|x|
0 (u0 log u

−1
0 )3+ ẽ(s2u40(log u

−1
0 )2)), (172)

where ||Rj|| is the largest element of Rj in absolute value for j = 1, 2, and where the matrices

Rj are given by

R1(z) =

∫

∂U0

∆
(1)
1 (u)

(u− z)

du

2πi
+
∑

j=1,2

∫

∂Uj

∆
(bj)
1 (u)

(u− z)

du

2πi
,

R2(z) =

∫

∂U0

R1−(u)∆
(1)
1 (u) + ∆

(1)
2 (u) + Ξ(1)(u)

u− z

du

2πi

+
∑

j=1,2

∫

∂Uj

R1−(u)∆
(bj)
1 (u) + ∆

(bj)
2 (u)

u− z

du

2πi
,

(173)

with clockwise orientation taken in the integrals.

4 Asymptotic analysis of the differential identity and

correlation functions

4.1 Asymptotics of χn

From (42) we have

χ2
n−1 = −(Yn)21(0). (174)

By the transformations Y = g̃−nσ3Tengσ3 and T = S = RM at z = 0, (see (92), (110), (170))

and recalling that χn is positive, we find from (174) that

∣∣χ2
n−1g̃

−2n
∣∣ =

∣∣g̃−neng(0)(R(0)M(0))21
∣∣ . (175)

From the definition of g in (76) and g̃ in (91) it follows by computing g1(0), h(0) in (55),

(68) that

∣∣g̃−1eg(0)
∣∣ =

∣∣∣∣∣
1− b1+b2

2
+ (b1b2)

1/4
√

|(1− b1)(1− b2)|
1− b−1

1 +b−1
2

2
+ (b1b2)−1/4

√
|(1− b1)(1− b2)|

∣∣∣∣∣

Ω/2π

= 1, (176)

so that

∣∣χ2
n−1g̃

−2n
∣∣ = |(R(0)M(0))21| . (177)
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By (171)

R(0) = I +O(1/n),

as n → ∞. Furthermore, we note that F = O(s/n) and that γ2(0) = −1 + O(s/n) as

s/n→ 0, and substitute this into the definition of M in (112) to find

(R(0)M(0))21 = −(I +O(s/n))e−〈nΩ
2π 〉(h(∞)+h(0)) = −(I +O(s/n))|e−〈nΩ

2π 〉h(∞)|2, (178)

as s/n→ 0. Substituting (178) into (177) and recalling the notation (129) it follows that

∣∣g̃−2nχ2
n−1

∣∣ = (1 +O(s/n))
∣∣∣h̃
∣∣∣
2

, (179)

as s/n→ 0. We note that g̃ = 1 +O(s/n(log u−1
0 )) as s/n(log u−1

0 ) → 0, and thus we have

∣∣g̃−2nχ2
n

∣∣ = (1 +O(s/n))
∣∣∣h̃
∣∣∣
2

, (180)

as s/n→ 0.

4.2 Convergence of correlation functions

Let Hn(x, y) be the kernel built out of the orthogonal polynomials on J

Hn(x, y) =
s

πn

n−1∑

j=0

φ
(n)
j

(
exp

(
2sxi

n

))
φ
(n)
j

(
exp

(
2syi

n

))
. (181)

By the Christoffel-Darboux formula, Hn also has the following useful form

Hn(y1, y2) =
s

πn

zn1 z
−n
2 φ

(n)
n (z2)φ

(n)
n (z1)− φ

(n)
n (z2)φ

(n)
n (z1)

1− z−1
2 z1

, (182)

where zj = exp
(

2syji

n

)
for j = 1, 2. Let K̂n be defined similarly, but for the special case

where J = C, namely:

K̂n(y1, y2) =
s

πn

z
n/2
1 z

−n/2
2 − z

n/2
2 z

−n/2
1

1− z−1
2 z1

. (183)

Let ρ
(n)
m be the m’th correlation function of the determinantal point process with correlation

kernel K̂n, and let ρ
(n,A)
m be the m’th correlation function of the same process conditioned to

have no points in A = (α,−ν) ∪ (ν, β). Then

ρ(n)m (x1, . . . , xm) = det(K̂n(xi, xj))
m
i,j=1,

ρ(n,A)
m (x1, . . . , xm) = det(Hn(xi, xj))

m
i,j=1.

(184)
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The two correlation functions are also related as follows:

ρ(n,A)
m (x1, . . . , xm) =

∑∞
j=0

(−1)j

j!

∫
Aj ρ

(n)
j+m(x1, . . . , xj+m)dxm+1 . . . dxj+m

Dn(J (n))
. (185)

Similarly, we can write ρAm in terms of ρm (both defined in Remark 1.4):

ρAm(x1, . . . , xm) =

∑∞
j=0

(−1)j

j!

∫
Aj ρj+m(x1, . . . , xj+m)dxm+1 . . . dxj+m

det(I −Ks)A
. (186)

The infinite sums (185) and (186) can be seen to converge for fixed s by Hadamard’s in-

equality. Since

∣∣∣K̂n(x, y)−Ks(x, y)
∣∣∣ = O(1/n), (187)

as n→ ∞, it follows by formulas (186) and (185) that

|ρ(n,A)
m (x1, . . . , xm)− ρAm(x1, . . . , xm)| → 0, (188)

as n→ ∞ for fixed s (similarly to convergence of the determinants (34), see the Appendix).

By the definition of Y in (42) and the formula for Hn in (182) we have

Hn(y1, y2) =
sχ2

n

πn(1− z1z
−1
2 )

(zn1 z
−n
2 Y11(z2)Y11(z1)− Y11(z2)Y11(z1)), (189)

where zj = exp
(

2syj i

n

)
for j = 1, 2. For the asymptotics of the correlation kernel we are less

ambitious and choose not to proceed with all the detail in last section, and work with |x|
bounded away from 1/2 as n → ∞. Since the intention of F and X was to obtain uniform

asymptotics up to the points |x| = 1/2, we can let F,X = 0 in M and P when we consider

|x| bounded away from 1/2. Then, in place of Proposition 3.2, we have PM−1 = I + o(1) as

u0 → 0 and s, n→ ∞ such that s/n→ 0 and k ∈ N, |x| < 1/2 remain fixed, uniformly on the

boundary ∂U0. Thus R = I + o(1) in the same limit, and tracing back the transformations

Y → T = S = RP we have, by (92), (110), (170), that for z ∈ J1:

Y11(z) = g̃−n(RP )11(z)e
ng(z)

= g̃−nzn/2h̃−1 (γ1B11(1)Φ11(ζ(z))− γ2B22(1)Φ21(ζ(z))) (1 + o(1)),
(190)

where g̃ is given in (91), and h̃ in (129). Thus it follows by (118), (180), the fact that ĝ1 is

real to the main order and that

γ1γ2 = −1/2 + o(1) (191)
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as s/n → 0, that as u0 → 0 and s, n → ∞ such that s/n → 0, while k ∈ N and |x| < 1/2

remain fixed we have

Hn(y1, y2) =
κk−1

κk

Lk (2ζ0y1)Lk−1 (2ζ0y2)− Lk (2ζ0y2)Lk−1 (2ζ0y1)

y1 − y2
(1 + o(1)). (192)

Since η1 = −2 + O(u0) and η2 = 2 + O(u0) as u0 → 0, it follows by continuity of the

polynomials that L
(η1,η2)
k can be replaced by L

(−2,2)
k in (192) without modifying the error

term. Similarly, by (85), 2|ζ0| can be replaced by 4u−1
0 without modifying the error terms.

Thus, combining (192) and (188), we prove the statement in Remark 1.4.

4.3 Expansion of Differential Identity

In this section we start by writing the differential identity in a more convenient form, and

find an expansion for it as s, n → ∞ and u0 → 0 such that su0 → 0 and s/n → 0, before

proceeding to integrate it in Section 4.4. Throughout the rest of the paper, the implicit

constants in O(. . . ) are independent of s, u0, n. For example, if we write O(u0

s
+ u20), then

in particular it is uniform in n, and if we write O(1), it means this expression is bounded in

the double scaling limit described above.

