
Mathematics Area - PhD course in
Geometry and Mathematical Physics

Algebraic Structures in
Noncommutative Geometry:
A Study of Hopf Algebras,

Hopf-Galois Extensions, and
Hopf Algebroids

Candidate:
Jacopo
Zanchettin

Advisor:
Prof. Dr. L. Dabrowski

Prof. Dr. G. Landi

Academic Year 2022-23



Preface

This thesis is the result of the work I have done during my doctoral studies at
SISSA under the supervision of Prof. Dabrowski and Landi. Its main references
are

• [14] L. Dabrowski, G. Landi, J.Zanchettin, ”Hopf algebroids and twists
for quantum projective spaces”, (submitted to Journal of Algebra).

• [45] J.Zanchettin, ”The Chern-Weil map for deformed Hopf-Galois ex-
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Introduction

The foundation of noncommutative geometry is the duality between spaces and
the algebra of functions over them. There are different incarnations of this
idea, probably the most famous are: the Gelfand duality - of which one can
find a detailed dissertation in [35] - between commutative C∗-algebras and
Hausdorff spaces, the Serre-Swan theorem [19] that says that a module over
a commutative algebra is finitely generated and projective if and only if is the
module of sections of a vector bundle, and the Connes theorem [11] that relates
spin manifolds with spectral triples. The leitmotiv is always that we have a
geometric object on one side and a corresponding algebraic on the other

In this thesis, we deal with the following algebraic structures:

• Hopf algebras which are dual to groups. One can prove that every com-
mutative Hopf algebra over a field arises from a group scheme, and con-
versely, the algebra of regular function on an algebraic group is a Hopf
algebra [42] (the same type of result holds in a more analytical fashion
considering compact Hausdorff groups and representative functions).

• Hopf-Galois extensions which are dual to principal bundles. Initially,
a noncommutative theory of principal bundles was developed in [6] un-
der the name of quantum principal bundles, and some years later [20] it
was proven that the definition is equivalent to Hopf-Galois extensions that
were originally introduced as a generalization of Galois field extensions to
noncommutative rings [30].

• Hopf algebroids. They are dual objects to groupoids in the same spirit
that Hopf algebras are dual to groups. Roughly speaking, a Hopf algebroid
is a Hopf algebra where the ground field is promoted to a (noncommu-
tative algebra). We mention that there are several definitions for Hopf
algebroids and not all of them are equivalent. In this work, we mainly
focus on two of them and we recall them in the second chapter.

In the first chapter of this thesis, we recall the basic definition of Hopf al-
gebras, their comodules, Hopf-Galois extensions, and deformation theory via
cocycles. Most of the material therein is already known except for the proof
Theorem 1.2.13 and 1.2.15. They were both proven in [1], but without writing
down explicitly the strong connection of the extensions.

The second chapter is based on the paper [14] which I wrote with my ad-
visors. Contrary to what happens to a Hopf algebra, an antipode on a Hopf
algebroid might not be unique. It is then interesting to characterize all the pos-
sible antipodes on a given bialgebroid. To do this we recall the notion of twist
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[4], which is a particular type of character. After improving the proof of Theo-
rem 2.1.4 by showing that one of the original hypotheses was not needed, we
specialize in the case of the Ehresmann-Schauenburg (ES) Hopf algebroid asso-
ciated with a Hopf-Galois extension. We give detailed proof that the flip is an
antipode whenever the Hopf algebra of the extension is commutative and even-
tually, we characterize the group of twists in proposition 2.2.7. In the last part of
the chapter, we apply the theory to the U(1)-extension A(CPn−1

q ) ⊆ A(S2n−1
q ).

In the third chapter, we study the Chern-Weil theory for deformed Hopf-
Galois extensions. We refer to the theory developed in [23] that was foreshad-
owed in [7]. We prove that if the cocycle deformation comes from the structure
Hopf algebra of the extension, the Chern-Weil map does not change 3.2.2 while
if the cocycle comes from an external symmetry we get a different map than
the undeformed 3.2.3. In the last section of the chapter, we recall the concept
of pullback for Hopf-Galois extensions and we prove that the noncommutative
Chern-Weil map satisfies the naturality condition of its classical counterpart.
This is done in proposition 3.3.4, and in the discussion that follows it, we give
the result also for cocycle deformations. The material of this chapter composes
a paper [45].

The last chapter is essentially an outline as it is based on an ongoing collabo-
ration with A. Chirvasitu and M. Tobolski. We collect some partial results about
a Morita theory for noncommutative Hopf algebroid. We said that Hopf alge-
broids are dual to groupoids, and for the latter, the Morita theory is known and
has different characterizations [33]. For Hopf algebroid, so far only the Morita
theory in the commutative case has been developed [16]. In general, the idea
of Morita’s theory is that two objects are equivalent if they have the same rep-
resentation theory. In the current situation, the representation theory would be
the category of comodules of the Hopf algebroids. In [16] is shown that two
Hopf algebroids have (monoidal) equivalent comodules categories if and only
if there exists an algebra equipped with left and right principal coaction of the
algebroids (bibundle). The latter notion does not need any modification in the
noncommutative case, so we use it as a temporary notion of Morita equivalence.
We want to stress that this is an abuse of language since for noncommutative
Hopf algebroid, admitting a bibundle does not define an equivalence relation.
We prove that the principal space algebra of a Hopf-Galois extension is a bi-
bundle of the ES algebroid and the structure Hopf algebra 4.2.2. Moreover, we
prove that if a bialgebroid admits a bibudle with a Hopf algebra then is isomor-
phic to the ES algebroid 4.2.7. This generalizes the classical result of the Morita
equivalence between the gauge groupoid of a principal bundle and the structure
group [33]. We close the chapter with a conjecture, we think that we can prove
the same result starting from an equivalence of the category of comodules 4.2.9.





Chapter 1

Background material

In this first chapter, we recall the concepts and known results needed in this
thesis. We work over a field K (that can be R or C), but most of the structure
we introduce can be defined over a ring. Throughout the thesis, When we write
vector space we mean over K, idV : V −→ V is the identity map on V , and we
denote ⊗ := ⊗K.

1.1 Hopf algebras

1.1.1 Bialgebras

For a more extensive treatment of the subject, we refer to the [8, 32, 34], which
we also use as main sources.

Definition 1.1.1 A unital associative algebra is the datum of a vector space A
together with the maps mA : A ⊗ A −→ A, µA : K −→ A called multiplication
and unit, such that the following diagrams commute

A⊗A⊗A A⊗A

A⊗A A

mA⊗idA

idA ⊗mA mA

mA

A

A⊗A A⊗A

A⊗K ≃ A ≃ K⊗A

mA mA

µA⊗idid⊗µA

idA

We refer to such an object just as algebra and if there is no risk of confusion we
denote the multiplication by juxtaposition, i.e. mA(a ⊗ a′) := aa′. Moreover,
the unit of the algebra is denoted by 1A := µA(1K). ♦

In this thesis, every algebra is taken to be unital. Thus whenever we say
algebra, we mean it has the unit.

Definition 1.1.2 Given two algebras A and B, a linear map f : A −→ B is said

7
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to be an algebra morphism if the following diagrams commute

A B

A⊗A B ⊗B

f

mA

f⊗f

mB

K A

B

µA

µB
f

The corresponding equations read as f(aa′) = f(a)f(a′) and f(1A) = 1B for
any a, a′ ∈ A. ♦

If we take the diagrams above and reverse the direction of the arrows we
get the dual notion of an algebra. In this work, we only consider unital algebra
morphisms.

Definition 1.1.3 A counital coassociative coalgebra is the datum of a vector
space C together with maps ∆C : C ⊗C −→ C, ϵC : C −→ K called multiplica-
tion and counit, such that the following diagrams commute

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆C

∆C ∆C⊗idC

idC ⊗∆C

C

C ⊗ C C ⊗ C

C ⊗K ≃ C ≃ K⊗ C

idC

∆C ∆C

idC ⊗ϵC ϵC⊗id

We refer to this structure just as coalgebra. We adopt the so-called Sweedler
notation for the multiplication, for all c ∈ C

∆C(c) := c(1) ⊗ c(2).

In this way, we read the commutative diagrams as

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2) := c(1) ⊗ c(2) ⊗ c(3), ϵ(c(1))c(2) = c = c(1)ϵ(c(2)). ♦

The notion of morphism here is given by the following

Definition 1.1.4 Given two coalgebras C and D, a linear map g : C −→ D is
said to be a coalgebra morphism if the following diagrams commute

C D

C ⊗ C D ⊗D

g

∆C ∆D

g⊗g

C D

K

g

ϵC
ϵD

In Sweedler notation, these are given by

g(c)(1) ⊗ g(c)(2) = g(c(1))⊗ g(c(2))

ϵC = ϵD ◦ g. ♦

Combining the definition of algebra and coalgebra one gets the following
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Definition 1.1.5 A bialgebra is the datum of (B,mB , µB ,∆B , ϵB) where B is
a vector space, (B,mB , µB) is an algebra, (B,∆B , ϵB) is a coalgebra, and the
comultiplication and counit are algebra morphisms. A bialgebra morphism is
a linear map f : B −→ C that is both an algebra and coalgebra morphism. ♦

Example 1.1.6 1. Consider the space O(Mn(K)) := K[Xij |1 ≤ i, j ≤ n]
of polynomial functions of n × n matrices with coefficients in K. It is a
polynomial algebra and it has a coalgebra structure given by

∆(Xij) =

n∑
k=1

Xik ⊗Xkj , ϵ(Xij) = δij , ∀i, j = 1, . . . , n

which is compatible with the algebra structure. Then O(Mn(K)) is a bial-
gebra.

2. Consider the quotient algebra B := K⟨x, y⟩/(xy − qyx) with q ∈ K∗. It is
a bialgebra that has the coalgebra structure given by

∆(x) = x⊗ x, ∆(y) = y ⊗ 1 + x⊗ y, ϵ(x) = 1, ϵ(y) = 0.

This bialgebra is known in the literature as the quantum plane. ♦

Given two vector spaces V and W , we denote by flipV.W : V ⊗W −→W ⊗V
the flip map which is defined by

flip(v ⊗ w) = w ⊗ v

For an algebra A with multiplication mA we defined a new algebra with the
same underlying vector space and multiplication

mop
A := mA ◦ flip,

this means that mop
A (a ⊗ b) = ba for any a, b ∈ A. This algebra is called the

opposite algebra of A and is denoted by Aop. The unit of Aop is the same as A.
An algebra is said to be commutative when mA = mop

A .
Similarly, we can associate to any coalgebra C another coalgebra Ccop by

using the flip, i.e.
∆cop
C := flip ◦∆C ,

which reads ∆cop
C (c) = c(2) ⊗ c(1). This coalgebra is called the copposite coalge-

bra of C and has the same counit of C. The latter is said to be cocommutative
if ∆cop

C = ∆C .
If we combine the two constructions we have that there is a bialgebra with

flipped multiplication and multiplication associated with any bialgebraB, namely
Bop,cop. The compatibility condition between mop and ∆cop are equivalent to
the ones between m and ∆.

1.1.2 The convolution algebra of a bialgebra and the antipode

Given a bialgebra B and the linear space EndK(B) = HomK(B,B) of endomor-
phism of B. We use the algebra and coalgebra structure to define a multiplica-
tion on EndK(B) for any ϕ, ψ ∈ EndK(B) and b ∈ B

(ϕ ∗ ψ)(b) = ϕ(b(1))ψ(b(2)). (1.1-1)
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The associativity of this multiplication follows from the associativity and coas-
sociativity of the operations on B. The composition µ⊗ϵ gives an element of B∗

and by the definitions of unit and counit one finds that ϕ∗(µ◦ϵ) = ϕ = (µ◦ϵ)∗ϕ.
Then we have the following

Definition 1.1.7 The triple (EndK(B), ∗, µ◦ϵ) is called the convolution algebra
of B. ♦

The identity morphism idB is an element of the convolution algebra EndK(B).
Being the latter an unitial algebra, it makes to ask whether idB is invertible with
respect to (1.1-1). The inverse of the identity morphism goes under the name
of

Definition 1.1.8 The antipode of a bialgebra B is the convolution inverse of
the identity morphism. By definition, it is the map S : B −→ B that makes the
following diagram commute

B ⊗B B ⊗B

B B

B ⊗B B ⊗B

S⊗idB

m

µ◦ϵ

∆

∆
idB ⊗S

m

A bialgebra (B,m, µ,∆, ϵ) having the antipode is called a Hopf algebra. ♦

Remark 1.1.9 1. Some bialgebras cannot admit a Hopf algebra structure,
i.e. it does not exist the antipode. For instance on the bialgebraO(Mn(K))
of 1.3.4 there is no antipode. Therefore, being a Hopf algebra is a property
of bialgebras rather than an additional structure.

2. Since S is the inverse of idH in an algebra, it is always unique. We will
see later that this is no longer the case for more general structures. ♦

In Sweedler notation the defining equations of the antipode are

S(b(1))b(2) = ϵ(b), b(1)S(b(2)) = ϵ(b), (1.1-2)

with b ∈ B. Moreover, one can prove that the antipode satisfies the following
equations, i.e.

S(bc) = S(c)S(b), S(b)(1) ⊗ S(b)(2) = S(b(2))⊗ S(b(1)) (1.1-3)

S(1B) = 1B , ϵ ◦ S = ϵ, (1.1-4)

∀b, c ∈ B. Looking at these equations we can deduce that the antipode is a
bialgebra morphism between B and Bop,cop.

Example 1.1.10 1. Let G be a group, the space K[G] generated by finite
linear combination of elements of G is an algebra. It also has a coalgebra
structure given by the linear extension of the maps

∆(g) = g ⊗ g, ϵ(g) = 1.
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Moreover, the linear extension of the inverse in G is an antipode

S(g) = g−1,

then K[G] is a Hopf algebra. We refer to it as the group algebra of G.

2. Let now G be an algebraic group group and O(G) the space of K valued
regular functions on G. Again this is an algebra with point-wise sum and
multiplication. The coalgebra structure dualizes the group structure

∆(f)(g, h) = f(gh), ϵ(f) = f(eG),

∀g, h ∈ G and eG is the neutral element of G. The dualization of the
inverse operation gives the antipode

S(f)(g) = f(g−1).

3. As we said, the bialgebra O(Mn(K)) of 1.1.6 is not a Hopf algebra. Nev-
ertheless, if one considers for instance the ideal (det(X)−1), one has that
O(SLn(K)) = O(Mn(K))/(det(X) − 1) is a Hopf algebra. Other Hopf al-
gebras can be constructed in the same way starting from O(Mn(K)) (these
are called quantum subgroups, for detail look [27]). ♦

Definition 1.1.11 Given two Hopf algebrasH andK, a linear map f : H −→ K
is a Hopf morphism if it is a bialgebra morphism and f ◦ SH = SK ◦ f . ♦

The antipode might be (composition) invertible, in this case, we say that
H is a Hopf algebra with a bijective antipode. About the invertibility of the
antipode we have the following result

Proposition 1.1.12 ([34]) H is a Hopf algebra with bijective antipode if and
only if Hcop is a Hopf algebra with antipode S̄. One has S̄ = S−1 and moreover, if
H is commutative or cocommutative S2 = idH .

Throughout the work, we consider only Hopf algebras with bijective antipode
unless the contrary is stated.

1.1.3 Comodule algebras

Here we briefly recall what is the (co)representation theory for a Hopf algebra.
All the definitions and results we report can be generalized to coalgebras, but
for our purposes, we just deal with Hopf algebras.

Definition 1.1.13 A vector space V is said to be a right H-comodule if there
exists a linear map ρ : V −→ V ⊗H such that the following equations hold

V V ⊗H

V ⊗H V ⊗H ⊗H

ρ

ρ idV ⊗∆

ρ⊗idH

V V ⊗H

V

ρ

idV

idV ⊗ϵ

The map ρV is called the coaction of H on V . ♦
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For any v ∈ V , we adopt the Sweedler notation for it given by

ρ(v) = v(0) ⊗ v(1).

Then the defining equations read as

v(0)(0) ⊗ v(0)(1) ⊗ v(1) = v(0) ⊗ v(1)(1) ⊗ v(1)(2) := v(0) ⊗ v(1) ⊗ v(2), ϵ(v(1))v(0) = v.

For every right H-comodule one has the vector sub-space of coaction invariant
elements

V coH := {v ∈ V |ρ(v) = v ⊗ 1H} (1.1-5)

Definition 1.1.14 Let (V, ρV ) and (W,ρW ) be right H-comodules, a linear map
f : V →W is said to be right H-colinear or a right comodule morphism if

V W

V ⊗H W ⊗H

f

ρV ρW

f⊗idH

that in Sweedler notation reads as

f(v)(0) ⊗ f(v)(1) = f(v(0))⊗ v(1), ∀v ∈ V ♦

The definition of left H-comodule and left H-colinear morphism are similar,
in this situation one has that coaction is a map λ : V −→ H ⊗ V , for which we
adopt the Sweedler notation λ(v) = v(−1) ⊗ v(0). Right and left H-comodules
with H-colinear maps form the categories that we denote by MH and MH .
These are monoidal (or tensor) categories [17], meaning that the tensor product
V ⊗W with V,W ∈ MH is a right H-comodule. The coaction is the diagonal
one.

ρ⊗ : V ⊗W −→ V ⊗W ⊗H, v ⊗ w 7−→ v(0) ⊗ w(0) ⊗ v(1)w(1). (1.1-6)

Example 1.1.15 1. Any Hopf algebra (H,∆) is a right H-comodule with the
coaction ρ = ∆. In this case one has HcoH = K : from h(1)⊗h(2) = h⊗1H
by applying idH ⊗ ϵ on both sides idH ⊗ ϵ we get h = ϵ(h).

2. Any Hopf algebra H can be endowed with another right H-coaction,
namely the adjoint coaction which is given by the formula

Ad : H −→ H ⊗H, h 7−→ h(2) ⊗ S(h(1))h(3) (1.1-7)

We use the notation H = (H,Ad) to distinguished from (H,∆) as comod-
ule.

3. Referring to the Hopf algebra K[G] of 1.1.10, one can prove that the K[G]-
comodules are only vector spaces that decompose into a direct sum V =
⊕g∈GVg such that ρVg (vg) = vg ⊗ g for vg ∈ VG and g ∈ G. In this case,
the space of coaction invariant elements coincides with VeG . ♦

As we already said, the definition of comodule can be also given for coal-
gebra, in fact, neither the product nor antipode are involved in the definition.
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However, thanks to the antipode one can turn a right H-comodule into a left
H-comodule in the following way: if ρ is the right coaction of H on V the map

λ(v) = S−1(v(1))⊗ v(0), (1.1-8)

is a left H-coaction. Moreover, one can use S to go back to the right coaction.
In this way, the antipode induces an equivalence of categories MH ≃ MH .

Definition 1.1.16 A right H-comodule algebra is the datum of an algebra A
and a right coation ρA such that the latter is an algebra morphism, i.e.

ρA(ab) = a(0)b(0) ⊗ a(1)b(1), ∀a, b ∈ A. ♦

Example 1.1.17 1. Any Hopf algebra is a right H-comodule algebra with
ρ = ∆.

2. The right K[G]-comodule algebras are exactly the algebras A = ⊕g∈GAg
such that AgAh ⊆ Agh for every g, h ∈ G.

3. Let X be an affine algebraic variety and G an algebraic linear group. If
X is a G-space, i.e. there is a regular map X × G −→ X, (x, g) 7−→ xg
satisfying (xg)h = xgh and xeG = x for all x ∈ X and g, h ∈ G, then the
algebra of regular functions O(X) is a right O(G)-comodule algebra with
coaction given by

ρ(f)(x, g) = f(xg), f ∈ O(X).

