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Abstract
We revisit Yudovich’s well-posedness result for the 2-dimensional Euler equations for an
inviscid incompressible fluid on either a sufficiently regular (not necessarily bounded) open
set � ⊂ R

2 or on the torus � = T
2. We construct global-in-time weak solutions with

vorticity in L1 ∩ L p
ul and in L1 ∩ Y �

ul , where L p
ul and Y �

ul are suitable uniformly-localized
versions of the Lebesgue space L p and of the Yudovich space Y � respectively, with no
condition at infinity for the growth function �. We also provide an explicit modulus of
continuity for the velocity depending on the growth function�.We prove uniqueness of weak
solutions in L1 ∩ Y �

ul under the assumption that � grows moderately at infinity. In contrast
to Yudovich’s energy method, we employ a Lagrangian strategy to show uniqueness. Our
entire argument relies on elementary real-variable techniques, with no use of either Sobolev
spaces, Calderón–Zygmund theory or Littlewood–Paley decomposition, and actually applies
not only to the Biot–Savart law, but also to more general operators whose kernels obey some
natural structural assumptions.
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1 Introduction

1.1 Euler equations

The two-dimensional Euler equations for an incompressible inviscid fluid are given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + (v · ∇)v + ∇ p = 0 in (0,+∞) × �,

div v = 0 in [0,+∞) × �,

v · ν� = 0 on [0,+∞) × ∂�,

v|t=0 = v0 on �,

(1.1)

on either a sufficiently smooth (possibly unbounded) simply connected open set � ⊂ R
2 or

on the 2-dimensional torus � = T
2, where v : [0,+∞) × � → R

2 is the velocity of the
fluid, p : [0,+∞) × � → R is the (scalar) pressure and ν� : ∂� → R

2 is the inner unit
normal to ∂�. In the cases � = R

2 and � = T
2, no boundary condition is imposed.

The vorticity ω : [0,+∞) × � → R of the fluid is given by the relation ω = curl v and
satisfies the Euler equations in vorticity form

⎧
⎪⎪⎨

⎪⎪⎩

∂tω + div (vω) = 0 in (0,+∞) × �,

v = Kω in [0,+∞) × �,

ω|t=0 = ω0 on �.

(1.2)

The relation appearing in the second line of (1.2) is the so-called Biot–Savart law and allows
to recover the velocity v from the vorticity ω. In fact, since div v = 0, there exists a stream
function ψ : [0,+∞) × � → R (uniquely determined up to an additive time-dependent
constant, if � is connected) such that

v =
(−∂x2ψ

∂x1ψ

)

= ∇⊥ψ on [0,+∞) × �. (1.3)

By applying the curl operator to both sides of (1.3), we get the Poisson equation

�ψ = ω on �, (1.4)

so that

v(t, x) =
∫

�

k(x, y) ω(t, y) dy = Kω(t, x)

for x ∈ � and t ∈ [0,+∞), where k : � × � → R
2 is an integral kernel obtained by

composing the operator∇⊥ with theNewtonian potential on�. Note that the relation v = Kω

encodes both the incompressibility property of the fluid div v = 0 and the no-flow boundary
condition v ·ν� = 0, since one imposes a Dirichlet condition at the boundary of� in order to
solve the Poisson equation (1.4). Also note that, in the case of the 2-dimensional torus, (1.4)
is only solvable under the compatibility condition that ω has zero average on T

2. At least
formally, such condition follows from the definition of ω as the curl of the velocity field. In
case the set � is not simply connected, the Biot–Savart law needs to be modified taking into
account the circulations of the velocity field around the “holes” of �, which requires the use
of suitable harmonic vector fields, see [21] for instance.

If � = R
2, then actually k(x, y) = k2(x − y) with

k2(x) = 1

2π

1

|x |2
(−x2

x1

)

= 1

2π

x⊥

|x |2 for all x ∈ R
2, x 	= 0.
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On a sufficiently regular open set � ⊂ R
2 and on the torus � = T

2, the kernel k does not
have such an easy and explicit expression but, nevertheless, is known to satisfy some suitable
a priori estimates (see [29, 30] and also inequalities (2.1) and (2.2) below).

For a detailed exposition of the theory of the Euler equations, we refer the reader to the
monographs [4, 11, 28, 30] and to the survey [14].

Existence and uniqueness of weak solutions of (1.2) with bounded vorticity is due to
Yudovich [41]. Existence of weak solutions was later achieved even for unbounded vorticities
under weaker integrability assumptions, see [15–17, 27, 37] for the most relevant results.

Uniqueness of unbounded weak solutions of (1.2) is an extremely delicate problem. On
the one side, in [42] Yudovich himself extended his previous uniqueness result [41] to the
case of unbounded vorticities belonging to the now-called Yudovich space, see below for the
precise definition. A different approach relying on Littlewood–Paley decomposition tech-
niques was pursued by Vishik [38]. Further improvements were subsequently obtained by
several authors [5, 6, 12, 20], additionally establishing some propagation of regularity of
solutions under more restrictive assumptions on the initial data. Important results have been
also achieved on open sets with rough boundary, see [19, 22–24]. On the other side, the
uniqueness of weak solutions of (1.2) in L p(R2) for p < +∞ is currently an open problem,
see [7–9, 39, 40] for some recent advances.

1.2 Yudovich’s energymethod

In this paper, we revisit Yudovich’s well-posedness result in [42]. Our approach is simpler and
explicit, and is based on elementary real-variable techniques only. In fact, we make no use of
either Fourier theory or Littlewood–Paley decomposition and even, somewhat surprisingly,
we do not need to rely on either Sobolev spaces or Calderón–Zygmund operator theory.

Yudovich’s original approach [41, 42] to the uniqueness is essentially based on a clever
energy argument (we refer the reader also to [11, Chapter 5], [28, Chapter 8] and [30,
Chapter 2] for a more detailed exposition). The idea behind this method is to show that the
squared L2 distance between the velocities of two solutions (also called the relative energy)

E(t) =
∫

�

|v(t, x) − ṽ(t, x)|2 dx

starting from the same initial datum obeys a Grönwall-type integral inequality.
If the vorticity is bounded, then one can exploit the Biot–Savart law v = Kω in (1.2)

together with some standard Calderón–Zygmund estimates to get

‖∇v‖L p(�) ≤ Cp (1.5)

for any p ∈ (1,+∞) sufficiently large, where the constant C > 0 depends on ‖ω‖L∞(�)

only. An energy estimate on (1.1) combined with (1.5) gives

d

dt
E(t) ≤ Cp E(t)1−1/p for t ∈ [0, T ]. (1.6)

By comparison with the maximal solution of (1.6), one must have that

E(t) ≤ (Ct)p ≤ (CT )p for t ∈ [0, T ],
so that E(t) = 0 for all t ∈ [0, T ] letting p → +∞, provided that CT < 1.
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If the vorticity is not bounded but the function p �→ ‖ω‖L p(�) has moderate growth for
p → +∞, then the argument above can be modified to get an estimate of the form

E(t) �
∫ t

0
β(E(s)) ds, (1.7)

for some function β : [0,+∞) → [0,+∞) depending on the growth of the L p norm of the
vorticity for p → +∞, namely, to which Yudovich space the vorticity belongs to.

Let us recall the definition of Yudovich space. Here and in the rest of the paper, we let
� : [1,+∞) → (0,+∞) be a non-decreasing function.

Definition 1.1 (Yudovich space) We let

Y �(�) =
⎧
⎨

⎩
f ∈

⋂

p∈[1,+∞)

L p(�) : ‖ f ‖Y �(�) = sup
p∈[1,+∞)

‖ f ‖L p(�)

�(p)
< +∞

⎫
⎬

⎭

be the Yudovich space on � associated to �.

Note that, if � is bounded, then Y �(�) ⊂ L∞(�). If � is unbounded, then it is not
difficult to see that Y �(�) 	⊂ L∞(�).

Now, if the vorticity belongs to Y �(�), then one replaces (1.5) with

‖∇v‖L p(�) � ‖ω‖Y �(�) p �(p)

and the computation leading to (1.6) now gives

d

dt
E(t) � 1

ε
‖ω‖L 1/ε(�)E(t)1−ε � E(t)

1

ε
�(1/ε)

1

E(t)ε

for ε > 0, where the implicit constant depends on the Y � norm of the vorticity. Setting

ψ�(r) =
⎧
⎨

⎩

inf
{ 1

ε
� (1/ε) : ε ∈ (0, 1/3)

}
for r ∈ [0, 1),

inf
{ 1

ε
� (1/ε) rε : ε ∈ (0, 1/3)

}
for r ∈ [1,+∞)

(1.8)

(here the choice of the value 1/3 is irrelevant and is made for convenience only), we finally
obtain

d

dt
E(t) � E(t) ψ�

(
1

E(t)

)

,

where the implicit constant depends on the Y � norm of the vorticity. We have therefore
obtained (1.7) with β(z) = z ψ�(1/z). Based on this computation, Yudovich’s well-posedness
result can be stated as follows (for the precise notion of weak solution of (1.2), see Defini-
tion 3.2 below).

Theorem 1.2 (Yudovich [41, 42]) Let � ⊂ R
2 be a bounded open set with C2 boundary and

assume that the function ψ� in (1.8) satisfies
∫

0+
dr

r ψ�(1/r)
= +∞. (1.9)

Then, for any initial datum ω0 ∈ Y �(�), there exists a unique weak solution (ω, v) of (1.2)
such that

ω ∈ L∞([0,+∞); Y �(�)), v ∈ L∞([0,+∞); Cb(�; R
2)). (1.10)
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In [42, Theorem 2], Yudovich also proved that the velocity v in (1.10) satisfies

|v(t, x) − v(t, y)| � |x − y| ψ�(1/|x − y|3) ∀x, y ∈ � (1.11)

for a.e. t > 0, and observed that the modulus of continuity r �→ r ψ�(1/r3) satisfies the
Osgood condition ∫

0+
dr

r ψ�(1/r3)
= +∞,

as a consequence of (1.9)
As it is apparent from the definition in (1.8), the precise behavior ofψ� and its dependence

on the growth function � are quite implicit. As a matter of fact, in his paper [42] Yudovich
exhibited explicit formulas for the function ψ� only in some particular cases. Precisely, if

�m(p) = log p log2 p log3 p · · · logm p (1.12)

for some m ∈ N and for all p ∈ (1,+∞) sufficiently large, where

logm p = log log . . . log
︸ ︷︷ ︸

m times

p,

then
ψ�m (r) � log r log2 r log3 r · · · logm+1 r

for r > 0 sufficiently large. In this range of examples, condition (1.9) holds for all m ∈ N.
Condition (1.9) however fails for a growth function of order �(p) � p for p → +∞. In
other words, as observed in [42, Examples 3.2 and 3.3], Theorem 1.2 holds for vorticities
with singularities of order | log | log |x || (corresponding to a growth function of order�(p) �

log p), but not for vorticities with singularities of order | log |x || (corresponding to a growth
function of order �(p) � p) which, in turn, are typical singularities of BMO functions, see
the discussion in [38] and the estimate (1.18) below.

1.3 Uniformly-localized Lp andYudovich spaces

As recently pointed out by the work of Taniuchi [35] and by the subsequent developments
obtained in [12, 36], Yudovich’s approach can be suitably localized in order to treat vorticities
with possibly infinite global L1 norm.