Write the parametrix P in (126) in U0 by grouping the factors as follows

P (z) = A(z)B(z)C(z)e−n(g(z)− 1
2
log z)σ3 , (193)

where A(z) and C(z) are by

A(z) =

(
I +

F

z − 1

)
h̃−σ3

(
γ1(z) −γ2(z)
γ2(z) γ1(z)

)

C(z) =

(
I − X

ζ(z)

)
Φ(ζ(z))

(194)

By the transformations Y = g̃−nσ3Tengσ3 and T = S = RM at z = 1, (see (92), (110), (170))

we have for z ∈ U0

Y11(z) = g̃−nzn/2 [RABC]11 , (195)

where

A(z) = A1(z) +
A2(z)

z − 1
,

A1(z) = h̃−σ3

(
γ1(z) −γ2(z)
γ2(z) γ1(z)

)
,

A2(z) = fh̃−σ3

(
γ1(z) + γ2(z)ψ −γ2(z) + γ1(z)ψ

−γ2(z)− γ1(z)/ψ −γ1(z) + γ2(z)/ψ

)
,

(196)
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and

C(z) =






Φ11(ζ)− Φ1,12

ζ
Φ21(ζ) ∗

Φ21(ζ) ∗


 for 0 ≤ x < 1/2,


 Φ11(ζ) ∗

Φ21(ζ)− Φ1,21

ζ
Φ11(ζ) ∗


 for − 1/2 ≤ x < 0.

(197)

The expression for C in (197) is valid for k ≥ 1, while for k = 0, we have

C(z) =

(
1 ∗
0 ∗

)
. (198)

It follows that

Y ′
11(z) = g̃−nzn/2

[
n

2z
RABC +R′ABC +RA′BC +RAB′C +RABC ′

]

11

, (199)

where we suppress dependency on the variable z on the right hand side, and where ′ denotes

differentiation with respect to z. Substituting (180), (195), (199) into (43) we find that

F (z) = −2|h̃|2Re
[
z(RABC)11 (R

′ABC +RA′BC +RAB′C +RABC ′)11

]
(1+O(s/n)),

(200)

for z ∈ U0. We would now like to evaluate F (a) and F (a). Since ζ
(
eiθ
)
is real for real θ on

U0, it follows that d
dθ
ζ
(
eiθ
)
is real. Consider the entries of C and recall that Φ11(x) is real

for x ∈ R, and that Φ21(x) and Φ1,12 are purely imaginary. By (197), C11(e
iθ) is real and so

z d
dz
C11(e

iθ) is purely imaginary, while C21(e
iθ) is purely imaginary and z d

dz
C21(e

iθ) is real.

From (59), we recall that Bjj

(
eiθ
)
is real for j = 1, 2. Thus B11B22 = B22B11 = 1. From

these observations, we find that

Re
[
z(RABC)11 (RABC

′)11

]
= z(C11C

′
21 − C ′

11C21)Re
[
(RA)11 (RA)12

]
,

Re
[
z(RABC)11 (RAB

′C)11

]
= z(B11B

′
22 − B′

11B22)C11C21Re
[
(RA)11 (RA)12

]
.
(201)

When k = 0, both expressions in (201) are equal to 0.

4.3.1 Evaluation of (201)

Using the expansion for ζ from (83)–(84), and the fact that ζ(a)− ζ(a) = 4 from (82), we

find that

ζ(e±iθ0) = ±2
(
1± ζ1iu0 +O

(
u0
s

n
+ u20(log u

−1
0 )2

))
,

d

dz
ζ(z)

∣∣∣∣∣
z=e±iθ0

= − 2in

szu0

(
1± 2ζ1iu0 +O

(
u0
s

n
+ u20(log u

−1
0 )2

))
.

(202)
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We substitute the expansion of ζ from (83) into (197), and recall (121)-(125), to find

C11(e
±iθ0) =




Φ11(ζ(e

±iθ0)) k+1
2k+1

(1± iu0ζ1 +O(r1)) for 0 ≤ x < 1/2,

Φ11(ζ(e
±iθ0)) for −1/2 ≤ x < 0,

C21(e
±iθ0) =




Φ21(ζ(e

±iθ0)) for 0 ≤ x < 1/2,

Φ21(ζ(e
±iθ0)) k−1

2k−1
(1± iu0ζ1 +O(r1)) for −1/2 ≤ x < 0,

r1 = u0(log u
−1
0 )2/s+ (u0 log u

−1
0 )2 + su0/n.

(203)

Using the expression

Φ′
ζ(ηj) =

(
(−1)j k(k+1)

4
Φ11(ηj) ∗

(−1)j k(k−1)
4

Φ21(ηj) ∗

)
j = 1, 2. (204)

which follows from (125), we compute the following:

z

(
C11(z)

d

dz
C21(z)−

d

dz
C11(z)C21(z)

) ∣∣∣∣∣
z=eπiθ0

=

=





2πk2n
su0

(
k+1
2k+1

± 2iζ1u0
)
(1 +O(r1)) for 0 ≤ x < 1/2,

2πk2n
su0

(
k−1
2k−1

± 2iζ1u0
)
(1 +O(r1)) for −1/2 ≤ x < 0.

(205)

We also have

(B11(z)B
′
22(z)−B′

11B22(z))
∣∣∣
z=e±iθ0

= O(n log u−1
0 /s), (206)

where the derivative is taken with respect to z. We now evaluate RA. Let K denote the

constant

K =
n

s

u−1
1 − u−1

2

4
. (207)
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We have the derivatives of γ1(e
iθ) and γ2(e

iθ) with respect to θ evaluated at θ = 0:

d

dθ
γ1(1) = −iKγ2(1)(1 +O(s/n))

d

dθ
γ2(1) = iKγ1(1)(1 +O(s/n))

d2

dθ2
γ1(1) =

n2

s224
(
γ1(1)(u

−2
1 + u−2

2 − 2u−1
1 u−1

2 )− 4iγ2(1)(u
−2
1 − u−2

2 )
)
(1 +O(s/n))

d2

dθ2
γ2(1) =

n2

s224
(
γ2(1)(u

−2
1 + u−2

2 − 2u−1
1 u−1

2 ) + 4iγ1(1)(u
−2
1 − u−2

2 )
)
(1 +O(s/n)),

d3

dθ3
γ1(1) =

n3

s3

(γ1(1)
8

(u−1
1 − u−1

2 )(u−2
1 − u−2

2 )

− 3i

26
γ2(1)(11(u

−3
1 − u−3

2 ) + u−1
1 u−2

2 − u−1
2 u−2

1 )
)
(1 +O(s/n)),

d3

dθ3
γ2(1) =

n3

s3

(γ2(1)
8

(u−1
1 − u−1

2 )(u−2
1 − u−2

2 )

+
3i

26
γ1(1)(11(u

−3
1 − u−3

2 ) + u−1
1 u−2

2 − u−1
2 u−2

1 )
)
(1 +O(s/n)).

(208)

Let x1 and x2 denote the following functions:

x1(z) = h̃−1R11(z)γ1(1) + h̃R12(z)γ2(1),

x2(z) = −h̃−1R11(z)γ2(1) + h̃R12(z)γ1(1).
(209)

Then, using (196), (208) and (209), expand A. When 0 ≤ x < 1/2

(RA)11(e
iθ) =

[
x1(z)

(
1−Kf

(
γ1
γ2

+
γ2
γ1

)(
1 +

nθ

2s
(u−1

1 + u−1
2 )

))
+ iKx2(z)θ

+
n2θ2

s225

(
x1(z)(u

−1
1 − u−1

2 )2 − nf

4s
x1(z)

(
γ1
γ2

+
γ2
γ1

)
(11(u−3

1 − u−3
2 ) + u−1

1 u−2
2 − u−2

1 u−1
2 )

+ 4ix2(z)(u
−2
1 − u−2

2 )

)]
(1 +O(s/n)) +O

(
|θ|3n3/s3

)
,

(RA)12(e
iθ) =

[
ifx1(z)

θ

(
γ1
γ2

+
γ2
γ1

)
+ x2(z) + ix1(z)Kθ

(
−1 +K

f

2

(
γ1
γ2

+
γ2
γ1

))

+
n2θ2

s225

(
x2(z)(u

−1
1 − u−1

2 )2 − 4ix1(z)(u
−2
1 − u−2

2 )

− 2fnx1(z)

3s

(
γ1
γ2

+
γ2
γ1

)
(u−3

1 + u−3
2 − u−1

1 u−2
2 − u−2

1 u−1
2 )

)]
(1 +O(s/n)) +O(|θ|3n3/s3),

(210)
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where we denote γj = γj(1) for j = 1, 2. When −1/2 ≤ x < 0

(RA)11(e
iθ) =

[
ifx2(z)

θ

(
γ1
γ2

+
γ2
γ1

)
+ x1(z) + ix2(z)Kθ

(
1 +K

f

2

(
γ1
γ2

+
γ2
γ1

))

+
n2θ2

s225

(
x1(z)(u

−1
1 − u−1

2 )2 − 2fnx2(z)

3s

(
γ1
γ2

+
γ2
γ1

)
(u−3

1 + u−3
2 + u−1

1 u−2
2 + u−2

1 u−1
2 )

+ 4ix2(z)(u
−2
1 − u−2

2 )

)]
(1 +O(s/n)) +O(|θ|3n3/s3),

(RA)12(e
iθ) =

[
x2(z)

(
1 +Kf

(
γ1
γ2

+
γ2
γ1

)(
1 +

nθ

2s
(u−1

1 + u−1
2 )

))
− iKx1(z)θ

+
n2θ2

25s2

(
x2(z)(u

−1
1 − u−1

2 )2 +
nf

4s
x2(z)

(
γ1
γ2

+
γ2
γ1

)
(11(u−3

1 − u−3
2 ) + u−1

1 u−2
2 − u−2

1 u−1
2 )

− 4ix1(z)(u
−2
1 − u−2

2 )

)]
(1 +O(s/n)) +O(|θ|3n3/s3),

(211)

We note that

|γ1|2, |γ2|2 =
1

4

(∣∣∣∣
u1
u2

∣∣∣∣
1/2

+

∣∣∣∣
u2
u1

∣∣∣∣
1/2
)
(1 +O(s/n))

γ1/γ2, γ2/γ1 =
−2
√

|u1u2| − i(u1 + u2)

u1 − u2
(1 +O(s/n)).