In this case one has that O(X)coO(G) ≃ O(X/G). ♦

Given a right H-comodule algebra A. The space of coaction invariant ele-
ment AcoH is a subalgebra of A. We denote the category of right H-comodule
algebras by AH . The functor induced by the antipode MH −→ MH in general
does not extend to comodule algebras.

Definition 1.1.18 Let H and K be Hopf algebras, vector space V is said to be a
K-H-bicomodule if the left K-coaction λV and right H-coaction ρV make the
following diagram commute

V V ⊗H

K ⊗ V K ⊗ V ⊗H

ρV

λV λV ⊗idH

idK ⊗ρV

Similarly, we say that A is a K-H-bicomodule algebra if it is a bicomodule and
both coactions are algebra morphisms. ♦

Consider now a (K,H)-bicomodule V and a (H,L)-bicomodule W , we can
define the vector space

V □H W := {v ⊗ w ∈ V ⊗W |ρV (v)⊗ w = v ⊗ λW (w)}, (1.1-9)

where ρV is the right H-coaction on V and λW the left H-coaction on W . We
refer to this space as the cotensor product of V and W over H.
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1.1.4 Deformation via 2-cocycle

In this subsection, we review the concept of 2-cocycle which is dual to the Drin-
feld twist [32] and the deformation theory of Hopf algebras and comodule al-
gebras.

Recall that for every Hopf algebra H the tensor product H⊗H is a bialgebra
with component-wise multiplication and unit, and comultiplication ∆⊗(h⊗k) =
h(1) ⊗ k(1) ⊗ h(2) ⊗ k(2) and counit ϵ⊗(h⊗ k) = ϵ(h)ϵ(k).

Definition 1.1.19 Let H be a Hopf algebra, a 2-cocycle is linear map γ : H ⊗
H −→ K such that

1. It is convolution invertible, i,e, there exists γ−1 : H ⊗H −→ K such that
∀h, k ∈ H

γ(h(1)⊗k(1))γ−1(h(2)⊗k(2)) = ϵ(h)ϵ(k) = γ−1(h(1)⊗k(1))γ(h(2)⊗k(2)) = ϵ(h)ϵ(k)

2. Satisfies the cocycle condition ∀h, k, l ∈ H

γ(h(1) ⊗ k(1))γ(h(2)k(2) ⊗ l) = γ(k(1) ⊗ l(1))γ(h⊗ k(2)l(2))

3. It is counital γ(h⊗ 1H) = γ(1H ⊗ h) = ϵ(h) for every h ∈ H. ♦

With an abuse of notation, we write γ(h, k) instead of γ(h⊗ k).

Example 1.1.20 For the Hopf algebraO(G) of regular functions on an algebraic
group, the 2-cocycles are indeed the group 2-cocycles Z2(G) i.e. the functions
f : O(G)⊗O(G) ≃ O(G×G) −→ K such that

f(g, h)f(gh, k) = f(h, k)f(g, hk), f(g, eG) = f(eG, g) = 1,

for all g, h, k ∈ G. Invertibility in this case means that f is nowhere zero on
G×G. ♦

Proposition 1.1.21 ([32, 1]) Given a 2-cocycle γ : H ⊗ H −→ K of a Hopf
algebra H, the equation

h ·γ k := γ(h(1), k(1))h(2)k(2)γ
−1(h(3), k(3)), h, k ∈ H

defines a new associative multiplication on H, the resulting algebra is denoted by
Hγ . The latter is a Hopf algebra with the comultiplication and counit inherited
from H and antipode

Sγ(h) = uγ(h(1))S(h(2))u
−1
γ (h(3)), h ∈ Hγ ,

where uγ : H −→ K is the convolution invertible map given by uγ(h) = γ(h(1), S(h(2))).
Moreover, if S is bijective then also Sγ is, being its inverse given by

S−1
γ (h) = vγ(h(1))S

−1(h(2))v
−1
γ (h(3)), h ∈ Hγ

where vγ : H −→ K mapping h 7−→ γ(h(2), S
−1(h(1))) is convolution invertible.
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Let now V be a right H-comodule. Since the deformation of Hγ of H by
a 2-cocycle does not involve the coalgebra structure, we have that V is a right
Hγ-comodule. The coaction is unchanged. Taking another rightH-comoduleW
with corresponding right Hγ-comodule, we have the tensor product Vγ ⊗γ Wγ

is the vector space V ⊗W endowed with the diagonal right Hγ-coaction

ρ⊗
γ

: Vγ ⊗γ Wγ −→ Vγ ⊗γ Wγ ⊗Hγ , v ⊗γ w 7−→ v(0) ⊗γ w(0) ⊗ v(1) ·γ w(1).
(1.1-10)

So we have just seen that the 2-cocycle γ induces a functor from MH , the cat-
egory of right H-comodules, to MHγ the category of right Hγ-comodules, and
that the latter is also monoidal. Moreover, we have the following

Theorem 1.1.22 ([1]) The functor MH −→ MHγ mapping V 7−→ Vγ is an
equivalence of (monoidal) categories, being the linear map

αV,W : Vγ ⊗γ Wγ −→ (V ⊗W )γ , v ⊗γ w 7−→ v(0) ⊗ w(0)γ
−1(v(1), w(1))

a right Hγ-comodule isomorphism with inverse

α−1
V,W : (V ⊗W )γ −→ Vγ ⊗γ Wγ , v ⊗ w 7−→ v(0) ⊗γ w(0)γ(v(1), w(1))

If A is rather a right H-comodule algebra, to get a right Hγ-comodule alge-
bra we have to deform the product of A using γ and its properties. This is done
by defining

a ·γ ã := a(0)ã(0)γ
−1(a(1), ã(1)). (1.1-11)

we denote by Aγ the resulting algebra. By applying the same procedure to Aγ
using γ−1 we get back the algebra A, i.e. (Aγ)γ−1 ≃ A.

Deformation of left K-comodules by a 2-cocycle σ : K ⊗K −→ K works in
the same way. Also, in this case, one has the equivalence of categories of left K-
comodules ( MK ,⊗) and left Kσ-comodules ( MKσ , ⊗σ ), now the isomorphism
between tensor products is given by

ϕV,W : Vσ ⊗σ Wσ −→ (V ⊗W )σ , v ⊗σ w 7−→ σ(v(−1), w(−1))v(0) ⊗ w(0).
(1.1-12)

For a left K-comodule algebra A and a 2-cocycle σ of K. we deform the product
on A via

a •σ ã := σ(a(−1), ã(−1))a(0)ã(0). (1.1-13)

The resulting left Kσ-comodule algebra is denoted by Aσ and as before if we
deform Aσ with σ−1 we get back A.

1.2 Hopf-Galois extensions

Now that we have reviewed the theory of comodule algebras, we can recall what
a Hopf-Galois extension is. Initially, a similar structure was called a quantum
principal bundle [6] and, sometime later, in [20], it was proved that quantum
principal bundles (with the universal calculus) are equivalent to Hopf-Galois
extensions.

In this section, we give the basic definitions, several examples that we need
later, and the deformation theory via 2-cocycle.
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1.2.1 The canonical map and its properties

Let (A, ρ) be a right H-comodule algebra with B := AcoH . The canonical map is
defined as

can := (mA ⊗ idH) ◦ (idA ⊗B ρ) : A⊗B A −→ A⊗H

a⊗B ã 7−→ aã(0) ⊗ ã(1).

The domain of can is the balanced tensor product A⊗BA, the quotient of A⊗A
by the ideal generated by elements of the form ab ⊗ ã − a ⊗ bã with a, ã ∈ A
and b ∈ B. Moreover, can is a left A-linear and right H-colinear morphism. The
comodule structure of H is the one given by the right adjoint coaction (1.1-7).

Definition 1.2.1 A H-Hopf-Galois extension is an algebra extension B ⊆ A,
where A i aright H-comodule algebra, B = AcoH and can is invertible. ♦

Remark 1.2.2 One can associate a different canonical map to B ⊆ A, namely

can′ : A⊗B A −→ A⊗H, a⊗B ã 7−→ a(0)ã⊗ a(1).

If the antipode of H is bijective the map φ : A ⊗ H → A ⊗ H, mapping a ⊗
h → a(0) ⊗ S−1(h)a(1) is bijective too and moreover can = φ ◦ can′. Thus the
invertibility of can is equivalent to the invertibility of can′. ♦

Using the bijectivity of the canonical map associated with a H-Hopf-Galois
extension, one defines the translation map

τ := can−1 |1A⊗H : H −→ A⊗B A, (1.2-1)

that satisfies the identity can(τ(h)) = 1A ⊗ h. In the following, we use a
Sweedler-like convention for this map

τ(h) = h⟨1⟩ ⊗B h⟨2⟩, h ∈ H.

Thus, by definition,

h⟨1⟩h
⟨2⟩

(0) ⊗ h
⟨2⟩

(1) = 1A ⊗ h, ∀h ∈ H (1.2-2)

The translation map fulfills a series of useful properties that we list below
[41, 9]

Proposition 1.2.3 Let H be a Hopf algebra with counit ϵ and antipode S and A
a right H-comodule algebra such that B ⊆ A is a H-Hopf-Galois extension. Then
the translation map τ satisfies, for any h, k ∈ H and a ∈ A

h⟨1⟩ ⊗B h⟨2⟩(0) ⊗ h
⟨2⟩

(1) = h
⟨1⟩

(1) ⊗B h ⟨2⟩
(1) ⊗ h(2), (1.2-3)

h
⟨1⟩

(0) ⊗B h
⟨2⟩ ⊗ h

⟨1⟩
(1) = h

⟨1⟩
(2) ⊗B h ⟨2⟩

(2) ⊗ S(h(1)), (1.2-4)

h⟨1⟩h⟨2⟩ = ϵ(h)1A, (1.2-5)

(hk)⟨1⟩ ⊗B (hk)⟨2⟩ = k⟨1⟩h⟨1⟩ ⊗B h⟨2⟩k⟨2⟩, (1.2-6)

a(0)a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) = 1A ⊗B a. (1.2-7)
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Example 1.2.4 1. One can define the canonical map also for a bialgebra
since its definition does not involve the antipode. The latter actually is re-
lated to the invertibility of can. Consider a bialgebra H and the extension
K ⊆ H. If the canonical map is invertible, then the map

S : H −→ H, h 7−→ h⟨1⟩ϵ(h⟨2⟩),

is the antipode of H, for any h ∈ H

S(h(1))h(2) = h⟨1⟩ϵ(h
⟨2⟩

(1))h
⟨2⟩

(2) = h⟨1⟩h⟨2⟩ = ϵ(h)

h(1)S(h(2)) = h(1)h
⟨1⟩

(2) ϵ(h
⟨2⟩

(2) ) = ϵ(h).

We used the definition of the counit and (1.2-7) respectively. Vice versa,
if H is a Hopf algebra with antipode S then the map

can−1(h⊗ k) = hS(k(1))⊗ k(2).

is the inverse of can

(can ◦ can−1)(h⊗ k) = hS(k(1))k(2) ⊗ k(3) = h⊗ k

(can−1 ◦ can)(h⊗ k) = hk(1)S(k(2))⊗ k(3) = h⊗ k

for any h⊗ k ∈ H ⊗H.

2. Consider the a G-space X as in example 1.1.17. The canonical map of the
extension O(X/G) ⊆ O(X) is the pullback of the map

α : X ×G −→ X ×X/G X, (x, g) 7−→ (x, xg),

where X ×X/G X is the fibered product of X with itself over X/G. It
is easy to see that the injectivity of α is equivalent to the freeness of the
action of G on X and its surjectivity is equivalent to the transitivity along
the fibers of the projection X ↠ X/G. In other words, for the O(G)-
extension O(X/G) ⊆ O(X) is Hopf-Galois if and only if is X ↠ X/G is a
principal G-bundle [26].

3. For the group algebras K[G] we have that every comodule algebra has the
form A = ⊕g∈GAg with AgAh ⊆ Agh. The extension AeG ⊆ A is K[G]-
Hopf-Galois if and only if AgAh = Agh for all g, h ∈ G (strongly graded)
[44, 34]. ♦

1.2.2 Principal comodule algebras

In most situations, it is easy to check the surjectivity of the canonical map. On
the other hand, it might be very difficult to prove that can is injective. The
next result is of great importance since allows us to prove the bijectivity of the
canonical map without dealing directly with injectivity

Theorem 1.2.5 (Schneider’s [40]) Let H a Hopf algebra with bijective antipode
and A a right H-comodule algebra with AcoH = B. Then the following are equiv-
alent
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1. A is an injective right H-comodule and can is surjective;

2. The functor MB −→ MH
A ,M 7−→M ⊗B A, is an equivalence;

3. The functor MB −→ MH
A ,M 7−→ A⊗B M , is an equivalence;

4. A is a faithfully flat left B-module and can is invertible;

5. A is a faithfully flat right B-module and can is invertible.

In the statement of this theorem, there are several concepts we have not
dealt with in this thesis. So, in the following remark, we briefly recall some
definitions

Remark 1.2.6 1. Any right comodule V ∈ MH induces a functor HomH(−, V ) :
MH −→ VectK. If the latter is exact V is said to be an injective comod-
ule. If the Hopf algebra H is cosemisimple then any right H-comodule is
injective.

2. A left B-module M ∈ MB is said to be faithfully flat if the functor − ⊗B
M : MB −→ VectK preserves and reflects exact sequences. Similarly for
the right modules.

3. The adjoint functor of − ⊗B A is given by (−)coH : MH
A −→ MB . So, for

Hopf-Galois extensions such that A is a faithfully flat B-module one has

(M ⊗B A)coH ≃M, V coH ⊗B A ≃ V,

for every M ∈ MB and V ∈ MH
A . And the same functor is the adjoint of

A⊗B −. ♦

Definition 1.2.7 AH-Hopf-Galois extension such thatA is a right (or left) faith-
fully flat B-module is said to be a principal comodule algebra. ♦

So for cosemisimple Hopf algebra with bijective antipode it is enough to check
the surjectivity of the canonical map to prove its invertibility and faithfully flat-
ness. In this thesis, we only deal with cosemisimple Hopf algebras.

Principal comodule algebras are characterized by another important prop-
erty that deals with connections. First of all, one has the following

Definition 1.2.8 Let B ⊆ A be a H-Hopf-Galois extension and mB : B⊗A −→
A the multiplication map mB(b ⊗ a) = ba. A strong connection on B ⊆ A
is a unital left B-linear and right H colinear map s : A −→ B ⊗ A such that
mB ◦ s = idA. ♦

This notion of connection was introduced initially in [20] and further studied
in [13]. From the computational point of view, the next result is extremely
important

Theorem 1.2.9 Let H be a Hopf algebra with bijective antipode and B ⊆ A a H-
Hopf-Galois extension, then strong connections are in one-to-one correspondence
with unital linear maps l : H −→ A⊗A satisfying

(idA ⊗ ρ) ◦ l = (l ⊗ idH) ◦∆, (1.2-8)

(λ⊗ idA) ◦ l = (idH ⊗ l) ◦∆, (1.2-9)

πB ◦ l = τ, (1.2-10)
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where λ is the left H-coaction (1.1-8), πB : A ⊗ A −→ A ⊗B A is the canonical
projection, and τ the translation map. The correspondence is given by

s = (mA ⊗ idA) ◦ (idA⊗l) ◦ ρ, l = m ◦ (idA⊗Bs) ◦ τ

We also refer to l as the strong connection of the Hopf-Galois extension. In other
words, a strong connection is a lift of the translation map.

For principal comodule algebras, a strong connection always exists

Theorem 1.2.10 ([39]) Let H be a Hopf algebra with bijective antipode and A a
right H-comodule algebra with AcoH = B, then the following are equivalent

1. There exists a strong connection l : H −→ A⊗A;

2. B ⊆ A is a principal comodule algebra.

In the following we use the Sweedler notation for strong connection l(h) =
h⟨1⟩ ⊗ h⟨2⟩ so that we can use equations the lift of equations 1.2.3.

1.2.3 Deformations and external symmetries

Consider a H principal comodule algebra B ⊆ A and another Hopf algebra
K. If A is a K-H-bicomodule algebra, we say that K is an external symmetry.
Denoting by ρA(a) = a(0) ⊗ a(1), λA(a) = a(−1) ⊗ a(0), we have the equation

a(0)(−1) ⊗ a(0)(0) ⊗ a(1) = a(−1) ⊗ a(0)(0) ⊗ a(0)(1).

In general, the subalgebra of coaction invariant elements AcoH is different from
the coaction invariant elements AcoK .

Example 1.2.11 Let G a, say compact, Lie group and P −→ X be a principal
G-bundle. If L is another Lie group acting on both P and X so that it commutes
with the G-action, we say that L is an external symmetry of the bundle. At the
algebraic level, we have that O(X) ⊆ O(P ) is a O(G)-Hopf-Galois extension
and both O(P ) and O(X) are (O(L), O(G))-bicomodule algebras. ♦

Consider now a γ : H ⊗ H −→ K a 2-cocycle of H and deform H into Hγ

and A into Aγ according to 1.1.21 and (1.1-11) respectively. It is easy to see
that the subalgebra B does not change under the deformation, for any pair b, b′

in the subalgebra of coaction invariant elements B one has b ·γ b′ = bb′.
If we indicate the functor Γ : MH −→ MHγ , V 7−→ Vγ , induced by the

2-cocycle γ, we have the following

Theorem 1.2.12 ([1]) The algebra extensionB ⊆ A isH-Hopf-Galois if and only
if B ⊆ Aγ is Hγ-Hopf-Galois.

This result is a consequence of the commutativity of the following diagram

Aγ ⊗B Aγ Aγ ⊗Hγ

(A⊗B A)γ (A⊗H)γ ,

canγ

≃ ≃

Γ(can)

(1.2-11)
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where the vertical arrows are the corresponding isomorphism of Theorem 1.1.22
for A ⊗B A and A ⊗ H. Here H and Hγ are respectively right H and Hγ-
comodule endowed with the adjoint coaction. Then has that canγ is invertible
if and only if Γ(can).

The same result holds for principal comodule algebras, here we prove it by
showing the explicit formula for a strong connection

Theorem 1.2.13 The algebra extension B ⊆ A is a principal H-comodule algebra
if and only if B ⊆ Aγ is a principal Hγ-comodule algebra.

Proof To write down the right diagram, we need to introduce the Hγ-comodule
isomorphism [1]

f : Hγ −→ Hγ , h 7−→ h(3)uγ(h(1))γ
−1(S(h(2)), h(4))

whose inverse is given by

f−1 : Hγ −→ Hγ , h 7−→ h(3)u
−1
γ (h(2))γ(S(h(1)), h(4)).