Let us recall the definition of the uniformly-localized version of the Yudovich space
introduced above. Here and in the rest of the paper, we let d : � × � → [0,+∞) be the
natural distance on �, that is, the Euclidean distance if � ⊂ R

2 and the geodesic distance if
� = T

2. We let Br (x) be the open ball of radius r > 0 centered at x ∈ R
2.

Definition 1.3 (Uniformly-localized L p and Yudovich spaces) Let p ∈ [1,+∞). We let

L p
ul(�) =

{

f ∈ L p
loc(�) : ‖ f ‖L p

ul (�) = sup
x∈�

‖ f ‖L p(�∩B1(x)) < +∞
}

(1.13)

be the uniformly-localized L p space on �. By convention, we set L∞
ul (�) = L∞(�). We

also let

Y �
ul (�) =

⎧
⎨

⎩
f ∈

⋂

p∈[1,+∞)

L p
ul(�) : ‖ f ‖Y �

ul (�) = sup
p∈[1,+∞)

‖ f ‖L p
ul (�)

�(p)
< +∞

⎫
⎬

⎭

be the uniformly-localized Yudovich space on � associated to �.
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Clearly, we have Y �(�) ⊂ Y �
ul (�), with strict inclusion if � is unbounded. Note that, by

an elementary geometric argument, if we set

‖ f ‖L p
ul,r (�) = sup

x∈�

‖ f ‖L p(�∩Br (x))

for all r > 0, then

‖ f ‖L p
ul,R(�) �

(
R

r

)2/p

‖ f ‖L p
ul,r (�) (1.14)

for all p ∈ [1,+∞) and R > r > 0. In particular, the choice r = 1 made in the defini-
tion (1.13) of the space L p

ul(�) is completely irrelevant.
With these definitions at hand, Taniuchi’s well-posedness result can be stated as follows

(see [36] for a similar result dealing with almost-periodic initial data in R
2 and [12, Theo-

rem 1.10] for initial data additionally belonging to a suitable Spanne space).

Theorem 1.4 (Taniuchi [12, 35]) Let � : [1,+∞) → (0,+∞) be a non-decreasing function
such that ∫ +∞ dp

p �(log p)
= +∞. (1.15)

Then, for any initial datum ω0 ∈ Y �
ul (R

2), there exists a weak solution (ω, v) of (1.2) such
that

ω ∈ L∞
loc([0,+∞), Y �

ul (R
2)), v ∈ L∞

loc([0,+∞); L∞
loc(R

2; R
2)). (1.16)

In addition, if � satisfies
∫ +∞ dp

p �(p)
= +∞, (1.17)

then the solution (ω, v) in (1.16) is unique.

Note that condition (1.15) is satisfied by a growth function �(p) � p for p → +∞. In
particular, since

‖ f ‖L p
ul (R

2) � p ‖ f ‖bmo(R2) (1.18)

for all p ∈ (1,+∞) (see [35, Definitions 3 and 5]), Theorem 1.4 provides existence of
weak solutions of (1.2) starting from a BMO initial vorticity and bounded initial velocity
(although in general the solution does not belong to BMO at later times), improving the
previous existence result by Vishik [38]. We refer the reader to [35, Corollary 1.2] for the
precise (and more general) statement of this result.

1.4 Main results

In this paper, we first of all completely revisit Yudovich’s uniqueness result (Theorem 1.2),
employing an elementary and direct approach which makes the relation among the growth
of the L p norm of the vorticity, the modulus of continuity of the associated velocity, and the
condition required for the uniqueness fully explicit.

Before stating our uniqueness result, let us introduce some notation that will be used
throughout the paper.
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Definition 1.5 (The function ϕ�) Let� : [1,+∞) → (0,+∞) be a non-decreasing function.
We let the function ϕ� : [0,+∞) → [0,+∞) be such that ϕ�(0) = 0 and

ϕ�(r) =
⎧
⎨

⎩

r (1 − log r)�(1 − log r) for r ∈ (0, e−2]
e−2 3�(3) for r > e−2

(1.19)

(the choice of the constant e−2 is irrelevant and is made for convenience only, see below).
With a slight abuse of terminology, we say that ϕ� is the modulus of continuity associated
to the growth function �, and we define

C0,ϕ�

b (�; R
2) =

{

v ∈ L∞(�; R
2) : sup

x 	=y

|v(x) − v(y)|
ϕ�(d(x, y))

< +∞
}

.

With the above notation in force, our uniqueness result can be stated as follows (for the
precise notions of weak solution and of Lagrangian weak solution of the system (1.2), we
again refer the reader to Definition 3.2 below).

Theorem 1.6 (Uniqueness) Let � ⊂ R
2 be either a sufficiently regular open set or the 2-

dimensional torus � = T
2. If � satisfies (1.17) and the function ϕ� defined in (1.19) is

concave on [0,+∞), then there is at most one Lagrangian weak solution (ω, v) of (1.2) with

ω ∈ L∞
loc([0,+∞); L1(�) ∩ Y �

ul (�)), v ∈ L∞
loc([0,+∞); C0,ϕ�

b (�; R
2)), (1.20)

starting from the initial datum ω0 ∈ L1(�) ∩ Y �
ul (�).

In Theorem 1.6, we do not specify the required regularity of the open set � ⊂ R
2 in

detail, since such regularity is only needed to ensure the well-posedness of the Biot–Savart
law appearing in (1.2). As a matter of fact, we do not require the open set � ⊂ R

2 either to
be bounded or to have finite measure, in contrast to the result in Theorem 1.2.

Actually, Theorem 1.6 does hold for any operator K satisfying some suitable condi-
tions (which hold in particular in the case of the Biot–Savart law), see Assumption 2.1 and
Assumption 3.1 below.

Last but not least, the function ϕ� defined in (1.19) provides a fully explicit modulus of
continuity of the velocity in terms of the integrability of the vorticity. In other words, the
regularity of the velocity stated in (1.20) can be seen as a more explicit version of (1.11)
(even for a growth function � possibly not implying the uniqueness of the solution, see
Theorem 1.8 below). In particular, Theorem 1.6 applies to the explicit growth function �m

in (1.12) for all m ∈ N, for which one can easily see that

ϕ�m (r) � r log(1/r) log2(1/r) . . . logm+1(
1/r)

for all r > 0 sufficiently small.

Remark 1.7 Actually, the word “Lagrangian” can be removed from the statement of Theo-
rem 1.6, in the sense that uniqueness can be shown in the (a priori larger) class of all weak
solutions. This is due to the fact that, for a continuity equation with an Osgood velocity field,
all weak solutions in L1(�) are in fact Lagrangian. This fact is not at all elementary and
has been proved (via very different approaches) in [2, 13], also see [10] in the context of
Sobolev velocity fields.We nevertheless prefer to state Theorem 1.6 for Lagrangian solutions
in order to emphasize the best result that it is possible to prove just relying on our elementary
approach.
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Concerning the existence of weak solutions of (1.2), somewhat inspired by Taniuchi’s
Theorem 1.4, we prove the following result.

Theorem 1.8 (Existence) Let � ⊂ R
2 be either a sufficiently regular open set or the 2-

dimensional torus � = T
2 and let p ∈ (2,+∞). For any initial datum ω0 ∈ L1(�)∩L p

ul(�),
there exists a weak solution (ω, v) of (1.2) such that

ω ∈ L∞
loc([0,+∞); L1(�) ∩ L p

ul(�)), v ∈ L∞
loc([0,+∞); C0,1−2/p

b (�; R
2)). (1.21)

Moreover, if ω0 ∈ L1(�) ∩ Y �
ul (�), then the weak solution (ω, v) of (1.2) given in (1.21)

additionally satisfies (1.20) and, provided that � satisfies (1.17), is Lagrangian.

As for Theorem 1.6 above, the regularity of the open set � ⊂ R
2 is only needed to

guarantee the well-posedness of the Biot–Savart law. In fact, as before, also Theorem 1.8
applies to any operator K satisfying the a priori estimates stated in Assumption 2.1 and
Assumption 3.1 below.

Up to our knowledge, the global-in-time existence result stated in Theorem 1.8 is new,
even for K being the standardBiot–Savart operator. Local-in-time existence ofweak solutions
of (1.2)with vorticity only in L p

ul for some p > 2 is known for� = R
2, see [35, Theorem1.3].

The global-in-time existence result for the L1 ∩ Y �
ul -spatial regularity of the vorticity

in Theorem 1.8 does not require any assumption on the behavior at infinity of the growth
function �. In this sense, the global L1 integrability of the vorticity allows us to remove the
condition (1.15) needed in Theorem 1.4.

Finally, Theorem 1.8 provides the existence of a solution and a modulus of continuity for
the velocity even for growth functions� allowing for vorticities not included in theBMO-like
spaces considered by Vishik in [38], by Bernicot, Hmidi and Keraani in [5, 6] and by Chen,
Miao and Zhen in [12]. Indeed, we can treat growth functions like �(p) � pα for p → +∞
for all α > 0, corresponding to singularities of order | log |x ||α . In addition, since the classes
considered in Theorem 1.8 are of integral type, our existence result allows for the cut-off of
the initial datum, a property which is known not to preserve any BMO-like regularity.

1.5 Strategy of the proof

Let us briefly explain the strategy behind the proof of our main results. We can divide our
approach in three fundamental parts.

The first part is the study of the regularity of the velocity. As it is well-known, even for a
bounded vorticity the associated velocity is in general not Lipschitz, but just log-Lipschitz.
In the case the vorticity satisfies ω ∈ L1(�) ∩ L p

ul(�) for some p ∈ (2,+∞) (actually, it is
enough to assume ω ∈ Lq(�) ∩ L p

ul(�) for any 1 ≤ q < 2 < p < +∞, see Theorem 2.2
below), we prove that the velocity satisfies

|v(x) − v(y)| � max
{
1, 1

p−2

}
(‖ω‖L1(�) + ‖ω‖L p

ul (�)) p d(x, y)1−2/p (1.22)

for all x, y ∈ �.
The Hölder continuity in (1.22) should not come as a surprise. Indeed, inequality (1.22)

is a well-known consequence of the Calderón–Zygmund theory and the Morrey inequality in
the case of the Biot–Savart kernel, see [42, Section 4] and [31, Lemma 2.2 and Remark 2.3]
for instance. Our approach, however, is different, since our proof of (1.22) solely exploits
the metric properties of the kernel (see Assumption 2.1 below) and some elementary integral
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estimates (known in the literature for bounded vorticities, see the proofs of [28, Lemma 8.1]
and of [30, Lemma 3.1] for example).