(212)

Recalling (129), (113), (207), it is readily checked that

f

(
γ1
γ2

+
γ2
γ1

)
∈ R, (213)

and that as n, s→ ∞, s/n→ 0,

f

(
γ1
γ2

+
γ2
γ1

)
K =





ρ
1+ρ

(1 +O(s/n)) for 0 ≤ x < 1/2,

ρ
1−ρ

(1 +O(s/n)) for −1/2 ≤ x < 0.
(214)

From (210), (211), (213)–(214) it follows that

Re
[
(RA)11(z)(RA)12(z)

]
= Re

[
x1(z)x2(z)

] (
1 +O(s/n+ u20)

)
. (215)

Thus, from (201) and (205),

F0(e
±iθ0) = Re

[
z(RABC)11 (RABC

′)11

]
= Re

[
x1(e±iθ0)x2(e

±iθ0)
]
×

×





2πk2n
su0

(
k+1
2k+1

± iζ1u0
)
(1 +O(r1)) for 0 ≤ x < 1/2,

2πk2n
su0

(
k−1
2k−1

± iζ1u0
)
(1 +O(r1)) for −1/2 ≤ x < 0,

(216)
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where r1 was defined in (203).

Proposition 4.1. We have

Re [x1x2] =
|h̃|−2

2
+O

(
s/n+

(
ẽu20s log u

−1
0 + ẽu

1+2|x|
0 log u−1

0 + s−1
)2)

, (217)

and |h̃|−1 = O(1), where h̃ was given in (129) and ẽ was defined in (131).

The main term of Proposition 4.1 is easy to calculate from (209) and (113), but we defer

the rest of the proof to Section 4.5.

From (125), (203) we obtain that

C11(e
±iθ0), C21(e

±iθ0) = O(
√
k). (218)

Recall that k = O(s/ log u−1
0 ). Combining (201), (206), (215), (218), and using Proposition

4.1 gives us

Re
[
z(RABC)11(RAB

′C)11

]
= O(n). (219)

4.3.2 Evaluation of (200)

Suppressing z dependence, we write

Re
[
z(RABC)11(RA

′BC)11(z)
]
= F1 + F2 + F3 + F4,

F1 = B2
11C

2
11Re

[
z(RA)11(RA

′)11

]
,

F2 = Re
[
zC11(RA)11C21(RA

′)12

]
,

F3 = −Re
[
zC11(RA

′)11C21(RA)12

]
,

F4 = −B2
22C

2
21Re

[
z(RA)12(RA

′)12

]
.

(220)

Recall that K = O(n/s), and that θ0 = u0
s
n
. From (210) and (211) we obtain that for k ≥ 1

F1(e
±iθ0)

B2
11C

2
11

=




Re [x1x2]

[
K
1+ρ

]
+O (u0n/s+ 1) for 0 ≤ x < 1/2,

−Re [x1x2]
[

f
θ20

(
γ1
γ2

+ γ2
γ1

)]
+O(n/s) for −1/2 ≤ x < 0,

F2(e
±iθ0) + F3(e

±iθ0) = ±iC11C21Re [x1x2]

(
γ1
γ2

+
γ2
γ1

)[
2fK

θ0
+O(n/s)

]
,

F4(e
±iθ0)

B2
22C

2
21

=




Re [x1x2]

[
f
θ20

(
γ1
γ2

+ γ2
γ1

)]
+O(n/s) for 0 ≤ x < 1/2,

Re [x1x2]
[

K
1−ρ

]
+O (u0n/s+ 1) for −1/2 ≤ x < 0.

(221)
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When k = 0, we have F2, F3, F4 = 0, while F1 is as in (221) for 0 < x < 1/2.

From (87) we have that Ω = O
(

s
n log u−1

0

)
, and thus substituting k+ x = nΩ

2π
into (85) we

have

8

u−1
1 − u−1

2

e−
s
√

|u1u2|

2(k+x) = u0

(
1 +O

(
s log u−1

0

n
+ u20(log u

−1
0 )2

))
. (222)

Recalling the expansion of g1 in (63)–(64) and the definition of B in (127), and substitut-

ing the values of κj and Φ from (124)–(125) into the expansion of C from (203), we obtain

that for k ≥ 1,

(B2
11C

2
11)(e

±iθ0) =




e2x

s
√

|u1u2|

2(k+x) (k+1)2

4(2k+1)κ2
k
(1 +O(r2)) for 0 ≤ x < 1/2,

e
2x

s
√

|u1u2|

2(k+x) (2k+1)

4κ2
k

(1 +O(r2)) for −1/2 ≤ x < 0,

(B2
22C

2
21)(e

±iθ0) =




−e−2x

s
√

|u1u2|

2(k+x) π2κ2k−1(2k − 1) (1 +O(r2)) for 0 ≤ x < 1/2,

−e−2x
s
√

|u1u2|

2(k+x)
π2κ2

k−1(k−1)2

(2k−1)
(1 +O(r2)) for −1/2 ≤ x < 0,

(C11C21)
(
e±iθ0

)
=




∓πik k+1

2k+1

(
1 +O(u0 log u

−1
0 + s/n)

)
for 0 ≤ x < 1/2,

∓πik k−1
2k−1

(
1 +O(u0 log u

−1
0 + s/n)

)
for −1/2 ≤ x < 0,

r2 = u0 log u
−1
0 + log u−1

0 s/n.

(223)

When k = 0 (and 0 < x < 1/2) we have

(B2
11C

2
11)(e

±iθ0) = es
√

|u1u2|(1 +O(u0 log u
−1
0 + s2/n)). (224)

Substituting (214), (217), (223) into (221) we find that

F1 =





|h̃|−2

8
K
1+ρ

(k+1)2

(2k+1)κ2
k
e2x

s
√

|u1u2|

2(k+x) (1 +O(r2 + s−2)) for 0 ≤ x < 1/2,

− |h̃|−2

8
ρ

θ20K(1−ρ)
(2k+1)

κ2
k
e2x

s
√

|u1u2|

2(k+x) (1 +O(r2 + s−2)) for −1/2 ≤ x < 0,

F2 + F3 =




|h̃|−2 ρ

1+ρ
1
θ0

πk(k+1)
2k+1

(1 +O(u0 log u
−1
0 + s

n
+ u

2|x|
0 + s−2)) for 0 ≤ x < 1/2,

|h̃|−2 ρ
1−ρ

1
θ0

πk(k−1)
2k−1

(1 +O(u0 log u
−1
0 + s

n
+ u

2|x|
0 + s−2)) for −1/2 ≤ x < 0,

F4 =




− |h̃|−2ρπ2κ2

k−1(2k−1)

2(1+ρ)Kθ20
e−2x

s
√

|u1u2|

2(k+x) (1 +O(r2 + s−2)) for 0 ≤ x < 1/2,

− |h̃|−2K
2(1−ρ)

π2κ2
k−1(k−1)2

(2k−1)
e−2x

s
√

|u1u2|

2(k+x) (1 +O(r2 + s−2)) for −1/2 ≤ x < 0,

(225)

when evaluated at e±iθ0 . When k = 0 (and 0 < x < 1/2), we have F2, F3, F4 = 0, while F1

is given by

F1(e
±iθ0) =

|h̃|−2K

2(1 + ρ)
es
√

|u1u2|(1 +O(u0 log u
−1
0 + s2/n+ s−2)). (226)
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Finally we find the order of the term which includes R′ in (200). Using the equation for

R1 in (173), it is readily seen that

∣∣∣∣
d

dz
R(e±iθ0)

∣∣∣∣ ≤
(

sup
u∈∂U0

|∆(1)
1 (u)|

)∫

∂U0

du

2π|u− e±iθ0|2

+
∑

j=1,2

(
sup
u∈∂Uj

|∆(bj)
1 (u)|

)∫

∂Uj

du

2π|u− e±iθ0 |2 .
(227)

We recall that the radius of U0 is of size O
(

s
n log u−1

0

)
, and that the radius of Uj is of size

O(s/n) for j = 1, 2. Thus

∫

∂U0

du

2π|u− e±iθ0 |2 = O
(

n

s log u−1
0

)
,

∫

∂Uj

du

2π|u− e±iθ0 |2 = O(n/s) for j = 1, 2.