We recall that H indicates H endowed with the right adjoint coaction (1.1-7).
At this point, defines lγ the map making the following diagram commute

Hγ (A⊗A)γ

Hγ Aγ ⊗γ Aγ

Γ(l)

f−1 αA,A

lγ

Explicitly, we have

lγ := αA,A ◦ Γ(l) ◦ f : Hγ −→ Aγ ⊗γ Aγ

mapping h 7−→ h
⟨1⟩

(2) ⊗γ h ⟨2⟩
(2) uγ(h(1)). We now prove that it is a strong

connection for the extension B ⊆ Aγ . For this, we need to check the defining
equations for any h ∈ Hγ

[(idA ⊗ ργ) ◦ lγ ](h) = h
⟨1⟩

(2) ⊗γ h ⟨2⟩
(2) (0) ⊗ h

⟨2⟩
(2) (1)uγ(h(1))

= h
⟨1⟩

(2) ⊗γ h ⟨2⟩
(2) ⊗ h(3)uγ(h(1))

= [(idH ⊗ lγ) ◦∆](h)

[(λγ ⊗ idA) ◦ lγ ](h) = S−1
γ (h

⟨1⟩
(2) (1))⊗ h

⟨1⟩
(2) (0) ⊗ h

⟨2⟩
(2) uγ(h(1))

= S−1
γ (S(h(2)))⊗ h

⟨1⟩
(3) ⊗γ h ⟨1⟩

(3) uγ(h(1))

= S−1
γ (Sγ(h(3))⊗ h

⟨1⟩
(5) ⊗γ h ⟨2⟩

(5) uγ(h(1))u
−1
γ (h(2))uγ(h(4))

= h(1) ⊗ h
⟨1⟩

(3) ⊗γ h ⟨2⟩
(3) uγ(h(2)) = [(idH ⊗ lγ) ◦∆] (h)

(canγ ◦πB ◦ lγ)(h) = h
⟨1⟩

(2) ·γ h ⟨2⟩
(2) (0) ⊗ h

⟨2⟩
(2) (1)uγ(h(1))

= h
⟨1⟩

(2) · h ⟨2⟩
(2) ⊗ h(3)uγ(h(1))

= 1A ⊗ h(5)γ(h(1), S(h(2)))γ
−1(S(h(3)), h(4))

= 1A ⊗ h(2)(uγ ∗ u−1
γ )(h(1)) = 1A ⊗ h



CHAPTER 1. BACKGROUND MATERIAL 21

We used (1.2-8), (1.2-9) and (1.2-5) respectively. Being f and αA,A isomor-
phism, also the opposite is true. ■

Let nowA be a (K,H)-bicomodule algebra and putB := AcoH . If a 2-cocycle
σ of K is given, we denote by Σ : MK −→ MKσ the corresponding monoidal
tensor realizing the equivalence, so Σ(V ) = Vσ for any left K-comodule. The
Hopf algebra H is a left K-comodule algebra with the trivial coaction h 7−→
1K ⊗ h, so one has Hσ ≃ H.

Theorem 1.2.14 The algebra extension B ⊆ A is H-Hopf-Galois if and only if
Bσ ⊆ Aσ is H-Hopf-Galois.

As for the case where the Hopf algebra H is deformed, the proof of this result
follows from the commutativity of a diagram, namely

Aσ ⊗σ Bσ
Aσ Aσ ⊗σ H

(A⊗B A)σ (A⊗H)σ ,

canσ

≃ ≃

Σ(can)

(1.2-12)

where the vertical arrows are the corresponding isomorphism (1.1-12).
Again the same result holds for principal comodule algebras

Theorem 1.2.15 The algebra extension B ⊆ A with external symmetry K is a
principal H-comodule algebra if and only if Bσ ⊆ Aσ is a principal H-comodule
algebra with external symmetry Kσ .

Proof Recall that the inverse isomorphism of left K-comodule (1.1-12) for A⊗
A is given by

ϕ−1
A,A(a⊗ ã) = σ−1

(
a(−1), ã(−1)

)
a(0) ⊗σ ã(0).

We define the map lσ := ϕ−1
A,A ◦ Σ(l) : H −→ Aσ ⊗σ Aσ sending h 7−→

σ−1
(
h
⟨1⟩

(−1), h
⟨2⟩

(−1)

)
h
⟨1⟩

(0) ⊗σ h
⟨2⟩

(0) that makes the diagram

H Aσ ⊗σ Aσ

(A⊗A)σ

σl

Σ(l)
ϕA,A

Assume that l is a strong connection dor B ⊆ A, then for lσ we find that for any
h ∈ H[
(id Aσ

⊗ ρ) ◦ lσ
]
(h) = σ−1

(
h
⟨1⟩

(−1), h
⟨2⟩

(−1)

)
h
⟨1⟩

(0) ⊗σ h
⟨2⟩

(0)(0) ⊗ h
⟨2⟩

(0)(1)

= σ−1
(
h
⟨1⟩

(0), h
⟨2⟩

(0)(−1)

)
h
⟨1⟩

(0) ⊗σ h
⟨2⟩

(0)(0) ⊗ h
⟨2⟩

(1)

= σ−1
(
h

⟨1⟩
(1) (0), h

⟨2⟩
(1) (−1)

)
h

⟨1⟩
(1) (0) ⊗ h

⟨2⟩
(1) (0) ⊗σ h

⟨2⟩
(2)

= [( lσ ⊗ idH) ◦∆] (h),
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[
(λ⊗ id Aσ

) ◦ lσ
]
(h) = σ−1

(
h
⟨1⟩

(−1), h
⟨2⟩

(−1)

)
S−1

(
h
⟨1⟩

(0)(1)

)
⊗ h

⟨1⟩
(0)(0) ⊗σ h

⟨2⟩
(0)

= σ−1
(
h
⟨1⟩

(0)(−1), h
⟨2⟩

(−1)

)
S−1

(
h
⟨1⟩

(1)

)
⊗ h

⟨1⟩
(0)(0) ⊗σ h

⟨2⟩
(0)

= S−1
(
S(h(1))

)
⊗ σ−1

(
h

⟨1⟩
(2) (−1), h

⟨2⟩
(2) (−1)

)
h

⟨1⟩
(2) (0) ⊗σ h

⟨2⟩
(2) (0)

= [(idH ⊗ lσ ) ◦∆] (h),

( canσ ◦π Bσ
◦ lσ )(h) = σ−1

(
h
⟨1⟩

(−1), h
⟨2⟩

(−1)

)
h
⟨1⟩

(0) •σ h
⟨2⟩

(0)(0) ⊗ h
⟨2⟩

(1)

= σ
(
h

⟨1⟩
(1) (0)(−1), h

⟨2⟩
(1) (0)(−1)

)
σ−1

(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
h

⟨1⟩
(1) (0)h

⟨2⟩
(1) (0) ⊗ h(2)

= (σ ∗ σ−1)
(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
h

⟨1⟩
(1) (0)h

⟨2⟩
(1) (0) ⊗ h(2)

= h
⟨1⟩

(1) h
⟨2⟩

(1) ⊗ h(2) = 1A ⊗ h,

proving that lσ is a strong connection for Bσ ⊆ Aσ . We used the equations
(1.2-3)-(1.2-5) and that Aσ is a ( Kσ , H)-bicomodule. We have also dropped
the symbol Σ for the right and left H-coactions in the equations to simplify the
expression. Since ϕA,A is an isomorphism we have that also the opposite is
true. ■

1.3 Hopf algebroids

In this section, we review the general theory of bialgebroids and Hopf algebroids
both in the sense of Schauenburg [38] and Böhm-Szlachanyi [5, 3]. For the part
that regards rings, coring, and bialgebroids we mostly follow [8].

1.3.1 Bialgebroids

As their name suggests, bialgebroids generalize bialgebras. The latter are al-
gebras over a field that are equipped with a compatible coalgebra structure.
Roughly speaking, a bialgebroid is a bialgebra over a (noncommutative) algebra
rather than a field. We introduce bialgebroids in the same spirit of bialgebras,
i.e. giving the definition of an algebra, a coalgebra and then the compatibility
conditions.

In this setting, the algebra role is played by:

Definition 1.3.1 Let B be an algebra and denote by Be := B⊗Bop its envelop-
ing algebra. A Be-ring is the datum of (U, t, s) where

• U is algebra;

• s : B → U and t : Bop → U are algebra morphisms;

• the ranges of s and t commute in U , i.e. s(b)t(b) = t(b)s(b) ∀b ∈ B.

We refer to s and t as source and target map respectively. ♦
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A B-bimodule structure is then defined on the algebra U by

bub′ := s(b)t(b′)u, u ∈ U, b, b′ ∈ B. (1.3-1)

The balanced tensor product over the algebra B is obtained as the quotient of
U ⊗ U by the ideal generated by elements of the form t(b)u ⊗ u′ − u ⊗ s(b)u′

with u, u′ ∈ U and b ∈ B. For later use we write explicitly this tensor product
structure:

U ⊗B U := U ⊗ U/(t(b)u⊗ u′ − u⊗ s(b)u′). (1.3-2)

With the source and target maps we can endow U also with a Bop-bimodule
structure getting in this way different balanced tensor products. If we denote
by op : B −→ Bop the linear anti-multiplicative isomorphism, then we have for
any u ∈ U and b, b′ ∈ B

bop · u · b′op := t(b)ut(b′), (1.3-3)

bop ∗ u ∗ b′op := s(b′)us(b). (1.3-4)

Accordingly, we define

U ⊙Bop U := U ⊗ U/(ut(b)⊗ u′ − u⊗ t(b)u′), (1.3-5)

U ⊛Bop U := U ⊗ U/(s(b)u⊗ u′ − u⊗ u′s(b)). (1.3-6)

The notion of coalgebra is extended by

Definition 1.3.2 Let B be an algebra, a B-coring is the datum of (C,∆, ϵ) such
that

• C is a B-bimodule;

• ∆ : C −→ C ⊗B C is a B-bimodule morphism satisfying

(∆⊗B idC) ◦∆ = (idC ⊗B ∆) ◦∆; (1.3-7)

• ϵ is a B-bimodule morphism with the property

(ϵ⊗B idC) ◦∆ = idC = (idC ⊗B ϵ) ◦∆ . (1.3-8)

We call ∆ the comultiplication and ϵ the counit as in the case of bialgebras. ♦

Then we put these two structures together to get

Definition 1.3.3 Let B be an algebra, the datum of (H,∆, ϵ, s, t) is a (left) B-
bialgebroid when:

• The triple (H, s, t) is a Be-ring;

• The triple (H,∆, ϵ) is a B-coring;

• Given the Takeuchi product [43]

H×BH := {h⊗Bh′ ∈ H⊗BH|ht(b)⊗Bh′ = h⊗Bh′s(b),∀b ∈ B}, (1.3-9)

one has that Im(∆) ⊆ H×BH and it is an algebra morphism if corestricted
H×B H.
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• The counit is unital ϵ(1H) = 1A and satisfies

ϵ(hh′) = ϵ(hs(ϵ(h′))) = ϵ(ht(ϵ(h′))), ∀h, h′ ∈ H . (1.3-10)
♦

In the above equation (1.3-9), we have the Takeuchi product [43] that is an
algebra with component-wise multiplication and unit 1H ⊗ 1H. This condition
is important since in general H⊗BH does not have an algebra structure, unless
H is a symmetric B-bimodule.

We use the Sweedler summation notation for the comultiplication ∆(h) =
h(1)⊗B h(2) and by recalling the B-bimodule structure (1.3-1) one has for equa-
tion (1.3-8)

ϵ(h(1))h(2) = s(ϵ(h(1)))h(2) = h = t(ϵ(h(2)))h(1) = h(1)ϵ(h(2)). (1.3-11)

For a left bialgebroid H over an algebra B, the category of left H-module
HM is a monoidal category with respect to the tensor product ⊗B . In contrast,
the category of right H-module MH is not monoidal in general. Using a left-
right symmetry argument one can define a right bialgebroid over B [8]. Given
a left (right) bialgebroid it is possible that a right (left) bialgebroid structure
cannot be defined. We return to this point later in the text.

Example 1.3.4 Let A be an algebra and B a bialgebra. We have that the space
H := A⊗B ⊗Aop a bialgebroid over A if endowed with the following maps

s(a) = a⊗ 1B ⊗ 1A, t(a) = 1A ⊗ 1B ⊗ aop

∆(a⊗ b⊗ a′op) = a⊗b(1) ⊗ 1A ⊗ 1A ⊗ b(2) ⊗ a′op, ϵ(a⊗ b⊗ a′op) = ϵ(b)aa′♦

1.3.2 Canonical maps, antipodes, and comodule algebras

We saw in example 1.2.4 that the existence of the antipode for a bialgebra H
is equivalent to the Hopf-Galois condition for K ⊆ H. In [38] the author was
guided by this feature of Hopf algebras to give the following

Definition 1.3.5 A B-bialgebroid H is a (left) weak Hopf algebroid if the
canonical map

β : H⊙Bop H −→ H⊗B H, h⊙Bop h′ 7−→ h(1) ⊗B h(2)h′ (1.3-12)

is bijective. Notice that the map is well-defined over the tensor product (1.3-5)
since ∆(t(b)) = 1⊗B t(b) for every b ∈ B. ♦

If B = K we retrieve the Hopf algebra case. In the same work, the invertibil-
ity of β is proved to be equivalent to the inner-hom functor preserving property
of the forgetful functor HM → BMB from the category of left H-modules to the
one of B-bimodules.

There is another canonical map associated with a bialgebroid, namely

λ : H⊛Bop H −→ H⊗B H, h⊛Bop h′ 7−→ h′(1)h⊗B h′(2), (1.3-13)

using the tensor product (1.3-6), which is well-defined due to ∆(s(b)) = s(b)⊗B
1H.

An alternative way to define a Hopf algebroid was proposed in [5], which
mimics the Hopf algebra case
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Definition 1.3.6 Let (H,∆, ϵ, s, t) be a bialgebroid over an algebra B, then an
antipode on it is the datum of a bijective anti-algebra morphism S : H → H,
with inverse S−1 : H → H, such that,

S ◦ t = s, (1.3-14)

and, for all h ∈ H,

S(h(1))(1′)h(2) ⊗B S(h(1))(2′) = 1H ⊗B S(h), (1.3-15)

S−1(h(2))(1′) ⊗B S−1(h(2))(2′)h(1) = S−1(h)⊗B 1H. (1.3-16)

A B-bialgebroid equipped with an antipode is called a full Hopf algebroid over
B and here it is denoted by (H, S). ♦

Remark 1.3.7 One notices that eq. (1.3-14) implies that for the inverse it holds
that

S−1 ◦ s = t. (1.3-17)

Moreover eqs.(1.3-15) and (1.3-16) imply that the following equations hold
true for all h ∈ H

S(h(1))h(2) = (t ◦ ϵ ◦ S)(h), (1.3-18)

S−1(h(2))h(1) = (s ◦ ϵ ◦ S−1)(h). (1.3-19)
♦

Remark 1.3.8 The names weak and full Hopf algebroids are not established in
the literature, mostly because there is no wide consensus on the right definition
of Hopf algebroid yet. Despite this, we decided to adopt these names because
of the following result ♦

Proposition 1.3.9 ([25]) Let (H, S) be a full Hopf algebroid over B then H is a
Hopf algebroid in the sense of Definition 1.3.5.

Remark 1.3.10 One can prove that if an invertible antipode exists then the map
(1.3-13) is bijiective too, with its inverse given by

λ−1(h⊗B h′) = S−1(h′)(2)h⊛Bop S(S−1(h′)(1)). (1.3-20)

Furthermore the simultaneous bijectivity of β and λ is equivalent to the exis-
tence of an invertible antipode for a left bialgebroid with a compatible right
bialgebroid structure [5]. As mentioned before this is not always the case. In-
deed there are situations where an antipode does not exist at all. We refer to
[29] for an example. ♦

Having an invertible antipode one can give a Bop-bimodule structure to H
that differs from the ones in (1.3-3)-(1.3-4). This is given by

bophb′op = hS−1(t(b))t(b′); (1.3-21)

with associated balanced tensor product over Bop

H⊗Bop H := H⊗H/(ht(b)⊗ h′ − h⊗ S−1(t(b))h′). (1.3-22)
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Lemma 1.3.11 Let (H, S) be a full Hopf algebroid over B, and define the map
from H to H⊗Bop H given by the formula

h 7−→ h[1] ⊗Bop h[2] := S(S−1(h)(2))⊗Bop S(S−1(h)(1)). (1.3-23)

It satisfies the following identities

h[1]S(h[2]) = s(ϵ(h)), (1.3-24)

λ−1(h⊗B h′) = S−1(h′[1])h⊛Bop h′[2], (1.3-25)

h[1] ⊗Bop h
[2]

(1) ⊗B h
[2]

(2) = h
[1]

(1) ⊗Bop h
[2]

(1) ⊗B h(2), (1.3-26)

S(h)[1] ⊗Bop S(h)[2] = S(h(2))⊗Bop S(h(1)). (1.3-27)

for all h, h′ ∈ H, in (1.3-25) we have the inverse of the canonical map (1.3-13).

Proof For the first equation, we use the anti-multiplicative property of the an-
tipode S and (1.3-18). For the second one just rewrite (1.3-20) using the def-
inition (1.3-23). The third equation is proved by applying on both sides the
isomorphism λ ⊗B idH and showing that one gets the same result. The last
equation comes from evaluating (1.3-23) at k = S(h) with h ∈ H. ■

We conclude this subsection by discussing the notion of comodule algebra
for a bialgebroid/Hopf algebroid. Since we are dealing now with B-modules
rather than vector spaces we have to take care of the B-linearity of the maps

Definition 1.3.12 A B-bimodule M is said to be a right H-comodule if there
exists a B-bilinear map ρ

M
:M −→M ⊗B H that satisfies

(ρ
M

⊗B idH) ◦ ρ
M

= (idM ⊗B∆) ◦ ρ
M
, (idM ⊗Bϵ) ◦ ρM = idM . ♦





Chapter 2

Hopf algebroids and twists
for quantum projective
spaces

2.1 Twists

In this section, we introduce the notion of a twist for a bialgebroid. Since we
are working on a bimodule over an algebra we have to specify which module
structure we are referring to. We exclusively work with the right B-module
structure of (1.3-1) given by the action of the target map.

2.1.1 General aspects

Definition 2.1.1 Let H be a B-bialgebroid, the (right) generalized characters
are given by the set

H∗ := {ϕ∗ : H −→ B|ϕ∗(t(b)h) = ϕ∗(h)b, ∀h ∈ H,∀b ∈ B}.

In other words, a generalized character is a map from H to the base algebra B
that is a right B-module morphism. ♦

Using the source s and target map t of H one has other types of general-
ized characters. For instance maps such that ϕ(s(b)h) = bϕ(h) (left B-module
morphisms) are denoted by H∗ . It is easy to define all the other possible gener-
alized characters. In the case of Hopf algebras, BK, the generalized characters
are linear maps from the Hopf algebra into the ground field. The choice we
made about the name might cause some trouble because characters for a Hopf
algebra are not just linear maps from the algebra into the ground field, but also
algebra morphisms. Since in the current thesis, there is no risk of confusion we
can still use the name generalized character for H∗.

We state and prove several properties of generalized characters in the next
lemma (cf. [4]).

Lemma 2.1.2 Let B be an algebra and H a B-algebroid then one has:

27
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1. The set of generalized characters H∗ is a unital algebra if endowed with
product

ϕ∗ψ∗(h) := ψ∗
(
s(ϕ∗(h(1)))h(2)

)
; (2.1-1)

where s : B −→ H is the source map. The unit element of H∗ is the counit
ϵ : H −→ B;

2. The space H is a right H∗-module if endowed with

h ◁ ϕ∗ := s(ϕ∗(h(1)))h(2); (2.1-2)

for ϕ∗ ∈ H∗ and h ∈ H. The counit ϵ acts trivially on H and for all b ∈ B
one has t(b) ◁ ϕ∗ = t(b). As a consequence of the last property, we have
1H ◁ ϕ∗ = 1H for all ϕ∗ ∈ H∗.

Proof For point (1).

Let b ∈ B, h ∈ H and recall that the comultiplication ∆ on H is a B-bimodule
morphism

∆(t(b)h) = h(1) ⊗B t(b)h(2).