The next key idea is the following simple but crucial observation. If ω ∈ L1(�)∩Y �
ul (�),

then (1.22) holds for any p ≥ 3 and can be rewritten as

|v(x) − v(y)| � (‖ω‖L1(�) + ‖ω‖Y �
ul (�))�(p) p d(x, y)1−2/p (1.23)

for all x, y ∈ �. Here and in the rest of the paper, for simplicity and clearly without loss of
generality, we can assume that �(3) ≥ 1. In particular, if d(x, y) is sufficiently small, then
we can take

p = 1 − logd(x, y)

in (1.23) and discover that

|v(x) − v(y)| � (‖ω‖L1(�) + ‖ω‖Y �
ul (�)) ϕ�(d(x, y))

for all x, y ∈ �, where ϕ� is the function defined in (1.19). In particular, if ω ∈ L1(�) ∩
L∞(�), then � is bounded and the definition in (1.19) gives

|v(x) − v(y)| � (‖ω‖L1(�) + ‖ω‖Y �
ul (�)) �(d(x, y))

for all x, y ∈ �, where � : [0,+∞) → [0, 1] is defined as �(0) = 0 and

�(r) =
{

r (1 − log r) for r ∈ (0, 1],
1 for r > 1,

(1.24)

recovering the classical log-Lipschitz continuity of the velocity.
The second part is the existence of weak solutions. The key tool we use in this part is a

simplified version of the celebrated Aubin–Lions Lemma, see TheoremA.1 in Sect. 5, whose
elementary proof is just a combination of the Dunford–Pettis Theorem and the Arzelà–Ascoli
Compactness Theorem. With this compactness criterion at hand, we first prove existence of
weak solutions of (1.2) with vorticity in L1 ∩ L∞. Having in mind to deal with a general
operator K whichmay not be necessarily the Biot–Savart one, we cannot rely on the existence
theory for smooth solutions, but rather we build a weak solution of (1.2) from scratch via
a time-stepping argument (a procedure which may be of some interest by itself even in the
case of the Biot–Savart law). The construction of weak solutions with vorticity in L1 ∩ L p

ul
then follows by applying the Aubin–Lions-like Lemma to the sequence of bounded weak
solutions starting from the truncations of the initial vorticity.

The third and last part is the uniqueness of weak solutions. In contrast to Yudovich’s
original approach [42], we do not employ an energy method by estimating the relative energy
between two solutions, but we rather compare the flows associated to the two velocities by an
elementary (non-linear) Picard–Lindelöf iteration-like argument (similar to the one used for
bounded vorticities in [30, Section 2.3] and in [26]), which can also be seen as an estimate
for the Wasserstein distance between the two vorticities. It is precisely at this point that the
we exploit the Osgood property

∫ e−2

0

dr

ϕ�(r)
=
∫ +∞

3

dp

p �(p)
= +∞ (1.25)

and the concavity of the modulus of continuity ϕ� given in (1.19). This approach is also
somewhat reminiscent of the one by Serfati [33, 34], see also [1].
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1.6 Organization of the paper

The paper is organized as follows. In Sect. 2, we study the mapping properties of the oper-
ator K under some minimal assumptions on the kernel. In Sect. 3, we prove the existence
of weak solutions, namely Theorem 1.8, see Theorem 3.4 and Theorem 3.6. In Sect. 4, we
establish the uniqueness of weak solutions, namely Theorem 1.6. Finally, in Sect. 5, we state
and prove the simplified version of the Aubin–Lions Lemma we need in the existence part,
see Theorem A.1.

2 Mapping properties of the kernel

In this section, we study the mapping properties of the operator K . Here and in the rest of the
paper, we rely on the metric properties of the underlying kernel in Assumption 2.1 below,
and not on its specific form. These properties are satisfied by the standard Biot–Savart kernel
in any (bounded or unbounded) sufficiently smooth domain and on the 2-dimensional torus
(for instance see the aforementioned [29, 30]).

Assumption 2.1 (Estimates on the kernel) We assume that the kernel k : � × � → R
2

satisfies

|k(x, y)| ≤ C1

d(x, y)
∀x, y ∈ �, x 	= y, (2.1)

and

|k(x, z) − k(y, z)| ≤ C2
d(x, y)

d(x, z)d(y, z)
∀x, y, z ∈ �, z 	= x, y, (2.2)

for some constants C1, C2 > 0.

We begin by establishing the Hölder continuity of the velocity, extending to our setting
the proof of [28, Lemma 8.1] and of [30, Lemma 3.1].

Theorem 2.2 (Hölder continuity) Let Assumption 2.1 be in force and let q ∈ [1, 2) and
p ∈ (2,+∞). If ω ∈ Lq(�) ∩ L p

ul(�), then the function

Kω(x) =
∫

�

k(x, z) ω(z) dz, x ∈ �, (2.3)

is well defined and satisfies Kω ∈ C0,1−2/p

b (�; R
2) with

‖Kω‖L∞(�;R2) � max
{
1, 1

p−2

}
(‖ω‖Lq (�) + ‖ω‖L p

ul (�)) (2.4)

and

|Kω(x) − Kω(y)| � max
{
1, 1

p−2

}
(‖ω‖Lq (�) + ‖ω‖L p

ul (�)) p d(x, y)1−2/p (2.5)

for all x, y ∈ �. The implicit constants in (2.4) and (2.5) only depend on the constants C1

and C2 in Assumption 2.1 and on the exponent q (but not on the exponent p).

Remark 2.3 Observe that the Hölder continuity of order 1− 2/p is the same that would follow
by usingMorrey’s inequality from theW 1,p Sobolev regularity of the velocity field associated
(via the standard Biot–Savart law) to an L p vorticity. In the proof below, we make no use of
such tools, which are not available in the case of a kernel satisfying Assumption 2.1 only.
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Proof of Theorem 2.2 We divide the proof in three steps.
Step 1: proof of (2.4). Let x ∈ � be fixed. We start by noticing that the function in (2.3)

can be estimated as

|Kω(x)| ≤
∫

�∩B1(x)

|k(x, z)| |ω(z)| dz +
∫

�\B1(x)

|k(x, z)| |ω(z)| dz.

On the one side, by (2.1) we can estimate

∫

�∩B1(x)

|k(x, z)| |ω(z)| dz ≤ C1

∫

�∩B1(x)

|ω(z)|
d(x, z)

dz � ‖ω‖L p(�∩B1(x))

(∫ 1

0
r1−p′

dr

)1/p′

� ‖ω‖L p
ul (�)

(
1

2 − p′

)1/p′

� max
{
1, 1

p−2

}
‖ω‖L p

ul (�),

where p′ = p/(p − 1) ∈ (1, 2). On the other side, again by (2.1), we can estimate
∫

�\B1(x)

|k(x, z)| |ω(z)| dz ≤ C1

∫

�\B1(x)

|ω(z)|
d(x, z)

dz � ‖ω‖Lq (�).

In conclusion, we find that

|Kω(x)| � ‖ω‖Lq (�) + max
{
1, 1

p−2

}
‖ω‖L p

ul (�)

for each x ∈ �, proving (2.4).
Step 2: proof of (2.5), part 1. Let x, y ∈ � be fixed and assume that d = d(x, y) < 1.

We note that

|Kω(x) − Kω(y)| ≤
∫

�
|k(x, z) − k(y, z)| |ω(z)| dz

=
(∫

�\B2(x)
+
∫

�∩(B2(x)\B2d (x))
+
∫

�∩B2d (x)

)

|k(x, z) − k(y, z)| |ω(z)| dz. (2.6)

By (2.2), we can estimate the first integral in (2.6) as
∫

�\B2(x)

|k(x, z) − k(y, z)| |ω(z)| dz ≤ C2 d(x, y)

∫

�\B2(x)

|ω(z)|
d(x, z)d(y, z)

dz

� d(x, y) ‖ω‖Lq (�).

Again by (2.2), we can estimate the second integral in (2.6) as
∫

�∩(B2(x)\B2d (x))

|k(x, z) − k(y, z)| |ω(z)| dz

≤ C2 d(x, y)

∫

�∩(B2(x)\B2d (x))

|ω(z)|
d(x, z)d(y, z)

dz.

Since d(x, y) = d and d(x, z) ≥ 2d , we have

d(x, z) ≤ d(x, y) + d(y, z) = d + d(y, z) ≤ 1
2 d(x, z) + d(y, z),

and therefore
d(y, z) ≥ 1

2 d(x, z) for all z ∈ � \ B2d(x).

Hence, we can estimate
∫

�∩(B2(x)\B2d (x))

|ω(z)|
d(x, z)d(y, z)

dz �
∫

�∩(B2(x)\B2d (x))

|ω(z)|
d(x, z)2

dz.
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Finally, using (2.1) and observing that B2d(x) ⊂ B3d(y), we can estimate the third integral
in (2.6) as
∫

�∩B2d (x)

|k(x, z) − k(y, z)| |ω(z)| dz �
∫

�∩B2d (x)

|ω(z)|
d(x, z)

dz +
∫

�∩B3d (y)

|ω(z)|
d(y, z)

dz.

Step 3: proof of (2.5), part 2. To conclude, we just need to estimate the functions

α(d) = sup
x∈�

∫

�∩(B2(x)\B2d (x))

|ω(z)|
d(x, z)2

dz and β(d) = sup
x∈�

∫

�∩B3d (x)

|ω(z)|
d(x, z)

dz

defined for d ∈ (0, 1]. Concerning the function α, by Hölder’s inequality we can estimate

α(d) �
(

sup
x∈�

‖ω‖L p(�∩B2(x))

)(∫ 2

2d
r1−2p′

dr

)1/p′

� ‖ω‖L p
ul (�)

(
22−2p′

2p′ − 2

)1/p′
(

d2−2p′ − 1
)1/p′

� ‖ω‖L p
ul (�) p d −2/p.

(2.7)

We can argue similarly for the function β, obtaining

β(d) �
(

sup
x∈�

‖ω‖L p(�∩B3(x))

)(∫ 3d

0
r1−p′

dr

)1/p′

� ‖ω‖L p
ul (�)

(
32−p′

2 − p′

)1/p′

d
(2 − p′ )/p′ � ‖ω‖L p

ul (�)

p

p − 2
d 1−2/p.

(2.8)

Recalling the bound (2.4), this is enough to conclude the proof of (2.5).

From Theorem 2.2 we easily derive the following result, generalizing the well-known
log-Lipschitz continuity of the velocity valid for vorticities in L1 ∩ L∞.

Corollary 2.4 (ϕ�-continuity) Let Assumption 2.1 be in force and let q ∈ [1, 2). If ω ∈
Lq(�) ∩ Y �

ul (�), then Kω ∈ C0,ϕ�

b (�; R
2) with

‖Kω‖L∞(�;R2) � ‖ω‖Lq (�) + ‖ω‖Y �
ul (�) (2.9)

and
|Kω(x) − Kω(y)| � (‖ω‖Lq (�) + ‖ω‖Y �

ul (�)) ϕ�(d(x, y)) (2.10)

for all x, y ∈ �, where ϕ� is the function defined in (1.19). The implicit constants in (2.9)
and (2.10) only depend on the constants C1 and C2 in Assumption 2.1 and on the exponent q
(but not on the behavior of the growth function � at infinity).

Proof We divide the proof in two steps.
Step 1: proof of (2.9). Taking p = 3 in (2.4), since �(3) ≥ 1 by assumption, we

immediately see that

‖Kω‖L∞(�;R2) � ‖ω‖Lq (�) + ‖ω‖L3
ul (�)

� ‖ω‖Lq (�) + �(3) ‖ω‖Y �
ul (�) � ‖ω‖Lq (�) + ‖ω‖Y �

ul (�).

Step 2: proof of (2.10). Let x, y ∈ � be such that d = d(x, y) ∈ (0, e−2]. Taking
p = 1 − log d ∈ [3,+∞) in (2.5), we get that �(1 − log d) ≥ �(3) ≥ 1 and thus

|Kω(x) − Kω(y)| �
(‖ω‖Lq (�) + �(1 − log d)‖ω‖Y �

ul (�)

)
(1 − log d) d1− 2

1−log d
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≤ (‖ω‖Lq (�) + ‖ω‖Y �
ul (�))�(1 − log d) (1 − log d) d1− 2

1−log d

� (‖ω‖Lq (�) + ‖ω‖Y �
ul (�)) d (1 − log d)�(1 − log d).