Substituting the asymptotics for ∆
(1)
1 from (132) and ∆

(b1)
1 , ∆

(b2)
1 from (167) into (227), it

follows that

d

dz
R(e±iθ0) = O(ẽu

1+2|x|
0 (log u−1

0 )2n/s+ ẽn(u0 log u
−1
0 )2 + n/s2). (228)

Thus, we have from (209), since h̃, h̃−1, γj(1) = O(1), that also

d

dz
x1(e

±iθ0) = O(ẽu
1+2|x|
0 (log u−1

0 )2n/s+ ẽn(u0 log u
−1
0 )2 + n/s2). (229)

The formula for R′A is given by (210), (211) but with x1, x2 replaced by the derivatives

x′1, x
′
2. Recall that

C11, C21 = O
(√

k
)
= O

(√
s/ log u−1

0

)
,

B11 = O(u−x
0 ), B22 = O(ux0), K = O(n/s), f = O

( s
n
u
1−2|x|
0

)
.

(230)

From (229) we obtain that

Re
[(

(RABC)11(R
′ABC)11

)
(e±iθ0)

]

= O(ẽnu0 log u
−1
0 + ẽnsu

2−2|x|
0 log u−1

0 + nu
−2|x|
0 /(s log u−1

0 )). (231)

By substituting (216), (219), (220), (231) into the definition of F (z) from (200), and

substituting the resulting expression into the expression for the differential identity (43), we

obtain the following proposition.
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Proposition 4.2. We have the following asymptotics for logDn(J), as u0 → 0 and s, n→ ∞
such that su0 log u

−1
0 → 0 and s/n→ 0:

logDn(J) = logDn(J2) +
|h̃|2
π

∫ θ0

0

[(
4∑

j=0

Fj(e
iθ) + Fj(e

−iθ)

)
(1 +O(s/n))

+O(n+ ns(1 + u1−2|x| log u−1)2u2−2|x| log u−1 + nu−2|x|/(s log u−1))

]
dθ, (232)

where the integration variable θ = s
n
u, and where the asymptotics of F0(z) are given in (216)

and the asymptotics of F1, F2, F3, F4 are given in (225).

4.4 Integration of Differential Identity

We evaluate the integral in formula (232) asymptotically to prove Theorem 1.2.

Using (222), (129) we find that

θ0 = θ0(k; x) =
su0
n

=
8s

(u−1
1 − u−1

2 )n
e−

s
√

|u1u2|

2(k+x)

(
1 +O

( s
n
log u−1

0 + u20(log u
−1
0 )2

))

dθ0
dx

=
sθ0
√

|u1u2|
2(k + x)2

(
1 +O

( s
n
log u−1

0 + u20(log u
−1
0 )2

))
,

ρ =





1
2πκ2

k
e

s
√

|u1u2|

2(k+x)
(−1+2x) (1 +O

(
s
n
log u−1

0

))
for 0 ≤ x < 1/2

−2πκ2k−1e
s
√

|u1u2|

2(k+x)
(−1−2x) (1 +O

(
s
n
log u−1

0

))
for −1/2 ≤ x < 0.

(233)

Letting k in the expression for θ0 in (233) be fixed, we integrate in θ0, denoting

∫ θ0(k,1/2)

θ0(k,−1/2)

∗ dθ =
∫ x=1/2

x=−1/2

∗ dθ0. (234)

Note that by (124) with η2 − η1 = 4,

κ2k−1

κ2k
=

4k2

(2k + 1)(2k − 1)
. (235)

We integrate F1 from (225), changing the variable of integration using (233) and recalling
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K from (207) and ρ from (233) to find that for k ≥ 1,

|h̃|2
π

∫ x=1/2

x=−1/2

F1(e
±iθ0)dθ0

=
(k + 1)2

2(2k + 1)

∫ 1/2

0

(
1

2πκ2k
e(2x−1)

s
√

|u1u2|

2(k+x)

)
s
√

|u1u2|
2(k + x)2

(1 +O(r2 + s−2))dx

1 + 1
2πκ2

k
e
(2x−1)

s
√

|u1u2|

2(k+x)

+
(2k + 1)κ2k−1

8κ2k

∫ 0

−1/2

s
√
|u1u2|

2(k + x)2


1− 2πκ2k−1e

−(2x+1)
s
√

|u1u2|

2(k+x)

1 + 2πκ2k−1e
−(2x+1)

s
√

|u1u2|

2(k+x)


 (1 +O(r2 + s−2))dx

=

[
(k + 1)2

2(2k + 1)2
log

(
1 +

1

2πκ2k
e(2x−1)

s
√

|u1u2|

2(k+x)

)]1/2

x=0

+

[
k2

2(2k − 1)2
×

× log

(
1 + 2πκ2k−1e

−(2x+1)
s
√

|u1u2|

2(k+x)

)
− sk2

√
|u1u2|

4(2k − 1)(k + x)

]0

x=−1/2

+O
(

max
x∈[−1/2,1/2)

[
r2 log u

−1
0 + s−2 log u−1

0

])

=
(k + 1)2

2(2k + 1)2
log

(
1 +

1

2πκ2k

)
− k2

2(2k − 1)2
log
(
1 + 2πκ2k−1

)
+ s
√
|u1u2|

k

4(2k − 1)2

+O
(

max
x∈[−1/2,1/2)

[
r2 log u

−1
0 + s−2 log u−1

0

])
,

(236)

where r2 is given in (223), u0 = u0(k, x).

When k = 0 we have for x ∈ [0, 1/2)

|h̃|2
π

∫ x=x

x=0

F1(e
±iθ0)dθ0 =

1

2
log

(
1 +

2

π
e−(2x+1)

s
√

|u1u2|

2x

)
+O

(
su1−2x

0

(
u0 log u

−1
0 + s2/n+ s−2

))
,

(237)
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where, in the O error term, u0 = u0(k = 0, x). Similarly, we integrate F4 for k ≥ 1:

|h̃|2
π

∫ 1/2

−1/2

F4(e
±iθ0)dθ0

=

[
(k − 1)2

2(2k − 1)2
log

(
1 + 2πκ2k−1e

(−2x−1)
s
√

|u1u2|

2(k+x)

)]0

x=−1/2

+

[
k2

2(2k + 1)2
log

(
1 +

1

2πκ2k
e(2x−1)

s
√

|u1u2|

2(k+x)

)
+

sk2
√

|u1u2|
4(2k + 1)(k + x)

]1/2

x=0

+O
(

max
x∈[−1/2,1/2)

[
r2 log u

−1
0 + s−2 log u−1

0

])

= − (k − 1)2

2(2k − 1)2
log
(
1 + 2πκ2k−1

)
+
k2 log

(
1 + 1

2πκ2
k

)

2(2k + 1)2
− sk

√
|u1u2|

4(2k + 1)2

+O
(

max
x∈[−1/2,1/2)

[
r2 log u

−1
0 + s−2 log u−1

0

])
.

(238)

When k = 0 and x ∈ [0, 1/2), we have F4 = 0. Thus, for k ≥ 1,

|h̃|2
π

∫ 1/2

−1/2

(F1 + F4)(e
±iθ0)dθ0 = −k

2 + (k − 1)2

2(2k − 1)2
log
(
1 + 2πκ2k−1

)

+
k2 + (k + 1)2

2(2k + 1)2
log

(
1 +

1

2πκ2k

)
− sk

√
|u1u2|
4

(
1

(2k + 1)2
− 1

(2k − 1)2

)

+O
(

max
x∈[−1/2,1/2)

[
u0(log u

−1
0 )2 +

s

n
(log u−1

0 )2 + s−2 log u−1
0

])
.

(239)

If −1/2 < x < 1/2, then for k ≥ 1

|h̃|2
π

∫ x

−1/2

(F1 + F4)(e
±iθ0)dθ0

= −k
2 + (k − 1)2

2(2k − 1)2
log(1 + 2πκ2k−1)−

s

4

√
|u1u2|w1(x) + r3, r3 = o(1)

w1(x) =




− k

(2k−1)2
+ k

2k+1
x

k+x
for 0 ≤ x < 1/2,

− k2

(2k−1)2
1+2x
k+x

for −1/2 ≤ x < 0.