By taking any two elements ϕ∗, ψ∗ ∈ H∗ one gets from (2.1-1)

ϕ∗ψ∗(t(b)h) = ψ∗(s(ϕ∗(h(1)))t(b)h(2))

= ψ∗(t(b)s(ϕ∗(h(1)))h(2))

= ψ∗(s(ϕ∗(h(1)))h(2))b = ϕ∗ψ∗(h)b,

where in the second line we used the ranges of the source and target commute
in H. Thus, we conclude that ϕ∗ψ∗ ∈ H∗.

Being ϵ a B-bimodule morphism it is in particular a right B-module mor-
phism, so is an element of H∗. Moreover, for any ϕ∗ ∈ H∗ and h ∈ H one
has

ϕ∗ϵ(h) = ϵ(s(ϕ∗(h(1)))h(2))

= ϵ(s(ϕ∗(h(1)))s(ϵ(h(2))))

= ϵ(s(ϕ∗(h(1))ϵ(h(2))))

= ϵ(s(ϕ∗(t(ϵ(h(2))h(1)))))

= (ϵ ◦ s ◦ ϕ∗)(h) = ϕ∗(h).

Here in the second line we used the multiplicative property ϵ(hk) = ϵ(hs(ϵ(k))),
in the third one that the source map s is an algebra morphism, in the fourth one
the Definition 2.1.1, and in the last one the equation t(ϵ(h(2)))h(1) = h and that
the source map is a section of the counit ϵ ◦ s = idB . On the other, from the
equation s(ϵ(h(1)))h(2) = h it easily follows that

ϵϕ∗(h) = ϕ∗(s(ϵ(h(1)))h(2)) = ϕ∗(h).

We conclude that ϕ∗ϵ = ϵϕ∗ = ϕ∗.
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We only need to prove that h ◁ (ϕ∗ψ∗) = (h ◁ ϕ∗) ◁ ψ∗. Given ϕ∗, ψ∗ ∈ H∗ and
h ∈ H we have

(h ◁ ϕ∗) ◁ ψ∗ = (s(ϕ∗(h(1))h(2))) ◁ ψ∗

= s(ψ∗(s(ϕ∗(h(1))h(2))))h(3)

= s(ϕ∗ψ∗(h(1)))h(2) = h ◁ (ϕ∗ψ∗).

where we just used the definition of the product (2.1-1) and the coassociativity
os the comultiplication (1.3-7). ■

Inside the space of generalized characters, we find a group of its units, i.e.
the invertible elements for the multiplication (2.1-1). In what follows we focus
on a particular subgroup of this group, the one of twists.

Definition 2.1.3 Let H be a B-bialgebroid, we say that an element ϕ∗ ∈ H∗ is
a twists if it is invertible with respect to (2.1-1) and moreover

(h ◁ ϕ∗)(h
′ ◁ ϕ∗) = hh′ ◁ ϕ∗, ∀h, h′ ∈ H. (2.1-3)

♦

The counit of H is the neutral element of this group. For the rest of the paper,
we denote the group of twists by T∗.

2.1.2 Twists and antipodes

In the original definition of twists [4], it is required an additional property

S(h(1)) ◁ ϕ∗ ⊗′
B h(2) = S(h(1))⊗′

B h(2) ◁ ϕ
−1
∗ ;

that involves the balanced tensor product ⊗′
B obtained from H ⊗ H over the

ideal generated by hs(b)⊗ h′ − h⊗ s ◦ ϕ−1
∗ ◦ s(b)h′, for b ∈ B and h, h′ ∈ H. For

us, a twist does not need to fulfill this property, and in particular we have that
the notion of twist makes sense even for bialgebroids.

Theorem 2.1.4 ([4]) Let (H, S) be a full Hopf algebroid over an algebra B, then
(H, S′) is a Hopf algebroid with the same underlying B-bialgebroid structure if
and only if there exists a twist ϕ∗ ∈ T∗ such that

S′(h) = S(h ◁ ϕ∗) h ∈ H.

Proof Our proof differs slightly from [4], thus, we report it.
Let ϕ∗ ∈ T∗ and S be an antipode on H. Then the map S′ defined above is

invertible with inverse
S′−1(h) := S(h) ◁ ϕ−1.

One checks easily that S′ is an anti-algebra morphism because S is such and
property (2.1-3). From 2.1.2 we have t(b) ◁ ϕ∗ = b for every b ∈ B so S′ ◦ t = s.
Now to prove (1.3-15) and (1.3-16) we first notice that for any ψ∗ ∈ H∗ one
has

(h ◁ ψ∗)(1) ⊗B (h ◁ ψ∗)(2) = ∆(h ◁ ψ∗) = h(1) ◁ ψ∗ ⊗B h(2),
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since the comultiplication is a left B-module morphism. Thus for any h ∈ H we
compute,

S′(h(1))(1)′h(2) ⊗B S′(h(1))(2)′ = S(h(1) ◁ ϕ∗)(1)′h(2) ⊗B S(h(1) ◁ ϕ∗)(2)′
= S((h ◁ ϕ∗)(1))(1)′(h ◁ ϕ∗)(2) ⊗B S((h ◁ ϕ∗)(1))(2)′
= 1H ⊗B S(h ◁ ϕ∗) = 1H ⊗B S′(h);

S′−1(h(2))(1)′ ⊗B S′−1(h(2))(2)′h(1) = (S−1(h(2)) ◁ ϕ∗)(1)′ ⊗ (S−1(h(2)) ◁ ϕ∗)(2)′h(1)

= S−1(h(2))(1)′ ◁ ϕ∗ ⊗B S−1(h(2))(2)′h(1)

= S−1(h) ◁ ϕ∗ ⊗B 1H = S′−1(h)⊗B 1H.

We conclude that S′ is an invertible antipode on H.
On the other hand consider S and S′ two antipodes on H. The map ϵ◦S′−1◦S

from H → B lies in T∗. Right B-linearity is easy to check. The map ϵ ◦ S−1 ◦ S′

is the inverse: indeed we have

(ϵ ◦ S′−1 ◦ S)(ϵ ◦ S−1 ◦ S′)(h) = ϵ ◦ S−1 ◦ S′ [s(ϵ ◦ S′−1 ◦ S(h(1)))h(2)
]

= ϵ ◦ S−1 ◦ S′ [s ◦ ϵ ◦ S′−1(S(h(1)))h(2)
]

= ϵ ◦ S−1 ◦ S′
[
s ◦ ϵ ◦ S′−1(S(h)[2])S−1(S(h)[1])

]
= ϵ ◦ S−1 ◦ S′

[
s ◦ ϵ ◦ S′−1(S(h)[2]

′
)S′−1(S(h)[1]

′
)
]

= ϵ ◦ S−1
[
S(h)[1]

′
S′ ◦ s ◦ ϵ ◦ S′−1(S(h)[2]

′
)
]

= ϵ ◦ S−1
[
S(h)[1]

′
S′(S(h)[2]

′

(1))S(h)
[2]′

(2)

]
= ϵ ◦ S−1

[
S(h)

[1]′

(1) S′(S(h)(1)
[2]′)S(h)(2)

]
= ϵ ◦ S−1

[
s(ϵ(S(h)(1)))S(h)(2)

]
= ϵ ◦ S−1 ◦ S(h) = ϵ(h).

where in order we used eqs.(1.3-24)-(1.3-27) of Lemma 1.3.11.
To conclude the proof we have to show that the action of ϵ◦S′−1 ◦S is unital

and multiplicative. The first property comes from the fact that both maps are a
composition of unital maps, for the second one for any h, h′ ∈ H we compute

(hh′) ◁ ϵ ◦ S′−1 ◦ S = s
[
ϵ ◦ S′−1 ◦ S(h(1)h′(1))

]
h(2)h

′
(2)

= s ◦ ϵ
[
S′−1 ◦ S(h(1))S′−1 ◦ S(h′(1))

]
h(2)h

′
(2)

= s ◦ ϵ
[
S′−1 ◦ S(h(1))S′−1 ◦ S(h′(1))

]
h(2)h

′
(2)

= s ◦ ϵ
[
S′−1 ◦ S(h(1))t ◦ ϵ ◦ S′−1 ◦ S(h′(1))

]
h(2)h

′
(2)

= s ◦ ϵ
[
S′−1 ◦ S(h(1)t ◦ ϵ ◦ S′−1 ◦ S(h′(1)))

]
h(2)h

′
(2)

= s ◦ ϵ
[
S′−1 ◦ S(h(1))

]
h(2)s ◦ ϵ

[
◦S′−1 ◦ S(h′(1))

]
h′(2)

= (h ◁ ϵ ◦ S′−1 ◦ S)(h′ ◁ ϵ ◦ S′−1 ◦ S).

Here in the third line, we have used that S′−1 ◦ S is an algebra morphism, in
the fourth equation (1.3-10), in the fifth the combination of eqs.(1.3-18) and
(1.3-19) and in the last one the Takeuchi product (1.3-9). ■
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This is a stronger version of Theorem 4.1 in the reference since we showed
that the requirement in the remark before 2.1.4 is not needed.

2.2 The Ehresmann–Schauenburg Hopf algebroid

We turn to the study of the theory of twists introduced in the previous section,
in the special case of the Erhesmann-Schauenburg (ES) bialgebroid associated
with a principal comodule algebra B ⊆ A extension.

We first give the following lemma that gathers some results about the equiv-
alence of the space of coaction invariant elements (A ⊗ A)coH of the diagonal
coaction (1.1-6) on A ⊗ A with other spaces in the case of Hopf-Galois exten-
sions.

Lemma 2.2.1 Let B ⊆ A be a right H-Hopf-Galois extension and define

LA := {a⊗ ã ∈ A⊗A|a⊗ ã(0) ⊗ ã(1) = a(0) ⊗ ã⊗ S(a(1))},
(A⊗A)coH := {a⊗ ã ∈ A⊗A|a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a⊗ ã⊗ 1H},

C(A,H) := {a⊗ ã ∈ A⊗A|a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ã = a⊗ ã⊗B 1A}.

Then one has LA = (A ⊗ A)coH = C(A,H). Moreover, if the antipode of H is
bijective, the above spaces are also identified with A □H A.

Proof We first prove the inclusion LA ⊆ (A⊗A)coH by taking a⊗ ã ∈ LA, and
applying on both sides of the defining equation the map ρ⊗ idH we get

a(0) ⊗ a(1) ⊗ ã(0) ⊗ ã(1) = a(0) ⊗ a(1) ⊗ ã⊗ S(a(2)).

By applying again on both sides the map (idA⊗A ⊗mH) ◦ (idA ⊗ flipHA ⊗ idH):

a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a(0) ⊗ ã⊗ a(1)S(a(2)) = a⊗ ã⊗ 1H ,

where we used a(1)S(a(2)) = ϵ(a(1))1H and a(0)ϵ(a(1)) = a, which proves the
inclusion. We next prove (A ⊗ A)coH ⊆ LA. Take a ⊗ ã ∈ (A ⊗ A)coH and by
applying (idA ⊗ S ◦ ρ)⊗ idA⊗H on both sides of the defying equation we get

a(0) ⊗ S(a(1))⊗ ã(0) ⊗ a(2)ã(1) = a(0) ⊗ S(a(1))⊗ ã⊗ 1H .

By applying again (idA⊗A ⊗mH) ◦ (idA ⊗ flipHA ⊗ idH) we have the equation

a(0) ⊗ ã(0) ⊗ S(a(1))a(2)ã(1) = a(0) ⊗ ã⊗ S(a(1)).

Lhe LHS of the latter reduces to a ⊗ ã(0) ⊗ ã(1) once we use a(1)S(a(2)) =
ϵ(a(1))1H and a(0)ϵ(a(1)) = a. We conclude that (A⊗A)coH = LA.

To prove the other equivalence we use bijectivity of the canonical map can.
Take a⊗ ã ∈ C(A,H) and apply idA⊗ can on both sides of the defying equation
to get

a(0) ⊗ a
⟨1⟩

(1) a
⟨2⟩

(1) (0)ã(0) ⊗ a
⟨2⟩

(1) (1)ã(1) = a⊗ ã⊗ 1H .

Using (1.2-3), the LHS reduces to a(0) ⊗ ã(0) ⊗ a(1)ã(1), thus C(A,H) ⊆ (A ⊗
A)coH . Conversely, take a⊗ ã ∈ (A⊗A)coH and apply idA⊗ can−1 to both sides
to the coinvariance equation. The left A-linearity of can−1 yields

a(0) ⊗ ã(0)(a(1)ã(1))
⟨1⟩ ⊗B (a(1)ã(1))

⟨2⟩ = a⊗ ã⊗B 1A.
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Using equations (1.2-6) and (1.2-7) the LHS can be rewritten as a(0)⊗ τ(a(1))ã,
showing the converse inclusion. So we have (A⊗A)coH = C(A,H).

If the antipode ofH is bijective, we can endowAwith theH-coaction (1.1-8)
and construct the cotensor product (1.1-9). The last statement follows easily
from the definition of LA. ■

In the rest of the chapter, we use C(A,H). The latter can be endowed with
a B-bialgebroid structure [37, 8] and it is named the Ehresmann-Schauenburg
(ES) bialgebroid. The B-coring structure on C(A,H) is given by the following
comultiplication and counit:

∆ : C(A,H) −→ C(A,H)⊗B C(A,H), a⊗ ã 7−→ a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ⊗ ã

(2.2-1)

ϵ : C(A,H) −→ B, a⊗ ã 7−→ aã . (2.2-2)

The space C(A,H) is a subalgebra of A⊗Aop, i.e. the product in C(A,H) is

(a⊗ ã)(c⊗ c̃) = ac⊗ c̃ã, (2.2-3)

with a⊗ ã and c⊗ c̃ ∈ C(A,H), and the Be-ring structure is given by the source
and target maps

s : B −→ C(A,H), b 7−→ b⊗ 1A, (2.2-4)

t : B −→ C(A,H), b 7−→ 1A ⊗ b. (2.2-5)

All the compatibility conditions between the coring and ring structure are en-
sured in this situation, so C(A,H) is a (left) B-bialgebroid.

Remark 2.2.2 (The classical case) Let G be a compact Lie group, and π :
P −→ M be a compact principal G-bundle with translation function τ : P ×M
P −→ G. Recall that the latter is defined by the equation

pτ(p, q) = q, (p, q) ∈ P ×M P (2.2-6)

In other words, τ(p, q) is the unique element in G connecting two points in the
same fiber. We need the following identities, for all (p, q) ∈ P ×M P and g ∈ G
one has

τ(pg, q) = g−1τ(p, q), (2.2-7)

τ(p, qg) = τ(p, q)g, (2.2-8)

τ(p, q)−1 = τ(q, p) (2.2-9)

The gauge groupoid [33] over the base manifold M is given by the space
Ω := (P × P )/G of the orbits of the diagonal action, with source and target
maps

s : Ω −→M, [p, q] 7−→ π(q) (2.2-10)

t : Ω −→M, [p, q] 7−→ π(p) (2.2-11)

and space of composable pairs

Ω(2) := {(ω, ω′) ∈ Ω× Ω|s(ω) = t(ω′)}. (2.2-12)
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For which it is defined the composition rule

[p, q] [p′, q′] := [pτ(q, p′), q′] , ([p, q] , [p′, q′]) ∈ Ω(2) (2.2-13)
♦

Remark 2.2.3 Faithfully flatness of A as a left B-module is sufficient to prove
that the above set of data gives a bialgebroid over B. For the details see section
34 in [8]. An example for which faithful flatness is not needed is in section 3 in
[24]. ♦

Remark 2.2.4 A Galois object is a H-Hopf–Galois extension such that the subal-
gebra of coaction invariant elements is the ground field B = K. In this case, the
ES bialgebroid is proved to be a Hopf algebra [36]. For a Hopf algebra, twists
are convolution invertible characters and their action on the antipode provides
an antipode in the sense of Hopf algebroid. In other words, starting from a
Hopf algebra, using twists we get a full Hopf algebroid, a phenomenon which is
central in [12]. ♦

Remark 2.2.5 Since in the first part of the proof we do not use that A is an
algebra nor that B ⊆ A is a Hopf-Galois extension, the equation LV = (V ⊗
V )coH holds for any right H-comodule V . ♦

2.2.1 The flip

We give a sufficient condition for the map flipA : A ⊗ A → A ⊗ A to be an
antipode for the ES bialgebroid of a Hopf–Galois extension B ⊆ A. Clearly flipA
is an anti-algebra morphism and moreover it satisfies for any b ∈ B

flipA(t(b)) = flip(1A ⊗ b) = b⊗ 1A = s(b).

Recall that C(A,H) is a sub-algebra ofA⊗Aop. To prove that flipA is an antipode
it only remains to check equations (1.3-15) and (1.3-16).

Proposition 2.2.6 Let B ⊆ A be a principal H-comodule algebra and let C(A,H)
be the associated ES bialgebroid. If flipA is a right H-comodule endomorphism of
(A⊗A, ρ⊗) then is an antipode for C(A,H).

Proof The coinvariance hypothesis on flipA reads

ρ⊗ ◦ flipA = (flipA ⊗ idH) ◦ ρ⊗.

Then if a⊗ ã ∈ C(A,H) = (A⊗A)coH so does flipA(a⊗ ã) = ã⊗ a, i.e. the flip
maps C(A,H) into itself. By the lemma 2.2.1 we also have ã⊗ a ∈ LA. For the
LHS of equation (1.3-15) we need

(a⊗ ã)(1) ⊗B (a⊗ ã)(2) = a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ⊗ ã,

(flipA(a⊗ ã)(1))(1′) ⊗B (flipA(a⊗ ã)(1))(2′) = a
⟨1⟩

(1) (0) ⊗ a
⟨1⟩ ⟨1⟩

(1) (1) ⊗B a ⟨1⟩ ⟨2⟩
(1) (1) ⊗ a(0).
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So we get for LHS

a
⟨1⟩

(1) (0)a
⟨2⟩

(1) ⊗ ãa
⟨1⟩ ⟨1⟩

(1) (1) ⊗B a ⟨1⟩ ⟨2⟩
(1) (1) ⊗ a(0) =

=a
⟨1⟩

(2) a
⟨2⟩

(2) ⊗ ãS(a(1))
⟨1⟩ ⊗B S(a(1))⟨2⟩ ⊗ a(0)

=1A ⊗ ãS(a(1))
⟨1⟩ ⊗B S(a(1))⟨2⟩ ⊗ a(0)

=1A ⊗ ãτ(S(a(1)))⊗ a(0)

=1A ⊗ ã(0)τ(ã(1))⊗ a

=1A ⊗ 1A ⊗B ã⊗ a = 1C(A,H) ⊗ flipA(a⊗ ã)

in the first line we used (1.2-4), in the second one the equation (1.2-5) and
identity a(1)ϵ(a(2)) = a(1), in the third one just the definition of the translation
map, in the fourth one the fact that ã ⊗ a ∈ LA and finally in the fifth line
equation (1.2-7).

Notice that flip−1
A = flipA, then to write down the LHS of equation (1.3-16)

in this case we need

(flipA(a⊗ ã)(2))(1′) ⊗B (flipA(a⊗ ã)(2))(2′) = ã(0) ⊗ ã
⟨1⟩

(1) ⊗B ã ⟨2⟩
(1) ⊗ a

⟨2⟩
(1)

so it becomes

ã(0) ⊗ ã
⟨1⟩

(1) ⊗B ã ⟨2⟩
(1) a(0) ⊗ a

⟨1⟩
(1) a

⟨2⟩
(1) = ã(0) ⊗ ã

⟨1⟩
(1) ⊗B ã ⟨2⟩

(1) a(0) ⊗ ϵ(a(1))

= ã(0) ⊗ τ(ã(1))a⊗ 1A

= ã⊗ a⊗B 1A ⊗ 1A = flipA(a⊗ ã)⊗ 1C(A,H).