Thanks to the bound (2.9), this proves (2.10).

Remark 2.5 (Stronger versions of (2.5) and (2.10)) For later use, we observe that, in Steps 2
and 3 of the proof of Theorem 2.2, we actually showed that
∫

�

|k(x, z) − k(y, z)| |ω(z)| dz � max
{
1, 1

p−2

}
(‖ω‖Lq (�) + ‖ω‖L p

ul (�)) p d(x, y)1−2/p

(2.11)
for all x, y ∈ �, where the implicit constant only depends on C1 and C2 in Assumption 2.1
and on q (but not on p). Consequently, in Step 2 of the proof of Theorem 2.4, we actually
showed that

∫

�

|k(x, z) − k(y, z)| |ω(z)| dz � (‖ω‖Lq (�) + ‖ω‖Y �
ul (�)) ϕ�(d(x, y)) (2.12)

for all x, y ∈ �, where the implicit constant only depends on the constants C1 and C2 in
Assumption 2.1 and on the exponent q (but not on the behavior of the growth function � at
infinity).

Remark 2.6 (Yudovich’s approach) Inequality (2.10) in Theorem 2.4 can also be obtained by
re-doing the estimates (2.7) and (2.8) following Yudovich’s approach in [42, Lemma 3.1].
Indeed, for ε ∈ (0, 1/3) we have

α(d) � d−2ε
∫

�∩(B2(x)\B2d (x))

|ω(z)|
d(x, z)2(1−ε)

dz

� d−2ε
(

sup
x∈�

‖ω‖L 1/ε(�∩B2(x))

)(∫ 2

2d
r−1 dr

)1−ε

� ‖ω‖Y �
ul (�) �( 1

ε
) (1 − log d)1−ε d−2ε

by applying Hölder’s inequality with exponents 1/ε and 1/(1 − ε). A similar computation shows
that

β(d) �
(

sup
x∈�

‖ω‖L 1/ε(�∩B3d (x))

)(∫ 3d

0
r1−1/(1 − ε) dr

)1−ε

� ‖ω‖Y �
ul (�) �( 1

ε
) d1−2ε,

so that
|Kω(x) − Kω(y)| � (‖ω‖Lq (�) + ‖ω‖Y �

ul (�)) ψ̃�(d(x, y))

for all x, y ∈ �, where

ψ̃�(d) = inf
{
�( 1

ε
) (1 − log d)1−ε d1−2ε : 0 < ε < 1

3

}
(2.13)

for all d ∈ (0, e−2], in analogy with the definition in (1.8). Due to its implicit definition
in (2.13), the function ψ̃� is not easily exploitable for further computations (at least, unless
� has a more explicit expression, such as (1.12)). However, as in the proof of Theorem 2.4,
one realizes that the choice ε = 1/(1 − log d) in (2.13) gives

ψ̃�(d) � d (1 − log d)�(1 − log d) � ϕ�(d)

for all d ∈ (0, e−2], so that we recover (2.10) also via this alternative approach.
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3 Existence of weak solutions (Theorem 1.8)

In this section, we show existence of weak solutions for the Euler equations (1.2). Here and
in the rest of the paper, in addition to Assumption 2.1, we assume two further properties
concerning the divergence and the behavior at the boundary of the velocity generated by the
operator K .

Assumption 3.1 (Bounded divergence and no-flow boundary condition) Let p ∈ (2,+∞]
be given. We assume that the operator

K : L1(�) ∩ L p
ul(�) → C0,1−2/p

b (�; R
2)

defined in (2.3) of Theorem 2.2 is such that the distributional divergence div (Kω) satisfies

‖div (Kω)‖L∞(�) ≤ C3 ‖ω‖L1(�) (3.1)

for all ω ∈ L1(�) ∩ L p
ul(�), for some constant C3 > 0. If � ⊂ R

2 is an open set with
sufficiently regular boundary, we assume the no-flow boundary condition

ν� · Kω = 0 on ∂� (3.2)

for all ω ∈ L1(�) ∩ L p
ul(�). Condition (3.2) is empty if either � = R

2 or � = T
2.

Note that Assumption 3.1 is trivially satisfied in the case of the standard Biot–Savart law,
since the specific form of the kernel entails div (Kω) = 0.

We will employ the following standard definition of weak solution and of Lagrangian
weak solution of the Euler equations (1.2).

Definition 3.2 (Weak solution) Let p ∈ (2,+∞]. Given an initial condition for the vorticity
ω0 ∈ L1(�)∩ L p

ul(�), we say that the couple (ω, v) is a weak solution of (1.2) with vorticity
in L1 ∩ L p

ul provided that:

(i) ω ∈ L∞
loc([0,+∞); L1(�) ∩ L p

ul(�));
(ii) v = Kω in L∞

loc([0,+∞); Cb(�; R
2));

(iii) given T ∈ (0,+∞), for all ϕ ∈ C1
c ([0, T ] × �) it holds

∫

�

ϕ(T , x) ω(T , x) dx −
∫

�

ϕ(0, x) ω0(x) dx =
∫ T

0

∫

�

ω (∂tϕ + v · ∇ϕ) dx dt .

A weak solution (ω, v) of (1.2) with vorticity in L1 ∩ L p
ul is called Lagrangian if ω(t, ·) =

X(t, ·)#ω0 for a.e. t ∈ [0,+∞), where X is a flow associated to the velocity field v.

In Definition 3.2, we say that X is a flow associated to the velocity field v if
⎧
⎨

⎩

d
dt X(t, x) = v(t, X(t, x)) for (t, x) ∈ (0,+∞) × �,

X(0, x) = x for x ∈ �.

(3.3)

The ODE in (3.3) is understood in the classical sense (for an overiview, as well as for the
connection with the continuity equation, see [3]). Since the velocity belongs to the space
L∞
loc([0,+∞); Cb(�; R

2)) and satisfies the no-flow boundary condition (3.2), the existence
of a solution X of the problem (3.3) follows from the Peano Theorem. The relation ω(t, ·) =
X(t, ·)#ω0 stands for the usual push-forward, i.e.

∫

�

ω(t, ·) ϕ dx =
∫

�

ω0 ϕ(X(t, ·)) dx
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for all bounded measurable functions ϕ : � → R.
We are now ready to deal with the existence of weak solutions. We begin with the case of

weak solutions with vorticity in L1 ∩ L∞. The result in Theorem 3.3 below is well known
in the case of the standard Biot–Savart kernel. In our more general setting, we cannot rely
on any general results of existence of smooth solutions for smooth data, due to the lack of
an evolution equation for the velocity. Instead, we construct the solution by combining a
time-stepping argument with the Aubin–Lions-like Lemma given in Sect. 5.

Here and in the following, � : [0,+∞) → [0, 1] denotes the log-Lipschitz modulus of
continuity defined in (1.24).

Theorem 3.3 (Existence in L1 ∩ L∞) Let Assumptions 2.1 and 3.1 be in force. Then there
exists a Lagrangian weak solution (ω, v) of (1.2) with vorticity in L1 ∩ L∞ starting from
the initial datum ω0 ∈ L1(�) ∩ L∞(�) such that

‖ω‖L∞([0,T ]; L1(�)) ≤ ‖ω0‖L1(�), (3.4)

‖ω‖L∞([0,T ]; L∞(�)) ≤ exp(C3T ‖ω0‖L1(�)) ‖ω0‖L∞(�), (3.5)

‖v‖L∞([0,T ]; L∞(�;R2)) � ‖ω0‖L1(�) + ‖ω0‖L∞(�), (3.6)

and

|v(t, x) − v(t, y)| � (‖ω0‖L1(�) + ‖ω0‖L∞(�)) �(d(x, y)), for all x, y ∈ � and a.e. t ∈ [0, T ], (3.7)

for all T ∈ (0,+∞), where the implicit constants may depend on the chosen T .

Proof Let T ∈ (0,+∞) and ω0 ∈ L1(�) ∩ L∞(�) be fixed and define v0 = Kω0.
Step 1: construction of (ωn, vn)n∈N by time-stepping. Let n ∈ N and consider the time

step T/n. We construct a sequence of functions (ωn, vn)n∈N as follows. We set ωn
0 = ω0

for all n ∈ N by definition. If t ∈ [( j − 1)T/n, jT/n] for some j ∈ {1, . . . , n}, then we
define ωn(t, ·) = w(t, ·), where w is advected on the interval [( j − 1)T/n, jT/n] by the time-
independent velocity vn(( j − 1)T/n, ·) = Kωn(( j − 1)T/n, ·), that is, w solves

⎧
⎨

⎩

∂tw + div (vn(( j − 1)T/n, ·) w) = 0 in (( j − 1)T/n, jT/n) × �,

w(( j − 1)T/n, ·) = ωn(( j − 1)T/n, ·) on �,
(3.8)

in the distributional sense.
We show that the couple (ωn, vn) is well defined for each n ∈ N by an inductive argument.

By Theorem 2.4 for t ∈ [( j − 1)T/n, jT/n] and j = 1, . . . , n we have

‖vn(t, ·)‖L∞(�;R2) � ‖ωn(( j − 1)T/n, ·)‖L1(�) + ‖ωn(( j − 1)T/n, ·)‖L∞(�) (3.9)

and

|vn(t, x) − vn(t, y)| �
(‖ωn(( j − 1)T/n, ·)‖L1(�) + ‖ωn(( j − 1)T/n, ·)‖L∞(�)

)
�(d(x, y)), ∀x, y ∈ �.

(3.10)
We argue inductively on j = 1, . . . , n. For j = 1, we have ωn(t, ·) = Xn(t, ·)#ω0 for all
t ∈ [0, T/n], where [0, T/n] � t �→ Xn(t, ·) is the flow associated to the time-independent
velocity field vn

0 = v0. Consequently, for all t ∈ [0, T/n] we can estimate

‖ωn(t, ·)‖L1(�) ≤ ‖ωn
0‖L1(�) = ‖ω0‖L1(�)
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and, thanks to (3.1) in Assumption 3.1,

‖ωn(t, ·)‖L∞(�) ≤ exp

(∫ t

0
‖div vn(s, ·)‖L∞(�) ds

)

‖ωn
0‖L∞(�)

≤ exp
( T

n ‖div (Kω0)‖L∞(�)

) ‖ω0‖L∞(�)

≤ exp
(

C3T
n ‖ω0‖L1(�)

)
‖ω0‖L∞(�).

Now, for j ∈ {2, . . . , n − 1}, let us assume that

‖ωn( jT/n, ·)‖L1(�) ≤ ‖ω0‖L1(�)

and
‖ωn( jT/n, ·)‖L∞(�) ≤ exp

(
jC3T

n ‖ω0‖L1(�)

)
‖ω0‖L∞(�).