(240)

We keep the term r3 in (240) as it is not uniform in x, and is not small as x approaches

±1/2.

r3 =
k2 + (k + 1)2

2(2k + 1)2
log

(
1 +

1

2πκ2k
e(2x−1)

s
√

|u1u2|

2(k+x)

)
+

+
k2 + (k − 1)2

2(2k − 1)2
log

(
1 + 2πκ2k−1e

(−2x−1)
s
√

|u1u2|

2(k+x)

)

+O
(

max
x∈[−1/2,1/2)

[
u0(log u

−1
0 )2 +

s

n
(log u−1

0 )2 + s−2 log u−1
0

])
.

(241)
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Similarly but simpler, using (225) and (233), we find that for k ≥ 1,

|h̃|2
π

∫ x

−1/2

(F2 + F3)(e
±iθ0)dθ0

=





− k(k−1)
(2k−1)2

log
(
1 + 2πκ2k−1

)
+ r4 for |x| < 1/2,

− k(k−1)
(2k−1)2

log
(
1 + 2πκ2k−1

)
+ k(k+1)

(2k+1)2
log
(
1 + 1

2πκ2
k

)

+O
(
maxx∈[−1/2,1/2)

[
u0 log u

−1
0 + 1

s
+ s

n

]) for x = 1/2,

(242)

where r4 = o(1). When |x| < 1/2 we again keep track of the error term

r4 =
k(k + 1)

(2k + 1)2
log

(
1 +

1

2πκ2k
e(2x−1)

s
√

|u1u2|

2(k+x)

)

+
k(k − 1)

(2k − 1)2
log

(
1 + 2πκ2k−1e

(−2x−1)
s
√

|u1u2|

2(k+x)

)
+O

(
max

x∈[−1/2,1/2)

[
u0 log u

−1
0 +

1

s
+
s

n

])
.

(243)

When k = 0, we have F2, F3, F4 = 0, and thus the integral of F1 + F2 + F3 + F4 over

[x = 0, x = x0 < 1/2] for k = 0 is given by (237). For any k ≥ 1 and −1/2 ≤ x < 1/2,

combining (237), (239), (240), (242)

|h̃|2
π

∫ θ0

0

(F1 + F2 + F3 + F4)(e
±iθ)dθ = −s

4

√
|u1u2|w1(x) +

1

2
δk(x)

− 1

2

k−1∑

j=0

(
log 2πκ2j +

s

2

√
|u1u2|

(
j

(2j + 1)2
− j

(2j − 1)2

))

+O
(
su0 log(u0)

−1 + s3/n+ 1/ log(u0)
−1 + 1/s

)
,

δk(x) =




log(1 + 2πκ2k−1) for x = −1/2

o(1) for |x| < 1/2.

(244)

By (241) and (243), it follows that for |x| < 1/2, δk(x) is given explicitly as

δk(x) = log

(
1 + 2πκ2k−1e

−(2x+1)
s
√

|u1u2|

2(k+x)

)
+ log

(
1 + (2πκ2k)

−1e
(2x−1)

s
√

|u1u2|

2(k+x)

)
. (245)

Furthermore, by (216) (which holds for all k ≥ 0) and Proposition 4.1, we find that

|h̃|2
π

∫ θ0

0

(
F0

(
eiθ
)
+ F0

(
e−iθ

))
dθ

= s
√
|u1u2|

(
w2(x) +

k−1∑

j=1

j(j + 1)

(2j + 1)2
+

j(j − 1)

(2j − 1)2

)
+O

(
s3

n
+ su0 log u

−1
0 +

1

log u−1
0

)

w2(x) =





k(k−1)
(2k−1)2

+ k(k+1)
2k+1

x
k+x

for 0 ≤ x < 1/2

k2(k−1)
(2k−1)2

1+2x
k+x

for −1/2 ≤ x < 0,

(246)
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for k ≥ 1 and F0 = 0 for k = 0.

4.4.1 Proof of Theorem 1.2

We sum together (244), (246), and substitute the result into (232), to find that

logDn (J) = logDn(J2) + s
√
|u1u2|

(
w3(x) +

k−1∑

j=1

2j2

4j2 − 1

)
−

k−1∑

j=0

log 2πκ2j

+ δk(x) +O(u0 + su0 log u
−1
0 + s3/n+ 1/ log u−1

0 ).

w3 = −w1

2
+ w2 =

k2

2(2k − 1)

1 + 2x

k + x
,

(247)

where
∑0

j=1 = 0. The first sum can be evaluated by noting that

k−1∑

j=1

2j2

4j2 − 1
=
k(k − 1)

2k − 1
, (248)

and, it follows that

s
√

|u1u2|
(
w3 +

k−1∑

j=1

2j2

4j2 − 1

)
=
s

2

√
|u1u2|

(
ω − x2

ω

)
, ω = k + x. (249)

The sum with the leading coefficients κj is given by

k−1∏

j=0

κ2j = 4−k2G(2k + 1)

G(k + 1)4
, (250)

where G is the Barnes G-function. By substituting (249), (250) into (247) we find that

logDn (J(u0)) = logDn (J2) +
s

2

√
|u1u2|

(
ω − x2

ω

)
+ c(k) + δk(x)

+O(s3/n+ su0 log u
−1
0 + 1/ log u−1

0 }).
(251)

Now define α = u2/2, β = u1/2, and

ν =
8

β−1 − α−1
e−

s
√

|αβ|

ω . (252)

Then, by (233),

u0
2

= ν
(
1 +O

( s
n
log ν−1 + ν2(log ν−1)2

))
. (253)

It is an easy exercise using (253), the continuity of w, x as functions of u0, and (251) to show

that

logDn(ν) = logDn(u0) +O(u0 + su0 log u
−1
0 + s3/n+ 1/ log u−1

0 ). (254)

Substituting the asymptotics from (251) into (254), and using uniformity of the error terms,

we prove Theorem 1.2.
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4.5 Proof of Proposition 4.1

We consider the small norm matrices, and we prove Proposition 4.1. From (209) it follows

that

Re [(x1x2)(e
±iθ0)] = −|h̃|−2Re [γ1γ2]

(
1 + 2ReR1,11(e

±iθ0) + 2ReR2,11(e
±iθ0)

)

+ O
((
|γ1|2 − |γ2|2

)
+ (|R1,11|+ |R12|)2 + ||R3||

)
, (255)

where || . || denotes the value of the largest element of the matrix in absolute value. From

(212) we have

Re [γ1γ2] = −1/2 +O(s/n),

|γ1|2 − |γ2|2 = O(s/n).
(256)

It follows from Proposition 3.2, (168)–(169), (173) that

R1(e
±iθ0) = O(s−1 + ẽu

1+2|x|
0 log u−1

0 + ẽsu20 log u
−1
0 ),

R2(e
±iθ0) = O((s−1 + ẽu

1+2|x|
0 log u−1

0 )2 + ẽsu20 log u
−1
0 ),

R3(e
±iθ0) = O(||R1|| ||R2||+ (u0 log u

−1
0 )3).

(257)

From (255)–(257), it follows that

Re [(x1x2)(e
±iθ0)] =

1

2
|h̃|−2

(
1 + 2ReR1,11(e

±iθ0) + 2ReR2,11(e
±iθ0)

)

+O
((

s−1 + ẽu
1+2|x|
0 log u−1

0 + ẽsu20 log u
−1
0

)2
+ s/n

)
. (258)

We will evaluate ReR1,11 and ReR2,11 to prove Proposition 4.1.

We recall from (173) that R1 is a sum of 3 terms. The first term is an integral of ∆
(1)
1 ,

and the two other terms are integrals of ∆
(b1)
1 and ∆

(b2)
1 . We first evaluate the contribution

from the terms ∆
(b1)
1 and ∆

(b2)
1 .

4.5.1 Contribution to R1 from ∆
(b1)
1 and ∆

(b2)
1

It follows from (168) and (169) that

∆
(b1)
1,11(z)

b1 − e±iθ0
=

C∆,1

z − b1
+O(1),

∆
(b1)
2,11(z)

b2 − e±iθ0
=

C∆,1

z − b2
+O(1) (259)
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as z → b1 and z → b2 respectively, and that the matrices C∆,1 and C∆2 are given as follows

as s→ ∞

C∆,1 = −

[
i+ fi

θ1
(ψ + ψ−1) + f2

θ21

(
2i+

(
γ1
γ2

− γ2
γ1

))]

8s(u1 ∓ u0)

(
1− 4 k+x

s(u1−u2)

∣∣∣u1

u2

∣∣∣
1/2
) (1 +O(s/n)),

C∆,2 =

[
− i+ fi

θ1
(ψ + ψ−1) + f2

θ21

(
−2i+

(
γ1
γ2

− γ2
γ1

))]

8s(u2 ∓ u0)

(
1− 4 k+x

s(u1−u2)

∣∣∣u1

u2

∣∣∣
1/2
) (1 +O(s/n)).