We used again (1.2-5), the identity a(0)ϵ(a(1)) = a, and that ã⊗ a ∈ C(A,H). ■

Using this result we have the following Let B ⊆ A a principal H-comodule
algebra extension such that H is commutative, then flipA is an antipode for
C(A,H).

Proof Because of the previous proposition, it is enough to show that flipA is a
right H-comodule endomorphism of (A ⊗ A, ρ⊗). This is easily checked since
for any a⊗ ã ∈ A⊗A one finds

ρ⊗(flipA(a⊗ ã)) = ã(0) ⊗ a(0) ⊗ ã(1)a(1)

= ã(0) ⊗ a(0) ⊗ a(1)ã(1)

= (flipA ⊗ idH)(a(0) ⊗ ã(0) ⊗ a(1)ã(1))

= (flipA ⊗ idH)(ρ⊗(a⊗ ã)).

This concludes the proof. ■

2.2.2 Twists for the ES bialgebroid

For the ES bialgebroid associated to a Hopf–Galois extension C(A,H), Defini-
tions 2.1.1 and 2.1.3 read

a⊗ ã ◁ ϕ∗ = ϕ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨2⟩

(1) ⊗ ã, (2.2-14)

ϕ∗(1A ⊗ 1A) = 1A, (2.2-15)



CHAPTER 2. HOPF ALGEBROIDS AND TWISTS FOR QUANTUM PROJECTIVE SPACES35

and

ϕ∗(a(0)c(0) ⊗ c
⟨1⟩

(1) a
⟨1⟩

(1) )a
⟨2⟩

(1) c
⟨2⟩

(1) ⊗ c̃ã

= ϕ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨2⟩

(1) ϕ∗(c(0) ⊗ c
⟨1⟩

(1) )c
⟨2⟩

(1) ⊗ c̃ã, (2.2-16)

for a⊗ ã, c⊗ c̃ ∈ C(A,H).
We now describe the group of twists for the ES bialgebroid. Let AlgH(A)

be the group of unital right H-comodule algebra automorphisms of A, with
product

F ·G = G ◦ F. (2.2-17)

Proposition 2.2.7 Let B ⊆ A be a principal H-comodule algebra, the formulas

ϕF∗ (a⊗ ã) := F (a)ã, a⊗ ã ∈ C(A,H), F ∈ AlgH(A), (2.2-18)

Fϕ∗(a) := ϕ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨2⟩

(1) , a ∈ A, ϕ∗ ∈ T∗, (2.2-19)

provide a group isomorphism between the group of twits T∗ of the bialgebroid
C(A,H) and the group AlgH(A).

Proof Let F ∈ AlgH(A) and consider ϕF∗ as in (2.2-18). Its image lies in B
since F is a H-comodule map.

ρ(F (a)ã) = F (a(0))ã(0) ⊗ a(1)ã(1) = F (a)ã⊗ 1H ,

for any a⊗ ã ∈ C(A,H). Moreover, one easily checks that it is a right B-module
morphism and it is unital too. The right action (2.1-2) here reads

a⊗ ã ◁ ϕF∗ = F (a)⊗ ã

and with this we have

ac⊗ c̃ã ◁ ϕF∗ = F (ac)⊗ c̃ã

= (F (a)⊗ ã)(F (c)⊗ c̃)

= (a⊗ ã ◁ ϕF∗ )(c⊗ c̃ ◁ ϕF∗ )

for any a ⊗ ã and c ⊗ c̃ ∈ C(A,H). Now with a second G ∈ AlgH(A), for any
a⊗ ã ∈ C(A,H), one finds

ϕF ·G
∗ (a⊗ ã) = F ·G(a)ã = G(F (a))ã = ϕG∗ (F (a)⊗ ã) = ϕF∗ ϕ

G
∗ (a⊗ ã)

and finally ϕidA∗ = ϵ. All of this shows that F → ϕF∗ is a group morphism with
(ϕF∗ )

−1 = ϕF
−1

∗ .
Conversely, if ϕ∗ ∈ T∗ is a twist the expression (2.2-19) is well-defined due

to the right B-linearity of ϕ∗ and a(0) ⊗ a
⟨1⟩

(1) ⊗ a
⟨2⟩

(1) ∈ C(A,H)⊗A. One can
easily check that Fϕ∗ is unital and from (2.2-16) for any a, c ∈ A one has

ρ ◦ Fϕ∗(a) = ϕ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨1⟩

(1) ⊗ a(2) = (Fϕ∗ ⊗ idH) ◦ ρ(a)

Fϕ∗(ac) = ϕ∗

(
a(0)c(0) ⊗ c

⟨1⟩
(1) a

⟨1⟩
(1)

)
a

⟨2⟩
(1) c

⟨2⟩
(1)

= ϕ∗

(
(a(0) ⊗ a

⟨1⟩
(1) )(c(0) ⊗ c

⟨1⟩
(1) )

)
a

⟨2⟩
(1) c

⟨2⟩
(1)

= ϕ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨2⟩

(1) ϕ∗(c(0) ⊗ c
⟨1⟩

(1) )c
⟨2⟩

(1)

= Fϕ∗(a)Fϕ∗(c).
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Thus the map Fϕ∗ is a right H-comodule algebra morphism. To prove these
equations, we used properties of the translation map in Proposition 1.2.3. Fur-
thermore, it is easy to check that ϕ∗ → Fϕ∗ is a group morphism

Fϕ∗ψ∗(a) = ϕ∗ψ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨2⟩

(1)

= ψ∗

(
ϕ∗(a(0) ⊗ a

⟨1⟩
(1) )a

⟨2⟩
(1) ⊗ a

⟨1⟩
(2)

)
a

⟨2⟩
(2)

= Fψ∗(ϕ∗(a(0) ⊗ a
⟨1⟩

(1) )a
⟨2⟩

(1) )

= Fψ∗(Fϕ∗(a)) = Fϕ∗ · Fψ∗(a)

for any a ∈ A and Fϵ = idA, thus (Fϕ∗)
−1 = Fϕ−1

∗
. Finally one has

ϕ
Fϕ∗
∗ = ϕ∗ FϕF

∗
= F,

thus finishing the proof. ■

Remark 2.2.8 The equations (2.2-18) and (2.2-19) realizing the isomorphism
between T∗ and AlgH(A) are the same that give the isomorphism between the
group of bisections of B(C(A,H)) and unital H-comodule algebra maps that
preserve the base B (vertical gauge transformations) AlgHB (A) as proved in
[24] in the context of Hopf-Galois extensions and [10] in the context of quan-
tum groups. The invertibility of aH-comodule algebra map which is not vertical
needs to be assumed in general. ♦

2.3 The U(1)-extension A(CP n−1
q ) ⊆ A(S2n−1

q )

In this final section we study a special case of Hopf–Galois extension and asso-
ciated Ehresmann–Schauenburg bialgebroid, the (non-commutative) principal
U(1)-bundle S2n−1

q → CPn−1
q over quantum projective spaces.

2.3.1 Hopf–Galois structure

Let q ∈ (0, 1) and consider the ∗-algebra generated by elements {zi,z∗i }i=1,...,n

subjected to relations:

zizj = qzjzi ∀i < j, z∗i zj = qzjz
∗
i ∀i ̸= j (2.3-1)

[z∗1 , z1] = 0, [z∗k,zk] = (1− q2)

k−1∑
j=1

zjz
∗
j ∀1 < k ≤ n (2.3-2)

n∑
j=1

zjz
∗
j = 1, (2.3-3)

with [·, ·] denoting the commutator. This algebra is called the quantum (2n−1)-
dimensional sphere denoted A(S2n−1

q ). The equations (2.3-2) can be used to
rewrite the sphere relation (2.3-3) as

n∑
j=1

q2(n−j)z∗j zj = 1 . (2.3-4)
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The entries of the projection Pij := z∗i zj form a ∗-algebra which is the q-
deformation of the coordinate algebra of the complex projective space that is
denoted by A(CPn−1

q ). The commutation relations among the generators pij
come from those in (2.3-1)-(2.3-3).

Let us denote by O(U(1)) = C[t, t−1] (Laurent polynomials) the Hopf ∗-
algebra generated by t and its inverse with involution t∗ = t−1 and with comul-
tiplication, counit and antipode given by

∆(t±) = t± ⊗ t±, ϵ(t±) = 1, S(t±) = t∓ (2.3-5)

The algebra A(S2n−1
q ) is a right C[t, t−1]-comodule ∗-algebra if endowed with

ρ : A(S2n−1
q ) −→ A(S2n−1

q )⊗C[t, t−1], zi 7−→ zi⊗t, z∗i 7−→ z∗i ⊗t−1 (2.3-6)

One checks that the subalgebra of coaction invariants in A(S2n−1
q ) is A(CPn−1

q ).
One has that A(CPn−1

q ) ⊆ A(S2n−1
q ) is a faithfully flat C[t, t−1]-Hopf–Galois

extension. This is shown by observing that the canonical map:

can : A(S2n−1
q )⊗A(CPn−1

q ) A(S
2n−1
q ) −→ A(S2n−1

q )⊗ C[t, t−1]

is surjective. One has the translation map:

τ : C[t, t−1] −→ A(S2n−1
q )⊗A(CPn−1

q ) A(S
2n−1
q )

τ(t) =

n∑
j=1

q2(n−j)z∗j ⊗A(CPn−1
q ) zj , τ(t−1) =

n∑
j=1

zj ⊗A(CPn−1
q ) z

∗
j (2.3-7)

for which one verifies, using (2.3-3) and (2.3-4) that can(τ(t±)) = 1 ⊗ t±

(which is indeed sufficient for surjectivity). Moreover, the Hopf algebra C[t, t−1]
is cosemisimple and has a bijective antipode, then from Theorem 1.2.5 and
the following remark 1.2.6 one has that A(CPn−1

q ) ⊆ A(S2n−1
q ) is a principal

C[t, t−1]-comodule algebra.

2.3.2 K-theory of the base and the bialgebroid

Equation (2.3-7) can be written more compactly using the elements in the free
module A(S2n−1

q )n ≃ A(S2n−1
q )⊗ Cn,

v =


z∗1
z∗2
...
z∗n

 , w =


q(n−1)z1
q(n−2)z2

...
zn

 (2.3-8)

which satisfy

τ(t) = w†⊗̇A(CPn−1
q )w, τ(t−1) = v†⊗̇A(CPn−1

q )v . (2.3-9)

Here the symbol ⊗̇ stands for the matrix multiplication composed with the ten-
sor product. From (2.3-3) and (2.3-4) both v and w are partial isometries of
norm 1 with respect to the natural A(S2n−1

q ) hermitian product in A(S2n−1
q )n:

(ξ, η) :=

n∑
j=1

ξ∗j ηj
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for ξ = (ξj) and η = (ηj) ∈ A(S2n−1
q )n. As a consequence the two n×n matrices

P = vv† and Q = ww† are projections with entries in the algebra A(CPn−1
q ).

They define two inequivalent classes [21, 15] in the K-theory K0(A(CPn−1
q )).

2.3.3 Full Hopf algebroid structure

Referring to the above section, set A = A(S2n−1
q ), B = A(CPn−1

q ) and H =
C[t, t−1]. The two column vectors (2.3-8) give the generators of C(A,H) in the
form of matrices V := v⊗̇v† and W := w⊗̇w† whose entries are

Vij = z∗i ⊗ zj , Wij = q(2n−i−j)zi ⊗ z∗j . (2.3-10)

It is easy to check that they are coaction invariant in A⊗A.
Any coaction invariant element in A⊗A can be written as a combination of

Vij ’s and Wij ’s. This result follows from a simple argument. In our convention
(2.3-6), z∗i are of weight −1 and zi of weight 1, then any element of weight 0 in
A ⊗ A is a combination of elements of the form z∗i ⊗ zj and zi ⊗ z∗j . The latter
are proportional to Vij and Wij .

The commutations relations of the components of the matrices V and W can
be derived from eqs.(2.3-1) and (2.3-2). For the first we have

VikVjk = q−1VjkVik, VkiVkj = q−1VkjVki, ∀i < j (2.3-11)

VikVjl = VjlVik, VilVjk = q−2VjkVil, ∀i < j, l < k (2.3-12)

while for the entries of W one finds

WikWjk = qWjkWik, WkiWkj = qWkjWki, ∀i < j (2.3-13)

WikWjl =WjlWik, WilWjk = q2WjkWil, ∀i < j, l < k . (2.3-14)

Following (2.2-4) and (2.2-5) we have that the source and target maps are given
by

s : Pij 7−→
n∑
k=1

q(j−k)VikWjk, Qij 7−→
n∑
k=1

q(k−j)WikVjk (2.3-15)

t : Pij 7−→
n∑
k=1

q(i−k)VkjWki, Qij 7−→
n∑
k=1

q(k−i)WkjVki . (2.3-16)

From these we see that the two embeddings of B into C(A,H) are given by
combination of Vij and Wij .

For the comultiplication and counit we find a similar formula as before

∆ : Vij 7−→
n∑
k=1

Vik ⊗B Vkj , Wij 7−→
n∑
k=1

Wik ⊗B Wkj (2.3-17)

ϵ : Vij 7−→ Pij , Wij 7−→ Qij . (2.3-18)

Having set the notation for the bialgebroid we are ready for the next result.

Proposition 2.3.1 Define on the generators of C(A,H) the map

S : Vij 7−→ q(j−i)Wji, Wij 7−→ q(i−j)Vji . (2.3-19)

This is an antipode of C(A,H) with inverse given by

S−1 : Vij 7−→ q(i−j)Wji, Wij 7−→ q(j−i)Vji (2.3-20)
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Proof We now check all the properties listed before. First we have that S is an
anti-algebra morphism; for any i < j one computes

S(Vjk)S(Vik) = q(k−j)q(k−i)WkjWki

= q−1(q(j−k)Wjk)(q
(i−k)Wik)

= q−1S(Vik)S(Vjk)

when we used (2.3-11). The same goes for the other relations.
Looking at (2.3-15) and the definition of S in this case, for (1.3-14) one has

S(t(Pij)) =

n∑
k=1

q(i−k)S(Wki)S(Vkj)

=

n∑
k

q(i−k)q(k−i)Vikq
(j−k)Wjk

=

n∑
k=1

q(j−k)VikWjk = s(Pij)

and with similar computations one finds the same for Qij .
For the last property, (1.3-15), firstly we have

∆(Vij) =

n∑
k=1

Vik ⊗B Vkj , ∆(S(Vik)) = q(k−i)
n∑
l=1

Wkl ⊗B Wli.

Then (1.3-15) becomes

n∑
k,l=1

q(k−i)WklVkj ⊗B Wli =

n∑
k=1

(
n∑
l=1

q(k−j)WklVkj

)
⊗B q(j−i)Wli

=

n∑
l=1

t(Qjl)⊗B q(j−i)Wli

= 1C(A,H) ⊗B q(j−i)
n∑
l=1

s(Qjl)Wli

= 1C(A,H) ⊗B q(j−i)Wji = 1C(A,H) ⊗B S(Vij)

where in second line we used the tensor product over B in (1.3-2), while in the
third one the relation

n∑
l=1

s(Qjl)Wli =Wji

this equation is (1.3-11). The same goes for the generators Wij . We prove
(1.3-16) now taking the Wij . Firstly,

∆(Wij) =

n∑
k=1

Wik ⊗B Wkj , ∆(S−1(Wkj)) = q(j−k)
n∑
l=1

Vjl ⊗B Vlk.
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Thus, one gets

n∑
k,l=1

q(j−k)Vjl ⊗B VlkWik = q(j−i)
n∑
l=1

Vjl ⊗B
n∑
k=1

q(i−k)VlkWik

= q(j−i)
n∑
l=1

Vjl ⊗B s(Pli)

= q(j−i)
n∑
l=1

t(Pli)Vjl ⊗B 1C(A,H)

= q(j−i)Vji ⊗B 1C(A,H) = S−1(Wij)⊗B 1C(A,H).

Between the second and third line, we used again the identification (1.3-2) and

n∑
l=1

t(Pli)Vjl = Vji,

is again (1.3-11). Similar computations follow if one considers the generators
Vij .

Being Vij , Wij generators of C(A,H) we can conclude that the map S of
(2.3-19) is the invertible antipode of the Ehresmann–Schauenburg bialgebroid
associated to the C[t, t−1]-Hopf–Galois extension A(CPn−1

q ) ⊆ A(S2n−1
q ), bial-

gebroid that is indeed a Hopf algebroid. ■

We are now in the situation of having two antipodes on the bialgebroid
associated with the extension A(CPn−1

q ) ⊆ A(S2n−1
q ). Indeed, being the Hopf

algebra C[t, t−1] commutative, we saw in Proposition 2.2.6 and 2.2.1 that the
map flipA(S2n−1

q ) is an antipode, its action on the generators is given by

flipA(S2n−1
q )(Vij) = q(i+j−2n)Wji, flipA(S2n−1

q )(Wij) = q(2n−i−j)Vji.

We have proved also that the map (2.3-19) is. Using the theory developed in
subsection 2.2, we find that the two are related by the twist

ψ∗(Vij) = q2(i−n)Pij , ψ∗(Wij) = q2(n−j)Qij , (2.3-21)

and thus by 2.1.4 we get

flipA(S2n−1
q )(·) = S(· ◁ ψ∗). (2.3-22)

We retrieve the whole group of twists from Proposition 2.2.7 For the U(1)-
Hopf–Galois extension A(CPn−1

q ) ⊆ A(S2n−1
q ) one has T∗ ≃ (C∗)n.

Proof We first find the group AlgO(U(1))(A(S2n−1
q )) and then use the isomor-

phism of Proposition 2.2.7 as mentioned before. One can check easily that any
right H-comodule endomorphism of A has the form

F (zi) = Xizi, F (z∗i ) = Yiz
∗
i ,

where Xi, Yi ∈ A(CPn−1
q ). The invertible ones are such that Xi, Yi ∈ C∗ (non-

zero complex numbers) since they are all the invertible elements in A(CPn.1q ).
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Moreover, we require F (1A) = 1A. The above expression is an algebra mor-
phism if Yi = X−1

i (so that it preserves the sphere relations). Using (2.2-18)
the action of twists on the generators of C(A(S2n−1

q ), O(U(1))) is

ϕF∗ (Vij) = X−1
i Pij ϕF∗ (Wij) = XiQij . (2.3-23)

This finishes the proof. ■





Chapter 3

Chern-Weil theory for
deformed Hopf-Galois
extensions

In this chapter we first review the Chern-Weil theory developed in [23] for coal-
gebras extensions.

The classical Chern-Weil map [28] allows one to find characteristic classes
of principal and vector bundles. Characteristic classes are global invariants of
the base manifold M of the bundle and allow one to prove the non-triviality of
the bundle: if some class is non-trivial, then also the bundle is. The Chern-Weil
map computes characteristic classes in terms of curvature form of connections
in the de Rham cohomology of the base manifold H∗

dR(M). Given a principal
G-bundle on M (G is a Lie group), the curvature form of a connection ∇ is a
Lie algebra-valued 2n-form Ω∇ where n is the dimension of M . If we denote by
K[g]G ring of adjoint-invariant K-valued polynomials of the Lie algebra g, the
Chern-Weil map is given by

Chw : K[g]G −→ H2n
dR(M), f 7−→ f(Ω∇).