Then ωn(t, ·) = Xn(t, ·)#ωn( jT/n, ·) for all t ∈ [ jT/n, ( j + 1)T/n], where [ jT/n, ( j + 1)T/n] �
t �→ Xn(t, ·) is the flow associated to the time-independent velocity field vn( jT/n, ·) =
Kωn( jT/n, ·). Consequently, we can estimate

‖ωn(t, ·)‖L1(�) ≤ ‖ωn( jT/n, 0)‖L1(�) ≤ ‖ω0‖L1(�)

and, thanks to (3.1) in Assumption 3.1,

‖ωn(t, ·)‖L∞(�) ≤ exp

(∫ t

jT/n

‖div vn(s, ·)‖L∞(�) ds

)

‖ωn( jT/n, ·)‖L∞(�)

≤ exp
(

C3T
n ‖ωn( jT/n, ·)‖L1(�)

)
‖ωn( jT/n, ·)‖L∞(�)

≤ exp
(

C3T
n ‖ω0‖L1(�)

)
exp

(
jC3T

n ‖ω0‖L1(�)

)
‖ω0‖L∞(�)

= exp
(

( j+1)C3T
n ‖ω0‖L1(�)

)
‖ω0‖L∞(�)

for all t ∈ [ jT/n, ( j + 1)T/n]. Therefore, we conclude that
‖ωn(t, ·)‖L1(�) ≤ ‖ω0‖L1(�) (3.11)

and
‖ωn(t, ·)‖L∞(�) ≤ exp

(
C3T ‖ω0‖L1(�)

) ‖ω0‖L∞(�) (3.12)

for all t ∈ [0, T ] andn ∈ N. In particular, the uniformbounds (3.11) and (3.12) in combination
with the inequalities (3.9) and (3.10) imply that (vn)n∈N is uniformly equi-bounded and
uniformly equi-continuous (uniformly in time) with modulus of continuity �. Observe that
we actually proved that ωn(t, ·) = Xn(t, ·)#ω0 for all t ∈ [0, T ] and n ∈ N, where Xn is the
flow associated to the (piecewise constant-in-time) velocity field vn . Finally, it is immediate
to check that (ωn, vn) solves

⎧
⎨

⎩

∂tω
n + div (vnωn) = 0 in (0, T ) × �,

ωn |t=0 = ω0 on �,
(3.13)

in the distributional sense for each n ∈ N.
Step 2: properties of (ωn)n∈N. We now claim that the sequence (ωn)n∈N satisfies the

hypotheses of Theorem A.1. Indeed, (A.1) follows immediately from (3.11). By (3.12), we
have
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sup
n∈N

‖ωn‖L∞([0,T ];L1(A)) ≤ |A| sup
n∈N

‖ωn‖L∞([0,T ];L∞(�))

≤ exp
(
C3T ‖ω0‖L1(�)

) ‖ω0‖L∞(�) |A|
for all A ⊂ �, from which (A.2) immediately follows. Assumption (A.3) is empty if |�| <

+∞. In order to show (A.3) when |�| = +∞, we exploit the representation ωn(t, ·) =
Xn(t, ·)#ω0. Given ε > 0, we choose r > 0 such that

∫

�\Br

|ω0| dx < ε.

Note that, for any x ∈ �, we have

sup
n∈N

sup
t∈[0,T ]

d(Xn(t, x), x) ≤ T sup
n∈N

‖vn‖L∞([0,T ]; L∞(�;R2)) � T (‖ω0‖L1(�) + ‖ω0‖L∞(�))

and thus Xn(t, Br ) ⊂ BR for all n ∈ N and t ∈ [0, T ], where R = r + CT and C > 0
is a constant depending only on ‖ω0‖L1(�) and ‖ω0‖L∞(�). Therefore Xn(t, ·)−1(�\BR) ⊂
�\Br for all n ∈ N and t ∈ [0, T ], and, consequently, we conclude that

sup
n∈N

sup
t∈[0,T ]

∫

�\BR

|ωn(t, ·)| dx ≤ sup
n∈N

sup
t∈[0,T ]

∫

Xn(t,·)−1(�\BR)

|ω0| dx ≤
∫

�\Br

|ω0| dx < ε,

proving (A.3). Finally, using (3.11), (3.12) and (3.13), for each n ∈ N and ϕ ∈ C1
c (�) the

function

t �→
∫

�

ωn(t, ·) ϕ dx ∈ AC([0, T ]; R)

satisfies
∣
∣
∣
∣

d

dt

∫

�

ωn(t, ·) ϕ dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

ωn(t, ·) vn(t, ·) · ∇ϕ dx

∣
∣
∣
∣ ≤ C ‖∇ϕ‖L∞(�;R2) (3.14)

for a.e. t ∈ [0, T ], where C > 0 is a constant depending on ‖ω0‖L1(�) and ‖ω0‖L∞(�) only,
proving the validity of (A.5).

Step 3: passage to the limit. Thanks to Step 2, we can apply Theorem A.1 to the sequence
(ωn)n∈N and find a subsequence (ωnk )k∈N such that

lim
k→+∞ sup

t∈[0,T ]

∣
∣
∣
∣

∫

�

ωnk (t, ·) ϕ dx −
∫

�

ω(t, ·) ϕ dx

∣
∣
∣
∣ = 0 (3.15)

for each ϕ ∈ L∞(�), for some

ω ∈ L∞([0, T ]; L1(�)) ∩ C([0, T ]; L1(�) − w�).

From (3.15), we see that

‖ω‖L∞([0,T ]; L1(�)) ≤ sup
n∈N

‖ωn‖L∞([0,T ]; L1(�))

and
‖ω‖L∞([0,T ]; L∞(�)) ≤ sup

n∈N
‖ωn‖L∞([0,T ]; L∞(�)),

proving (3.4) and (3.5) in virtue of (3.11) and (3.12) respectively. Now we set ṽn = Kωn

for all n ∈ N and
v = Kω ∈ L∞([0, T ]; Cb(�; R

2)). (3.16)
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We observe that, for ϕ ∈ L1(�) ∩ L∞(�), we can write
∫

�

ϕ ṽn(t, ·) dx =
∫

�

ϕ Kωn(t, ·) dx

=
∫

�

ϕ(x)

∫

�

k(x, y) ωn(t, y) dy dx

=
∫

�

ωn(t, y)

∫

�

k(x, y) ϕ(x) dx dy =
∫

�

ωn(t, ·) K̃ϕ dy

(3.17)

for a.e. t ∈ [0, T ] and n ∈ N by the Fubini Theorem and by (2.4) in Theorem 2.2, where we
have set

K̃ϕ(y) =
∫

�

k(x, y) ϕ(x) dx, x ∈ �, (3.18)

(we do not assume k to be symmetric in the two variables, but note that the right-hand sides
of the estimates (2.1) and (2.2) in Assumption 2.1 are indeed symmetric). In a similar way,
we also have ∫

�

ϕ v(t, ·) dx =
∫

�

ω(t, ·) K̃ϕ dx

for a.e. t ∈ [0, T ]. Because of (3.15), we can thus write

lim
k→+∞

∫

�

ṽnk (t, ·) ϕ dx =
∫

�

v(t, ·) ϕ dx (3.19)

for a.e. t ∈ [0, T ], whenever ϕ ∈ L1(�) ∩ L∞(�) is given. In addition, arguing exactly as
in Step 1 of the proof of Theorem A.1, given ϕ ∈ L∞(�) and ε > 0, we can find δ > 0 such
that

s, t ∈ [0, T ], |s − t | < δ �⇒ sup
n∈N

∣
∣
∣
∣

∫

�

ωn(s, ·) ϕ dx −
∫

�

ωn(t, ·) ϕ dx

∣
∣
∣
∣ < ε. (3.20)

Therefore, given ϕ ∈ L1(�) ∩ L∞(�) and ε > 0, for each t ∈ [0, T ] we can find τn(t) ∈
[0, T ] (defined according to the construction performed in Step 1) such that τn(t) ≤ t ≤
τn(t) + 1/n and vn(t, ·) = vn(τn(t), ·) = Kωn(τn(t), ·), so that
∣
∣
∣
∣

∫

�
ϕ vn(t, ·) dx −

∫

�
ϕ ṽn(t, ·) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�
ϕ vn(τn(t), ·) dx −

∫

�
ϕ ṽn(t, ·) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�
ωn(τn(t), ·) K̃ϕ dx −

∫

�
ωn(t, ·) K̃ϕ dx

∣
∣
∣
∣ < ε

for all n > 1/δ, where δ > 0 is given by (3.20) applied to K̃ϕ ∈ L∞(�). Consequently,
because of (3.19), we get that

lim
k→+∞

∫

�

vnk (t, ·) ϕ dx =
∫

�

v(t, ·) ϕ dx (3.21)

for a.e. t ∈ [0, T ], whenever ϕ ∈ L1(�) ∩ L∞(�) is given. Now, by Step 1, the sequence
(vn)n∈N is uniformly equi-bounded and uniformly equi-continuous (uniformly in time) with
modulus of continuity �. Thus, by the Arzelà–Ascoli Theorem, for a.e. t ∈ [0, T ] fixed, we
can find a further subsequence

(
v

nk j (t)
)

j∈N (possibly depending on the chosen time t) and

ṽ(t, ·) ∈ Cb(�; R
2) such that

lim
k→+∞

∥
∥v

nk j (t) (t, ·) − ṽ(t, ·)∥∥L∞
loc(�;R2)

= 0. (3.22)
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By combining (3.21) and (3.22), we get that ṽ(t, ·) = v(t, ·) and thus
lim

k→+∞
∥
∥vnk (t, ·) − v(t, ·)∥∥L∞

loc(�;R2)
= 0 (3.23)

for a.e. t ∈ [0, T ], that is, the subsequence (vnk )k∈N is strongly convergent in space inde-
pendently on the chosen time t ∈ [0, T ]. Hence, we obtain that

‖v(t, ·)‖L∞(�;R2) � ‖ω0‖L1(�) + ‖ω0‖L∞(�) (3.24)

and

|v(t, x) − v(t, y)| � (‖ω0‖L1(�) + ‖ω0‖L∞(�)) �(d(x, y)), ∀x, y ∈ �, (3.25)

for a.e. t ∈ [0, T ], proving (3.6) and (3.7) respectively. Combining (3.15) with (3.23), we
get that

lim
k→+∞

∫

�

ωnk (t, ·)vnk (t, ·) ϕ dx =
∫

�

ω(t, ·)v(t, ·) ϕ dx

for a.e. t ∈ [0, T ] and all ϕ ∈ Cc(�). Consequently, passing to the limit as k → +∞ along
the subsequence (ωnk , vnk )k∈N in the distributional formulation of (3.13), we conclude that
(ω, v) solves ⎧

⎨

⎩

∂tω + div (vω) = 0 in (0, T ) × �,

ω|t=0 = ω0 on �,

in the distributional sense, with v = Kω according to the definition made in (3.16).
Step 4: (ω, v) is Lagrangian. We finally prove that the solution (ω, v) is Lagrangian, i.e.

ω(t, ·) = X(t, ·)#ω0, where X is the flow associated to v. Note that X is well defined and
unique by the classical theory of ODEs, thanks to (3.24) and (3.25).

Since (vnk )k∈N is uniformly equi-bounded and uniformly equi-continuous (uniformly in
time), and since the modulus of continuity � satisfies the Osgood condition, the correspond-
ing sequence of flows (Xnk )k∈N is locally uniformly equi-bounded and equi-continuous
(uniformly in time) as well. Thus, again by the Arzelà–Ascoli Theorem (possibly passing to
a further subsequence, which we do not relabel), we have that

lim
k→+∞ ‖Xnk − X‖L∞([0,T ]; L∞

loc(�;�)) = 0

for some X ∈ L∞([0, T ]; L∞
loc(�;�)). Passing to the limit as k → +∞ in the expression

Xnk (t, x) = x +
∫ t

0
vnk (s, Xnk (s, x)) ds,

we get that

X(t, x) = x +
∫ t

0
v(s, X(s, x)) ds

for x ∈ � and t ∈ [0, T ], so that X must be the (unique) flow associated to v. Therefore

lim
k→+∞

∫

�

ωnk (t, ·) ϕ dx = lim
k→+∞

∫

�

ω0 ϕ(Xnk (t, ·)) dx =
∫

�

ω0 ϕ(X(t, ·)) dx

for a.e. t ∈ [0, T ] and all ϕ ∈ L∞(�) by the Dominated Convergence Theorem, and the
claimed representation of ω follows from (3.15). The proof is complete.