(260)

We recall that f is real to the main order and from (129), (212) we have

Im
(
ψ + ψ−1

)
= O(s/n), Re

(
γ1
γ2

− γ2
γ1

)
= O(s/n). (261)

Since the interior of the bracket [ ] in (260) is imaginary to main order, we can calculate the

residue in the integral of (259) to find:

Re

[
∑

j=1,2

∫

∂Uj

∆
(bj )
1,11(u)

u− e±iθ0

du

2πi

]
= O(s/n). (262)

4.5.2 Contribution to R1 from ∆
(1)
1

Denote

y0(z) = −2i(γ21 − γ22) = −i
((

z − b2
z − b1

)1/2

+

(
z − b1
z − b2

)1/2
)
,

x0(z) = −4γ1γ2 = −i
((

z − b2
z − b1

)1/2

−
(
z − b1
z − b2

)1/2
)
,

(263)

with branch cuts on J2 such that the square root is positive as z → ∞. Our goal is to

evaluate the terms in (138), and given a matrix X we denote

(LX)(z) = Ẽ(z)B(z)XB−1(z)Ẽ−1(z). (264)

Define D(z) and E(±)(z) by

D(z) = L

(
1 0

0 −1

)
, E(+)(z) = L

(
0 1

0 0

)
, E(−)(z) = L

(
0 0

1 0

)
.
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Then from (138) it follows that

∆
(1)
1,11(z) =




ζ−1(z)

(
Φ1,11D(z) +B2

22(z)Φ1,21E
(−)(z)

)
, 0 ≤ x < 1/2,

ζ−1(z)
(
Φ1,11D(z) +B2

11(z)Φ1,12E
(+)(z)

)
, −1/2 ≤ x < 0.

(265)

Recalling the definition of B in (127), the definition of F in (128), and the definition of

Ẽ in (136), we find that

D(z) =
i

2
y0(z)−

x0(z)f

2(z − 1)
(ψ + ψ−1)− f 2

(z − 1)2

(
iy0(z) +

x0(z)

2

(
−ψ + ψ−1

))
,

E(±)(z) =
1

4

(
x0(z) +

f

z − 1

(
iy0(z)(ψ + ψ−1)± 2(−ψ + ψ−1)

)
(266)

− f 2

(z − 1)2
(
2x0(z) + iy0(z)

(
ψ − ψ−1

)
∓ 2(ψ + ψ−1)

)
)
.

We analyze the sign of ∆
(1)
1,11 in (265). From (129) and (212) we have

Im
(
ψ + ψ−1

)
= O(s/n), Re

(
ψ − ψ−1

)
= O(s/n). (267)

From (263) we see that

Im
(
x0
(
eiθ
))

= O(s/n), Im

(
dj

dθj
x0
(
eiθ
))

= O(nj−1/sj−1),

Im
(
y0
(
eiθ
))

= O(s/n), Im

(
dj

dθj
y0
(
eiθ
))

= O(nj−1/sj−1),

(268)

for eiθ ∈ U0 ∩ C. Write (265) in the form

∆
(1)
1 (z) =

∆
(1)
1,−3(z)

(z − 1)3
+

∆
(1)
1,−2(z)

(z − 1)2
+

∆
(1)
1,−1(z)

(z − 1)
, (269)

where ∆
(1)
1,−j are analytic functions in z in U0. Then a calculation of residues gives the

following expansion as z → 1:

∫

∂U0

∆
(1)
1 (u)

u− z

du

2πi
=

1

6

d3

dz3

(
∆

(1)
1,−3

)
(1)+

1

2

d2

dz2

(
∆

(1)
1,−2

)
(1) +

d

dz

(
∆

(1)
1,−1

)
(1) + O(z − 1). (270)

We note that ζ is real on J1, and recall the expansion of ζ in (83)–(84). We also note that

Im f = O(s2/n2), and that Φ1,11 is real but that Φ1,12 and Φ1,21 are imaginary. Combining

with (265)–(270), we conclude that

Re

(∫

∂U0

∆
(1)
1,11(u)

u− e±iθ0

du

2πi

)
= O(s/n). (271)
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As a consequence of (262) and (271) we have

ReR1,11(e
±iθ0) = O(s/n). (272)

4.5.3 Order of R2(e
±iθ0)

From (266) and (138) we have

∆
(1)
2,11(z) =




ζ−2(z)

[
Φ2,11D(z) +B2

11(z)(Φ2,12 − Φ1,12Φ1,22)E
(+)(z) +O(1)

]
, 0 ≤ x < 1

2
,

ζ−2(z)
[
Φ2,11D(z) +B2

22(z)(Φ2,21 − Φ1,21Φ1,11)E
(−)(z) +O(1)

]
, −1

2
≤ x < 0,

Ξ(1)(z) =




−ζ−3(z)

[
B2

11(z)Φ1,12Φ2,22E
(+)(z) +O(1)

]
, 0 ≤ x < 1

2
,

−ζ−3(z)
[
B2

22(z)Φ1,21Φ2,11E
(−)(z) +O(1)

]
, −1

2
≤ x < 0.

By inspection of the signs of each element, it follows that

Re

(∫

∂U0

∆
(1)
2,11(u) + Ξ

(1)
11 (u)

u− e±iθ0

du

2πi

)
= O(s/n). (273)

The remaining contributions to R2,11, defined in (138), are calculated using rougher estimates

from (257). Thus it follows that

ReR2,11 = O
(
s/n+ (ẽu

1+2|x|
0 log u−1

0 + ẽsu20 log u
−1
0 + s−1)2

)
. (274)

Substituting (272) and (274) into (258) yields Proposition 4.1.

5 Connection to the asymptotics of [7]

Consider the Deift-Its-Zhou asymptotics (6) for 2 fixed gaps A = (α1, β1)∪(α2, β2). Without

loss of generality, we assume that ν ≡ α2 = −β1. We also denote α = α1, β = β2. The

following lemma shows that these asymptotics can be extended (with a worse error term) to

the region where ν is decreasing at a sufficiently slow rate as s→ ∞. This gives a connection

to the asymptotics of Theorem 1.1 (see Remark 1.2 following Theorem 1.1).

Lemma 5.1. Let ε > 0. As s → ∞, uniformly for ν ∈ (ν1, ν2) where ν2 > 0 is fixed and

ν1 = ν1(s) → 0 s.t.

sν
1/2+ε
1 → ∞,

we have

∂

∂s
logPs(A) = −2G0(α, β, ν)s+

∂

∂s
log θ(sV (α, β, ν); τ(α, β, ν))+O((sν2|<sV>|+ε)−1), (275)
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where V, τ, G0 are defined in equations (12), (11) above with ν = α2 = −β1, α = α1, β = β2;

γ = (β−1 −α−1)/8, and < x >= x− k (−1/2 << x >≤ 1/2) with k the closest integer to x.

Proof. Consider the setup of [7] for 2 gaps (α,−ν) ∪ (ν, β). In the notation of [7], α = a0,

ν = −b0 = a1, β = b1, s = x. We now verify that, if ν tends to zero at a sufficiently slow

rate with s → ∞, the jump matrices of the R matrix in the Deift-Its-Zhou RH problem

remain uniformly close to the identity, and therefore the analysis of [7] is extendable into

that region. We encircle the end-points of the gaps by nonintersecting discs. Note that the

discs around ν, −ν will have to contract as ν tends to zero, we choose their radia to be ν/3.

For the matching of the local parametrices and the global one on the boundaries of the discs,

we need, in particular, the parameter (see (4.100), (4.102), etc in [7])

ρ(z) = sΩ(0)(z) = s

∫ z

−ν

q(t)√
p(t)

dt, (276)

to be uniformly large in absolute value on the boundary of the disc around −ν. Here

p(z) = (z − α)(z2 − ν2)(z − β), q(z) = z2 + q1z + q0, where q1 = −(α + β)/2, and the value

of the constant q0 is determined by the equation

0 =

∫ β

ν

q(t)√
p(t)

dt =

∫ β

ν

t2 + q1t√
p(t)

dt+ q0

∫ β

ν

dt√
p(t)

(277)

To analize the integrals in the limit ν → 0, we split the interval (ν, β) = (ν,
√
ν] ∪ [

√
ν, β),

and change the integration variable y = t/
√
ν in the integration over the first one. We then

obtain

∫ β

ν

t2√
|p(t)|

dt =
√

|α|β + (β − |α|) arctan
√

β

|α| +
ν2 log ν−1

2
√

|α|β
+O(ν2) (278)

∫ β

ν

t√
|p(t)|

dt = 2 arctan

√
β

|α| −
β − |α|

8(|α|β)3/2ν
2 log ν−1 +O(ν2) (279)

∫ β

ν

1√
|p(t)|

dt =
1√
|α|β

(
log(γν)−1 +

1

16

{
3

α2
+

3

β2
− 2

|α|β

}
ν2 log ν−1

)
+O(ν2),

(280)

where γ = (β−1 + |α|−1)/8. And therefore, (277) gives

q0 = − |α|β
log(γν)−1

(1 +O(ν2 log ν−1)), ν → 0. (281)

Substituting this expansion into (276), we obtain that

|ρ(z)| ≥ c
s

log(γν)−1
, c > 0, (282)
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on the boundary of the disc around −ν (c is independent of z, ν, s). Similarly, we carry out

the analysis around the other end-points of the gaps and obtain that the inequality (282)

holds for the relevant quantities on the boundaries of all the disc around the end-points of

the intervals. In the notation of [7], this means that

vp,s = I +O

(
log(γν)−1

s

)
(283)

uniformly on the boundaries of the discs.