Examples of classes obtained in this way are the Chern classes, the Chern char-
acter, and the Pontrjagin classes.

In noncommutative geometry, and more specifically in Hopf-Galois theory,
the Chern character was first found [7]. While the general theory has been
recently developed in [23]. In this setting, the domain of the Chern-Weil map
is the spaces of cotraces of the coalgebra and is valued in the cyclic homology of
the base algebra.

3.1 The general construction

In this section, we recall some definitions of the cyclic homology of algebras
that we need to define the Chern-Weil map properly, Our main reference is
[31]. This homology theory is the noncommutative version of the de Rham
cohomology theory.

42
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3.1.1 Hochschild and cyclic homology

In its full generality, Hochschild homology for any bimoduleM over any algebra
B. For us, the case M = B is enough. The motivation for this homology
theory lies in the Hochschild-Kostant-Rosenberg theorem [18] that characterizes
Hochschild homology for commutative algebras.

Given an algebra B, define the complex Cn(B) := B⊗(n+1). Moreover, in-
troduce the face operators

Lemma 3.1.1 Given the maps di : Cn(B) −→ Cn−1(B)

d0(b0 ⊗ · · · ⊗ bn) := b0b1 ⊗ · · · ⊗ bn,

di(b0 ⊗ · · · ⊗ bn) := b0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn, 1 ≤ i ≤ n

dn(b0 ⊗ · · · ⊗ bn) := bnb0 ⊗ · · · ⊗ bn−1.

One has that d :=
∑n
i=0(−1)idi satisfies d◦d = 0. The same holds for the truncated

operator d′ :=
∑n−1
i=0 (−1)idi.

Having this, we can give the following

Definition 3.1.2 For any algebra B the Hochschild complex is the datum of
(C∗(B), d), as above for which one has the sequence

. . .
d−→ Cn(B)

d−→ Cn−1(B)
d−→ Cn−2(B)

d−→ . . .
d−→ C0(B)

The n− th Hochschild homology group of B is the quotient

HHn(B) :=
Ker(d : Cn(B) −→ Cn−1(B))

Im(d : Cn+1(B) −→ Cn(B))

We denote by HH∗(B) = ⊕n≥0HHn(B). ♦

There is a natural action of the cyclic group Zn+1 on Cn(B) given by

tn(b0 ⊗ · · · ⊗ bn) = (−1)n(bn ⊗ b0 · · · ⊗ bn−1). (3.1-1)

for tn ∈ Zn+1 the generator. It is straightforward to check that tn+1 = id. The
Zn+1-invariant elements in Cn(B) are called cyclic tensor, and we denote them
by Cδn(B) := Cn(B)/Ker(δ) where δ := id−tn. Thanks to this result

Lemma 3.1.3 Let N := 1+ t+ · · ·+ tn : Cn(B) −→ Cn(B) be the norm operator,
then the following equations hold

(id−t)d′ = d(id−t), d′N = Nd,

where d and d′ are the operators in 3.1.1.

we can define a new complex

Definition 3.1.4 The Connes complex is the datum of (Cδ∗(B), d) for which
one has the sequence

. . .
d−→ Cδn(B)

d−→ Cδn−1(B)
d−→ Cδn−2(B)

d−→ . . .
d−→ Cδ0(B)

The n− th cyclic homology group of B is the quotient

HCn(B) :=
Ker(d : Cδn(B) −→ Cδn−1(B))

Im(d : Cδn+1(B) −→ Cδn(B))
♦
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For commutative algebras, one finds that the cyclic homology is expressed
by the de Rham cohomology of the space associated with the algebras [11].

Hochschild and cyclic homology are related via a long exact sequence discov-
ered by Connes who introduced the so-called periodicity operator P : HCn(B) −→
HCn−2(B), To write down explicitly P , we need to introduce some tools. First
of all, if x ∈ Cn(B) we denote by x̄ the corresponding element in Cδn(B). More-
over, we define the map

d[2] :=

n∑
i,j=0

(−1)i+jdidj : Cn(B) −→ Cn−2(B).

At this point, the periodicity operator has the following expression

P ([x̄]) := − 1

n(n− 1)
[d[2](x)], (3.1-2)

where [x̄] ∈ HCn(B) denotes the homology class of x̄.

3.1.2 The space of cotraces and the Chern-Weil map

Given a Hopf algebra H we have the following vector space

Htr := {h ∈ H|h(1) ⊗ h(2) = h(2) ⊗ h(1)} (3.1-3)

that we call the space of cotraces. The name is justified by the fact that any
element of Htr defines a trace in the space Hom(H,K), in fact for h ∈ Htr one
has

τh : Hom(H,K) −→ K, f 7−→ f(h) (3.1-4)

for which one finds that τh(f ∗ g) = τh(g ∗ f) for all f, g ∈ Hom(H,K). For the
Hopf algebra O(G) of example 1.1.10 we have that

O(G)tr = {f ∈ O(G)|f(gh) = f(hg), ∀g, h ∈ G}
= {f ∈ O(G)|f(hgh−1) = f(g),∀g, h ∈ G}
= O(Ad(G))G,

which is the algebra of adjoint invariant elements. Via a filtration using the
ideal ker(ϵ) (as shown in [23]), this algebra gives the algebra K[g]G of adjoint-
invariant polynomials on the Lie algebra g, which we saw being the domain of
the classical Chern-Weil map.

In general, the space of cotraces is characterized by the following property

Lemma 3.1.5 ([23]) For any n ∈ N the multiplication of H induces a linear
isomorphism

Htr ≃ H □H⊗Hop

(H □H · · · □H H︸ ︷︷ ︸
n+1

)

Applying the counit to the leftmost factor of H □H⊗Hop

(H □H · · · □H H︸ ︷︷ ︸
n+1

) we

have a circular cotensor product.
Consider now a principalH-comodule algebraB ⊆ A and the space A □H A

which is identified with (A⊗A)coH via Lemma 2.2.1. For the rest of the section,
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we use the short notation M := A □H A. Recall that the latter has a B-coring
structure with counit given by equation (2.2-2). Because this map is left B-
linear we can define a multiplication in the following way

m ·m′ := ϵ(m)m′ (3.1-5)

Remark 3.1.6 We saw in the previous chapter that M is a subalgebra of A ⊗
sAop. In general, this algebra structure and the one given by (3.1-5) are differ-
ent. ♦

With this algebra structure, we consider the cyclic homology HC∗(M) and we
collect a series of lemmas in the following

Proposition 3.1.7 ([23]) A strong connection l : H −→ A⊗A induces a map

cn(l) : H
tr −→M⊗(n+1), h 7−→ l(h(1))⊗ · · · ⊗ l(h(n+1))

for any n ∈ N, where M⊗(n+1) is thought as a circular tensor product. Moreover
this element

cn(l)(h) :=
(
h

⟨2⟩
(n+1) ⊗ h

⟨1⟩
(1)

)
⊗ · · · ⊗

(
h

⟨2⟩
(n) ⊗ h

⟨1⟩
(n+1)

)
is cyclic-symmetric in M⊗(n+1) and for any face operator di with i = 0, . . . , n one
has

dicn(l)(h) = cn−1(l)(h), ∀h ∈ Htr

This result allows one allows us to define a 2n-cycle in the cyclic homology
of HC2n(M), which form is given by

c̃hwn(l)(h) :=

2n∑
i=0

(−1)⌊
i
2 ⌋

i!

⌊ i2⌋!
ci(l)(h), h ∈ Htr. (3.1-6)

The fact that c̃hwn(l)(h) defines a 2n-cycle follows from the identities

d(2c2n(l)(h)) = (1− t)c2n−1(l)(h) (3.1-7)

d′(nc2n−1(l)(h)) = Nc2n−2(l)(h) (3.1-8)

for all h ∈ Htr. Moreover, it is stable under the periodicity operator (3.1-2).
We can now use the counit (2.2-2) to induce a map from M⊗(n+1) into

B⊗(n+1), this is done by applying it to every factor of the tensor product. For
any n ∈ N one has the formula for any h ∈ Htr

xn(l, h) :=
(
ϵ⊗(n+1) ◦ cn(l)

)
(h) = h

⟨2⟩
(n+1) h

⟨1⟩
(1) ⊗· · ·⊗h ⟨2⟩

(n) h
⟨1⟩

(n+1) ∈ B⊗(n+1).

(3.1-9)
Thus, we have the following

Definition 3.1.8 For any principal H-comodule algebra B ⊆ A with strong
connection l, the Chern-Weil map is given by

chwn(l) : H
tr −→ HC2n(B), h 7−→

2n∑
i=0

(−1)⌊
i
2 ⌋

i!

⌊ i2⌋!
xi(l, h) ♦
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3.2 Chern-Weil map for deformed extensions

We now study how the Chern-Weil map behaves under a 2-cocycle deformation
of a principal comodule algebra. First, we deform the structure Hopf algebra H
and the algebra A, then we consider extensions with an external symmetry K
and deform both A and B.

3.2.1 Deformation of the structure Hopf algebra

Let now B ⊆ A be a principal H-comodule algebra and γ : H ⊗ H −→ K an
invertible 2-cocycle of H. Since the deformation Hγ involves only the multipli-
cation and not the multiplication, we have

Htr
γ ≃ Htr (3.2-1)

Moreover, we have the following result

Lemma 3.2.1 The spaces M = A □H A and Mγ = Aγ □Hγ Aγ are isomorphic
as vector space.

Proof From lemma 2.2.1 we have that M ≃ (A ⊗ A)coH and Mγ ≃ (Aγ ⊗
Aγ)

coHγ . The statement follows from the isomorphism of Theorem 1.1.22. ■

Despite having the same underlying linear structure M and Mγ have different
algebra structures. The multiplication on Mγ is given by the formula

m ·γ m′ := ϵγ(m)m′ (3.2-2)

Explicitly, given a⊗γ ã, a′ ⊗γ ã′ ∈Mγ one has

(a⊗γ ã) ·γ (a′ ⊗γ ã′) = (a ·γ ã) ·γ a′ ⊗γ ã′

where now ·γ is the multiplication (1.1-11).
We saw in the first chapter that the subalgebra B does not change under

the deformation via γ, i.e. Bγ = B. Thus, the cyclic homology is the same
HC∗(Bγ) = HC∗(B) and we have the diagram

Hγ HC2n(Bγ)

H HC2n(B),

chwn(lγ)

≃ ≃

chwn(l)

so that chwn(lγ) = chwn(l), where lγ is the strong connection of 1.2.13.
We now prove this equivalence explicitly by showing how there are cancel-

lations of the 2-cocycle in the formulas.

Proposition 3.2.2 For any n ∈ N the map

cn(lγ) : H
tr
γ −→M⊗(n+1)

γ

h 7−→ h
⟨2⟩

(2n+2) ⊗γ h ⟨1⟩
(2) ⊗γ · · · ⊗γ h ⟨2⟩

(2n) ⊗γh ⟨1⟩
(2n+2) uγ(h(1))uγ(h(3)) . . . uγ(h(2n+1))

is well-defined and its image lies in the cyclic-symmetric part ofM⊗(n+1)
γ . Moreover

for any face operator di with i = 0, . . . , n one has

dicn(lγ) = cn−1(lγ)
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Proof We are looking at M⊗(n+1)
γ as a circular tensor product, so that for n = 1

we have that

c1(lγ)(h) = h
⟨2⟩

(4) ⊗γ h ⟨1⟩
(2) ⊗γ h ⟨2⟩

(2) ⊗γ h ⟨1⟩
(4) uγ(h(1))uγ(h(3))

To check that this element lies in M⊗2
γ we apply first ρ⊗

γ ⊗ id and id⊗ ρ⊗
γ

(ρ⊗
γ

⊗γ id)(c1(lγ)(h)) =

= h
⟨2⟩

(4) (0) ⊗
γ h

⟨1⟩
(2) (0) ⊗ h

⟨2⟩
(4) (1) ·γ h

⟨1⟩
(2) (1) ⊗ h

⟨2⟩
(2) ⊗γ h ⟨1⟩

(4) uγ(h(1))uγ(h(3))

= h
⟨2⟩

(5) ⊗γ h ⟨1⟩
(3) ⊗ h(6) ·γ S(h(2))⊗ h

⟨2⟩
(3) ⊗γ h ⟨1⟩

(5) uγ(h(1))uγ(h(4))

= h
⟨2⟩

(5) ⊗γ h ⟨1⟩
(3) ⊗ h(6) ·γ Sγ(h(3))⊗ h

⟨2⟩
(3) ⊗γ h ⟨1⟩

(5) uγ(h(1))u
−1
γ (h(2))uγ(h(4))uγ(u(5))

= h
⟨2⟩

(5) ⊗γ h ⟨1⟩
(3) ⊗ h(6) ·γ Sγ(h(1))⊗ h

⟨2⟩
(3) ⊗γ h ⟨1⟩

(5) uγ(h(2))uγ(h(4))

= h
⟨2⟩

(4) ⊗γ h ⟨1⟩
(2) ⊗ 1Hγ

⊗ h
⟨2⟩

(2) ⊗γ h ⟨1⟩
(4) uγ(h(1))uγ(h(3))

where in the second equality we used the properties of the translation map, in
the third one the definition of Sγ , then the fact that uγ is convolution invertible,
in the second last equality we used the identification Htr

γ ≃ Htr and Lemma
something for Htr and finally the definition of the antipode.

(id⊗γ ρ⊗
γ

)(c1(lγ)(h)) =

= h
⟨2⟩

(4) ⊗γ h ⟨1⟩
(2) ⊗γ h ⟨2⟩

(2) (0) ⊗
γ h

⟨1⟩
(4) (0) ⊗ h

⟨2⟩
(2) (1) ·γ h

⟨1⟩
(4) (1)uγ(h(1))uγ(h(3))

= h
⟨2⟩

(6) ⊗γ h ⟨1⟩
(2) ⊗γ h ⟨2⟩

(2) ⊗γ h ⟨1⟩
(6) ⊗ h(3) ·γ S(h(5))uγ(h(1))uγ(h(4))

= h
⟨2⟩

(8) ⊗γ h ⟨1⟩
(2) ⊗γ h ⟨2⟩

(2) ⊗γ h ⟨1⟩
(8) ⊗ h(3) ·γ Sγ(h(6))uγ(h(1))uγ(h(4))u

−1
γ (h(5))uγ(h(7))

= h
⟨2⟩

(6) ⊗γ h ⟨1⟩
(2) ⊗γ h ⟨2⟩

(2) ⊗γ h ⟨1⟩
(6) ⊗ h(3) ·γ Sγ(h(4))uγ(h(1))uγ(h(5))

= h
⟨2⟩

(4) ⊗γ h ⟨1⟩
(2) ⊗γ h ⟨2⟩

(2) ⊗γ h ⟨1⟩
(4) ⊗ 1Hγuγ(h(1))uγ(h(3))

where, in order, we once more used the properties of the translation map, the
definition of Sγ , and the invertibility of uγ .

For the second part of the statement, we just need to check that the equality
holds for i = 0, and then it follows from induction that it is true for any other
i > 0. For any h ∈ Hγ , one has

d0(cn(lγ)(h)) =

= (h
⟨2⟩

(2n+2) ·γ h ⟨1⟩
(2) ) ·γ h ⟨2⟩

(2) ⊗γ · · · ⊗γ h ⟨2⟩
(2n) ⊗γ h ⟨1⟩

(2n+2) uγ(h(1)) . . . uγ(h(2n+1))

= h
⟨2⟩

(2n) ·γ (h ⟨1⟩
(2) ·γ h ⟨2⟩

(2) uγ(h(1)))⊗γ · · · ⊗γ h
⟨2⟩

(2n) ⊗γ h ⟨1⟩
(2n+2) uγ(h(3)) . . . uγ(h(2n+1))

= h
⟨2⟩

(2n) ⊗γ h ⟨1⟩
(2) ⊗γ · · · ⊗γ h ⟨2⟩

(2n−2) ⊗γ h ⟨1⟩
(2n) uγ(h(1)) . . . uγ(h(2n−1)) = cn−1(lγ)(h)

we used the definition of the counit and 1.2.13. ■

This lemma allows us to define a map c̃hwn(lγ) : Htr
γ −→ HC2n(Mγ) in

the same way as the non-deformed case, equation 3.1-6. Applying the counit
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ϵ
⊗(n+1)
γ after the map cn(lγ) we have the element (ϵ

⊗γ(n+1)
γ ◦ cn(lγ))(h) with

h ∈ Htr
γ

h
⟨2⟩

(2n+2) ·γ h ⟨2⟩
(2n+2) ⊗γ · · · ⊗γ h ⟨2⟩

(2n) ·γ h ⟨1⟩
(2n+2) uγ(h(1)) . . . uγ(h(2n+1))

= h
⟨2⟩

(5n+4) h
⟨1⟩

(4) ⊗γ · · · ⊗γ h ⟨2⟩
(5n−1) h

⟨1⟩
(5n+4)

γ−1(h(5n+5), S(h(3))) . . . γ
−1(h(5n), S(h(5n+3)))γ(h(1), S(h(2))) . . . γ(h(5n+1), S(h(5n+2)))

= h
⟨2⟩

(n+4) h
⟨1⟩

(4) ⊗γ · · · ⊗γ h ⟨2⟩
(n+3) h

⟨1⟩
(n+4) γ−1(h(n+5), S(h(3)))γ(h(1), S(h(2)))

= h
⟨2⟩

(n+3) h
⟨1⟩

(3) ⊗γ · · · ⊗γ h ⟨2⟩
(n+2) h

⟨1⟩
(n+3) (γ−1 ∗ γ)(h(1), S(h(2)))

= h
⟨2⟩

(n+1) h
⟨1⟩

(1) ⊗γ · · · ⊗γ h ⟨2⟩
(n) h

⟨1⟩
(n+1)

that belongs to the algebra B⊗γ(n+1) and when we put it in the formula of the
Chern-Weil map we get

chwn(l) = chwn(lγ) (3.2-3)

In other words, the cyclic homology Chern-Weil map a is deformation invariant.

3.2.2 Deformation of an external symmetry

In this case, we consider a (K,H)-bicomodule algebra such that B ⊂ A is a
principal H-comodule algebra and we take a 2-cocycle of the external symmetry
σ : K ⊗ K −→ K. We saw that both A and B are deformed into Aσ and Bσ ,
while the structure Hopf algebra H remains the same.