We are now ready to prove the first part of Theorem 1.8, which we recall in the next
statement.
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Theorem 3.4 (Existence in L1 ∩ L p
ul for p > 2) Let Assumptions 2.1 and 3.1 be in force and

let p ∈ (2,+∞). Then there exists a weak solution (ω, v) of (1.2) with vorticity in L1 ∩ L p
ul

starting from the initial datum ω0 ∈ L1(�) ∩ L p
ul(�) such that

‖ω‖L∞([0,T ]; L1(�)) ≤ ‖ω0‖L1(�), (3.26)

‖ω‖L∞([0,T ]; L p
ul (�)) ≤ C, (3.27)

‖v‖L∞([0,T ]; L∞(�;R2)) ≤ C, (3.28)

and

|v(t, x)−v(t, y)|≤max
{
1, 1

p−2

}
Cp d(x, y)1−2/p, for all x, y ∈ � and a.e. t ∈ [0, T ],

(3.29)
for all T ∈ (0,+∞), where C > 0 only depends on T , p, ‖ω0‖L1(�) and ‖ω0‖L p

ul (�).

Proof Let T ∈ (0,+∞) and ω0 ∈ L1(�) ∩ L p
ul(�) be fixed and define v0 = Kω0.

Step 1: construction of (ωn, vn)n∈N. For each n ∈ N, we let ωn
0 ∈ L1(�) ∩ L∞(�) be

the truncation ωn
0 = max {−n,min {n, ω0}}. We note that

‖ωn
0‖L1(�) ≤ ‖ω0‖L1(�), for all n ∈ N,

and that
lim

n→+∞ ‖ωn
0 − ω0‖L1(�) = 0.

Moreover, we also have that

‖ωn
0‖L p

ul (�) ≤ ‖ω0‖L p
ul (�), for all n ∈ N. (3.30)

For each n ∈ N, we let (ωn, vn)n∈N be the Lagrangian weak solution of (1.2) in L1 ∩ L∞
with initial datum ωn

0 given by Theorem 3.3. In particular, we have that

sup
n∈N

‖ωn‖L∞([0,T ]; L1(�)) ≤ ‖ω0‖L1(�). (3.31)

Step 2: uniform estimates for (ωn, vn)n∈N. Now let n ∈ N be fixed. Since vn(t, ·) =
Kωn(t, ·) for a.e. t ∈ [0, T ], by (2.4) in Theorem 2.2 and by (3.31) in Step 1 we have that

‖vn(t, ·)‖L∞(�;R2) � max
{
1, 1

p−2

} (
‖ωn(t, ·)‖L1(�) + ‖ωn(t, ·)‖L p

ul (�)

)

� max
{
1, 1

p−2

} (
‖ω0‖L1(�) + ‖ωn(t, ·)‖L p

ul (�)

)

� max
{
1, 1

p−2

}
max

{
1, ‖ω0‖L1(�)

} (
1 + ‖ωn(t, ·)‖L p

ul (�)

)
(3.32)

for a.e. t ∈ [0, T ]. We now consider the function

Rn(t) =
∫ t

0
‖vn(s, ·)‖L∞(�;R2) ds (3.33)

defined for t ∈ [0, T ]. Let Xn be the flow associated to the velocity vn . Since

d(Xn
t (x), x) ≤ Rn(t) for all x ∈ �,
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by exploiting (3.31) in Step 1 and (3.1) we can estimate

‖ωn(t, ·)‖L p
ul (�) ≤ exp

(
T
p′ ‖div vn‖L∞([0,T ]; L∞(�))

)
‖ω0‖L p

ul,1+Rn (t)(�)

≤ exp
(

T
p′ C3‖ωn‖L∞([0,T ]; L1(�))

)
‖ω0‖L p

ul,1+Rn (t)(�)

≤ exp
(

T
p′ C3‖ω0‖L1(�)

)
‖ω0‖L p

ul,1+Rn (t)(�)

(3.34)

for all t ∈ [0, T ], where p′ = p/(p − 1) ∈ (1, 2). By (1.14) we have that

‖ω0‖L p
ul,1+Rn (t)(�) � (1 + Rn(t))

2/p ‖ω0‖L p
ul (�),

and thus

‖ωn(t, ·)‖L p
ul (�) ≤ exp

(
T
p′ C3‖ω0‖L1(�)

)
(1 + Rn(t))

2/p ‖ω0‖L p
ul (�) (3.35)

for all t ∈ [0, T ]. Therefore, by combining (3.32), (3.33), (3.34) and (3.35), we get

R′
n(t) � C

(
1 + ‖ω0‖L p

ul (�) (1 + Rn(t))
2/p

)
(3.36)

for a.e. t ∈ (0, T ), where

C = T max
{
1, 1

p−2

}
max

{
1, ‖ω0‖L1(�)

}
exp

(
T
p′ C3‖ω0‖L1(�)

)
.

From inequality (3.36) we thus get that

Rn(t) ≤ C(p, T , ‖ω0‖L1(�), ‖ω0‖L p
ul (�)) (3.37)

for all t ∈ [0, T ], where the constant appearing in the right-hand side does not depend on the
choice of n ∈ N. Consequently, by (3.35) we get that

sup
n∈N

‖ωn‖L∞([0,T ]; L p
ul (�)) ≤ C(p, T , ‖ω0‖L1(�), ‖ω0‖L p

ul (�)) (3.38)

and then, using (3.32), we deduce

sup
n∈N

‖vn‖L∞([0,T ]; L∞(�;R2)) ≤ C(p, T , ‖ω0‖L1(�), ‖ω0‖L p
ul (�)). (3.39)

Step 3: properties of (ωn)n∈N. We now claim that the sequence (ωn)n∈N satisfies the
hypotheses of Theorem A.1. Indeed, property (A.1) follows from (3.31) in Step 1. Prop-
erty (A.3) can be proved as in Step 2 of the proof of Theorem 3.3, thanks to the uniform
bound (3.39) proved in Step 2. In particular, for each ε > 0 we can find R > 0 such that

sup
n∈N

sup
t∈[0,T ]

∫

�\BR

|ωn(t, ·)| dx < ε. (3.40)

Also property (A.5) can be proved as in Step 2 of the proof of Theorem 3.3, again thanks to
the uniform bound in (3.31) and (3.32) and since (ωn, vn) solves (1.2) for each n ∈ N. We
are thus left to show property (A.2). To this aim, let ε > 0 and A ⊂ �. Letting R > 0 be the
radius given by (3.40), we can write
∫

A
|ωn(t, ·)| dx =

∫

A∩BR

|ωn(t, ·)| dx +
∫

A\BR

|ωn(t, ·)| dx ≤
∫

A∩BR

|ωn(t, ·)| dx + ε

(3.41)
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for all t ∈ [0, T ] and n ∈ N. Moreover, thanks to the uniform bound (3.38) and the inequal-
ity (1.14), we can estimate

sup
n∈N

sup
t∈[0,T ]

∫

A∩BR

|ωn(t, ·)| dx ≤ |A|1/p′
sup
n∈N

‖ωn‖L∞([0,T ]; L p(BR))

≤ |A|1/p′
sup
n∈N

‖ωn‖L∞([0,T ]; L p
ul,R(�))

� R
2/p |A|1/p′

sup
n∈N

‖ωn‖L∞([0,T ]; L p
ul (�))

≤ R
2/p C(p, T , ‖ω0‖L1(�), ‖ω0‖L p

ul,1(�)) |A|1/p′
,

(3.42)

where the implicit (geometric) constant in the intermediate inequality does not depend on ε,
and as usual p′ = p/(p − 1). Property (A.2) thus follows by combining (3.41) and (3.42).

Step 4: construction of (ω, v). Thanks to Step 3, we can apply Theorem A.1 to the
sequence (ωn)n∈N and find a subsequence (ωnk )k∈N such that

lim
k→+∞ sup

t∈[0,T ]

∣
∣
∣
∣

∫

�

ωnk (t, ·) ϕ dx −
∫

�

ω(t, ·) ϕ dx

∣
∣
∣
∣ = 0 (3.43)

for all ϕ ∈ L∞(�), for some

ω ∈ L∞([0, T ]; L1(�)) ∩ C([0, T ]; L1(�) − w�).

From (3.43) it follows that

‖ω‖L∞([0,T ]; L1(�)) ≤ sup
n∈N

‖ωn‖L∞([0,T ]; L1(�)) (3.44)

and
‖ω‖L∞([0,T ]; L p

ul (�)) ≤ sup
n∈N

‖ωn‖L∞([0,T ]; L p
ul (�)), (3.45)

proving (3.26) and (3.27) in virtue of (3.31) and (3.38) respectively. Now, since

vn(t, ·) = Kωn(t, ·) for a.e. t ∈ [0, T ] and all n ∈ N, (3.46)

by (3.43) and the Fubini Theorem we get that

lim
k→+∞

∫

�

vnk (t, ·) ϕ dx = lim
k→+∞

∫

�

ωnk (t, ·) K̃ϕ dx =
∫

�

ω(t, ·) K̃ϕ dx (3.47)

for a.e. t ∈ [0, T ] and all ϕ ∈ Cc(�), where K̃ is as in (3.18). From Step 2, we already know
that the sequence (vn)n∈N is uniformly equi-bounded (uniformly in time). By recalling (3.46)
and by combining (3.31) and (3.38) with (2.5) of Theorem 2.2, we get that the sequence
(vn)n∈N is also uniformly equi-Hölder-continuous (uniformly in time). Therefore, by the
Arzelà–Ascoli Theorem, for a.e. t ∈ [0, T ] we can find a subsequence (nk j (t)) j∈N (which a
priori may depend on the chosen t) and a function v(t, ·) ∈ L∞(�; R

2) such that

lim
j→+∞

∥
∥v

nk j (t) (t, ·) − v(t, ·)∥∥L∞
loc(�;R2)

= 0. (3.48)

Consequently, for a.e. t ∈ [0, T ] we must have that

lim
j→+∞

∫

�

v
nk j (t) (t, ·) ϕ dx =

∫

�

v(t, ·) ϕ dx
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for all ϕ ∈ Cc(�). Thanks to (3.47), we thus have v(t, ·) = Kω(t, ·) for a.e. t ∈ [0, T ] and
hence, in virtue of Theorem 2.2 again and the bounds (3.44) and (3.45), we immediately get
that

‖v‖L∞([0,T ]; L∞(�;R2)) � C (3.49)

and

|v(t, x) − v(t, y)| � max
{
1, 1

p−2

}
Cp d(x, y)1−2/p, for all x, y ∈ � and a.e. t ∈ [0, T ],

(3.50)
where C = C(p, T , ‖ω0‖L1(�), ‖ω0‖L p

ul (�)) is the constant appearing in (3.39), prov-
ing (3.28) and (3.29) respectively. In addition, by combining (3.47) with (3.48), we easily
see that, in fact,

lim
k→+∞

∥
∥vnk (t, ·) − v(t, ·)∥∥L∞

loc(�;R2)
= 0 (3.51)

for a.e. t ∈ [0, T ], that is, the subsequence can be chosen independently of time. Conse-
quently, given any ϕ ∈ Cc(�), from (3.31), (3.43), and (3.51), we immediately get

lim
k→+∞

∫

�

ωnk (t, ·)vnk (t, ·) ϕ dx =
∫

�

ω(t, ·)v(t, ·) ϕ dx

for a.e. t ∈ [0, T ]. Therefore, passing to the limit as k → +∞ along the subsequence
(ωnk , vnk )k∈N in the weak formulation of (1.2), we conclude that (ω, v) solves (1.2) in the
distributional sense and the proof is complete.