To prove the lemma, we need to verify that the jump matrices vR,s(z) in (4.123) in [7]

have the form vR,s(z) = I + o(1) on the jump contour Figure 4.122 in [7] in the asymptotic

regime of the lemma. First, on the boundaries of the discs (see Figure 4.122 in [7]),

vR,s(z) = f∞(vp,s)
−1(f∞)−1, (284)

where (see (3.42) in [7])

f∞(z) =

(
θ(u∞+d)

θ(u∞+sV+d)
0

0 θ(u∞+d)
θ(u∞−sV+d)

)(
θ(u(z)+sV+d)

θ(u(z)+d)
δ+δ−1

2
θ(u(z)−sV−d)

θ(u(z)−d)
δ−δ−1

2i
eisΩ0

θ(u(z)+sV−d)
θ(u(z)−d)

δ−δ−1

−2i
e−isΩ0 θ(u(z)−sV+d)

θ(u(z)+d)
δ+δ−1

2

)
.

Here θ(z) = θ(z; τ) and V , τ are as in (8) and (12),

Ω0 = 2α+2

∫ α

∞

(
q(x)√
p(x)

− 1

)
dx, u(z) =

∫ z

α
dt√
p(t)

2
∫ β

ν
dt√
p(t)

, δ(z) =

(
(z + ν)(z − β)

(z − ν)(z − α)

)1/4

.

The sheet of the Riemann surface w = p(z)1/2 is chosen such that p(z)1/2 → 1, z → ∞. The

constant u∞ = u(∞), and d is chosen such that the zero of θ(u(z) − d) coincides with the

zero of δ(z) − δ(z)−1 (which is inside (−ν, ν)). Note (see [7]) that θ(u(z) − d) has no other

zeros, and θ(u(z) + d) has no zeros. Thus f∞(z) is analytic outside A and clearly the limit

f∞(∞) = I. Moreover by standard arguments based on Liouville theorem, det f∞(z) = 1

for all z. Furthermore [7], u∞ + d ≡ 0 modulo the lattice m+ nτ , m,n ∈ Z.

In the limit ν → 0, we have the expansions

V =
1

π

∫ ν

−ν

q(t)√
|p(t)|

dt = −
√

|α|β
(

1

log(γν)−1
− (α + β)2

16α2β2
ν2
)
+O(ν2/ log ν−1), (285)

τ =
iπ

log(γν)−1
(1 +O(ν2/ log ν−1)), (286)

and therefore

κ = e−iπ/τ = (γν)1+O(ν2/ log ν−1). (287)
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Note that, using the inversion formula (τ → 1/τ) for the theta-functions, we can write

θ(z) =
1√
−iτ

∑

k

e−
iπ
τ
(k−z)2 =

κ<z>2

√
−iτ

(1 +O(κ1−2|<z>|)), (288)

where

z = j+ < z >, −1/2 << Re z >≤ 1/2, j ∈ Z.

We can now esimate the matrix elements of f∞ on the boundaries of the discs. On the

boundary of the disc around −ν, we have u(z) = −1/2+r(z), where |r(z)| < ε with a suitable

ε > 0. Recalling periodicity properties of the theta-function, θ(z + n ± τ) = e∓2πiz−iπτθ(z),

we write for some C > 0 uniformly on the boundary

∣∣∣∣
θ(u∞ + d)

θ(u∞ + sV + d)

θ(u(z) + sV + d)

θ(u(z) + d)

δ(z) + δ(z)−1

2

∣∣∣∣

< C

∣∣∣∣
θ(0)

θ(sV )

θ(1/2 + r(z) + sV + d)

θ(1/2 + r(z) + d)

∣∣∣∣ = O(ν−(1+2ε)|<sV >|).

Similar estimate holds for the other elements of f∞ (we replace δ − δ−1 and θ(u(z)− d) in

the off-diagonal elements with their derivatives at their zero). In the same vein, using the

behaviour of u(z), one obtaines similar estimates on the discs around the other end-points.

(Note that, e.g., at α, we can assume |u(z)| < ε). Recalling (283) we thus conlude that

uniformly on these boundaries

vR,s = I + f∞O

(
log(γν)−1

s

)
(f∞)−1 = I +O

(
log(γν)−1

s
(ν−(1+2ε)|<sV >|)2

)
. (289)

Adjusting ε, we can write this estimate as vR,s = I + O((sν2|<sV >|+ε)−1). The error term

here is not small at the point < sV >= 1/2, and we analyse the case of | < sV > | close to

1/2 separately below. Assume for now that | < sV > | ≤ 1/4. Then (289) is the estimate

we need to prove the lemma in this case. It remains, however, to obtain the same, or better,

estimate for vR,s on the intervals outside the discs, where (Figure 4.122 in [7]),

vR,s = f∞
+

(
1 −2e2isg+(z)

0 1

)
(f∞

+ )−1, g(z) = z +

∫ z

∞

(
q(x)√
p(x)

− 1

)
dx. (290)

Since by definition of q(z) ((1.17) in [7] or (10) in the introduction),

0 =

∫ β

ν

q(t)√
p(t)

dt =

∫ −ν

α

q(t)√
p(t)

dt,
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the estimation of g+(z) is similar to that of Ω(0)(z) above, and we obtain that Re (ig+(z)) < 0

and

−Re (ig+(z)) ≥
C

log(γν)−1
, C > 0,

on the intervals outside the discs, and so

e2isg+(z) = O
(
e
− cs

log(γν)−1

)
,

with some constant c > 0 independent of s, ν, z. Substituting this into (290), we obtain as

above,

vR,s = I +O
(
ν−1e

− cs
log(γν)−1

)
(291)

uniformly on the intervals outside the discs. Combining this result with (289), we see that

the estimate

vR,s = I +O((sν2|<sV >|+ε)−1)

holds uniformly on the whole contour for R in the asymptotic regime of the lemma, and

therefore the lemma is proved in the case | < sV > | ≤ 1/4 by the arguments of [7].

Now consider the remaining case 1/4 < | < sV > | ≤ 1/2. Let

t =< sV > +k/2,

where k = ±1 is chosen so that t ∈ (−1/4, 1/4). Consider the following function which

solves the same jump conditions (given in [7]) as f∞

f̃∞ =
1

γ(z−)

(
θ(u(z−)+d′)

θ(u(z−)+t+d′)
0

0 θ(u(z−)+d′)
θ(u(z−)−t+d′)

)(
θ(u(z)+t+d′)
θ(u(z)+d′)

γ+γ−1

2
θ(u(z)−t−d′)
θ(u(z)−d′)

γ−γ−1

2i
eisΩ0

θ(u(z)+t−d′)
θ(u(z)−d′)

γ−γ−1

−2i
e−isΩ0 θ(u(z)−t+d′)

θ(u(z)+d′)
γ+γ−1

2

)
.

Here

γ(z) = ν−1/4

(
(z + ν)(z − ν)

(z − α)(z − β)

)1/4

.