Like in the preview case, we have the linear isomorphism M = A □H A ≃
Mσ = Aσ □H Aσ . The reason is the same as in Lemma 3.2.1. The counit on
Mσ is

ϵσ : Mσ −→ Bσ , a ⊗σ ã 7−→ σ
(
a(−1), ã(−1)

)
a(0)ã(0), (3.2-4)

thus the algebra structure is given by the multiplication

m •σ m′ := ϵσ (m)m′. (3.2-5)

We remark that in the latter formula, the product (1.1-13) is used, so explicitly
we have

µ Mσ
(a ⊗σ ã⊗ a′ ⊗σ ã′) = ϵσ (a ⊗σ ã) •σ a′ ⊗σ ã′

where now •σ is the multiplication in Aσ .
For a deformation via a 2-cocycle σ of an external Hopf algebra K we have

the following result

Proposition 3.2.3 For any n ∈ N the map

cn( lσ ) : Htr −→ M⊗(n+1)
σ

h 7−→ σ−1(h
⟨1⟩

(1) (−1), h
⟨2⟩

(1) (−1)) . . . σ
−1(h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (−1))

h
⟨2⟩

(n+1) (0) ⊗σ h
⟨1⟩

(1) (0) ⊗σ . . . ⊗σ h
⟨2⟩

(n) (0) ⊗σ h
⟨1⟩

(n+1) (0)

is well-defined and its image lies in the cyclic-symmetric part of M
⊗(n+1)

σ . More-
over for any face operator di with i = 0, . . . , n one has

dicn(σl) = cn−1(σl)
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Proof The proof goes in the same way as in 3.2.2. Let ρ⊗ be the diagonal
coaction of H on σA, then

(ρ⊗ ⊗σ id)(cn( lσ )(h)) =

= σ−1
(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (−1)

)
h

⟨2⟩
(n+1) (0)(0) ⊗σ h

⟨1⟩
(1) (0)(0) ⊗ h

⟨2⟩
(n+1) (0)(1)h

⟨1⟩
(1) (0)(1) ⊗σ . . . ⊗σ h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(n+1) (0)

= σ−1
(
h

⟨1⟩
(1) (0)(−1), h

⟨2⟩
(1) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (0)(−1)

)
h

⟨2⟩
(n+1) (0)(0) ⊗σ h

⟨1⟩
(1) (0)(0) ⊗ h

⟨2⟩
(n+1) (1)h

⟨1⟩
(1) (1) ⊗ . . . ⊗σ h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(n+1) (0)

= σ−1
(
h

⟨1⟩
(2) (−1), h

⟨2⟩
(2) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+2) (−1), h

⟨2⟩
(n+2) (−1)

)
h

⟨2⟩
(n+2) (0) ⊗σ h

⟨1⟩
(2) (0) ⊗ h(n+3)S(h(1))⊗ . . . ⊗σ h

⟨2⟩
(n+1) (0) ⊗σ h

⟨1⟩
(n+2) (0)

= σ−1
(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (−1)

)
h

⟨2⟩
(n+1) (0) ⊗σ h

⟨1⟩
(1) (0) ⊗ h(n+2)S(h(n+3))⊗ . . . ⊗σ h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(n+1) (0)

= σ−1
(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (−1)

)
h

⟨2⟩
(n+1) (0) ⊗σ h

⟨1⟩
(1) (0) ⊗ 1H ⊗ . . . ⊗σ h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(n+1) (0)

where we used the fact that Aσ is a K-H-bicomodule, the properties of the
strong connection and the cyclic property in Htr.

Now, if we apply the face operator d0, what we get is

d0(cn( lσ )(h)) =

= σ−1
(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (−1)

)
(h

⟨2⟩
(n+1) (0) •σ h

⟨1⟩
(1) (0)) •σ h

⟨2⟩
(2) (0) ⊗σ . . . ⊗σ h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(n+1) (0)

= σ−1
(
h

⟨1⟩
(2) (−1), h

⟨2⟩
(2) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−1), h

⟨2⟩
(n+1) (−1)

)
h

⟨2⟩
(n+1) (0) •σ

(
σ−1

(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
h

⟨1⟩
(1) •σ h ⟨2⟩

(1)

)
⊗σ . . . ⊗σ h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(n+1) (0)

= σ−1
(
h

⟨1⟩
(1) (−1), h

⟨2⟩
(1) (−1)

)
. . . σ−1

(
h

⟨1⟩
(n) (−1), h

⟨2⟩
(n) (−1)

)
h

⟨2⟩
(n) (0) ⊗σ h

⟨1⟩
(1) (0) ⊗σ . . . ⊗σ h

⟨2⟩
(n−1) (0) ⊗σ h

⟨1⟩
(n) (0) = cn−1( lσ )(h)

where we used the associativity of the product •σ and 1.2.15 ■

The counit ϵσ , together with map c̃hwn( lσ ) : Htr −→ HC2n( Mσ ), induces a
map chwn( lσ ) : Htr −→ HC2n( Bσ ) valued in the cyclic homology of the base
algebra Bσ that is defined starting with xn( lσ , h) := ( ϵσ

⊗σ (n+1) ◦ cn( lσ ))(h)

xn( lσ , h) =σ
−1
(
h

⟨1⟩
(1) (−2), h

⟨2⟩
(1) (−2)

)
. . . σ−1

(
h

⟨1⟩
(n+1) (−2), h

⟨2⟩
(n+1) (−2)

)
σ
(
h

⟨2⟩
(n+1) (−1), h

⟨1⟩
(1) (−1)

)
. . . σ

(
h

⟨2⟩
(n) (−1), h

⟨1⟩
(n+1) (−1)

)
h

⟨2⟩
(n+1) (0)h

⟨1⟩
(1) (0) ⊗σ . . . ⊗σ h

⟨2⟩
(n) (0)h

⟨1⟩
(n+1) (0).

(3.2-6)
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So we have the formula

chwn( lσ )(h) =

2n∑
i=0

(−1)⌊
i
2 ⌋

i!

⌊ i2⌋!
xi( lσ , h), h ∈ Htr (3.2-7)

We notice in this case that there is no cancellation of the cocycle σ in the
final formula. Then under a deformation of this type, we have the Chern-Weil
map changes.

3.2.3 Deformations combined

If we now take 2-cocycles γ of H and σ of K for a (K,H)-bicomoule algebra
A such that B ⊆ A is a H-comodule algebra, we consider the deformations
Kσ , Hγ , Aσ γ and Bσ we saw that we get a principal Hγ-comodule algebra
Bσ γ ⊆ Aσ γ with strong connection lσ γ .

The Chern-Weil map in this case takes the form of the equation 3.2-6 since
the deformations commute and we proved that chwn(l) = chwn(lγ).

3.3 Pushforward property of the Chern-Weil map

In this section that closes the chapter, we review the theory of the noncommuta-
tive Chern character for Hopf-Galois extensions, which is known as the Chern-
Galois character. Under suitable assumptions on the structure Hopf algebra H
this object allows us to prove the functoriality of the Chern-Weil map.

3.3.1 The Chern-Galois character

Let B ⊆ A be a principal H-comodule algebra and (V, φ) a finite-dimensional
corepresentation of H. By this we mean a left H-comodule V with coaction
φ : V −→ H ⊗ V . For any basis {ei}i=1,...,n:=dim(V ) of V , we have

φ(ei) =

n∑
j=1

cij ⊗ ej . (3.3-1)

Define for any corepresentation the element

cφ :=

n∑
i=1

cii ∈ H. (3.3-2)

Following [7] one can construct matrix with coefficients valued in B using
(3.3-2) and any unital left B-linear map ϖ ∈ HomB (A,B). Given a basis {aI}
of A and its dual {αI} the coefficient of the matrix are given by

E(I,i)(J,j) := ϖ(αI(cij)aJ). (3.3-3)

Denoting the matrix with coefficients (3.3-3) by E, one can prove that

E2 = E, BNE ≃ A □H V, (3.3-4)
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for someN ∈ N and the isomorphism is in the category of leftB-modules. Thus,
the left B-module A □H V is finitely generated and projective.

The set of isomorphism classes of finite-dimensional corepresentations of H
is a semi-group with respect to the direct sum. Its Grothendieck group [2] is
denoted by Corepf (H). The above construction then defines a group morphism

Corepf (H) −→ K0(B), [(φ, V )] 7−→ [A □H V ]. (3.3-5)

If one applies now the Chern character [31, 11] which is a map

chn : K0(B) −→ HC2n(B), (3.3-6)

to the class [A □H V ] obtains a map

chgn : Corepf (H) −→ HC2n(B)

[(φ, V )] 7−→
2n∑
j=0

(−1)⌊
j
2 ⌋

j!

⌊ j2⌋!
[
∑

i1,...,ij+1

c
⟨2⟩

i1i2
c

⟨1⟩
i2i3

⊗ · · · ⊗ c
⟨2⟩

ij+1i1
c

⟨1⟩
i1i2

],

(3.3-7)

which is called the Chern-Galois character. The latter does not depend on the
choice of the strong connection l(h) = h⟨1⟩ ⊗ h⟨2⟩ because different connec-
tions yield an idempotent representing the same class in K0(B) and the Chern
character chn does depend on the choice of the idempotent.

Recalling the equation

∆(cij) =

n∑
k=1

cik ⊗ ckj ,

we have that the element (3.3-1) is a cotrace. Thus, we can define χ : Corepf (H) −→
Htr sending (φ, V ) 7−→ cφ. This is a character of the coreprensentation (φ, V )
and does not depend on the basis chosen. Applying the Chern-Weil map yields
another map

Corepf (H) −→ HC2n(B),

that makes the following diagram commute

Corepf (H) K0(B)

Htr HC2n(B).

[A□H−]

χ chn

chwn(l)

(3.3-8)

One has that the diagonal of the diagram is the Chern-Galois character (3.3-7)
and because the latter does not depend on the choice of the strong connection,
so does not chwn. In this particular situation, we retrieve the independence of
the Chern-Weil map on the connection of the bundle (Hopf-Galios extension).
In general, one has the following

Theorem 3.3.1 ([23]) Let B ⊆ A be a principal H-comodule algebra. Suppose
the space of cotraces is linearly generated by the characters of the finite-dimensional
corepresentations of H. In that case, the Chern-Weil map does not depend on the
choice of a strong connection.
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Considering deformations via 2-cocycles, we have that the same result holds.
For a deformation of the structure Hopf algebra H and the algebra A, we have
that the Chern-Galois character does not change. In proposition 3.2.2 and fol-
lowing discussion we saw that also the Chern-Weil map does not change, so
theorem 3.3.1 applies. If we deform the algebras A and B with a 2-cocycle of
an external symmetryK, one can show with the same type of computations per-
formed in the proof of 3.2.3 that the Chern-Galois character make the following
diagram commute

Corepf (H) K0( Bσ )

Htr HC2n( Bσ ),

[ Aσ □H−]

χ chn

chwn( lσ )

and under the hypothesis of 3.3.1, the same result holds.

3.3.2 Pushforward

In this subsection, that closes the chapter, we study how the Chern-Weil map
behaves with respect to a pullback of bundles. We start by stating and proving
the following

Proposition 3.3.2 Let B ⊆ A be a principal H-comodule algebra, Ā a right H-
comodule algebra with coaction invariant elements B̄, and f : A −→ Ā a unital
right H-comodule algebra morphism. Then the have

1. The restriction of f to B and corestricts to B̄,

2. B̄ ⊆ Ā is a principal H-comodule algebra,

3. The is a left B̄-linear and right H-colinear isomorphism Ā ≃ B̄ ⊗B A.

Proof The first statement is trivial. For the second we prove that the map

l̄ := (f ⊗ f) ◦ l : H −→ Ā⊗ Ā

is a strong connection for B̄ ⊆ Ā by checking the defining equations (1.2-8)-
(1.2-10). Let h be any element in H:

[(idĀ ⊗ ρ̄) ◦ l̄](h) = f(h⟨1⟩)⊗ f(h⟨2⟩)(0) ⊗ f(h⟨2⟩)(1)

= f(h⟨1⟩)⊗ f(h
⟨2⟩

(0))⊗ h
⟨2⟩

(1)

= f(h
⟨1⟩

(1) )⊗ f(h
⟨2⟩

(1) )⊗ h(2) = [(l̄ ⊗ idH) ◦∆](h),

where in the second line we used that f is a right H-comodule morphism and
in the third one equation (1.2-3). Moving on, we find

[(λĀ ⊗ idĀ) ◦ l̄](h) = S−1(f(h⟨1⟩)(1))⊗ f(h⟨1⟩)(0) ⊗ f(h⟨2⟩)

= S−1(S(h(1)))⊗ f(h(2)
⟨1⟩)⊗ f(h(2)

⟨2⟩)

= h(1) ⊗ f(h(2)
⟨1⟩)⊗ f(h(2)

⟨2⟩) = [(idH ⊗ l̄) ◦∆](h),
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we used again that f is a right H-comodule morphism and in the third line
equation (1.2-4). Finally, we have

(canĀ ◦πB ◦ l̄)(h) = f(h⟨1⟩)f(h⟨2⟩)(0) ⊗ f(h⟨2⟩)(1)

= f(h⟨1⟩)f(h
⟨2⟩

(0))⊗ h
⟨2⟩

(1)

= f(h⟨1⟩h
⟨2⟩

(0))⊗ h
⟨2⟩

(1) = 1Ā ⊗ h.

We used that f is a H-colinear algebra morphism and the definition of transla-
tion map (1.2-2).

To prove the third statement, observe that the algebra B̄ is a B-bimodule via
the map f |B . Then B̄ ⊗B A is well-defined and inside this space, we have the
identification

b̄f(b)⊗B a = b̄⊗B ba

for any b̄ ∈ B̄, b ∈ B and a ∈ A. Define the linear maps

ϕ : Ā −→ B̄ ⊗B A, ā 7−→ ā(0)f(ā
⟨1⟩

(1) )⊗B ā ⟨2⟩
(1)

ψ : B̄ ⊗B A −→ Ā, b̄⊗B a 7−→ b̄f(a)

it is easy to check that they are left B̄-module and right H-comodule morphism.
Moreover ϕ lands into B̄ ⊗B A since

(ρ̄⊗B idA)(ϕ(ā)) = ā(0)f(ā
⟨1⟩

(2) (0))⊗ ā(1)ā
⟨2⟩

(2) (1) ⊗B ā
⟨2⟩

(2)

= ā(0)f(ā
⟨1⟩

(2)(2) )⊗ ā(1)S(ā(2)(1))⊗B ā
⟨2⟩

(2)(2)

= ā(0)f(ā
⟨1⟩

(3) )⊗ ā(1)S(ā(2))⊗B ā
⟨2⟩

(3)

= ā(0)f(ā
⟨1⟩

(1) )⊗ 1H ⊗B ā ⟨2⟩
(1)

in order we used the fact that f is a right H-comodule morphism, the coassocia-
tivity of the coproduct, equation (1.2-4) and the antipode equation h(1)S(h(2)) =
ϵ(h) for all h ∈ H.

We are now ready to prove that they are the inverse of each other:

(ϕ ◦ ψ)(b̄⊗B a) = b̄f(a(0))f(a
⟨1⟩

(1) )⊗B a ⟨2⟩
(1) = b̄f(a(0)a

⟨1⟩
(1) )⊗B a ⟨2⟩

(1) = b̄⊗B a

(ψ ◦ ϕ)(ā) = ā(0)f(ā
⟨1⟩

(1) )f(ā
⟨2⟩

(1) ) = ā(0)f(ā
⟨1⟩

(1) ā
⟨2⟩

(1) ) = ā(0)ε(ā(1)) = ā
■

Because we are assuming that the antipode of H is bijective, the right H-
colinear morphism f is also left H-colinear. Thus, the above result also holds in
the left case, namely

Ā ≃ A⊗B B̄, (3.3-9)

where B̄ is a left B-module with the action given by f . This is an isomorphism
of right B̄-modules and left H-comodules.

Remark 3.3.3 This result is the noncommutative analog of the pullback princi-
pal bundle. If P −→ P/G is a topological principal G-bundle and F : P ′ −→ P
is a G-equivariant continuous map, then P ′ is a G-space such that the action
is free and transitive on the fibers of P ′ −→ P ′/G. Moreover, one has the
homeomorphism P ′ ≃ P ′/G×P/G P [22]. ♦
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If we denote by HCf : HC∗(B) −→ HC∗(B̄) the induced cyclic homology
map by f , we have the following

Proposition 3.3.4 The Chern-Weil map associated with the principalH-comodule
algebra satisfies for any n ∈ N

chwn(l̄) = HCf ◦ chwn(l).

Proof Consider the strong connection of proposition 3.3.2 and the element that
defines the homology class xn(l̄, h) for h ∈ Htr, then

xn(l̄, h) = f(h
⟨2⟩

(n+1) h
⟨1⟩

(1) )⊗ · · · ⊗ f(h
⟨2⟩

(n) h
⟨1⟩

(n+1) )

= f(h
⟨2⟩

(n+1) )f(h
⟨1⟩

(1) )⊗ · · · ⊗ f(h
⟨2⟩

(n) )f(h
⟨1⟩

(n+1) ) = HCf(xn(l, h)).

this concludes the proof. ■

If we consider a deformation via a 2-cocycle of the structure of algebra H,
we have that for any unital right H-comodule algebra morphism f : A −→ Ā is
also a unital right Hγ-comodule algebra f : Aγ −→ Āγ

f(a) ·γ f(a′) = f(a)(0)f(a
′)(0)γ

−1(f(a)(1), f(a
′)(1))

= f(a(0))f(a
′
(0))γ

−1(a(1), a
′
(1))

= f(a(0)a
′
(0))γ

−1(a(1), a
′
(1))) = f(a ·γ a′).

(3.3-10)

Thus, we can prove the proposition 3.3.2 in the same way to get the strong
connection l̄γ making B̄ ⊆ Āγ a principal Hγ-comodule algebra. After this
consideration, we have also that proposition 3.3.4 is valid.

In case we consider a deformation via a 2-cocycle σ of an external symmetry
K, to have the same type of result, it is sufficient to ask that map f : A −→ Ā is
a (K,H)-bicomodule algebra morphism. In this way, we have an induced map
from Aσ to Āσ because of (3.3-10). Thus, the results 3.3.2 and 3.3.4 hold also
in this case.





Chapter 4

Morita equivalence for the
Ehresmann-Schauenburg
algebroid

In this final chapter, we collect some partial results about the Morita theory
of noncommutative Hopf algebroid. The commutative case has been studied in
detail in [16] and is a dualization of the corresponding theory for groupoids. We
define in this chapter what a bibundle is for two bialgebroids. Then we prove
the noncommutative version of the classical result of the Morita equivalence
between the gauge groupoid of a principal G-bundle and the structure group.

In the following when we say Hopf algebroid, we refer to definition of
Schauenburg 1.3.5.

4.1 Bibundles

We briefly review the theory of bibundle for Lie groupoids and then give the
corresponding definition for Hopf algebroid. We point out that in the latter
case, the notion of bibundle does not define an equivalence relation in general.

4.1.1 The case of groupoids

Let Ω ⇒ Ω0 be Lie groupoid and P another manifold

Definition 4.1.1 An action of Ω ⇒ Ω0 on P is the datum of a smooth map
f : P −→ Ω0 and a smooth map

Ω×Ω0
P −→ P, (ω, p) −→ ω ▷ p,

such that
(ω ◦ ω′) ▷ p = ω ▷ (ω′ ▷ p), ids(ω0) ▷p = p,

for all (ω, ω′) ∈ Ω2, p ∈ P and ω0 ∈ Ω0.
We say that a manifold with a groupoid action is a Ω-space. ♦

55
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In the above definition, we have the fiber product of Ω and P given by

Ω×Ω0 P := {(ω, p) ∈ Ω× P |s(ω) = f(p)}.

As in the case of group action, we are interested in characterizing the free-
ness and transitivity of groupoid spaces. Our guiding principle is the canonical
map of example 1.2.4. Let P be a Ω-space

Definition 4.1.2 A Ω-bundle is the datum of a Ω-space (P ,f) and a smooth
map ϖ : P −→ N that satisfying

ϖ(p) = ϖ(ω ▷ p),

for all (ω, p) ∈ Ω ×Ω0 P . We say that (Ω, P, f,N,ϖ) is a principal Ω principal
when π is a submersion and the smooth map

Ω×Ω0
P −→ P ×N P, (ω, p) 7−→ (ω ▷ p, p),

is bijective. ♦

In the case of a Lie group, Ω0 = {∗}, we retrieve the notion of a principal bundle
over the quotient manifold.

We defined groupoid space with action from the left, the definition with the
action from the right is similar. We denote by p ◁ ω the right action.