Remark 3.5 Inequality (3.35) and the overall strategy developed in Step 2 of the above proof
can be seen as a Lagrangian reformulation of the Eulerian a priori estimates established
in [35, Lemma 1.4] and in [12, Proposition 3.1].

We can now conclude this section by proving the second part of Theorem 1.8, which we
recall in the next statement.

Theorem 3.6 (Existence in L1∩Y �
ul for any�) Let Assumptions 2.1 and 3.1 be in force. Then

there exists a weak solution (ω, v) of (1.2) in L1∩Y �
ul with initial datum ω0 ∈ L1(�)∩Y �

ul (�)

such that

‖ω‖L∞([0,T ]; L1(�)) ≤ ‖ω0‖L1(�), (3.52)

‖ω‖L∞([0,T ]; Y �
ul (�)) ≤ C, (3.53)

‖v‖L∞([0,T ]; L∞(�;R2)) ≤ C, (3.54)

and

|v(t, x) − v(t, y)| ≤ C ϕ�(d(x, y)), for all x, y ∈ � and a.e. t ∈ [0, T ], (3.55)

for all T ∈ (0,+∞), where C > 0 only depends on T , ‖ω0‖L1(�) and ‖ω0‖Y �
ul (�). Moreover,

if the growth function � satisfies (1.17), then (ω, v) is Lagrangian.

Proof Since ω0 ∈ L1(�) ∩ L p
ul(�) for all 2 < p < ∞, we can apply Theorem 3.4, the

only thing we have to check being the behavior of the constant C appearing in (3.27), (3.28)
and (3.29) for large values of p. A quick inspection of the proof of Theorem 3.4 immediately
shows that it is enough to control the function

p �→ C(p, T , ‖ω0‖L1(�), ‖ω0‖L p
ul (�))
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appearing in the right-side of (3.37) in Step 2 of the proof of Theorem 3.4. However, with
the same notation of the proof of Theorem 3.4, we can replace (3.30) with

‖ωn
0‖Y �

ul (�) ≤ ‖ω0‖Y �
ul (�) for all n ∈ N.

As a consequence, we can repeat the argument of Step 2 of the proof of Theorem 3.4 line by
line and replace (3.36) with

R′
n(t) � C

(
1 + ‖ω0‖Y �

ul (�) (1 + Rn(t))
)

for all t ∈ (0, T ), where now

C = max
{
1, ‖ω0‖L1(�)

}
exp

(
T C3‖ω0‖L1(�)

)
,

and the first part of the statement readily follows.
If � satisfies (1.17), then in Step 4 of the proof of Theorem 3.4 the sequence (vn)n∈N is

also uniformly equi-ϕ�-continuous (uniformly in time), i.e.

|vn(t, x) − vn(t, y)| ≤ C ϕ�(d(x, y)), for all x, y ∈ � and a.e. t ∈ [0, T ],
for all n ∈ N, where C > 0 is as above. Since ϕ� satisfies the Osgood condition (1.25), the
sequence (Xn)n∈N of the (unique) associated flows is locally uniformly equi-bounded and
equi-continuous (uniformly in time) andwe can argue as in Step 4 of the proof of Theorem3.3.
The proof is complete.

4 Uniqueness of weak solutions (Theorem 1.6)

In this section, we prove the uniqueness of Lagrangian weak solutions of the Euler equa-
tions (1.2) in L1 ∩ Y �

ul under the Osgood condition (1.25) and the concavity property of the
modulus of continuity ϕ� defined in (1.19), establishing Theorem 1.6. We recall the result
in the next statement.

Theorem 4.1 (Lagrangian uniqueness in L1 ∩ Y �
ul ) Let Assumptions 2.1 and 3.1 be in force.

If the growth function � satisfies (1.17) and the function ϕ� defined in (1.19) is concave
on [0,+∞), then there exists at most one Lagrangian weak solution (ω, v) of (1.2) with
vorticity in L1 ∩ Y �

ul starting from a given initial datum ω0 ∈ L1(�) ∩ Y �
ul (�).

Proof Let (ω, v) and (ω̃, ṽ) be two Lagrangian weak solutions of (1.2) with vorticity in
L1 ∩ Y �

ul starting from the same initial datum ω0 ∈ L1(�)∩ Y �
ul (�) and let T ∈ (0,+∞) be

fixed. We write ω(t, ·) = X(t, ·)#ω0 and ω̃(t, ·) = X̃(t, ·)#ω0 for t ∈ [0, T ], where X and
X̃ are the (unique) flows associated to v and ṽ respectively. Let η ∈ L1(�) ∩ L∞(�) such
that η(x) > 0 for all x ∈ �, let ω̄ = |ω0| + η, note that ω̄ ∈ L1(�) ∩ Y �

ul (�), and define the
finite measure μ = ω̄L 2 ∈ M(�). Now, for x ∈ �, we can estimate

d(X(t, x), X̃(t, x)) ≤
∫ t

0
|v(s, X(s, x)) − ṽ(s, X̃(s, x))| ds

≤
∫ t

0
|v(s, X(s, x)) − v(s, X̃(s, x))| ds +

∫ t

0
|v(s, X̃(s, x)) − ṽ(s, X̃(s, x))| ds

for all t ∈ [0, T ]. On the one side, by (2.10) in Theorem 2.4 and by the fact that (ω, v) is a
Lagrangian weak solution of (1.2) with vorticity in L1 ∩ Y �

ul , we have

|v(s, X(s, x)) − v(s, X̃(s, x))| � A ϕ�(d(X(s, x), X̃(s, x)))
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for a.e. s ∈ [0, T ], where A > 0 only depends on T , ‖ω‖L∞([0,T ];L1(�)), and
‖ω‖L∞([0,T ];Y �

ul (�)). On the other side, we have

|v(s, X̃(s, x)) − ṽ(s, X̃(s, x))| = |(Kω)(s, X̃(s, x)) − (K ω̃)(s, X̃(s, x))|
=
∣
∣
∣
∣

∫

�

k(X̃(s, x), y) ω(s, y) dy −
∫

�

k(X̃(s, x), y) ω̃(s, y) dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

k(X̃(s, x), X(s, y)) ω0(y) dy −
∫

�

k(X̃(s, x), X̃(s, y)) ω0(y) dy

∣
∣
∣
∣

≤
∫

�

|k(X̃(s, x), X(s, y)) − k(X̃(s, x), X̃(s, y))| |ω0(y)| dy

for a.e. s ∈ [0, T ]. Therefore, we get that
∫

�
d(X(t, x), X̃(t, x)) dμ(x) ≤

∫ t

0

∫

�
|v(s, X(s, x)) − v(s, X̃(s, x))| dμ(x) ds

+
∫ t

0

∫

�
|v(s, X̃(s, x)) − ṽ(s, X̃(s, x))| dμ(x) ds

≤ A
∫ t

0

∫

�
ϕ�(d(X(s, x), X̃(s, x))) dμ(x) ds

+
∫ t

0

∫

�

∫

�
|k(X̃(s, x), X(s, y)) − k(X̃(s, x), X̃(s, y))| |ω0(y)| dy dμ(x) ds

= A
∫ t

0

∫

�
ϕ�(d(X(s, x), X̃(s, x))) dμ(x) ds

+
∫ t

0

∫

�
|ω0(y)|

∫

�
|k(X̃s (x), Xs (y)) − k(X̃s (x), X̃s (y))| dμ(x) dy ds

for all t ∈ [0, T ]. Thanks to (2.12) in Remark 2.5 (applied to the operator K̃ defined in (3.18)),
we can thus estimate

∫

�

|k(X̃(s, x), X(s, y)) − k(X̃(s, x), X̃(s, y))| dμ(x)

=
∫

�

|k(x, X(s, y)) − k(x, X̃(s, y))| d(X̃(s, ·))#μ(x)

=
∫

�

|k(x, X(s, y)) − k(x, X̃(s, y))| |ω̄(s, x)| dx

�
(
‖ω̄(s, ·)‖L1(�) + ‖ω̄(s, ·)‖Y �

ul (�)

)
ϕ�(d(X(s, y), X̃(s, y)))

for a.e. s ∈ [0, T ] and y ∈ �, where ω̄(s, ·) = X̃(s, ·)#μ. Now, since ω̄ = |ω0| + η, we can
write ω̄(s, ·) = |ω̃(s, ·)|+ η̃(s, ·) for all s ∈ [0, T ], where η̃(s, ·) = X̃(s, ·)#η. Consequently,
recalling that η ∈ L1(�) ∩ L∞(�) by definition, we can estimate

‖η̃(t, ·)‖L∞(�) ≤ exp

(∫ t

0
‖div ṽ(s, ·)‖L∞(�) ds

)

‖η‖L∞(�)

≤ exp
(
C3‖ω̃‖L∞([0,T ]; L1(�))

) ‖η‖L∞(�)

for all t ∈ [0, T ] according to (3.1) in Assumption 3.1, and thus

‖ω̄(s, ·)‖L1(�) + ‖ω̄(s, ·)‖Y �
ul (�) ≤ B
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for all s ∈ [0, T ], where B > 0 only depends on T , ‖η‖L1(�), ‖η‖L∞(�), ‖ω̃‖L∞([0,T ]; L1(�)),
and ‖ω̃‖L∞([0,T ]; Y �

ul (�)). Therefore, recalling that |ω0| ≤ ω̄ by construction, we conclude
that

∫

�

d(X(t, x), X̃(t, x)) dμ(x)

≤ A
∫ t

0

∫

�

ϕ�(d(X(s, x), X̃(s, x))) dμ(x) ds

+
∫ t

0

∫

�

|ω0(y)|
∫

�

|k(X̃(s, x), X(s, y)) − k(X̃(s, x), X̃(s, y))| dμ(x) dy ds

≤ A
∫ t

0

∫

�

ϕ�(d(X(s, x), X̃(s, x))) dμ(x) ds

+ B
∫ t

0

∫

�

ϕ�(d(X(s, y), X̃(s, y))) |ω0(y)| dy ds

� C
∫ t

0

∫

�

ϕ�(d(X(s, x), X̃(s, x))) dμ(x) ds

for all t ∈ [0, T ], where C > 0 only depends on T , ‖η‖L1(�), ‖η‖L∞(�), ‖ω‖L∞([0,T ]; L1(�)),
‖ω‖L∞([0,T ]; Y �

ul (�)), ‖ω̃‖L∞([0,T ]; L1(�)), and ‖ω̃‖L∞([0,T ]; Y �
ul (�)). Since μ(�) < +∞ and

ϕ� is concave, by Young’s inequality we thus get that

−
∫

�

d(X(t, ·), X̃(t, ·)) dμ � C
∫ t

0
ϕ�

(

−
∫

�

d(X(s, ·), X̃(s, ·)) dμ
)

ds

for all t ∈ [0, T ]. Hence, since ϕ� satisfies the Osgood condition (1.25), we conclude that

−
∫

�

d(X(t, ·), X̃(t, ·)) dμ = 0 for all t ∈ [0, T ],

proving that X(t, x) = X̃(t, x) for all t ∈ [0, T ] and all x ∈ �. So we must have that
ω(t, ·) = ω̃(t, ·) for all t ∈ [0, T ] and, since T ∈ (0,+∞) was arbitrary, the conclusion
follows. ��

5 Appendix A: An Aubin–Lions-like Lemma

In this section, we prove a simple Aubin–Lions-like Lemma. This result is needed in Sect. 3
for the construction of the weak solutions of the Euler equations (1.2). The proof exploits a
combination of the Dunford–Pettis Theorem and the Arzelà–Ascoli Compactness Theorem
together with some standard approximation arguments.