The sheet of the Riemann surface w = p(z)1/2 is chosen as before such that p(z)1/2 → 1,

z → ∞. It is easy to verify that γ(z) − γ(z)−1 has 2 zeros z+, z−. As ν → 0, z± =

±
√
ν|αβ|(1 + o(1)). The constant d′ is chosen such that the zero of θ(u(z) − d′) coincides

with the zero z+ of γ(z)− γ(z)−1. As in [7], Abel theorem then shows that u(z−) + d′ ≡ 1/2

modulo the lattice. Furthermore, θ(u(z) − d′) has no other zeros, and θ(u(z) + d′) has no
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zeros. Thus f̃∞(z) is analytic outside A and the limit f̃∞(z−) = I. It follows by standard

arguments that det f̃∞(z) = 1 for all z. We also note that the limit

Λ = f̃∞(∞)

has det Λ = 1 but is not the identity as before. By standard uniqueness arguments

f∞(z) = Λ−1f̃∞(z). (292)

The construction of local parametrices f̃p around the edge points is similar to that in

[7]. The definition of the new R-matrix is now as follows: R(z) = Λf(z)f̃−1
p (z) in the discs

around the end-points and R(z) = Λf(z)(f̃∞(z))−1 outside. The jump matrices for R at the

boundaries of the discs have the same form as before

vR,s = I + f̃∞O

(
log(γν)−1

s

)
(f̃∞)−1,

and a similar (to the one above) examination of the order of f̃∞ on the boundaries shows

that uniformly

vR,s = I +O

(
1

sν1/2+ε

)
, |t| < 1/4. (293)

As before, a better estimate holds on the rest of the jump contour of R. Thus the asymptotics

obtained holds in the regime sν1/2+ε → ∞, for |t| < 1/4. To finish the proof of the lemma

it only remains to verify (275) for |t| < 1/4. By Equation (3.9) in [7],

∂

∂s
logPs(A) = −2G0(α, β, ν)s+ i(f1,22 − f1,11),

where f1 is the coefficient in the large z expansion f(z) = I + f1/z + O(1/z2). (Below, we

also use f∞(z) = I + f∞
1 /z +O(1/z2), f̃∞(z) = Λ + f̃∞

1 /z +O(1/z2).) By our definition of

R,

f(z) = Λ−1R(z)f̃∞(z) = Λ−1

(
I +

R1

z
+O

(
1

z2

))(
Λ +

f̃∞
1

z
+O

(
1

z2

))

and therefore, using also (292),

f1 = Λ−1f̃∞
1 + Λ−1R1Λ = f∞

1 + Λ−1R1Λ.

We have Λ = O(ν−1/4+|t|), and since R1 has the same order as the error term in (293),

Λ−1R1Λ = O((sν1−2|t|+ε)−1) = O((sν2|<sV >|+ε)−1).
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Thus

∂

∂s
logPs(A) = −2G0(α, β, ν)s+ i(f∞

1,22 − f∞
1,11) +O((sν2|<sV >|+ε)−1),

But it was shown in [7] (Equation (3.48)) that i(f∞
1,22− f∞

1,11) =
∂
∂s

log θ(sV ; τ), and we again

obtain (275) now for 1/4 < | < sV > | ≤ 1/2. The lemma is proved.

Remark 5.1. In the overlap region (0, ν0) ∩ (ν1, ν2) of the asymptotics of Theorem 1.1 and

the lemma, we can explicitly see, as an exercise, the coincidence of the main terms. Indeed,

from (11), with α = α1, β = β2, ν = −β1 = α2,

G0 = q0 +
1

8
(β − α)2 + ν2/2.

Substituting here the expansion (281), we obtain

G0 =
1

8
(β − α)2 − |αβ|

log(γν)−1
+O(ν2).

Since sν → 0, we see that this gives exactly the main (order s2) term in (24).

Remark 5.2. Integration of the asymptotics of the lemma is related to the determination

of the constant c1 in (13) which will be addressed in a future publication.
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Appendix

We include a proof of the well-known formula (34), using arguments from [6]. As mentioned

in the introduction, the gap probability of m gaps in the bulk scaling limit is given by

the sine-kernel Fredholm determinant (2) for a wide class of random matrix ensembles. A

particular such ensemble is the Circular Unitary Ensemble (CUE), which is the group of n×n
unitary matrices equiped with the Haar measure. The Haar measure induces a probability

measure pn(θ)d
nθ on the eigenvalues of the matrix given by

pn(θ) =
1

n!

(
1

2π

)n ∏

1≤j<k≤n

|eiθj − eiθk |2, θ = (θj)
n
j=1 ∈ [0, 2π)n. (294)
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From Heine’s identity and (294), it follows that the probability that there are no eigenvalues

on a set Σ ⊂ C, where C is the unit circle, is given by the following

Dn (J = C \ Σ) =
∫

eiθj∈J
pn(θ)d

nθ, (295)

where Dn(J) was defined in (14). Denote J (n) = C \ Σ(n) where

Σ(n) =

{
z ∈: arg z ∈

(
2sα

n
,−2sν

n

)⋃(
2sν

n
,
2sβ

n

)}
. (296)

Using the definition (294) it is easily seen that

pn(θ) =
1

n!
det
(
K̃n(θj , θk)

)n
j,k=1

, (297)

where K̃n(x, y) =
1
2π

∑n−1
j=0 e

ji(x−y). Let

Kn(x, y) = e−in−1
2

(x−y)K̃n(x, y) =
1

2π

sin n
2
(x− y)

sin 1
2
(x− y)

. (298)

It follows that

pn(θ) =
1

n!
det (Kn(θj , θk)) . (299)

The kernel Kn has the reproducing kernel property, meaning that for r = 1, . . . , n
∫

det(Kn(θj , θk))
n
j,k=1dθn−r+1 . . . dθn = r! det(Kn(θj , θk))

n−r
j,k=1, (300)

where

det(Kn(θj , θk))
0
j,k=1 ≡ 1. (301)

From (295), we see that

Dn(J) =

∫

θ∈(0,2π)n

n∏

j=1

(1− χΣ(θj))pn(θ)d
nθ =

∫

θ∈(0,2π)n
pn(θ)d

nθ

− n

∫

θ∈(0,2π)n
pn(θ)χΣ(θ1)d

nθ +

(
n

2

)∫

θ∈(0,2π)n
pn(θ)χΣ(θ1)χΣ(θ2)d

nθ

+ · · ·+ (−1)n
(
n

n

)∫

θ∈(0,2π)n
pn(θ)

n∏

j=1

χΣ(θj)d
nθ.

(302)

The Fredholm determinant of a trace-class operator K acting on a set S can be represented

as

det(I −K)S = 1 +

∞∑

j=1

(−1)j

j!

∫

S

det(K(θi, θk))
j
i,k=1d

jθ. (303)
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For bounded S and K, one may verify that the sum indeed converges using Hadamard’s

inequality. Let J (n) be given by (32), and Σ(n) = C \J (n) be the complement. Recall A from

(18). Noting (299), we apply (300) to (302) to find that

Dn(J
(n)) = det(I −Kn)Σ(n) = det

(
I − K̂n

)
A
, (304)

where

K̂n(x, y) =
s sin s(x− y)

πn sin s(x−y)
n

. (305)

For fixed s, as n→ ∞, we have

∣∣∣K̂n(x, y)−Ks(x, y)
∣∣∣ = O(1/n). (306)

Since the sum (303) converges,

∞∑

j=M

(−1)j

j!

∫

A

det(K(θi, θk))
j
i,k=1d

jθ → 0 (307)

as M → ∞, for K = K̂n, Ks, where s remains fixed and uniformly for n > N for some N .

From (306), it follows that for fixed but arbitrarily large M ,

∣∣∣∣∣

M∑

j=1

(−1)j

j!

∫

A

det(K̂n(θi, θk))
j
i,k=1d

jθ −
M∑

j=1

(−1)j

j!

∫

A

det(Ks(θi, θk))
j
i,k=1d

jθ

∣∣∣∣∣ = O(1/n) (308)

as n→ ∞. Thus it follows that

∣∣Dn(J
(n))− det(I −Ks)A

∣∣→ 0 (309)

as n→ ∞ and s remains fixed.
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[16] H. Widom, The strong Szegő limit theorem for circular arcs, Indiana Univ. Math. J. 21

(1971) 277–283.

[17] H.Widom, The asymptotics of a continuous analogue of orthogonal polynomials, J.

Approx. Theory 77 (1994) 51–64.

[18] H. Widom, Asymptotics for the Fredholm determinant of the sine kernel on a union of

intervals, Comm. Math. Phys. 171 (1995) 159–180.

[19] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University

Press, 4th edition (1996).

60


	1 Introduction
	1.1 Results
	1.2 Outline of the proof of Theorem ??

	2 Differential Identity
	3 Analysis of Riemann-Hilbert problem
	3.1 Main parametrix
	3.2 Model RH problem 
	3.3 Local parametrix at 1
	3.4 Model RH problem 
	3.5 Local parametrix at b1 and b2
	3.6 Small norm RH problem

	4 Asymptotic analysis of the differential identity and correlation functions
	4.1 Asymptotics of n
	4.2 Convergence of correlation functions
	4.3 Expansion of Differential Identity
	4.3.1 Evaluation of (??)
	4.3.2 Evaluation of (??)

	4.4 Integration of Differential Identity
	4.4.1 Proof of Theorem ??

	4.5 Proof of Proposition ??
	4.5.1 Contribution to R1 from 1(b1) and 1(b2)
	4.5.2 Contribution to R1 from 1(1)
	4.5.3 Order of R2(ei 0)


	5 Connection to the asymptotics of DIZ