Definition 4.1.3 A manifold P with a right groupoid action of Ω ⇒ Ω0 and a
left action Ω′ ⇒ Ω′

0 such that

(ω ▷ p) ◁ ω′ = ω ▷ (p ◁ ω′),

is said to be a Ω−Ω′-space. Moreover, if both actions are principal we say that
P is a Ω− Ω′-bibundle. ♦

We remark that, for groupoids, a bibundle exists if and only if they are Morita
equivalent [16, 33].

Remark 4.1.4 (The classical case) Given a principal G-bundle π : P −→ M ,
there is a natural left action of the gauge groupoid Ω 2.2.2 on the total space P .
We recall that in this case Ω0 =M , and the map f of the Definition 4.1.1 is the
projection π, the action map is given by

▷ : Ω×M P −→ P, [p, q] ▷ r := pτ(q, r). (4.1-1)

It is well-defined since

[pg, qg] ▷ r = pgτ(qg, r) = pgg−1τ(q, r) = pτ(q, r) = [p, q] ▷ r, ∀g ∈ G (4.1-2)

where we used (2.2-7). We can easily see that is a left action

[p, q] ▷ ([p′, q′] ▷ r) = [p, q] ▷ p′τ(q′, r)

= pτ(q, p′τ(q′, r))

= pτ(q, p′)τ(q′, r)

= pτ(q′τ(p′, q), r)

= [p, q′τ(p′, q)] ▷ r = [p, q] [p′, q′] ▷ r,
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where in order we used (2.2-8), (2.2-7) and (2.2-9). This action commute with
the right G-action on P , in fact from (2.2-8) we have

[p, q] ▷ (rg) = pτ(q, rg) = pτ(q, r)g = ([p, q] ▷ r)g.

Finally, we have that the Ω-action is principal, being the canonical map

Ω×M P −→ P × P, ([p, q] , r) 7−→ (pτ(q, r), r),

a diffeomorphism with inverse given by

P × P −→ Ω×M P, (p, q) −→ ([p, q] , q). ♦

4.1.2 The case of Hopf algebroids

In the first chapter of this thesis, we saw that for a bialgebroid the notion of
comodule algebra is the same as for bialgebra, and in addition, we asked the
coaction to be a B-bilinear morphism.

Before defining bibundles for Hopf algebroid, we need the notion of princi-
pality of action in the algebraic sense

Definition 4.1.5 Let (H, B) be a Hopf algebroid and A a left H-comodule alge-
bra with coaction λ : A −→ H⊗B A sending a 7−→ a(−1) ⊗ a(0). We say that the
coaction is principal if the canonical map

canH : A⊗ AcoH A −→ H⊗B A, a⊗ ã 7−→ a(−1) ⊗B a(0)ã

is bijective. ♦

Consider now two Hopf algebroids (H, B) and (H′, B′) then we have the
following

Definition 4.1.6 An algebra A is said to be a (H,H′)-bicomodule algebra if
it is a B and B′-bimodule, a left H-comodule algebra with a right B′-linear
coaction λ : A −→ H ⊗B A, and a right H′-comodule algebra with a left B-
linear coaction ρ : A −→ A⊗B′ H′ such that the following diagram commutes

A A⊗B′ H′

H ⊗B A H⊗B A⊗B′ H′

ρ

λ λ⊗B′ idH′

idH⊗Bρ

♦

We remark that the definitions can be given just for bialgebroids since they
do not involve antipode or the canonical map of 1.3.5. We now give the central
definition of this section

Definition 4.1.7 A (H,H′)-bicomodule algebra A is said to be a bibundle if
AcoH = B′ and AcoH

′
= B, A is a faithfully flat B and B′ module, and the

canonical maps the canonical maps

canH : A⊗B′ A −→ H⊗B A
canH′ : A⊗B A −→ A⊗B′ H′.

♦
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Remark 4.1.8 The requirement of faithful flatness of the algebra A seems to
be too strong in the noncommutative case. So, this is not a definitive notion of
bibundle in this setting, but for our purpose is good enough, and that is because
for the results we prove later in 4.2.2 and 4.2.7 such a requirement is fulfilled.♦

Given two commutative Holf algebroids, if they admit a bibundle then their
categories of comodules are equivalent, and also the converse is true [16]. In
representation theory, being Morita equivalent means that two objects have the
same (co)representation theory. So the result can be stated as two Hopf alge-
broids are Morita equivalent if and only if they admit a bibundle.

We also mention that in the case of Hopf algebras, i.e. B = K = B′, a
bibundle reduces to a bi-Galois object [36]. In the same paper is also proved
that the comodule categories of two Hopf algebras admitting a bi-Galois object
are equivalent.

4.2 A Morita theory result

In this section, we prove that, given a Hopf-Galois extension B ⊆ A, the al-
gebra A is a (C(A,H), H)-bibundle. Moreover, we prove that any bialgebroid
L admitting a (L, H)-bibundle A with a Hopf algebra H is isomorphic to the
ES algebroid; generalizing the classical result in 2.2.2 to the noncommutative
algebraic setting.

4.2.1 Coactions and canonical maps

For the rest of the subsection, let B ⊆ A be a right principal H-comodule alge-
bra, so that the ES algebroid C(A,H) is well-defined. There is a natural map

λ : A→ C(A,H)⊗B A (4.2-1)

that sends
λ(a) := a(0) ⊗ a

⟨1⟩
(1) ⊗B a ⟨2⟩

(1) . (4.2-2)

It is easy to see that

Lemma 4.2.1 The pair (A, λ) is a left C(A,H)-comodule algebra, and moreover
AcoC(A,H) = K

Proof One easily checks that λ is both left and right B-linear. Let ρ⊗ be the
diagonal coaction of H on A ⊗ A. By applying the map ρ⊗ ⊗B idA to λ(a) and
using (1.2-4) we get

a(0)(0) ⊗ a
⟨1⟩

(1) (0) ⊗ a(0)(1)a
⟨1⟩

(1) (1) ⊗B a
⟨2⟩

(1) = a(0) ⊗ a
⟨1⟩

(2)(2) ⊗ a(1)S(a(2)(1))⊗B a
⟨2⟩

(2)(2)

= a(0) ⊗ a
⟨1⟩

(3) ⊗ a(1)S(a(2))⊗B a
⟨2⟩

(3)

= a(0) ⊗ a
⟨1⟩

(1) ⊗ 1H ⊗B a ⟨2⟩
(1)

This proves that Im(λ)(A) ⊆ (A⊗ A)coH ⊗B A = C(A,H)⊗B A. Moreover, we
have

a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) b = a(0) ⊗ ba

⟨1⟩
(1) ⊗B a ⟨2⟩

(1)
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and

λ(aã) = a(0)ã(0) ⊗ ã
⟨1⟩

(1) a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ã

⟨2⟩
(1)

= (a(0) ⊗ a
⟨1⟩

(1) ) ·C(A,H) (ã(0) ⊗ ã
⟨1⟩

(1) )⊗B a ⟨2⟩
(1) ã

⟨2⟩
(1)

= λ(a)λ(ã)

here we used (1.2-6). Thus, λ is an algebra morphism if corestricted to C(A,H)×B
A.

Denote by (∆, ϵ) the B-coring structure on C(A,H), then one has for any
a ∈ A

[(idC(A,H) ⊗B λ) ◦ λ](a) = a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) (0) ⊗ a

⟨2⟩ ⟨1⟩
(1) (1) ⊗B a ⟨2⟩ ⟨2⟩

(1) (1)

= a(0) ⊗ a
⟨1⟩

(1)(1) ⊗B a ⟨2⟩
(1)(1) ⊗ a

⟨1⟩
(1)(2) ⊗B a ⟨2⟩

(1)(2)

= a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ⊗ a

⟨1⟩
(2) ⊗B a ⟨2⟩

(2)

= (∆⊗B idA)
(
a(0) ⊗ a

⟨1⟩
(1) ⊗B a ⟨2⟩

(1)

)
= [(∆⊗B idA) ◦ λ](a)

where in the first line we used (1.2-3). For the counit we have

[(ϵ⊗B idA) ◦ λ](a) = a(0)a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) = 1A ⊗B a

where we recognize (1.2-7). This ends the proof. ■

We can now return to the original goal of exhibiting a ”Morita equivalence”
between the original Hopf algebra H and C(A,H):

Theorem 4.2.2 For any right principal H-comodule algebra B ⊆ B, the algebra
A is a principal (C(A,H), H)-bibundle when equipped with its corresponding left
coaction (4.2-1) of C(A,H) and right coaction ρ of H.

Proof Write H := C(A,H) for brevity. We already know from Lemma 4.2.1 that
A is a left H-comodule algebra in the sense of [8, §31.23]. There are a few
other items to check.

(I) The H- and H-coactions commute. for any a ∈ A we have one one side

[(λ⊗ idH) ◦ ρ](a) = a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ⊗ a(2),

and on the other

[(idH ⊗Bρ) ◦ λ](a) = a(0) ⊗ a
⟨1⟩

(1) (0) ⊗B a
⟨2⟩

(1) (1) ⊗ a(2).

Using (1.2-3) the two expressions are equal, then the diagram

A A⊗H

H⊗B A H⊗B A⊗H,

commutes.
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(II) Right principality. Since we are considering a principal comodule alge-
bra, we have that the canonical map canH : A⊗B −→ A⊗H is bijective.

(III) Left principality. This means that the other, left-hand canonical map

canH : A⊗A −→ H⊗B A

canH(a⊗ ã) = a(0) ⊗ a
⟨1⟩

(1) ⊗B a ⟨2⟩
(1) ã

(4.2-3)

is bijective. It is very easy to write down the inverse explicitly:

a⊗ ã⊗B a′ 7−→ a⊗ ãa′ ∈ A⊗A. (4.2-4)

(4.2-3) followed by (4.2-4) is

A⊗A ∋ a⊗ ã 7−−→ a(0) ⊗ a
⟨1⟩

(1) a
⟨2⟩

(1) ã ∈ A⊗A,

and the right-hand side equals a⊗ ã. On the other hand, applying (4.2-4)
followed by (4.2-3) to

a⊗ ã⊗B 1 ∈ H ⊗B A (4.2-5)

produces
a(0) ⊗ a

⟨1⟩
(1) ⊗B a ⟨2⟩

(1) ã.

The fact that this is nothing but the original element (4.2-5) follows from
one of the characterizations of H 2.2.1..

This concludes the proof. ■

In the case of a Galois object (B = K), a universal property of the ES al-
gebroid - that in that case is proven to be a Hopf algebra - is shown in lemma
3.2 therein. We now prove that an analogous result holds in general; that the
statement is fairly expansive, illustrating the various interactions between the
multiple left/right module structures characteristic of the present situation (of
working over a non-commutative base ring B).

Recall the Takeuchi product 1.3-9. We have the following

Theorem 4.2.3 Let B ⊆ A be a right principal H-comodule algebra, then

(1) We have a natural isomorphism

MB (C(A,H), −) ∼= MH (A, −⊗B A) (4.2-6)

of functors MB −−→ MB B , where the B-bimodule structures on the two sides
of (4.2-8) are as follows:

• on the right, transported over from that on the domain A of the maps
A→ V ⊗B A for V ∈ MB;

• on the left, the ‘B’ subscript is induced by the B-module structure on the
second tensorand of

A⊗A ⊇ C(A,H) ∈ MB B , (4.2-7)

and the leftover B-bimodule structure on MB (C(A,H), −) is trans-
ported from that on the first tensorand in (4.2-7).
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(2) We have a natural isomorphism

MB B (C(A,H), −) ∼= MH (A, −×B A) (4.2-8)

of functors MB B −−→ MB B , where theB-bimodule structures on the two sides
of (4.2-8) are as before, with the two ‘B’ subscripts in MB B (C(A,H), −)
induced by the B-bimodule structure on the right-hand tensorand in (4.2-7).

(3) Similarly, we have an isomorphism

MBe Be (C(A,H), −) ∼= MH
B B (A, −×B A) (4.2-9)

of functors MBe Be −−→ VECT, where for V ∈ MBe Be

• V ⊗B A and V ×B A are built using the B-bimodule structure on V ∈
MBe Be induced by the two (left and right) Bop-actions;

• and the B-bimodule structure on V ×B A then results from the two (left
and right) B-actions on V .

(4) There is an isomorphism

CORNGB (C(A,H), −) ∼= COMODH (A, −⊗B A) (4.2-10)

of functors CORNGB −−→ SET defined on the category of B-corings, where the
right-hand side of (4.2-10) denotes the set of H-comodule morphisms that are
also left comodule structures on A for the B-coring ‘−’.

Proof We will denote by V the generic object of any of the various categories
under consideration, filling in the ‘−’ blank in (4.2-8) and analogues.

(1) This follows very much as in [36]:

MH (A, V ⊗B A) ∼= MH
A (A⊗A, V ⊗B A) (hom-tensor adjunction internal to MH)

∼= MB

(
(A⊗A)

coH
, V
)

1.2.5 (4.2-11)

= MB (C(A,H), V ) (definition of C(A,H)).

To conclude, note that the B-bimodule structure on the domain A of the maps
A → V ⊗B A (and hence, later, on the left-hand tensorand of A ⊗ A) run
undisturbed through the isomorphisms.

The other items are consequences of part (1): as we will outline, the requisite
isomorphisms are all (co)restrictions of (4.2-8).

(2) Running through the isomorphism chain (4.2-11), note that anH-comodule
morphism A→ V ⊗B A takes values in the smaller space

V ×B A ⊆ V ⊗B A

precisely when, recast as a map A⊗ A −−→ V ⊗B A as in the first line of (4.2-
11), it intertwines left B-multiplication on the right-hand A tensorand and left
B-multiplication on V . This, in turn, is equivalent to the map’s avatar through
(4.2-11) lying in

MB B (C(A,H), V ) ⊆ MB (C(A,H), V ) .
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(3) The argument is very similar to the preceding one: having made the iden-
tification

MH(A, V ×B A) ≃ MB B (C(A,H), V )

in part (2), note that a map in the left-hand space respects the B-bimodule
structures on the two sides precisely when it does so on the right for

• the B-bimodule structure on C(A,H) inherited from its left-hand tenso-
rand A in

C(A,H) ⊆ A⊗A;

• the B-bimodule structure on V resulting from the two (left and right)
B-actions given by V ∈ MBe Be .

(4) This too is a fairly quick consequence of part (1). For a B-coring

(V, ∆, ε) ∈ CORNGB ,

recall first [8] that V -comodule structures

λ : A −→ L⊗B A

are required to be left B-module morphisms. Transporting that requirement
along (4.2-11), the counterpart of λ is (at least) a B-bimodule morphism ψ :
C(A,H) −→ L.

As for preserving the coring structure, consider, say, the comultiplication. The
composition

A A⊗B L

L ⊗B A L ⊗B L ⊗B A

λ

λ (idL ⊗Bλ)◦λ

(∆L⊗B idA)◦λ

(4.2-12)

corresponds via (4.2-8)

• to
C(A,H)

ψ−−−−→ L
∆L−−−−−−→ L⊗B L

for a unique B-bimodule morphism θ, if we follow the lower path in (4.2-
12);

• and to

C(A,H)
∆−−−−−→ C(A,H)⊗ C(A,H)

ψ⊗ψ−−−−−−−→ L⊗B L

is we follow the upper path instead.

The two must be equal, by the commutativity of (4.2-12) (and (4.2-8) again).
The same type of argument goes through for counit preservation.

This concludes the proof. ■

Recall from [8] that the category RNGBe of Be-rings is monoidal under the
Takeuchi product ‘×A’. In fact, more is true: since construction of R ×A S in
the reference and the proof therein only make use of the Bop-ring structure
on R and the B-ring structure on S, the two factors need not both be full Be-
rings. We spell out the various possibilities (without proof, since [8] handles
the matter):
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Proposition 4.2.4 The bifunctor

RNGBop × RNGB
×B−−−−−−→ RNG

extends

(1) to a functor
RNGBe × RNGB

×B−−−−−−→ RNGB ;

(2) as well as a functor

RNGBop × RNGBe

×B−−−−−−→ RNGBop .

■

Remark 4.2.5 The functors of Proposition 4.2.4 almost look like they would
make RNGB and RNGBop into module categories [17] over RNGBe , save for the
fact that the latter is not, in general, a monoidal category: [43] and [38] both
note that ‘×A’ need not be associative. ♦

There is a multiplicative counterpart to Theorem 4.2.3 (whose part (4), for
instance, is concerned with comultiplicative structure):

Theorem 4.2.6 Let B ⊆ A be a right principal H-comodule algebra, then:

(1) There is a natural isomorphism

RNGBop (C(A,H), −) ∼= RNG (A, −×B A)

of functors RNGBop → SET.

(2) Similarly, there is a natural isomorphism

RNGBe (C(A,H), −) ∼= RNGB (A, −×B A)

of functors RNGBe → SET.

Proof The proof of [36], showing that for B = K multiplicativity on one side
of (4.2-11) entails multiplicativity on the other, goes through verbatim in the
present setting: one would instead be working with the identifications (4.2-8)
and (4.2-9) instead. ■

We now have the following characterization of ES bialgebroid, analogous to
(a portion of) [33].

Theorem 4.2.7 Let H be a Hopf algebra with bijective antipode.
A left bialgebroid L admits a principal (L, H)-bibundle if and only if it is the

ES bialgebroid attached to a right principal H-comodule algebra.

Proof Theorem 4.2.2 settles the ‘⇐=’ implication, so we handle the converse.
Assume, to that end, that A is a principal (L, H)-bibundle. The universality
properties of C(A,H) in Theorem 4.2.3 (4) and Theorem 4.2.6 (2) provide a
unique B-bialgebroid morphism

ψ : C(A,H) −→ L
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inducing the L-comodule structure

λL : A −→ L⊗B A

on A via

A C(A,H)

L
λL

λ

ψ⊗B idA

for the left C(A,H)-comodule algebra structure λ of (4.2-2).
As a straightforward consequence, the following diagram commutes

A⊗A C(A,H)⊗B A

L ⊗B A

canC(A,H)

canL
ψ⊗B idA

■

SinceA is both a (L, H)-bibundle and (C(A,H), A)-bibundle the canonical maps
canL and canC(A,H) are bijiective. Then, also ψ ⊗B idA is and from the faithful
flatness of A we have that ψ is bijective.

4.2.2 Category theory point of view

Let now B be an algebra and L a B-bialgebroid, we denote by ML the category
of strict left L-comodules [8]. The objects M are B-bimodules endowed with a
left L-coaction λ :M −→ L⊗BM such that λ(M) ⊆ L×BM and the morphisms
are B-bimodule maps preserving the L-coaction. It is a monoidal category with
respect to the tensor product ⊗B as proved in [37, Proposition 5.6].

For the case L = C(A,H) the bialgebroid associated with a principal H-
comodule algebra B ⊆ A we have the following result [37, Proposition 5.16]

Proposition 4.2.8 There is an equivalence of monoidal categories MC(A,H) ≃
MH given by the functor

MH ∋ V 7−→ A □H V ∈ MC(A,H)

This result is the algebraic version of the fact that the structure Lie group
G of a principal bundle and the gauge Lie groupoid Ω are Morita equivalent.
In this classical setting also the converse holds true, if a Lie groupoid is Morita
equivalent to a Lie Group then it is isomorphic to a gauge Lie groupoid of some
principal bundle [33, Proposition 5.14]. In the realm of Hopf-Galois extensions,
we have the following

Proposition 4.2.9 (Conjecture) Let H be a Hopf algebra with bijective antipode
and L a B-bialgebroid. If ML ≃ MH as monoidal categories then there exists a
principal comodule algebra B ⊆ A such that L ≃ C(A,H).
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