We were not able to find the result below in this precise form in the literature, so we
prove it here from scratch for the reader’s convenience. We underline that Theorem A.1 just
assumes weak compactness in space, while one usually deals with strong compactness in
space. For a result very similar to Theorem A.1, see [18, Corollary 2.1] (we thank Stefano
Spirito for pointing this reference to us).

Theorem A.1 Let � ⊂ R
N be an open set and T ∈ (0,+∞). Let ( f n)n∈N ⊂

L∞([0, T ]; L1(�)) be a bounded sequence which is equi-integrable in space uniformly in
time, that is,
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sup
n∈N

‖ f n‖L∞([0,T ]; L1(�)) < +∞, (A.1)

∀ε > 0 ∃δ > 0 : A ⊂ �, |A| < δ �⇒ sup
n∈N

‖ f n‖L∞([0,T ]; L1(A)) < ε (A.2)

and
∀ε > 0 ∃�ε ⊂ � with |�ε| < +∞ : sup

n∈N
‖ f n‖L∞([0,T ]; L1(�\�ε))

< ε. (A.3)

Assume that, for each ϕ ∈ C∞
c (�), the functions Fn[ϕ] : [0, T ] → R, given by

Fn[ϕ](t) =
∫

�

f n(t, ·) ϕ dx, t ∈ [0, T ], (A.4)

are uniformly equi-continuous on [0, T ], that is,

∀ε > 0 ∃δ > 0 : s, t ∈ [0, T ], |s − t | < δ �⇒ sup
n∈N

|Fn[ϕ](s) − Fn[ϕ](t)| < ε. (A.5)

Then there exist a subsequence ( f nk )k∈N and a function

f ∈ L∞([0, T ]; L1(�)) ∩ C([0, T ]; L1(�) − w�) (A.6)

that is,

t �→
∫

�

f (t, ·) ϕ dx ∈ C([0, T ]; R) for every ϕ ∈ L∞(�),

such that

lim
k→+∞ sup

t∈[0,T ]

∣
∣
∣
∣

∫

�

f nk (t, ·) ϕ dx −
∫

�

f (t, ·) ϕ dx

∣
∣
∣
∣ = 0 (A.7)

for all ϕ ∈ L∞(�).

Proof We divide the proof in four steps.
Step 1: equi-continuity testing against L∞(�). We claim that (A.5) actually holds for

each ϕ ∈ L∞(�). To prove this statement, we distinguish two cases.
Case 1. Let us prove (A.5) for any ϕ ∈ Cc(�) at first. Let ε > 0 be fixed. We can find

ψ ∈ C∞
c (�) such that ‖ψ − ϕ‖L∞(�) < ε. Now let δ > 0 be given by (A.5) when applied

to ψ . Then, for all s, t ∈ [0, T ] such that |s − t | < δ, we have

|Fn[ϕ](s) − Fn[ϕ](t)| ≤ |Fn[ψ](s)−Fn[ψ](t)|+2‖ψ − ϕ‖L∞(�) sup
n∈N

‖ f n‖L∞([0,T ];L1(�))

< ε

(

1 + 2 sup
n∈N

‖ f n‖L∞([0,T ];L1(�))

)

for all n ∈ N, proving the validity of (A.5) for ϕ ∈ Cc(�).
Case 2. Let us prove (A.5) for any ϕ ∈ L∞(�). Let ε > 0 be fixed and let �ε ⊂ � be

the set given by (A.3). Without loss of generality, we can assume that �ε is a non-empty
open set. Let δ′ > 0 be given by (A.2). By the Lusin Theorem, we can find ψ ∈ Cc(�) with
suppψ ⊂ �ε such that ‖ψ‖L∞(�) ≤ ‖ϕ‖L∞(�) and the set

�̃ε = {x ∈ �ε : ϕ(x) = ψ(x)} ⊂ �ε

satisfies |�ε \ �̃ε| < δ′. Finally, let δ > 0 be given by (A.5) when applied to ψ . Then, for
all s, t ∈ [0, T ] such that |s − t | < δ, we have
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|Fn[ϕ](s) − Fn[ϕ](t)| ≤ |Fn[ψ](s) − Fn[ψ](t)| + 8‖ϕ‖L∞(�) sup
n∈N

‖ f n‖L∞([0,T ];L1(�\�ε))

+ 8‖ϕ‖L∞(�) sup
n∈N

‖ f n‖L∞([0,T ];L1(�ε\�̃ε))

< ε

(

1 + 16‖ϕ‖L∞(�) sup
n∈N

‖ f n‖L∞([0,T ];L1(�\�ε))

)

for all n ∈ N, proving the validity of (A.5) for ϕ ∈ L∞(�).
Step 2: definition of f on a countable dense set T ⊂ [0, T ]. By (A.1), (A.2) and (A.3),

we can find a countable dense set T ⊂ [0, T ] such that, for every given t ∈ T , the sequence
( f n(t, ·))n∈N is bounded in L1(�) and equi-integrable on �. Therefore, by the Dunford–
Pettis Theorem and a diagonal argument, we can find a subsequence ( f nk )k∈N and a function
f (t, ·) ∈ L1(�), for each t ∈ T , such that

lim
k→+∞

∫

�

f nk (t, ·) ϕ dx =
∫

�

f (t, ·) ϕ dx (A.8)

for all ϕ ∈ L∞(�) and t ∈ T . We emphasize that the function f (t, ·) ∈ L1(�) depends
on the chosen subsequence (which is fixed from now on) and is defined for t ∈ T only.
Moreover, we have that

( f (t, ·))t∈T is bounded in L1(�) and equi-integrable on � uniformly in t ∈ T (A.9)

thanks to the semicontinuity of the L1-norm under weak� convergence. Now, by Step 1, for
each given ϕ ∈ L∞(�), the sequence of functions (Fnk [ϕ])k∈N is uniformly equi-continuous
on [0, T ] and, thanks to (A.8), it converges to the function

T � t �→
∫

�

f (t, ·) ϕ dx (A.10)

for each t ∈ T . Therefore, we must have that, for each given ϕ ∈ L∞(�), the function
in (A.10) is the restriction to T of a continuous function F[ϕ] ∈ C([0, T ]; R).

Step 3: proof of (A.6). We now extend the function T � t �→ f (t, ·) ∈ L1(�) given in
Step 2 to a function f ∈ C([0, T ]; L1(�) − w�). Let t ∈ [0, T ] \ T be given. We claim that

lim
s→t, s∈T f (s, ·) exists in L1(�) − w�. (A.11)

In virtue of (A.9) and the Dunford–Pettis Theorem, we just need to prove that, for any two
sequences (tm)m∈N ⊂ T and (t̃m)m∈N ⊂ T such that tm, t̃m → t as m → +∞,

f (tm, ·) → g, f (t̃m, ·) → g̃ in L1(�) − w� as m → +∞ �⇒ g = g̃ in L1(�).

Indeed, if g 	= g̃ in L1(�) by contradiction, then we can find ϕ ∈ L∞(�) such that
∫

�

g ϕ dx 	=
∫

�

g̃ ϕ dx .

However, since f (tm, ·) → g and f (t̃m, ·) → g̃ in L1(�) − w� as m → +∞, this implies
that

lim
m→+∞

∣
∣
∣
∣

∫

�

f (tm, ·) ϕ dx −
∫

�

f (t̃m, ·) ϕ dx

∣
∣
∣
∣ > 0,

which contradicts the continuity onT of the function in (A.10). This proves the claimed (A.11)
and thus the function f ∈ C([0, T ]; L1(�) − w�) is well defined, meaning that, for each
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ϕ ∈ L∞(�), we have

t �→
∫

�

f (t, ·) ϕ dx ∈ C([0, T ]; R).

As a consequence, the function f : [0, T ] → L1(�) is weakly measurable and thus, by
the Pettis Theorem, is strongly measurable (for precise definitions and statements, see [25,
Chapter 8] and [32, Section 1.9.1]), so that f ∈ L∞([0, T ]; L1(�)), with

‖ f ‖L∞([0,T ]; L1(�)) ≤ sup
n∈N

‖ fn‖L∞([0,T ]; L1(�)),

and the function f : [0, T ] × � → [−∞,+∞] is measurable. This concludes the proof
of (A.6).

Step 4: proof of (A.7).Wenowconclude the proof by establishing the convergence in (A.7).
Let ϕ ∈ L∞(�) and let ε > 0 be fixed. By Step 1, we can find δ > 0 such that

sup
k∈N

∣
∣
∣
∣

∫

�

f nk (t, ·) ϕ dx −
∫

�

f nk (s, ·) ϕ dx

∣
∣
∣
∣ <

ε

3

for all s, t ∈ [0, T ] such that |s − t | < δ. Moreover, since f ∈ C([0, T ]; L1(�) − w�) by
Step 3, we can choose the above δ > 0 in such a way that, in addition,

∣
∣
∣
∣

∫

�

f (s, ·) ϕ dx −
∫

�

f (t, ·) ϕ dx

∣
∣
∣
∣ <

ε

3

for all s, t ∈ [0, T ] such that |s − t | < δ. Now, since [0, T ] is a compact interval, we can
find N ∈ N and s1, . . . , sN ∈ T such that

[0, T ] =
N⋃

i=1

{t ∈ [0, T ] : |t − si | < δ} .

Thanks to (A.8) in Step 2, for each i = 1, . . . , N , we can choose ki ∈ N such that
∣
∣
∣
∣

∫

�

f nk (si , ·) ϕ dx −
∫

�

f (si , ·) ϕ dx

∣
∣
∣
∣ <

ε

3

for all k ≥ ki . Hence, let us set k̄ = max {ki : i = 1, . . . , N } and note that k̄ depends on ε

(and ϕ) only. Now, given any t ∈ [0, T ], we can find i ∈ {1, . . . , N } such that |t − si | < δ

and
∣
∣
∣
∣

∫

�

f nk (t, ·) ϕ dx −
∫

�

f (t, ·) ϕ dx

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

�

f nk (t, ·) ϕ dx −
∫

�

f nk (si , ·) ϕ dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

�

f nk (si , ·) ϕ dx −
∫

�

f (si , ·) ϕ dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

f (si , ·) ϕ dx −
∫

�

f (t, ·) ϕ dx

∣
∣
∣
∣ < ε

for all k ≥ k̄, proving the validity of (A.7). The proof is complete.
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